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Chapter 1

Julia 1.10 Documentation

Welcome to the documentation for Julia 1.10.

Please read the release notes to see what has changed since the last release.

Note

The documentation is also available in PDF format: julia-1.10.2.pdf.

1.1 Important Links

Below is a non-exhasutive list of links that will be useful as you learn and use the Julia programming
language.

¢ Julia Homepage

¢ Download Julia

* Discussion forum

* Julia YouTube

* Find Julia Packages

* Learning Resources

* Read and write blogs on Julia

1.2 Introduction

Scientific computing has traditionally required the highest performance, yet domain experts have largely
moved to slower dynamic languages for daily work. We believe there are many good reasons to prefer
dynamic languages for these applications, and we do not expect their use to diminish. Fortunately, modern
language design and compiler techniques make it possible to mostly eliminate the performance trade-off
and provide a single environment productive enough for prototyping and efficient enough for deploying
performance-intensive applications. The Julia programming language fills this role: it is a flexible dynamic
language, appropriate for scientific and numerical computing, with performance comparable to traditional
statically-typed languages.


NEWS.md
https://raw.githubusercontent.com/JuliaLang/docs.julialang.org/assets/julia-1.10.2.pdf
https://julialang.org
https://julialang.org/downloads/
https://discourse.julialang.org
https://www.youtube.com/user/JuliaLanguage
https://julialang.org/packages/
https://julialang.org/learning/
https://forem.julialang.org
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Because Julia's compiler is different from the interpreters used for languages like Python or R, you may
find that Julia's performance is unintuitive at first. If you find that something is slow, we highly recommend
reading through the Performance Tips section before trying anything else. Once you understand how Julia
works, it is easy to write code that is nearly as fast as C.

1.3 Julia Compared to Other Languages

Julia features optional typing, multiple dispatch, and good performance, achieved using type inference
and just-in-time (JIT) compilation (and optional ahead-of-time compilation), implemented using LLVM. It
is multi-paradigm, combining features of imperative, functional, and object-oriented programming. Julia
provides ease and expressiveness for high-level numerical computing, in the same way as languages such
as R, MATLAB, and Python, but also supports general programming. To achieve this, Julia builds upon the
lineage of mathematical programming languages, but also borrows much from popular dynamic languages,
including Lisp, Perl, Python, Lua, and Ruby.

The most significant departures of Julia from typical dynamic languages are:

* The core language imposes very little; Julia Base and the standard library are written in Julia itself,
including primitive operations like integer arithmetic

* Arich language of types for constructing and describing objects, that can also optionally be used to
make type declarations

* The ability to define function behavior across many combinations of argument types via multiple
dispatch

* Automatic generation of efficient, specialized code for different argument types

* Good performance, approaching that of statically-compiled languages like C

Although one sometimes speaks of dynamic languages as being "typeless", they are definitely not. Every
object, whether primitive or user-defined, has a type. The lack of type declarations in most dynamic lan-
guages, however, means that one cannot instruct the compiler about the types of values, and often cannot
explicitly talk about types at all. In static languages, on the other hand, while one can - and usually must -
annotate types for the compiler, types exist only at compile time and cannot be manipulated or expressed
at run time. In Julia, types are themselves run-time objects, and can also be used to convey information to
the compiler.

What Makes Julia, Julia?

While the casual programmer need not explicitly use types or multiple dispatch, they are the core unifying
features of Julia: functions are defined on different combinations of argument types, and applied by dis-
patching to the most specific matching definition. This model is a good fit for mathematical programming,
where it is unnatural for the first argument to "own" an operation as in traditional object-oriented dispatch.
Operators are just functions with special notation - to extend addition to new user-defined data types, you
define new methods for the + function. Existing code then seamlessly applies to the new data types.

Partly because of run-time type inference (augmented by optional type annotations), and partly because
of a strong focus on performance from the inception of the project, Julia's computational efficiency exceeds
that of other dynamic languages, and even rivals that of statically-compiled languages. For large scale
numerical problems, speed always has been, continues to be, and probably always will be crucial: the
amount of data being processed has easily kept pace with Moore's Law over the past decades.


https://en.wikipedia.org/wiki/Just-in-time_compilation
https://github.com/JuliaLang/PackageCompiler.jl
https://en.wikipedia.org/wiki/Low_Level_Virtual_Machine
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Perl_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Lua_(programming_language)
https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://en.wikipedia.org/wiki/Multiple_dispatch
https://en.wikipedia.org/wiki/Multiple_dispatch
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Advantages of Julia

Julia aims to create an unprecedented combination of ease-of-use, power, and efficiency in a single lan-
guage. In addition to the above, some advantages of Julia over comparable systems include:

* Free and open source (MIT licensed)

* User-defined types are as fast and compact as built-ins

* No need to vectorize code for performance; devectorized code is fast

* Designed for parallelism and distributed computation

* Lightweight "green" threading (coroutines)

* Unobtrusive yet powerful type system

* Elegant and extensible conversions and promotions for numeric and other types

» Efficient support for Unicode, including but not limited to UTF-8

* Call C functions directly (no wrappers or special APIs needed)

* Powerful shell-like capabilities for managing other processes

* Lisp-like macros and other metaprogramming facilities


https://github.com/JuliaLang/julia/blob/master/LICENSE.md
https://en.wikipedia.org/wiki/Coroutine
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/UTF-8

Chapter 2

Getting Started

Julia installation is straightforward, whether using precompiled binaries or compiling from source. Download
and install Julia by following the instructions at https://julialang.org/downloads/.

If you are coming to Julia from one of the following languages, then you should start by reading the section
on noteworthy differences from MATLAB, R, Python, C/C++ or Common Lisp. This will help you avoid some
common pitfalls since Julia differs from those languages in many subtle ways.

The easiest way to learn and experiment with Julia is by starting an interactive session (also known as a
read-eval-print loop or "REPL") by double-clicking the Julia executable or running julia from the command
line:

$ julia
_ _ () | Documentation: https://docs.julialang.org
(L) | () Q) |
I I D | Type "?" for help, "1?" for Pkg help.
[ T 2 B
[T 111 11 ¢l | Version 1.10.2 (2024-03-01)
/ IN_" || I\N_"'" | | Official https://julialang.org/ release
[/ |

julia> 1 + 2
3

julia> ans
3

To exit the interactive session, type CTRL-D (press the Control/® key together with the d key), or type
exit(). When run in interactive mode, julia displays a banner and prompts the user for input. Once the
user has entered a complete expression, such as 1 + 2, and hits enter, the interactive session evaluates
the expression and shows its value. If an expression is entered into an interactive session with a trailing
semicolon, its value is not shown. The variable ans is bound to the value of the last evaluated expression
whether it is shown or not. The ans variable is only bound in interactive sessions, not when Julia code is
run in other ways.

To evaluate expressions written in a source file file. j1, write include("file.jl").


https://julialang.org/downloads/
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To run code in a file non-interactively, you can give it as the first argument to the julia command:
$ julia script.jl

You can pass additional arguments to Julia, and to your program script.jl. A detailed list of all the
available options can be found under Command-line Interface.

2.1 Resources

A curated list of useful learning resources to help new users get started can be found on the learning page
of the main Julia website.

You can use the REPL as a learning resource by switching into the help mode. Switch to help mode by
pressing ? at an empty julia> prompt, before typing anything else. Typing a keyword in help mode will
fetch the documentation for it, along with examples. Similarly for most functions or other objects you might
encounter!

help?> begin
search: begin disable sigint reenable sigint

begin
begin...end denotes a block of code.

If you already know Julia a bit, you might want to peek ahead at Performance Tips and Workflow Tips.


https://julialang.org/learning/

Chapter 3

Variables

A variable, in Julia, is a name associated (or bound) to a value. It's useful when you want to store a value
(that you obtained after some math, for example) for later use. For example:

# Assign the value 10 to the variable x
julia> x = 10
10

# Doing math with x's value
julia> x + 1
11

# Reassign x's value
julia> x = 1 + 1
2

# You can assign values of other types, like strings of text
julia> x = "Hello World!"
"Hello World!"

Julia provides an extremely flexible system for naming variables. Variable names are case-sensitive, and
have no semantic meaning (that is, the language will not treat variables differently based on their names).

julia> x = 1.0
1.0

julia> y = -3
-3

julia> Z = "My string"
"My string"

julia> customary phrase = "Hello world!"
"Hello world!"

julia> UniversalDeclarationOfHumanRightsStart = ""
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Unicode names (in UTF-8 encoding) are allowed:

julia> 6 = 0.00001
1.0e-5

julia> = "Hello"
"Hello"

In the Julia REPL and several other Julia editing environments, you can type many Unicode math symbols
by typing the backslashed LaTeX symbol name followed by tab. For example, the variable name 6 can
be entered by typing \delta-tab, or even a2’ by \alpha-tab-\hat- tab-\"(2)-tab. (If you find a symbol
somewhere, e.g. in someone else's code, that you don't know how to type, the REPL help will tell you: just
type ? and then paste the symbol.)

Julia will even let you redefine built-in constants and functions if needed (although this is not recommended
to avoid potential confusions):

julia> pi = 3
3

julia> pi
3

julia> sqrt = 4
4

However, if you try to redefine a built-in constant or function already in use, Julia will give you an error:

julia> pi
m = 3.1415926535897. ..

julia> pi = 3
ERROR: cannot assign a value to imported variable Base.pi from module Main

julia> sqrt(100)
10.0

julia> sqrt = 4
ERROR: cannot assign a value to imported variable Base.sqrt from module Main

3.1 Allowed Variable Names

Variable names must begin with a letter (A-Z or a-z), underscore, or a subset of Unicode code points greater
than 00AO; in particular, Unicode character categories Lu/LI/Lt/Lm/Lo/NI (letters), Sc/So (currency and other
symbols), and a few other letter-like characters (e.g. a subset of the Sm math symbols) are allowed.
Subsequent characters may also include ! and digits (0-9 and other characters in categories Nd/No), as
well as other Unicode code points: diacritics and other modifying marks (categories Mn/Mc/Me/Sk), some
punctuation connectors (category Pc), primes, and a few other characters.

Operators like + are also valid identifiers, but are parsed specially. In some contexts, operators can be
used just like variables; for example (+) refers to the addition function, and (+) = f will reassign it. Most


https://www.fileformat.info/info/unicode/category/index.htm
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of the Unicode infix operators (in category Sm), such as @, are parsed as infix operators and are available
for user-defined methods (e.g. you can use const ® = kron to define ® as an infix Kronecker product).
Operators can also be suffixed with modifying marks, primes, and sub/superscripts, e.g. +a” is parsed as
an infix operator with the same precedence as +. A space is required between an operator that ends with
a subscript/superscript letter and a subsequent variable name. For example, if +2 is an operator, then +2x
must be written as +2 x to distinguish it from + 2x where 2x is the variable name.

A particular class of variable names is one that contains only underscores. These identifiers can only be
assigned values, which are immediately discarded, and cannot therefore be used to assign values to other
variables (i.e., they cannot be used as rvalues) or use the last value assigned to them in any way.

julia> x, = size([2 2; 1 1])
(2, 2)

julia> y =
ERROR: syntax: all-underscore identifier used as rvalue

julia> println(_ )
ERROR: syntax: all-underscore identifier used as rvalue

The only explicitly disallowed names for variables are the names of the built-in Keywords:

julia> else = false
ERROR: syntax: unexpected "else"

julia> try = "No"
ERROR: syntax: unexpected "="

Some Unicode characters are considered to be equivalent in identifiers. Different ways of entering Unicode
combining characters (e.g., accents) are treated as equivalent (specifically, Julia identifiers are NFC. Julia
also includes a few non-standard equivalences for characters that are visually similar and are easily entered
by some input methods. The Unicode characters € (U+025B: Latin small letter open e) and u (U+00B5:
micro sign) are treated as equivalent to the corresponding Greek letters. The middle dot - (U+00B7) and
the Greek interpunct - (U+0387) are both treated as the mathematical dot operator - (U+22C5). The
minus sign — (U+2212) is treated as equivalent to the hyphen-minus sign - (U+002D).

3.2 Assignment expressions and assignment versus mutation

An assignment variable = value "binds" the name variable to the value computed on the right-hand
side, and the whole assignment is treated by Julia as an expression equal to the right-hand-side value. This
means that assignments can be chained (the same value assigned to multiple variables with variablel =
variable2 = value) or used in other expressions, and is also why their result is shown in the REPL as the
value of the right-hand side. (In general, the REPL displays the value of whatever expression you evaluate.)
For example, here the value 4 of b = 2+2 is used in another arithmetic operation and assignment:

julia> a = (b = 2+2) + 3
7

julia> a


https://en.wikipedia.org/wiki/Value_(computer_science)#Assignment:_l-values_and_r-values
https://en.wikipedia.org/wiki/Unicode_equivalence
https://en.wikipedia.org/wiki/Interpunct
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julia> b
4

A common confusion is the distinction between assignment (giving a new "name" to a value) and mutation
(changing a value). If you run a = 2 followed by a = 3, you have changed the "name" a to refer to a new
value 3 ... you haven't changed the number 2, so 2+2 will still give 4 and not 6! This distinction becomes
more clear when dealing with mutable types like arrays, whose contents can be changed:

julia> a = [1,2,3] # an array of 3 integers
3-element Vector{Int64}:

1

2

3

julia> b = a # both b and a are names for the same array!
3-element Vector{Int64}:

1

2

3

Here, the line b = a does not make a copy of the array a, it simply binds the name b to the same array a:
both b and a "point" to one array [1,2,3] in memory. In contrast, an assignment a[i] = value changes
the contents of the array, and the modified array will be visible through both the names a and b:

julia> a[l] = 42 # change the first element
42

julia> a = 3.14159 # a is now the name of a different object
3.14159

julia> b # b refers to the original array object, which has been mutated
3-element Vector{Int64}:

42

2

3

Thatis, a[i] = value (an alias for setindex!) mutates an existing array object in memory, accessible via
either a or b. Subsequently setting a = 3.14159 does not change this array, it simply binds a to a different
object; the array is still accessible via b. The other common syntax to mutate an existing objectis a.field
= value (an alias for setproperty!), which can be used to change a mutable struct.

When you call a function in Julia, it behaves as if you assigned the argument values to new variable names
corresponding to the function arguments, as discussed in Argument-Passing Behavior. (By convention,
functions that mutate one or more of their arguments have names ending with !.)

3.3 Stylistic Conventions

While Julia imposes few restrictions on valid names, it has become useful to adopt the following conventions:
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* Names of variables are in lower case.

* Word separation can be indicated by underscores (' '), but use of underscores is discouraged unless
the name would be hard to read otherwise.

* Names of Types and Modules begin with a capital letter and word separation is shown with upper
camel case instead of underscores.

* Names of functions and macros are in lower case, without underscores.

¢ Functions that write to their arguments have names that end in !. These are sometimes called
"mutating" or "in-place" functions because they are intended to produce changes in their arguments
after the function is called, not just return a value.

For more information about stylistic conventions, see the Style Guide.



Chapter 4

Integers and Floating-Point Numbers

Integers and floating-point values are the basic building blocks of arithmetic and computation. Built-in
representations of such values are called numeric primitives, while representations of integers and floating-
point numbers as immediate values in code are known as numeric literals. For example, 1 is an integer
literal, while 1.0 is a floating-point literal; their binary in-memory representations as objects are numeric
primitives.

Julia provides a broad range of primitive numeric types, and a full complement of arithmetic and bitwise
operators as well as standard mathematical functions are defined over them. These map directly onto
numeric types and operations that are natively supported on modern computers, thus allowing Julia to
take full advantage of computational resources. Additionally, Julia provides software support for Arbitrary
Precision Arithmetic, which can handle operations on numeric values that cannot be represented effectively
in native hardware representations, but at the cost of relatively slower performance.

The following are Julia's primitive numeric types:

* Integer types:

Type Signed? | Number of bits | Smallest value | Largest value
Int8 v 8 =277 27°7-1
UInt8 8 0 27°8-1
Intl6 v 16 -2715 2715-1
UIntle 16 0 2716 -1
Int32 v 32 -2731 2731-1
UInt32 32 0 2732-1
Int64 v 64 -2763 2763-1
UInt64 64 0 2764 -1
Int128 v 128 -27°127 27127 -1
UInt128 128 0 27128 -1
Bool N/A 8 false (0) true (1)

* Floating-point types:
Additionally, full support for Complex and Rational Numbers is built on top of these primitive numeric types.
All numeric types interoperate naturally without explicit casting, thanks to a flexible, user-extensible type

promotion system.

12
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Type Precision | Number of bits
Floatl6 | half 16
Float32 | single 32
Float64 | double 64

4.1 Integers

Literal integers are represented in the standard manner:

julia> 1
1

julia> 1234
1234

13

The default type for an integer literal depends on whether the target system has a 32-bit architecture or a
64-bit architecture:

Int32

Int64

The Julia internal variable Sys.WORD SIZE indicates whether the target system is 32-bit or 64-bit:

32

64

# 32-bit system:
julia> typeof(1)

# 64-bit system:
julia> typeof(1)

# 32-bit system:
julia> Sys.WORD SIZE

# 64-bit system:
julia> Sys.WORD SIZE

Julia also defines the types Int and UInt, which are aliases for the system's signed and unsigned native
integer types respectively:

julia> Int
Int32
julia> UInt
UInt32

julia> Int
Int64
julia> UInt
UInt64

# 32-bit system:

# 64-bit system:


https://en.wikipedia.org/wiki/Half-precision_floating-point_format
https://en.wikipedia.org/wiki/Single_precision_floating-point_format
https://en.wikipedia.org/wiki/Double_precision_floating-point_format
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Larger integer literals that cannot be represented using only 32 bits but can be represented in 64 bits
always create 64-bit integers, regardless of the system type:

# 32-bit or 64-bit system:
julia> typeof(3000000000)
Int64

Unsigned integers are input and output using the 0x prefix and hexadecimal (base 16) digits 0-9a-f (the
capitalized digits A-F also work for input). The size of the unsigned value is determined by the number of
hex digits used:

julia> x = 0x1
0x01

julia> typeof(x)
UInt8

julia> x = 0x123
0x0123

julia> typeof(x)
UIntl6

julia> x = 0x1234567
0x01234567

julia> typeof(x)
UInt32

julia> x = 0x123456789abcdef
0x0123456789abcdef

julia> typeof(x)
UInt64

julia> x = 0x11112222333344445555666677778888
0x11112222333344445555666677778888

julia> typeof(x)
UInt128

This behavior is based on the observation that when one uses unsigned hex literals for integer values, one
typically is using them to represent a fixed numeric byte sequence, rather than just an integer value.

Binary and octal literals are also supported:

julia> x = 0b10O
0x02

julia> typeof(x)
UInt8
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julia> x = 00010
0x08

julia> typeof(x)
UInt8

julia> x = 0x00000000000000001111222233334444
0x00000000000000001111222233334444

julia> typeof(x)
UInt128

As for hexadecimal literals, binary and octal literals produce unsigned integer types. The size of the binary
data item is the minimal needed size, if the leading digit of the literal is not 0. In the case of leading zeros,
the size is determined by the minimal needed size for a literal, which has the same length but leading digit
1. It means that:

¢ 0x1 and 0x12 are UInt8 literals,
e 0x123 and 0x1234 are UInt16 literals,
e 0x12345 and 0x12345678 are UInt32 literals,

e 0x123456789 and 0x1234567890adcdef are UInt64 literals, etc.

Even if there are leading zero digits which don't contribute to the value, they count for determining storage
size of a literal. So 0x01 is a UInt8 while 0x0001 is a UInt16.

That allows the user to control the size.

Unsigned literals (starting with 0x) that encode integers too large to be represented as UInt128 values will
construct BigInt values instead. This is not an unsigned type but it is the only built-in type big enough to
represent such large integer values.

Binary, octal, and hexadecimal literals may be signed by a - immediately preceding the unsigned literal.
They produce an unsigned integer of the same size as the unsigned literal would do, with the two's com-
plement of the value:

julia> -0x2
Oxfe

julia> -0x0002
Oxfffe

The minimum and maximum representable values of primitive numeric types such as integers are given
by the typemin and typemax functions:

julia> (typemin(Int32), typemax(Int32))
(-2147483648, 2147483647)
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julia> for T in [Int8,Int16,Int32,Int64,Int128,UInt8,UIntl6,UInt32,UInt64,UInt128]
println("$(lpad(T,7)): [$(typemin(T)),$(typemax(T))]")
end
Int8: [-128,127]
Intl6: [-32768,32767]
Int32: [-2147483648,2147483647]
Int64: [-9223372036854775808,9223372036854775807]
Intl128: [-170141183460469231731687303715884105728,170141183460469231731687303715884105727]
UInt8: [0,255]
UInt16: [0,65535]
UInt32: [0,4294967295]
UInt64: [0,18446744073709551615]
UInt128: [0,340282366920938463463374607431768211455]

The values returned by typemin and typemax are always of the given argument type. (The above expres-
sion uses several features that have yet to be introduced, including for loops, Strings, and Interpolation,
but should be easy enough to understand for users with some existing programming experience.)

Overflow behavior

In Julia, exceeding the maximum representable value of a given type results in a wraparound behavior:

julia> x = typemax(Int64)
9223372036854775807

julia> x + 1
-9223372036854775808

julia> x + 1 == typemin(Int64)
true

Thus, arithmetic with Julia integers is actually a form of modular arithmetic. This reflects the characteristics
of the underlying arithmetic of integers as implemented on modern computers. In applications where
overflow is possible, explicit checking for wraparound produced by overflow is essential; otherwise, the
BigInt type in Arbitrary Precision Arithmetic is recommended instead.

An example of overflow behavior and how to potentially resolve it is as follows:

julia> 10719
-8446744073709551616

julia> big(10)"19
10000000000000000000

Division errors

Integer division (the div function) has two exceptional cases: dividing by zero, and dividing the lowest
negative number (typemin) by -1. Both of these cases throw a DivideError. The remainder and modulus
functions (rem and mod) throw a DivideError when their second argument is zero.


https://en.wikipedia.org/wiki/Modular_arithmetic
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4.2 Floating-Point Numbers

Literal floating-point numbers are represented in the standard formats, using E-notation when necessary:

julia> 1.0
1.0

julia> 1.
1.0

julia> 0.5
0.5

julia> .5
0.5

julia> -1.23
-1.23

julia> 1lel0
1.0el10

julia> 2.5e-4
0.00025

The above results are all Float64 values. Literal Float32 values can be entered by writing an f in place
of e:

julia> x = 0.5f0
0.5f0

julia> typeof(x)
Float32

julia> 2.5f-4
0.00025f0

Values can be converted to Float32 easily:

julia> x = Float32(-1.5)
-1.5f0

julia> typeof(x)
Float32

Hexadecimal floating-point literals are also valid, but only as Float64 values, with p preceding the base-2
exponent:

julia> 0x1p0
1.0


https://en.wikipedia.org/wiki/Scientific_notation#E_notation
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julia> 0x1.8p3
12.0

julia> x = 0x.4p-1
0.125

julia> typeof(x)
Float64

Half-precision floating-point numbers are also supported (Float16), but they are implemented in software
and use Float32 for calculations.

julia> sizeof(Floatl6(4.))
2

julia> 2*Floatl6(4.)
Float16(8.0)

The underscore can be used as digit separator:

julia> 10 000, 0.000 000 005, Oxdead beef, 0bl01l 0010
(10000, 5.0e-9, 0Oxdeadbeef, 0xb2)

Floating-point zero

Floating-point numbers have two zeros, positive zero and negative zero. They are equal to each other but
have different binary representations, as can be seen using the bitstring function:

julia> 0.0 == -0.0
true

julia> bitstring(0.0)
"0000000000000000000000000000000000000000000000000000000000000000"

julia> bitstring(-0.0)
"1000000000000000000000000000000000000000000000000000000000000000"

Special floating-point values

There are three specified standard floating-point values that do not correspond to any point on the real
number line:

For further discussion of how these non-finite floating-point values are ordered with respect to each other
and other floats, see Numeric Comparisons. By the IEEE 754 standard, these floating-point values are the
results of certain arithmetic operations:

julia> 1/Inf
0.0


https://en.wikipedia.org/wiki/Signed_zero
https://en.wikipedia.org/wiki/IEEE_754-2008
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Floatl6 | Float32| Float64| Name Description

Infl6 Inf32 Inf positive a value greater than all finite floating-point values
infinity

-Infl6 -Inf32 -Inf negative a value less than all finite floating-point values
infinity

NaN16 NaN32 NaN not a number a value not == to any floating-point value (including

itself)

julia> 1/0

Inf

julia> -5/0

-Inf

julia> 0.000001/0
Inf

julia> 0/0
NaN

julia> 500 + Inf
Inf

julia> 500 - Inf
-Inf

julia> Inf + Inf
Inf

julia> Inf - Inf
NaN

julia> Inf * Inf
Inf

julia> Inf / Inf
NaN

julia> 0 * Inf
NaN

julia> NaN == NaN
false

julia> NaN != NaN
true

julia> NaN < NaN
false

julia> NaN > NaN
false
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The typemin and typemax functions also apply to floating-point types:

julia> (typemin(Floatl6),typemax(Floatl6))
(-Infl6, Infl6)

julia> (typemin(Float32),typemax(Float32))
(-Inf32, Inf32)

julia> (typemin(Float64),typemax(Float64))
(-Inf, Inf)

Machine epsilon

Most real numbers cannot be represented exactly with floating-point numbers, and so for many purposes
it is important to know the distance between two adjacent representable floating-point numbers, which is
often known as machine epsilon.

Julia provides eps, which gives the distance between 1.0 and the next larger representable floating-point
value:

julia> eps(Float32)
1.1920929f-7

julia> eps(Float64)
2.220446049250313e-16

julia> eps() # same as eps(Float64)
2.220446049250313e-16

These values are 2.0"-23 and 2.07-52 as Float32 and Float64 values, respectively. The eps function
can also take a floating-point value as an argument, and gives the absolute difference between that value
and the next representable floating point value. That is, eps(x) yields a value of the same type as x such
that x + eps(x) is the next representable floating-point value larger than x:

julia> eps(1.0)
2.220446049250313e-16

julia> eps(1000.)
1.1368683772161603e-13

julia> eps(le-27)
1.793662034335766e-43

julia> eps(0.0)
5.0e-324

The distance between two adjacent representable floating-point numbers is not constant, but is smaller for
smaller values and larger for larger values. In other words, the representable floating-point numbers are
densest in the real number line near zero, and grow sparser exponentially as one moves farther away from
zero. By definition, eps(1.0) is the same as eps(Float64) since 1.0 is a 64-bit floating-point value.


https://en.wikipedia.org/wiki/Machine_epsilon
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Julia also provides the nextfloat and prevfloat functions which return the next largest or smallest rep-
resentable floating-point number to the argument respectively:

julia> x = 1.25f0
1.25f0

julia> nextfloat(x)
1.2500001f0

julia> prevfloat(x)
1.2499999f0

julia> bitstring(prevfloat(x))
"00111111100111111111111111111111"

julia> bitstring(x)
"00111111101000000000000000000000"

julia> bitstring(nextfloat(x))
"00111111101000000000000000000001"

This example highlights the general principle that the adjacent representable floating-point numbers also
have adjacent binary integer representations.

Rounding modes

If a number doesn't have an exact floating-point representation, it must be rounded to an appropriate
representable value. However, the manner in which this rounding is done can be changed if required
according to the rounding modes presented in the IEEE 754 standard.

The default mode used is always RoundNearest, which rounds to the nearest representable value, with ties
rounded towards the nearest value with an even least significant bit.

Background and References

Floating-point arithmetic entails many subtleties which can be surprising to users who are unfamiliar with
the low-level implementation details. However, these subtleties are described in detail in most books on
scientific computation, and also in the following references:

¢ The definitive guide to floating point arithmetic is the IEEE 754-2008 Standard; however, it is not
available for free online.

* For a brief but lucid presentation of how floating-point numbers are represented, see John D. Cook's
article on the subject as well as his introduction to some of the issues arising from how this repre-
sentation differs in behavior from the idealized abstraction of real numbers.

¢ Also recommended is Bruce Dawson's series of blog posts on floating-point numbers.

* For an excellent, in-depth discussion of floating-point numbers and issues of numerical accuracy
encountered when computing with them, see David Goldberg's paper What Every Computer Scientist
Should Know About Floating-Point Arithmetic.


https://en.wikipedia.org/wiki/IEEE_754-2008
https://standards.ieee.org/standard/754-2008.html
https://www.johndcook.com/blog/2009/04/06/anatomy-of-a-floating-point-number/
https://www.johndcook.com/blog/2009/04/06/numbers-are-a-leaky-abstraction/
https://randomascii.wordpress.com/2012/05/20/thats-not-normalthe-performance-of-odd-floats/
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.6768&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.6768&rep=rep1&type=pdf
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* For even more extensive documentation of the history of, rationale for, and issues with floating-
point numbers, as well as discussion of many other topics in numerical computing, see the collected
writings of William Kahan, commonly known as the "Father of Floating-Point". Of particular interest

may be An Interview with the Old Man of Floating-Point.

4.3 Arbitrary Precision Arithmetic

To allow computations with arbitrary-precision integers and floating point numbers, Julia wraps the GNU Mul-
tiple Precision Arithmetic Library (GMP) and the GNU MPFR Library, respectively. The BigInt and BigFloat

types are available in Julia for arbitrary precision integer and floating point numbers respectively.

Constructors exist to create these types from primitive numerical types, and the string literal @big str or
parse can be used to construct them from AbstractStrings. BigInts can also be input as integer literals
when they are too big for other built-in integer types. Note that as there is no unsigned arbitrary-precision
integer type in Base (BigInt is sufficient in most cases), hexadecimal, octal and binary literals can be used

(in addition to decimal literals).

Once created, they participate in arithmetic with all other numeric types thanks to Julia's type promotion

and conversion mechanism:

julia> BigInt(typemax(Int64)) + 1
9223372036854775808

julia> big"123456789012345678901234567890" + 1
123456789012345678901234567891

julia> parse(BigInt, "123456789012345678901234567890") + 1
123456789012345678901234567891

julia> string(big"2""200, base=16)
"100000000000000000000000000000000000000000000000000™"

julia> 0x100000000000000000000000000000000-1 == typemax(UInt128)
true

julia> 0x000000000000000000000000000000000
0

julia> typeof(ans)
BigInt

julia> big"1.23456789012345678901"

1.234567890123456789010000000000000000000000000000000000000000000000000000000004

julia> parse(BigFloat, "1.23456789012345678901")

1.234567890123456789010000000000000000000000000000000000000000000000000000000004

julia> BigFloat(2.0766) / 3

2.459565876494606882133333333333333333333333333333333333333333333333333333333344e+19

julia> factorial(BigInt(40))
815915283247897734345611269596115894272000000000



https://people.eecs.berkeley.edu/{~}wkahan/
https://people.eecs.berkeley.edu/{~}wkahan/
https://en.wikipedia.org/wiki/William_Kahan
https://people.eecs.berkeley.edu/{~}wkahan/ieee754status/754story.html
https://gmplib.org
https://gmplib.org
https://www.mpfr.org
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However, type promotion between the primitive types above and BigInt/BigFloat is not automatic and
must be explicitly stated.

julia> x = typemin(Int64)
-9223372036854775808

julia> x = x - 1
9223372036854775807

julia> typeof(x)
Int64

julia> y = BigInt(typemin(Int64))
-9223372036854775808

julia> y =y - 1
-9223372036854775809

julia> typeof(y)
BigInt

The default precision (in number of bits of the significand) and rounding mode of BigFloat operations can
be changed globally by calling setprecision and setrounding, and all further calculations will take these
changes in account. Alternatively, the precision or the rounding can be changed only within the execution
of a particular block of code by using the same functions with a do block:

julia> setrounding(BigFloat, RoundUp) do
BigFloat(1l) + parse(BigFloat, "0.1")
end
1.100000000000000000000000000000000000000000000000000000000000000000000000000003

julia> setrounding(BigFloat, RoundDown) do
BigFloat(1l) + parse(BigFloat, "0.1")
end
1.099999999999999999999999999999999999999999999999999999999999999999999999999986

julia> setprecision(40) do
BigFloat(1l) + parse(BigFloat, "0.1")
end
1.1000000000004

4.4 Numeric Literal Coefficients

To make common numeric formulae and expressions clearer, Julia allows variables to be immediately
preceded by a numeric literal, implying multiplication. This makes writing polynomial expressions much
cleaner:

julia> x = 3
3

julia> 2x™2 - 3x + 1
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julia> 1.5x"2 - .5x + 1
13.0

It also makes writing exponential functions more elegant:

julia> 272x
64

The precedence of numeric literal coefficients is slightly lower than that of unary operators such as nega-
tion. So -2x is parsed as (-2) * x and v2x is parsed as (v2) * x. However, numeric literal coefficients
parse similarly to unary operators when combined with exponentiation. For example 2"3x is parsed as
27 (3x), and 2x"3 is parsed as 2*(x"3).

Numeric literals also work as coefficients to parenthesized expressions:

julia> 2(x-1)"2 - 3(x-1) + 1
3

Note

The precedence of numeric literal coefficients used for implicit multiplication is higher than
other binary operators such as multiplication (*), and division (/, \, and //). This means, for
example, that 1 / 2im equals -0.5imand 6 // 2(2 + 1) equals1 // 1.

Additionally, parenthesized expressions can be used as coefficients to variables, implying multiplication of
the expression by the variable:

julia> (x-1)x
6

Neither juxtaposition of two parenthesized expressions, nor placing a variable before a parenthesized ex-
pression, however, can be used to imply multiplication:

julia> (x-1)(x+1)
ERROR: MethodError: objects of type Int64 are not callable

julia> x(x+1)
ERROR: MethodError: objects of type Int64 are not callable

Both expressions are interpreted as function application: any expression that is not a numeric literal, when
immediately followed by a parenthetical, is interpreted as a function applied to the values in parentheses
(see Functions for more about functions). Thus, in both of these cases, an error occurs since the left-hand
value is not a function.

The above syntactic enhancements significantly reduce the visual noise incurred when writing common
mathematical formulae. Note that no whitespace may come between a numeric literal coefficient and the
identifier or parenthesized expression which it multiplies.
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Syntax Conflicts

Juxtaposed literal coefficient syntax may conflict with some numeric literal syntaxes: hexadecimal, octal
and binary integer literals and engineering notation for floating-point literals. Here are some situations
where syntactic conflicts arise:

* The hexadecimal integer literal expression 0xff could be interpreted as the numeric literal @ mul-
tiplied by the variable xff. Similar ambiguities arise with octal and binary literals like 00777 or
0b010010160.

* The floating-point literal expression 1e10 could be interpreted as the numeric literal 1 multiplied by
the variable €10, and similarly with the equivalent E form.

* The 32-bit floating-point literal expression 1.5f22 could be interpreted as the numeric literal 1.5
multiplied by the variable f22.

In all cases the ambiguity is resolved in favor of interpretation as numeric literals:

* Expressions starting with 0x/00/0b are always hexadecimal/octal/binary literals.

* Expressions starting with a numeric literal followed by e or E are always floating-point literals.

» Expressions starting with a numeric literal followed by f are always 32-bit floating-point literals.
Unlike E, which is equivalent to e in numeric literals for historical reasons, F is just another letter and does
not behave like f in numeric literals. Hence, expressions starting with a numeric literal followed by F are

interpreted as the numerical literal multiplied by a variable, which means that, for example, 1.5F22 is
equalto 1.5 * F22.

4.5 Literal zero and one

Julia provides functions which return literal 0 and 1 corresponding to a specified type or the type of a given
variable.

Function | Description
zero(x) Literal zero of type x or type of variable x
one(x) Literal one of type x or type of variable x

These functions are useful in Numeric Comparisons to avoid overhead from unnecessary type conversion.

Examples:

julia> zero(Float32)
0.0f0

julia> zero(1.0)
0.0

julia> one(Int32)
1

julia> one(BigFloat)
1.0
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Mathematical Operations and Elementary
Functions

Julia provides a complete collection of basic arithmetic and bitwise operators across all of its numeric
primitive types, as well as providing portable, efficient implementations of a comprehensive collection of
standard mathematical functions.

5.1 Arithmetic Operators

The following arithmetic operators are supported on all primitive numeric types:

Expression | Name Description

+X unary plus the identity operation

-X unary minus maps values to their additive inverses
X +y binary plus performs addition

X -y binary minus performs subtraction

X *y times performs multiplication
X/y divide performs division

X +y integer divide | x /vy, truncated to an integer
X \y inverse divide | equivalenttoy / x

X~y power raises x to the yth power

X %Yy remainder equivalent to rem(x,y)

A numeric literal placed directly before an identifier or parentheses, e.g. 2x or 2(x+y), is treated as a mul-
tiplication, except with higher precedence than other binary operations. See Numeric Literal Coefficients
for details.

Julia's promotion system makes arithmetic operations on mixtures of argument types "just work" naturally
and automatically. See Conversion and Promotion for details of the promotion system.

The =+ sign can be conveniently typed by writing \div<tab> to the REPL or Julia IDE. See the manual section
on Unicode input for more information.

Here are some simple examples using arithmetic operators:

julia> 1 + 2 + 3
6

26


https://en.wikipedia.org/wiki/Arithmetic#Arithmetic_operations
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julia> 1 - 2
-1

julia> 3*%2/12
0.5

(By convention, we tend to space operators more tightly if they get applied before other nearby operators.
For instance, we would generally write -x + 2 to reflect that first x gets negated, and then 2 is added to
that result.)

