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ABSTRACT

A recommender system is a data-driven application that gen-
erates personalized content for users. This paper demonstrates
Recommendation.jl, an open-source package for building rec-
ommender systems in Julia. In practice, the Julia programming lan-
guage can be a deeply satisfying option to efficiently and effectively
address the recommender’s unique characteristics, which rely heav-
ily on repetitive matrix computations in multi-stage data pipelines.
To make the systems trustworthy in terms of not only accuracy and
scalability but usability and fairness at large, the package provides
highly extensible APIs with a diverse set of ready-to-use baseline
datasets, recommendation algorithms, and evaluation metrics.
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1. Introduction

A recommender system is a type of data-driven, intelligent applica-
tion addressing the information overload phenomenon on the inter-
net. The application selects top items that are the most likely to be
desired by target users under a specific metric, and it assists users’
behavior on online services. Most importantly, the foundation of
the recommendation engine relies on simple vector and matrix
computation against sparse user-item data, where we can take full
advantage of numerical computing methods. That is, many classic
but still performant recommendation algorithms run on a |U|-by-
|I| user-item matrixR ∈ R|U|×|I|, where U and I are respectively a
set of users and items. Notice that R normally shows high sparsity
with limited user-item events on massive |U| and |I|. Figure 1 illus-
trates how user-item data is transformed and processed for making
recommendations.

Therefore, the Julia programming language that focuses on high-
performance scientific computing by utilizing the just-in-time com-
piler [4] can be a great choice for developers to efficiently and
effectively pre-process user-item data, build a recommendation
model, evaluate a ranked list of recommended contents, and post-
process the recommendation if needed. Conventionally, MATLAB1

has been widely used for numerical computing, but it is in some
sense inefficient proprietary software. Alternatively, open-sourced

1http://www.mathworks.com/

Fig. 1. Overview of how a recommender works. Event data between users
and items are converted into a matrix R, which is eventually fed into a
recommendation algorithm to generate a ranked list of items per user.

Julia’s efficient implementation is getting the attention of research
communities these days. We can readily use various scientific algo-
rithms in Julia by integrating third-party packages, and its syntax
dedicated to vector and matrix computations strongly accelerates
algorithm development both in industry and academia. However,
when it comes to building recommender systems, there are cur-
rently no effective Julia packages that enable us to implement rec-
ommendation functionality in an extensible way to the best of the
author’s knowledge.

For the reasons mentioned above, Recommendation.jl2 has been
developed in the unique Julia ecosystem. It should be noted that
there are quite a few non-Julia open-source solutions available in
the community. To give an example, LensKit [8] takes full ad-
vantage of the NumPy/SciPy-based Python scientific computing
ecosystem, which naturally makes rapid development and wider
use cases possible. On the other hand, MyMediaLite [10] written
in C# is one of the most classic examples that rely purely on the
language’s built-in arithmetic operators with file IOs; although the
tool maximizes the simplicity and transparency of basic recommen-
dation techniques, it is not straightforward for developers to cus-
tomize the implementation and apply the advanced techniques for
optimizing further. Meanwhile, in Java, LibRec [13] implements
custom interfaces (e.g., dense/sparse matrices) from scratch, and
it allows the tool to ensure high extensibility and support various
types of state-of-the-art recommenders.

Regardless of the choice of package, practitioners will realize the
recommender implementation can be broken down into similar
sub-components: data, recommender, and metrics. Figure 2 illus-
trates the point, and the rest of the paper is accordingly orga-
nized as follows. First, Section 2 shows how the package eases
data manipulation by providing a unified abstraction layer, namely
DataAccessor. Next, Section 3 reviews a variety of recommenda-

2https://github.com/takuti/Recommendation.jl/

1

http://www.mathworks.com/
https://github.com/takuti/Recommendation.jl/


Proceedings of JuliaCon 1(1), 2022

tion methods the package supports, including collaborative filter-
ing, matrix factorization, and factorization machines. Moreover, in
Section 4, we dive deep into some of the recommender-specific
evaluation metrics and their implementation in Julia, which en-
able developers to optimize recommenders against not only stan-
dard accuracy metrics (e.g., recall, precision) but non-accuracy
measures such as novelty, diversity, and serendipity. Finally, Sec-
tion 5 provides comprehensive benchmark results for supported
recommender-metric pairs to undergo trade-off discussion.

Fig. 2. Core components of practical recommender systems. We review
each of them throughout the paper.

Ultimately, the contribution of this paper includes but is not limited
to (1) demonstrating the Julia-based recommender package that had
never existed, (2) sharing the scientific background of the field of
recommender systems with the Julia community, and (3) lowering
the bar to use the unique programming language in real-world ap-
plications as Recommendation.jl has already been used in the
hands-on tutorial books [2, 27]. It should be noted that this paper
assumes using Recommendation.jl@v1.0.0, meaning the details
might differ in different versions.

2. Unified Interface for Accessing User-Item Data

As depicted in Figure 1, a common first step of building a recom-
mender is to capture user-item events and translate them into ma-
trix representation. Here, Recommendation.jl eases the step by
providing a unified wrapper called DataAccessor. Since data for
recommender systems is easily standardizable as a collection of a
user, item, and auxiliary attributes, the common interface helps de-
velopers to follow the separation-of-concerns principle and ensure
the easiness and reliability of data manipulation.

To be more precise, raw data is always converted into a
DataAccessor instance at the data preprocessing phase with
proper validation (e.g., data type check, missing value handling),
and hence the subsequent steps can simply take the instance, and
access the data (or metadata) without worrying about unexpected
input. Figure 3 illustrates the procedure.

