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Abstract
Burn severity maps are an important tool for understanding fire damage and managing
forest recovery. We have identified several issues with current mapping methods used by
federal agencies that affect the completeness, consistency, and efficiency of their burn
severity maps. In order to address these issues, we demonstrate the use of machine
learning as an alternative to traditional methods of producing severity maps, which rely
on in-situ data and spectral indices derived from image algebra. We have trained several
supervised classifiers on sample data collected from 17 wildfires across Northern
California and evaluate their performance at mapping fire severity.

1   Introduction
In recent years, wildfires have been growing into a much larger environmental and
public safety threat. Fire seasons are larger, more destructive, and burning longer than
ever before that the US Forest Service has coined the term “fire year”. The exact causes
for this behavior are not known, but scientists point to climate change, increased human
activity from expansion into rural areas, and over-zealous fire prevention policies that
have created environments ripe for wildfires with large buildups of combustible fire
fuels. [1] This phenomenon is happening across the world, but is especially apparent in
Northern California, which has historically been a global hotspot for wildfires. The 2018
fire season, the worst in California’s history, was responsible for an estimated $102.6
billion in damages in California. [13] In addition to extensive economic damage, wildfires
also pose a significant health hazard by exposing millions of people along the West Coast
to harmful aerosol pollutants, such as ash and dust. Our preliminary analysis also
confirms that wildfires are more frequent and destructive. From 1990-2020 there has
been a 267% increase in the number of fires annually and in the past 20 years there has
been a 520% increase in the number of fire seasons that exceed 500,000 burned acres
compared to the 50 years prior.

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019EF001210


1.1   What is Burn Severity?
To clarify on the meaning and usage of wildfire jargon, fire intensity is strictly used to
describe the total amount of energy released by a fire, while fire or burn severity
describe the effect of fire on aboveground and belowground biomass. This includes
measures like canopy cover, crown volume, surface litter, and soil hydrophobicity. These
terms are often used interchangeably, but a minor distinction is that in certain
applications burn severity can specifically refer to fire effects on soil. [2] Our analysis
uses remote sensing data to specifically measure the effect of wildfire on above and
belowground biomass, which we refer to interchangeably as fire or burn severity. This
definition is widely used by federal fire mapping groups and past research on wildfires.

Burn severity maps are widely used by federal agencies and forest managers to map fire
damage and extent, prioritize forest recovery efforts, update vegetation and land cover
maps, monitor ecosystem health, and assess the risks of any downstream impacts in the
future. Fire mapping responsibilities are shared by several federal interagency groups,
mainly Monitoring Trends in Burn Severity (MTBS), Rapid Assessment of Vegetation
Condition after Wildfire (RAVG), and Burned Area Emergency Response (BAER).

Traditional methods of producing these maps are expensive and time-consuming since
they require teams of surveyors and ecologists to gather in-situ data. For many fires, this
is infeasible due to harsh terrain and weather. These methods are still used for certain
fires, but have been largely phased out with the introduction of remotely sensed data
from Earth observing satellites. Fires can be mapped at a much faster and larger scale at
a fraction of the cost relative to field surveys, while still maintaining high accuracy.
Remote sensing data is widely used in many other applications, such as agriculture,
climate change, and natural disasters, since they cover long time spans and are
continuously updated with high resolution, multi-spectral data.

The most widespread spectral index for identifying burned areas and fire severity levels

is the Normalized Burn Ratio, 𝑁𝐵𝑅 = (𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅)
(𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅) = (𝐵𝑎𝑛𝑑 5 − 𝐵𝑎𝑛𝑑 7)

(𝐵𝑎𝑛𝑑 5 + 𝐵𝑎𝑛𝑑 7)  

The near-infrared band (NIR) is sensitive to chlorophyll present in live vegetation, while
the short-wave infrared band (SWIR) is primarily sensitive to water content in soil and
vegetation. It has also been shown to be capable of discerning dead wood from burned
soil, ash, and charred wood. As a result, NBR is sensitive to live, photosynthetically active
vegetation, moisture content, and certain post-fire surface conditions. [3] To measure the
effect of fire, NBR is computed for pre and post fire images and their results are
differenced (dNBR). A set of thresholds corresponding to different burn severities is then
applied to produce a burn severity map. Federal fire-mapping groups mainly use this
approach, but with slight differences based on their organizational needs.