When used in multiplication, false acts as a strong zero:

julia> NaN * false
0.0

julia> false * Inf
0.0

This is useful for preventing the propagation of NaN values in quantities that are known to be zero. See
Knuth (1992) for motivation.

5.2 Boolean Operators

The following Boolean operators are supported on Bool types:

Expression | Name

X negation

X && y short-circuiting and
x ||y short-circuiting or

Negation changes true to false and vice versa. The short-circuiting operations are explained on the linked
page.

Note that Bool is an integer type and all the usual promotion rules and numeric operators are also defined
on it.

5.3 Bitwise Operators
The following bitwise operators are supported on all primitive integer types:

Here are some examples with bitwise operators:

julia> ~123
-124

julia> 123 & 234
106

julia> 123 | 234



https://arxiv.org/abs/math/9205211
https://en.wikipedia.org/wiki/Boolean_algebra#Operations
https://en.wikipedia.org/wiki/Bitwise_operation#Bitwise_operators
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Expression | Name

~X bitwise not

X &y bitwise and

x|y bitwise or

x Vy bitwise xor (exclusive or)
X y bitwise nand (not and)

X y bitwise nor (not or)

X >>> y logical shift right

X >>y arithmetic shift right

X <<y logical/arithmetic shift left

251

julia> 123 V 234
145

julia> xor(123, 234)
145

julia> nand(123, 123)
-124

julia> 123 123
124

julia> nor(123, 124)
-128

julia> 123 124
-128

julia> ~UInt32(123)
Oxffffff84

julia> ~UInt8(123)
0x84

5.4 Updating operators

Every binary arithmetic and bitwise operator also has an updating version that assigns the result of the
operation back into its left operand. The updating version of the binary operator is formed by placing a =
immediately after the operator. For example, writing x += 3 is equivalent to writing x = x + 3:

julia> x = 1
1

julia> x += 3
4


https://en.wikipedia.org/wiki/Logical_shift
https://en.wikipedia.org/wiki/Arithmetic_shift
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julia> x
4

The updating versions of all the binary arithmetic and bitwise operators are:

+= -= *= /= \= = %= "= &= |= V= >>>= >>= <<=

Note
An updating operator rebinds the variable on the left-hand side. As a result, the type of the

variable may change.

julia> x = 0x01; typeof(x)
UInt8

julia> x *= 2 # Same as x = x * 2
2

julia> typeof(x)
Int64

5.5 Vectorized "dot" operators

For every binary operation like *, there is a corresponding "dot" operation .” that is automatically defined
to perform ~ element-by-element on arrays. For example, [1,2,3] ~ 3 is not defined, since there is no
standard mathematical meaning to "cubing" a (non-square) array, but [1,2,3] .”~ 3 is defined as com-
puting the elementwise (or "vectorized") result [173, 273, 373]. Similarly for unary operators like ! or
Vv, there is a corresponding .V that applies the operator elementwise.

julia> [1,2,3] .~ 3
3-element Vector{Int64}:
1
8
27

More specifically, a .” b is parsed as the "dot" call (). (a,b), which performs a broadcast operation:
it can combine arrays and scalars, arrays of the same size (performing the operation elementwise), and
even arrays of different shapes (e.g. combining row and column vectors to produce a matrix). Moreover,
like all vectorized "dot calls," these "dot operators" are fusing. For example, if you compute 2 .* A."2 .+
sin. (A) (or equivalently @. 2A~2 + sin(A), using the @. macro) for an array A, it performs a single loop
over A, computing 2a”2 + sin(a) for each element a of A. In particular, nested dot calls like . (g.(x))
are fused, and "adjacent" binary operators like x .+ 3 .* x.”2 are equivalent to nested dot calls (+) . (X,
(*).(3, (").(x, 2))).

Furthermore, "dotted" updating operators likea .+= b(or@. a += b)areparsedasa .= a .+ b, where
.= is a fused in-place assignment operation (see the dot syntax documentation).

Note the dot syntax is also applicable to user-defined operators. For example, if you define ®(A,B) =
kron(A,B) to give a convenient infix syntax A ® B for Kronecker products (kron), then [A,B] .® [C,D]
will compute [AeC, BeD] with no additional coding.
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Combining dot operators with numeric literals can be ambiguous. For example, it is not clear whether
l.+x means 1. + xor1l .+ x. Therefore this syntax is disallowed, and spaces must be used around the
operator in such cases.

5.6 Numeric Comparisons

Standard comparison operations are defined for all the primitive numeric types:

Operator | Name

== equality
=, # inequality
< less than

A
]
IA

less than or equal to
> greater than
greater than or equal to

\
]
\%

Here are some simple examples:

julia> 1 == 1
true

julia> 1 ==
false

julia> 1 !=2
true

julia> 1 == 1.0
true

julia> 1 < 2
true

julia> 1.0 > 3
false

julia> 1 >= 1.0
true

julia> -1 <=1
true

julia> -1 <= -1
true

julia> -1 <= -2
false

julia> 3 < -0.5
false
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Integers are compared in the standard manner - by comparison of bits. Floating-point numbers are com-
pared according to the IEEE 754 standard:

* Finite numbers are ordered in the usual manner.

» Positive zero is equal but not greater than negative zero.

¢ Infis equal to itself and greater than everything else except NaN.

* -Inf is equal to itself and less than everything else except NaN.

* NaN is not equal to, not less than, and not greater than anything, including itself.

The last point is potentially surprising and thus worth noting:

julia> NaN == NaN
false

julia> NaN != NaN
true

julia> NaN < NaN
false

julia> NaN > NaN

false

and can cause headaches when working with arrays:

julia> [1 NaN] == [1 NaN]
false

Julia provides additional functions to test numbers for special values, which can be useful in situations like
hash key comparisons:

Function Tests if

isequal(x, y) | xandy are identical
isfinite(x) X is a finite number
isinf(x) x is infinite
isnan(x) X is not a number

isequal considers NaNs equal to each other:

julia> isequal(NaN, NaN)
true

julia> isequal([1 NaN], [1 NaN])
true

julia> isequal(NaN, NaN32)
true



https://en.wikipedia.org/wiki/IEEE_754-2008
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isequal can also be used to distinguish signed zeros:

julia> -0.0 == 0.0
true

julia> isequal(-0.0, 0.0)
false

Mixed-type comparisons between signed integers, unsigned integers, and floats can be tricky. A great deal
of care has been taken to ensure that Julia does them correctly.

For other types, isequal defaults to calling ==, so if you want to define equality for your own types then
you only need to add a == method. If you define your own equality function, you should probably define a
corresponding hash method to ensure that isequal(x,y) implies hash(x) == hash(y).

Chaining comparisons

Unlike most languages, with the notable exception of Python, comparisons can be arbitrarily chained:

julia> 1 <2 <=2<3=3>2>=1==1<31=5
true

Chaining comparisons is often quite convenient in numerical code. Chained comparisons use the && opera-
tor for scalar comparisons, and the & operator for elementwise comparisons, which allows them to work on
arrays. For example, ® .< A .< 1 gives a boolean array whose entries are true where the corresponding
elements of A are between 0 and 1.

Note the evaluation behavior of chained comparisons:

julia> v(x) = (println(x); x)
v (generic function with 1 method)

julia> v(1) < v(2) <= v(3)
2

1

3

true

julia> v(1) > v(2) <= v(3)
2

1

false

The middle expression is only evaluated once, rather than twice as it would be if the expression were
written as v(1) < v(2) && v(2) <= v(3). However, the order of evaluations in a chained comparison
is undefined. It is strongly recommended not to use expressions with side effects (such as printing) in
chained comparisons. If side effects are required, the short-circuit && operator should be used explicitly
(see Short-Circuit Evaluation).


https://en.wikipedia.org/wiki/Python_syntax_and_semantics#Comparison_operators
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Elementary Functions

Julia provides a comprehensive collection of mathematical functions and operators. These mathematical
operations are defined over as broad a class of numerical values as permit sensible definitions, including
integers, floating-point numbers, rationals, and complex numbers, wherever such definitions make sense.

Moreover, these functions (like any Julia function) can be applied in "vectorized" fashion to arrays and other
collections with the dot syntax f. (A), e.g. sin. (A) will compute the sine of each element of an array A.

5.7 Operator Precedence and Associativity

Julia applies the following order and associativity of operations, from highest precedence to lowest:

Category Operators Associativity
Syntax . followed by :: Left
Exponentiation | * Right

Unary + -V Right!
Bitshifts << >> >>> Left
Fractions // Left
Multiplication /% &\ + Left?
Addition +- |V Left?
Syntax Left

Syntax |> Left

Syntax <| Right
Comparisons > < >= <= == === |= l== < Non-associative
Control flow && followed by || followed by ? Right

Pair => Right
Assignments = += -= *= /= [/= \= "= += %= |= & V= <<= >>= >>>= | Right

For a complete list of every Julia operator's precedence, see the top of this file: src/julia-parser.scm.
Note that some of the operators there are not defined in the Base module but may be given definitions by
standard libraries, packages or user code.

You can also find the numerical precedence for any given operator via the built-in function Base.operator precedence,
where higher numbers take precedence:

julia> Base.operator precedence(:+), Base.operator precedence(:*), Base.operator precedence(:.)
(11, 12, 17)

julia> Base.operator_precedence(:sin), Base.operator precedence(:+=),
< Base.operator precedence(:(=)) i(=)")
(6, 1, 1)

# (Note the necessary parens on

A symbol representing the operator associativity can also be found by calling the built-in function Base.operator_associativity:

1The unary operators + and - require explicit parentheses around their argument to disambiguate them from the operator ++,
etc. Other compositions of unary operators are parsed with right-associativity, e. g., vv-a as V(v(-a)).

2The operators +, ++ and * are non-associative. a + b + cis parsed as+(a, b, c) not+(+(a, b), c). However, the fallback
methods for +(a, b, ¢, d...) and *(a, b, ¢, d...) both default to left-associative evaluation.


https://github.com/JuliaLang/julia/blob/master/src/julia-parser.scm
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julia> Base.operator associativity(:-), Base.operator associativity(:+),
— Base.operator _associativity(:")
(:left, :none, :right)

julia> Base.operator associativity(:e), Base.operator associativity(:sin),
< Base.operator associativity(:-)
(:left, :none, :right)

Note that symbols such as :sin return precedence 0. This value represents invalid operators and not
operators of lowest precedence. Similarly, such operators are assigned associativity :none.

Numeric literal coefficients, e.g. 2x, are treated as multiplications with higher precedence than any other
binary operation, with the exception of ~ where they have higher precedence only as the exponent.

julia> x = 3; 2x"2
18
julia> x = 3; 272x

64

Juxtaposition parses like a unary operator, which has the same natural asymmetry around exponents: -x"y
and 2x™y parse as - (x"y) and 2(x"y) whereas x~-y and x*2y parse as x~(-y) and x~(2y).
5.8 Numerical Conversions

Julia supports three forms of numerical conversion, which differ in their handling of inexact conversions.

* The notation T(x) or convert(T,x) converts x to a value of type T.

- If Tis a floating-point type, the result is the nearest representable value, which could be positive
or negative infinity.

- If Tis an integer type, an InexactError is raised if x is not representable by T.

* X % T converts an integer x to a value of integer type T congruent to x modulo 2”n, where n is the
number of bits in T. In other words, the binary representation is truncated to fit.

¢ The Rounding functions take a type T as an optional argument. For example, round(Int,x) is a
shorthand for Int(round(x)).

The following examples show the different forms.

julia> Int8(127)
127

julia> Int8(128)

ERROR: InexactError: trunc(Int8, 128)
Stacktrace:

[...]
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julia> Int8(127.0)
127

julia> Int8(3.14)

ERROR: InexactError: Int8(3.14)
Stacktrace:

[...]

julia> Int8(128.0)
ERROR: InexactError: Int8(128.0)
Stacktrace:

[...1]

julia> 127 % Int8
127

julia> 128 % Int8
-128

julia> round(Int8,127.4)
127

julia> round(Int8,127.6)

ERROR: InexactError: trunc(Int8, 128.0)
Stacktrace:

[...]

See Conversion and Promotion for how to define your own conversions and promotions.

Rounding functions

Function Description Return type
round(x) round x to the nearest integer | typeof(x)
round(T, Xx) round x to the nearest integer | T

floor(x) round x towards -Inf typeof(x)
floor(T, x) round x towards -Inf T

ceil(x) round x towards +Inf typeof(x)
ceil(T, x) round x towards +Inf T

trunc(x) round x towards zero typeof(x)
trunc(T, x) round x towards zero T

Division functions
Sign and absolute value functions

Powers, logs and roots

For an overview of why functions like hypot, expml, and loglp are necessary and useful, see John D. Cook's
excellent pair of blog posts on the subject: expm1, loglp, erfc, and hypot.


https://www.johndcook.com/blog/2010/06/07/math-library-functions-that-seem-unnecessary/
https://www.johndcook.com/blog/2010/06/02/whats-so-hard-about-finding-a-hypotenuse/
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Function Description

div(x,y), truncated division; quotient rounded towards zero

X+y

fld(x,y) floored division; quotient rounded towards -Inf

cld(x,y) ceiling division; quotient rounded towards +Inf

rem(x,y), remainder; satisfies x == div(x,y)*y + rem(x,y); sign matches x

X%y

mod (X,Y) modulus; satisfies x == fld(x,y)*y + mod(x,y); sign matches y

modl(x,y) mod with offset 1; returns r€(0,y] for y>0 or r€[y,0) for y<0, where mod(r, y) ==
mod(x, y)

mod2pi(x) modulus with respect to 2pi; @ <= mod2pi(x) < 2pi

divrem(x,y) | returns (div(x,y),rem(x,y))

fldmod(x,y) | returns (fld(x,y),mod(x,y))

gcd(x,y...) | greatest positive common divisor of x, y,...

lem(x,y...) | least positive common multiple of x, v,...

Function Description

abs(x) a positive value with the magnitude of x

abs2(x) the squared magnitude of x

sign(x) indicates the sign of x, returning -1, 0, or +1

signbit(x) indicates whether the sign bit is on (true) or off (false)

copysign(x,y)

a value with the magnitude of x and the sign of y

flipsign(x,y)

a value with the magnitude of x and the sign of x*y

Function Description

sqrt(x), vx square root of x

cbrt(x), ¥x cube root of x

hypot(x,y) hypotenuse of right-angled triangle with other sides of length x and y
exp(x) natural exponential function at x

expml(x) accurate exp(x) -1 for x near zero

ldexp(x,n) x*2”n computed efficiently for integer values of n
log(x) natural logarithm of x

log (b, x) base b logarithm of x

log2(x) base 2 logarithm of x

logl0(x) base 10 logarithm of x

loglp(x) accurate log(1+x) for x near zero

exponent (X

)

binary exponent of x

significand(x)

binary significand (a.k.a. mantissa) of a floating-point number x

Trigonometric and hyperbolic functions

All the standard trigonometric and hyperbolic functions are also defined:

sin cos

sinh cosh
asin acos
asinh acosh
sinc cosc

tan cot sec csc
tanh coth sech csch
atan acot asec acsc
atanh acoth asech acsch
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These are all single-argument functions, with atan also accepting two arguments corresponding to a tra-
ditional atan2 function.

Additionally, sinpi(x) and cospi(x) are provided for more accurate computations of sin(pi*x) and
cos (pi*x) respectively.

In order to compute trigonometric functions with degrees instead of radians, suffix the function with d. For
example, sind(x) computes the sine of x where x is specified in degrees. The complete list of trigonometric
functions with degree variants is:

sind cosd tand cotd secd cscd
asind acosd atand acotd asecd acscd

Special functions

Many other special mathematical functions are provided by the package SpecialFunctions.jl.


https://en.wikipedia.org/wiki/Atan2
https://github.com/JuliaMath/SpecialFunctions.jl

Chapter 6

Complex and Rational Numbers

Julia includes predefined types for both complex and rational numbers, and supports all the standard Math-
ematical Operations and Elementary Functions on them. Conversion and Promotion are defined so that
operations on any combination of predefined numeric types, whether primitive or composite, behave as
expected.

6.1 Complex Numbers

The global constant imis bound to the complex number i, representing the principal square root of -1. (Using
mathematicians' i or engineers' j for this global constant was rejected since they are such popular index
variable names.) Since Julia allows numeric literals to be juxtaposed with identifiers as coefficients, this
binding suffices to provide convenient syntax for complex numbers, similar to the traditional mathematical
notation:

julia> 1+2im
1+ 2im

You can perform all the standard arithmetic operations with complex numbers:

julia> (1 + 2im)*(2 - 3im)
8 + 1lim

julia> (1 + 2im)/(1 - 2im)
-0.6 + 0.8im

julia> (1 + 2im) + (1 - 2im)
2 + 0im

julia> (-3 + 2im) - (5 - 1im)
-8 + 3im

julia> (-1 + 2im)"2
-3 - 4im

julia> (-1 + 2im)~2.5
2.729624464784009 - 6.9606644595719im

38
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julia> (-1 + 2im)~(1 + 1im)
-0.27910381075826657 + 0.08708053414102428im

julia> 3(2 - 5im)
6 - 15im

julia> 3(2 - 5im)"2
-63 - 60im

julia> 3(2 - 5im)~-1.0
0.20689655172413793 + 0.5172413793103449im

The promotion mechanism ensures that combinations of operands of different types just work:

julia> 2(1 - 1im)
2 - 2im

julia> (2 + 3im) - 1
1+ 3im

julia> (1 + 2im) + 0.5
1.5 + 2.0im

julia> (2 + 3im) - 0.5im
2.0 + 2.5im

julia> 0.75(1 + 2im)
0.75 + 1.5im

julia> (2 + 3im) / 2
1.0 + 1.5im

julia> (1 - 3im) / (2 + 2im)
-0.5 - 1.0im

julia> 2im"2
-2 + 0im

julia> 1 + 3/4im
1.0 - 0.75im

Note that 3/4im == 3/(4*im) == -(3/4*im), since a literal coefficient binds more tightly than division.

Standard functions to manipulate complex values are provided:

julia> z = 1 + 2im
1+ 2im

julia> real(l + 2im) # real part of z
1
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julia> imag(l + 2im) # imaginary part of z
2

julia> conj (1l + 2im) # complex conjugate of z
1 - 2im

julia> abs(1 + 2im) # absolute value of z
2.23606797749979

julia> abs2(1 + 2im) # squared absolute value
5

julia> angle(1l + 2im) # phase angle in radians
1.1071487177940904

As usual, the absolute value (abs) of a complex number is its distance from zero. abs2 gives the square
of the absolute value, and is of particular use for complex numbers since it avoids taking a square root.
angle returns the phase angle in radians (also known as the argument or arg function). The full gamut of
other Elementary Functions is also defined for complex numbers:

julia> sqrt(lim)
0.7071067811865476 + 0.7071067811865475im

julia> sqrt(l + 2im)
1.272019649514069 + 0.7861513777574233im

julia> cos(1l + 2im)
2.0327230070196656 - 3.0518977991517997im

julia> exp(l + 2im)
-1.1312043837568135 + 2.4717266720048188im

julia> sinh(1 + 2im)
-0.4890562590412937 + 1.4031192506220405im

Note that mathematical functions typically return real values when applied to real numbers and complex

values when applied to complex numbers. For example, sqrt behaves differently when applied to -1 versus
-1 + 0imeven though -1 == -1 + 0im:

julia> sqrt(-1)
ERROR: DomainError with -1.0:
sqrt was called with a negative real argument but will only return a complex result if called

— with a complex argument. Try sqrt(Complex(x)).
Stacktrace:

[...]

julia> sqrt(-1 + 0im)
0.0 + 1.0im

The literal numeric coefficient notation does not work when constructing a complex number from variables.
Instead, the multiplication must be explicitly written out:
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julia> a = 1; b = 2; a + b*im
1+ 2im

However, this is not recommended. Instead, use the more efficient complex function to construct a complex
value directly from its real and imaginary parts:

julia> a = 1; b = 2; complex(a, b)
1+ 2im

This construction avoids the multiplication and addition operations.

Inf and NaN propagate through complex numbers in the real and imaginary parts of a complex number as
described in the Special floating-point values section:

julia> 1 + Inf*im
1.0 + Inf*im

julia> 1 + NaN*im
1.0 + NaN*im

6.2 Rational Numbers

Julia has a rational number type to represent exact ratios of integers. Rationals are constructed using the
// operator:

julia> 2//3
2//3

If the numerator and denominator of a rational have common factors, they are reduced to lowest terms
such that the denominator is non-negative:

julia> 6//9
2//3

julia> -4//8
-1//2

julia> 5//-15
-1//3

julia> -4//-12
1//3

This normalized form for a ratio of integers is unique, so equality of rational values can be tested by checking
for equality of the numerator and denominator. The standardized numerator and denominator of a rational
value can be extracted using the numerator and denominator functions:
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julia> numerator(2//3)
2

julia> denominator(2//3)
3

Direct comparison of the numerator and denominator is generally not necessary, since the standard arith-
metic and comparison operations are defined for rational values:

julia> 2//3 == 6//9
true

julia> 2//3 == 9//27
false

julia> 3//7 < 1//2
true

julia> 3//4 > 2//3
true

julia> 2//4 + 1//6
2//3

julia> 5//12 - 1//4
1//6

julia> 5//8 * 3//12
5//32

julia> 6//5 / 10//7
21//25

Rationals can easily be converted to floating-point numbers:

julia> float(3//4)
0.75

Conversion from rational to floating-point respects the following identity for any integral values of a and b,
with the exception of the two casesb == @anda == 0 & b < 0:

julia> a = 1; b = 2;

julia> isequal(float(a//b), a/b)
true

Constructing infinite rational values is acceptable:
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julia> 5//0
1//0

julia> x = -3//0
-1//0

julia> typeof(x)
Rational{Int64}

Trying to construct a NaN rational value, however, is invalid

julia> 0//0
ERROR: ArgumentError: invalid rational: zero(Int64)//zero(Int64)
Stacktrace:

[...]

As usual, the promotion system makes interactions with other numeric types effortless:

julia> 3//5 + 1
8//5

julia> 3//5 - 0.5
0.09999999999999998

julia> 2//7 * (1 + 2im)
2//7 + 4//7*im

julia> 2//7 * (1.5 + 2im)
0.42857142857142855 + 0.5714285714285714im

julia> 3//2 / (1 + 2im)
3//10 - 3//5*im

julia> 1//2 + 2im
1//2 + 2//1*im

julia> 1 + 2//3im
1//1 - 2//3*im

julia> 0.5 == 1//2
true

julia> 0.33 == 1//3
false

julia> 0.33 < 1//3
true

julia> 1//3 - 0.33
0.0033333333333332993

43
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Strings

Strings are finite sequences of characters. Of course, the real trouble comes when one asks what a char-
acter is. The characters that English speakers are familiar with are the letters A, B, C, etc., together with
numerals and common punctuation symbols. These characters are standardized together with a mapping
to integer values between 0 and 127 by the ASCII standard. There are, of course, many other characters
used in non-English languages, including variants of the ASCIl characters with accents and other modifi-
cations, related scripts such as Cyrillic and Greek, and scripts completely unrelated to ASCIl and English,
including Arabic, Chinese, Hebrew, Hindi, Japanese, and Korean. The Unicode standard tackles the com-
plexities of what exactly a character is, and is generally accepted as the definitive standard addressing
this problem. Depending on your needs, you can either ignore these complexities entirely and just pretend
that only ASCII characters exist, or you can write code that can handle any of the characters or encodings
that one may encounter when handling non-ASCI| text. Julia makes dealing with plain ASCII text simple and
efficient, and handling Unicode is as simple and efficient as possible. In particular, you can write C-style
string code to process ASCII strings, and they will work as expected, both in terms of performance and
semantics. If such code encounters non-ASCII text, it will gracefully fail with a clear error message, rather
than silently introducing corrupt results. When this happens, modifying the code to handle non-ASCII data
is straightforward.

There are a few noteworthy high-level features about Julia's strings:

* The built-in concrete type used for strings (and string literals) in Julia is String. This supports the full
range of Unicode characters via the UTF-8 encoding. (A transcode function is provided to convert
to/from other Unicode encodings.)

» All string types are subtypes of the abstract type AbstractString, and external packages define
additional AbstractString subtypes (e.g. for other encodings). If you define a function expecting a
string argument, you should declare the type as AbstractString in order to accept any string type.

e Like C and Java, but unlike most dynamic languages, Julia has a first-class type for representing
a single character, called AbstractChar. The built-in Char subtype of AbstractChar is a 32-bit
primitive type that can represent any Unicode character (and which is based on the UTF-8 encoding).

e As in Java, strings are immutable: the value of an AbstractString object cannot be changed. To
construct a different string value, you construct a new string from parts of other strings.

¢ Conceptually, a string is a partial function from indices to characters: for some index values, no
character value is returned, and instead an exception is thrown. This allows for efficient indexing

a4
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into strings by the byte index of an encoded representation rather than by a character index, which
cannot be implemented both efficiently and simply for variable-width encodings of Unicode strings.

7.1 Characters

A Char value represents a single character: it is just a 32-bit primitive type with a special literal represen-
tation and appropriate arithmetic behaviors, and which can be converted to a numeric value representing
a Unicode code point. (Julia packages may define other subtypes of AbstractChar, e.g. to optimize oper-
ations for other text encodings.) Here is how Char values are input and shown (note that character literals
are delimited with single quotes, not double quotes):

julia> c = 'x
'x"': ASCII/Unicode U+0078 (category Ll: Letter, lowercase)

julia> typeof(c)
Char

You can easily convert a Char to its integer value, i.e. code point:

julia> c = Int('x")
120

julia> typeof(c)
Int64

On 32-bit architectures, typeof(c) will be Int32. You can convert an integer value back to a Char just as
easily:

julia> Char(120)
'x': ASCII/Unicode U+0078 (category Ll: Letter, lowercase)

Not all integer values are valid Unicode code points, but for performance, the Char conversion does not
check that every character value is valid. If you want to check that each converted value is a valid code
point, use the isvalid function:

julia> Char(0x110000)
'\U110000"': Unicode U+110000 (category In: Invalid, too high)

julia> isvalid(Char, 0x110000)
false

As of this writing, the valid Unicode code points are U+0000 through U+D7FF and U+E0GO through U+10FFFF.
These have not all been assigned intelligible meanings yet, nor are they necessarily interpretable by ap-
plications, but all of these values are considered to be valid Unicode characters.

You can input any Unicode character in single quotes using \u followed by up to four hexadecimal digits or
\U followed by up to eight hexadecimal digits (the longest valid value only requires six):
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julia> '\uo'
'\0': ASCII/Unicode U+0000 (category Cc: Other, control)

julia> '\u78'
'x': ASCII/Unicode U+0078 (category Ll: Letter, lowercase)

julia> '\u2200'
'Y': Unicode U+2200 (category Sm: Symbol, math)

julia> '\UlOffff'
"\Uloffff': Unicode U+1OFFFF (category Cn: Other, not assigned)

Julia uses your system's locale and language settings to determine which characters can be printed as-is
and which must be output using the generic, escaped \u or \U input forms. In addition to these Unicode
escape forms, all of C's traditional escaped input forms can also be used:

julia> Int('\0')
0

julia> Int('\t')
9

julia> Int('\n"')
10

julia> Int('\e')
27

julia> Int('\x7f')
127

julia> Int('\177")
127

You can do comparisons and a limited amount of arithmetic with Char values:

julia> 'A' < 'a'
true

julia> 'A' <= 'a' <= 'Z'
false

julia> 'A' <= 'X' <= 'Z'
true

julia> 'x' - 'a’
23

julia> 'A' + 1
'B': ASCII/Unicode U+0042 (category Lu: Letter, uppercase)
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7.2 String Basics

String literals are delimited by double quotes or triple double quotes (not single quotes):

julia> str = "Hello, world.\n"
"Hello, world.\n"

julia> """Contains "quote" characters"""
"Contains \"quote\" characters"

Long lines in strings can be broken up by preceding the newline with a backslash (\):

julia> "This is a long \
line"
"This is a long line"

If you want to extract a character from a string, you index into it:

julia> str[begin]
'H': ASCII/Unicode U+0048 (category Lu: Letter, uppercase)

julia> str[1]
'H': ASCII/Unicode U+0048 (category Lu: Letter, uppercase)

julia> str[6]
', 't ASCII/Unicode U+002C (category Po: Punctuation, other)

julia> str[end]
‘\n': ASCII/Unicode U+000A (category Cc: Other, control)

Many Julia objects, including strings, can be indexed with integers. The index of the first element (the first
character of a string) is returned by firstindex(str), and the index of the last element (character) with
lastindex(str). The keywords begin and end can be used inside an indexing operation as shorthand for
the first and last indices, respectively, along the given dimension. String indexing, like most indexing in
Julia, is 1-based: firstindex always returns 1 for any AbstractString. As we will see below, however,
lastindex(str) is notin general the same as length(str) for a string, because some Unicode characters
can occupy multiple "code units".

You can perform arithmetic and other operations with end, just like a normal value:

julia> str[end-1]
".'": ASCII/Unicode U+002E (category Po: Punctuation, other)

julia> str[end=2]
' ': ASCII/Unicode U+0020 (category Zs: Separator, space)

Using an index less than begin (1) or greater than end raises an error:
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julia> str[begin-1]
ERROR: BoundsError: attempt to access 14-codeunit String at index [0]
[...]

julia> str[end+1]
ERROR: BoundsError: attempt to access 14-codeunit String at index [15]
[...]

You can also extract a substring using range indexing:

julia> str[4:9]
"lo, wo"

Notice that the expressions str[k] and str[k:k] do not give the same result:

julia> str[6]
',': ASCII/Unicode U+002C (category Po: Punctuation, other)

julia> str[6:6]

non
’

The former is a single character value of type Char, while the latter is a string value that happens to contain
only a single character. In Julia these are very different things.

Range indexing makes a copy of the selected part of the original string. Alternatively, it is possible to
create a view into a string using the type SubString. More simply, using the @views macro on a block of
code converts all string slices into substrings. For example:

julia> str = "long string"
"long string"

julia> substr = SubString(str, 1, 4)
"long"

julia> typeof(substr)
SubString{String}

julia> @views typeof(str[1:4]) # @views converts slices to SubStrings
SubString{String}

Several standard functions like chop, chomp or strip return a SubString.

7.3 Unicode and UTF-8

Julia fully supports Unicode characters and strings. As discussed above, in character literals, Unicode code
points can be represented using Unicode \u and \U escape sequences, as well as all the standard C escape
sequences. These can likewise be used to write string literals:

julia> s = "\u2200 x \u2203 y"
M ERL
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Whether these Unicode characters are displayed as escapes or shown as special characters depends on
your terminal's locale settings and its support for Unicode. String literals are encoded using the UTF-8
encoding. UTF-8 is a variable-width encoding, meaning that not all characters are encoded in the same
number of bytes ("code units"). In UTF-8, ASCIl characters — i.e. those with code points less than 0x80
(128) - are encoded as they are in ASCII, using a single byte, while code points 0x80 and above are encoded
using multiple bytes — up to four per character.

String indices in Julia refer to code units (= bytes for UTF-8), the fixed-width building blocks that are used
to encode arbitrary characters (code points). This means that not every index into a String is necessarily
a valid index for a character. If you index into a string at such an invalid byte index, an error is thrown:

julia> s[1]
'Y': Unicode U+2200 (category Sm: Symbol, math)

julia> s[2]
ERROR: StringIndexError: invalid index [2], valid nearby indices [1]=>'V', [4]=>' "'
Stacktrace:

[...]

julia> s[3]

ERROR: StringIndexError: invalid index [3], valid nearby indices [1]=>'V', [4]=>' '
Stacktrace:

[...]

julia> s[4]

' 't ASCII/Unicode U+0020 (category Zs: Separator, space)

In this case, the character V is a three-byte character, so the indices 2 and 3 are invalid and the next
character's index is 4; this next valid index can be computed by nextind(s,1), and the next index after
that by nextind(s,4) and so on.

Since end is always the last valid index into a collection, end-1 references an invalid byte index if the
second-to-last character is multibyte.

julia> s[end-1]
' ': ASCII/Unicode U+0020 (category Zs: Separator, space)

julia> s[end-2]
ERROR: StringIndexError: invalid index [9], valid nearby indices [7]=>'3', [10]=>' '
Stacktrace:

[...]

julia> s[prevind(s, end, 2)]
'3': Unicode U+2203 (category Sm: Symbol, math)

The first case works, because the last character y and the space are one-byte characters, whereas end-2
indexes into the middle of the 3 multibyte representation. The correct way for this case is using prevind(s,
lastindex(s), 2) or, if you're using that value to index into s you can write s[prevind(s, end, 2)] and
end expands to lastindex(s).

Extraction of a substring using range indexing also expects valid byte indices or an error is thrown:
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julia> s[1:1]
ny

julia> s[1:2]

ERROR: StringIndexError: invalid index [2], valid nearby indices [1]=>'V', [4]=>' "'
Stacktrace:

[...]

julia> s[1:4]
wy

Because of variable-length encodings, the number of characters in a string (given by length(s)) is not
always the same as the last index. If you iterate through the indices 1 through lastindex(s) andindex into
s, the sequence of characters returned when errors aren't thrown is the sequence of characters comprising
the string s. Thus length(s) <= lastindex(s), since each character in a string must have its own index.
The following is an inefficient and verbose way to iterate through the characters of s:

julia> for i = firstindex(s):lastindex(s)

try
println(s[i])
catch
# ignore the index error
end
end
\
X
El
y

The blank lines actually have spaces on them. Fortunately, the above awkward idiom is unnecessary for
iterating through the characters in a string, since you can just use the string as an iterable object, no
exception handling required:

julia> for c in s
println(c)
end
v
X
3
y

If you need to obtain valid indices for a string, you can use the nextind and prevind functions to incre-
ment/decrement to the next/previous valid index, as mentioned above. You can also use the eachindex
function to iterate over the valid character indices:



CHAPTER 7. STRINGS

julia> collect(eachindex(s))
7-element Vector{Int64}:

=

51

To access the raw code units (bytes for UTF-8) of the encoding, you can use the codeunit(s,i) function,
where the index i runs consecutively from 1 to ncodeunits(s). The codeunits(s) function returns an

AbstractVector{UInt8} wrapper that lets you access these raw codeunits (bytes) as an array.

Strings in Julia can contain invalid UTF-8 code unit sequences. This convention allows to treat any byte
sequence as a String. In such situations a rule is that when parsing a sequence of code units from left to
right characters are formed by the longest sequence of 8-bit code units that matches the start of one of

the following bit patterns (each x can be 0 or 1):

* OXXXXXXX;

* 110XXXXX LOXXXXXX;

e 1110xXXX LOXXXXXX 1OXXXXXX;

* 11110xXX LOXXXXXX 1OXXXXXX 1OXXXXXX;
* 1OXXXXXX;

e 11111xxX.

In particular this means that overlong and too-high code unit sequences and prefixes thereof are treated
as a single invalid character rather than multiple invalid characters. This rule may be best explained with

an example:

julia> s = "\xc0\xa0\xe2\x88\xe2|"
"\xc0\xa0\xe2\x88\xe2|"

julia> foreach(display, s)

"\xc0\xa0': [overlong] ASCII/Unicode U+0020 (category Zs: Separator,
'\xe2\x88': Malformed UTF-8 (category Ma: Malformed, bad data)
'\xe2': Malformed UTF-8 (category Ma: Malformed, bad data)

"|': ASCII/Unicode U+007C (category Sm: Symbol, math)

julia> isvalid. (collect(s))
4-element BitArray{1l}:
0

0
0
1

julia> s2 = "\xf7\xbf\xbf\xbf"

space)
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"\ULfffff"

julia> foreach(display, s2)
"\U1fffff': Unicode U+1FFFFF (category In: Invalid, too high)

We can see that the first two code units in the string s form an overlong encoding of space character. It
is invalid, but is accepted in a string as a single character. The next two code units form a valid start of a
three-byte UTF-8 sequence. However, the fifth code unit \xe2 is not its valid continuation. Therefore code
units 3 and 4 are also interpreted as malformed characters in this string. Similarly code unit 5 forms a
malformed character because | is not a valid continuation to it. Finally the string s2 contains one too high
code point.

Julia uses the UTF-8 encoding by default, and support for new encodings can be added by packages. For
example, the LegacyStrings.jl package implements UTF16String and UTF32String types. Additional dis-
cussion of other encodings and how to implement support for them is beyond the scope of this document
for the time being. For further discussion of UTF-8 encoding issues, see the section below on byte array lit-
erals. The transcode function is provided to convert data between the various UTF-xx encodings, primarily
for working with external data and libraries.

7.4 Concatenation

One of the most common and useful string operations is concatenation:

julia> greet = "Hello"
"Hello"

julia> whom = "world"
"world"

julia> string(greet, ", ", whom, ".\n")
"Hello, world.\n"

It's important to be aware of potentially dangerous situations such as concatenation of invalid UTF-8 strings.
The resulting string may contain different characters than the input strings, and its number of characters
may be lower than sum of numbers of characters of the concatenated strings, e.g.:

julia> a, b = "\xe2\x88", "\x80"
("\xe2\x88", "\x80")

julia> c = string(a, b)
nyn

julia> collect.([a, b, c])
3-element Vector{Vector{Char}}:
["\xe2\x88"]
['\x80']
['v']

julia> length.([a, b, c])
3-element Vector{Int64}:
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This situation can happen only for invalid UTF-8 strings. For valid UTF-8 strings concatenation preserves
all characters in strings and additivity of string lengths.

