juliacon

GeometricFlux.jl: a geometric deep learning library in Julia

Yueh-Hua Tu' 2

IBioinformatics Program, Taiwan International Graduate Program, Institute of Information Science,
Academia Sinica, Taipei, 11529, Taiwan
>Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei,
10617, Taiwan

ABSTRACT

Data from various fields have their suitable structure. Nowadays,
applicable data in artificial intelligence are images, text and speech.
These data can be represented as vector or matrix structure. How-
ever, some data are not suitable for matrix structure or it can be
sparse to fit in matrix structure. For example, social network in
social science, biological network in biology and traffic network
represent their data in graph or network structure. Usually, mea-
surement of these data lies in non-Euclidean space. To utilize net-
work representation as input for deep learning model, geometric
deep learning, or its subfield called graph neural network, learns
topological information provided by network structure and latent
information from input features simultaneously. A geometric deep
learning framework in Julia is proposed, GeometricFlux.jl. Geo-
metricFlux.jl is a Julia package for geometric deep learning on
graph. It extends Flux.jl, a well-known machine learning frame-
work in Julia, to accept network structure as model input. Some
well-known and key graph convolutional layers are implemented
in GeometricFlux.jl. It relies on Zygote.jl for automatic differen-
tiation engine. ScatterNNIib.jl acted as independent package con-
tains essential scatter/gather operations and their gradient for Ge-
ometricFlux.jl. To leverage existing JuliaGraphs ecosystem, Geo-
metricFlux.jl accepts graph data structure constructed from Julia-
Graphs. Layers implemented in GeometricFlux.jl are compatible
with Flux.jl layers. Thus, dropout, batch normalization and dense
layers are applicable when using Flux and GeometricFlux.jl to-
gether. GPU computation is necessary and is supported by CUDA j1
as well. Static and variable graphs are supported for efficiency
and various network structure input, respectively. Message-passing
scheme [?] and graph network block [?] are implemented as flex-
ible and integrated framework. The performance of scatter opera-
tions are benchmarked and it outperforms pytorch-scatter on cuda.
I propose a novel and competitive geometric deep learning library
in Julia.

Keywords

Julia, Geometric deep learning, Graph neural network, Machine
learning, Geep learning

1. Introduction

Geometric deep learning emerges as a subfield of deep learning.
It learns with irregular structured data and features. Topological
information from graph is embedded with features through the

whole neural network. Graph neural network provides a generic
approach [?, ?] for learning topological information together with
features to get precisely prediction. However, integration of sci-
entific computing, software architecture, graph representation and
dataset preparation is challenging. GPU computation on irregular
data struture is not commonly supported. A well-defined graph neu-
ral network framework is needed for researchers to operate with. I
proposed GeometricFlux, a geometric deep learning extension of
a deep learning library, Flux, in Julia. Graph convolutional lay-
ers are organized in the design of message passing scheme. Graph
network block is implemented as a generic version of message
passing scheme. Leveraging Julia ecosystem, operations on CPU
and GPU are optimized with SIMD and CUDA jl, respectively.
Graph representations are supported with general array or graphs
from JuliaGraph ecosystem. A github repository is available in
https://github.com/yuehhua/GeometricFlux.jl.

2. Extending Framework

An extending framework is designed to integrate message-
passing scheme and graph network (GN) block in GeometricFlux.
Message-passing scheme is defined in two functions: message
function and update function. Message function passes states on
node itself and its neighbors or edges and give messages. Aggregate
function is used to aggregate messages into single outcome. Update
function takes node state and aggregated message, and then update
the result as new node state. Precisely, message-passing scheme can
be described as follow:

m{Y = aggjenin (M (", 2, ei)))

A = (i)

Message function M and update function U are predefined by a
network layer or users. A message for node ¢ is calculated for ¢t + 1-
th layer, which is denoted as m§t+l>, and aggregated in elemen-
twise manner by operation agg with neighbors of ¢. A new node
1 state xﬁ“‘l) is computed for ¢ 4 1-th layer as an outcome from
update function.

