{ "cells": [ { "cell_type": "markdown", "source": [ "# 2D Branchless Distance-driven Projection and Backprojection\n", "\n", "This page describes the 2D branchless distance-driven projection\n", "and backprojection method\n", "of\n", "[Basu & De Man, 2006](https://doi.org/10.1117/12.659893)\n", "for fan-beam geometries with a \"flat\" detector\n", "using the Julia package\n", "[`Sinograms.jl`](https://github.com/JuliaImageRecon/Sinograms.jl).\n", "\n", "This page compares the results to the `radon` transform method." ], "metadata": {} }, { "cell_type": "markdown", "source": [ "### Setup" ], "metadata": {} }, { "cell_type": "markdown", "source": [ "Packages needed here." ], "metadata": {} }, { "outputs": [], "cell_type": "code", "source": [ "using ImageGeoms: ImageGeom, fovs, MaskCircle\n", "import ImageGeoms # downsample\n", "using ImagePhantoms: shepp_logan, SheppLoganToft, radon, phantom\n", "using MIRTjim: jim, prompt\n", "import Plots\n", "using Sinograms: project_bdd, backproject_bdd\n", "import Sinograms # downsample, _ar, _dso\n", "using Sinograms: SinoFanFlat, rays, plan_fbp, fbp, Window, Hamming, sino_geom_plot!, angles\n", "using Unitful: mm" ], "metadata": {}, "execution_count": null }, { "cell_type": "markdown", "source": [ "The following line is helpful when running this file as a script;\n", "this way it will prompt user to hit a key after each figure is displayed." ], "metadata": {} }, { "outputs": [], "cell_type": "code", "source": [ "isinteractive() ? jim(:prompt, true) : prompt(:draw);" ], "metadata": {}, "execution_count": null }, { "cell_type": "markdown", "source": [ "## Fan-beam sinogram of SheppLoganToft phantom\n", "\n", "For illustration,\n", "we start by synthesizing\n", "a fan-beam sinogram\n", "of the `SheppLoganToft` phantom.\n", "\n", "For completeness,\n", "we use units (from `Unitful`),\n", "but units are optional." ], "metadata": {} }, { "cell_type": "markdown", "source": [ "Define the sinogram geometry" ], "metadata": {} }, { "outputs": [], "cell_type": "code", "source": [ "down = 4 # save time\n", "rg = SinoFanFlat( ; nb = 910, d = 1.0239mm, na = 360, dsd = 949mm, dod = 408mm)\n", "rg = Sinograms.downsample(rg, down)" ], "metadata": {}, "execution_count": null }, { "cell_type": "markdown", "source": [ "Define the image geometry" ], "metadata": {} }, { "outputs": [], "cell_type": "code", "source": [ "ig = ImageGeom(MaskCircle(); dims=(512,512), deltas = (1mm,1mm))\n", "ig = ImageGeoms.downsample(ig, down)" ], "metadata": {}, "execution_count": null }, { "cell_type": "markdown", "source": [ "Make a tuple to define imaging geometry for bdd code. todo" ], "metadata": {} }, { "outputs": [], "cell_type": "code", "source": [ "geo = (DSD = rg.dsd, DS0 = Sinograms._dso(rg), pSize = ig.deltas[1],\n", " dSize = rg.d, nPix = ig.dims[1], nDet = rg.nb, angle = Sinograms._ar(rg))" ], "metadata": {}, "execution_count": null }, { "cell_type": "markdown", "source": [ "Examine the geometry to verify the FOV:" ], "metadata": {} }, { "outputs": [], "cell_type": "code", "source": [ "pa = jim(axes(ig), ig.mask; prompt=false)\n", "sino_geom_plot!(rg, ig)" ], "metadata": {}, "execution_count": null }, { "outputs": [], "cell_type": "code", "source": [ "prompt()" ], "metadata": {}, "execution_count": null }, { "cell_type": "markdown", "source": [ "Ellipse parameters for SheppLoganToft phantom:" ], "metadata": {} }, { "outputs": [], "cell_type": "code", "source": [ "μ = 0.01 / mm # typical linear attenuation coefficient\n", "ob = shepp_logan(SheppLoganToft(); fovs = fovs(ig), u = (1, 1, μ))\n", "testimage = phantom(axes(ig)..., ob) # Create a phantom image\n", "pt = jim(axes(ig), testimage) # Show the true phantom image" ], "metadata": {}, "execution_count": null }, { "cell_type": "markdown", "source": [ "Fan-beam sinograms for phantom:" ], "metadata": {} }, { "outputs": [], "cell_type": "code", "source": [ "if !