Julia also provides * for string concatenation:

julia> greet * ", " * whom * ".\n"
"Hello, world.\n"

While * may seem like a surprising choice to users of languages that provide + for string concatenation,
this use of * has precedent in mathematics, particularly in abstract algebra.

In mathematics, + usually denotes a commutative operation, where the order of the operands does not
matter. An example of this is matrix addition, where A + B == B + A for any matrices A and B that have
the same shape. In contrast, * typically denotes a noncommutative operation, where the order of the
operands does matter. An example of this is matrix multiplication, where in general A * B != B * A,
As with matrix multiplication, string concatenation is noncommutative: greet * whom != whom * greet.
As such, * is a more natural choice for an infix string concatenation operator, consistent with common
mathematical use.

More precisely, the set of all finite-length strings S together with the string concatenation operator * forms
a free monoid (S, *). The identity element of this set is the empty string, "". Whenever a free monoid is
not commutative, the operation is typically represented as \cdot, *, or a similar symbol, rather than +,
which as stated usually implies commutativity.

7.5 Interpolation

Constructing strings using concatenation can become a bit cumbersome, however. To reduce the need for
these verbose calls to string or repeated multiplications, Julia allows interpolation into string literals using
$, as in Perl:

julia> greet = "Hello"; whom = "world";

julia> "$greet, $whom.\n"
"Hello, world.\n"

This is more readable and convenient and equivalent to the above string concatenation - the system

rewrites this apparent single string literal into the call string(greet, ", ", whom, ".\n").

The shortest complete expression after the $ is taken as the expression whose value is to be interpolated
into the string. Thus, you can interpolate any expression into a string using parentheses:

julia> "1 + 2 = $(1 + 2)"
"142=3"
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Both concatenation and string interpolation call string to convert objects into string form. However,
string actually just returns the output of print, so new types should add methods to print or show
instead of string.

Most non-AbstractString objects are converted to strings closely corresponding to how they are entered
as literal expressions:

julia> v = [1,2,3]
3-element Vector{Int64}:
1

2

3
julia> "v: $v"

"v: [1, 2, 31"

stringis the identity for AbstractString and AbstractChar values, so these are interpolated into strings
as themselves, unquoted and unescaped:

julia> c = 'x'
'x': ASCII/Unicode U+0078 (category Ll: Letter, lowercase)

julia> "hi, $c"

"hi, x
To include a literal $ in a string literal, escape it with a backslash:

julia> print("I have \$100 in my account.\n")
I have $100 in my account.

7.6 Triple-Quoted String Literals

When strings are created using triple-quotes ("""...""") they have some special behavior that can be
useful for creating longer blocks of text.

First, triple-quoted strings are also dedented to the level of the least-indented line. This is useful for defining
strings within code that is indented. For example:

julia> str = """
Hello,
world.

" Hello,\n world.\n"

In this case the final (empty) line before the closing """ sets the indentation level.

The dedentation level is determined as the longest common starting sequence of spaces or tabs in all lines,
excluding the line following the opening """ and lines containing only spaces or tabs (the line containing
the closing """ is always included). Then for all lines, excluding the text following the opening """, the
common starting sequence is removed (including lines containing only spaces and tabs if they start with
this sequence), e.qg.:
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julia> """  This
is
a test"""
! This\nis\n a test"

Next, if the opening is followed by a newline, the newline is stripped from the resulting string.

winhello" "

is equivalent to

hello"""

but

hello"""

will contain a literal newline at the beginning.

Stripping of the newline is performed after the dedentation. For example:

Hello,
world."""
"Hello,\nworld."

julia>

If the newline is removed using a backslash, dedentation will be respected as well:

julia> """
Averylong\
word"""

"Averylongword"

Trailing whitespace is left unaltered.
Triple-quoted string literals can contain " characters without escaping.

Note that line breaks in literal strings, whether single- or triple-quoted, result in a newline (LF) character
\n in the string, even if your editor uses a carriage return \r (CR) or CRLF combination to end lines. To
include a CR in a string, use an explicit escape \r; for example, you can enter the literal string "a CRLF
line ending\r\n".
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7.7 Common Operations

You can

julia>
true
julia>
false
julia>
true
julia>
true

You can

julia>
4

julia>
7

julia>

You can

julia>
4

julia>
7

julia>
4

julia>

You can

julia>
true
julia>
true
julia>
false
julia>
true

lexicographically compare strings using the standard comparison operators:

"abracadabra" < "xylophone"

"abracadabra" == "xylophone"
"Hello, world." != "Goodbye, world."
"1+ 2=3"=="1+2=%(1+2)"

search for the index of a particular character using the findfirst and findlast functions:

findfirst('o', "xylophone")

findlast('o', "xylophone")

findfirst('z', "xylophone")

start the search for a character at a given offset by using the functions findnext and findprev:

findnext('o', "xylophone", 1)

findnext('o', "xylophone", 5)

findprev('o', "xylophone", 5)

findnext('o', "xylophone", 8)

use the occursin function to check if a substring is found within a string

occursin("world", "Hello, world.")
occursin("o", "Xylophon")
occursin("a", "Xylophon")
occursin('o', "Xylophon")
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The last example shows that occursin can also look for a character literal.

Two other handy string functions are repeat and join:
julia> repeat(".:Z:.", 10)
A A S A R A S A S A I A S A S A SR A T
julia> join(["apples", "bananas", "pineapples"], ", ", " and ")
"apples, bananas and pineapples"
Some other useful functions include:
o firstindex(str) gives the minimal (byte) index that can be used to index into str (always 1 for
strings, not necessarily true for other containers).
e lastindex(str) gives the maximal (byte) index that can be used to index into str.
* length(str) the number of characters in str.
* length(str, i, j) the number of valid character indices in str from i to j.
* ncodeunits(str) number of code units in a string.
* codeunit(str, i) gives the code unit value in the string str atindex i.

e thisind(str, i) givenan arbitraryindexinto a string find the first index of the character into which
the index points.

e nextind(str, i, n=1) find the start of the nth character starting after index i.

e prevind(str, i, n=1) find the start of the nth character starting before index 1i.

7.8 Non-Standard String Literals

There are situations when you want to construct a string or use string semantics, but the behavior of the
standard string construct is not quite what is needed. For these kinds of situations, Julia provides non-
standard string literals. A non-standard string literal looks like a regular double-quoted string literal, but is
immediately prefixed by an identifier, and may behave differently from a normal string literal.

Regular expressions, byte array literals, and version number literals, as described below, are some exam-
ples of non-standard string literals. Users and packages may also define new non-standard string literals.
Further documentation is given in the Metaprogramming section.

7.9 Regular Expressions

Sometimes you are not looking for an exact string, but a particular pattern. For example, suppose you are
trying to extract a single date from a large text file. You don’t know what that date is (that’s why you are
searching for it), but you do know it will look something like YYYY-MM-DD. Regular expressions allow you to
specify these patterns and search for them.

Julia uses version 2 of Perl-compatible regular expressions (regexes), as provided by the PCRE library (see
the PCRE2 syntax description for more details). Regular expressions are related to strings in two ways:
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the obvious connection is that regular expressions are used to find regular patterns in strings; the other
connection is that regular expressions are themselves input as strings, which are parsed into a state ma-
chine that can be used to efficiently search for patterns in strings. In Julia, regular expressions are input
using non-standard string literals prefixed with various identifiers beginning with r. The most basic regular
expression literal without any options turned on justuses r"...":

julia> re = r""\s*(7:#|$)"
r~\s*(?:#|$)"

julia> typeof(re)
Regex

To check if a regex matches a string, use occursin:

julia> occursin(r"”\s*(?:#|$)", "not a comment")
false

julia> occursin(r"~\s*(?:#|$)", "# a comment")
true

As one can see here, occursin simply returns true or false, indicating whether a match for the given regex
occurs in the string. Commonly, however, one wants to know not just whether a string matched, but also
how it matched. To capture this information about a match, use the match function instead:

julia> match(r""\s*(7:#|$)", "not a comment")

julia> match(r"~\s*(?:#[$)", "# a comment")
RegexMatch ("#")

If the regular expression does not match the given string, match returns nothing - a special value that
does not print anything at the interactive prompt. Other than not printing, it is a completely normal value
and you can test for it programmatically:

m = match(r" \s*(7:#[$)", line)
if m === nothing

println("not a comment")
else

println("blank or comment")
end

If a regular expression does match, the value returned by match is a RegexMatch object. These objects
record how the expression matches, including the substring that the pattern matches and any captured
substrings, if there are any. This example only captures the portion of the substring that matches, but
perhaps we want to capture any non-blank text after the comment character. We could do the following:

julia> m = match(r" "\s*(?:#\s*(.*?)\s*$|$)", "# a comment ")
RegexMatch("# a comment ", 1="a comment")
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When calling match, you have the option to specify an index at which to start the search. For example:

julia> m = match(r"[0-9]","aaaalaaaa2aaaa3",1)
RegexMatch("1")

julia> m = match(r"[0-9]","aaaalaaaa2aaaa3",6)
RegexMatch("2")

julia> m = match(r"[0-9]","aaaalaaaa2aaaa3",11)
RegexMatch("3")

You can extract the following info from a RegexMatch object:

¢ the entire substring matched: m.match
* the captured substrings as an array of strings: m.captures
* the offset at which the whole match begins: m.offset

» the offsets of the captured substrings as a vector: m.offsets

For when a capture doesn't match, instead of a substring, m.captures contains nothing in that position,
and m.offsets has a zero offset (recall that indices in Julia are 1-based, so a zero offset into a string is
invalid). Here is a pair of somewhat contrived examples:

julia> m = match(r"(a|b)(c)?(d)", "acd")
RegexMatch("acd", 1="a", 2="c", 3="d")

julia> m.match
"acd"

julia> m.captures
3-element Vector{Union{Nothing, SubString{String}}}:

a

C
NE

julia> m.offset
1

julia> m.offsets
3-element Vector{Int64}:
1

2

3

julia> m = match(r"(a|b)(c)?(d)", "ad")
RegexMatch("ad", 1="a", 2=nothing, 3="d")

julia> m.match
nad"




CHAPTER 7. STRINGS 60

julia> m.captures

3-element Vector{Union{Nothing, SubString{String}}}:
ngn

nothing
g

julia> m.offset
1

julia> m.offsets
3-element Vector{Int64}:
1

0

2

It is convenient to have captures returned as an array so that one can use destructuring syntax to bind
them to local variables. As a convenience, the RegexMatch object implements iterator methods that pass
through to the captures field, so you can destructure the match object directly:

julia> first, second, third = m; first

a

Captures can also be accessed by indexing the RegexMatch object with the number or name of the capture
group:

julia> m=match(r" (?<hour>\d+): (?<minute>\d+)","12:45")
RegexMatch("12:45", hour="12", minute="45")

julia> m[:minute]
wg5

julia> m[2]
wg5

Captures can be referenced in a substitution string when using replace by using \n to refer to the nth
capture group and prefixing the substitution string with s. Capture group 0 refers to the entire match
object. Named capture groups can be referenced in the substitution with \g<groupname>. For example:

julia> replace("first second", r"(\w+) (?<agroup>\w+)" => s"\g<agroup> \1")
"second first"

Numbered capture groups can also be referenced as \g<n> for disambiguation, as in:

‘julia> replace("a", r"." => s"\g<0>1")
g1

You can modify the behavior of regular expressions by some combination of the flags i, m, s, and x after
the closing double quote mark. These flags have the same meaning as they do in Perl, as explained in this
excerpt from the perlre manpage:


https://perldoc.perl.org/perlre#Modifiers
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i Do case-insensitive pattern matching.

If locale matching rules are in effect, the case map is taken
from the current locale for code points less than 255, and
from Unicode rules for larger code points. However, matches
that would cross the Unicode rules/non-Unicode rules boundary
(ords 255/256) will not succeed.

m  Treat string as multiple lines. That is, change "~" and "$"
from matching the start or end of the string to matching the
start or end of any line anywhere within the string.

s Treat string as single line. That is, change "." to match any
character whatsoever, even a newline, which normally it would
not match.

Used together, as r""ms, they let the "." match any character

whatsoever, while still allowing "~" and "$" to match,
respectively, just after and just before newlines within the
string.

x  Tells the regular expression parser to ignore most whitespace
that is neither backslashed nor within a character class. You
can use this to break up your regular expression into
(slightly) more readable parts. The '#' character is also
treated as a metacharacter introducing a comment, just as in
ordinary code.

For example, the following regex has all three flags turned on:

julia> r"a+.*b+.*?2d$"ism
r'a+.*b+.*?2d$"ims

julia> match(r"a+.*b+.*?d$"ism, "Goodbye,\nOh, angry,\nBad world\n")
RegexMatch("angry,\nBad world")

The r"..." literal is constructed without interpolation and unescaping (except for quotation mark " which
still has to be escaped). Here is an example showing the difference from standard string literals:

julia> x = 10
10

julia> r"$x"
e

julia> "$x"
n1gn

julia> r"\x"
RN

julia> "\x"
ERROR: syntax: invalid escape sequence
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Triple-quoted regex strings, of the form r""" ... """, are also supported (and may be convenient for regular
expressions containing quotation marks or newlines).

The Regex () constructor may be used to create a valid regex string programmatically. This permits using
the contents of string variables and other string operations when constructing the regex string. Any of the
regex codes above can be used within the single string argument to Regex (). Here are some examples:

julia> using Dates

julia> d = Date(1962,7,10)
1962-07-10

julia> regex d = Regex("Day " * string(day(d)))
r'Day 10"

julia> match(regex d, "It happened on Day 10")
RegexMatch("Day 10")

julia> name = "Jon"
"Jon"
julia> regex name = Regex("[\"( ]\\Q$name\\E[\") 1") # interpolate value of name

r'[\"( 1\QJon\E[\") 1"

julia> match(regex name, " Jon ")
RegexMatch(" Jon ")

julia> match(regex name, "[Jon]") === nothing
true

Note the use of the \Q...\E escape sequence. All characters between the \Q and the \E are interpreted
as literal characters. This is convenient for matching characters that would otherwise be regex metachar-
acters. However, caution is needed when using this feature together with string interpolation, since the
interpolated string might itself contain the \E sequence, unexpectedly terminating literal matching. User
inputs need to be sanitized before inclusion in a regex.

7.10 Byte Array Literals

Another useful non-standard string literal is the byte-array string literal: b"...". This form lets you use
string notation to express read only literal byte arrays - i.e. arrays of UInt8 values. The type of those
objects is CodeUnits{UInt8, String}. The rules for byte array literals are the following:

¢ ASCII characters and ASCII escapes produce a single byte.

¢ \x and octal escape sequences produce the byte corresponding to the escape value.

* Unicode escape sequences produce a sequence of bytes encoding that code point in UTF-8.
There is some overlap between these rules since the behavior of \x and octal escapes less than 0x80 (128)
are covered by both of the first two rules, but here these rules agree. Together, these rules allow one to

easily use ASCII characters, arbitrary byte values, and UTF-8 sequences to produce arrays of bytes. Here
is an example using all three:
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julia> b"DATA\xff\u2200"

8-element Base.CodeUnits{UInt8, String}:
0x44

0x41

0x54

0x41

Oxff

Oxe2

0x88

0x80

The ASCII string "DATA" corresponds to the bytes 68, 65, 84, 65. \xff produces the single byte 255. The
Unicode escape \u2200 is encoded in UTF-8 as the three bytes 226, 136, 128. Note that the resulting byte
array does not correspond to a valid UTF-8 string:

julia> isvalid("DATA\xff\u2200")
false

As it was mentioned CodeUnits{UInt8, String} type behaves like read only array of UInt8 and if you
need a standard vector you can convert it using Vector{UInt8}:

julia> x = b"123"

3-element Base.CodeUnits{UInt8, String}:
0x31

0x32

0x33

julia> x[1]
0x31

julia> x[1] = 0x32
ERROR: CanonicalIndexError: setindex! not defined for Base.CodeUnits{UInt8, String}
[...]

julia> Vector{UInt8}(x)
3-element Vector{UInt8}:
0x31
0x32
0x33

Also observe the significant distinction between \xff and \uff: the former escape sequence encodes the
byte 255, whereas the latter escape sequence represents the code point 255, which is encoded as two
bytes in UTF-8:

julia> b"\xff"
1-element Base.CodeUnits{UInt8, String}:
Oxff

julia> b"\uff"

2-element Base.CodeUnits{UInt8, String}:
0xc3

Oxbf
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Character literals use the same behavior.

For code points less than \u80, it happens that the UTF-8 encoding of each code point is just the single
byte produced by the corresponding \x escape, so the distinction can safely be ignored. For the escapes
\x80 through \xff as compared to \u80 through \uff, however, there is a major difference: the former
escapes all encode single bytes, which - unless followed by very specific continuation bytes - do not form
valid UTF-8 data, whereas the latter escapes all represent Unicode code points with two-byte encodings.

If this is all extremely confusing, try reading "The Absolute Minimum Every Software Developer Absolutely,
Positively Must Know About Unicode and Character Sets". It's an excellent introduction to Unicode and
UTF-8, and may help alleviate some confusion regarding the matter.

7.11 Version Number Literals

Version numbers can easily be expressed with non-standard string literals of the form v"...". Version
number literals create VersionNumber objects which follow the specifications of semantic versioning, and
therefore are composed of major, minor and patch numeric values, followed by pre-release and build alpha-
numeric annotations. For example, v"0.2.1-rcl+win64" is broken into major version 0, minor version
2, patch version 1, pre-release rcl and build win64. When entering a version literal, everything except
the major version number is optional, therefore e.g. v"0.2" is equivalent to v"0.2.0" (with empty pre-
release/build annotations), v"2" is equivalentto v"2.0.0", and so on.

VersionNumber objects are mostly useful to easily and correctly compare two (or more) versions. For
example, the constant VERSION holds Julia version number as a VersionNumber object, and therefore one
can define some version-specific behavior using simple statements as:

if v"0.2" <= VERSION < v"0.3-"
# do something specific to 0.2 release series
end

Note that in the above example the non-standard version number v"0.3-" is used, with a trailing -: this
notation is a Julia extension of the standard, and it's used to indicate a version which is lower than any 0.3
release, including all of its pre-releases. So in the above example the code would only run with stable 0.2
versions, and exclude such versions as v"0.3.0-rcl". In order to also allow for unstable (i.e. pre-release)
0.2 versions, the lower bound check should be modified like this: v"0.2-" <= VERSION.

Another non-standard version specification extension allows one to use a trailing + to express an upper
limit on build versions, e.g. VERSION > v"0.2-rcl+" can be used to mean any version above 0.2-rcl and
any of its builds: it will return false for version v"0.2-rcl+win64" and true for v"'0.2-rc2".

It is good practice to use such special versions in comparisons (particularly, the trailing - should always
be used on upper bounds unless there's a good reason not to), but they must not be used as the actual
version number of anything, as they are invalid in the semantic versioning scheme.

Besides being used for the VERSION constant, VersionNumber objects are widely used in the Pkg module,
to specify packages versions and their dependencies.

7.12 Raw String Literals

Raw strings without interpolation or unescaping can be expressed with non-standard string literals of the
form raw"...". Raw string literals create ordinary String objects which contain the enclosed contents


https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://semver.org/
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exactly as entered with no interpolation or unescaping. This is useful for strings which contain code or
markup in other languages which use $ or \ as special characters.

The exception is that quotation marks still must be escaped, e.g. raw"\"" is equivalent to "\"". To make
it possible to express all strings, backslashes then also must be escaped, but only when appearing right
before a quote character:

julia> println(raw"\\ \\\"")
A

Notice that the first two backslashes appear verbatim in the output, since they do not precede a quote char-
acter. However, the next backslash character escapes the backslash that follows it, and the last backslash
escapes a quote, since these backslashes appear before a quote.



Chapter 8

Functions

In Julia, a function is an object that maps a tuple of argument values to a return value. Julia functions
are not pure mathematical functions, because they can alter and be affected by the global state of the
program. The basic syntax for defining functions in Julia is:

julia> function f(x,y)
X +y
end
f (generic function with 1 method)

This function accepts two arguments x and y and returns the value of the last expression evaluated, which
isXx + y.

There is a second, more terse syntax for defining a function in Julia. The traditional function declaration
syntax demonstrated above is equivalent to the following compact "assignment form":

julia> f(x,y) = x + vy
f (generic function with 1 method)

In the assignment form, the body of the function must be a single expression, although it can be a compound
expression (see Compound Expressions). Short, simple function definitions are common in Julia. The short
function syntax is accordingly quite idiomatic, considerably reducing both typing and visual noise.

A function is called using the traditional parenthesis syntax:

julia> f(2,3)
5

Without parentheses, the expression f refers to the function object, and can be passed around like any
other value:

julia> g = f;

julia> g(2,3)
5

66
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As with variables, Unicode can also be used for function names:

julia> y(x,y) = x +y
Y (generic function with 1 method)

julia> y(2, 3)
5

8.1 Argument Passing Behavior

Julia function arguments follow a convention sometimes called "pass-by-sharing", which means that values
are not copied when they are passed to functions. Function arguments themselves act as new variable bind-
ings (new "names" that can refer to values), much like assignments argument name = argument value,
so that the objects they refer to are identical to the passed values. Modifications to mutable values (such
as Arrays) made within a function will be visible to the caller. (This is the same behavior found in Scheme,
most Lisps, Python, Ruby and Perl, among other dynamic languages.)

For example, in the function

function f(x, y)
x[1] = 42 # mutates x
y=7+y # new binding for y, no mutation
return y

end

The statement x[1] = 42 mutates the object x, and hence this change will be visible in the array passed by
the caller for this argument. On the other hand, the assignmenty = 7 + y changes the binding ("name")
y to refer to a new value 7 + vy, rather than mutating the original object referred to by y, and hence does
not change the corresponding argument passed by the caller. This can be seen if we call f(x, y):

julia> a = [4,5,6]
3-element Vector{Int64}:
4

5

6

julia> b = 3
3

julia> f(a, b) # returns 7 + b == 10
10

julia> a # a[l] is changed to 42 by f
3-element Vector{Int64}:

42

5

6

julia> b # not changed
3
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As a common convention in Julia (not a syntactic requirement), such a function would typically be named
fl(x, y) rather than f(x, y), as a visual reminder at the call site that at least one of the arguments
(often the first one) is being mutated.

Shared memory between arguments

The behavior of a mutating function can be unexpected when a mutated argument shares
memory with another argument, a situation known as aliasing (e.g. when one is a view of the
other). Unless the function docstring explicitly indicates that aliasing produces the expected
result, it is the responsibility of the caller to ensure proper behavior on such inputs.

8.2 Argument-type declarations

You can declare the types of function arguments by appending : : TypeName to the argument name, as usual
for Type Declarations in Julia. For example, the following function computes Fibonacci numbers recursively:

‘fib(n::Integer) =n =<2 ? one(n) : fib(n-1) + fib(n-2)

and the ::Integer specification means that it will only be callable when n is a subtype of the abstract
Integer type.

Argument-type declarations normally have no impact on performance: regardless of what argument
types (if any) are declared, Julia compiles a specialized version of the function for the actual argument types
passed by the caller. For example, calling fib(1) will trigger the compilation of specialized version of fib
optimized specifically for Int arguments, which is then re-used if fib(7) or fib(15) are called. (There are
rare exceptions when an argument-type declaration can trigger additional compiler specializations; see:
Be aware of when Julia avoids specializing.) The most common reasons to declare argument types in Julia
are, instead:

* Dispatch: As explained in Methods, you can have different versions ("methods") of a function for
different argument types, in which case the argument types are used to determine which imple-
mentation is called for which arguments. For example, you might implement a completely different
algorithm fib(x: :Number) = ... thatworks forany Number type by using Binet's formula to extend
it to non-integer values.

* Correctness: Type declarations can be useful if your function only returns correct results for certain
argument types. For example, if we omitted argument types and wrote fib(n) = n = 2 ? one(n)
: fib(n-1) + fib(n-2), then fib(1.5) would silently give us the nonsensical answer 1.0.

» Clarity: Type declarations can serve as a form of documentation about the expected arguments.

However, it is a common mistake to overly restrict the argument types, which can unnecessarily
limit the applicability of the function and prevent it from being re-used in circumstances you did not antic-
ipate. For example, the fib(n::Integer) function above works equally well for Int arguments (machine
integers) and BigInt arbitrary-precision integers (see BigFloats and Bigints), which is especially useful be-
cause Fibonacci numbers grow exponentially rapidly and will quickly overflow any fixed-precision type like
Int (see Overflow behavior). If we had declared our function as fib(n::Int), however, the application
to BigInt would have been prevented for no reason. In general, you should use the most general appli-
cable abstract types for arguments, and when in doubt, omit the argument types. You can always
add argument-type specifications later if they become necessary, and you don't sacrifice performance or
functionality by omitting them.


https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Fibonacci_number#Binet%27s_formula
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8.3 The return Keyword

The value returned by a function is the value of the last expression evaluated, which, by default, is the last
expression in the body of the function definition. In the example function, f, from the previous section this
is the value of the expression x + y. As an alternative, as in many other languages, the return keyword
causes a function to return immediately, providing an expression whose value is returned:

function g(x,y)
return x * y
X +y

end

Since function definitions can be entered into interactive sessions, it is easy to compare these definitions:

julia> f(x,y) = x + vy
f (generic function with 1 method)

julia> function g(x,y)
return x * vy
X +y
end
g (generic function with 1 method)

julia> f(2,3)
5

julia> g(2,3)
6

Of course, in a purely linear function body like g, the usage of return is pointless since the expression
X + Yy is never evaluated and we could simply make x * y the last expression in the function and omit
the return. In conjunction with other control flow, however, return is of real use. Here, for example, is
a function that computes the hypotenuse length of a right triangle with sides of length x and y, avoiding
overflow:

julia> function hypot(x,y)

X = abs(x)
y = abs(y)
if x >y
r=y/x
return x*sqrt(l+r*r)
end
if y ==
return zero(x)
end
r=x/y

return y*sqrt(l+r*r)
end
hypot (generic function with 1 method)

julia> hypot(3, 4)
5.0
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There are three possible points of return from this function, returning the values of three different expres-
sions, depending on the values of x and y. The return on the last line could be omitted since it is the last
expression.

Return type

A return type can be specified in the function declaration using the :: operator. This converts the return
value to the specified type.

julia> function g(x, y)::Int8
return x * y
end;

julia> typeof(g(1l, 2))
Int8

This function will always return an Int8 regardless of the types of x and y. See Type Declarations for more
on return types.

Return type declarations are rarely used in Julia: in general, you should instead write "type-stable" func-
tions in which Julia's compiler can automatically infer the return type. For more information, see the Per-
formance Tips chapter.

Returning nothing

For functions that do not need to return a value (functions used only for some side effects), the Julia
convention is to return the value nothing:

function printx(x)
println("x = $x")
return nothing
end

This is a convention in the sense that nothing is not a Julia keyword but only a singleton object of type
Nothing. Also, you may notice that the printx function example above is contrived, because println
already returns nothing, so that the return line is redundant.

There are two possible shortened forms for the return nothing expression. On the one hand, the return
keyword implicitly returns nothing, so it can be used alone. On the other hand, since functions implicitly
return their last expression evaluated, nothing can be used alone when it's the last expression. The
preference for the expression return nothing as opposed to return or nothing alone is a matter of
coding style.

8.4 Operators Are Functions

In Julia, most operators are just functions with support for special syntax. (The exceptions are operators
with special evaluation semantics like & and | |. These operators cannot be functions since Short-Circuit
Evaluation requires that their operands are not evaluated before evaluation of the operator.) Accordingly,
you can also apply them using parenthesized argument lists, just as you would any other function:
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julia> 1 + 2 + 3
6

julia> +(1,2,3)
6

The infix form is exactly equivalent to the function application form - in fact the former is parsed to produce
the function call internally. This also means that you can assign and pass around operators such as + and
* just like you would with other function values:

julia> f = +;

julia> f(1,2,3)
6

Under the name f, the function does not support infix notation, however.

8.5 Operators With Special Names

A few special expressions correspond to calls to functions with non-obvious names. These are:

Expression Calls

[ABC...] hcat

[A; B; C; ...] vcat

[AB; CD; ...] hvcat

[A; B;; C; D;; ...] | hvncat

A' adjoint

Ali] getindex

A[i] = x setindex!

A.n getproperty

A.n = X setproperty!
Note that expressions similar to [A; B;; C; D;; ...] but with more than two consecutive ; also corre-

spond to hvncat calls.

8.6 Anonymous Functions

Functions in Julia are first-class objects: they can be assigned to variables, and called using the standard
function call syntax from the variable they have been assigned to. They can be used as arguments, and
they can be returned as values. They can also be created anonymously, without being given a name, using
either of these syntaxes:

julia> x -> x™2 + 2x - 1
#1 (generic function with 1 method)

julia> function (x)
X2 + 2x - 1
end
#3 (generic function with 1 method)



https://en.wikipedia.org/wiki/First-class_citizen
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This creates a function taking one argument x and returning the value of the polynomial x*2 + 2x - 1
at that value. Notice that the result is a generic function, but with a compiler-generated name based on
consecutive numbering.

The primary use for anonymous functions is passing them to functions which take other functions as ar-
guments. A classic example is map, which applies a function to each value of an array and returns a new
array containing the resulting values:

julia> map(round, [1.2, 3.5, 1.7])
3-element Vector{Float64}:

1.0

4.0

2.0

This is fine if a named function effecting the transform already exists to pass as the first argument to
map. Often, however, a ready-to-use, named function does not exist. In these situations, the anonymous
function construct allows easy creation of a single-use function object without needing a name:

julia> map(x -> x*2 + 2x - 1, [1, 3, -1])
3-element Vector{Int64}:

2

14

-2

An anonymous function accepting multiple arguments can be written using the syntax (x,y, z) ->2x+y-z.
A zero-argument anonymous function is written as () ->3. The idea of a function with no arguments may
seem strange, but is useful for "delaying" a computation. In this usage, a block of code is wrapped in a
zero-argument function, which is later invoked by calling it as f.

As an example, consider this call to get:

get(dict, key) do
# default value calculated here
time()

end

The code above is equivalent to calling get with an anonymous function containing the code enclosed
between do and end, like so:

get(()->time(), dict, key)

The call to time is delayed by wrapping it in a 0-argument anonymous function that is called only if the
requested key is absent from dict.
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8.7 Tuples

Julia has a built-in data structure called a tuple that is closely related to function arguments and return
values. Atupleis a fixed-length container that can hold any values, but cannot be modified (it is immutable).
Tuples are constructed with commas and parentheses, and can be accessed via indexing:

julia> (1, 1+1)
(1, 2)

julia> (1,)
(1,)

julia> x = (0.0, "hello", 6*7)
(0.0, "hello", 42)

julia> x[2]
"hello"

Notice that a length-1 tuple must be written with a comma, (1,), since (1) would just be a parenthesized
value. () represents the empty (length-0) tuple.

8.8 Named Tuples

The components of tuples can optionally be named, in which case a named tuple is constructed:

julia> x = (a=2, b=1+2)
(a =2, b=23)

julia> x[1]
2

julia> x.a
2

The fields of named tuples can be accessed by name using dot syntax (x.a) in addition to the regular
indexing syntax (x[1] or x[:al).

8.9 Destructuring Assignment and Multiple Return Values

A comma-separated list of variables (optionally wrapped in parentheses) can appear on the left side of an
assignment: the value on the right side is destructured by iterating over and assigning to each variable in
turn:

julia> (a,b,c) = 1:3
1:3

julia> b
2
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The value on the right should be an iterator (see Iteration interface) at least as long as the number of
variables on the left (any excess elements of the iterator are ignored).

This can be used to return multiple values from functions by returning a tuple or other iterable value. For
example, the following function returns two values:

julia> function foo(a,b)
a+b, a*b
end
foo (generic function with 1 method)

If you call it in an interactive session without assigning the return value anywhere, you will see the tuple
returned:

julia> foo(2,3)
(5, 6)

Destructuring assignment extracts each value into a variable:

julia> x, y = foo(2,3)
(5, 6)

julia> x
5

julia> y
6

Another common use is for swapping variables:

julia> y, x = X, y
(5, 6)

julia> x
6

julia> y
5

If only a subset of the elements of the iterator are required, a common convention is to assign ignored
elements to a variable consisting of only underscores (which is an otherwise invalid variable name, see
Allowed Variable Names):

julia> , , , d=1:10
1:10

julia> d
4
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Other valid left-hand side expressions can be used as elements of the assignment list, which will call

setindex! or setproperty!, or recursively destructure individual elements of the iterator:

julia> X = zeros(3);

julia> X[11, (a,b) = (1, (2, 3))
(1, (2, 3))

julia> X
3-element Vector{Float64}:
1.0

0.0

0.0

julia> a
2

julia> b
3

Julia 1.6

. with assignment requires Julia 1.6

If the last symbol in the assignment list is suffixed by ... (known as slurping), then it will be assigned a

collection or lazy iterator of the remaining elements of the right-hand side iterator:

julia> a, b... = "hello"
"hello"

julia> a
'h': ASCII/Unicode U+0068 (category Ll: Letter, lowercase)

julia> b
"ello"

julia> a, b... = Iterators.map(abs2, 1:4)
Base.Generator{UnitRange{Int64}, typeof(abs2)}(abs2, 1:4)

julia> a
1

julia> b
Base.Iterators.Rest{Base.Generator{UnitRange{Int64}, typeof(abs2)},
< Int64}(Base.Generator{UnitRange{Int64}, typeof(abs2)}(abs2, 1:4), 1)

See Base. rest for details on the precise handling and customization for specific iterators.

Julia 1.9

. in non-final position of an assignment requires Julia 1.9
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Slurping in assignments can also occur in any other position. As opposed to slurping the end of a collection

however, this will always be eager.

This is implemented in terms of the function Base.split rest.

julia> a, b..., ¢ = 1:5
1:5
julia> a
1
julia> b
3-element Vector{Int64}:
2
3
4
julia> c
5
julia> front..., tail = "Hi!'"
Wi
julia> front
WHin
julia> tail
"1': ASCII/Unicode U+0021 (category Po: Punctuation,

Note that for variadic function definitions, slurping is still only allowed in final position. This does not apply

to single argument destructuring though, as that does not affect method dispatch:

julia> f(x..., y) = x

ERROR: syntax: invalid "..." on non-final argument
Stacktrace:

[...]

julia> f((x..., y)) = X

f (generic function with 1 method)

julia> f((1, 2, 3))
(1, 2)

8.10 Property destructuring

Instead of destructuring based on iteration, the right side of assignments can also be destructured using
property names. This follows the syntax for NamedTuples, and works by assigning to each variable on the

left a property of the right side of the assignment with the same name using getproperty:

julia> (; b, a) = (a=1, b=2, c=3)
(a=1, b=2, c =23)
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julia> a
1

julia> b
2

8.11 Argument destructuring

The destructuring feature can also be used within a function argument. If a function argument name is
written as a tuple (e.g. (x, y)) instead of just a symbol, then an assignment (x, y) = argument will be
inserted for you:

julia> minmax(x, y) = (y < x) ? (y, x) : (x, y)
julia> gap((min, max)) = max - min

julia> gap(minmax(10, 2))
8

Notice the extra set of parentheses in the definition of gap. Without those, gap would be a two-argument
function, and this example would not work.

Similarly, property destructuring can also be used for function arguments:

julia> foo((; X, y)) = x +y
foo (generic function with 1 method)

julia> foo((x=1, y=2))
3

julia> struct A
X

y
end

julia> foo(A(3, 4))
7

For anonymous functions, destructuring a single argument requires an extra comma:

julia> map(((x,y),) -> x +vy, [(1,2), (3,4)])
2-element Array{Int64,1}:

3

7

8.12 Varargs Functions

It is often convenient to be able to write functions taking an arbitrary number of arguments. Such functions
are traditionally known as "varargs" functions, which is short for "variable number of arguments". You can
define a varargs function by following the last positional argument with an ellipsis:
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julia> bar(a,b,x...) = (a,b,x)
bar (generic function with 1 method)

The variables a and b are bound to the first two argument values as usual, and the variable x is bound to
an iterable collection of the zero or more values passed to bar after its first two arguments:

julia> bar(1,2)
(1, 2, ()

julia> bar(1,2,3)
(1, 2, (3,))

julia> bar(1l, 2, 3, 4)
(1, 2, (3, 4))

julia> bar(1,2,3,4,5,6)
(1, 2, (3, 4, 5, 6))

In all these cases, x is bound to a tuple of the trailing values passed to bar.

It is possible to constrain the number of values passed as a variable argument; this will be discussed later
in Parametrically-constrained Varargs methods.

On the flip side, it is often handy to "splat" the values contained in an iterable collection into a function call
as individual arguments. To do this, one also uses ... but in the function call instead:

julia> x = (3, 4)
(3, 4)

julia> bar(1,2,x...)
(1, 2, (3, 4))

In this case a tuple of values is spliced into a varargs call precisely where the variable number of arguments
go. This need not be the case, however:

julia> x = (2, 3, 4)
(2, 3, 4)

julia> bar(1l,x...)