A weakness of using dNBR is that it tends to underestimate burn severity in regions that
are less vegetated or have mixed land cover types with shrubs and grasslands. For
example in the figure below, forest A has half the pre-fire vegetation of forest B and C.
Forest A and B both experience almost total vegetation loss from a fire and should both

https://mtbs.gov/
https://burnseverity.cr.usgs.gov/ravg/
https://burnseverity.cr.usgs.gov/baer/baer/home
https://www.sciencedirect.com/science/article/pii/S0034425706005128?casa_token=xh_Z2lEJWNEAAAAA:DbqBvrcf3clohyl_KpvWSbMaqB9IYd_4UElgb-FDQ66KBhBM12JbepJ3l22YKJAXSFLCpAoEEfc#bib24


be classified as experiencing a high severity burn. Forest C also has a fire and loses about
half of its trees and should be classified as a moderate severity burn. However since
Forest A has less pre-fire vegetation than Forest B, its dNBR value is much lower and
about the same as Forest C’s dNBR value. This implies that the burn severity classification
of Forest A and C would be the same, even though Forest A has the same post-fire state as
Forest B.

This leads to an underestimate of burn severity that skews the results of fire severity
maps. A relativized version of dNBR, rdNBR, has been shown to perform better in
regions that are less vegetated and have mixed vegetation types, but it isn’t as commonly
used.[3]

1.2   Federal Fire Mapping Groups
The main groups responsible for mapping fires in the US are MTBS, RAVG, and BAER.
MTBS is the largest and most active federal mapping group and in California it maps fires
larger than 5000 acres. RAVG maps fires that occur on at least 1000 acres of National
Forest System (NFS) land and produces results usually within 60 days of fire
containment. It specifically focuses on changes in canopy cover and basal area. BAER is
slightly different since its main goal is to assess soil burn severity and identify and
prescribe treatments for any hazards caused by fire, like water runoff from hydrophobic
soil. Within a week of a fire’s containment it provides satellite imagery and preliminary
burn severity data to field teams, made up of ecologists, soil scientists, and engineers,
that work in the field to stabilize a region. [7]

Several issues currently hinder the effectiveness of burn severity maps produced by
these groups. Due to various agency requirements, lack of resources, and the immense

https://www.sciencedirect.com/science/article/pii/S0034425706005128?casa_token=xh_Z2lEJWNEAAAAA:DbqBvrcf3clohyl_KpvWSbMaqB9IYd_4UElgb-FDQ66KBhBM12JbepJ3l22YKJAXSFLCpAoEEfc#bib24
https://www.fs.fed.us/naturalresources/watershed/burnedareas-background.shtml


number of wildfires every year, federal agencies are only able to map a fraction of
wildfires. This leads to lacking fire documentation and coverage, which could limit the
work of groups that depend on fire severity maps. In addition there is a lack of
“completeness” in the data used to produce fire severity maps. Only two spectral bands,
NIR and SWIR, are used from Landsat to calculate dNBR and contextual data, like land
cover or weather aren’t used. This additional data could contain relevant information
that can be uncovered with machine learning.

The second issue relates to the consistency of severity maps. Maps produced by MTBS
rely on analysts to subjectively determine dNBR thresholds to produce severity
classifications. These thresholds are not validated with field data or ecologically
quantified so the consistency of their maps is questionable. [7]
Another source of inconsistency is the use of different pre and post fire images since
these agencies operate separately and on different timelines. Ideally, the selected
pre-post fire images are as close to a fire as possible because using images that are
further apart can influence results. For example, selecting a post fire image from a later
date allows vegetation regrowth from fire or seasonal changes in vegetation to occur. Or
if a fire occurs in November but a pre-fire image from spring is used, this can increase a
fire’s dNBR value since the absolute decrease in vegetation is greater. [8] For these
reasons, agencies often come up with conflicting results. Figures 3a-b demonstrate this
issue with the 2013 Rim Fire near Yosemite National Park.

The third issue, which only affects MTBS, is the speed at which severity maps are
produced. They release maps on a two year lag and as of today still have not released any
for fires from the 2020 and 2021 fire seasons. This delay is likely due to the large number
of fires they are responsible for and the amount of human influence required.