@isdefined(sinogramR)\n", " @time sinogramR = radon(rays(rg), ob)\n", " # Ensure that sinogram is not truncated\n", " @assert all(==(0), sum(abs, sinogramR, dims=2)[[1,end]])\n", "end;\n", "\n", "if !@isdefined(sinogramB)\n", " @time sinogramB = project_bdd(reverse(rot180(testimage'), dims=2), geo)\n", " sinogramB = sinogramB' # todo\n", "end;\n", "\n", "p1 = jim(axes(rg), sinogramB; prompt=false,\n", " title=\"bdd_2d sinogram\", xlabel=\"r\", ylabel=\"ϕ\")\n", "p2 = jim(axes(rg), sinogramR; prompt=false,\n", " title=\"Radon test sinogram\", xlabel=\"r\", ylabel=\"ϕ\")\n", "p12 = jim(p1,p2)" ], "metadata": {}, "execution_count": null }, { "cell_type": "markdown", "source": [ "Difference of sinogram using `bdd_2d` versus `radon` method." ], "metadata": {} }, { "outputs": [], "cell_type": "code", "source": [ "pd = jim(axes(rg), sinogramR - sinogramB;\n", " title=\"Difference sinogram\", xlabel=\"r\", ylabel=\"ϕ\")" ], "metadata": {}, "execution_count": null }, { "cell_type": "markdown", "source": [ "## Backprojection with `bdd_2d`\n", "(The un-filtered back-projected image is not a useful reconstruction.\n", "See next section for image reconstruction via FBP.)" ], "metadata": {} }, { "outputs": [], "cell_type": "code", "source": [ "if !@isdefined(imageB)\n", " @time imageB = backproject_bdd(sinogramB'/1mm, geo) # todo\n", " imageB = rotr90(imageB) # todo\n", "end\n", "pb = jim(axes(ig), imageB;\n", " title=\"bdd_2d backprojection\", xlabel=\"x\", ylabel=\"y\")" ], "metadata": {}, "execution_count": null }, { "cell_type": "markdown", "source": [ "## Image reconstruction via FBP\n", "Compare the reconstructed image using the `bdd_2d` sinogram\n", "and the `radon` sinogram.\n", "\n", "Here we start with a \"plan\"\n", "that would save work if we were reconstructing many images.\n", "For illustration we include `Hamming` window." ], "metadata": {} }, { "outputs": [], "cell_type": "code", "source": [ "plan = plan_fbp(rg, ig; window = Window(Hamming(), 1.0))\n", "fbp_image_b = fbp(plan, sinogramB)\n", "fbp_image_r = fbp(plan, sinogramR);" ], "metadata": {}, "execution_count": null }, { "cell_type": "markdown", "source": [ "A narrow color window is needed to see the soft tissue structures:" ], "metadata": {} }, { "outputs": [], "cell_type": "code", "source": [ "clim = (0.04, 1.1) .* μ\n", "r1 = jim(axes(ig), fbp_image_b, \"FBP image with bdd_2d\"; clim)\n", "r2 = jim(axes(ig), fbp_image_r, \"FBP image with radon\"; clim)\n", "r12 = jim(r1,r2; size=(1000,300))" ], "metadata": {}, "execution_count": null }, { "cell_type": "markdown", "source": [ "For comparison, here is the difference image." ], "metadata": {} }, { "outputs": [], "cell_type": "code", "source": [ "pe = jim(axes(ig), fbp_image_b - fbp_image_r, \"Difference image\")" ], "metadata": {}, "execution_count": null }, { "cell_type": "markdown", "source": [ "---\n", "\n", "*This notebook was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*" ], "metadata": {} } ], "nbformat_minor": 3, "metadata": { "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", "version": "1.11.1" }, "kernelspec": { "name": "julia-1.11", "display_name": "Julia 1.11.1", "language": "julia" } }, "nbformat": 4 }