(1, 2, (3, 4))
julia> x = (1, 2, 3, 4)
(1, 2, 3, 4)

julia> bar(x...)
(1, 2, (3, 4))

Furthermore, the iterable object splatted into a function call need not be a tuple:
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julia> x = [3,4]
2-element Vector{Int64}:
3

4

julia> bar(1,2,x...)
(1, 2, (3, 4))

julia> x = [1,2,3,4]
4-element Vector{Int64}:
1

2
3
4
julia> bar(x...)
(1, 2, (3, 4))
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Also, the function that arguments are splatted into need not be a varargs function (although it often is):

julia> baz(a,b) = a + b;

julia> args = [1,2]
2-element Vector{Int64}:
1

2

julia> baz(args...)
3

julia> args = [1,2,3]
3-element Vector{Int64}:
1

2

3

julia> baz(args...)
ERROR: MethodError: no method matching baz(::Int64, ::Int64,

Closest candidates are:
baz(::Any, ::Any)
@ Main none:1

Stacktrace:

[...]

::Int64)

As you can see, if the wrong number of elements are in the splatted container, then the function call will

fail, just as it would if too many arguments were given explicitly.
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8.13 Optional Arguments

It is often possible to provide sensible default values for function arguments. This can save users from
having to pass every argument on every call. For example, the function Date(y, [m, d]) from Dates
module constructs a Date type for a given year y, month m and day d. However, m and d arguments are
optional and their default value is 1. This behavior can be expressed concisely as:

julia> using Dates

julia> function date(y::Int64, m::Int64=1, d::Int64=1)
err = Dates.validargs(Date, y, m, d)
err === nothing || throw(err)
return Date(Dates.UTD(Dates.totaldays(y, m, d)))
end
date (generic function with 3 methods)

Observe, that this definition calls another method of the Date function that takes one argument of type
UTInstant{Day}.

With this definition, the function can be called with either one, two or three arguments, and 1 is automati-
cally passed when only one or two of the arguments are specified:

julia> date(2000, 12, 12)
2000-12-12

julia> date(2000, 12)
2000-12-01

julia> date(2000)
2000-01-01

Optional arguments are actually just a convenient syntax for writing multiple method definitions with dif-
ferent numbers of arguments (see Note on Optional and keyword Arguments). This can be checked for our
date function example by calling the methods function:

julia> methods(date)

# 3 methods for generic function "date":

[1] date(y::Int64) in Main at REPL[1]:1

[2] date(y::Int64, m::Int64) in Main at REPL[1]:1

[3] date(y::Int64, m::Int64, d::Int64) in Main at REPL[1]:1

8.14 Keyword Arguments

Some functions need a large number of arguments, or have a large number of behaviors. Remembering
how to call such functions can be difficult. Keyword arguments can make these complex interfaces easier
to use and extend by allowing arguments to be identified by name instead of only by position.

For example, consider a function plot that plots a line. This function might have many options, for con-
trolling line style, width, color, and so on. If it accepts keyword arguments, a possible call might look like
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plot(x, y, width=2), where we have chosen to specify only line width. Notice that this serves two pur-
poses. The call is easier to read, since we can label an argument with its meaning. It also becomes possible
to pass any subset of a large number of arguments, in any order.

Functions with keyword arguments are defined using a semicolon in the signature:

function plot(x, y; style="solid", width=1, color="black")
fizizi
end

When the function is called, the semicolon is optional: one can eithercall plot(x, y, width=2) orplot(x,
y; width=2), but the former style is more common. An explicit semicolon is required only for passing
varargs or computed keywords as described below.

Keyword argument default values are evaluated only when necessary (when a corresponding keyword
argument is not passed), and in left-to-right order. Therefore default expressions may refer to prior keyword
arguments.

The types of keyword arguments can be made explicit as follows:

function f(;x::Int=1)
#Hit#
end

Keyword arguments can also be used in varargs functions:

function plot(x...; style="solid")
H#HH#H#H
end
Extra keyword arguments can be collected using .. ., as in varargs functions:

function f(x; y=0, kwargs...)
HHH
end

Inside f, kwargs will be an immutable key-value iterator over a named tuple. Named tuples (as well as
dictionaries with keys of Symbol, and other iterators yielding two-value collections with symbol as first
values) can be passed as keyword arguments using a semicolon in a call, e.g. f(x, z=1; kwargs...).

If a keyword argument is not assigned a default value in the method definition, then it is required: an
UndefKeywordError exception will be thrown if the caller does not assign it a value:

function f(x; y)
#Hit#
end
f(3, y=5) # ok, y is assigned
f(3) # throws UndefKeywordError(:y)
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One can also pass key => value expressions after a semicolon. For example, plot(x, y; :width => 2)
is equivalent to plot(x, y, width=2). This is useful in situations where the keyword name is computed
at runtime.

When a bare identifier or dot expression occurs after a semicolon, the keyword argument name is implied by
the identifier or field name. For example plot(x, y; width) is equivalent to plot(x, y; width=width)
and plot(x, y; options.width) is equivalent to plot(x, y; width=options.width).

The nature of keyword arguments makes it possible to specify the same argument more than once. For
example, in the call plot(x, y; options..., width=2) it is possible that the options structure also
contains a value for width. In such a case the rightmost occurrence takes precedence; in this example,
width is certain to have the value 2. However, explicitly specifying the same keyword argument multiple
times, for example plot(x, y, width=2, width=3), is not allowed and results in a syntax error.

8.15 Evaluation Scope of Default Values

When optional and keyword argument default expressions are evaluated, only previous arguments are in
scope. For example, given this definition:

function f(x, a=b, b=1)
Fiziad
end

the b in a=b refers to a b in an outer scope, not the subsequent argument b.

8.16 Do-Block Syntax for Function Arguments

Passing functions as arguments to other functions is a powerful technique, but the syntax for it is not always
convenient. Such calls are especially awkward to write when the function argument requires multiple lines.
As an example, consider calling map on a function with several cases:

map (x->begin

if x < 0 & iseven(x)
return 0

elseif x ==
return 1

else
return x

end

end,
[A, B, C])

Julia provides a reserved word do for rewriting this code more clearly:

map([A, B, C]) do x
if x < 0 && iseven(x)
return 0
elseif x ==
return 1
else
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return x
end
end

The do x syntax creates an anonymous function with argument x and passes it as the first argument to map.
Similarly, do a, b would create a two-argument anonymous function. Note that do (a,b) would create a
one-argument anonymous function, whose argument is a tuple to be deconstructed. A plain do would
declare that what follows is an anonymous function of the form () -> ....

How these arguments are initialized depends on the "outer" function; here, map will sequentially set x to A,
B, C, calling the anonymous function on each, just as would happen in the syntax map(func, [A, B, C]).

This syntax makes it easier to use functions to effectively extend the language, since calls look like normal
code blocks. There are many possible uses quite different from map, such as managing system state. For
example, there is a version of open that runs code ensuring that the opened file is eventually closed:

open("outfile", "w") do io
write(io, data)
end

This is accomplished by the following definition:

function open(f::Function, args...)
io = open(args...)
try
f(io)
finally
close(io)
end
end

Here, open first opens the file for writing and then passes the resulting output stream to the anonymous
function you defined in the do ... end block. After your function exits, open will make sure that the
stream is properly closed, regardless of whether your function exited normally or threw an exception. (The
try/finally construct will be described in Control Flow.)

With the do block syntax, it helps to check the documentation or implementation to know how the argu-
ments of the user function are initialized.

A do block, like any other inner function, can "capture" variables from its enclosing scope. For example,
the variable data in the above example of open. . .do is captured from the outer scope. Captured variables
can create performance challenges as discussed in performance tips.

8.17 Function composition and piping

Functions in Julia can be combined by composing or piping (chaining) them together.

Function composition is when you combine functions together and apply the resulting composition to ar-
guments. You use the function composition operator (o) to compose the functions, so (f o g)(args...)
is the same as f(g(args...)).

You can type the composition operator at the REPL and suitably-configured editors using \circ<tab>.

For example, the sqrt and + functions can be composed like this:
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julia> (sqrt o +)(3, 6)
3.0

This adds the numbers first, then finds the square root of the result.

The next example composes three functions and maps the result over an array of strings:

julia> map(first o reverse o uppercase, split("you can compose functions like this"))

6-element Vector{Char}:
'U': ASCII/Unicode U+0055
'N': ASCII/Unicode U+004E
'"E': ASCII/Unicode U+0045
'S': ASCII/Unicode U+0053
'"E': ASCII/Unicode U+0045
'S': ASCII/Unicode U+0053

category Lu: Letter, uppercase
category Lu: Letter, uppercase
category Lu: Letter, uppercase
category Lu: Letter, uppercase
category Lu: Letter, uppercase
category Lu: Letter, uppercase

)
)
)
)
)
)
Function chaining (sometimes called "piping" or "using a pipe" to send data to a subsequent function) is

when you apply a function to the previous function's output:

julia> 1:10 |> sum |> sqrt
7.416198487095663

Here, the total produced by sum is passed to the sqrt function. The equivalent composition would be:

julia> (sqrt o sum)(1:10)
7.416198487095663

The pipe operator can also be used with broadcasting, as .|>, to provide a useful combination of the
chaining/piping and dot vectorization syntax (described below).

julia> ["a", "list", "of", "strings"] .|> [uppercase, reverse, titlecase, length]
4-element Vector{Any}:

wpn

"tsil"

o
7

When combining pipes with anonymous functions, parentheses must be used if subsequent pipes are not
to be parsed as part of the anonymous function's body. Compare:

julia> 1:3 .|> (x -> x"2) |> sum |> sqrt
3.7416573867739413

julia> 1:3 .|> x -> x”2 |> sum |> sqrt
3-element Vector{Float64}:

1.0

2.0

3.0
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8.18 Dot Syntax for Vectorizing Functions

In technical-computing languages, it is common to have "vectorized" versions of functions, which simply
apply a given function f(x) to each element of an array A to yield a new array via f(A). This kind of
syntax is convenient for data processing, but in other languages vectorization is also often required for
performance: if loops are slow, the "vectorized" version of a function can call fast library code written in a
low-level language. In Julia, vectorized functions are not required for performance, and indeed it is often
beneficial to write your own loops (see Performance Tips), but they can still be convenient. Therefore, any
Julia function f can be applied elementwise to any array (or other collection) with the syntax f. (A). For
example, sin can be applied to all elements in the vector A like so:

julia> A = [1.0, 2.0, 3.0]
3-element Vector{Float64}:
1.0

2.0

3.0

julia> sin. (A)

3-element Vector{Float64}:
0.8414709848078965
0.9092974268256817
0.1411200080598672

Of course, you can omit the dot if you write a specialized "vector" method of f, e.g. via f(A: :AbstractArray)
= map(f, A), and this is just as efficient as f. (A). The advantage of the f. (A) syntax is that which func-
tions are vectorizable need not be decided upon in advance by the library writer.

More generally, f.(args...) is actually equivalent to broadcast(f, args...), which allows you to op-
erate on multiple arrays (even of different shapes), or a mix of arrays and scalars (see Broadcasting). For
example, if you have f(x,y) = 3x + 4y, then f. (pi,A) will return a new array consisting of f(pi,a) for
eachainA, and f. (vectorl,vector2) will return a new vector consisting of f(vectorl[i],vector2[i])
for each index i (throwing an exception if the vectors have different length).

julia> f(x,y) = 3x + 4y;
julia> A = [1.0, 2.0, 3.0];
julia> B = [4.0, 5.0, 6.0];

julia> f.(pi, A)
3-element Vector{Float64}:
13.42477796076938
17.42477796076938
21.42477796076938

julia> f. (A, B)
3-element Vector{Float64}:
19.0

26.0

33.0
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Keyword arguments are not broadcasted over, but are simply passed through to each call of the function.
For example, round. (x, digits=3) is equivalent to broadcast(x -> round(x, digits=3), x).

Moreover, nested f. (args...) calls are fused into a single broadcast loop. For example, sin. (cos. (X))
is equivalent to broadcast(x -> sin(cos(x)), X), similarto [sin(cos(x)) for x in X]: there is only
asingle loop over X, and a single array is allocated for the result. [In contrast, sin(cos (X)) in atypical "vec-
torized" language would first allocate one temporary array for tmp=cos (X), and then compute sin(tmp) in
a separate loop, allocating a second array.] This loop fusion is not a compiler optimization that may or may
not occur, it is a syntactic guarantee whenever nested f. (args...) calls are encountered. Technically,
the fusion stops as soon as a "non-dot" function call is encountered; for example, in sin. (sort(cos. (X)))
the sin and cos loops cannot be merged because of the intervening sort function.

Finally, the maximum efficiency is typically achieved when the output array of a vectorized operation is
pre-allocated, so that repeated calls do not allocate new arrays over and over again for the results (see Pre-
allocating outputs). A convenient syntax forthisisX .= ..., whichisequivalenttobroadcast! (identity,
X, ...) except that, as above, the broadcast! loop is fused with any nested "dot" calls. For example, X
.= sin. (Y) is equivalentto broadcast! (sin, X, Y), overwriting X with sin. (Y) in-place. If the left-hand
side is an array-indexing expression, e.g. X[begin+l:end] .= sin.(Y), then it translates to broadcast!
on a view, e.g. broadcast!(sin, view(X, firstindex(X)+1l:lastindex(X)), Y), so that the left-hand
side is updated in-place.

Since adding dots to many operations and function calls in an expression can be tedious and lead to code
that is difficult to read, the macro @. is provided to convert every function call, operation, and assignment
in an expression into the "dotted" version.

julia> Y = [1.0, 2.0, 3.0, 4.0];
julia> X = similar(Y); # pre-allocate output array

julia> @ X = sin(cos(Y)) # equivalent to X .= sin.(cos.(Y))
4-element Vector{Float64}:
0.5143952585235492
-0.4042391538522658
-0.8360218615377305
-0.6080830096407656

Binary (or unary) operators like .+ are handled with the same mechanism: they are equivalent to broadcast
calls and are fused with other nested "dot" calls. X .+= Y etceterais equivalenttoX .= X .+ Y and results
in a fused in-place assignment; see also dot operators.

You can also combine dot operations with function chaining using |>, as in this example:

julia> 1:5 .|> [x->x"2, inv, x->2*x, -, isodd]
5-element Vector{Real}:

1

0.5

6

-4
true
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8.19 Further Reading

We should mention here that this is far from a complete picture of defining functions. Julia has a sophis-
ticated type system and allows multiple dispatch on argument types. None of the examples given here
provide any type annotations on their arguments, meaning that they are applicable to all types of argu-
ments. The type system is described in Types and defining a function in terms of methods chosen by
multiple dispatch on run-time argument types is described in Methods.
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Control Flow

Julia provides a variety of control flow constructs:

e Compound Expressions: begin and ;.

* Conditional Evaluation: if-elseif-else and ?: (ternary operator).

» Short-Circuit Evaluation: logical operators && (“and”) and | | (“or”), and also chained comparisons.

* Repeated Evaluation: Loops: while and for.

e Exception Handling: try-catch, error and throw.

¢ Tasks (aka Coroutines): yieldto.
The first five control flow mechanisms are standard to high-level programming languages. Tasks are not so
standard: they provide non-local control flow, making it possible to switch between temporarily-suspended
computations. This is a powerful construct: both exception handling and cooperative multitasking are

implemented in Julia using tasks. Everyday programming requires no direct usage of tasks, but certain
problems can be solved much more easily by using tasks.

9.1 Compound Expressions

Sometimes it is convenient to have a single expression which evaluates several subexpressions in order,
returning the value of the last subexpression as its value. There are two Julia constructs that accomplish
this: begin blocks and ; chains. The value of both compound expression constructs is that of the last
subexpression. Here's an example of a begin block:

julia> z = begin

X =1
y =2
X +y

end

Since these are fairly small, simple expressions, they could easily be placed onto a single line, which is
where the ; chain syntax comes in handy:

88
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julia> z = (x = 1; y = 2; x +Y)
3

This syntax is particularly useful with the terse single-line function definition form introduced in Functions.
Although it is typical, there is no requirement that begin blocks be multiline or that ; chains be single-line:

julia> begin x = 1; y = 2; x + y end
3

julia> (x 1;
y =2
X +Y)

9.2 Conditional Evaluation

Conditional evaluation allows portions of code to be evaluated or not evaluated depending on the value of
a boolean expression. Here is the anatomy of the if-elseif-else conditional syntax:

if x <y

println("x is less than y")
elseif x >y

println("x is greater than y")
else

println("x is equal to y")
end

If the condition expression x < vy is true, then the corresponding block is evaluated; otherwise the con-
dition expression x > y is evaluated, and if it is true, the corresponding block is evaluated; if neither
expression is true, the else block is evaluated. Here it is in action:

julia> function test(x, y)
if x <y
println("x is less than y")
elseif x >y
println("x is greater than y")
else
println("x is equal to y")
end
end
test (generic function with 1 method)

julia> test(1l, 2)
x is less than y

julia> test(2, 1)
X 1s greater than y

julia> test(1l, 1)
x is equal to y
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The elseif and else blocks are optional, and as many elseif blocks as desired can be used. The condition
expressions in the if-elseif-else construct are evaluated until the first one evaluates to true, after which
the associated block is evaluated, and no further condition expressions or blocks are evaluated.

if blocks are "leaky", i.e. they do not introduce a local scope. This means that new variables defined
inside the if clauses can be used after the if block, even if they weren't defined before. So, we could
have defined the test function above as

julia> function test(x,y)
if x <y
relation = "less than"
elseif x ==y
relation = "equal to"
else
relation = "greater than"
end
println("x is ", relation, " y.")
end
test (generic function with 1 method)
julia> test(2, 1)
X 1s greater than vy.

The variable relation is declared inside the if block, but used outside. However, when depending on this
behavior, make sure all possible code paths define a value for the variable. The following change to the
above function results in a runtime error

julia> function test(x,y)

if x <y
relation = "less than"
elseif x ==y
relation = "equal to"
end
println("x is ", relation, " y.")
end

test (generic function with 1 method)

julia> test(1,2)
x is less than y.

julia> test(2,1)
ERROR: UndefVarError: “relation’ not defined
Stacktrace:

[1] test(::Int64, ::Int64) at ./none:7

if blocks also return a value, which may seem unintuitive to users coming from many other languages.
This value is simply the return value of the last executed statement in the branch that was chosen, so

julia> x = 3
3
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julia> if x > 0

"positive!"
else
"negative..."
end
"positive!"

Note that very short conditional statements (one-liners) are frequently expressed using Short-Circuit Eval-
uation in Julia, as outlined in the next section.

Unlike C, MATLAB, Perl, Python, and Ruby - but like Java, and a few other stricter, typed languages - it is
an error if the value of a conditional expression is anything but true or false:

julia> if 1
println("true")
end
ERROR: TypeError: non-boolean (Int64) used in boolean context

This error indicates that the conditional was of the wrong type: Int64 rather than the required Bool.

The so-called "ternary operator", ?:, is closely related to the if-elseif-else syntax, but is used where
a conditional choice between single expression values is required, as opposed to conditional execution
of longer blocks of code. It gets its name from being the only operator in most languages taking three
operands:

a’?b:c

The expression a, before the ?, is a condition expression, and the ternary operation evaluates the expression
b, before the :, if the condition a is true or the expression c, after the :, if it is false. Note that the spaces
around ? and : are mandatory: an expression like a?b: c is not a valid ternary expression (but a newline is
acceptable after both the ? and the :).

The easiest way to understand this behavior is to see an example. In the previous example, the println
call is shared by all three branches: the only real choice is which literal string to print. This could be written
more concisely using the ternary operator. For the sake of clarity, let's try a two-way version first:

julia> x = 1; y = 2;

julia> println(x <y ? "less than" : "not less than")
less than

julia> x = 1; y = 0;

julia> println(x <y ? "less than" : "not less than")
not less than

If the expression x < vy is true, the entire ternary operator expression evaluates to the string "less than"
and otherwise it evaluates to the string "not less than". The original three-way example requires chain-
ing multiple uses of the ternary operator together:
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julia> test(x, y) = println(x <y ? "x is less than y"
X >y ? "x is greater than y" : "x is equal to y")
test (generic function with 1 method)

julia> test(1l, 2)
x is less than y

julia> test(2, 1)
x is greater than y

julia> test(1, 1)
x is equal to y

To facilitate chaining, the operator associates from right to left.

It is significant that like if-elseif-else, the expressions before and after the : are only evaluated if the
condition expression evaluates to true or false, respectively:

julia> v(x) = (println(x); x)
v (generic function with 1 method)

julia> 1 < 2 ? v("yes") : v("no")
yes

yes

julia> 1 > 2 ? v("yes") : v("no")
no

no

9.3 Short-Circuit Evaluation

The && and || operators in Julia correspond to logical “and” and “or” operations, respectively, and are
typically used for this purpose. However, they have an additional property of short-circuit evaluation: they
don't necessarily evaluate their second argument, as explained below. (There are also bitwise & and |
operators that can be used as logical “and” and “or” without short-circuit behavior, but beware that & and
| have higher precedence than && and | | for evaluation order.)

Short-circuit evaluation is quite similar to conditional evaluation. The behavior is found in most imperative
programming languages having the && and | | boolean operators: in a series of boolean expressions con-
nected by these operators, only the minimum number of expressions are evaluated as are necessary to
determine the final boolean value of the entire chain. Some languages (like Python) refer to them as and
(&&) and or (| |). Explicitly, this means that:

* In the expression a && b, the subexpression b is only evaluated if a evaluates to true.
* In the expression a || b, the subexpression b is only evaluated if a evaluates to false.
The reasoning is that a && b must be false if a is false, regardless of the value of b, and likewise, the

value of a || b must be true if a is true, regardless of the value of b. Both && and || associate to the
right, but && has higher precedence than | | does. It's easy to experiment with this behavior:
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julia> t(x) = (println(x); true)
t (generic function with 1 method)

julia> f(x) = (println(x); false)
f (generic function with 1 method)

julia> t(1) && t(2)
1

2

true

julia> t(1) && f(2)
1

2

false

julia> (1) & t(2)
1
false

julia> f(1) && f(2)
1
false

julia> t(1) || t(2)
1
true

julia> t(1) || f(2)
1
true

julia> f(1) || t(2)
1

2

true

julia> f(1) || f(2)
1

2

false

You can easily experiment in the same way with the associativity and precedence of various combinations
of & and | | operators.

This behavior is frequently used in Julia to form an alternative to very short if statements. Instead of
if <cond> <statement> end, one can write <cond> && <statement> (which could be read as: <cond>
and then <statement>). Similarly, instead of if ! <cond> <statement> end, one can write <cond> | |
<statement> (which could be read as: <cond> or else <statement>).

For example, a recursive factorial routine could be defined like this:

julia> function fact(n::Int)
n>=0 || error("n must be non-negative")
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n==0 & return 1
n * fact(n-1)
end
fact (generic function with 1 method)

julia> fact(5)
120

julia> fact(0)
1

julia> fact(-1)
ERROR: n must be non-negative
Stacktrace:
[1] error at ./error.jl:33 [inlined]
[2] fact(::Int64) at ./none:2
[3] top-level scope

Boolean operations without short-circuit evaluation can be done with the bitwise boolean operators intro-
duced in Mathematical Operations and Elementary Functions: & and |. These are normal functions, which
happen to support infix operator syntax, but always evaluate their arguments:

julia> f(1) & t(2)
1

2

false

julia> t(1) | t(2)
1

2

true

Just like condition expressions used in if, elseif or the ternary operator, the operands of && or | | must
be boolean values (true or false). Using a non-boolean value anywhere except for the last entry in a
conditional chain is an error:

julia> 1 && true
ERROR: TypeError: non-boolean (Int64) used in boolean context

On the other hand, any type of expression can be used at the end of a conditional chain. It will be evaluated
and returned depending on the preceding conditionals:

julia> true && (x = (1, 2, 3))
(1, 2, 3)

julia> false && (x = (1, 2, 3))
false
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9.4 Repeated Evaluation: Loops

There are two constructs for repeated evaluation of expressions: the while loop and the for loop. Here is
an example of a while loop:

julia> i = 1;

julia> while i <= 3
println(i)
global i += 1
end

The while loop evaluates the condition expression (i <= 5 in this case), and as long it remains true, keeps
also evaluating the body of the while loop. If the condition expression is false when the while loop is
first reached, the body is never evaluated.

The for loop makes common repeated evaluation idioms easier to write. Since counting up and down like
the above while loop does is so common, it can be expressed more concisely with a for loop:

julia> for i = 1:3
println(i)
end

Here the 1: 3 is a range object, representing the sequence of numbers 1, 2, 3. The for loop iterates through
these values, assigning each one in turn to the variable i. One rather important distinction between the
previous while loop form and the for loop form is the scope during which the variable is visible. A for loop
always introduces a new iteration variable in its body, regardless of whether a variable of the same name
exists in the enclosing scope. This implies that on the one hand i need not be declared before the loop.
On the other hand it will not be visible outside the loop, nor will an outside variable of the same name be
affected. You'll either need a new interactive session instance or a different variable name to test this:

julia> for j = 1:3

println(j)
end
1
2
3
julia> j

ERROR: UndefVarError: “j° not defined

julia> j = 0;

julia> for j = 1:3



CHAPTER 9. CONTROL FLOW 96

println(j)
end
1
2
3
julia> j
0

Use for outer to modify the latter behavior and reuse an existing local variable.
See Scope of Variables for a detailed explanation of variable scope, outer, and how it works in Julia.

In general, the for loop construct can iterate over any container. In these cases, the alternative (but fully
equivalent) keyword in or € is typically used instead of =, since it makes the code read more clearly:

julia> for i in [1,4,0]
println(i)
end

julia> for s € ["foo","bar","baz"]
println(s)
end
foo
bar
baz

Various types of iterable containers will be introduced and discussed in later sections of the manual (see,
e.g., Multi-dimensional Arrays).

It is sometimes convenient to terminate the repetition of a while before the test condition is falsified or
stop iterating in a for loop before the end of the iterable object is reached. This can be accomplished with
the break keyword:

julia> i = 1;

julia> while true

println(i)
if i >= 3
break
end
global i += 1
end
1
2
3

julia> for j = 1:1000
println(j)
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if j >=3
break
end
end

Without the break keyword, the above while loop would never terminate on its own, and the for loop
would iterate up to 1000. These loops are both exited early by using break.

In other circumstances, it is handy to be able to stop an iteration and move on to the next one immediately.
The continue keyword accomplishes this:

julia> for i = 1:10
if i 53 =0
continue
end
println(i)
end

This is a somewhat contrived example since we could produce the same behavior more clearly by negating
the condition and placing the println call inside the if block. In realistic usage there is more code to be
evaluated after the continue, and often there are multiple points from which one calls continue.

Multiple nested for loops can be combined into a single outer loop, forming the cartesian product of its
iterables:

julia> for i = 1:2, j = 3:4
println((i, j))
end

A W b W

With this syntax, iterables may still refer to outer loop variables; e.g. for i = 1:n, j = 1:1i is valid.
However a break statement inside such a loop exits the entire nest of loops, not just the inner one. Both
variables (i and j) are set to their current iteration values each time the inner loop runs. Therefore,
assignments to i will not be visible to subsequent iterations:

julia> for i = 1:2, j = 3:4
println((i, j))
i=0

end

NN = =
A W b w



CHAPTER 9. CONTROL FLOW 98

If this example were rewritten to use a for keyword for each variable, then the output would be different:
the second and fourth values would contain 0.

Multiple containers can be iterated over at the same time in a single for loop using zip:
julia> for (j, k) in zip([1 2 3], [4 56 7])

println((j,k))
end

Using zip will create an iterator that is a tuple containing the subiterators for the containers passed to it.
The zip iterator will iterate over all subiterators in order, choosing the ith element of each subiterator in
the ith iteration of the for loop. Once any of the subiterators run out, the for loop will stop.

9.5 Exception Handling

When an unexpected condition occurs, a function may be unable to return a reasonable value to its caller.
In such cases, it may be best for the exceptional condition to either terminate the program while printing
a diagnostic error message, or if the programmer has provided code to handle such exceptional circum-
stances then allow that code to take the appropriate action.

Built-in Exceptions

Exceptions are thrown when an unexpected condition has occurred. The built-in Exceptions listed below
all interrupt the normal flow of control.

For example, the sqrt function throws a DomainError if applied to a negative real value:

julia> sqrt(-1)

ERROR: DomainError with -1.0:

sqrt was called with a negative real argument but will only return a complex result if called
— with a complex argument. Try sqrt(Complex(x)).

Stacktrace:

[...]
You may define your own exceptions in the following way:
‘julia> struct MyCustomException <: Exception end

The throw function

Exceptions can be created explicitly with throw. For example, a function defined only for nonnegative
numbers could be written to throw a DomainError if the argument is negative:

julia> f(x) = x>=0 ? exp(-x) : throw(DomainError(x, "argument must be nonnegative"))
f (generic function with 1 method)

julia> f(1)
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Exception
ArgumentError
BoundsError
CompositeException
DimensionMismatch
DivideError
DomainError
EOFError
ErrorException
InexactError
InitError
InterruptException
InvalidStateException
KeyError

LoadError
OutOfMemoryError
ReadOnlyMemoryError
RemoteException
MethodError
OverflowError
Meta.ParseError
SystemError
TypeError
UndefRefError
UndefVarError
StringIndexError

0.36787944117144233

julia> f(-1)
ERROR: DomainError with -1:
argument must be nonnegative
Stacktrace:

[1] f(::Int64) at ./none:l

Note that DomainError without parentheses is not an exception, but a type of exception. It needs to be
called to obtain an Exception object:

julia> typeof(DomainError(nothing)) <: Exception
true

julia> typeof(DomainError) <: Exception
false

Additionally, some exception types take one or more arguments that are used for error reporting:

julia> throw(UndefVarError(:x))
ERROR: UndefVarError: “x° not defined
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This mechanism can be implemented easily by custom exception types following the way UndefVarError
is written:

julia> struct MyUndefVarError <: Exception

var: :Symbol
end
julia> Base.showerror(io::I0, e::MyUndefVarError) = print(io, e.var, " not defined")
Note

When writing an error message, it is preferred to make the first word lowercase. For example,
size(A) == size(B) || throw(DimensionMismatch("size of A not equal to size of B"))
is preferred over

size(A) == size(B) || throw(DimensionMismatch("Size of A not equal to size of B")).

However, sometimes it makes sense to keep the uppercase first letter, for instance if an argu-
ment to a function is a capital letter:

size(A,1) == size(B,2) || throw(DimensionMismatch("A has first dimension...")).

Errors
The error function is used to produce an ErrorException that interrupts the normal flow of control.

Suppose we want to stop execution immediately if the square root of a negative number is taken. To do
this, we can define a fussy version of the sqrt function that raises an error if its argument is negative:

julia> fussy sqrt(x) = x >= 0 ? sqrt(x) : error("negative x not allowed")
fussy sqrt (generic function with 1 method)

julia> fussy sqrt(2)
1.4142135623730951

julia> fussy sqrt(-1)

ERROR: negative x not allowed

Stacktrace:
[1] error at ./error.jl:33 [inlined]
[2] fussy sqrt(::Int64) at ./none:l
[3] top-level scope

If fussy sqrt is called with a negative value from another function, instead of trying to continue execution
of the calling function, it returns immediately, displaying the error message in the interactive session:

julia> function verbose fussy sqrt(x)
println("before fussy sqrt")
r = fussy sqrt(x)
println("after fussy sqrt")
return r
end
verbose fussy sqrt (generic function with 1 method)
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julia> verbose fussy sqrt(2)
before fussy sqrt

after fussy sqrt
1.4142135623730951

julia> verbose fussy sqrt(-1)
before fussy sqrt
ERROR: negative x not allowed
Stacktrace:
[1] error at ./error.jl:33 [inlined]
[2] fussy sqrt at ./none:1 [inlined]
[3] verbose fussy sqrt(::Int64) at ./none:3
[4] top-level scope

The try/catch statement

The try/catch statement allows for Exceptions to be tested for, and for the graceful handling of things that
may ordinarily break your application. For example, in the below code the function for square root would
normally throw an exception. By placing a try/catch block around it we can mitigate that here. You may
choose how you wish to handle this exception, whether logging it, return a placeholder value or as in the
case below where we just printed out a statement. One thing to think about when deciding how to handle
unexpected situations is that using a try/catch block is much slower than using conditional branching to
handle those situations. Below there are more examples of handling exceptions with a try/catch block:

julia> try
sqrt("ten")
catch e
println("You should have entered a numeric value")
end

You should have entered a numeric value

try/catch statements also allow the Exception to be saved in a variable. The following contrived example
calculates the square root of the second element of x if x is indexable, otherwise assumes x is a real number
and returns its square root:

julia> sqrt_second(x) = try
sqrt(x[2])
catch y
if isa(y, DomainError)
sqrt(complex(x[2], 0))
elseif isa(y, BoundsError)
sqrt(x)
end
end
sqrt second (generic function with 1 method)

julia> sqrt second([1 4])
2.0

julia> sqrt second([1 -4])
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0.0 + 2.0im

julia> sqrt second(9)
3.0

julia> sqrt second(-9)

ERROR: DomainError with -9.0:

sqrt was called with a negative real argument but will only return a complex result if called
< with a complex argument. Try sqrt(Complex(x)).

Stacktrace:

[...]

Note that the symbol following catch will always be interpreted as a name for the exception, so care is
needed when writing try/catch expressions on a single line. The following code will not work to return
the value of x in case of an error:

try bad() catch x end

Instead, use a semicolon or insert a line break after catch:

try bad() catch; x end

try bad()
catch

X
end

The power of the try/catch construct lies in the ability to unwind a deeply nested computation immediately
to a much higher level in the stack of calling functions. There are situations where no error has occurred,
but the ability to unwind the stack and pass a value to a higher level is desirable. Julia provides the rethrow,
backtrace, catch backtrace and current exceptions functions for more advanced error handling.

else Clauses

Julia 1.8

This functionality requires at least Julia 1.8.

In some cases, one may not only want to appropriately handle the error case, but also want to run some
code only if the try block succeeds. For this, an else clause can be specified after the catch block that
is run whenever no error was thrown previously. The advantage over including this code in the try block
instead is that any further errors don't get silently caught by the catch clause.

local x
try

x = read("file", String)
catch

# handle read errors
else

# do something with x
end
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Note

The try, catch, else, and finally clauses each introduce their own scope blocks, so if a
variable is only defined in the try block, it can not be accessed by the else or finally clause:

julia> try
foo =1
catch
else
foo
end
ERROR: UndefVarError: “foo' not defined

Use the local keyword outside the try block to make the variable accessible from anywhere
within the outer scope.

finally Clauses

In code that performs state changes or uses resources like files, there is typically clean-up work (such as
closing files) that needs to be done when the code is finished. Exceptions potentially complicate this task,
since they can cause a block of code to exit before reaching its normal end. The finally keyword provides
a way to run some code when a given block of code exits, regardless of how it exits.

For example, here is how we can guarantee that an opened file is closed:

f = open("file")
try
# operate on file f
finally
close(f)
end

When control leaves the try block (for example due to a return, or just finishing normally), close(f) will
be executed. If the try block exits due to an exception, the exception will continue propagating. A catch
block may be combined with try and finally as well. In this case the finally block will run after catch
has handled the error.

9.6 Tasks (aka Coroutines)

Tasks are a control flow feature that allows computations to be suspended and resumed in a flexible manner.
We mention them here only for completeness; for a full discussion see Asynchronous Programming.
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Scope of Variables

The scope of a variable is the region of code within which a variable is accessible. Variable scoping helps
avoid variable naming conflicts. The concept is intuitive: two functions can both have arguments called
x without the two x's referring to the same thing. Similarly, there are many other cases where different
blocks of code can use the same name without referring to the same thing. The rules for when the same
variable name does or doesn't refer to the same thing are called scope rules; this section spells them out
in detail.

Certain constructs in the language introduce scope blocks, which are regions of code that are eligible to
be the scope of some set of variables. The scope of a variable cannot be an arbitrary set of source lines;
instead, it will always line up with one of these blocks. There are two main types of scopes in Julia, global
scope and local scope. The latter can be nested. There is also a distinction in Julia between constructs which
introduce a "hard scope" and those which only introduce a "soft scope", which affects whether shadowing
a global variable by the same name is allowed or not.

Scope constructs

The constructs introducing scope blocks are:

Construct Scope type | Allowed within
module, baremodule global global

struct local (soft) global

for, while, try local (soft) global, local
macro local (hard) | global
functions, do blocks, let blocks, comprehensions, generators | local (hard) | global, local

Notably missing from this table are begin blocks and if blocks which do not introduce new scopes. The
three types of scopes follow somewhat different rules which will be explained below.

Julia uses lexical scoping, meaning that a function's scope does not inherit from its caller's scope, but from
the scope in which the function was defined. For example, in the following code the x inside foo refers to
the x in the global scope of its module Bar:

julia> module Bar
X =1
foo() = x
end;
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and not a x in the scope where foo is used:

julia> import .Bar
julia> x = -1;

julia> Bar.foo()
1

Thus lexical scope means that what a variable in a particular piece of code refers to can be deduced from
the code in which it appears alone and does not depend on how the program executes. A scope nested
inside another scope can "see" variables in all the outer scopes in which it is contained. Outer scopes, on
the other hand, cannot see variables in inner scopes.

10.1 Global Scope

Each module introduces a new global scope, separate from the global scope of all other modules—there
is no all-encompassing global scope. Modules can introduce variables of other modules into their scope
through the using or import statements or through qualified access using the dot-notation, i.e. each module
is a so-called namespace as well as a first-class data structure associating names with values.

If a top-level expression contains a variable declaration with keyword local, then that variable is not
accessible outside that expression. The variable inside the expression does not affect global variables of
the same name. An example is to declare local x in a begin or if block at the top-level:

julia> x =1
begin
local x = 0
@show x
end
@show x;

Note that the interactive prompt (aka REPL) is in the global scope of the module Main.

