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ABSTRACT
Blank localization (also known as workpiece referencing) is an es-
sential task in machining. It aims to precisely establish the geo-
metric relation of the machine tool (mill, lathe, etc.) and the work-
piece. We introduced the concept of multi-operation blank local-
ization to address this task for drilling and milling scenarios in a
semi-automated way, which allows positioning different machin-
ing features (e.g., different holes) separately in order to exploit the
tolerances on the relative position of those features to compen-
sate the small errors of the blank. The method takes as input the
measured rough geometry and the machining CNC code, and com-
putes the best possible position of each feature considering ma-
chining allowances and tolerances by solving a convex quadrati-
cally constrained quadratic program (QCQP). The versatility and
extensibility of the Julia language helped the development of this
algorithm, materializing in the BlankLocalizationCore.jl
package. Its flexibility and ease of use make it an excellent research
tool that can be deployed in production as well.
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1. Introduction
Cast parts may have small geometric variations from lot to lot that
need to be addressed before machining by altering the CNC code.
Current practice is dominated by iterative adjustments by the hu-
man operator, which requires highly trained workers, takes a long
time, and still, may produce scrap. Automated methods exist for
complex free-form parts like wind turbines that place the entire
blank as a single solid object ([5][7]). Multi-operation blank lo-
calization was introduced in [4] focusing on drilling and milling.
These machining operations are among the most used ones, there-
fore the method is applicable for a wide range of products. The
abstract method and its implementation was developed in parallel,
which required a language with support for easy prototyping and
wide variety of tools. Exactly for these reasons we chose the Julia
language [1].

2. Multi-operation blank localization
The algorithm looks for the optimal position (part zero) for each
feature group on the workpiece. Features within a group can be, for
example, drilled holes on the same side of the part, whose drilling

positions are defined relative to a common reference (the part zero).
Features within the same group must be moved together, but differ-
ent feature groups can be moved separately. The to-be-machined
features (short: machined features) need to be aligned with the fea-
tures on the blank (called rough features) in a way that a minimum
machining allowance is ensured and the dimensional tolerances be-
tween features are respected. The former encodes the requirement
that material needs to be removed to ensure proper surface finish
and is described for a feature as the smallest thickness of removed
material. A dimensional tolerance between two features is modeled
as lower and upper bounds on the distance between the two fea-
tures. As feature groups move together, only inter-group tolerances
need to be considered. Fig. 1 shows two feature groups with their
part zeros, as well as the tolerances between features.
Inputs of the algorithm are the measured geometry of the rough
part, the machining CNC code for each feature (relative to the cor-
responding part zero), the tolerance ranges for the features, and the
minimum machining allowance parameter. The output is the op-
timal position of the part zeros, where optimal means the lowest
average tolerance error subject to a given machining allowance.
Measurements of the rough parts can be obtained with a variety of
instruments, including coordinate measurement machines (CMM),
laser scanners, measurement arms, etc. The two main representa-

Fig. 1: Measured part with two machined feature groups and tolerances
between them. rM and rR denote the machined and rough radii of a feature,
while δ the machining allowance [4].
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tions that these devices create are primitive geometries (cylinders,
planes, etc.) and free-form geometries in the form of point cloud or
triangulated mesh. These measurements are fed into the optimiza-
tion model, which is a convex quadratically constrained quadratic
program (QCQP). Details of the optimization model can be found
in the papers [3] and [4].

3. Implementation in Julia
During the development of the algorithm, we needed an environ-
ment (package) that supports the quick prototyping needs of re-
search, while giving a solid foundation to validate the concept with
our industry partner as well. These needs include:

—A versatile type system for geometrical representation, espe-
cially regarding the differences of drilling/milling operations and
free-form/primitive geometry representation.

—Easy-to-use interface for the optimization model.
—Support for importing geometries from a variety of measurement

tools (CMM, laser scanner, measurement arm).
—Support for debugging, analyzing and visualizing the results.

A flexible type system is designed to handle the different represen-
tations of geometries and features. Abstract hole and plane geome-
tries model the drilling and milling operations, while traits describe
if a feature uses a free-form or a primitive representation. An inter-
nal API (set of functions) is designed to access the relevant proper-
ties of the geometries (center point, radius, surface points, etc.).
This internal API is used when constructing the optimization model
utilizing the JuMP ecosystem [6]. With JuMP’s excellent design,
coding the optimization model was as easy as repeating the math-
ematical model in Julia. Other advantage of the JuMP ecosystem
is that solvers can be easily swapped if needed. For development,
the FICO Xpress solver was used (with academic license), but our
industry partner could use the Ipopt or SCIP solvers without issue.
Using the internal API gives the advantage that new geometry rep-
resentations can be quickly used with the optimization model by
just implementing a new type and a set of functions.
As mentioned earlier, an important requirement was to handle the
output formats of many different devices. Every measurement in-
strument comes with its own processing software and export for-
mats, not necessarily designed for interoperability. As a result, we
needed to write (or use) parsers for different text and tabular for-
mats.
The geometric computations are implemented with the help of the
Meshes.jl package, which enabled us to easily visualize the ge-
ometries and results from the beginnings, see Fig. 1 for an example.

4. Results and future work
Fig. 2 shows the allowance-tolerance pairs for an experiment from
[4]. The diagram illustrates that the proposed algorithm (blue
curve) leads to lower tolerance errors for any given machining al-
lowance than earlier approaches, and it can also ensure significantly
larger machining allowance. Obviously, there is a trade-off between
small tolerance error and large machining allowance. Preliminary
results were first published in [2]. A journal paper describes the
original algorithm [4], and a conference paper details the modifica-
tions for free-form surfaces [3].
Future plans for the package and the method itself include an over-
haul of the tolerance modeling scheme. Currently, only dimen-
sional tolerances are handled, but it should be discovered if more
GD&T tolerances can be incorporated into the model. The current
implementation supports only cylinders and planes, thus drilling

Fig. 2: Balancing the machining allowance and the tolerance error [4].

and milling; it is a future research direction to extend the handled
machining operations, e.g., to turning.

5. Acknowledgments
The research was supported by the European Union within the
framework of the National Laboratory for Autonomous Systems
(RRF-2.3.1-21-2022-00002) and the TKP2021-NKTA-01 NRDIO
grant on "Research on cooperative production and logistics systems
to support a competitive and sustainable economy".

6. References
[1] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B

Shah. Julia: A fresh approach to numerical computing. SIAM
review, 59(1):65–98, 2017. doi:10.1137/141000671.
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