1.3   Related Research
Fire severity is a well researched topic and common approaches revolve around in-situ
sampling and spectral indices derived from image algebra, similar to other change
detection applications.[9] In recent years machine learning applications for remote

https://www.tandfonline.com/doi/pdf/10.1080/01431168908903939
https://www.ingentaconnect.com/content/asprs/pers/2005/00000071/00000011/art00006#


sensing have been growing in popularity, but are still fairly limited. This has been
attributed to the limited support of machine learning methods in traditional remote
sensing software, confusion on how to apply ML models, contradictory model
performance, and parametric methods still being extremely popular even though they
have been shown to perform worse overall. [4][10] Machine learning models perform
well at modeling complex relationships between features and benefits from large,
high-dimensional datasets, which are common with remote sensing datasets.

Given these benefits, we propose the use of machine learning methods with remote
sensing data to map fire severity. This would address the issues highlighted above and
reduce human subjectivity, allow maps to be produced at a faster and larger scale, and
allow us to incorporate additional spectral bands along with contextual data including
weather, land cover, and terrain. We plan to train our models using data sampled from
17 wildfires in Northern California and evaluate their performance on other wildfires in
the region. A study similar in scope to ours was conducted by training a random forest
classifier (RF) over in-situ and remote sensing data from 8 fires in Victoria, Australia.
They found that RF generally produced more accurate burn severity results than a
traditional spectral indexing approach. [5]

1.4   Region of Interest
Our study will be focused on Northern California since it is a global hotspot for wildfires
that has affected a majority of students at UCSD. In addition, its infamous wildfires are
well documented by CALFIRE, have been researched significantly in the past, and there
are many remote sensing datasets that cover this region.

A majority of counties in Northern California
are very rural, have sparse populations, and are
mostly undeveloped. Their land covers are
largely dominated by conifer forests, low-lying
shrubland, annual grassland, and mixed
chaparral. These vegetation types are known to
be conducive to wildfires as some chaparral
species release flammable resins that help it
propagate its seeds during wildfires. Conifer
trees also produce lots of surface litter and tree
sap that are easily combustible. These counties
account for a majority of wildfires and related
damages. Counties located in Central California
near Sacramento, like Yolo, Sutter, and San

Joaquin, are more developed and revolve around agriculture and livestock. On average
these counties experience less than 2 wildfires per year, usually under 1000 acres.

Northern California is historically prone to wildfire since it doesn’t experience much
rainfall and has dry, hot summers that lead to large accumulations of combustible fire

https://www.tandfonline.com/doi/full/10.1080/01431161.2018.1433343
https://www.tandfonline.com/doi/full/10.1080/01431161.2014.930206
https://www.researchgate.net/publication/336659069_Fire-severity_classification_across_temperate_Australian_forests_random_forests_versus_spectral_index_thresholding


fuels in the fall. Environmental factors, like strong downslope winds and lightning
strikes, and human activity are common wildfire ignition sources. [1] California is
especially susceptible to long droughts and often experiences consecutive dry years,
which are characteristic of regions with Mediterranean type climates. As the effects of
climate change become more apparent, droughts and wildfires in California will be a
greater environmental and public safety hazard.

2   Data
Google Earth Engine (GEE) is a cloud-based distributed computing environment that
greatly reduces the technical barriers to entry for large scale geospatial analysis and
hosts a large catalog of data including satellite imagery, climate forecasts, and
geophysical data.[6] We used the GEE platform to access and run computations on
remote sensing data from Landsat 8, NASA SRTM, NLCD 2016, and GRIDMET.

Data Provider Bands

Landsat 8 (Level 2, Collection 2, Tier 1) USGS 7

NASA SRTM Digital Elevation NASA / USGS / JPL-Caltech 1

NLCD: USGS National Land Cover
Database (2016)

USGS 14

GRIDMET: University of Idaho Gridded
Surface Meteorological Dataset

University of California:
Merced

16

Data on California wildfire seasons from 1950-2020 is provided by CALFIRE and includes
information on a fire’s location, geometry, size, and duration.