10.2 Local Scope

A new local scope is introduced by most code blocks (see above table for a complete list). If such a block
is syntactically nested inside of another local scope, the scope it creates is nested inside of all the local
scopes that it appears within, which are all ultimately nested inside of the global scope of the module in
which the code is evaluated. Variables in outer scopes are visible from any scope they contain — meaning
that they can be read and written in inner scopes — unless there is a local variable with the same name
that "shadows" the outer variable of the same name. This is true even if the outer local is declared after
(in the sense of textually below) an inner block. When we say that a variable "exists" in a given scope, this
means that a variable by that name exists in any of the scopes that the current scope is nested inside of,
including the current one.

Some programming languages require explicitly declaring new variables before using them. Explicit dec-
laration works in Julia too: in any local scope, writing local x declares a new local variable in that scope,
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regardless of whether there is already a variable named x in an outer scope or not. Declaring each new
variable like this is somewhat verbose and tedious, however, so Julia, like many other languages, considers
assignment to a variable name that doesn't already exist to implicitly declare that variable. If the current
scope is global, the new variable is global; if the current scope is local, the new variable is local to the
innermost local scope and will be visible inside of that scope but not outside of it. If you assign to an exist-
ing local, it always updates that existing local: you can only shadow a local by explicitly declaring a new
local in a nested scope with the local keyword. In particular, this applies to variables assigned in inner
functions, which may surprise users coming from Python where assignment in an inner function creates a
new local unless the variable is explicitly declared to be non-local.

Mostly this is pretty intuitive, but as with many things that behave intuitively, the details are more subtle
than one might naively imagine.

When x = <value> occurs in a local scope, Julia applies the following rules to decide what the expression
means based on where the assignment expression occurs and what x already refers to at that location:

1. Existing local: If x is already a local variable, then the existing local x is assigned;

2. Hard scope: If x is not already a local variable and assignment occurs inside of any hard scope
construct (i.e. within a let block, function or macro body, comprehension, or generator), a new
local named x is created in the scope of the assignment;

3. Soft scope: If x is not already a local variable and all of the scope constructs containing the assign-
ment are soft scopes (loops, try/catch blocks, or struct blocks), the behavior depends on whether
the global variable x is defined:

- if global x is undefined, a new local named x is created in the scope of the assignment;
- if global x is defined, the assignment is considered ambiguous:

* in non-interactive contexts (files, eval), an ambiguity warning is printed and a new local is
created;

* in interactive contexts (REPL, notebooks), the global variable x is assigned.

You may note that in non-interactive contexts the hard and soft scope behaviors are identical except that
a warning is printed when an implicitly local variable (i.e. not declared with local x) shadows a global. In
interactive contexts, the rules follow a more complex heuristic for the sake of convenience. This is covered
in depth in examples that follow.

Now that you know the rules, let's look at some examples. Each example is assumed to be evaluated in a
fresh REPL session so that the only globals in each snippet are the ones that are assigned in that block of
code.

We'll begin with a nice and clear-cut situation—assignment inside of a hard scope, in this case a function
body, when no local variable by that name already exists:

julia> function greet()
x = "hello" # new local
println(x)
end
greet (generic function with 1 method)

julia> greet()
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hello

julia> x # global
ERROR: UndefVarError: “x° not defined

Inside of the greet function, the assignment x = "hello" causes x to be a new local variable in the
function's scope. There are two relevant facts: the assignment occurs in local scope and there is no
existing local x variable. Since x is local, it doesn't matter if there is a global named x or not. Here for
example we define x = 123 before defining and calling greet:

julia> x = 123 # global
123

julia> function greet()
x = "hello" # new local
println(x)
end
greet (generic function with 1 method)

julia> greet()
hello

julia> x # global
123

Since the x in greet is local, the value (or lack thereof) of the global x is unaffected by calling greet. The
hard scope rule doesn't care whether a global named x exists or not: assignment to x in a hard scope is
local (unless x is declared global).

The next clear cut situation we'll consider is when there is already a local variable named x, in which case x
= <value> always assigns to this existing local x. This is true whether the assignment occurs in the same
local scope, an inner local scope in the same function body, or in the body of a function nested inside of
another function, also known as a closure.

We'll use the sum_to function, which computes the sum of integers from one up to n, as an example:

function sum_to(n)
s = 0 # new local
for i = 1:n
s = s + 1 # assign existing local
end
return s # same local

end

As in the previous example, the first assignment to s at the top of sum_to causes s to be a new local
variable in the body of the function. The for loop has its own inner local scope within the function scope.
At the point wheres = s + 1 occurs, s is already a local variable, so the assignment updates the existing
s instead of creating a new local. We can test this out by calling sum_to in the REPL:

julia> function sum_to(n)
s = 0 # new local
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for i = 1:n

s = s + 1 # assign existing local
end
return s # same local

end
sum_to (generic function with 1 method)

julia> sum to(10)
55

julia> s # global
ERROR: UndefVarError: ‘s’ not defined

Since s is local to the function sum to, calling the function has no effect on the global variable s. We
can also see that the update s = s + i in the for loop must have updated the same s created by the
initialization s = 0 since we get the correct sum of 55 for the integers 1 through 10.

Let's dig into the fact that the for loop body has its own scope for a second by writing a slightly more
verbose variation which we'll call sum_to def, in which we save the sum s + i in a variable t before
updating s:

julia> function sum to def(n)
s = 0 # new local
for i = 1:n
t=s+1# new local 't’
s = t # assign existing local “s°
end
return s, @isdefined(t)
end
sum_to def (generic function with 1 method)

julia> sum to def(10)
(55, false)

This version returns s as before but it also uses the @isdefined macro to return a boolean indicating
whether there is a local variable named t defined in the function's outermost local scope. As you can see,
there is no t defined outside of the for loop body. This is because of the hard scope rule again: since
the assignment to t occurs inside of a function, which introduces a hard scope, the assignment causes t
to become a new local variable in the local scope where it appears, i.e. inside of the loop body. Even if
there were a global named t, it would make no difference—the hard scope rule isn't affected by anything
in global scope.

Note that the local scope of a for loop body is no different from the local scope of an inner function. This
means that we could rewrite this example so that the loop body is implemented as a call to an inner helper
function and it behaves the same way:

julia> function sum to def closure(n)
function loop body(i)
t=s+1# new local 't’
s = t # assign same local ‘s’ as below
end
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s = 0 # new local
for i = 1:n
loop_body (i)
end
return s, @isdefined(t)
end
sum to def closure (generic function with 1 method)

julia> sum_to def closure(10)
(55, false)

This example illustrates a couple of key points:

1. Inner function scopes are just like any other nested local scope. In particular, if a variable is already
a local outside of an inner function and you assign to it in the inner function, the outer local variable
is updated.

2. It doesn't matter if the definition of an outer local happens below where it is updated, the rule
remains the same. The entire enclosing local scope is parsed and its locals determined before inner
local meanings are resolved.

This design means that you can generally move code in or out of an inner function without changing its
meaning, which facilitates a number of common idioms in the language using closures (see do blocks).

Let's move onto some more ambiguous cases covered by the soft scope rule. We'll explore this by extracting
the bodies of the greet and sum_to_def functions into soft scope contexts. First, let's put the body of greet
in a for loop—which is soft, rather than hard—and evaluate it in the REPL:

julia> for i = 1:3

x = "hello" # new local
println(x)
end
hello
hello
hello
julia> x

ERROR: UndefVarError: “x° not defined

Since the global x is not defined when the for loop is evaluated, the first clause of the soft scope rule
applies and x is created as local to the for loop and therefore global x remains undefined after the loop
executes. Next, let's consider the body of sum to def extracted into global scope, fixing its argument to
n =10

s =0

for i = 1:10
t=s+1
s =t

end

s
@isdefined(t)
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What does this code do? Hint: it's a trick question. The answer is "it depends." If this code is entered
interactively, it behaves the same way it does in a function body. But if the code appears in a file, it prints
an ambiguity warning and throws an undefined variable error. Let's see it working in the REPL first:

julia> s = 0 # global
0

1:10
s + i # new local "t°
t # assign global °s°

julia> for i
t
s

end

julia> s # global
55

julia> @isdefined(t) # global
false

The REPL approximates being in the body of a function by deciding whether assignment inside the loop
assigns to a global or creates new local based on whether a global variable by that name is defined or not.
If a global by the name exists, then the assignment updates it. If no global exists, then the assignment
creates a new local variable. In this example we see both cases in action:

* Thereis no global named t,sot = s + i creates a new t that is local to the for loop;

e There is a global named s, so s = t assigns to it.

The second fact is why execution of the loop changes the global value of s and the first fact is why t is
still undefined after the loop executes. Now, let's try evaluating this same code as though it were in a file
instead:

julia> code = """
s = 0 # global
for i = 1:10
t=s+ i# new local "t°
s =t # new local “s° with warning
end
s, # global
@isdefined(t) # global

wun,
’

julia> include string(Main, code)

r Warning: Assignment to s’ in soft scope is ambiguous because a global variable by the same

< name exists: s’ will be treated as a new local. Disambiguate by using “local s’ to suppress
— this warning or “global s° to assign to the existing global variable.

L @ string:4

ERROR: LoadError: UndefVarError: s not defined

Here we use include string, to evaluate code as though it were the contents of a file. We could also
save code to a file and then call include on that file—the result would be the same. As you can see, this
behaves quite different from evaluating the same code in the REPL. Let's break down what's happening
here:
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¢ global s is defined with the value 0 before the loop is evaluated

¢ the assignment s = t occurs in a soft scope—a for loop outside of any function body or other hard
scope construct

» therefore the second clause of the soft scope rule applies, and the assignment is ambiguous so a
warning is emitted

* execution continues, making s local to the for loop body
* since s is local to the for loop, it is undefined when t = s + i is evaluated, causing an error

* evaluation stops there, but if it got to s and @isdefined(t), it would return 0 and false.

This demonstrates some important aspects of scope: in a scope, each variable can only have one meaning,
and that meaning is determined regardless of the order of expressions. The presence of the expression s
= t in the loop causes s to be local to the loop, which means that it is also local when it appears on the
right hand side of t = s + i, even though that expression appears first and is evaluated first. One might
imagine that the s on the first line of the loop could be global while the s on the second line of the loop
is local, but that's not possible since the two lines are in the same scope block and each variable can only
mean one thing in a given scope.

On Soft Scope

We have now covered all the local scope rules, but before wrapping up this section, perhaps a few words
should be said about why the ambiguous soft scope case is handled differently in interactive and non-
interactive contexts. There are two obvious questions one could ask:

1. Why doesn't it just work like the REPL everywhere?

2. Why doesn't it just work like in files everywhere? And maybe skip the warning?

In Julia = 0.6, all global scopes did work like the current REPL: when x = <value> occurred in a loop (or
try/catch, or struct body) but outside of a function body (or let block or comprehension), it was decided
based on whether a global named x was defined or not whether x should be local to the loop. This behavior
has the advantage of being intuitive and convenient since it approximates the behavior inside of a function
body as closely as possible. In particular, it makes it easy to move code back and forth between a function
body and the REPL when trying to debug the behavior of a function. However, it has some downsides.
First, it's quite a complex behavior: many people over the years were confused about this behavior and
complained that it was complicated and hard both to explain and understand. Fair point. Second, and
arguably worse, is that it's bad for programming "at scale." When you see a small piece of code in one
place like this, it's quite clear what's going on:

s =0

for i = 1:10
s += 1

end

Obviously the intention is to modify the existing global variable s. What else could it mean? However, not
all real world code is so short or so clear. We found that code like the following often occurs in the wild:
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x = 123

# much later
# maybe in a different file

for i = 1:10
x = "hello"
println(x)
end

# much later
# maybe in yet another file
# or maybe back in the first one where “x = 123°

y = X + 234

It's far less clear what should happen here. Since x + "hello" is a method error, it seems probable that the
intention is for x to be local to the for loop. But runtime values and what methods happen to exist cannot
be used to determine the scopes of variables. With the Julia = 0.6 behavior, it's especially concerning that
someone might have written the for loop first, had it working just fine, but later when someone else adds
a new global far away—possibly in a different file—the code suddenly changes meaning and either breaks
noisily or, worse still, silently does the wrong thing. This kind of "spooky action at a distance" is something
that good programming language designs should prevent.

So in Julia 1.0, we simplified the rules for scope: in any local scope, assignment to a name that wasn't
already a local variable created a new local variable. This eliminated the notion of soft scope entirely as
well as removing the potential for spooky action. We uncovered and fixed a significant number of bugs due
to the removal of soft scope, vindicating the choice to get rid of it. And there was much rejoicing! Well, no,
not really. Because some people were angry that they now had to write:

s =0

for i = 1:10
global s += i

end

Do you see that global annotation in there? Hideous. Obviously this situation could not be tolerated. But
seriously, there are two main issues with requiring global for this kind of top-level code:

1. It's no longer convenient to copy and paste the code from inside a function body into the REPL to
debug it—you have to add global annotations and then remove them again to go back;

2. Beginners will write this kind of code without the global and have no idea why their code doesn't
work—the error that they get is that s is undefined, which does not seem to enlighten anyone who
happens to make this mistake.

As of Julia 1.5, this code works without the global annotation in interactive contexts like the REPL or
Jupyter notebooks (just like Julia 0.6) and in files and other non-interactive contexts, it prints this very
direct warning:


https://en.wikipedia.org/wiki/Action_at_a_distance_(computer_programming)
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Assignment to s in soft scope is ambiguous because a global variable by the same name exists:
s will be treated as a new local. Disambiguate by using local s to suppress this warning or
global s to assign to the existing global variable.

This addresses both issues while preserving the "programming at scale" benefits of the 1.0 behavior: global
variables have no spooky effect on the meaning of code that may be far away; in the REPL copy-and-
paste debugging works and beginners don't have any issues; any time someone either forgets a global
annotation or accidentally shadows an existing global with a local in a soft scope, which would be confusing
anyway, they get a nice clear warning.

An important property of this design is that any code that executes in a file without a warning will behave
the same way in a fresh REPL. And on the flip side, if you take a REPL session and save it to file, if it behaves
differently than it did in the REPL, then you will get a warning.

Let Blocks

let statements create a new hard scope block (see above) and introduce new variable bindings each time
they run. The variable need not be immediately assigned:

julia> varl = let x
for i in 1:5
(i == 4) & (x = i; break)
end
X
end

Whereas assignments might reassign a new value to an existing value location, let always creates a new
location. This difference is usually not important, and is only detectable in the case of variables that outlive
their scope via closures. The let syntax accepts a comma-separated series of assignments and variable
names:

julia> x, y, z = -1, -1, -1;

julia> let x = 1, z
println("x: $x, y: $y") # x is local variable, y the global
println("z: $z") # errors as z has not been assigned yet but is local
end
x: 1, y: -1
ERROR: UndefVarError: “z° not defined

The assignments are evaluated in order, with each right-hand side evaluated in the scope before the new
variable on the left-hand side has been introduced. Therefore it makes sense to write something like let
X = X since the two x variables are distinct and have separate storage. Here is an example where the
behavior of let is needed:

julia> Fs = Vector{Any}(undef, 2); i = 1;

julia> while i <= 2
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Fs[i] = ()->1
global i += 1
end

julia> Fs[1]()
3

julia> Fs[2]()
3

Here we create and store two closures that return variable i. However, it is always the same variable i, so
the two closures behave identically. We can use let to create a new binding for i:

julia> Fs = Vector{Any}(undef, 2); i = 1;

julia> while i <= 2
let i =1
Fs[i] = ()->1
end
global i += 1
end

julia> Fs[1]()
1

julia> Fs[2]()
2

Since the begin construct does not introduce a new scope, it can be useful to use a zero-argument let to
just introduce a new scope block without creating any new bindings immediately:

julia> let
local x =1
let
local x = 2
end
X
end
1

Since let introduces a new scope block, the inner local x is a different variable than the outer local x. This
particular example is equivalent to:

julia> let x = 1
let x = 2
end
X
end
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Loops and Comprehensions

In loops and comprehensions, new variables introduced in their body scopes are freshly allocated for each
loop iteration, as if the loop body were surrounded by a let block, as demonstrated by this example:

julia> Fs = Vector{Any}(undef, 2);

julia> for j = 1:2
Fs[jl = ()->]
end

julia> Fs[1]()
1

julia> Fs[2]()
2

A for loop or comprehension iteration variable is always a new variable:

julia> function f()

i=0
for i = 1:3
# empty
end
return i
end;
julia> f()

0

However, it is occasionally useful to reuse an existing local variable as the iteration variable. This can be
done conveniently by adding the keyword outer:

julia> function f()

i=0
for outer i = 1:3
# empty
end
return i
end;
julia> f()

3

10.3 Constants

A common use of variables is giving names to specific, unchanging values. Such variables are only assigned
once. This intent can be conveyed to the compiler using the const keyword:

julia> const e = 2.71828182845904523536;

julia> const pi = 3.14159265358979323846;
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Multiple variables can be declared in a single const statement:

julia> const a, b =1, 2
(1, 2)

The const declaration should only be used in global scope on globals. It is difficult for the compiler to
optimize code involving global variables, since their values (or even their types) might change at almost
any time. If a global variable will not change, adding a const declaration solves this performance problem.

Local constants are quite different. The compiler is able to determine automatically when a local variable
is constant, so local constant declarations are not necessary, and in fact are currently not supported.

Special top-level assignments, such as those performed by the function and struct keywords, are con-
stant by default.

Note that const only affects the variable binding; the variable may be bound to a mutable object (such as
an array), and that object may still be modified. Additionally when one tries to assign a value to a variable
that is declared constant the following scenarios are possible:

« if a new value has a different type than the type of the constant then an error is thrown:

julia> const x = 1.0
1.0

julia> x =1
ERROR: invalid redefinition of constant x

« if a new value has the same type as the constant then a warning is printed:

julia> const y = 1.0
1.0

julia> y = 2.0

WARNING: redefinition of constant y. This may fail, cause incorrect answers, or produce other
< errors.

2.0

¢ if an assignment would not result in the change of variable value no message is given:

julia> const z = 100
100

julia> z = 100
100

The last rule applies to immutable objects even if the variable binding would change, e.g.:
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julia> const sl = "1"
Wy

julia> s2 = "1"

Wy

julia> pointer.([sl, s2], 1)
2-element Array{Ptr{UInt8},1}:
Ptr{UInt8} @O0x00000000132c9638
Ptr{UInt8} @0x0000000013dd3d18

julia> sl = s2
wpn

julia> pointer.([sl, s2], 1)
2-element Array{Ptr{UInt8},1}:
Ptr{UInt8} @0x0000000013dd3d18
Ptr{UInt8} @0x0000000013dd3d18

However, for mutable objects the warning is printed as expected:

julia> const a = [1]
1l-element Vector{Int64}:
1

julia> a = [1]
WARNING: redefinition of constant a. This may fail, cause incorrect answers, or produce other
< errors.
1-element Vector{Int64}:
1

Note that although sometimes possible, changing the value of a const variable is strongly discouraged, and
is intended only for convenience during interactive use. Changing constants can cause various problems
or unexpected behaviors. For instance, if a method references a constant and is already compiled before
the constant is changed, then it might keep using the old value:

julia> const x = 1
1

julia> f() = x
f (generic function with 1 method)

julia> f()
1

julia> x = 2

WARNING: redefinition of constant x. This may fail, cause incorrect answers, or produce other
< errors.

2

julia> f()
1
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10.4 Typed Globals

Julia 1.8
Support for typed globals was added in Julia 1.8

Similar to being declared as constants, global bindings can also be declared to always be of a constant
type. This can either be done without assigning an actual value using the syntax global x::T or upon
assignment as x::T = 123.

julia> x::Float64 = 2.718
2.718

julia> f() = x
f (generic function with 1 method)

julia> Base.return types(f)
l-element Vector{Any}:
Float64

For any assignment to a global, Julia will first try to convert it to the appropriate type using convert:

julia> global y::Int

julia> y = 1.0
1.0

julia> y
1

julia> y = 3.14

ERROR: InexactError: Int64(3.14)
Stacktrace:

[...]

The type does not need to be concrete, but annotations with abstract types typically have little performance
benefit.

Once a global has either been assigned to or its type has been set, the binding type is not allowed to
change:

julia> x =1
1

julia> global x::Int

ERROR: cannot set type for global x. It already has a value or is already set to a different
— type.

Stacktrace:

[...]
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Types

Type systems have traditionally fallen into two quite different camps: static type systems, where every
program expression must have a type computable before the execution of the program, and dynamic type
systems, where nothing is known about types until run time, when the actual values manipulated by the
program are available. Object orientation allows some flexibility in statically typed languages by letting
code be written without the precise types of values being known at compile time. The ability to write code
that can operate on different types is called polymorphism. All code in classic dynamically typed languages
is polymorphic: only by explicitly checking types, or when objects fail to support operations at run-time,
are the types of any values ever restricted.

Julia's type system is dynamic, but gains some of the advantages of static type systems by making it
possible to indicate that certain values are of specific types. This can be of great assistance in generating
efficient code, but even more significantly, it allows method dispatch on the types of function arguments
to be deeply integrated with the language. Method dispatch is explored in detail in Methods, but is rooted
in the type system presented here.

The default behavior in Julia when types are omitted is to allow values to be of any type. Thus, one can
write many useful Julia functions without ever explicitly using types. When additional expressiveness is
needed, however, it is easy to gradually introduce explicit type annotations into previously "untyped" code.
Adding annotations serves three primary purposes: to take advantage of Julia's powerful multiple-dispatch
mechanism, to improve human readability, and to catch programmer errors.

Describing Julia in the lingo of type systems, it is: dynamic, nominative and parametric. Generic types
can be parameterized, and the hierarchical relationships between types are explicitly declared, rather
than implied by compatible structure. One particularly distinctive feature of Julia's type system is that
concrete types may not subtype each other: all concrete types are final and may only have abstract types
as their supertypes. While this might at first seem unduly restrictive, it has many beneficial consequences
with surprisingly few drawbacks. It turns out that being able to inherit behavior is much more important
than being able to inherit structure, and inheriting both causes significant difficulties in traditional object-
oriented languages. Other high-level aspects of Julia's type system that should be mentioned up front
are:

* There is no division between object and non-object values: all values in Julia are true objects having
a type that belongs to a single, fully connected type graph, all nodes of which are equally first-class
as types.
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* There is no meaningful concept of a "compile-time type": the only type a value has is its actual type
when the program is running. This is called a "run-time type" in object-oriented languages where
the combination of static compilation with polymorphism makes this distinction significant.

¢ Only values, not variables, have types - variables are simply names bound to values, although for
simplicity we may say "type of a variable" as shorthand for "type of the value to which a variable
refers".

* Both abstract and concrete types can be parameterized by other types. They can also be param-
eterized by symbols, by values of any type for which isbits returns true (essentially, things like
numbers and bools that are stored like C types or structs with no pointers to other objects), and
also by tuples thereof. Type parameters may be omitted when they do not need to be referenced or
restricted.

Julia's type system is designed to be powerful and expressive, yet clear, intuitive and unobtrusive. Many
Julia programmers may never feel the need to write code that explicitly uses types. Some kinds of pro-
gramming, however, become clearer, simpler, faster and more robust with declared types.

11.1 Type Declarations

The :: operator can be used to attach type annotations to expressions and variables in programs. There
are two primary reasons to do this:

1. As an assertion to help confirm that your program works the way you expect, and

2. To provide extra type information to the compiler, which can then improve performance in some
cases.

When appended to an expression computing a value, the : : operatoris read as "is an instance of". It can be
used anywhere to assert that the value of the expression on the left is an instance of the type on the right.
When the type on the right is concrete, the value on the left must have that type as its implementation -
recall that all concrete types are final, so no implementation is a subtype of any other. When the type is
abstract, it suffices for the value to be implemented by a concrete type that is a subtype of the abstract
type. If the type assertion is not true, an exception is thrown, otherwise, the left-hand value is returned:

julia> (1+2)::AbstractFloat
ERROR: TypeError: in typeassert, expected AbstractFloat, got a value of type Int64

julia> (1+2)::Int
3

This allows a type assertion to be attached to any expression in-place.

When appended to a variable on the left-hand side of an assignment, or as part of a local declaration, the
1 operator means something a bit different: it declares the variable to always have the specified type,
like a type declaration in a statically-typed language such as C. Every value assigned to the variable will
be converted to the declared type using convert:
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julia> function foo()
x::Int8 = 100
X
end
foo (generic function with 1 method)

julia> x = foo()
100

julia> typeof(x)
Int8

This feature is useful for avoiding performance "gotchas" that could occur if one of the assignments to a
variable changed its type unexpectedly.

This "declaration" behavior only occurs in specific contexts:

local x::Int8 # in a local declaration
x::Int8 = 10 # as the left-hand side of an assignment

and applies to the whole current scope, even before the declaration.

As of Julia 1.8, type declarations can now be used in global scope i.e. type annotations can be added to
global variables to make accessing them type stable.

julia> x::Int = 10
10

julia> x = 3.5
ERROR: InexactError: Int64(3.5)

julia> function foo(y)
global x = 15.8 # throws an error when foo is called
return x +y
end
foo (generic function with 1 method)

julia> foo(10)
ERROR: InexactError: Int64(15.8)

Declarations can also be attached to function definitions:

function sinc(x)::Float64
if x ==
return 1
end
return sin(pi*x)/(pi*x)
end

Returning from this function behaves just like an assignment to a variable with a declared type: the value
is always converted to Float64.
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11.2 Abstract Types

Abstract types cannot be instantiated, and serve only as nodes in the type graph, thereby describing sets
of related concrete types: those concrete types which are their descendants. We begin with abstract types
even though they have no instantiation because they are the backbone of the type system: they form the
conceptual hierarchy which makes Julia's type system more than just a collection of object implementations.

Recall that in Integers and Floating-Point Numbers, we introduced a variety of concrete types of numeric
values: Int8, UInt8, Intl6, UIntl6, Int32, UInt32, Int64, UInt64, Int128, UInt128, Floatl6, Float32,
and Float64. Although they have different representation sizes, Int8, Intl16, Int32, Int64 and Int128
all have in common that they are signed integer types. Likewise UInt8, UInt16, UInt32, UInt64 and
UInt128 are all unsigned integer types, while Float16, Float32 and Float64 are distinct in being floating-
point types rather than integers. It is common for a piece of code to make sense, for example, only if its
arguments are some kind of integer, but not really depend on what particular kind of integer. For example,
the greatest common denominator algorithm works for all kinds of integers, but will not work for floating-
point numbers. Abstract types allow the construction of a hierarchy of types, providing a context into
which concrete types can fit. This allows you, for example, to easily program to any type that is an integer,
without restricting an algorithm to a specific type of integer.

Abstract types are declared using the abstract type keyword. The general syntaxes for declaring an
abstract type are:

abstract type «name» end
abstract type «name» <: «supertype» end

The abstract type keyword introduces a new abstract type, whose name is given by «name». This name
can be optionally followed by <: and an already-existing type, indicating that the newly declared abstract
type is a subtype of this "parent" type.

When no supertype is given, the default supertype is Any - a predefined abstract type that all objects are
instances of and all types are subtypes of. In type theory, Any is commonly called "top" because it is at the
apex of the type graph. Julia also has a predefined abstract "bottom" type, at the nadir of the type graph,
which is written as Union{}. It is the exact opposite of Any: no object is an instance of Union{} and all
types are supertypes of Union{}.

Let's consider some of the abstract types that make up Julia's numerical hierarchy:

abstract type Number end

abstract type Real Number end
abstract type AbstractFloat Real end
abstract type Integer Real end

abstract type Signed
abstract type Unsigned

Integer end
Integer end

AN NN A

The Number type is a direct child type of Any, and Real is its child. In turn, Real has two children (it has
more, but only two are shown here; we'll get to the others later): Integer and AbstractFloat, separating
the world into representations of integers and representations of real numbers. Representations of real
numbers include floating-point types, but also include other types, such as rationals. AbstractFloat in-
cludes only floating-point representations of real numbers. Integers are further subdivided into Signed and
Unsigned varieties.

The <: operator in general means "is a subtype of", and, used in declarations like those above, declares the
right-hand type to be an immediate supertype of the newly declared type. It can also be used in expressions
as a subtype operator which returns true when its left operand is a subtype of its right operand:
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julia> Integer <: Number
true

julia> Integer <: AbstractFloat
false

An important use of abstract types is to provide default implementations for concrete types. To give a
simple example, consider:

function myplus(x,y)
X+y
end

The first thing to note is that the above argument declarations are equivalent to x: :Any and y: : Any. When
this function is invoked, say as myplus(2,5), the dispatcher chooses the most specific method named
myplus that matches the given arguments. (See Methods for more information on multiple dispatch.)

Assuming no method more specific than the above is found, Julia next internally defines and compiles a
method called myplus specifically for two Int arguments based on the generic function given above, i.e.,
it implicitly defines and compiles:

function myplus(x::Int,y::Int)
X+y
end

and finally, it invokes this specific method.

Thus, abstract types allow programmers to write generic functions that can later be used as the default
method by many combinations of concrete types. Thanks to multiple dispatch, the programmer has full
control over whether the default or more specific method is used.

An important point to note is that there is no loss in performance if the programmer relies on a function
whose arguments are abstract types, because it is recompiled for each tuple of concrete argument types
with which it is invoked. (There may be a performance issue, however, in the case of function arguments
that are containers of abstract types; see Performance Tips.)

11.3 Primitive Types

Warning

It is almost always preferable to wrap an existing primitive type in a new composite type than
to define your own primitive type.

This functionality exists to allow Julia to bootstrap the standard primitive types that LLVM
supports. Once they are defined, there is very little reason to define more.

A primitive type is a concrete type whose data consists of plain old bits. Classic examples of primitive types
are integers and floating-point values. Unlike most languages, Julia lets you declare your own primitive
types, rather than providing only a fixed set of built-in ones. In fact, the standard primitive types are all
defined in the language itself:
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primitive type Floatlé <: AbstractFloat 16 end
primitive type Float32 <: AbstractFloat 32 end
primitive type Float64 <: AbstractFloat 64 end

primitive type Bool <: Integer 8 end
primitive type Char <: AbstractChar 32 end

: Signed 8 end
: Unsigned 8 end

primitive type Int8 <
primitive type UInt8 <

primitive type Intl6é <: Signed 16 end
primitive type UIntl6é <: Unsigned 16 end
primitive type Int32 <: Signed 32 end
primitive type UInt32 <: Unsigned 32 end
primitive type Int64 <: Signed 64 end
primitive type UInt64 <: Unsigned 64 end
primitive type Intl128 <: Signed 128 end
primitive type UIntl28 <: Unsigned 128 end

The general syntaxes for declaring a primitive type are:

primitive type «name» «bits» end
primitive type «name» <: «supertype» «bits» end

The number of bits indicates how much storage the type requires and the name gives the new type a
name. A primitive type can optionally be declared to be a subtype of some supertype. If a supertype is
omitted, then the type defaults to having Any as its immediate supertype. The declaration of Bool above
therefore means that a boolean value takes eight bits to store, and has Integer as its immediate supertype.
Currently, only sizes that are multiples of 8 bits are supported and you are likely to experience LLVM bugs
with sizes other than those used above. Therefore, boolean values, although they really need just a single
bit, cannot be declared to be any smaller than eight bits.

The types Bool, Int8 and UInt8 all have identical representations: they are eight-bit chunks of memory.
Since Julia's type system is nominative, however, they are not interchangeable despite having identical
structure. A fundamental difference between them is that they have different supertypes: Bool's direct
supertypeis Integer, Int8'sis Signed, and UInt8'sis Unsigned. All other differences between Bool, Int8,
and UInt8 are matters of behavior - the way functions are defined to act when given objects of these types
as arguments. This is why a nominative type system is necessary: if structure determined type, which in
turn dictates behavior, then it would be impossible to make Bool behave any differently than Int8 or UInt8.

11.4 Composite Types

Composite types are called records, structs, or objects in various languages. A composite type is a collection
of named fields, an instance of which can be treated as a single value. In many languages, composite types
are the only kind of user-definable type, and they are by far the most commonly used user-defined type in
Julia as well.

In mainstream object oriented languages, such as C++, Java, Python and Ruby, composite types also have
named functions associated with them, and the combination is called an "object". In purer object-oriented
languages, such as Ruby or Smalltalk, all values are objects whether they are composites or not. In less
pure object oriented languages, including C++ and Java, some values, such as integers and floating-point
values, are not objects, while instances of user-defined composite types are true objects with associated
methods. In Julia, all values are objects, but functions are not bundled with the objects they operate on.
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CHAPTER 11. TYPES 125

This is necessary since Julia chooses which method of a function to use by multiple dispatch, meaning that
the types of all of a function's arguments are considered when selecting a method, rather than just the
first one (see Methods for more information on methods and dispatch). Thus, it would be inappropriate
for functions to "belong" to only their first argument. Organizing methods into function objects rather
than having named bags of methods "inside" each object ends up being a highly beneficial aspect of the
language design.

Composite types are introduced with the struct keyword followed by a block of field names, optionally
annotated with types using the :: operator:

julia> struct Foo
bar
baz::Int
qux: :Float64
end

Fields with no type annotation default to Any, and can accordingly hold any type of value.

New objects of type Foo are created by applying the Foo type object like a function to values for its fields:

julia> foo = Foo("Hello, world.", 23, 1.5)
Foo("Hello, world.", 23, 1.5)

julia> typeof(foo)
Foo

When a type is applied like a function it is called a constructor. Two constructors are generated automat-
ically (these are called default constructors). One accepts any arguments and calls convert to convert
them to the types of the fields, and the other accepts arguments that match the field types exactly. The
reason both of these are generated is that this makes it easier to add new definitions without inadvertently
replacing a default constructor.

Since the bar field is unconstrained in type, any value will do. However, the value for baz must be con-
vertible to Int:

julia> Foo((), 23.5, 1)
ERROR: InexactError: Int64(23.5)
Stacktrace:

[...]

You may find a list of field names using the fieldnames function.

julia> fieldnames(Foo)
(:bar, :baz, :qux)

You can access the field values of a composite object using the traditional foo.bar notation:
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julia> foo.bar
"Hello, world."

julia> foo.baz
23

julia> foo.qux
1.5

Composite objects declared with struct are immutable; they cannot be modified after construction. This
may seem odd at first, but it has several advantages:

* It can be more efficient. Some structs can be packed efficiently into arrays, and in some cases the
compiler is able to avoid allocating immutable objects entirely.

¢ Itis not possible to violate the invariants provided by the type's constructors.

* Code using immutable objects can be easier to reason about.

An immutable object might contain mutable objects, such as arrays, as fields. Those contained objects
will remain mutable; only the fields of the immutable object itself cannot be changed to point to different
objects.

Where required, mutable composite objects can be declared with the keyword mutable struct, to be
discussed in the next section.

If all the fields of an immutable structure are indistinguishable (===) then two immutable values containing
those fields are also indistinguishable:

julia> struct X
a::Int
b::Float64

end

julia> X(1, 2) === X(1, 2)
true

There is much more to say about how instances of composite types are created, but that discussion depends

on both Parametric Types and on Methods, and is sufficiently important to be addressed in its own section:
Constructors.

For many user-defined types X, you may want to define a method Base.broadcastable(x::X) = Ref(x)
so that instances of that type act as 0-dimensional "scalars" for broadcasting.

11.5 Mutable Composite Types

If a composite type is declared with mutable structinstead of struct, then instances of it can be modified:

julia> mutable struct Bar
baz
qux: :Float64
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end

julia> bar = Bar("Hello", 1.5);

julia> bar.qux = 2.0
2.0
julia> bar.baz = 1//2

1//72

An extra interface between the fields and the user can be provided through Instance Properties. This grants
more control on what can be accessed and modified using the bar.baz notation.

In order to support mutation, such objects are generally allocated on the heap, and have stable memory
addresses. A mutable object is like a little container that might hold different values over time, and so can
only be reliably identified with its address. In contrast, an instance of an immutable type is associated with
specific field values -- the field values alone tell you everything about the object. In deciding whether to
make a type mutable, ask whether two instances with the same field values would be considered identical,
or if they might need to change independently over time. If they would be considered identical, the type
should probably be immutable.

To recap, two essential properties define immutability in Julia:

* It is not permitted to modify the value of an immutable type.

- For bits types this means that the bit pattern of a value once set will never change and that
value is the identity of a bits type.

- For composite types, this means that the identity of the values of its fields will never change.
When the fields are bits types, that means their bits will never change, for fields whose values
are mutable types like arrays, that means the fields will always refer to the same mutable value
even though that mutable value's content may itself be modified.

* An object with an immutable type may be copied freely by the compiler since its immutability makes
it impossible to programmatically distinguish between the original object and a copy.

- In particular, this means that small enough immutable values like integers and floats are typi-
cally passed to functions in registers (or stack allocated).

- Mutable values, on the other hand are heap-allocated and passed to functions as pointers to
heap-allocated values except in cases where the compiler is sure that there's no way to tell
that this is not what is happening.

In cases where one or more fields of an otherwise mutable struct is known to be immutable, one can declare
these fields as such using const as shown below. This enables some, but not all of the optimizations of
immutable structs, and can be used to enforce invariants on the particular fields marked as const.