For example, imagine there are 5 users and 6 items on a system,
and you observed multiple events:� �
using Recommendation

n_users , n_items = 5, 6
events = [

Event (1, 1, 5), # user 1 x item 1
Event (1, 3, 1), # user 1 x item 3
# ...
Event (5, 5, 4), # user 5 x item 5
Event (5, 6, 4) # user 5 x item 6

]� �
where Event is a composite type for a single user-item interaction:

Fig. 3. Recommendation.jl sees user-item data as a matrix. A recom-
mender runs a training operation fit!() over the data, and a final recom-
mendation list is generated by recommend() based on the trained model.

� �
mutable struct Event

user :: Integer
item :: Integer
value :: Infinite

end� �
Note that Infinite is a custom type defined by a union of
Integer and AbstractFloat. If value is 0/1 unary integer, such
an event is called implicit feedback, whereas real numbers like rat-
ing value can be seen as the user’s explicit feedback. Finally, a
DataAccessor instance can be created by passing the event list
to a constructor as follows, where an array of Event and matrix R
are interchangeable.� �
struct DataAccessor

events :: Array { Event ,1}
R:: AbstractMatrix
user_attributes :: Dict { Int , Any }
item_attributes :: Dict { Int , Any }

# constructors
end

data = DataAccessor ( events , n_users , n_items )� �
In case user (item) data comes with custom attributes such as demo-
graphics and contextual metadata, we can use dedicated setter inter-
faces for enrichment, which allow Recommendation.jl to work
with a variety of public and proprietary datasets:� �
set_user_attribute ( data :: DataAccessor ,

user :: Integer ,
attribute :: AbstractVector )� �

Additionally, the package provides data loaders that import pub-
licly available datasets such as MovieLens [14], Amazon Re-
views [23], and HetRec 2011 Last.FM3 dataset [5], as well as a
synthetic implicit feedback generator using a simple rule-based
method demonstrated in [1]. These modules return a ready-to-use
DataAccessor instance for easing experiments.

3https://www.last.fm/
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3. Recommendation Algorithms

As mentioned in Figure 3, a general flow of building recommender
systems is (1) taking a list of user-item interactions, (2) applying
certain mathematical operations, and (3) finding out the top-k most
promising list of items for a target user; Recommendation.jl pro-
vides standard interfaces fit!() and recommend() to undergo
step (2) and (3), respectively.� �
abstract type Recommender end

function fit !( recommender :: Recommender ; kwargs ...)
end

function recommend ( recommender :: Recommender ,
user :: Integer , topk :: Integer ,
candidates :: AbstractVector {T}

) where {T<: Integer }
end� �
That is, among various pre-defined options we see in the follow-
ing sections, we can choose an arbitrary recommender that in-
herits the abstract Recommender type. Meanwhile, by implement-
ing a custom concrete subtype like MyCustomModel below and
corresponding fit!() and recommend() functions, the develop-
ers can build a custom recommendation pipeline on the top of
Recommendation.jl. The separation of common interfaces and
actual algorithm implementation makes the package extensible.� �
struct MyCustomModel <: Recommender

data :: DataAccessor
end� �
In the following sections, we review the basic recommenda-
tion algorithms Recommendation.jl natively supports. As previ-
ously explained, we delegate data manipulation to DataAccessor,
and hence each of the recommendation models simply takes a
DataAccessor instance, as well as some recommender-specific
optional arguments, through its constructor to be initialized. The
fact minimizes the gap between different recommender interfaces
and maximizes the usability of Recommendation.jl.

3.1 Non-Personalized Baselines

First and foremost, recommender systems are not necessarily built
by complex linear algebra or machine learning, and rule-based
“non-personalized” recommenders are commonly used as a base-
line method that derives reasonable recommendations. For in-
stance, regardless of the target user’s characteristics, a recom-
mender MostPopular(data::DataAccessor) will return top-k
most popular items to every user, measured by the number of oc-
currences (i.e., popularity) in the whole user-item events:� �
recommender = MostPopular ( data )

fit !( recommender )

# for user #4 , recommend top -2 from all items
user , topk , candidates = 4, 2, collect (1: n_items )
recommend ( recommender , user , topk , candidates )
# -> [ item # => popularity ] : [4 => 4.0 , 6 => 4.0]� �

As of writing, the other non-personalized options implemented in
the package will recommend items: that is most frequently co-
occurred with a specific reference item (CoOccurrence), based
on a percentage of observed Event values that are greater than a
certain threshold (ThresholdPercentage), or based on a global
mean of observed Event values (UserMean, ItemMean).

3.2 Collaborative Filtering

Collaborative filtering (CF) is one of the earliest recommendation
techniques that was initially introduced in 1992 [12]. The goal of
the CF algorithm is to suggest new items for a particular user based
on a similarity metric. From a user’s perspective, CF assumes that
users who behaved similarly on a service share common tastes for
items. On the other hand, items which resemble each other are
likely to be preferred by the same users.

3.2.1 k-Nearest Neighbor. A k-nearest neighbor (k-NN) ap-
proach, one of the simplest CF algorithms, runs two-fold. First,
missing values inR are predicted based on past observations. Here,
a (u, i) element between a target user u and item i is estimated by
computing the similarities of users (items). Second, a recommender
chooses top-N items from the results of the prediction step.

