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ABSTRACT
This work is focused on the development of an open-source Julia-
based repository for the analysis of chaos in dynamical systems, in
particular for systems described by ordinary and stochastic differ-
ential equations, using Finite-Time Lyapunov exponents (FTLE).
The novel application of this scalar field for stochastic processes
allows one to generalize the definition of chaos in a probabilistic
sense. This probabilistic generalization is useful for both of uncer-
tainty quantification, and robust trajectory design. Bifurcating phe-
nomena and invariant sets in time-dependant dynamical systems
are discussed, particularly in the context of Lagrangian coherent
structures.
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1. Introduction
Chaotic behavior is omnipresent in celestial mechanics dynamical
systems and it is relevant for both the understanding and leverag-
ing the stability of planetary systems, inner solar system in partic-
ular [2]. The quantification of the probability of impacts of near
Earth objects after close encounters with celestial bodies; the pos-
sibility of designing robust low energy transfer trajectories, not
limited to invariant manifolds but also leveraging the weak stabil-
ity boundary for the design of the ballistic captures trajectories in
time-dependent dynamical systems; the characterization of diffu-
sion processes in Nearly-Integrable Hamiltonian systems in celes-
tial mechanics.
Building on [7], [5, 8] investigated a probabilistic generalization
of chaos, in which uncertainty in initial conditions and dynamical
parameters is considered.
Here we generalize, inspired by [1], in order to introduce a quan-
tification of chaos for stochastic processes.

2. Metodology
Given dynamical systems in the form:

ẋ = f(x,p) (1)

and introducing the variational equations:
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the Cauchy-Green (CG) strain tensor, which is positive definite, can
be computed as:
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(
∂x

∂x0

)T
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where its relative spectrum can be measured by the FTLE:

σ(x,p, T ) =
1

|T |
ln(
√
λmax(∆(x,p))) (4)

where T is the time interval associated to the propagation, starting
at t0, and λmax is the maximum eigenvalue of the Cauchy-Green
Strain Tensor.

Generalizing for stochastic differential equations [9]:

dX = f(X, t)dt+ G(X, t)dWt (5)

where X, f ∈ Rn, Wt ∈ Rm and G ∈ Rn×m.
The equation consists of two major components. The deterministic
drift denoted as f and the stochastic diffusion G. G depends on
m Brownian processes expressed as Wt. It is straightforward to
derive the variational equations associated with a Stochastic Dif-
ferential Equation:
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in which X is a stochastic process, leading the Cauchy-Green
Strain tensor to be a random matrix. The analysis of its spectrum,
leading to the FTLE in Equation (7), is therefore stricly related with
random matrix theory [6].

3. Applications
A number of dynamical systems can be analysed using this ap-
proach. Introduced by B.V. Chirikov in [3], one of the most pop-
ular mappings in the theory of dynamical systems is the so-called
standard map [2]: It is defined by the equations:{

y′ = y + εf(x)

x′ = x+ y′
(8)

where y ∈ R, x ∈ T ≡ R/(2πZ), ε is a positive real parameter,
called the perturbing parameter, and f = f(x) is an analytic, pe-
riodic function. The FTLE field of this discrete map is represented
in Figure 1.
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Fig. 1. Finite-Time Lyapunov Exponents scalar field of the standard map.

Another classical dynamical system is the periodically-perturbed
pendulum:

ẍ = (α cos 5t− 1) sinx (9)

In this case, the FTLE field, associated with an Ordinary Differen-
tial Equation, is represented in Figure 2.

Fig. 2. Finite-Time Lyapunov Exponents scalar field of the periodically-
perturbed pendulum.

As a final example, the Duffing oscillator:

ẍ = αẋ+ βx+ γx3 + ε cos t (10)

is generalized into a Stochastic Differential Equation:{
dXt = αYt

dYt = (βXt + γX3
t )dt+ εXtdWt

(11)

The FTLE field depicted in Figure 3 is here associated with a
Stochastic Differential Equation:

4. Conclusions and Recommendations
Diffusion mechanisms arise both from chaotic behaviour and
stochastic perturbations. But there is also an interplay between the
two, reducing the Lyapunov time of dynamical systems under in-
vestigation. A stochastic framework for celestial mechanics has
been introduced, among others, in [4], motivates the use of the a

Fig. 3. Finite-Time Lyapunov Exponents scalar field of the Stochastic
Duffing oscillator.

stochastic index for chaotic motion: results on the stabilty of plan-
etary systems could be influenced by the integration of stochastic
perturbations. Finally, as a recommendation for future works, the
integration of these developments and results in the library Dynam-
icalSystems.jl appears desirable.
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