Julia 1.8

const annotating fields of mutable structs requires at least Julia 1.8.
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julia> mutable struct Baz
a::Int
const b::Float64
end

julia> baz = Baz(1l, 1.5);

julia> baz.a = 2
2

julia> baz.b = 2.0
ERROR: setfield!: const field .b of type Baz cannot be changed
[...]

11.6 Declared Types
The three kinds of types (abstract, primitive, composite) discussed in the previous sections are actually all
closely related. They share the same key properties:

* They are explicitly declared.

* They have names.

* They have explicitly declared supertypes.

¢ They may have parameters.

Because of these shared properties, these types are internally represented as instances of the same con-
cept, DataType, which is the type of any of these types:

julia> typeof(Real)
DataType

julia> typeof(Int)
DataType

A DataType may be abstract or concrete. If it is concrete, it has a specified size, storage layout, and
(optionally) field names. Thus a primitive type is a DataType with nonzero size, but no field names. A
composite type is a DataType that has field names or is empty (zero size).

Every concrete value in the system is an instance of some DataType.

11.7 Type Unions

A type union is a special abstract type which includes as objects all instances of any of its argument types,
constructed using the special Union keyword:

julia> IntOrString = Union{Int,AbstractString}
Union{Int64, AbstractString}
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julia> 1 :: IntOrString
1

julia> "Hello!" :: IntOrString
"Hello!"

julia> 1.0 :: IntOrString
ERROR: TypeError: in typeassert, expected Union{Int64, AbstractString}, got a value of type
— Float64

The compilers for many languages have an internal union construct for reasoning about types; Julia simply
exposes it to the programmer. The Julia compiler is able to generate efficient code in the presence of
Union types with a small number of types !, by generating specialized code in separate branches for each
possible type.

A particularly useful case of a Union type is Union{T, Nothing}, where T can be any type and Nothing
is the singleton type whose only instance is the object nothing. This pattern is the Julia equivalent of
Nullable, Option or Maybe types in other languages. Declaring a function argument or a field as Union{T,
Nothing} allows setting it either to a value of type T, or to nothing to indicate that there is no value. See
this FAQ entry for more information.

11.8 Parametric Types

An important and powerful feature of Julia's type system is that it is parametric: types can take parameters,
so that type declarations actually introduce a whole family of new types - one for each possible combina-
tion of parameter values. There are many languages that support some version of generic programming,
wherein data structures and algorithms to manipulate them may be specified without specifying the ex-
act types involved. For example, some form of generic programming exists in ML, Haskell, Ada, Eiffel,
C++, Java, C#, F#, and Scala, just to name a few. Some of these languages support true parametric
polymorphism (e.g. ML, Haskell, Scala), while others support ad-hoc, template-based styles of generic
programming (e.g. C++, Java). With so many different varieties of generic programming and parametric
types in various languages, we won't even attempt to compare Julia's parametric types to other languages,
but will instead focus on explaining Julia's system in its own right. We will note, however, that because
Julia is a dynamically typed language and doesn't need to make all type decisions at compile time, many
traditional difficulties encountered in static parametric type systems can be relatively easily handled.

All declared types (the DataType variety) can be parameterized, with the same syntax in each case. We
will discuss them in the following order: first, parametric composite types, then parametric abstract types,
and finally parametric primitive types.

Parametric Composite Types

Type parameters are introduced immediately after the type name, surrounded by curly braces:

julia> struct Point{T}
x::T
y::T
end

This declaration defines a new parametric type, Point{T}, holding two "coordinates" of type T. What, one
may ask, is T? Well, that's precisely the point of parametric types: it can be any type at all (or a value
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of any bits type, actually, although here it's clearly used as a type). Point{Float64} is a concrete type
equivalent to the type defined by replacing T in the definition of Point with Float64. Thus, this single
declaration actually declares an unlimited number of types: Point{Float64}, Point{AbstractString},
Point{Int64}, etc. Each of these is now a usable concrete type:

julia> Point{Float64}
Point{Float64}

julia> Point{AbstractString}
Point{AbstractString}

The type Point{Float64} is a point whose coordinates are 64-bit floating-point values, while the type
Point{AbstractString} is a "point" whose "coordinates" are string objects (see Strings).

Point itself is also a valid type object, containing all instances Point{Float64}, Point{AbstractString},
etc. as subtypes:

julia> Point{Float64} <: Point
true

julia> Point{AbstractString} <: Point
true

Other types, of course, are not subtypes of it:

julia> Float64 <: Point
false

julia> AbstractString <: Point
false

Concrete Point types with different values of T are never subtypes of each other:

julia> Point{Float64} <: Point{Int64}
false

julia> Point{Float64} <: Point{Real}
false

Warning

This last pointis very important: even though Float64 <: Real we DO NOT have Point{Float64}
<: Point{Real}.

In other words, in the parlance of type theory, Julia's type parameters are invariant, rather than being
covariant (or even contravariant). This is for practical reasons: while any instance of Point{Float64} may
conceptually be like an instance of Point{Real} as well, the two types have different representations in
memory:


https://en.wikipedia.org/wiki/Covariance_and_contravariance_%28computer_science%29
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e Aninstance of Point{Float64} can be represented compactly and efficiently as an immediate pair
of 64-bit values;

e An instance of Point{Real} must be able to hold any pair of instances of Real. Since objects that
are instances of Real can be of arbitrary size and structure, in practice an instance of Point{Real}
must be represented as a pair of pointers to individually allocated Real objects.

The efficiency gained by being able to store Point{Float64} objects with immediate values is magnified
enormously in the case of arrays: an Array{Float64} can be stored as a contiguous memory block of
64-bit floating-point values, whereas an Array{Real} must be an array of pointers to individually allocated
Real objects - which may well be boxed 64-bit floating-point values, but also might be arbitrarily large,
complex objects, which are declared to be implementations of the Real abstract type.

Since Point{Float64} is not a subtype of Point{Real}, the following method can't be applied to argu-
ments of type Point{Float64}:

function norm(p::Point{Real})
sqrt(p.x"2 + p.y"2)
end

A correct way to define a method that accepts all arguments of type Point{T} where T is a subtype of Real
is:

function norm(p::Point{<:Real})
sqrt(p.x"2 + p.y~2)
end

(Equivalently, one could define function norm(p::Point{T} where T<:Real) or function norm(p::Point{T})
where T<:Real; see UnionAll Types.)

More examples will be discussed later in Methods.

How does one construct a Point object? It is possible to define custom constructors for composite types,
which will be discussed in detail in Constructors, but in the absence of any special constructor declara-
tions, there are two default ways of creating new composite objects, one in which the type parameters are
explicitly given and the other in which they are implied by the arguments to the object constructor.

Since the type Point{Float64} is a concrete type equivalent to Point declared with Float64 in place of
T, it can be applied as a constructor accordingly:

julia> p = Point{Float64}(1.0, 2.0)
Point{Float64} (1.0, 2.0)

julia> typeof(p)
Point{Float64}

For the default constructor, exactly one argument must be supplied for each field:
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julia> Point{Float64}(1.0)
ERROR: MethodError: no method matching Point{Float64}(::Float64)
[...]

julia> Point{Float64}(1.0,2.0,3.0)
ERROR: MethodError: no method matching Point{Float64}(::Float64, ::Float64, ::Float64)
[...]

Only one default constructor is generated for parametric types, since overriding it is not possible. This
constructor accepts any arguments and converts them to the field types.

In many cases, it is redundant to provide the type of Point object one wants to construct, since the types of
arguments to the constructor call already implicitly provide type information. For that reason, you can also
apply Point itself as a constructor, provided that the implied value of the parameter type T is unambiguous:

julia> pl = Point(1.0,2.0)
Point{Float64} (1.0, 2.0)

julia> typeof(pl)
Point{Float64}

julia> p2 = Point(1,2)
Point{Int64}(1, 2)

julia> typeof(p2)
Point{Int64}

In the case of Point, the type of T is unambiguously implied if and only if the two arguments to Point have
the same type. When this isn't the case, the constructor will fail with a MethodError:

julia> Point(1,2.5)
ERROR: MethodError: no method matching Point(::Int64, ::Float64)

Closest candidates are:
Point(::T, !'Matched::T) where T
@ Main none:2

Stacktrace:
[...]

Constructor methods to appropriately handle such mixed cases can be defined, but that will not be dis-
cussed until later on in Constructors.

Parametric Abstract Types

Parametric abstract type declarations declare a collection of abstract types, in much the same way:

julia> abstract type Pointy{T} end

With this declaration, Pointy{T} is a distinct abstract type for each type or integer value of T. As with
parametric composite types, each such instance is a subtype of Pointy:
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julia> Pointy{Int64} <: Pointy
true

julia> Pointy{1} <: Pointy
true

Parametric abstract types are invariant, much as parametric composite types are:

julia> Pointy{Float64} <: Pointy{Real}
false

julia> Pointy{Real} <: Pointy{Float64}
false

The notation Pointy{<:Real} can be used to express the Julia analogue of a covariant type, while Pointy{>:Int}
the analogue of a contravariant type, but technically these represent sets of types (see UnionAll Types).

julia> Pointy{Float64} <: Pointy{<:Real}
true

julia> Pointy{Real} <: Pointy{>:Int}
true

Much as plain old abstract types serve to create a useful hierarchy of types over concrete types, parametric
abstract types serve the same purpose with respect to parametric composite types. We could, for example,
have declared Point{T} to be a subtype of Pointy{T} as follows:

julia> struct Point{T} <: Pointy{T}
x::T
y:o:T
end

Given such a declaration, for each choice of T, we have Point{T} as a subtype of Pointy{T}:

julia> Point{Float64} <: Pointy{Float64}
true

julia> Point{Real} <: Pointy{Real}
true

julia> Point{AbstractString} <: Pointy{AbstractString}
true

This relationship is also invariant:

julia> Point{Float64} <: Pointy{Real}
false

julia> Point{Float64} <: Pointy{<:Real}
true
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What purpose do parametric abstract types like Pointy serve? Consider if we create a point-like imple-
mentation that only requires a single coordinate because the point is on the diagonal line x = y:

julia> struct DiagPoint{T} <: Pointy{T}
x::T
end

Now both Point{Float64} and DiagPoint{Float64} are implementations of the Pointy{Float64} ab-
straction, and similarly for every other possible choice of type T. This allows programming to a common
interface shared by all Pointy objects, implemented for both Point and DiagPoint. This cannot be fully
demonstrated, however, until we have introduced methods and dispatch in the next section, Methods.

There are situations where it may not make sense for type parameters to range freely over all possible
types. In such situations, one can constrain the range of T like so:

julia> abstract type Pointy{T<:Real} end

With such a declaration, it is acceptable to use any type that is a subtype of Real in place of T, but not
types that are not subtypes of Real:

julia> Pointy{Float64}
Pointy{Float64}

julia> Pointy{Real}
Pointy{Real}

julia> Pointy{AbstractString}
ERROR: TypeError: in Pointy, in T, expected T<:Real, got Type{AbstractString}

julia> Pointy{1}
ERROR: TypeError: in Pointy, in T, expected T<:Real, got a value of type Int64

Type parameters for parametric composite types can be restricted in the same manner:

struct Point{T<:Real} <: Pointy{T}
x::T
y::T

end

To give a real-world example of how all this parametric type machinery can be useful, here is the actual
definition of Julia's Rational immutable type (except that we omit the constructor here for simplicity),
representing an exact ratio of integers:

struct Rational{T<:Integer} <: Real
num::T
den::T

end

It only makes sense to take ratios of integer values, so the parameter type T is restricted to being a
subtype of Integer, and a ratio of integers represents a value on the real number line, so any Rational is
an instance of the Real abstraction.
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Tuple Types

Tuples are an abstraction of the arguments of a function - without the function itself. The salient aspects of
a function's arguments are their order and their types. Therefore a tuple type is similar to a parameterized
immutable type where each parameter is the type of one field. For example, a 2-element tuple type
resembles the following immutable type:

struct Tuple2{A,B}
a::A
b::B

end

However, there are three key differences:

* Tuple types may have any number of parameters.

* Tuple types are covariant in their parameters: Tuple{Int} is a subtype of Tuple{Any}. Therefore
Tuple{Any} is considered an abstract type, and tuple types are only concrete if their parameters
are.

* Tuples do not have field names; fields are only accessed by index.

Tuple values are written with parentheses and commas. When a tuple is constructed, an appropriate tuple
type is generated on demand:

julia> typeof((1,"foo",2.5))
Tuple{Int64, String, Float64}

Note the implications of covariance:

julia> Tuple{Int,AbstractString} <: Tuple{Real,Any}
true

julia> Tuple{Int,AbstractString} <: Tuple{Real,Real}
false

julia> Tuple{Int,AbstractString} <: Tuple{Real,}
false

Intuitively, this corresponds to the type of a function's arguments being a subtype of the function's signature
(when the signature matches).

Vararg Tuple Types

The last parameter of a tuple type can be the special value Vararg, which denotes any number of trailing
elements:
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julia> mytupletype = Tuple{AbstractString,Vararg{Int}}
Tuple{AbstractString, Vararg{Int64}}

julia> isa(("1",), mytupletype)
true

julia> isa(("1",1), mytupletype)
true

julia> isa(("1",1,2), mytupletype)
true

julia> isa(("1",1,2,3.0), mytupletype)
false

Moreover Vararg{T} corresponds to zero or more elements of type T. Vararg tuple types are used to rep-
resent the arguments accepted by varargs methods (see Varargs Functions).

The special value Vararg{T,N} (when used as the last parameter of a tuple type) corresponds to exactly N
elements of type T. NTuple{N, T} is a convenient alias for Tuple{Vararg{T,N}}, i.e. a tuple type containing
exactly N elements of type T.

Named Tuple Types

Named tuples are instances of the NamedTuple type, which has two parameters: a tuple of symbols giving
the field names, and a tuple type giving the field types. For convenience, NamedTuple types are printed
using the @NamedTuple macro which provides a convenient struct-like syntax for declaring these types
via key: : Type declarations, where an omitted : : Type corresponds to : :Any.

julia> typeof((a=1,b="hello")) # prints in macro form
@NamedTuple{a::Int64, b::String}

julia> NamedTuple{(:a, :b), Tuple{Int64, String}} # long form of the type
@NamedTuple{a::Int64, b::String}

The begin ... endform of the @NamedTuple macro allows the declarations to be split across multiple lines
(similar to a struct declaration), but is otherwise equivalent:

julia> @NamedTuple begin
a::Int
b::String
end
@NamedTuple{a::Int64, b::String}

A NamedTuple type can be used as a constructor, accepting a single tuple argument. The constructed
NamedTuple type can be either a concrete type, with both parameters specified, or a type that specifies
only field names:

julia> @NamedTuple{a::Float32,b::String}((1, ""))
(a =1.0f0, b ="")
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julia> NamedTuple{(:a, :b)}((1, ""))
(a=1,b=""

If field types are specified, the arguments are converted. Otherwise the types of the arguments are used
directly.

Parametric Primitive Types

Primitive types can also be declared parametrically. For example, pointers are represented as primitive
types which would be declared in Julia like this:

# 32-bit system:
primitive type Ptr{T} 32 end

# 64-bit system:
primitive type Ptr{T} 64 end

The slightly odd feature of these declarations as compared to typical parametric composite types, is that
the type parameter T is not used in the definition of the type itself - it is just an abstract tag, essentially
defining an entire family of types with identical structure, differentiated only by their type parameter. Thus,
Ptr{Float64} and Ptr{Int64} are distinct types, even though they have identical representations. And
of course, all specific pointer types are subtypes of the umbrella Ptr type:

julia> Ptr{Float64} <: Ptr
true

julia> Ptr{Int64} <: Ptr
true

11.9 UnionAll Types

We have said that a parametric type like Ptr acts as a supertype of all its instances (Ptr{Int64} etc.). How
does this work? Ptr itself cannot be a normal data type, since without knowing the type of the referenced
data the type clearly cannot be used for memory operations. The answer is that Ptr (or other parametric
types like Array) is a different kind of type called a UnionAll type. Such a type expresses the iterated
union of types for all values of some parameter.

UnionAll types are usually written using the keyword where. For example Ptr could be more accurately
written as Ptr{T} where T, meaning all values whose type is Ptr{T} for some value of T. In this context,
the parameter T is also often called a "type variable" since it is like a variable that ranges over types. Each
where introduces a single type variable, so these expressions are nested for types with multiple parameters,
for example Array{T,N} where N where T.

The type application syntax A{B, C} requires A to be a UnionAll type, and first substitutes B for the outer-
most type variable in A. The result is expected to be another UnionAll type, into which C is then substituted.
So A{B,C} is equivalent to A{B}{C}. This explains why it is possible to partially instantiate a type, as in
Array{Float64}: the first parameter value has been fixed, but the second still ranges over all possible
values. Using explicit where syntax, any subset of parameters can be fixed. For example, the type of all
1-dimensional arrays can be written as Array{T,1} where T.
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Type variables can be restricted with subtype relations. Array{T} where T<:Integer refers to all arrays
whose element type is some kind of Integer. The syntax Array{<:Integer} is a convenient shorthand for
Array{T} where T<:Integer. Type variables can have both lower and upper bounds. Array{T} where
Int<:T<:Number refers to all arrays of Numbers that are able to contain Ints (since T must be at least as
big as Int). The syntax where T>:Int also works to specify only the lower bound of a type variable, and
Array{>:Int} is equivalent to Array{T} where T>:Int.

Since where expressions nest, type variable bounds can refer to outer type variables. For example Tuple{T,Array{S}}
where S<:AbstractArray{T} where T<:Real refers to 2-tuples whose first element is some Real, and

whose second element is an Array of any kind of array whose element type contains the type of the first

tuple element.

The where keyword itself can be nested inside a more complex declaration. For example, consider the two
types created by the following declarations:

julia> const T1 = Array{Array{T, 1} where T, 1}
Vector{Vector} (alias for Array{Array{T, 1} where T, 1})

julia> const T2 = Array{Array{T, 1}, 1} where T
Array{Vector{T}, 1} where T

Type T1 defines a 1-dimensional array of 1-dimensional arrays; each of the inner arrays consists of objects
of the same type, but this type may vary from one inner array to the next. On the other hand, type T2
defines a 1-dimensional array of 1-dimensional arrays all of whose inner arrays must have the same type.
Note that T2 is an abstract type, e.g., Array{Array{Int,1},1} <: T2, whereas T1 is a concrete type. As
a consequence, T1 can be constructed with a zero-argument constructor a=T1() but T2 cannot.

There is a convenient syntax for naming such types, similar to the short form of function definition syntax:
| vector{T} = Array{T, 1}

This is equivalent to const Vector = Array{T,1} where T. Writing Vector{Float64} is equivalent to
writing Array{Float64,1}, and the umbrella type Vector has as instances all Array objects where the
second parameter - the number of array dimensions - is 1, regardless of what the element type is. In
languages where parametric types must always be specified in full, this is not especially helpful, but in
Julia, this allows one to write just Vector for the abstract type including all one-dimensional dense arrays
of any element type.

11.10 Singleton types

Immutable composite types with no fields are called singletons. Formally, if

1. Tis an immutable composite type (i.e. defined with struct),
2. aisa T & b isa Timpliesa === b,

then T is a singleton type.? Base.issingletontype can be used to check if a type is a singleton type.
Abstract types cannot be singleton types by construction.

From the definition, it follows that there can be only one instance of such types:
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julia> struct NoFields
end

julia> NoFields() === NoFields()
true

julia> Base.issingletontype(NoFields)
true

The === function confirms that the constructed instances of NoFields are actually one and the same.

Parametric types can be singleton types when the above condition holds. For example,

julia> struct NoFieldsParam{T}
end

julia> Base.issingletontype(NoFieldsParam) # Can't be a singleton type ...

false

julia> NoFieldsParam{Int}() isa NoFieldsParam # ... because it has ...
true

julia> NoFieldsParam{Bool}() isa NoFieldsParam # ... multiple instances.
true

julia> Base.issingletontype(NoFieldsParam{Int}) # Parametrized, it is a singleton.
true

julia> NoFieldsParam{Int}() === NoFieldsParam{Int}()
true

11.11 Types of functions

Each function has its own type, which is a subtype of Function.

julia> foo4l(x) = x + 1
foo4l (generic function with 1 method)

julia> typeof(foo4l)
typeof(food4l) (singleton type of function foo4l, subtype of Function)

Note how typeof (foo41l) prints as itself. This is merely a convention for printing, as it is a first-class object
that can be used like any other value:

julia> T = typeof(foo4l)
typeof(food4l) (singleton type of function foo4l, subtype of Function)

julia> T <: Function
true
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Types of functions defined at top-level are singletons. When necessary, you can compare them with ===,

Closures also have their own type, which is usually printed with names that end in #<number>. Names and
types for functions defined at different locations are distinct, but not guaranteed to be printed the same
way across sessions.

julia> typeof(x -> x + 1)
var"#9#10"

Types of closures are not necessarily singletons.

julia> addy(y) = x -> x +y
addy (generic function with 1 method)

julia> typeof(addy(l)) === typeof(addy(2))
true

julia> addy(1) === addy(2)

false

julia> Base.issingletontype(typeof(addy(1)))
false

11.12 Type{T} type selectors

Foreach type T, Type{T} is an abstract parametric type whose only instance is the object T. Until we discuss
Parametric Methods and conversions, it is difficult to explain the utility of this construct, but in short, it
allows one to specialize function behavior on specific types as values. This is useful for writing methods
(especially parametric ones) whose behavior depends on a type that is given as an explicit argument rather
than implied by the type of one of its arguments.

Since the definition is a little difficult to parse, let's look at some examples:

julia> isa(Float64, Type{Float64})
true

julia> isa(Real, Type{Float64})
false

julia> isa(Real, Type{Real})
true

julia> isa(Float64, Type{Real})
false

In other words, isa(A, Type{B}) is trueif and only if A and B are the same object and that object is a type.

In particular, since parametric types are invariant, we have

julia> struct TypeParamExample{T}
x::T
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end

julia> TypeParamExample isa Type{TypeParamExample}
true

julia> TypeParamExample{Int} isa Type{TypeParamExample}
false

julia> TypeParamExample{Int} isa Type{TypeParamExample{Int}}
true

Without the parameter, Type is simply an abstract type which has all type objects as its instances:

julia> isa(Type{Float64}, Type)
true

julia> isa(Float64, Type)
true

julia> isa(Real, Type)

true

Any object that is not a type is not an instance of Type:

julia> isa(l, Type)
false

julia> isa("foo", Type)
false

While Type is part of Julia's type hierarchy like any other abstract parametric type, it is not commonly
used outside method signatures except in some special cases. Another important use case for Type is
sharpening field types which would otherwise be captured less precisely, e.g. as DataType in the example
below where the default constructor could lead to performance problems in code relying on the precise
wrapped type (similarly to abstract type parameters).

julia> struct WrapType{T}
value::T
end

julia> WrapType(Float64) # default constructor, note DataType
WrapType{DataType} (Float64)

julia> WrapType(::Type{T}) where T = WrapType{Type{T}}(T)
WrapType

julia> WrapType(Float64) # sharpened constructor, note more precise Type{Float64}
WrapType{Type{Float64}}(Float64)
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11.13 Type Aliases

Sometimes it is convenient to introduce a new name for an already expressible type. This can be done with
a simple assignment statement. For example, UInt is aliased to either UInt32 or UInt64 as is appropriate
for the size of pointers on the system:

# 32-bit system:
julia> UInt
UInt32

# 64-bit system:
julia> UInt
UInt64

This is accomplished via the following code in base/boot.jl:

if Int === Int64

const UInt = UInt64
else

const UInt = UInt32
end

Of course, this depends on what Int is aliased to - but that is predefined to be the correct type - either
Int32 or Int64.

(Note that unlike Int, Float does not exist as a type alias for a specific sized AbstractFloat. Unlike with
integer registers, where the size of Int reflects the size of a native pointer on that machine, the floating
point register sizes are specified by the IEEE-754 standard.)

11.14 Operations on Types

Since types in Julia are themselves objects, ordinary functions can operate on them. Some functions that
are particularly useful for working with or exploring types have already been introduced, such as the <:
operator, which indicates whether its left hand operand is a subtype of its right hand operand.

The isa function tests if an object is of a given type and returns true or false:

julia> isa(l, Int)
true

julia> isa(l, AbstractFloat)
false

The typeof function, already used throughout the manual in examples, returns the type of its argument.
Since, as noted above, types are objects, they also have types, and we can ask what their types are:

julia> typeof(Rational{Int})
DataType

julia> typeof(Union{Real,String})
Union
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What if we repeat the process? What is the type of a type of a type? As it happens, types are all composite
values and thus all have a type of DataType:

julia> typeof(DataType)
DataType

julia> typeof(Union)
DataType

DataType is its own type.

Another operation that applies to some types is supertype, which reveals a type's supertype. Only declared
types (DataType) have unambiguous supertypes:

julia> supertype(Float64)
AbstractFloat

julia> supertype(Number)
Any

julia> supertype(AbstractString)
Any

julia> supertype(Any)
Any

If you apply supertype to other type objects (or non-type objects), a MethodError is raised:

julia> supertype(Union{Float64,Int64})

ERROR: MethodError: no method matching supertype(::Type{Union{Float64, Int64}})
Closest candidates are:

[...]

11.15 Custom pretty-printing

Often, one wants to customize how instances of a type are displayed. This is accomplished by overloading
the show function. For example, suppose we define a type to represent complex numbers in polar form:

julia> struct Polar{T<:Real} <: Number
ro:T
0::T
end
julia> Polar(r::Real,0::Real) = Polar(promote(r,0)...)
Polar

Here, we've added a custom constructor function so that it can take arguments of different Real types and
promote them to a common type (see Constructors and Conversion and Promotion). (Of course, we would
have to define lots of other methods, too, to make it act like a Number, e.g. +, *, one, zero, promotion rules
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and so on.) By default, instances of this type display rather simply, with information about the type name
and the field values, as e.g. Polar{Float64}(3.0,4.0).

If we want it to display instead as 3.0 * exp(4.0im), we would define the following method to print the
object to a given output object io (representing a file, terminal, buffer, etcetera; see Networking and
Streams):

‘julia> Base.show(io::I0, z::Polar) = print(io, z.r, " * exp(", z.0, "im)")

More fine-grained control over display of Polar objects is possible. In particular, sometimes one wants both
a verbose multi-line printing format, used for displaying a single object in the REPL and other interactive
environments, and also a more compact single-line format used for print or for displaying the object as part
of another object (e.g. in an array). Although by default the show(io, z) function is called in both cases,
you can define a different multi-line format for displaying an object by overloading a three-argument form
of show that takes the text/plain MIME type as its second argument (see Multimedia I/O), for example:

julia> Base.show(io::I0, ::MIME"text/plain", z::Polar{T}) where{T} =
print(io, "Polar{$T} complex number:\n ", z)

(Note that print(..., z) here will call the 2-argument show(io, z) method.) This results in:

julia> Polar(3, 4.0)
Polar{Float64} complex number:
3.0 * exp(4.0im)

julia> [Polar(3, 4.0), Polar(4.0,5.3)]
2-element Vector{Polar{Float64}}:

3.0 * exp(4.0im)

4.0 * exp(5.3im)

where the single-line show(io, z) formis still used for an array of Polar values. Technically, the REPL calls
display(z) todisplay the result of executing a line, which defaults to show(stdout, MIME("text/plain"),
z), which in turn defaults to show(stdout, z), but you should not define new display methods unless
you are defining a new multimedia display handler (see Multimedia 1/0).

Moreover, you can also define show methods for other MIME types in order to enable richer display (HTML,
images, etcetera) of objects in environments that support this (e.g. ljulia). For example, we can define
formatted HTML display of Polar objects, with superscripts and italics, via:

julia> Base.show(io::I0, ::MIME"text/html", z::Polar{T}) where {T} =
println(io, "<code>Polar{$T}</code> complex number: ",
z.r, "

<i»e</i><sup>", z.0, <i>i</i></sup>")

A Polar object will then display automatically using HTML in an environment that supports HTML display,
but you can call show manually to get HTML output if you want:

julia> show(stdout, "text/html", Polar(3.0,4.0))
<code>Polar{Float64}</code> complex number: 3.0 <i>e</i><sup>4.0 <i>i</i></sup>
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As a rule of thumb, the single-line show method should print a valid Julia expression for creating the shown
object. When this show method contains infix operators, such as the multiplication operator (*) in our single-
line show method for Polar above, it may not parse correctly when printed as part of another object. To
see this, consider the expression object (see Program representation) which takes the square of a specific
instance of our Polar type:

julia> a = Polar(3, 4.0)
Polar{Float64} complex number:
3.0 * exp(4.0im)

julia> print(:(%a”2))
3.0 * exp(4.0im) ~ 2

Because the operator " has higher precedence than * (see Operator Precedence and Associativity), this
output does not faithfully represent the expression a ~ 2 which should be equal to (3.0 * exp(4.0im))
~ 2. To solve this issue, we must make a custom method for Base.show unquoted(io::I0, z::Polar,
indent::Int, precedence::Int), which is called internally by the expression object when printing:

julia> function Base.show unquoted(io::I0, z::Polar, ::Int, precedence::Int)

if Base.operator_precedence(:*) <= precedence
print(io, "(")
show(io, z)
print(io, ")")

else
show(io, z)

end

end

julia> :(%a™2)
:((3.0 * exp(4.0im)) ~ 2)

The method defined above adds parentheses around the call to show when the precedence of the calling
operator is higher than or equal to the precedence of multiplication. This check allows expressions which
parse correctly without the parentheses (such as : ($a + 2) and : ($a == 2)) to omit them when printing:

julia> :($a + 2)
1(3.0 * exp(4.0im) + 2)

julia> :(%a == 2)
1(3.0 * exp(4.0im) == 2)

In some cases, it is useful to adjust the behavior of show methods depending on the context. This can
be achieved via the I0Context type, which allows passing contextual properties together with a wrapped
10 stream. For example, we can build a shorter representation in our show method when the :compact
property is set to true, falling back to the long representation if the property is false or absent:

julia> function Base.show(io::I0, z::Polar)
if get(io, :compact, false)::Bool
print(io, z.r, "", z.0, "im")
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else
print(io, z.r, " * exp(", z.0, "im)")
end
end

This new compact representation will be used when the passed 10 stream is an I0Context object with the
:compact property set. In particular, this is the case when printing arrays with multiple columns (where
horizontal space is limited):

julia> show(IOContext(stdout, :compact=>true), Polar(3, 4.0))
3.04.0im

julia> [Polar(3, 4.0) Polar(4.0,5.3)]
1x2 Matrix{Polar{Float64}}:
3.04.0im 4.05.3im

See the I0Context documentation for a list of common properties which can be used to adjust printing.

11.16 "Value types"

In Julia, you can't dispatch on a value such as true or false. However, you can dispatch on parametric
types, and Julia allows you to include "plain bits" values (Types, Symbols, Integers, floating-point numbers,
tuples, etc.) as type parameters. A common example is the dimensionality parameter in Array{T,N},
where T is a type (e.g., Float64) but N is just an Int.

You can create your own custom types that take values as parameters, and use them to control dispatch
of custom types. By way of illustration of this idea, let's introduce the parametric type Val{x}, and its
constructor Val(x) = Val{x}(), which serves as a customary way to exploit this technique for cases
where you don't need a more elaborate hierarchy.

Val is defined as:

julia> struct val{x}
end

julia> Val(x) = Val{x}()
Val

There is no more to the implementation of Val than this. Some functions in Julia's standard library accept
Val instances as arguments, and you can also use it to write your own functions. For example:

julia> firstlast(::Val{true}) = "First"
firstlast (generic function with 1 method)

julia> firstlast(::Val{false}) = "Last"
firstlast (generic function with 2 methods)

julia> firstlast(Val(true))
"First"

julia> firstlast(val(false))
"Last"
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For consistency across Julia, the call site should always pass a Val instance rather than using a type, i.e.,
use foo(Val(:bar)) rather than foo(Val{:bar}).

It's worth noting that it's extremely easy to mis-use parametric "value" types, including Val; in unfavorable
cases, you can easily end up making the performance of your code much worse. In particular, you would
never want to write actual code as illustrated above. For more information about the proper (and improper)
uses of Val, please read the more extensive discussion in the performance tips.

1Small" is defined by the max_union_splitting configuration, which currently defaults to 4.

2A few popular languages have singleton types, including Haskell, Scala and Ruby.



Chapter 12

Methods

Recall from Functions that a function is an object that maps a tuple of arguments to a return value, or throws
an exception if no appropriate value can be returned. It is common for the same conceptual function or
operation to be implemented quite differently for different types of arguments: adding two integers is very
different from adding two floating-point numbers, both of which are distinct from adding an integer to a
floating-point number. Despite their implementation differences, these operations all fall under the general
concept of "addition". Accordingly, in Julia, these behaviors all belong to a single object: the + function.

To facilitate using many different implementations of the same concept smoothly, functions need not be
defined all at once, but can rather be defined piecewise by providing specific behaviors for certain com-
binations of argument types and counts. A definition of one possible behavior for a function is called a
method. Thus far, we have presented only examples of functions defined with a single method, applicable
to all types of arguments. However, the signatures of method definitions can be annotated to indicate the
types of arguments in addition to their number, and more than a single method definition may be provided.
When a function is applied to a particular tuple of arguments, the most specific method applicable to those
arguments is applied. Thus, the overall behavior of a function is a patchwork of the behaviors of its various
method definitions. If the patchwork is well designed, even though the implementations of the methods
may be quite different, the outward behavior of the function will appear seamless and consistent.

The choice of which method to execute when a function is applied is called dispatch. Julia allows the dis-
patch process to choose which of a function's methods to call based on the number of arguments given, and
on the types of all of the function's arguments. This is different than traditional object-oriented languages,
where dispatch occurs based only on the first argument, which often has a special argument syntax, and is
sometimes implied rather than explicitly written as an argument. * Using all of a function's arguments to
choose which method should be invoked, rather than just the first, is known as multiple dispatch. Multiple
dispatch is particularly useful for mathematical code, where it makes little sense to artificially deem the
operations to "belong" to one argument more than any of the others: does the addition operationin x + y
belong to x any more than it does to y? The implementation of a mathematical operator generally depends
on the types of all of its arguments. Even beyond mathematical operations, however, multiple dispatch
ends up being a powerful and convenient paradigm for structuring and organizing programs.

Note

lIn C++ or Java, for example, in a method call like obj.meth(argl,arg2), the object obj "receives" the method call and is
implicitly passed to the method via the this keyword, rather than as an explicit method argument. When the current this object is
the receiver of a method call, it can be omitted altogether, writing just meth(argl,arg2), with this implied as the receiving object.
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All the examples in this chapter assume that you are defining methods for a function in the
same module. If you want to add methods to a function in another module, you have to import
it or use the name qualified with module names. See the section on namespace management.

12.1 Defining Methods

Until now, we have, in our examples, defined only functions with a single method having unconstrained
argument types. Such functions behave just like they would in traditional dynamically typed languages.
Nevertheless, we have used multiple dispatch and methods almost continually without being aware of it:
all of Julia's standard functions and operators, like the aforementioned + function, have many methods
defining their behavior over various possible combinations of argument type and count.

When defining a function, one can optionally constrain the types of parameters it is applicable to, using
the :: type-assertion operator, introduced in the section on Composite Types:

julia> f(x::Float64, y::Float64) = 2x + y
f (generic function with 1 method)

This function definition applies only to calls where x and y are both values of type Float64:

julia> f(2.0, 3.0)
7.0

Applying it to any other types of arguments will result in a MethodError:

julia> (2.0, 3)
ERROR: MethodError: no method matching f(::Float64, ::Int64)

Closest candidates are:
f(::Float64, !'Matched::Float64)
@ Main none:1

Stacktrace:
[...]

julia> f(Float32(2.0), 3.0)
ERROR: MethodError: no method matching f(::Float32, ::Float64)

Closest candidates are:
f(!Matched::Float64, ::Float64)
@ Main none:1

Stacktrace:
[...]

julia> (2.0, "3.0")
ERROR: MethodError: no method matching f(::Float64, ::String)

Closest candidates are:
f(::Float64, !'Matched::Float64)
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@ Main none:1

Stacktrace:
[...]

julia> f("2.0", "3.0")
ERROR: MethodError: no method matching f(::String, ::String)

As you can see, the arguments must be precisely of type Float64. Other numeric types, such as integers or
32-bit floating-point values, are not automatically converted to 64-bit floating-point, nor are strings parsed
as numbers. Because Float64 is a concrete type and concrete types cannot be subclassed in Julia, such
a definition can only be applied to arguments that are exactly of type Float64. It may often be useful,
however, to write more general methods where the declared parameter types are abstract:

julia> f(x::Number, y::Number) = 2x - vy
f (generic function with 2 methods)

julia> (2.0, 3)
1.0

This method definition applies to any pair of arguments that are instances of Number. They need not be of
the same type, so long as they are each numeric values. The problem of handling disparate numeric types
is delegated to the arithmetic operations in the expression 2x - y.