Importantly, k-NN can be classified into a user-based and item-
based algorithm. In a user-based algorithm, user-user similarities
are computed for every pair of rows in R. By contrast, item-based
CF stands on column-wise similarities between items. Figure 4 il-
lustrates how CF works on a user-item matrix R. The elements are
ratings in a [1, 5] range for each user-item pair, so 1 and 2 mean
relatively negative feedback and vice versa. In the figure, users a
and c seem to have similar tastes because both of them gave nearly
identical feedback to the item 1, 4, and 6. From an item-item per-
spective, items 4 and 6 are similarly rated by user a, b, and c.

Fig. 4. A schematic diagram of the k-NN-based recommender systems
on a five-level rating matrix. This figure is based on Figure 1 in [28] as a
reference. For an active user u, his/her missing elements ru,i are estimated
based on either user-user or item-item similarities, and a recommendation
list contains the highest-scored items.

To measure the similarities between rows (columns), the Pear-
son correlation and cosine similarity are widely used. For d-
dimensional vectors x,y ∈ Rd, the Pearson correlation corr(x,y)
and cosine similarity cos(x,y) are respectively defined as:

corr(x,y) =

∑
i(xi − x)(yi − y)√∑

i(xi − x)2
√∑

i(yi − y)2
,

cos(x,y) =
x · y
‖x‖‖y‖

=

∑
i xiyi√∑

i x
2
i

√∑
i y

2
i

,
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where x = 1
d

∑d
i=1 xi and y = 1

d

∑d
i=1 yi denote mean values of

the elements in a vector. Additionally, in the context of data min-
ing, elements in x and y can be distributed on a different scale, so
mean-centering of the vectors usually leads to better results [28].
Note that cosine similarity between the mean-centered vectors, x̂ =
(x1−x, x2−x, . . . , xn−x) and ŷ = (y1−y, y2−y, . . . , yn−y),
is mathematically equivalent to the Pearson correlation corr(x,y),
meaning cos(x̂, ŷ) = corr(x,y), and the following code snippet
demonstrates its implementation in the Julia ecosystem.� �
import Statistics : mean
import LinearAlgebra : dot , norm

function similarity (x:: AbstractVector ,
y:: AbstractVector )

x_hat , y_hat = x .- mean (x), y .- mean (y)
dot ( x_hat , y_hat ) / (

norm ( x_hat ) * norm ( y_hat ))
end� �
Based on the similarity definition, user-based CF using the Pearson
correlation [15] sees x and y as two different rows in R, respec-
tively, and gives weight to a user-user pair by the similarity. In the
fit!() phase, the weights allow a recommender to (1) select the
top-k highest-weighted users (i.e., nearest neighbors) of a target
user u, and (2) predict missing elements based on a mean value
of neighbors’ feedback. Ultimately, sorting items by the predicted
values enables recommend() to generate a ranked list of recom-
mended items for a user u. Simply put, a constructor of user-based
CF in Recommendation.jl is as follows.� �
UserKNN ( data :: DataAccessor , n_neighbors :: Integer )� �
It should be noted that user-based CF tends to be inefficient be-
cause gradually increasing massive users and their dynamic tastes
require the model to frequently recompute the similarities. On the
contrary, item properties are relatively stable compared to the users’
tastes, and the number of items is generally smaller than the number
of users. Hence, modeling item-item characteristics can be more
promising in terms of both scalability and overall accuracy. In par-
ticular, the following recommender based on item-based CF [28, 7]
provides an alternative way of predicting blanks in R based on
column-wise item-item similarities in the CF paradigm.� �
ItemKNN ( data :: DataAccessor , n_neighbors :: Integer )� �

3.2.2 Singular Value Decomposition. Along with the develop-
ment of the CF techniques, researchers noticed that handling the
original huge user-item matrices is computationally expensive.
Moreover, CF-based recommendation leads to overfitting to indi-
vidual taste due to the sparsity ofR. Thus, dimensionality reduction
techniques were applied to the recommendation to capture more
abstract preferences [29].

Singular value decomposition (SVD) is one of the most popular
dimensionality reduction techniques that decomposes an m-by-n

matrix A to U ∈ Rm×m, Σ ∈ Rm×n and V ∈ Rn×n:

SVD(A) = UΣV T

= [u1,u2, · · · ,um] · diag
(
σ1, σ2, . . . , σmin(m,n)

)
·

[v1,v2, · · · ,vn]T ,

by letting σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n) ≥ 0. An orthogonal matrix
U (V ) is called left (right) singular vectors which represent char-
acteristics of columns (rows) in R, and a diagonal matrix Σ holds
singular values on the diagonal elements as weights of each singu-
lar vector.

In practice, the most lower singular values of real-world matrices
are very close to zero, and hence using only top-k singular values
Σk ∈ Rk×k and corresponding singular vectors Uk ∈ Rm×k, Vk ∈
Rn×k is sufficient to make a reasonable rank-k approximation of a
matrix A as SVDk(A) = UkΣkV

T
k . It is mathematically proven

that SVDk(A) is the best rank-k approximation of the matrix A in
both the spectral and Frobenius norm, where the spectral norm of a
matrix equals its largest singular value.

Fig. 5. Rank-k approximation based on SVD. A ∈ Rm×n is decomposed
into the rank-k orthogonal matrices U and V , and diagonal matrix Σ.

