{ "cells": [ { "cell_type": "markdown", "source": [ "# CBCT FDK" ], "metadata": {} }, { "cell_type": "markdown", "source": [ "This page describes image reconstruction\n", "for cone-beam computed tomography (CBCT)\n", "with both arc and flat detectors\n", "using the Julia package\n", "[`Sinograms.jl`](https://github.com/JuliaImageRecon/Sinograms.jl).\n", "\n", "This page was generated from a single Julia file:\n", "[07-fdk.jl](https://github.com/JuliaImageRecon/Sinograms.jl/blob/main/docs/lit/examples/07-fdk.jl)." ], "metadata": {} }, { "cell_type": "markdown", "source": [ "### Setup" ], "metadata": {} }, { "cell_type": "markdown", "source": [ "Packages needed here." ], "metadata": {} }, { "outputs": [], "cell_type": "code", "source": [ "using Plots: plot, gui # these 2 must precede Sinograms for Requires to work!\n", "using Unitful: cm\n", "using Sinograms: CtFanArc, CtFanFlat # CtPar\n", "using Sinograms: rays, plan_fbp, Window, Hamming, fdk, ct_geom_plot3\n", "using ImageGeoms: ImageGeom, MaskCircle, fovs\n", "using ImagePhantoms: ellipsoid_parameters, ellipsoid\n", "using ImagePhantoms: radon, phantom\n", "using MIRTjim: jim, prompt" ], "metadata": {}, "execution_count": null }, { "cell_type": "markdown", "source": [ "The following line is helpful when running this example.jl file as a script;\n", "this way it will prompt user to hit a key after each figure is displayed." ], "metadata": {} }, { "outputs": [], "cell_type": "code", "source": [ "isinteractive() ? jim(:prompt, true) : prompt(:draw);" ], "metadata": {}, "execution_count": null }, { "cell_type": "markdown", "source": [ "### CBCT projections of 3D Shepp-Logan phantom\n", "\n", "For illustration,\n", "we start by synthesizing\n", "CBCT projections\n", "of the 3D Shepp-Logan phantom.\n", "\n", "For completeness,\n", "we use units (from Unitful),\n", "but units are optional." ], "metadata": {} }, { "cell_type": "markdown", "source": [ "Use `ImageGeom` to define the image geometry." ], "metadata": {} }, { "outputs": [], "cell_type": "code", "source": [ "ig = ImageGeom(MaskCircle(); dims=(64,62,30), deltas = (1,1,2) .* 0.4cm)" ], "metadata": {}, "execution_count": null }, { "cell_type": "markdown", "source": [ "Ellipsoid parameters for 3D Shepp-Logan phantom:" ], "metadata": {} }, { "outputs": [], "cell_type": "code", "source": [ "μ = 0.1 / cm # typical linear attenuation coefficient\n", "params = ellipsoid_parameters( ; fovs = fovs(ig), u = (1, 1, μ))\n", "ob = ellipsoid(params)" ], "metadata": {}, "execution_count": null }, { "cell_type": "markdown", "source": [ "A narrow grayscale window is needed to see the soft tissue structures" ], "metadata": {} }, { "outputs": [], "cell_type": "code", "source": [ "clim = (0.95, 1.05) .* μ" ], "metadata": {}, "execution_count": null }, { "cell_type": "markdown", "source": [ "Here is the ideal phantom image:" ], "metadata": {} }, { "outputs": [], "cell_type": "code", "source": [ "oversample = 3\n", "true_image = phantom(axes(ig)..., ob, oversample)\n", "jim(axes(ig), true_image, \"True 3D Shepp-Logan phantom image\"; clim)" ], "metadata": {}, "execution_count": null }, { "cell_type": "markdown", "source": [ "Define the system geometry\n", "(for some explanation use `?CtGeom`):" ], "metadata": {} }, { "outputs": [], "cell_type": "code", "source": [ "p = (ns = 130, ds = 0.3cm, nt = 80, dt = 0.4cm, na = 50, dsd = 200cm, dod = 40cm)\n", "cg = CtFanArc( ; p...)" ], "metadata": {}, "execution_count": null }, { "cell_type": "markdown", "source": [ "Examine the geometry to verify the FOV\n", "(this is more interesting when interacting via other Plot backends):" ], "metadata": {} }, { "outputs": [], "cell_type": "code", "source": [ "ct_geom_plot3(cg, ig)" ], "metadata": {}, "execution_count": null }, { "outputs": [], "cell_type": "code", "source": [ "prompt()" ], "metadata": {}, "execution_count": null }, { "cell_type": "markdown", "source": [ "CBCT projections\n", "using `Sinogram.rays` and `ImagePhantoms.radon`:" ], "metadata": {} }, { "outputs": [], "cell_type": "code", "source": [ "proj_arc = radon(rays(cg), ob)\n", "jim(cg.s, cg.t, proj_arc ;\n", " title=\"Shepp-Logan projections (arc)\", xlabel=\"s\", ylabel=\"t\")" ], "metadata": {}, "execution_count": null }, { "cell_type": "markdown", "source": [ "There is no \"inverse crime\" here\n", "because we compute the projection views\n", "using the analytical phantom geometry,\n", "but then reconstruct\n", "on a discrete grid.\n", "\n", "## Image reconstruction via FBP / FDK\n", "\n", "We start with a \"plan\",\n", "which would save work if we were reconstructing many images.\n", "For illustration we include `Hamming` window." ], "metadata": {} }, { "outputs": [], "cell_type": "code", "source": [ "plan = plan_fbp(cg, ig; window = Window(Hamming(), 1.0))\n", "fdk_arc = fdk(plan, proj_arc)\n", "jim(axes(ig), fdk_arc, \"FDK image (arc)\"; clim)" ], "metadata": {}, "execution_count": null }, { "outputs": [], "cell_type": "code", "source": [ "err_arc = fdk_arc - true_image\n", "jim(axes(ig), err_arc, \"Error image (arc)\"; clim = (-1,1) .* (0.05μ))" ], "metadata": {}, "execution_count": null }, { "cell_type": "markdown", "source": [ "## Repeat with flat detector geometry" ], "metadata": {} }, { "outputs": [], "cell_type": "code", "source": [ "cg = CtFanFlat( ; p...)\n", "proj_flat = radon(rays(cg), ob)\n", "jim(cg.s, cg.t, proj_flat ;\n", " title=\"Shepp-Logan projections (flat)\", xlabel=\"s\", ylabel=\"t\")\n", "\n", "plan = plan_fbp(cg, ig; window = Window(Hamming(), 1.0))\n", "fdk_flat = fdk(plan, proj_flat)\n", "jim(axes(ig), fdk_flat, \"FDK image (flat)\"; clim)" ], "metadata": {}, "execution_count": null }, { "outputs": [], "cell_type": "code", "source": [ "err_flat = fdk_flat - true_image\n", "jim(axes(ig), err_flat, \"Error image (flat)\"; clim = (-1,1) .* (0.05μ))" ], "metadata": {}, "execution_count": null }, { "cell_type": "markdown", "source": [ "As expected for CBCT,\n", "the largest errors are in the end slices." ], "metadata": {} }, { "cell_type": "markdown", "source": [ "---\n", "\n", "*This notebook was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*" ], "metadata": {} } ], "nbformat_minor": 3, "metadata": { "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", "version": "1.8.3" }, "kernelspec": { "name": "julia-1.8", "display_name": "Julia 1.8.3", "language": "julia" } }, "nbformat": 4 }