To define a function with multiple methods, one simply defines the function multiple times, with different
numbers and types of arguments. The first method definition for a function creates the function object,
and subsequent method definitions add new methods to the existing function object. The most specific
method definition matching the number and types of the arguments will be executed when the function is
applied. Thus, the two method definitions above, taken together, define the behavior for f over all pairs
of instances of the abstract type Number - but with a different behavior specific to pairs of Float64 values.
If one of the arguments is a 64-bit float but the other one is not, then the f(Float64,Float64) method
cannot be called and the more general f(Number,Number) method must be used:

julia> (2.0, 3.0)
7.0

julia> f(2, 3.0)
1.0

julia> (2.0, 3)
1.0

julia> f(2, 3)
1

The 2x + y definition is only used in the first case, while the 2x - y definition is used in the others. No
automatic casting or conversion of function arguments is ever performed: all conversion in Julia is non-
magical and completely explicit. Conversion and Promotion, however, shows how clever application of
sufficiently advanced technology can be indistinguishable from magic. 2

For non-numeric values, and for fewer or more than two arguments, the function f remains undefined, and
applying it will still result in a MethodError:
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julia> f("foo", 3)
ERROR: MethodError: no method matching f(::String,

Closest candidates are:
f(!'Matched: :Number, ::Number)
@ Main none:1

Stacktrace:

[...1]

julia> f()
ERROR: MethodError: no method matching f()

Closest candidates are:
f(!'Matched::Float64, !'Matched::Float64)
@ Main none:1
f(!Matched: :Number, !'Matched: :Number)
@ Main none:1

Stacktrace:

[...]

::Int64)
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You can easily see which methods exist for a function by entering the function object itself in an interactive

session:

julia> f
f (generic function with 2 methods)

This output tells us that f is a function object with two methods. To find out what the signatures of those

methods are, use the methods function:

julia> methods(f)
# 2 methods for generic function "f" from Main:
[1] f(x::Float64, y::Float64)
@ none:1l
[2] f(x::Number, y::Number)
@ none:1l

which shows that f has two methods, one taking two Float64 arguments and one taking arguments of
type Number. It also indicates the file and line number where the methods were defined: because these

methods were defined at the REPL, we get the apparent line number none: 1.

In the absence of a type declaration with : :, the type of a method parameter is Any by default, meaning
that it is unconstrained since all values in Julia are instances of the abstract type Any. Thus, we can define

a catch-all method for f like so:

julia> f(x,y) = println("Whoa there, Nelly.")
f (generic function with 3 methods)

julia> methods(f)
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# 3 methods for generic function "f" from Main:
[1] f(x::Float64, y::Float64)
@ none:1
[2] f(x::Number, y::Number)
@ none:1l
[3]1 f(x, V)
@ none:1

julia> f("foo", 1)
Whoa there, Nelly.

This catch-all is less specific than any other possible method definition for a pair of parameter values, so it
will only be called on pairs of arguments to which no other method definition applies.

Note that in the signature of the third method, there is no type specified for the arguments x and y. This
is a shortened way of expressing f(x::Any, y::Any).

Although it seems a simple concept, multiple dispatch on the types of values is perhaps the single most

powerful and central feature of the Julia language. Core operations typically have dozens of methods:

julia> methods(+)
# 180 methods for generic function "+":

[1] +(x::Bool, z::Complex{Bool}) in Base at complex.jl:227

[2] +(x::Bool, y::Bool) in Base at bool.jl:89

[3] +(x::Bool) in Base at bool.jl:86

[4] +(x::Bool, y::T) where T<:AbstractFloat in Base at bool.jl1:96

[5] +(x::Bool, z::Complex) in Base at complex.jl:234

[6] +(a::Floatl6, b::Floatl6) in Base at float.jl:373

[7] +(x::Float32, y::Float32) in Base at float.jl:375

[8] +(x::Float64, y::Float64) in Base at float.jl:376

[9] +(z::Complex{Bool}, x::Bool) in Base at complex.jl:228

[10] +(z::Complex{Bool}, x::Real) in Base at complex.jl:242

[11] +(x::Char, y::Integer) in Base at char.jl1:40

[12] +(c::BigInt, x::BigFloat) in Base.MPFR at mpfr.jl1:307

[13] +(a::BigInt, b::BigInt, c::BigInt, d::BigInt, e::BigInt) in Base.GMP at gmp.jl1:392
[14] +(a::BigInt, b::BigInt, c::BigInt, d::BigInt) in Base.GMP at gmp.jl:391

[15] +(a::BigInt, b::BigInt, c::BigInt) in Base.GMP at gmp.jl:390

[16] +(x::BigInt, y::BigInt) in Base.GMP at gmp.jl:361

[17] +(x::BigInt, c::Union{UIntl6, UInt32, UInt64, UInt8}) in Base.GMP at gmp.j1:398
[180] +(a, b, c, xs...) in Base at operators.jl:424

Multiple dispatch together with the flexible parametric type system give Julia its ability to abstractly express
high-level algorithms decoupled from implementation details.

12.2 Method specializations

When you create multiple methods of the same function, this is sometimes called "specialization." In this
case, you're specializing the function by adding additional methods to it: each new method is a new
specialization of the function. As shown above, these specializations are returned by methods.

There's another kind of specialization that occurs without programmer intervention: Julia's compiler can
automatically specialize the method for the specific argument types used. Such specializations are not
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listed by methods, as this doesn't create new Methods, but tools like @code typed allow you to inspect
such specializations.

For example, if you create a method

mysum(x::Real, y::Real) = x + y

you've given the function mysum one new method (possibly its only method), and that method takes any
pair of Real number inputs. But if you then execute

julia> mysum(1, 2)
3

julia> mysum(1.0, 2.0)
3.0

Julia will compile mysum twice, once for x: :Int, y::Intandagainforx::Float64, y::Float64. The point
of compiling twice is performance: the methods that get called for + (which mysum uses) vary depending on
the specific types of x and y, and by compiling different specializations Julia can do all the method lookup
ahead of time. This allows the program to run much more quickly, since it does not have to bother with
method lookup while it is running. Julia's automatic specialization allows you to write generic algorithms
and expect that the compiler will generate efficient, specialized code to handle each case you need.

In cases where the number of potential specializations might be effectively unlimited, Julia may avoid this
default specialization. See Be aware of when Julia avoids specializing for more information.

12.3 Method Ambiguities

Itis possible to define a set of function methods such that there is no unique most specific method applicable
to some combinations of arguments:

julia> g(x::Float64, y) = 2x + y
g (generic function with 1 method)

julia> g(x, y::Float64) = x + 2y
g (generic function with 2 methods)

julia> g(2.0, 3)
7.0

julia> g(2, 3.0)
8.0

julia> g(2.0, 3.0)
ERROR: MethodError: g(::Float64, ::Float64) is ambiguous.

Candidates:
g(x, y::Float64)
@ Main none:1l
g(x::Float64, y)
@ Main none:1
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Possible fix, define
g(::Float64, ::Float64)

Stacktrace:
[...]

Here the call g(2.0, 3.0) could be handled by either the g(Float64, Any) or the g(Any, Float64)
method, and neither is more specific than the other. In such cases, Julia raises a MethodError rather than
arbitrarily picking a method. You can avoid method ambiguities by specifying an appropriate method for
the intersection case:

julia> g(x::Float64, y::Float64) = 2x + 2y
g (generic function with 3 methods)

julia> g(2.0, 3)
7.0

julia> g(2, 3.0)
8.0

julia> ¢g(2.0, 3.0)
10.0

It is recommended that the disambiguating method be defined first, since otherwise the ambiguity exists,
if transiently, until the more specific method is defined.

In more complex cases, resolving method ambiguities involves a certain element of design; this topic is
explored further below.

12.4 Parametric Methods

Method definitions can optionally have type parameters qualifying the signature:

julia> same type(x::T, y::T) where {T} = true
same type (generic function with 1 method)

julia> same type(x,y) = false
same type (generic function with 2 methods)

The first method applies whenever both arguments are of the same concrete type, regardless of what type
that is, while the second method acts as a catch-all, covering all other cases. Thus, overall, this defines a
boolean function that checks whether its two arguments are of the same type:

julia> same type(l, 2)
true

julia> same type(1l, 2.0)
false

julia> same type(1.0, 2.0)
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true

julia> same type("foo", 2.0)
false

julia> same type("foo", "bar")
true

julia> same type(Int32(1), Int64(2))
false
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Such definitions correspond to methods whose type signatures are UnionAll types (see UnionAll Types).

This kind of definition of function behavior by dispatch is quite common - idiomatic, even - in Julia. Method
type parameters are not restricted to being used as the types of arguments: they can be used anywhere
a value would be in the signature of the function or body of the function. Here's an example where the
method type parameter T is used as the type parameter to the parametric type Vector{T} in the method

signature:

julia> myappend(v::Vector{T}, x::T) where {T} = [v..., x]
myappend (generic function with 1 method)

julia> myappend([1,2,31,4)
4-element Vector{Int64}:
1

2
3
4

julia> myappend([1,2,3],2.5)
ERROR: MethodError: no method matching myappend(::Vector{Int64},

Closest candidates are:
myappend(::Vector{T}, !Matched::T) where T
@ Main none:1

Stacktrace:
[...]

julia> myappend([1.0,2.0,3.0],4.0)
4-element Vector{Float64}:

1.0

2.0

3.0

4.0

julia> myappend([1.0,2.0,3.0],4)

::Float64)

ERROR: MethodError: no method matching myappend(::Vector{Float64}, ::Int64)

Closest candidates are:
myappend(::Vector{T}, !Matched::T) where T
@ Main none:1
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Stacktrace:
[...]

As you can see, the type of the appended element must match the element type of the vector it is appended
to, or else a MethodError is raised. In the following example, the method type parameter T is used as the
return value:

julia> mytypeof(x::T) where {T} =T
mytypeof (generic function with 1 method)

julia> mytypeof(1)
Into4

julia> mytypeof(1.0)
Float64

Just as you can put subtype constraints on type parameters in type declarations (see Parametric Types),
you can also constrain type parameters of methods:

julia> same type numeric(x::T, y::T) where {T<:Number} = true
same_type numeric (generic function with 1 method)

julia> same type numeric(x::Number, y::Number) = false
same_type numeric (generic function with 2 methods)

julia> same type numeric(l, 2)
true

julia> same type numeric(l, 2.0)
false

julia> same type numeric(1.0, 2.0)
true

julia> same type numeric("foo", 2.0)
ERROR: MethodError: no method matching same type numeric(::String, ::Float64)

Closest candidates are:

same_type numeric(!Matched::T, ::T) where T<:Number
@ Main none:1
same_type numeric(!Matched::Number, ::Number)

@ Main none:1

Stacktrace:
[...]

julia> same type numeric("foo", "bar")
ERROR: MethodError: no method matching same type numeric(::String, ::String)

julia> same_type numeric(Int32(1), Int64(2))
false
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The same_type numeric function behaves much like the same type function defined above, but is only
defined for pairs of numbers.

Parametric methods allow the same syntax as where expressions used to write types (see UnionAll Types).
If there is only a single parameter, the enclosing curly braces (in where {T}) can be omitted, but are often
preferred for clarity. Multiple parameters can be separated with commas, e.g. where {T, S<:Real}, or
written using nested where, e.g. where S<:Real where T.

12.5 Redefining Methods

When redefining a method or adding new methods, it is important to realize that these changes don't take
effect immediately. This is key to Julia's ability to statically infer and compile code to run fast, without the
usual JIT tricks and overhead. Indeed, any new method definition won't be visible to the current runtime
environment, including Tasks and Threads (and any previously defined @generated functions). Let's start
with an example to see what this means:

julia> function tryeval()
@eval newfun() =1
newfun()
end
tryeval (generic function with 1 method)

julia> tryeval()
ERROR: MethodError: no method matching newfun()
The applicable method may be too new: running in world age xxxx1l, while current world is xxxx2.
Closest candidates are:
newfun() at none:1 (method too new to be called from this world context.)
in tryeval() at none:1l

julia> newfun()
1

In this example, observe that the new definition for newfun has been created, but can't be immediately
called. The new global is immediately visible to the tryeval function, so you could write return newfun
(without parentheses). But neither you, nor any of your callers, nor the functions they call, or etc. can call
this new method definition!

But there's an exception: future calls to newfun from the REPL work as expected, being able to both see
and call the new definition of newfun.

However, future calls to tryeval will continue to see the definition of newfun as it was at the previous
statement at the REPL, and thus before that call to tryeval.

You may want to try this for yourself to see how it works.

The implementation of this behavior is a "world age counter". This monotonically increasing value tracks
each method definition operation. This allows describing "the set of method definitions visible to a given
runtime environment" as a single number, or "world age". It also allows comparing the methods available
in two worlds just by comparing their ordinal value. In the example above, we see that the "current world"
(in which the method newfun exists), is one greater than the task-local "runtime world" that was fixed when
the execution of tryeval started.
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Sometimes it is necessary to get around this (for example, if you are implementing the above REPL).
Fortunately, there is an easy solution: call the function using Base.invokelatest:

julia> function tryeval2()
@eval newfun2() = 2
Base.invokelatest (newfun2)
end
tryeval2 (generic function with 1 method)

julia> tryeval2()
2

Finally, let's take a look at some more complex examples where this rule comes into play. Define a function
f(x), which initially has one method:

julia> f(x) = "original definition"
f (generic function with 1 method)

Start some other operations that use f(x):

julia> g(x) = f(x)
g (generic function with 1 method)

julia> t = @async f(wait()); yield();

Now we add some new methods to f(x):

julia> f(x::Int) = "definition for Int"
f (generic function with 2 methods)

julia> f(x::Type{Int}) = "definition for Type{Int}"
f (generic function with 3 methods)

Compare how these results differ:

julia> f(1)
"definition for Int"

julia> g(1)
"definition for Int"

julia> fetch(schedule(t, 1))
"original definition"

julia> t = @async f(wait()); yield();

julia> fetch(schedule(t, 1))
"definition for Int"
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12.6 Design Patterns with Parametric Methods

While complex dispatch logic is not required for performance or usability, sometimes it can be the best
way to express some algorithm. Here are a few common design patterns that come up sometimes when
using dispatch in this way.

Extracting the type parameter from a super-type

Here is a correct code template for returning the element-type T of any arbitrary subtype of AbstractArray
that has well-defined element type:

abstract type AbstractArray{T, N} end
eltype(::Type{<:AbstractArray{T}}) where {T} =T

using so-called triangular dispatch. Note that UnionAll types, for example eltype(AbstractArray{T}
where T <: Integer), do not match the above method. The implementation of eltype in Base adds a
fallback method to Any for such cases.

One common mistake is to try and get the element-type by using introspection:
eltype wrong(::Type{A}) where {A<:AbstractArray} = A.parameters[1]
However, it is not hard to construct cases where this will fail:

struct BitVector <: AbstractArray{Bool, 1}; end

Here we have created a type BitVector which has no parameters, but where the element-type is still fully
specified, with T equal to Bool!

Another mistake is to try to walk up the type hierarchy using supertype:

eltype wrong(::Type{AbstractArray{T}}) where {T} =T
eltype wrong(::Type{AbstractArray{T, N}}) where {T, N} =T
eltype wrong(::Type{A}) where {A<:AbstractArray} = eltype wrong(supertype(A))

While this works for declared types, it fails for types without supertypes:

julia> eltype wrong(Union{AbstractArray{Int}, AbstractArray{Float64}})
ERROR: MethodError: no method matching supertype(::Type{Union{AbstractArray{Float64,N} where N,
— AbstractArray{Int64,N} where N}})
Closest candidates are:
supertype(::DataType) at operators.jl:43
supertype(::UnionAll) at operators.jl:48
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Building a similar type with a different type parameter

When building generic code, there is often a need for constructing a similar object with some change made
to the layout of the type, also necessitating a change of the type parameters. For instance, you might have
some sort of abstract array with an arbitrary element type and want to write your computation on it with a
specific element type. We must implement a method for each AbstractArray{T} subtype that describes
how to compute this type transform. There is no general transform of one subtype into another subtype
with a different parameter.

The subtypes of AbstractArray typically implement two methods to achieve this: A method to convert
the input array to a subtype of a specific AbstractArray{T, N} abstract type; and a method to make a
new uninitialized array with a specific element type. Sample implementations of these can be found in Julia
Base. Here is a basic example usage of them, guaranteeing that input and output are of the same type:

input = convert(AbstractArray{Eltype}, input)
output = similar(input, Eltype)

As an extension of this, in cases where the algorithm needs a copy of the input array, convert is insufficient
as the return value may alias the original input. Combining similar (to make the output array) and copyto!
(to fill it with the input data) is a generic way to express the requirement for a mutable copy of the input
argument:

‘copyiwithieltype(input, Eltype) = copyto!(similar(input, Eltype), input)

Iterated dispatch

In order to dispatch a multi-level parametric argument list, often it is best to separate each level of dispatch
into distinct functions. This may sound similar in approach to single-dispatch, but as we shall see below, it
is still more flexible.

For example, trying to dispatch on the element-type of an array will often run into ambiguous situations.
Instead, commonly code will dispatch first on the container type, then recurse down to a more specific
method based on eltype. In most cases, the algorithms lend themselves conveniently to this hierarchical
approach, while in other cases, this rigor must be resolved manually. This dispatching branching can be
observed, for example, in the logic to sum two matrices:

# First dispatch selects the map algorithm for element-wise summation.
+(a::Matrix, b::Matrix) = map(+, a, b)

# Then dispatch handles each element and selects the appropriate

# common element type for the computation.

+(a, b) = +(promote(a, b)...)

# Once the elements have the same type, they can be added.

# For example, via primitive operations exposed by the processor.
+(a::Float64, b::Float64) = Core.add(a, b)

Trait-based dispatch

A natural extension to the iterated dispatch above is to add a layer to method selection that allows to
dispatch on sets of types which are independent from the sets defined by the type hierarchy. We could
construct such a set by writing out a Union of the types in question, but then this set would not be extensible
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as Union-types cannot be altered after creation. However, such an extensible set can be programmed with
a design pattern often referred to as a "Holy-trait".

This pattern is implemented by defining a generic function which computes a different singleton value (or
type) for each trait-set to which the function arguments may belong to. If this function is pure there is no
impact on performance compared to normal dispatch.

The example in the previous section glossed over the implementation details of map and promote, which
both operate in terms of these traits. When iterating over a matrix, such as in the implementation of
map, one important question is what order to use to traverse the data. When AbstractArray subtypes
implement the Base.IndexStyle trait, other functions such as map can dispatch on this information to
pick the best algorithm (see Abstract Array Interface). This means that each subtype does not need to
implement a custom version of map, since the generic definitions + trait classes will enable the system to
select the fastest version. Here is a toy implementation of map illustrating the trait-based dispatch:

map(f, a::AbstractArray, b::AbstractArray) = map(Base.IndexStyle(a, b), f, a, b)
# generic implementation:

map(::Base.IndexCartesian, f, a::AbstractArray, b::AbstractArray) = ...

# linear-indexing implementation (faster)

map(::Base.IndexLinear, f, a::AbstractArray, b::AbstractArray) = ...

This trait-based approach is also present in the promote mechanism employed by the scalar +. It uses
promote type, which returns the optimal common type to compute the operation given the two types of
the operands. This makes it possible to reduce the problem of implementing every function for every pair
of possible type arguments, to the much smaller problem of implementing a conversion operation from
each type to a common type, plus a table of preferred pair-wise promotion rules.

Output-type computation

The discussion of trait-based promotion provides a transition into our next design pattern: computing the
output element type for a matrix operation.

For implementing primitive operations, such as addition, we use the promote type function to compute
the desired output type. (As before, we saw this at work in the promote call in the call to +).

For more complex functions on matrices, it may be necessary to compute the expected return type for a
more complex sequence of operations. This is often performed by the following steps:

1. Write a small function op that expresses the set of operations performed by the kernel of the algo-
rithm.

2. Compute the element type R of the result matrix as promote _op(op, argument types...), where
argument types is computed from eltype applied to each input array.

3. Build the output matrix as similar (R, dims), where dims are the desired dimensions of the output
array.

For a more specific example, a generic square-matrix multiply pseudo-code might look like:

function matmul(a::AbstractMatrix, b::AbstractMatrix)
op = (ai, bi) -> ai * bi + ai * bi


https://github.com/JuliaLang/julia/issues/2345#issuecomment-54537633
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## this is insufficient because it assumes “one(eltype(a))’ is constructable:
# R = typeof(op(one(eltype(a)), one(eltype(b))))

## this fails because it assumes "a[l]  exists and is representative of all elements of the
< array
# R = typeof(op(al[l]l, b[1]))

## this is incorrect because it assumes that "+  calls “promote type"
## but this is not true for some types, such as Bool:
# R = promote type(ai, bi)

# this is wrong, since depending on the return value
# of type-inference is very brittle (as well as not being optimizable):
# R = Base.return types(op, (eltype(a), eltype(b)))

## but, finally, this works:

R = promote op(op, eltype(a), eltype(b))

## although sometimes it may give a larger type than desired
## it will always give a correct type

output = similar(b, R, (size(a, 1), size(b, 2)))
if size(a, 2) > 0
for j in 1l:size(b, 2)
for i in 1:size(a, 1)
## here we don't use “ab = zero(R)",
## since "R’ might be “Any’ and “zero(Any)' is not defined
## we also must declare “ab::R° to make the type of “ab’ constant in the loop,
## since it is possible that typeof(a * b) != typeof(a * b + a * b) == R
ab::R = a[i, 11 * b[1, jl
for k in 2:size(a, 2)
ab += a[i, k] * b[k, jl
end
output[i, j] = ab
end
end
end
return output

end

Separate convert and kernel logic

One way to significantly cut down on compile-times and testing complexity is to isolate the logic for con-
verting to the desired type and the computation. This lets the compiler specialize and inline the conversion
logic independent from the rest of the body of the larger kernel.

This is a common pattern seen when converting from a larger class of types to the one specific argument
type that is actually supported by the algorithm:

complexfunction(arg::Int)

complexfunction(arg: :Any) complexfunction(convert(Int, arg))
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matmul(a::T, b::T) = ...
matmul(a, b) = matmul(promote(a, b)...)

12.7 Parametrically-constrained Varargs methods

Function parameters can also be used to constrain the number of arguments that may be supplied to a
"varargs" function (Varargs Functions). The notation Vararg{T,N} is used to indicate such a constraint.
For example:

julia> bar(a,b,x::Vararg{Any,2}) = (a,b,x)
bar (generic function with 1 method)

julia> bar(1,2,3)
ERROR: MethodError: no method matching bar(::Int64, ::Int64, ::Int64)

Closest candidates are:
bar(::Any, ::Any, ::Any, !Matched::Any)
@ Main none:1

Stacktrace:
[...]

julia> bar(1,2,3,4)
(1, 2, (3, 4))

julia> bar(1,2,3,4,5)
ERROR: MethodError: no method matching bar(::Int64, ::Int64, ::Int64, ::Int64, ::Int64)

Closest candidates are:
bar(::Any, ::Any, ::Any, ::Any)
@ Main none:1

Stacktrace:
[...]

More usefully, it is possible to constrain varargs methods by a parameter. For example:
function getindex(A::AbstractArray{T,N}, indices::Vararg{Number,N}) where {T,N}

would be called only when the number of indices matches the dimensionality of the array.

When only the type of supplied arguments needs to be constrained Vararg{T} can be equivalently written
as T.... Forinstance f(x::Int...) = xis a shorthand for f(x::Vararg{Int}) = x.

12.8 Note on Optional and keyword Arguments

As mentioned briefly in Functions, optional arguments are implemented as syntax for multiple method
definitions. For example, this definition:

f(a=1,b=2) = a+2b
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translates to the following three methods:

f(a,b) = a+2b
f(a) = f(a,2)
f() = f(1,2)

This means that calling f() is equivalent to calling f(1,2). In this case the result is 5, because f(1,2)
invokes the first method of f above. However, this need not always be the case. If you define a fourth
method that is more specialized for integers:

| f(a::Int,b::Int) = a-2b

then the result of both f() and f(1,2) is -3. In other words, optional arguments are tied to a function, not
to any specific method of that function. It depends on the types of the optional arguments which method
is invoked. When optional arguments are defined in terms of a global variable, the type of the optional
argument may even change at run-time.

Keyword arguments behave quite differently from ordinary positional arguments. In particular, they do not
participate in method dispatch. Methods are dispatched based only on positional arguments, with keyword
arguments processed after the matching method is identified.

12.9 Function-like objects

Methods are associated with types, so it is possible to make any arbitrary Julia object "callable" by adding
methods to its type. (Such "callable" objects are sometimes called "functors.")

For example, you can define a type that stores the coefficients of a polynomial, but behaves like a function
evaluating the polynomial:

julia> struct Polynomial{R}
coeffs::Vector{R}
end

julia> function (p::Polynomial) (x)
v = p.coeffs[end]
for i = (length(p.coeffs)-1):-1:1
v = viX + p.coeffs[i]
end
return v
end

julia> (p::Polynomial) () = p(5)

Notice that the function is specified by type instead of by name. As with normal functions there is a terse
syntax form. In the function body, p will refer to the object that was called. A Polynomial can be used as
follows:

julia> p = Polynomial([1,10,100])
Polynomial{Int64}([1, 10, 100])
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julia> p(3)
931

julia> p()
2551

This mechanism is also the key to how type constructors and closures (inner functions that refer to their
surrounding environment) work in Julia.

12.10 Empty generic functions

Occasionally it is useful to introduce a generic function without yet adding methods. This can be used to
separate interface definitions from implementations. It might also be done for the purpose of documenta-
tion or code readability. The syntax for this is an empty function block without a tuple of arguments:

‘function emptyfunc end

12.11 Method design and the avoidance of ambiguities

Julia's method polymorphism is one of its most powerful features, yet exploiting this power can pose design
challenges. In particular, in more complex method hierarchies it is not uncommon for ambiguities to arise.

Above, it was pointed out that one can resolve ambiguities like

f(x, y::Int)
f(x::Int, y)

nou
N =

by defining a method
‘f(x::Int, y::Int) = 3

This is often the right strategy; however, there are circumstances where following this advice mindlessly
can be counterproductive. In particular, the more methods a generic function has, the more possibilities
there are for ambiguities. When your method hierarchies get more complicated than this simple example,
it can be worth your while to think carefully about alternative strategies.

Below we discuss particular challenges and some alternative ways to resolve such issues.

Tuple and NTuple arguments
Tuple (and NTuple) arguments present special challenges. For example,

f(x::NTuple{N,Int}) where {N} =1
f(x::NTuple{N,Float64}) where {N} = 2

are ambiguous because of the possibility that N == 0: there are no elements to determine whether the
Int or Float64 variant should be called. To resolve the ambiguity, one approach is define a method for
the empty tuple:
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f(x::Tuple{}) = 3
Alternatively, for all methods but one you can insist that there is at least one element in the tuple:

f(x::NTuple{N,Int}) where {N} =1 # this is the fallback
f(x::Tuple{Float64, Vararg{Float64}}) = 2 # this requires at least one Float64
Orthogonalize your design

When you might be tempted to dispatch on two or more arguments, consider whether a "wrapper" function
might make for a simpler design. For example, instead of writing multiple variants:

f(x::A, y::A) = ...
f(x::A, y::B) = ...
f(x::B, y::A) = ...
f(x::B, y::B) = ...

you might consider defining

f(x::A, y::A) = ...
f(x, y) = f(g(x), g(y))

where g converts the argument to type A. This is a very specific example of the more general principle of
orthogonal design, in which separate concepts are assigned to separate methods. Here, g will most likely
need a fallback definition

g(x::A) = x
A related strategy exploits promote to bring x and y to a common type:

f(x::T, y::T) where {T} = ...
f(x, y) = f(promote(x, y)...)

One risk with this design is the possibility that if there is no suitable promotion method converting x and y
to the same type, the second method will recurse on itself infinitely and trigger a stack overflow.

Dispatch on one argument at a time

If you need to dispatch on multiple arguments, and there are many fallbacks with too many combinations
to make it practical to define all possible variants, then consider introducing a "name cascade" where (for
example) you dispatch on the first argument and then call an internal method:

f(x::A, y) _fA(x, vy)
f(x::B, y) = fB(x, y)

Then the internal methods fA and fB can dispatch on y without concern about ambiguities with each
other with respect to x.

Be aware that this strategy has at least one major disadvantage: in many cases, it is not possible for
users to further customize the behavior of f by defining further specializations of your exported function
f. Instead, they have to define specializations for your internal methods fA and fB, and this blurs the
lines between exported and internal methods.


https://en.wikipedia.org/wiki/Orthogonality_(programming)
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Abstract containers and element types
Where possible, try to avoid defining methods that dispatch on specific element types of abstract contain-
ers. For example,
-(A::AbstractArray{T}, b::Date) where {T<:Date}
generates ambiguities for anyone who defines a method

‘—(A::MyArrayType{T}, b::T) where {T}

The best approach is to avoid defining either of these methods: instead, rely on a generic method - (A: :AbstractArray,
b) and make sure this method is implemented with generic calls (like similar and -) that do the right thing

for each container type and element type separately. This is just a more complex variant of the advice to
orthogonalize your methods.

When this approach is not possible, it may be worth starting a discussion with other developers about
resolving the ambiguity; just because one method was defined first does not necessarily mean that it can't
be modified or eliminated. As a last resort, one developer can define the "band-aid" method

-(A::MyArrayType{T}, b::Date) where {T<:Date} = ...
that resolves the ambiguity by brute force.

Complex method "cascades" with default arguments

If you are defining a method "cascade" that supplies defaults, be careful about dropping any arguments
that correspond to potential defaults. For example, suppose you're writing a digital filtering algorithm and
you have a method that handles the edges of the signal by applying padding:

function myfilter(A, kernel, ::Replicate)

Apadded = replicate edges(A, size(kernel))

myfilter(Apadded, kernel) # now perform the "real" computation
end

This will run afoul of a method that supplies default padding:
myfilter(A, kernel) = myfilter(A, kernel, Replicate()) # replicate the edge by default

Together, these two methods generate an infinite recursion with A constantly growing bigger.
The better design would be to define your call hierarchy like this:
struct NoPad end # indicate that no padding is desired, or that it's already applied
myfilter(A, kernel) = myfilter(A, kernel, Replicate()) # default boundary conditions

function myfilter(A, kernel, ::Replicate)
Apadded = replicate edges(A, size(kernel))
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myfilter(Apadded, kernel, NoPad()) # indicate the new boundary conditions
end

# other padding methods go here
function myfilter(A, kernel, ::NoPad)

# Here's the "real" implementation of the core computation
end

NoPad is supplied in the same argument position as any other kind of padding, so it keeps the dispatch
hierarchy well organized and with reduced likelihood of ambiguities. Moreover, it extends the "public"
myfilter interface: a user who wants to control the padding explicitly can call the NoPad variant directly.

12.12 Defining methods in local scope

You can define methods within a local scope, for example

julia> function f(x)
g(y::Int) =y + x
gly) =y - x
g
end
f (generic function with 1 method)

julia> h = f(3);

julia> h(4)
7

julia> h(4.0)
1.0

However, you should not define local methods conditionally or subject to control flow, as in

function f2(inc)

if inc
g(x) = x + 1
else
g(x) = x -1
end
end

function f3()
function g end
return g
g() =0

end

as it is not clear what function will end up getting defined. In the future, it might be an error to define local
methods in this manner.

For cases like this use anonymous functions instead:
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function f2(inc)
g = if inc
X ->x + 1
else
X ->x -1
end

end

2Arthur C. Clarke, Profiles of the Future (1961): Clarke's Third Law.



Chapter 13

Constructors

Constructors ! are functions that create new objects - specifically, instances of Composite Types. In Julia,
type objects also serve as constructor functions: they create new instances of themselves when applied
to an argument tuple as a function. This much was already mentioned briefly when composite types were
introduced. For example:

julia> struct Foo
bar
baz
end

julia> foo = Foo(1l, 2)
Foo(1l, 2)

julia> foo.bar
1

julia> foo.baz
2

For many types, forming new objects by binding their field values together is all that is ever needed to
create instances. However, in some cases more functionality is required when creating composite objects.
Sometimes invariants must be enforced, either by checking arguments or by transforming them. Recursive
data structures, especially those that may be self-referential, often cannot be constructed cleanly without
first being created in an incomplete state and then altered programmatically to be made whole, as a sep-
arate step from object creation. Sometimes, it's just convenient to be able to construct objects with fewer
or different types of parameters than they have fields. Julia's system for object construction addresses all
of these cases and more.

INomenclature: while the term "constructor" generally refers to the entire function which constructs objects of a type, it is
common to abuse terminology slightly and refer to specific constructor methods as "constructors". In such situations, it is generally
clear from the context that the term is used to mean "constructor method" rather than "constructor function", especially as it is often
used in the sense of singling out a particular method of the constructor from all of the others.
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13.1 Outer Constructor Methods

A constructor is just like any other function in Julia in that its overall behavior is defined by the combined
behavior of its methods. Accordingly, you can add functionality to a constructor by simply defining new
methods. For example, let's say you want to add a constructor method for Foo objects that takes only one
argument and uses the given value for both the bar and baz fields. This is simple:

julia> Foo(x) = Foo(x,x)
Foo

julia> Foo(1)
Foo(1l, 1)

You could also add a zero-argument Foo constructor method that supplies default values for both of the
bar and baz fields:

julia> Foo() = Foo(0)
Foo

julia> Foo()
Foo(0, 0)

Here the zero-argument constructor method calls the single-argument constructor method, which in turn
calls the automatically provided two-argument constructor method. For reasons that will become clear very
shortly, additional constructor methods declared as normal methods like this are called outer constructor
methods. Outer constructor methods can only ever create a new instance by calling another constructor
method, such as the automatically provided default ones.

13.2 Inner Constructor Methods

While outer constructor methods succeed in addressing the problem of providing additional convenience
methods for constructing objects, they fail to address the other two use cases mentioned in the introduc-
tion of this chapter: enforcing invariants, and allowing construction of self-referential objects. For these
problems, one needs inner constructor methods. An inner constructor method is like an outer constructor
method, except for two differences:

1. Itis declared inside the block of a type declaration, rather than outside of it like normal methods.

2. It has access to a special locally existent function called new that creates objects of the block's type.

For example, suppose one wants to declare a type that holds a pair of real numbers, subject to the constraint
that the first number is not greater than the second one. One could declare it like this:

julia> struct OrderedPair
x: :Real
y::Real
OrderedPair(x,y) = x >y ? error("out of order") : new(x,y)
end
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Now OrderedPair objects can only be constructed such that x <= y:

julia> OrderedPair(1l, 2)
OrderedPair(1, 2)

julia> OrderedPair(2,1)

ERROR: out of order

Stacktrace:
[1] error at ./error.jl:33 [inlined]
[2] OrderedPair(::Int64, ::Int64) at ./none:4
[3] top-level scope

If the type were declared mutable, you could reach in and directly change the field values to violate this
invariant. Of course, messing around with an object's internals uninvited is bad practice. You (or someone
else) can also provide additional outer constructor methods at any later point, but once a type is declared,
there is no way to add more inner constructor methods. Since outer constructor methods can only create
objects by calling other constructor methods, ultimately, some inner constructor must be called to create
an object. This guarantees that all objects of the declared type must come into existence by a call to one
of the inner constructor methods provided with the type, thereby giving some degree of enforcement of a
type's invariants.

If any inner constructor method is defined, no default constructor method is provided: it is presumed that
you have supplied yourself with all the inner constructors you need. The default constructor is equivalent to
writing your own inner constructor method that takes all of the object's fields as parameters (constrained
to be of the correct type, if the corresponding field has a type), and passes them to new, returning the
resulting object:

julia> struct Foo
bar
baz
Foo(bar,baz) = new(bar,baz)
end

This declaration has the same effect as the earlier definition of the Foo type without an explicit inner
constructor method. The following two types are equivalent - one with a default constructor, the other
with an explicit constructor:

julia> struct T1
x::Int64
end

julia> struct T2
x::Int64
T2(x) = new(x)
end

julia> T1(1)
T1(1)

julia> T2(1)
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T2(1)

julia> T1(1.0)
T1(1)

julia> T2(1.0)
T2(1)

It is good practice to provide as few inner constructor methods as possible: only those taking all arguments
explicitly and enforcing essential error checking and transformation. Additional convenience constructor
methods, supplying default values or auxiliary transformations, should be provided as outer constructors
that call the inner constructors to do the heavy lifting. This separation is typically quite natural.

13.3 Incomplete Initialization

The final problem which has still not been addressed is construction of self-referential objects, or more
generally, recursive data structures. Since the fundamental difficulty may not be immediately obvious, let
us briefly explain it. Consider the following recursive type declaration:

julia> mutable struct SelfReferential
obj::SelfReferential
end

This type may appear innocuous enough, until one considers how to construct an instance of it. If a is an
instance of SelfReferential, then a second instance can be created by the call:

julia> b = SelfReferential(a)

But how does one construct the first instance when no instance exists to provide as a valid value for its obj
field? The only solution is to allow creating an incompletely initialized instance of SelfReferential with
an unassigned obj field, and using that incomplete instance as a valid value for the obj field of another
instance, such as, for example, itself.

To allow for the creation of incompletely initialized objects, Julia allows the new function to be called with
fewer than the number of fields that the type has, returning an object with the unspecified fields uninitial-
ized. The inner constructor method can then use the incomplete object, finishing its initialization before
returning it. Here, for example, is another attempt at defining the SelfReferential type, this time using
a zero-argument inner constructor returning instances having obj fields pointing to themselves:

julia> mutable struct SelfReferential
obj::SelfReferential
SelfReferential() = (x = new(); x.obj = x)
end

We can verify that this constructor works and constructs objects that are, in fact, self-referential:
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julia> x = SelfReferential();
julia> x === x

true

julia> x === x.obj

true

julia> x === x.obj.obj

true

Although it is generally a good idea to return a fully initialized object from an inner constructor, it is possible
to return incompletely initialized objects:

julia> mutable struct Incomplete
data
Incomplete() = new()
end

julia> z = Incomplete();

While you are allowed to create objects with uninitialized fields, any access to an uninitialized reference is
an immediate error:

julia> z.data
ERROR: UndefRefError: access to undefined reference

This avoids the need to continually check for null values. However, not all object fields are references. Julia
considers some types to be "plain data", meaning all of their data is self-contained and does not reference
other objects. The plain data types consist of primitive types (e.g. Int) and immutable structs of other
plain data types (see also: isbits, isbitstype). The initial contents of a plain data type is undefined:

julia> struct HasPlain
n::Int
HasPlain() = new()
end

julia> HasPlain()
HasPlain(438103441441)

Arrays of plain data types exhibit the same behavior.

