
ExaPF.jl: A Power Flow Solver for GPUs
Michel Schanen1, Adrian Maldonado1, François Pacaud1, and Mihai Anitescu1

1Argonne National Laboratory

ABSTRACT
Solving optimal power flow is an important tool in the secure
and cost effective operation of the transmission power grids.
ExaPF.jl aims to implement a reduced space method for solv-
ing the optimal power flow problem (OPF) fully on GPUs. Re-
duced space methods enforce the constraints, represented here by
the power flow’s (PF) system of nonlinear equations, separately at
each iteration of the optimization in the reduced space. This pa-
per describes the API of ExaPF.jl for solving the power flow’s
nonlinear equations entirely on the GPU. This includes the compu-
tation of the derivatives using automatic differentiation, an iterative
linear solver with a preconditioner, and a Newton-Raphson imple-
mentation. All of these steps allow us to run the main computational
loop entirely on the GPU with no transfer from host to device.
This implementation will serve as the basis for the future OPF im-
plementation in the reduced space.

Keywords
Julia, GPU, power flow, iterative linear solver, preconditioner, au-
tomatic differentiation

1. Statement of Need
The current state-of-the-art for solving optimal power flow is the
interior-point method (IPM) in optimization implemented by the
solver Ipopt [8] and is the algorithm of reference in implemen-
tations like MATPOWER[9]. However, its reliance on unstructured
sparse indefinite inertia revealing direct linear solvers makes this
algorithm hard to port to GPUs. ‘ExaPF.jl‘ aims at applying a re-
duced gradient method to tackle this problem, which allows us to
leverage iterative linear solvers for solving the linear systems aris-
ing in the PF.
Our final goal is a reduced method optimization solver that provides
a flexible API for models and formulations outside of the domain
of OPF.

2. Components
To make our implementation portable to CPU and GPU architec-
tures we leverage two abstractions: arrays and kernels. Both of
these abstractions are supported through the packages CUDA.jl
[2, 1] and KernelAbstractions.jl

2.1 AutoDiff
Given a set of equations F(x) = 0, the Newton-Raphson algo-
rithm for solving nonlinear equations (see below) requires the Ja-
cobian J = jacobian(x) of F. At each iteration a new step dx is

Fig. 1. Jacobian coloring

computed by solving a linear system. In our case J is sparse and
indefinite, but invertible.� �

go = true
while (go)

dx .= jacobian (x)\F(x)
x .= x .- dx
go = norm (f(x)) < tol ? true : false

end� �
There are two modes of differentiation called forward/tangent or
reverse/adjoint. The latter is known in machine learning as trans-
posed Jacobian-vector product adj(x,y) = J(x)'*y. We recom-
mend [3] for a more in-depth introduction to automatic differen-
tiation. The computational complexity of both models favors the
adjoint mode if the number of outputs of F is much smaller than the
number of inputs size(x) >> size(F), like for example the loss
functions in machine learning. However, in our case F is a multi-
variate vector function from Rn to Rn, where n is the number of
buses.
To avoid a complexity of O (n) · cost(F) by letting the tan-
gent mode run over all Cartesian basis vectors of Rn, we ap-
ply the technique of Jacobian coloring to compress the sparse
Jacobian J. Running the tangent mode, it allows to compute
columns of the Jacobian concurrently, by combining independent
columns in one Jacobian-vector evaluation (see Figure 1). For spar-
sity detection we rely on the greedy algorithm implemented by
SparseDiffTools.jl [4].
Given the sparsity pattern, the forward model is applied through
the package ForwardDiff.jl [5]. With the number of Jacobian
colors c we can build our dual type t1s with N=c directions:� �
t1s {N} =
ForwardDiff . Dual { Nothing , Float64 , N} where N}� �

1

Proceedings of JuliaCon 1(1), 2020

Note that a second-order type t2s can be created naturally by ap-
plying the same logic to t1s:� �
t2s {M,N} =
ForwardDiff . Dual { Nothing , t1s {N}, M} where M, N}� �
Finally, this dual type can be ported to both vector types Vector
and CuVector:� �
VT = Vector { Float64 }
VT = Vector { t1s {N}}}
VT = CuVector { t1s {N}}}� �
Setting VT to either of the three types allows us to instantiate code
that has been written using the broadcast operator .� �
x .= a .* b� �
or accessed in kernels written with ‘KernelAbstractions.jl‘, like for
example the power flow equations (here in polar form):� �
@kernel function residual_kernel !(F, v_m , v_a ,

re_nzval , re_colptr , re_rowval ,
im_nzval , im_colptr , im_rowval ,
pinj , qinj , pv , pq , nbus)

npv = size (pv , 1)
npq = size (pq , 1)

i = @index (Global , Linear)
REAL PV : 1: npv
REAL PQ : (npv +1: npv + npq)
IMAG PQ : (npv + npq +1: npv +2 npq)
fr = (i <= npv) ? pv [i] : pq [i - npv]
F[i] -= pinj [fr]
if i > npv

F[i + npq] -= qinj [fr]
end
for c in re_colptr [fr]: re_colptr [fr +1]-1

to = re_rowval [c]
aij = v_a [fr] - v_a [to]
coef_cos = v_m [fr]* v_m [to]* re_nzval [c]
coef_sin = v_m [fr]* v_m [to]* im_nzval [c]
cos_val = cos (aij)
sin_val = sin (aij)
F[i] += coef_cos * cos_val

+ coef_sin * sin_val
if i > npv

F[npq + i] += coef_cos * sin_val
- coef_sin * cos_val

end
end

end� �
These two abstractions are a powerful tool that allow us to imple-
ment the forward mode in vectorized form where the number of di-
rections or tangent components of a tangent variable are the number
of Jacobian colors. We illustrate this in Figure 2 with a point-wise
vector product x .* y
This natural way of computing the compressed Jacobian yields a
very high performing code that is portable to any vector architec-
ture, given that a similar package like CUDA.jl exists. We note
that similar packages for the Intel Compute Engine (oneAPI.jl)
and AMD ROCm (AMDGPU.jl) are in development. We expect our
package to be portable to AMD and Intel GPUs in the future.