2.1   Fire and Image Selection
In total, 17 fires were selected from a candidate set of 79 fires. The fires occurred across
Northern California between 2013-2020 because this coincides with the launch of
Landsat 8 (February 2013) and the California wildfire dataset hasn’t been updated to
include any fires past the 2020 fire season. All selected fires are at least 10,000 acres in
size because fires of this size are better documented and have more pixels to sample.
To get optimal pre and post fire images from Landsat 8, we considered all images that
occurred 60 days before and after a fire. Images were selected based on their proximity
to a fire’s start or end and the presence of environmental factors that reduce image
quality, like clouds, smoke, and snow. A majority of pre-fire images are within 14 days of
a fire’s ignition, but some post-fire images occur much later due to poor image quality.

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019EF001210
https://www.sciencedirect.com/science/article/pii/S0034425717302900
https://gis.data.ca.gov/datasets/CALFIRE-Forestry::california-fire-perimeters-1950/explore


2.2   Data Extraction
In addition to surface reflectance data from Landsat 8, we also used land cover,
elevation, and weather data from NLCD, NASA SRTM, and gridMET respectively. These
images are clipped over each fire’s bounding box and their bands are merged into a
single image in GEE. The selected Landsat 8 images are pre-orthorectified to account for
terrain and we used the standard image differencing method to calculate dNBR.

Using proposed burn severity values from the USGS, which we simplified from seven
classes to five, we classified each pixel as either vegetation growth, unburned, low
severity burn, moderate severity burn, and high severity burn. [2] We simplified the land
cover classes used by the NLCD  and remapped  them to six classes: developed, forest,
shrub, grassland, agriculture, and other. Pixels that are marked as bodies of water,
perennial snow, barren rock, or wetlands are reclassified as “other”. This makes our data
easier to interpret and removes redundant land cover classes that aren’t present in
Northern California. Rasters for each fire are extracted from GEE with varying cell size
(30m - 90m) based on fire size. Variable cell sizes serve as a soft regularization technique
to even out the number of data points between larger and smaller fires. Increasing the
cell size for large wildfires was crucial for staying within memory resources. The model
interpretability does not suffer much between fire sizes since the cell size of feature
datasets are larger.

3   Methods

3.1   Feature Selection and Engineering
Feature selection was performed by keeping all features with coefficients greater than
0.02in a fitted Logistic Regression model. The most important features were NDVI,
elevation, Landsat 8 Bands 1-7, land cover, and tree cover percentage. Our simplified

https://www.mrlc.gov/
https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003?hl=en
https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_GRIDMET?hl=en
https://www.researchgate.net/publication/228638145_Fire_intensity_fire_severity_and_burn_severity_A_brief_review_and_suggested_usage


land cover classes are one hot encoded and all the features were standardized to prevent
one feature’s variance from dominating the other features in the dataset. To train and
validate our models, we randomly split our sampled wildfire data to 80% training data
and 20% testing data.

3.2   Models
Logistic Regression
Our Logistic Regression model had an accuracy of around 80% when tested on our test
data. This model performed the best in predicting unburned areas with an accuracy of
around 84%. On the other hand, this model had the worst accuracy (~58%) in predicting
low burn severity areas. One limitation of this model is that it assumes linearity between
the features and the target classes.

Mutli-Layer Perceptron Classifier
The Multi-Layer Perceptron Classifier model has a major advantage in that it can learn
non-linear relationships in data. This model produced an accuracy of around 86%,
slightly better than the Logistic Regression model. This model performed the best in
predicting unburned areas with an accuracy of around 90% while it had the worst
accuracy (66%) in predicting high burn severity areas.

Random Forest Classifier
The Random Forest Classifier consistently has an accuracy of about 85% without any
parameter tuning. This performance is expected since previous studies have shown that
Random Forests perform well without any parameter tuning and do not overfit to
training data as the number of trees and leaves increase. [11] [12]

Similar to our Logistic Regression model, our Random Forest Classifier model performed
the best in predicting unburned areas with an accuracy of around 92%. This model has
the worst accuracy in predicting low burn severity and high burn severity areas which
both had an average burn severity of 77%. Overall, this model had the most consistent
accuracy results across all target classes.

Support Vector Classifier
Support Vector machines were a good candidate due to its strength in geospatial
applications and generalization qualities. This model’s performance was especially
sensitive to seasonality

Logit Boost/Adaboost
Boosting methods have been shown to be effective in modeling fire severity. Each model
is a variation of boosted trees with different loss functions. These models were not as
robust as the bagging methods and tended to overpredict the burned perimeter more
often than other methods.