Sarwar et al. [29] studied the use of SVD on user-item matrix R ∈
R|U|×|I|. In a context of recommendation, Uk ∈ R|U|×k, V ∈ R|I|×k
and Σ ∈ Rk×k are respectively seen as k user/item feature vectors
and corresponding weights. The idea of low-rank approximation
that discards lower singular values intuitively works as compression
or denoising of the original matrix; that is, each element in a rank-
k matrix Ak holds the best compressed (or denoised) value of the
original element in A. Thus, Rk = SVDk(R), the best rank-k
approximation of R, holds underlying users’ preferences the most.
Once R is decomposed into U,Σ and V , a (u, i) element of Rk

calculated by
∑k

j=1 σjuu,jvi,j could be a prediction for the user-
item pair. In the Julia ecosystem, the process can be implemented
in a few lines of code with the standard LinearAlgebra library:� �
import LinearAlgebra : svd
F = svd ( data .R)
U, S, Vt = F.U[:, 1:k], F.S[1:k], F. Vt [1:k, :]
# predict a value for an arbitrary user - item pair
r_k = dot (U[ user , :] .* S, Vt [:, item ])� �
3.2.3 Matrix Factorization. Even though dimensionality reduc-
tion is a promising approach to making an effective recommenda-
tion, the feasibility of SVD is still questionable due to the computa-
tional cost of decomposition and the need for uncertain preliminary
work such as missing value imputation and searching an optimal k.
As a result, a new technique generally called matrix factorization
(MF) was introduced [17] as an alternative.

The initial MF technique was invented by Funk [9] during the Net-
flix Prize [3], and the method is also known as regularized SVD be-
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cause it can be seen as an extension of the conventional SVD-based
recommendation that gives an efficient approximation of the orig-
inal SVD. The basic idea of MF is to factorize a user-item matrix
R to a user-factored matrix P ∈ R|U|×k and item factored matrix
Q ∈ R|I|×k, by solving the following minimization problem for a
set of observed user-item interactions S = {(u, i) ∈ U × I}:

min
P,Q

∑
(u,i)∈S

(
ru,i − pT

uqi

)2
+ λ (‖pu‖2 + ‖qi‖2),

where pu,qi ∈ Rk are respectively a factorized user and item vec-
tor, and λ is a regularization parameter to avoid overfitting. Inside
of fit!(), an optimal solution can be found by using optimization
techniques such as stochastic gradient descent (SGD).� �
struct MatrixFactorization <: Recommender

data :: DataAccessor
n_factors :: Integer
P:: AbstractMatrix
Q:: AbstractMatrix

end� �
Eventually,R is approximated by PQT as shown in Figure 6, and a
recommender can rank items by the prediction. Notice that mathe-
matically tractable properties of SVD such as orthogonality of fac-
tored matrices will be lost for approximation.

Fig. 6. MF for an m-by-n rating matrix R. Unlike SVD, singular values
in Σ are considered to be embedded in the factored matrices.

MF is attractive in terms of not only efficiency but extensibility.
Since prediction for each user-item pair can be written by a sim-
ple vector product as ru,i = pT

uqi, incorporating different features
(e.g., biases and temporal factors) into the model as linear combi-
nations is straightforward. For example, let µ be a global mean of
all elements in R, and bu, bi be respectively a user and item bias
term. Here, we assume that each observation can be represented
as ru,i = µ + bu + bi + pT

uqi. This formulation is known as bi-
ased MF [17], and it is possible to capture more information than
the original MF even on the same set of events S. There are also
other advanced methods such as tensor factorization [16] that re-
quire higher dimensionality and a more costly optimization scheme
to enrich MF.

Meanwhile, there are different options for loss functions to op-
timize MF. To give an example, Chen et al. [6] showed various
types of features and loss functions which can be incorporated into
an MF scheme. An appropriate choice of their combinations is
likely to lead to surprisingly better accuracy compared to the clas-
sical MF, and Recommendation.jl currently supports Bayesian
personalized ranking (BPR) loss [26] as an alternative option via
BPRMatrixFactorization <: Recommender.

3.3 Factorization Machines

Beyond numerous discussions about MF, factorization machines
(FMs) have been recently developed as their generalized model. In
contrast to MF, FMs are formulated by an equation that is similar to
polynomial regression, and the model can be applied to all regres-
sion, classification, and ranking problems depending on a choice of
the loss function with or without SGD-based optimization.

First of all, for an input vector x ∈ Rd, let us imagine the following
second-order polynomial model parameterized by w0 ∈ R, w ∈
Rd as: ŷ(x) := w0 + wTx +

∑d
i=1

∑d
j=i wi,jxixj , where wi,j

is an element in a symmetric matrix W ∈ Rd×d, and it indicates
a weight of xixj , an interaction between the i-th and j-th element
in x. Here, FMs assume that W can be approximated by a low-
rank matrix V ∈ Rd×k for k < d, and the weights are replaced
with inner products of k dimensional vectors as wi,j ≈ vT

i vj for
v1, · · · ,vd ∈ Rk. As a result, the formulation of the FM model is:

ŷFM(x) := w0︸︷︷︸
global bias

+wTx︸ ︷︷ ︸
linear

+

d∑
i=1

d∑
j=i

vT
i vj︸ ︷︷ ︸

interaction

xixj . (1)

Several studies [11, 24, 25] prove that the flexibility of feature
representations x is one of the most important characteristics that
makes FMs versatile. The code snippet below demonstrates how a
concatenated input vector is created with Recommendation.jl’s
utility function onehot().� �
x = vcat (

onehot (1, collect (1: n_users )), # user ID
onehot (3, collect (1: n_items )), # item ID
2 .5 , # rating
# ...
onehot (" Weekly ", # email preference

[" Daily ", " Weekly ", " Monthly ", missing ]),
onehot (2, collect (1:7)) # day of week

)� �
Note that Rendle [24] specially referred to Equation (1) as second-
order FMs as a specific case that p = 2 of the following p-th order
FMs:

ŷFM(p)
(x) := w0 + wTx

+

p∑
`=2

d∑
j1=1

· · ·
d∑

jp=jp−1+1

(∏̀
i=1

xji

)
k∑̀

f=1

∏̀
i=1

vji,f ,

with the model parameters w0 ∈ R, w ∈ Rd, V` ∈ Rd×k` ,
where ` ∈ {2, · · · , p}. Although the higher-order FMs are at-
tractive to capturing more complex underlying concepts from dy-
namic data, the computational cost should become more expensive
accordingly. In favor of balancing the algorithmic sophistication
and its efficiency, Recommendation.jl only considers the second-
order model trained by SGD for the time being.� �
struct FactorizationMachines <: Recommender

data :: DataAccessor
p:: Integer
n_factors :: Integer
w0 :: Base . RefValue { Float64 } # mutable for fit !()
w:: AbstractVector
V:: AbstractMatrix

end� �
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3.4 Content-Based Filtering

All techniques introduced so far rely on users’ historical behav-
ior on a service, but these kinds of recommenders easily face a
challenge so-called cold-start when it comes to recommending new
items (for new users) that do not have a sufficient amount of his-
torical data to capture meaningful information. To work around the
difficulty, content-based recommender systems [19] are likely to be
preferred in reality.

Most importantly, content-based recommenders make a recommen-
dation without using the other users’ feedback. In particular, a
content-based approach gives scores to items based on two kinds of
information: item model and (static) user preference. To model the
items, an item-attribute matrix is defined as I ∈ R|I|×|A|, whereA is
a set of item attributes. Meanwhile, user attributes can be captured
through DataAccessor’s user_attributes property, which is
independent of what kind of Events a system has observed.

From a practical perspective, choosing a set of attributes A is an
essential problem to launch a content-based recommender success-
fully. In fact, there tend to be numerous candidates on a real-
world dataset such as item category and brand, but using too
many attributes may increase the sparsity and complexity of the
vectors, which ends up with poor recommendation performance.
With that in mind, one of the most well-studied types of attribute
Recommendation.jl also supports is “term”. More concretely,
each item is represented by a set of words, and the items are mod-
eled by TF-IDF weighting [20]. For instance, if we like to recom-
mend web pages to users, we first need to parse sentences on a page
and then construct a vector based on the frequency of each term as:

I =

apple banana candy · · · zoo


3 2 0 · · · 5 page#1
1 0 0 · · · 1 page#2
...

...
...

. . .
...

...
2 1 8 · · · 0 page#N

In the case of our item-word matrices, for a given item i, term fre-
quency (TF) for a term t is defined as tf(t, i) =

nt,i

Ni
, where nt,i

denotes an (i, t) element in I , and Ni is the total number of words
that an item i contains. Meanwhile, inverse document frequency
(IDF) is computed over M items as idf(t) = log M

df(t)
+ 1, where

df(t) counts the number of items which associate with a term t.
Finally, each item-term pair is weighted by: tf(t, i) · idf(t) in the
TF-IDF scheme.

Since there are several variations of how to calculate tf(t, i) and
idf(t), Recommendation.jl requires users to pre-compute these
numbers to maximize the feasibility of the recommender:� �
struct TFIDF <: Recommender

data :: DataAccessor
tf :: AbstractMatrix
idf :: AbstractMatrix

end� �

4. Evaluation Framework

One of the notable characteristics of Recommendation.jl is a di-
verse set of evaluation metrics, including not only the standard ac-
curacy metrics but fairness metrics such as diversity and serendip-
ity. Even though the idea of diverse or serendipitous recommen-
dations is not new in the literature, the topic has rapidly gained
traction these days as society realizes the importance of ethical im-
plications in intelligent systems [22]. This section highlights the
high-level concept of these metrics and their implementation in Ju-
lia based on a common abstract type, Matric.� �
abstract type Metric end� �
For accuracy metrics, users can use the standard evaluation
scheme, cross_validation and leave_one_out, provided by
the package. For instance, the following module runs n_folds
cross-validation for a specific combination of recommender and
ranking metric. Notice that a recommender is initialized with
recommender_args for making a top-k recommendation.� �
cross_validation (

n_folds :: Integer ,
metric :: Metric ,
topk :: Integer ,
recommender_type :: Type {<: Recommender },
data :: DataAccessor ,
recommender_args ...;
# control whether recommending the same item to
# the same user multiple times is allowed
allow_repeat = false

)� �
It should be noted that evaluating recommender systems is not al-
ways the same as measuring the accuracy of machine learning-
based prediction, and there is a separate research domain discussing
what an appropriate evaluation method is. In the open-source com-
munity, the Python-based RecPack package [21] considers this
point and provides a dedicated layer called Scenario, which can
be a future direction Recommendation.jl possibly aims for.

4.1 Rating Metrics

First and foremost, even though the community focuses more on
implicit feedback-based ranking problems lately, rating prediction
is still an important foundation in the field of recommender systems
as the previous sections mentioned.� �
abstract type AccuracyMetric <: Metric end
function measure ( metric :: AccuracyMetric ,

truth :: AbstractVector ,
pred :: AbstractVector )

end� �
As a subtype of AccuracyMetric, Recommendation.jl is capa-
ble to compute Root Mean Squared Error (RMSE) and Mean Ab-
solute Error (MAE) given pairs of truth and prediction values.