Fig. 2. SIMD AD for point-wise vector product

Fig. 3. Dense block Jacobi preconditioner

2.2 Linear Solver
As mentioned before, a linear solver is required to compute the
Newton step in� �
dx .= jacobian (x)\F(x)� �
Our package supports the following linear solvers:

—CUSOLVER with ‘csrlsvqr‘ (GPU),
—‘Krylov.jl‘ with ‘dqgmres‘ (CPU/GPU),
—‘IterativeSolvers‘ with ‘bicgstab‘ (CPU) [6],
—UMFPACK through the default Julia ‘òperator (CPU),
—and a custom BiCGSTAB implementation [7] (CPU/GPU).

The last custom implementation was necessary as BiCGSTAB
showed much better performance than GMRES and at the time of
this writing both Krylov.jl and IterativeSolvers.jl did not
provide an implementation that supported CUDA.jl.
Using the iterative solver out of the box leads to divergence and
bad performance due to ill-conditioning of the Jacobian. This is a
known phenomenon in power systems. That is why this package
comes with a block Jacobi preconditioner that is tailored towards
GPUs and is proven to work well with power flow problems.
The Jacobian is partitioned into a dense block diagonal structure,
where each block is inverted to build our preconditioner P. For the
partition we use Metis.jl.
Compared to incomplete Cholesky and incomplete LU this precon-
ditioner is easily portable to the GPU if the number of blocks is
high enough. ExaPF.jl uses the batch BLAS calls from CUBLAS
to invert the single blocks.� �
CUDA . @sync pivot , info =
CUDA . CUBLAS . getrf_batched !(blocks , true)

2

Proceedings of JuliaCon 1(1), 2020

Fig. 4. Use Case

Blocks Block Size Time(s) Time/It.(s) #Iterations
32 1857 2.85e+00 9.07e-03 314
64 928 1.41e+00 4.57e-03 308
128 464 9.15e-01 2.42e-03 378
256 232 9.09e-01 1.74e-03 524
512 116 5.49e-01 8.90e-04 617

1024 58 7.50e-01 6.67e-04 1125

CUDA . @sync pivot , info , p. cuJs =
CUDA . CUBLAS . getri_batched (blocks , pivot)� �
Assuming that other vendors will provide such batched BLAS
APIs, this code is portable to other GPU architectures.

3. Performance Example
To illustrate the use case for this solver we consider a 30,000 bus
system case from the ARPA-E GO competition. We show how the
convergence of the BiCGSTAB algorithm is impacted by the num-
ber of blocks in the Jacobi preconditioner. By choosing appropri-
ately the number of blocks, we observe that the iterative solver
takes 0.55s to solve the linear system on the GPU. As a compar-
ison, LAPACK takes 0.22s to solve the system on the CPU, and
CUSOLVER (with csrlsvqr) takes 2.70s.
This shows the number of BiCGSTAB iterations and the time
needed to achieve convergence for this power system.

4. Acknowledgments
This research was supported by the Exascale Computing Project
(17-SC-20-SC), a joint project of the U.S. Department of Energy’s
Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including
software, applications, and hardware technology, to support the na-
tion’s exascale computing imperative.

5. References
[1] Tim Besard, Valentin Churavy, Alan Edelman, and Bjorn

De Sutter. Rapid software prototyping for heterogeneous
and distributed platforms. Advances in Engineering Software,
132:29–46, 2019.

[2] Tim Besard, Christophe Foket, and Bjorn De Sutter. Effec-
tive extensible programming: Unleashing Julia on GPUs. IEEE
Transactions on Parallel and Distributed Systems, 2018.

[3] Andreas Griewank and Andrea Walther. Evaluating deriva-
tives: principles and techniques of algorithmic differentiation.
SIAM, 2008.

[4] C. Rackauckas. Sparsedifftools: Fast jacobian computation
through sparsity exploitation and matrix coloring, 2020.

[5] J. Revels, M. Lubin, and T. Papamarkou. Forward-mode auto-
matic differentiation in Julia. arXiv:1607.07892 [cs.MS], 2016.

[6] Gerard LG Sleijpen and Diederik R Fokkema. Bicgstab(l) for
linear equations involving unsymmetric matrices with com-
plex spectrum. Electronic Transactions on Numerical Analy-
sis., 1:11–32, 1993.

[7] H. A. van der Vorst. Bi-cgstab: A fast and smoothly converging
variant of bi-cg for the solution of nonsymmetric linear sys-
tems. SIAM Journal on Scientific and Statistical Computing,
13(2):631–644, 1992.

[8] Andreas Wächter and Lorenz T Biegler. On the implementa-
tion of an interior-point filter line-search algorithm for large-
scale nonlinear programming. Mathematical programming,
106(1):25–57, 2006.

[9] H. Wang, C. E. Murillo-Sanchez, R. D. Zimmerman, and R. J.
Thomas. On computational issues of market-based optimal
power flow. IEEE Transactions on Power Systems, 22(3):1185–
1193, 2007.

3

	Statement of Need
	Components
	AutoDiff
	Linear Solver

	Performance Example
	Acknowledgments
	References