4   Results

https://www.tandfonline.com/doi/full/10.1080/01431160412331269698
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To evaluate how generalizable our models are to other Northern California wildfires, we
benchmarked their performances on fires of varying sizes, times of year, and land cover
types. These factors can affect fire behavior and produce inaccurate or skewed model
results. We selected 5 fires that represent these different factors to demonstrate the
strength and weaknesses of our models.

Fire Start Date End Date Acres County Land Cover

Abney 2017-08-10 2018-01-10 32893 Siskiyou Forest

Atlas 2017-10-08 2017-11-01 51624 Napa Mixed

Slink 2020-08-29 2020-11-13 26751 Alpine Mixed

Steele 2017-07-26 2017-08-13 45704 Modoc Shrub

We tested our models’ performance on several small wildfires. Most fires in Northern
California are under 10,000 acres in size, but the fires we selected to train our models on
are all above this size. This led to some concerns on if our models would be able to
accurately map these smaller fires. The Slink and Abney Fires are used to demonstrate
how the effects of winter pose a significant challenge to our models and offer directions
for further improvement. We selected the Atlas and Steele Fire to test how our models
perform in mixed and heterogeneous shrubland environments. These land cover types
are known to be difficult to map with linear dNBR thresholding and often require human
subjectivity in setting thresholds. We show that our models are robust to these conditions
and can produce accurate burn severity maps.

In general, our models perform best on fires in non-winter months that have forested or
mixed land cover types. With fires in these ideal conditions, our models are able to
accurately identify the shape of a fire and classify unburned areas with up to 90% recall
and precision. In ecosystems that are mostly shrub and grassland, our models produce
mixed results and are capable of identifying fire scars, but are also prone to underfitting
burn severities. Since our approach only requires post-fire data, our models are more
robust to noise from seasonal vegetation loss and less sensitive to snow in post fire
images. One of the weaknesses of our models is that they can struggle to identify pixels
with vegetation growth and high severity burns. This is likely due to pixels with these
classes not occurring frequently in our training data. Another issue is that our models
tend to misclassify burned pixels as being unburned, which leads to some predicted burn
severity maps being sparse and discontinuous.

4.2   Different Sized Fires
We found that the size of a fire did not affect the performance of our models, despite not
having any training data from fires below 10,000 acres. This possibly suggests that the
behavior of small fires doesn’t vary much from bigger fires and could be a direction for
further research. Other factors related to seasonal changes and land cover type are
found to be very influential in model performance for fires of all sizes.



4.3 Season
We found that seasonal changes in vegetation and the presence of snow were a major
roadblock to producing burn severity maps for fires in winter months with either
method. For example we tested our models on the Slink Fire (2020) which burned in the
Sierra Nevadas late into the fire season. As a result, the candidate set of post-fire images
are strongly affected by snow and seasonal vegetation loss.  The fire scar is fairly visible
in Figure 7b, but is partly obscured by snow, which is blue in the false color image, in the
central part of the fire and in the surrounding region.

An issue with the thresholded map in Figure 7c is that there are many pixels classified as
vegetation growth, mostly near regions with snow. In the top right corner of the images
is agricultural land that is unburned by the Slink FIre. However due to crop harvesting
or seasonal changes in winter, this area has less vegetation postfire. As a result, the
linear dNBR threshold picks up on this and misclassifies these pixels as low severity
burns in Figure 7c. These issues contribute a lot of noise to the burn severity map and
can make it more difficult to interpret a fire’s burn severity. As demonstrated with our
MLP classifier in Figure 7d, our models are not as sensitive to these factors and are able
to produce a clear burn severity map that better shows the fires outline.



For fires with heavier snow coverage and seasonal vegetation loss, our models really
broke down and produced inaccurate results. This was very apparent when we tested
our Logistic Classifier on the Abney Fire (2017). In Figure 8b, the fire scar isn’t really
visible and large amounts of snow obscure much of the image.

An issue that stands out with both burn severity maps is that they’re very noisy and don’t
show an identifiable outline of the Abney Fire. This is likely due to winter vegetation loss
being misidentified as burned vegetation. Unlike our other models, the Logistic Classifier
was a lot more sensitive to this noise and also identified snow as a moderate severity
burn.