6
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4.2 Ranking Metrics

An output from a recommender system is commonly a ranked list
of items, and hence measuring the goodness of the ranking is an-
other way to evaluate the systems.� �
abstract type RankingMetric <: Metric end
function measure ( metric :: RankingMetric ,

truth :: AbstractVector {T},
pred :: AbstractVector {T},
topk :: Union { Integer , Nothing }

) where T
end� �
Although the interface is the same across the metrics, each of them
has a different objective as part of its formulation. To review the
differences with some intuition, let a target user u ∈ U , set of all
items I, ordered set of top-k recommended items Ik(u) ⊂ I, and
set of truth items I+u .

4.2.1 Recall-at-k. Recall-at-k (Recall@k) indicates coverage of
truth samples as a result of top-k recommendation. The value is
computed by the following equation:

Recall@k =
|I+u ∩ Ik(u)|
|I+u |

.

Here, |I+u ∩ Ik(u)| is the number of true positives which can be
simply computed by the following piece of code:� �
function count_intersect (

truth :: Union { AbstractSet , AbstractVector },
prediction :: Union { AbstractSet , AbstractVector })
length ( intersect ( truth , prediction ))

end� �
4.2.2 Precision-at-k. Unlike Recall@N , Precision-at-k
(Precision@k) evaluates the correctness of a top-k recom-
mendation list Ik(u) according to the portion of true positives in
the list as:

Precision@k =
|I+u ∩ Ik(u)|
|Ik(u)|

.

In other words, Precision@k measures how much the recommen-
dation list covers true pairs.

4.2.3 Mean Average Precision (MAP). While the original
Precision@k provides a score for a fixed-length recommendation
list Ik(u), mean average precision (MAP) computes an average of
the scores against all possible recommendation sizes from 1 to |I|.
MAP is formulated with an indicator function for in, the n-th item
of I(u), as:

MAP =
1

|I+u |

|I|∑
n=1

Precision@n · 1I+u (in).

It should be noticed that MAP is not a simple mean of the sum of
Precision@1, Precision@2, . . . , Precision@|I|, and higher-ranked
true positives lead better MAP.

4.2.4 Area under the ROC Curve (AUC). ROC curve and area
under the ROC curve (AUC) are generally used in the evaluation of
classification problems, but these concepts can also be interpreted
in the context of the ranking problem. The AUC metric for ranking
considers all possible pairs of truth and other items which are re-
spectively denoted by i+ ∈ I+u and i− ∈ I−u , and it expects that
the “best” recommender completely ranks i+ higher than i−.

AUC calculation keeps tracking the number of true positives at dif-
ferent ranks in I. In the implementation of measure(), the code
adds the number of true positives which were ranked higher than
the current non-truth sample to the accumulated count of correct
pairs. Ultimately, an AUC score is computed as a portion of the
correct ordered (i+, i−) pairs in all possible combinations deter-
mined by |I+u | × |I−u | in set notation.

4.2.5 Reciprocal Rank (RR). If we are only interested in the first
true positive, reciprocal rank (RR) could be a reasonable choice to
quantitatively assess the recommendation lists. For ntp ∈ [1, |I|],
a position of the first true positive in I(u), RR simply returns its
inverse:

RR =
1

ntp

.

RR can be zero if and only if I+u is empty.

4.2.6 Mean Percentile Rank (MPR). Mean percentile rank
(MPR) is a ranking metric based on ri ∈ [0, 100], the percentile
ranking of an item i within the sorted list of all items for a user u.
It can be formulated as:

MPR =
1

|I+u |

∑
i∈I+u

ri.

ri = 0% is the best value which means the truth item i is ranked
at the highest position in a recommendation list. On the other hand,
ri = 100% is the worst case that the item i is at the lowest rank.

MPR internally considers not only top-k recommended items but
also all of the non-recommended items, and it accumulates the per-
centile ranks for all true positives, unlike MRR. So, the measure is
suitable to estimate users’ overall satisfaction with a recommender.
Intuitively, MPR > 50% should be worse than random ranking
from a user’s point of view.

4.2.7 Normalized Discounted Cumulative Gain (NDCG). Like
MPR, normalized discounted cumulative gain (NDCG) computes
a score for I(u) which emphasizes higher-ranked true positives.
In addition to being a more well-formulated measure, the differ-
ence between NDCG and MPR is that NDCG allows us to specify
an expected ranking within I+u ; that is, the metric can incorporate
reln, a relevance score which suggests how likely the n-th sample
is to be ranked at the top of a recommendation list, and it directly
corresponds to an expected ranking of the truth samples.

4.3 Aggregated Metrics

Aggregated metrics return a single score for an array of multiple
top-k recommendation lists as the following function signature il-
lustrates.� �
abstract type AggregatedMetric <: Metric end

7
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function measure (
metric :: AggregatedMetric ,
recommendations ::

AbstractVector {<: AbstractVector {<: Integer }};
topk :: Union { Integer , Nothing })

end� �
A comprehensive summary of these metrics is available in [30],
and Equation (20) and (21) on page 26 provide the formulation of
two metrics that are available in Recommendation.jl, the Gini in-
dex and Shannon Entropy. Unlike calculating errors for every truth-
prediction pair as we have seen in the previous sections, aggregat-
ing multiple recommendation lists gives a bird’s eye view of how
good a recommender system is as a whole. Thus, the metrics are
useful to measure the global diversity of the recommender’s out-
puts.

4.3.1 Aggregated Diversity. AggregatedDiversity calculates
the number of distinct items recommended across all users. A larger
value indicates a more diverse recommendation result overall.

Let U and I be a set of users and items, respectively, and Lk(u) a
list of top-k recommended items for a user u. Here, an aggregated
diversity can be calculated as:∣∣∣∣∣⋃

u∈U

Lk(u)

∣∣∣∣∣ .
Not to mention the equation is translated to a simple set operation
in Julia.