GN block defines a more general operations on graph. It updates
edge, node and global states individually. Aggregate functions are
applied after updating states and merge states from edges to nodes,
from edges to global and from nodes to global. GN is implemented
as an abstract type in Julia and coupled with a series of update
functions and aggregate functions as API for overriding. As a spe-



Proceedings of JuliaCon

Scatter add performance on CPU

10*

10:5

Time (4 s)

10?

10!

100 25 2 10 2 15 22“

Matrix Size

1(1), 2020

Scatter add performance on GPU

10°
10*

108 Framework

Time (4 s)

10!

100 2.'» 2 10 2 15 2'2“

Matrix Size

Fig. 1. Benchmark for scatter add on CPU and GPU.

Scatter mean performance on CPU

10*

103

Time (4 s)

10?

10!

100 2-’» 2 10 2 15 2'2“

Matrix Size

Scatter mean performance on GPU

10*

108 Framework

Time (4 s)

10?

10!

100 2-’» 2 10 2 15 2'2“

Matrix Size

Fig. 2. Benchmark for scatter mean on CPU and GPU.

cial case of GN, message-passing network is defined as subtype of
GN. Update functions are defined as follow:

e;c = ¢E(ek7vi71}jvg)
’Ug = ¢v(e;7vi7g)
= ¢g(é/7 ’Dlyg)

and aggregate functions are

g = p 7 ({€k> 1, 5 Y jen (i) k=(i,))
e =p({ex}her)

v =p""({vitiev)
New states for edges, nodes and global graph are updated by ¢°,

¢" and @9, respectively. ¢° takes edge state ey, corresponding node
state v;, v; and global state g, and then outputs a new edge state e},

for edge k. p¢~'" aggregates states of edge incident to node 3. p¢—9

and p¥9 functions aggregate all edge states and node states into a
global state, respectively. It is designed as a whole in single layer
such that a GN block can be use as an unit of a neural network.

3. Static and Variable Graph Support

In graph neural network, static graph structure is required for com-
putation efficiency; while variable graph carried by input features is
used to train neural network on various graph topology. Static graph
should be given during constructing GNN layers; while variable
graph is packed within FeaturedGraph data structure as input of
GNN layer. Static graphs are processed for efficiency in prior dur-
ing constructing GNN layer and variable graphs are processed dur-
ing network training time. In this framework, graph network block
is designed as fundamental layers. Each layer accepts input of node
features, edge features, global features and graph. Graph structures
from LightGraphs.jl, SimpleWeightedGraphs.jl and MetaGraphs.jl

= ScatterNNIib.jl
Pytorch-scatter

= ScatterNNIib.jl
Pytorch-scatter



Proceedings of JuliaCon

Scatter max performance on CPU

10:5

Time (4 s)

10?

10!

25 2 10 2 15 22“

Matrix Size

1(1), 2020
Scatter max performance on GPU

10°

10*

3 e Framework
10 » ScatterNNIib,jl

Time (4 s)

10?

10!

100 2-’» 2 10 2 15 22“

Matrix Size

Fig. 3. Benchmark for scatter max on CPU and GPU.

are accepted. FeaturedGraph is designed as generic data structure
for containing different kinds of features and graph structure.

4. Compatible with Flux Layers

In general, the layer design of graph neural network is different
from regular layer of neural network. The layer of graph neural
network accepts at least features and graph as input. In our archi-
tecture, we accept node features, edge features, global features and
graph as input. To make layer design compatible with regular neu-
ral network needs complicated design in each GNN layer. GNN
layers are designed with two version, one for FeaturedGraph input
and the other for normal feature input. GNN layers are designed
to be consistent with input type and output type. Output of regular
feature will be the input of regular Flux layer. Conclusively, layers
implemented in GeometricFlux are compatible with regular Flux
layers.