In general our models perform better than linear thresholds for fires that don’t have
heavy snow coverage or vegetation loss. With the Slink Fire (2020), they correctly
identify pixels with snow as unburned areas and produce a clearer burn severity map.
Our models struggle with fires that have more snow and produce inaccurate results,
which is likely because our training fires are absent of snow and occur mostly in late



summer and fall. Accounting for the issues posed by winter fires could be a direction for
further model tuning and improvement.

4.4 Land Cover
Our model performed well on fires of mixed land covers that occur most frequently in
Napa and Sonoma counties. These fires can be difficult to produce burn severity maps
for because discrete severity thresholds may not accurately represent how fires behave
in different land covers. We tested our models on the Atlas Fire (2017) as it is adjacent to
Napa, CA and has a very mixed land cover composition with lots of agricultural and
urban areas.

Using our MLP classifier we are able to produce a map that accurately identifies burned
and unburned regions and shows the shape of the Atlas Fire. A key difference is that the
map produced by the MLP classifier shows the Atlas Fire as having a significantly more
severe burn compared to the linear threshold method. This is likely a more accurate
assessment of the Atlas Fire as dNBR thresholding is known to underestimate burn
severities in shrub and grassland. [3] A strength of using our models in environments
with mixed land covers is that they are robust to changes in agricultural regions from



crop sowing and harvesting. The linear threshold picks up on these changes and
classifies many pixels on unburned farmland as having a low severity burn or vegetation
growth, which adds a lot more noise.

We also tested our models on the Steele Fire (2017) which occurs in Modoc County, a part
of California that is mostly covered by shrubland. As mentioned with the Atlas Fire,
dNBR thresholding struggles to produce accurate burn severity classifications for fires in
shrubland and other less vegetated regions. A quick solution around this issue, that is
employed by MTBS, is to have analysts subjectively determine severity thresholds.
However this approach introduces a lot of human influence, produces inconsistent
results, and is time-consuming.

The burn severity map in Figure 10c demonstrates this issue as a large majority of pixels
are classified as unburned. In contrast, the map produced with a Random Forest
classifier in Figure 10d shows that it is much more capable of identifying burned areas
and depicting the fire’s outline. Our training data did not include many fires that
occurred in shrubland dominant ecosystems, so with further model training this result
could likely be improved.



5    Further work
A common issue our models experienced was misidentifying burned pixels as unburned
and this was especially noticeable for fires in shrub and grassland ecosystems. This likely
occurs because our models are trained on burn severity values generated using dNBR
thresholding. Having models trained on burn severity values generated using rdNBR
thresholding instead for fires in these regions could be a workaround solution. Another
solution would be incorporating more training data from a wider set of wildfires in
shrub and grassland environments. This could improve the overall generalizability of
our models in these environments

We decided to use surface reflectance data from Landsat 8 over alternative options, such
as Sentinel-2, because it’s also used by federal fire mapping agencies, has the same
spatial resolution (30m) as our other data, and has been operating for longer, especially if
previous Landsat satellites are considered. However there are several benefits that
Sentinel-2 provides that make it an attractive option to explore.

The first is that since Sentinel-2 is composed of two satellites that orbit in tandem, it has a
much shorter revisit time of 5 days compared to a revisit time of 16 days for Landsat 8.
This means that for a given timespan there is a much larger set of post-fire images to use
and that burn severity maps can be produced faster. Sentinel-2 also provides four bands
that are dedicated to the red edge wavelength range. Reflectance in this part of the
electromagnetic spectrum is highly sensitive to chlorophyll content in vegetation and is
indicative of vegetation health. The addition of these bands is likely helpful for
distinguishing between seasonal vegetation change and burned vegetation. Another
small benefit of using Sentinel-2 is that most of its bands have a spatial resolution of
10-20m, compared to 30m for Landsat 8. This is helpful for working with small fires and
producing more granular burn severity maps.

6   Conclusion
In this paper, we outline several issues with current fire mapping methods used by
federal agencies that lead to inefficient, inconsistent, and incomplete results. Using data
collected from Northern Californian wildfires, we demonstrate how supervised machine
learning classifiers can be a viable alternative to current mapping methods. Our models
work best for fires in non-winter months that occur in forested or mixed land cover
environments and are able to accurately identify unburned areas and map burn
severities. Our work serves as a strong starting point for further research on mapping
and analyzing wildfires with machine learning.
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