4.3.2 Shannon Entropy. If we focus more on individual items
and how many users are recommended a particular item, the di-
versity of top-k recommender can be defined by Shannon Entropy
(ShannonEntropy):

−
|I|∑
j=1

(
|{u | u ∈ U ∧ ij ∈ Lk(u)}|

k|U|
·

ln

(
|{u | u ∈ U ∧ ij ∈ Lk(u)}|

k|U|

))
,

where ij denotes j-th item in the available item set I. The “worst”
entropy is zero when a single item is always recommended.

4.3.3 Gini Index. The Gini Index, which is normally used to
measure a degree of inequality in the distribution of income, can
also be applied to assess diversity in the context of top-k recom-
mendation:

1

|I| − 1

|I|∑
j=1

(
(2j − |I| − 1) · |{u | u ∈ U ∧ ij ∈ Lk(u)}|

k|U|

)
.

measure(metric::GiniIndex, recommendations, topk)
returns 0 when all items are equally chosen (“best”), and 1 when a
single item is always chosen.

4.4 Intra-List Metrics

Given a list of recommended items (for a single user), intra-list
metrics quantify the quality of the recommendation list from a

non-accuracy perspective. Kotkov et al. [18] highlighted the foun-
dation of these metrics, and Recommendation.jl implements
four of them: Coverage, Novelty, IntraListSimilarity, and
Serendipity under the following schema.� �
abstract type IntraListMetric <: Metric end
function measure (

metric :: IntraListMetric ,
recommendations :: Union { AbstractSet ,

AbstractVector };
kwargs ...)

end� �
Notice that standardizing an interface for the quality measures is
not straightforward because the definition of “quality” is ambigu-
ous. Hence, a list of recommendations can be given either as a
set or array (vector) depending on whether the uniqueness of items
in the list matters, for example. Meanwhile, kwargs... differ de-
pending on a choice of metric.

4.4.1 Coverage. Catalog coverage is a ratio of recommended
items among catalog, which represents a set of all available items.� �
struct Coverage <: IntraListMetric end
measure (

metric :: Coverage , recommendations ;
catalog :: Union { AbstractSet , AbstractVector }

)� �
A larger coverage can indicate a recommender is unlikely biased
toward a limited set of items. The set operation could leverage
count_intersect() Section 4.2 highlighted.

4.4.2 Novelty. Novelty is the number of recommended items that
have not been observed yet i.e., not in observed.� �
struct Novelty <: IntraListMetric end
measure (

metric :: Novelty , recommendations ;
observed :: Union { AbstractSet , AbstractVector }

)� �
The metric quantifies the recommender’s capability to surface un-
seen items, which allows users to encounter unexpected items for
discovery.

4.4.3 Intra-List Similarity. Ziegler et al. [31] demonstrated a
metric that computes a sum of similarities between every pair of
recommended items. A larger value represents less diversity.� �
struct IntraListSimilarity <: IntraListMetric end
measure (

metric :: IntraListSimilarity , recommendations ;
similarities :: AbstractMatrix

)� �
To avoid redundant computation, Recommendation.jl asks users
for pre-computing item-item similarities (i.e., a similarity for
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every single item-item pair), and the metric simply calculates a sum
over all the possible pairs.

4.4.4 Serendipity. Serendipity is numerically defined by a sum
of relevance-unexpectedness multiplications for all recommended
items.� �
struct Serendipity <: IntraListMetric end
measure (

metric :: Serendipity , recommendations ;
relevance :: AbstractVector ,
unexpectedness :: AbstractVector

)� �
It should be noticed that we must first quantify relevance and
unexpectedness before calculating the metric, and the results can
be largely affected by how these factors are calculated.

5. Experimental Results

So far, this paper has introduced various recommendation tech-
niques and metrics implemented in Recommendation.jl. This
section finally evaluates the recommenders on different metrics.
Since the purpose of the following experiment is to demonstrate
the capability of Recommendation.jl and undergo trade-off dis-
cussions among different metrics, we test only on the minimal
MovieLens 100k dataset [14] and use the SVD recommender (Sec-
tion 3.2.2) as a model-based advanced option, which requires the
simplest set of hyperparameters, along with multiple baselines.
However, developers can easily evaluate larger datasets with more
complex models in the same way as we describe below.

We conducted a 5-fold cross-validation of top-10 recommendations
on the 100,000 user-item-rating pairs, by randomly splitting the
data into five distinct sets. For each trial, we call fit!() on four-
fifths of them (80% samples) and then run top-10 recommend()
for every user. Ultimately, resulting recommendations, as well as
predicted ratings, are compared with the ones observed in the rest
of 20% samples for validation.4� �
n_folds = 5
topk = 10
data = load_movielens_100k ()
cross_validation (

n_folds , metrics , recommender , data ,
params ...)� �

Table 1 summarizes the results obtained from each recommender-
metric pair. On the one hand, model-based SVD recommenders
showed higher accuracy than the baselines in terms of both rat-
ing and ranking metrics. In particular, as the accuracy changes by
k for SVDk, we see k = 16 can be an optimal hyperparameter for
the recommender. On the other hand, aggregated and intra-list met-
rics do not yield the same conclusion; since larger k gives a closer
approximation to real-world diverse user-item behaviors, SVD32

shows the highest aggregated diversity and Shannon entropy. These

4A complete Julia script used for the experiment can be found
at https://github.com/takuti/Recommendation.jl/blob/v1.0.