5. Integration with JuliaGraphs

JuliaGraphs already forms a whole ecosystem for graph operations,
graph visualization and solving problems in graph theory. Light-
Graphs.jl and SimpleWeightedGraphs.jl provides the graph con-
struction and representation in unweighted and weighted graphs.
MetaGraphs.jl provides user the chance to assign properties on
nodes, edges or global graph. Integration with JuliaGraphs ecosys-
tem provides more ways to assign graph to model and reduce
the effort of transformation between data types. Graph represen-
tation constructed from LightGraphs.jl, SimpleWeightedGraphs.jl
and MetaGraphs.jl are accepted in construction of geometric deep
learning model in GeometricFlux. Under construction of graph
convolutional layer, a static graph is accepted as one of arguments
of neural network layer during configuring model. In the context of
using variable graph, FeaturedGraph also accepts graph represen-
tation constructed from LightGraphs.jl, SimpleWeightedGraphs.jl
and MetaGraphs.jl and can be fed as sample directly to model. This
feature accepts graph representations from JuliaGraphs ecosystem
to geometric deep learning model.

6. Performance Evaluation

Julia community is always interested to performance issues of all
kinds of computation. Scatter functions are benchmarked to show
the fundamental operations in graph neural network model. Matrix
addition and multiplication is to convolutional neural network as
scatter operations is to graph neural network. I compared time con-
sumption on scatter add function between pytorch geometric and
GeometricFlux. The functionality of scatter operations are sepa-
rated as independent packages of pytorch scatter and ScatterNNIib
for pytorch geometric and GeometricFlux, respectively. Bench-
mark are performed on Intel i17-8700K machine with a Nvidia Ti-
tan XP and Ubuntu 20.04 64-bit. Software of ScatterNNIlib.jl v0.1.1
and CUDA jl v1.2.1 with Cuda version of 10.1 is used. For pytorch,
Pytorch v 1.6.0 and Pytorch-scatter v 2.0.5 are tested. I bench-
marked on both CPU and GPU with scatter add (??), mean (??)
and max (2?).

7. Datasets Preparation

Datasets are preprocessed and prepared by GraphMLDatasets.jl.
Currently, the citation graphs Cora, CiteSeer, PubMed and Cora-
Full datasets [?, ?] are provided. Scientific datasets such as
molecule datasets QM7b [?] and protein-protein interaction graphs
[?] are also provided.

8. Conclusion

Tintroduced GeometricFlux for deep learning on graph. An extend-
ing framework is designed to be the core of GeometricFlux and it
also supports of static and variable graph. JuliaGraph ecosystem
is also integrated to provide more graph representations. Effective
scatter operations are implemented to accelerate model training and
inference. These make GeometricFlux as a prototype of playground
for geometric deep learning in Julia. Finally, I will keep working
to implement more network layers on graph and more prepared
datasets.

Pytorch-scatter



Proceedings of JuliaCon 1(1), 2020

9. Acknowledgments

I personally thank Ching-Wen Cheng for suggestions on scatter op-
eration implementation.

10. References

[1] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro
Sanchez-Gonzalez, Vinicius Flores Zambaldi, Mateusz Mali-
nowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, Caglar Giilgehre, H. Francis Song, Andrew J. Bal-
lard, Justin Gilmer, George E. Dahl, Ashish Vaswani, Kelsey R.
Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas
Heess, Daan Wierstra, Pushmeet Kohli, Matthew Botvinick,
Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational in-
ductive biases, deep learning, and graph networks. CoRR,
abs/1806.01261, 2018.

[2] Aleksandar Bojchevski and Stephan Glinnemann. Deep gaus-
sian embedding of graphs: Unsupervised inductive learning via
ranking. In International Conference on Learning Representa-
tions, 2018.

[3] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol
Vinyals, and George E. Dahl. Neural message passing for quan-
tum chemistry. In ICML, pages 1263—-1272, 2017.

[4] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Induc-
tive representation learning on large graphs. In NIPS, pages
1025-1035, 2017.

[5] Grégoire Montavon, Matthias Rupp, Vivekanand Gobre,
Alvaro Vazquez-Mayagoitia, Katja Hansen, Alexandre
Tkatchenko, Klaus-Robert Miiller, and O Anatole von Lilien-
feld. Machine learning of molecular electronic properties
in chemical compound space. New Journal of Physics,
15(9):095003, sep 2013.

[6] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor,
Brian Galligher, and Tina Eliassi-Rad. Collective Classification
in Network Data. Al Magazine, 29(3):93, sep 2008.