0/examples/benchmark.jl.

observations demonstrate the trade-off between accuracy and non-
accuracy metrics as Figure 7 depicts.
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Fig. 7. F1 score (accuracy metric calculated by 2 recall·precision
recall+precision ) and

aggregated diversity (non-accuracy metric) for SVDk recommenders,
based on the numbers in Table 1. The accuracy graph shows that an optimal
k is 16 where F1 score is maximized, whereas diversity monotonically in-
creases as k gets larger. Best baseline metrics are illustrated as dashed lines
for reference.

Meanwhile, rule-based UserMean recommender, which simply
scores items by a mean rating per user, was the best in terms of
novelty, demonstrating the higher ability to surface unseen items at
the top. In combination with the trade-off discussion above, the re-
sults tell us that focusing only on a single metric can easily confuse
developers and mislead the users of recommender systems. There-
fore, it is crucial to holistically assess the systems from multiple
perspectives, and the design principle of Recommendation.jl fol-
lows the point as we explained in Section 1.

It should be noticed that, as kwargs... in Section 4.4 indicate,
evaluation in intra-list metrics is not straightforward due to the need
for specifying additional arguments to set up a scenario. For the
sake of simplicity, this section assumes catalog for Coverage
is a set of all items available in the dataset, and observed for
Novelty is a set of items in target user’s training samples, allow-
ing the recommenders to recommend the same items in a train-
ing set to the same user. Thus, Coverage in Table 1 is the same
across the recommenders because we always recommend 10 items
per user from the fixed set of all items. Moreover, we did not eval-
uate in IntraListSimilarity and Serendipity because there
is no obvious way to define item-item similarities, relevance, and
unexpectedness; the choices depend largely on the developer’s hy-
potheses and objectives that this paper does not discuss in detail.

6. Conclusion

This paper introduced Recommendation.jl, an open-source pack-
age for building recommender systems in the Julia programming
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Table 1. Results from 5-fold cross-validation of top-10 recommendation conducted on MovieLens 100k user-item-rating pairs.
Numbers are rounded to 3 decimal places, and those in the bold font indicate the “best” values for each metric. Accuracy

metrics for MostPopular are not calculated because the recommender does not explicitly predict ratings.
ItemMean UserMean MostPopular SVD(4) SVD(8) SVD(16) SVD(32)

Rating
(Section 4.1)

RMSE 0.642 0.681 - 0.545 0.524 0.524 0.550
MAE 0.603 0.642 - 0.493 0.471 0.470 0.496

Ranking
(Section 4.2)

Recall 0.108 0.002 0.114 0.182 0.212 0.228 0.218
Precision 0.185 0.004 0.189 0.297 0.335 0.353 0.328
AUC 0.417 0.018 0.429 0.531 0.558 0.579 0.571
ReciprocalRank 0.415 0.011 0.409 0.583 0.642 0.670 0.645
MPR 84.671 89.784 84.021 80.192 78.431 77.417 78.023
NDCG 0.201 0.004 0.203 0.327 0.371 0.392 0.365

Aggregated
(Section 4.3)

AggregatedDiversity 52.2 145.0 52.4 163.8 253.0 328.4 403.4
ShannonEntropy 3.149 4.170 3.160 4.486 4.847 5.138 5.386
GiniIndex 0.662 0.669 0.658 0.597 0.629 0.616 0.599

Intra-list
(Section 4.4)

Coverage 0.006 0.006 0.006 0.006 0.006 0.006 0.006
Novelty 8.998 9.944 8.970 8.763 8.751 8.991 9.424

language. First, by reviewing each of the core features of practi-
cal recommender pipelines, data model (Section 2), recommender
interface and algorithms (Section 3), and evaluation methods (Sec-
tion 4), we observed how diverse recommender’s interests can be;
the applications must be able to address both explicit and implicit
representation of user feedback, hybridize rule-based and machine
learning-based algorithms, and assess the outcomes from wide-
ranging perspectives in terms of not only accuracy but diversity,
coverage, novelty, and serendipity. Thus, Julia’s extensible and
mathematical operation-friendly APIs come in handy for working
with the unique characteristics we demonstrated by their formula-
tion and corresponding code snippet throughout the paper.

Moreover, we conducted a benchmark with multiple recommender-
metric pairs provided by Recommendation.jl and confirmed
there are no one-size-fits-all approaches to making “good” recom-
mendations. On the one hand, we can maximize prediction accu-
racy by training a sophisticated model-based recommender with
an optimal set of hyperparameters. However, at the same time, the
best prediction accuracy does not always yield the most diverse
recommendation, which might eventually hinder recommenders
from acknowledging fairness implications. The observations tell
us that one of the most important requirements for recommender
frameworks is to make a wide variety of options available for
developers while leaving enough space for customization, which
Recommendation.jl has tried to incorporate by design.

Finally, there are numerous possible directions to improve the pack-
age as we learned from the other open-source solutions in Sec-
tion 1. For instance, the availability of state-of-the-art recommen-
dation algorithms makes a framework more promising in a com-
petitive environment in the industry, where Python-based machine
learning packages play a dominant role. Meanwhile, since com-
putational efficiency is a key criterion that directly leads to a de-
veloper’s productivity, the use of acceleration techniques such as
distributed multiprocessing and GPU programming would be a
mandatory step to undergo. Last but not least, easing to run an
end-to-end recommendation pipeline iteratively is a foundational
challenge so we can bridge a gap between an offline and online
setup. In particular, evaluation phases pose a crucial challenge in
reproducibility as mentioned in Section 4.
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