You can pass incomplete objects to other functions from inner constructors to delegate their completion:

julia> mutable struct Lazy
data
Lazy(v) = complete me(new(), v)
end

As with incomplete objects returned from constructors, if complete me or any of its callees try to access
the data field of the Lazy object before it has been initialized, an error will be thrown immediately.
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13.4 Parametric Constructors

Parametric types add a few wrinkles to the constructor story. Recall from Parametric Types that, by default,
instances of parametric composite types can be constructed either with explicitly given type parameters
or with type parameters implied by the types of the arguments given to the constructor. Here are some
examples:

julia> struct Point{T<:Real}
x::T
y:o:T
end

julia> Point(1,2) ## implicit T ##
Point{Int64}(1, 2)

julia> Point(1.0,2.5) ## implicit T ##
Point{Float64}(1.0, 2.5)

julia> Point(1,2.5) ## implicit T ##
ERROR: MethodError: no method matching Point(::Int64, ::Float64)
Closest candidates are:

Point(::T, ::T) where T<:Real at none:2

julia> Point{Int64} (1, 2) ## explicit T ##
Point{Int64}(1, 2)

julia> Point{Int64}(1.0,2.5) ## explicit T ##
ERROR: InexactError: Int64(2.5)

Stacktrace:

[...]

julia> Point{Float64} (1.0, 2.5) ## explicit T ##
Point{Float64}(1.0, 2.5)

julia> Point{Float64}(1,2) ## explicit T ##
Point{Float64}(1.0, 2.0)

As you can see, for constructor calls with explicit type parameters, the arguments are converted to the
implied field types: Point{Int64}(1,2) works, but Point{Int64}(1.0,2.5) raises an InexactError
when converting 2.5 to Int64. When the type is implied by the arguments to the constructor call, as
in Point(1,2), then the types of the arguments must agree - otherwise the T cannot be determined - but
any pair of real arguments with matching type may be given to the generic Point constructor.

What's really going on here is that Point, Point{Float64} and Point{Int64} are all different constructor
functions. Infact, Point{T} is a distinct constructor function for each type T. Without any explicitly provided
inner constructors, the declaration of the composite type Point{T<:Real} automatically provides an inner
constructor, Point{T}, for each possible type T<:Real, that behaves just like non-parametric default inner
constructors do. It also provides a single general outer Point constructor that takes pairs of real arguments,
which must be of the same type. This automatic provision of constructors is equivalent to the following
explicit declaration:
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julia> struct Point{T<:Real}
x::T
y::T
Point{T}(x,y) where {T<:Real} = new(x,y)
end

julia> Point(x::T, y::T) where {T<:Real} = Point{T}(x,y);

Notice that each definition looks like the form of constructor call that it handles. The call Point{Int64}(1,2)
will invoke the definition Point{T} (x,y) inside the struct block. The outer constructor declaration, on the
other hand, defines a method for the general Point constructor which only applies to pairs of values of the
same real type. This declaration makes constructor calls without explicit type parameters, like Point(1,2)
and Point(1.0,2.5), work. Since the method declaration restricts the arguments to being of the same
type, calls like Point(1,2.5), with arguments of different types, result in "no method" errors.

Suppose we wanted to make the constructor call Point(1,2.5) work by "promoting" the integer value 1
to the floating-point value 1.0. The simplest way to achieve this is to define the following additional outer
constructor method:

julia> Point(x::Int64, y::Float64) = Point(convert(Float64,x),y);

This method uses the convert function to explicitly convert x to Float64 and then delegates construction
to the general constructor for the case where both arguments are Float64. With this method definition
what was previously a MethodError now successfully creates a point of type Point{Float64}:

julia> p = Point(1,2.5)
Point{Float64}(1.0, 2.5)

julia> typeof(p)
Point{Float64}

However, other similar calls still don't work:

julia> Point(1.5,2)
ERROR: MethodError: no method matching Point(::Float64, ::Int64)

Closest candidates are:
Point(::T, !'Matched::T) where T<:Real
@ Main none:1

Stacktrace:
[...]

For a more general way to make all such calls work sensibly, see Conversion and Promotion. At the risk of
spoiling the suspense, we can reveal here that all it takes is the following outer method definition to make
all calls to the general Point constructor work as one would expect:

julia> Point(x::Real, y::Real) = Point(promote(x,y)...);
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The promote function converts all its arguments to a common type - in this case Float64. With this method
definition, the Point constructor promotes its arguments the same way that numeric operators like + do,
and works for all kinds of real numbers:

julia> Point(1.5,2)
Point{Float64} (1.5, 2.0)

julia> Point(1,1//2)
Point{Rational{Int64}}(1//1, 1//2)

julia> Point(1.0,1//2)
Point{Float64}(1.0, 0.5)

Thus, while the implicit type parameter constructors provided by default in Julia are fairly strict, it is possible
to make them behave in a more relaxed but sensible manner quite easily. Moreover, since constructors
can leverage all of the power of the type system, methods, and multiple dispatch, defining sophisticated
behavior is typically quite simple.

13.5 Case Study: Rational

Perhaps the best way to tie all these pieces together is to present a real world example of a parametric
composite type and its constructor methods. To that end, we implement our own rational number type
OurRational, similar to Julia's built-in Rational type, defined in rational.jl:

julia> struct OurRational{T<:Integer} <: Real
num: :T
den::T
function OurRational{T}(num::T, den::T) where T<:Integer
if num == 0 && den ==
error("invalid rational: 0//0")

end
num = flipsign(num, den)
den = flipsign(den, den)

g = gcd(num, den)
num = div(num, g)
den = div(den, g)
new(num, den)
end
end

julia> OurRational(n::T, d::T) where {T<:Integer} = OurRational{T}(n,d)
OurRational

julia> OurRational(n::Integer, d::Integer) = OurRational(promote(n,d)...)
OurRational

julia> OurRational(n::Integer) = OurRational(n,one(n))
OurRational

julia> o(n::Integer, d::Integer) = OurRational(n,d)
@ (generic function with 1 method)
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julia> o(x::0urRational, y::Integer) = x.num @ (x.den*y)
@ (generic function with 2 methods)

julia> o(x::Integer, y::0OurRational) = (x*y.den) @ y.num
@ (generic function with 3 methods)

julia> o(x::Complex, y::Real) = complex(real(x) e y, imag(x) o y)
@ (generic function with 4 methods)

julia> o(x::Real, y::Complex) = (x*y') o real(y*y')
@ (generic function with 5 methods)

julia> function e(x::Complex, y::Complex)
Xy = x*y'
yy = real(y*y')
complex(real(xy) e yy, imag(xy) o yy)
end
@ (generic function with 6 methods)

The first line - struct OurRational{T<:Integer} <: Real - declares that OurRational takes one type
parameter of an integer type, and is itself a real type. The field declarations num: :T and den: :T indicate
that the data held in a QurRational{T} object are a pair of integers of type T, one representing the rational
value's numerator and the other representing its denominator.

Now things get interesting. OurRational has a single inner constructor method which checks that num
and den aren't both zero and ensures that every rational is constructed in "lowest terms" with a non-
negative denominator. This is accomplished by first flipping the signs of numerator and denominator if the
denominator is negative. Then, both are divided by their greatest common divisor (gcd always returns a
non-negative number, regardless of the sign of its arguments). Because this is the only inner constructor
for OurRational, we can be certain that OurRational objects are always constructed in this normalized
form.

OurRational also provides several outer constructor methods for convenience. The first is the "standard"
general constructor that infers the type parameter T from the type of the numerator and denominator
when they have the same type. The second applies when the given numerator and denominator values
have different types: it promotes them to a common type and then delegates construction to the outer
constructor for arguments of matching type. The third outer constructor turns integer values into rationals
by supplying a value of 1 as the denominator.

Following the outer constructor definitions, we defined a number of methods for the @ operator, which
provides a syntax for writing rationals (e.g. 1 @ 2). Julia's Rational type uses the // operator for this
purpose. Before these definitions, @ is a completely undefined operator with only syntax and no mean-
ing. Afterwards, it behaves just as described in Rational Numbers - its entire behavior is defined in these
few lines. The first and most basic definition just makes a @ b construct a OurRational by applying the
OurRational constructor to a and b when they are integers. When one of the operands of e is already
a rational number, we construct a new rational for the resulting ratio slightly differently; this behavior is
actually identical to division of a rational with an integer. Finally, applying @ to complex integral values
creates an instance of Complex{<:0urRational} - a complex number whose real and imaginary parts are
rationals:

julia> z = (1 + 2im) e (1 - 2im);
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julia> typeof(z)
Complex{OurRational{Int64}}

julia> typeof(z) <: Complex{<:OurRational}
true

Thus, although the @ operator usually returns an instance of OurRational, if either of its arguments are
complex integers, it will return an instance of Complex{<:0urRational} instead. The interested reader
should consider perusing the rest of rational.jl: it is short, self-contained, and implements an entire
basic Julia type.

13.6 Outer-only constructors

As we have seen, a typical parametric type has inner constructors that are called when type parameters are
known; e.g. they apply to Point{Int} but not to Point. Optionally, outer constructors that determine type
parameters automatically can be added, for example constructing a Point{Int} from the call Point(1,2).
Outer constructors call inner constructors to actually make instances. However, in some cases one would
rather not provide inner constructors, so that specific type parameters cannot be requested manually.

For example, say we define a type that stores a vector along with an accurate representation of its sum:

julia> struct SummedArray{T<:Number,S<:Number}
data::Vector{T}
sum: :S
end

julia> SummedArray(Int32[1; 2; 31, Int32(6))
SummedArray{Int32, Int32}(Int32[1, 2, 3], 6)

The problem is that we want S to be a larger type than T, so that we can sum many elements with less
information loss. For example, when Tis Int32, we would like S to be Int64. Therefore we want to avoid an
interface that allows the user to construct instances of the type SummedArray{Int32,Int32}. One way to
do this is to provide a constructor only for SummedArray, but inside the struct definition block to suppress
generation of default constructors:

julia> struct SummedArray{T<:Number,S<:Number}
data: :Vector{T}

sum: :S

function SummedArray(a::Vector{T}) where T
S = widen(T)
new{T,S}(a, sum(S, a))

end

end

julia> SummedArray(Int32[1; 2; 3], Int32(6))
ERROR: MethodError: no method matching SummedArray(::Vector{Int32}, ::Int32)

Closest candidates are:
SummedArray(::Vector{T}) where T
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@ Main none:4

Stacktrace:
[...]

This constructor will be invoked by the syntax SummedArray(a). The syntax new{T,S} allows specifying
parameters for the type to be constructed, i.e. this call will return a SummedArray{T,S}. new{T,S} can be
used in any constructor definition, but for convenience the parameters to new{} are automatically derived
from the type being constructed when possible.
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Conversion and Promotion

Julia has a system for promoting arguments of mathematical operators to a common type, which has been
mentioned in various other sections, including Integers and Floating-Point Numbers, Mathematical Opera-
tions and Elementary Functions, Types, and Methods. In this section, we explain how this promotion system
works, as well as how to extend it to new types and apply it to functions besides built-in mathematical op-
erators. Traditionally, programming languages fall into two camps with respect to promotion of arithmetic
arguments:

* Automatic promotion for built-in arithmetic types and operators. In most languages, built-in
numeric types, when used as operands to arithmetic operators with infix syntax, such as +, -, *, and
/, are automatically promoted to a common type to produce the expected results. C, Java, Perl, and
Python, to name a few, all correctly compute the sum 1 + 1.5 as the floating-point value 2.5, even
though one of the operands to + is an integer. These systems are convenient and designed care-
fully enough that they are generally all-but-invisible to the programmer: hardly anyone consciously
thinks of this promotion taking place when writing such an expression, but compilers and interpreters
must perform conversion before addition since integers and floating-point values cannot be added
as-is. Complex rules for such automatic conversions are thus inevitably part of specifications and
implementations for such languages.

* No automatic promotion. This camp includes Ada and ML - very "strict" statically typed languages.
In these languages, every conversion must be explicitly specified by the programmer. Thus, the ex-
ample expression 1 + 1.5 would be a compilation error in both Ada and ML. Instead one must write
real(1l) + 1.5, explicitly converting the integer 1 to a floating-point value before performing addi-
tion. Explicit conversion everywhere is so inconvenient, however, that even Ada has some degree
of automatic conversion: integer literals are promoted to the expected integer type automatically,
and floating-point literals are similarly promoted to appropriate floating-point types.

In a sense, Julia falls into the "no automatic promotion" category: mathematical operators are just functions
with special syntax, and the arguments of functions are never automatically converted. However, one
may observe that applying mathematical operations to a wide variety of mixed argument types is just an
extreme case of polymorphic multiple dispatch - something which Julia's dispatch and type systems are
particularly well-suited to handle. "Automatic" promotion of mathematical operands simply emerges as
a special application: Julia comes with pre-defined catch-all dispatch rules for mathematical operators,
invoked when no specific implementation exists for some combination of operand types. These catch-all
rules first promote all operands to a common type using user-definable promotion rules, and then invoke
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a specialized implementation of the operator in question for the resulting values, now of the same type.
User-defined types can easily participate in this promotion system by defining methods for conversion to
and from other types, and providing a handful of promotion rules defining what types they should promote
to when mixed with other types.

14.1 Conversion

The standard way to obtain a value of a certain type T is to call the type's constructor, T(x). However,
there are cases where it's convenient to convert a value from one type to another without the programmer
asking for it explicitly. One example is assigning a value into an array: if A is a Vector{Float64}, the
expression A[1] = 2 should work by automatically converting the 2 from Int to Float64, and storing the
result in the array. This is done via the convert function.

The convert function generally takes two arguments: the first is a type object and the second is a value to
convert to that type. The returned value is the value converted to an instance of given type. The simplest
way to understand this function is to see it in action:

julia> x = 12
12

julia> typeof(x)
Int64

julia> xu = convert(UInt8, x)
0x0c

julia> typeof(xu)
UInt8

julia> xf = convert(AbstractFloat, x)
12.0

julia> typeof (xf)
Float64

julia> a = Any[1l 2 3; 4 5 6]
2x3 Matrix{Any}:

1 2 3

4 5 6

julia> convert(Array{Float64}, a)
2x3 Matrix{Float64}:

1.0 2.0 3.0

4.0 5.0 6.0

Conversion isn't always possible, in which case a MethodError is thrown indicating that convert doesn't
know how to perform the requested conversion:

julia> convert(AbstractFloat, "foo")
ERROR: MethodError: Cannot “convert® an object of type String to an object of type AbstractFloat
[...]
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Some languages consider parsing strings as numbers or formatting numbers as strings to be conversions
(many dynamic languages will even perform conversion for you automatically). This is not the case in
Julia. Even though some strings can be parsed as numbers, most strings are not valid representations of
numbers, and only a very limited subset of them are. Therefore in Julia the dedicated parse function must
be used to perform this operation, making it more explicit.

When is convert called?

The following language constructs call convert:

* Assigning to an array converts to the array's element type.

* Assigning to a field of an object converts to the declared type of the field.

* Constructing an object with new converts to the object's declared field types.

* Assigning to a variable with a declared type (e.g. local x::T) converts to that type.
« A function with a declared return type converts its return value to that type.

* Passing a value to ccall converts it to the corresponding argument type.

Conversion vs. Construction

Note that the behavior of convert (T, x) appears to be nearly identical to T(x). Indeed, it usually is. How-
ever, there is a key semantic difference: since convert can be called implicitly, its methods are restricted
to cases that are considered "safe" or "unsurprising". convert will only convert between types that repre-
sent the same basic kind of thing (e.g. different representations of numbers, or different string encodings).
It is also usually lossless; converting a value to a different type and back again should result in the exact
same value.

There are four general kinds of cases where constructors differ from convert:

Constructors for types unrelated to their arguments

Some constructors don'timplement the concept of "conversion". Forexample, Timer(2) creates a 2-second
timer, which is not really a "conversion" from an integer to a timer.

Mutable collections

convert (T, x) is expected to return the original x if x is already of type T. In contrast, if T is a mutable
collection type then T(x) should always make a new collection (copying elements from x).

Wrapper types

For some types which "wrap" other values, the constructor may wrap its argument inside a new object
even if it is already of the requested type. For example Some(x) wraps x to indicate that a value is present
(in a context where the result might be a Some or nothing). However, x itself might be the object Some(y),
in which case the result is Some(Some(y) ), with two levels of wrapping. convert(Some, x), on the other
hand, would just return x since it is already a Some.
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Constructors that don't return instances of their own type

In very rare cases it might make sense for the constructor T(x) to return an object not of type T. This
could happen if a wrapper type is its own inverse (e.g. Flip(Flip(x)) === x), or to support an old calling
syntax for backwards compatibility when a library is restructured. But convert (T, x) should always return
a value of type T.

Defining New Conversions

When defining a new type, initially all ways of creating it should be defined as constructors. If it becomes
clear that implicit conversion would be useful, and that some constructors meet the above "safety" criteria,
then convert methods can be added. These methods are typically quite simple, as they only need to call
the appropriate constructor. Such a definition might look like this:

convert(::Type{MyType}, x) = MyType(x)

The type of the first argument of this method is Type{MyType}, the only instance of which is MyType. Thus,
this method is only invoked when the first argument is the type value MyType. Notice the syntax used for
the first argument: the argument name is omitted prior to the :: symbol, and only the type is given. This
is the syntax in Julia for a function argument whose type is specified but whose value does not need to be
referenced by name.

All instances of some abstract types are by default considered "sufficiently similar" that a universal convert
definition is provided in Julia Base. For example, this definition states that it's valid to convert any Number
type to any other by calling a 1-argument constructor:

convert(::Type{T}, x::Number) where {T<:Number} = T(x)::T

This means that new Number types only need to define constructors, since this definition will handle convert
for them. An identity conversion is also provided to handle the case where the argument is already of the
requested type:

convert(::Type{T}, x::T) where {T<:Number} = x

Similar definitions exist for AbstractString, AbstractArray, and AbstractDict.

14.2 Promotion

Promotion refers to converting values of mixed types to a single common type. Although it is not strictly
necessary, it is generally implied that the common type to which the values are converted can faithfully
represent all of the original values. In this sense, the term "promotion" is appropriate since the values are
converted to a "greater" type - i.e. one which can represent all of the input values in a single common
type. It is important, however, not to confuse this with object-oriented (structural) super-typing, or Julia's
notion of abstract super-types: promotion has nothing to do with the type hierarchy, and everything to do
with converting between alternate representations. For instance, although every Int32 value can also be
represented as a Float64 value, Int32 is not a subtype of Float64.

Promotion to a common "greater" type is performed in Julia by the promote function, which takes any
number of arguments, and returns a tuple of the same number of values, converted to a common type, or
throws an exception if promotion is not possible. The most common use case for promotion is to convert
numeric arguments to a common type:
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julia> promote(l, 2.5)
(1.0, 2.5)

julia> promote(l, 2.5, 3)
(1.0, 2.5, 3.0)

julia> promote(2, 3//4)
(2//1, 3//4)

julia> promote(l, 2.5, 3, 3//4)
(1.0, 2.5, 3.0, 0.75)

julia> promote(1.5, im)
(1.5 + 0.0im, 0.0 + 1.0im)

julia> promote(1l + 2im, 3//4)
(1//1 + 2//1*im, 3//4 + 0//1*im)

Floating-point values are promoted to the largest of the floating-point argument types. Integer values
are promoted to the largest of the integer argument types. If the types are the same size but differ in
signedness, the unsigned type is chosen. Mixtures of integers and floating-point values are promoted to
a floating-point type big enough to hold all the values. Integers mixed with rationals are promoted to
rationals. Rationals mixed with floats are promoted to floats. Complex values mixed with real values are
promoted to the appropriate kind of complex value.

That is really all there is to using promotions. The rest is just a matter of clever application, the most typical
"clever" application being the definition of catch-all methods for numeric operations like the arithmetic
operators +, -, * and /. Here are some of the catch-all method definitions given in promotion.jL:

+(x: :Number,
-(x: :Number,
*(x: :Number,
/(x: :Number,

:Number) = +(promote(x,y)...
:Number) = -(promote(x,y)...
::Number) = *(promote(x,y)...
: :Number) = /(promote(x,y)...

< K <K <

These method definitions say that in the absence of more specific rules for adding, subtracting, multiplying
and dividing pairs of numeric values, promote the values to a common type and then try again. That's all
there is to it: nowhere else does one ever need to worry about promotion to a common numeric type for
arithmetic operations - it just happens automatically. There are definitions of catch-all promotion methods
for a number of other arithmetic and mathematical functions in promotion.j1, but beyond that, there are
hardly any calls to promote required in Julia Base. The most common usages of promote occur in outer
constructors methods, provided for convenience, to allow constructor calls with mixed types to delegate to
an inner type with fields promoted to an appropriate common type. For example, recall that rational.jl
provides the following outer constructor method:

Rational(n::Integer, d::Integer) = Rational(promote(n,d)...)

This allows calls like the following to work:

julia> x = Rational(Int8(15),Int32(-5))
-3//1


https://github.com/JuliaLang/julia/blob/master/base/promotion.jl
https://github.com/JuliaLang/julia/blob/master/base/promotion.jl
https://github.com/JuliaLang/julia/blob/master/base/rational.jl

CHAPTER 14. CONVERSION AND PROMOTION 186

julia> typeof(x)
Rational{Int32}

For most user-defined types, it is better practice to require programmers to supply the expected types to
constructor functions explicitly, but sometimes, especially for numeric problems, it can be convenient to
do promotion automatically.

Defining Promotion Rules

Although one could, in principle, define methods for the promote function directly, this would require many
redundant definitions for all possible permutations of argument types. Instead, the behavior of promote
is defined in terms of an auxiliary function called promote rule, which one can provide methods for. The
promote_ rule function takes a pair of type objects and returns another type object, such that instances of
the argument types will be promoted to the returned type. Thus, by defining the rule:

promote rule(::Type{Float64}, ::Type{Float32}) = Float64

one declares that when 64-bit and 32-bit floating-point values are promoted together, they should be
promoted to 64-bit floating-point. The promotion type does not need to be one of the argument types. For
example, the following promotion rules both occur in Julia Base:

promote rule(::Type{BigInt}, ::Type{Float64}) = BigFloat
promote rule(::Type{BigInt}, ::Type{Int8}) = BigInt

In the latter case, the result type is BigInt since BigInt is the only type large enough to hold integers for
arbitrary-precision integer arithmetic. Also note that one does not need to define both promote rule(::Type{A},
::Type{B}) and promote rule(::Type{B}, ::Type{A}) -thesymmetryisimplied by the way promote rule

is used in the promotion process.

The promote rule function is used as a building block to define a second function called promote type,
which, given any number of type objects, returns the common type to which those values, as arguments
to promote should be promoted. Thus, if one wants to know, in absence of actual values, what type a
collection of values of certain types would promote to, one can use promote type:

julia> promote type(Int8, Int64)
Int64

Note that we do not overload promote type directly: we overload promote rule instead. promote type
uses promote rule, and adds the symmetry. Overloading it directly can cause ambiguity errors. We
overload promote rule to define how things should be promoted, and we use promote type to query
that.

Internally, promote type is used inside of promote to determine what type argument values should be
converted to for promotion. The curious reader can read the code in promotion.jl, which defines the
complete promotion mechanism in about 35 lines.


https://github.com/JuliaLang/julia/blob/master/base/promotion.jl
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Case Study: Rational Promotions

Finally, we finish off our ongoing case study of Julia's rational number type, which makes relatively sophis-
ticated use of the promotion mechanism with the following promotion rules:

promote rule(::Type{Rational{T}}, ::Type{S}) where {T<:Integer,S<:Integer} =

— Rational{promote type(T,S)}

promote rule(::Type{Rational{T}}, ::Type{Rational{S}}) where {T<:Integer,S<:Integer} =
— Rational{promote type(T,S)}

promote rule(::Type{Rational{T}}, ::Type{S}) where {T<:Integer,S<:AbstractFloat} =

— promote type(T,S)

The first rule says that promoting a rational number with any other integer type promotes to a rational
type whose numerator/denominator type is the result of promotion of its numerator/denominator type
with the other integer type. The second rule applies the same logic to two different types of rational
numbers, resulting in a rational of the promotion of their respective numerator/denominator types. The
third and final rule dictates that promoting a rational with a float results in the same type as promoting the
numerator/denominator type with the float.

This small handful of promotion rules, together with the type's constructors and the default convert method
for numbers, are sufficient to make rational numbers interoperate completely naturally with all of Julia's
other numeric types - integers, floating-point numbers, and complex numbers. By providing appropriate
conversion methods and promotion rules in the same manner, any user-defined numeric type can interop-
erate just as naturally with Julia's predefined numerics.



Chapter 15

Interfaces

Alot of the power and extensibility in Julia comes from a collection of informal interfaces. By extending a few
specific methods to work for a custom type, objects of that type not only receive those functionalities, but
they are also able to be used in other methods that are written to generically build upon those behaviors.

15.1 Iteration

Required Brief description

methods

iterate(iter) Returns either a tuple of the first item and initial state or nothing if
empty

iterate(iter, Returns either a tuple of the next item and next state or nothing if no

state) items remain

Important Default | Brief description

optional defini-

methods tion

Base.IteratorS}iBadeHasipstgehdf) Base .HasLength(), Base.HasShape{N} (), Base.IsInfinite(),
or Base.SizeUnknown () as appropriate
Base.IteratorE[l Base( Hastyfiglet Base.EltypeUnknown () or Base.HasEltype() as appropriate

eltype(IterType)Any The type of the first entry of the tuple returned by iterate()
length(iter) (undefined) The number of items, if known

size(iter, (undefined) The number of items in each dimension, if known

[dim])

Base.isdone(itemiissing | Fast-path hint for iterator completion. Should be defined for stateful
statel]) iterators, or else isempty(iter) may call iterate(iter[, statel])

and mutate the iterator.

Value returned by IteratorSize(IterType) | Required Methods

Base.HasLength() length(iter)

Base.HasShape{N} () length(iter) and size(iter, [dim])
Base.IsInfinite() (none)

Base.SizeUnknown () (none)

188
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Value returned by IteratorEltype(IterType) Required Methods
Base.HasEltype() eltype(IterType)
Base.EltypeUnknown () (none)

Sequential iteration is implemented by the iterate function. Instead of mutating objects as they are
iterated over, Julia iterators may keep track of the iteration state externally from the object. The return
value from iterate is always either a tuple of a value and a state, or nothing if no elements remain. The
state object will be passed back to the iterate function on the next iteration and is generally considered an
implementation detail private to the iterable object.

Any object that defines this function is iterable and can be used in the many functions that rely upon
iteration. It can also be used directly in a for loop since the syntax:

for item in iter # or “for item = iter"
# body
end

is translated into:

next = iterate(iter)
while next !== nothing

(item, state) = next

# body

next = iterate(iter, state)
end

A simple example is an iterable sequence of square numbers with a defined length:

julia> struct Squares
count: :Int
end

julia> Base.iterate(S::Squares, state=1) = state > S.count ? nothing : (state*state, state+l)

With only iterate definition, the Squares type is already pretty powerful. We can iterate over all the
elements:

julia> for item in Squares(7)
println(item)
end

16
25
36
49

We can use many of the builtin methods that work with iterables, like in or sum:
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julia> 25 in Squares(10)
true

julia> sum(Squares(100))
338350

There are a few more methods we can extend to give Julia more information about this iterable collection.
We know that the elements in a Squares sequence will always be Int. By extending the eltype method,
we can give that information to Julia and help it make more specialized code in the more complicated
methods. We also know the number of elements in our sequence, so we can extend length, too:

julia> Base.eltype(::Type{Squares}) = Int # Note that this is defined for the type

julia> Base.length(S::Squares) = S.count

Now, when we ask Julia to collect all the elements into an array it can preallocate a Vector{Int} of the
right size instead of naively push!ing each element into a Vector{Any}:

julia> collect(Squares(4))
4-element Vector{Int64}:

1

4

9

16

While we can rely upon generic implementations, we can also extend specific methods where we know
there is a simpler algorithm. For example, there's a formula to compute the sum of squares, so we can
override the generic iterative version with a more performant solution:

julia> Base.sum(S::Squares) = (n = S.count; return n*(n+1)*(2n+1)+6)

julia> sum(Squares(1803))
1955361914

This is a very common pattern throughout Julia Base: a small set of required methods define an informal
interface that enable many fancier behaviors. In some cases, types will want to additionally specialize
those extra behaviors when they know a more efficient algorithm can be used in their specific case.

Itis also often useful to allow iteration over a collection in reverse order by iterating over Iterators.reverse(iterator).
To actually support reverse-order iteration, however, an iterator type T needs to implement iterate for
Iterators.Reverse{T}. (Given r::Iterators.Reverse{T}, the underling iterator of type Tis r.itr.) In

our Squares example, we would implement Iterators.Reverse{Squares} methods:

julia> Base.iterate(rS::Iterators.Reverse{Squares}, state=rS.itr.count) = state < 1 ? nothing :
< (state*state, state-1)

julia> collect(Iterators.reverse(Squares(4)))
4-element Vector{Int64}:
16
9
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15.2 Indexing

Methods to implement | Brief description

getindex(X, 1) X[1], indexed element access
setindex! (X, v, 1) X[1i] = v, indexed assignment
firstindex(X) The first index, used in X[begin]
lastindex(X) The last index, used in X[end]

For the Squares iterable above, we can easily compute the ith element of the sequence by squaring it. We
can expose this as an indexing expression S[i]. To opt into this behavior, Squares simply needs to define
getindex:

julia> function Base.getindex(S::Squares, i::Int)
1 <= i <= S.count || throw(BoundsError(S, i))
return i*i
end

julia> Squares(100)[23]
529

Additionally, to support the syntax S[begin] and S[end], we must define firstindex and lastindex to
specify the first and last valid indices, respectively:

julia> Base.firstindex(S::Squares) = 1
julia> Base.lastindex(S::Squares) = length(S)

julia> Squares(23)[end]
529

For multi-dimensional begin/end indexingasina[3, begin, 7], forexample, youshould define firstindex(a,
dim) and lastindex(a, dim) (which default to calling first and last on axes(a, dim), respectively).

Note, though, that the above only defines getindex with one integer index. Indexing with anything other
than an Int will throw a MethodError saying that there was no matching method. In order to support
indexing with ranges or vectors of Ints, separate methods must be written:

julia> Base.getindex(S::Squares, i::Number) = S[convert(Int, i)]
julia> Base.getindex(S::Squares, I) = [S[i] for i in I]

julia> Squares(10)[[3,4.,5]]
3-element Vector{Int64}:

9

16

25

While this is starting to support more of the indexing operations supported by some of the builtin types,
there's still quite a number of behaviors missing. This Squares sequence is starting to look more and more
like a vector as we've added behaviors to it. Instead of defining all these behaviors ourselves, we can
officially define it as a subtype of an AbstractArray.
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15.3 Abstract Arrays

If a type is defined as a subtype of AbstractArray, it inherits a very large set of rich behaviors including
iteration and multidimensional indexing built on top of single-element access. See the arrays manual page
and the Julia Base section for more supported methods.

A key part in defining an AbstractArray subtype is IndexStyle. Since indexing is such an important part
of an array and often occurs in hot loops, it's important to make both indexing and indexed assignment as
efficient as possible. Array data structures are typically defined in one of two ways: either it most efficiently
accesses its elements using just one index (linear indexing) or it intrinsically accesses the elements with
indices specified for every dimension. These two modalities are identified by Julia as IndexLinear() and
IndexCartesian(). Converting a linear index to multiple indexing subscripts is typically very expensive,
so this provides a traits-based mechanism to enable efficient generic code for all array types.

This distinction determines which scalar indexing methods the type must define. IndexLinear() arrays
are simple: just define getindex(A::ArrayType, i::Int). When the array is subsequently indexed with
a multidimensional set of indices, the fallback getindex(A::AbstractArray, I...) efficiently converts
the indices into one linear index and then calls the above method. IndexCartesian() arrays, on the other
hand, require methods to be defined for each supported dimensionality with ndims (A) Int indices. For ex-
ample, SparseMatrixCSC from the SparseArrays standard library module, only supports two dimensions,
so it just defines getindex(A::SparseMatrixCSC, i::Int, j::Int). The same holds for setindex!.

Returning to the sequence of squares from above, we could instead define it as a subtype of an AbstractArray{Int,
1}:

julia> struct SquaresVector <: AbstractArray{Int, 1}
count: :Int
end

julia> Base.size(S::SquaresVector) = (S.count,)

julia> Base.IndexStyle(::Type{<:SquaresVector}) = IndexLinear()

julia> Base.getindex(S::SquaresVector, i::Int) = i*i

Note that it's very important to specify the two parameters of the AbstractArray; the first defines the
eltype, and the second defines the ndims. That supertype and those three methods are all it takes for
SquaresVector to be an iterable, indexable, and completely functional array:

julia> s = SquaresVector(4)
4-element SquaresVector:

1

4

9

16

julia> s[s .> 8]

2-element Vector{Int64}:
9

16

julia> s + s
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4-element Vector{Int64}:
2
8

18

32

julia> sin.(s)

4-element Vector{Float64}:
0.8414709848078965
-0.7568024953079282
0.4121184852417566
-0.2879033166650653

As a more complicated example, let's define our own toy N-dimensional sparse-like array type built on top
of Dict:

julia> struct SparseArray{T,N} <: AbstractArray{T,N}
data::Dict{NTuple{N,Int}, T}
dims: :NTuple{N,Int}
end

julia> SparseArray(::Type{T}, dims::Int...) where {T} = SparseArray(T, dims);

julia> SparseArray(::Type{T}, dims::NTuple{N,Int}) where {T,N} =
— SparseArray{T,N} (Dict{NTuple{N,Int}, T}(), dims);

julia> Base.size(A::SparseArray) = A.dims
julia> Base.similar(A::SparseArray, ::Type{T}, dims::Dims) where {T} = SparseArray(T, dims)

julia> Base.getindex(A::SparseArray{T,N}, I::Vararg{Int,N}) where {T,N} = get(A.data, I, zero(T))

julia> Base.setindex! (A::SparseArray{T,N}, v, I::Vararg{Int,N}) where {T,N} = (A.data[I] = v)

Notice that this is an IndexCartesian array, so we must manually define getindex and setindex! atthe
dimensionality of the array. Unlike the SquaresVector, we are able to define setindex!, and so we can
mutate the array:

julia> A = SparseArray(Float64, 3, 3)
3x3 SparseArray{Float64, 2}:

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

julia> fill! (A, 2)

3x3 SparseArray{Float64, 2}:
2.0 2.0 2.0

2.0 2.0 2.0

2.0 2.0 2.0

julia> A[:] = 1l:length(A); A
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3x3 SparseArray{Float64, 2}:
1.0 4.0 7.0

2.0 5.0 8.0

3.0 6.0 9.0

The result of indexing an AbstractArray can itself be an array (for instance when indexing by an AbstractRange).
The AbstractArray fallback methods use similar to allocate an Array of the appropriate size and element
type, which is filled in using the basic indexing method described above. However, when implementing an
array wrapper you often want the result to be wrapped as well:

julia> A[1:2,:]
2x3 SparseArray{Float64, 2}:
1.0 4.0 7.0

2.0 5.0 8.0

In this example it is accomplished by defining Base.similar(A: :SparseArray, ::Type{T}, dims::Dims)
where T to create the appropriate wrapped array. (Note that while similar supports 1- and 2-argument
forms, in most case you only need to specialize the 3-argument form.) For this to work it's important
that SparseArray is mutable (supports setindex!). Defining similar, getindex and setindex! for
SparseArray also makes it possible to copy the array:

julia> copy(A)
3x3 SparseArray{Float64, 2}:
1.0 4.0 7.0

2.0 5.0 8.0

3.0 6.0 9.0

In addition to all the iterable and indexable methods from above, these types can also interact with each
other and use most of the methods defined in Julia Base for AbstractArrays:

julia> A[SquaresVector(3)]
3-element SparseArray{Float64, 1}:
1.0
4.0
9.0

julia> sum(A)
45.0

If you are defining an array type that allows non-traditional indexing (indices that start at something other
than 1), you should specialize axes. You should also specialize similar so that the dims argument (or-
dinarily a Dims size-tuple) can accept AbstractUnitRange objects, perhaps range-types Ind of your own
design. For more information, see Arrays with custom indices.

15.4 Strided Arrays

A strided array is a subtype of AbstractArray whose entries are stored in memory with fixed strides.
Provided the element type of the array is compatible with BLAS, a strided array can utilize BLAS and LAPACK
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routines for more efficient linear algebra routines. A typical example of a user-defined strided array is one
that wraps a standard Array with additional structure.

Warning: do not implement these methods if the underlying storage is not actually strided, as it may lead
to incorrect results or segmentation faults.

Here are some examples to demonstrate which type of arrays are strided and which are not:

1:5 # not strided (there is no storage associated with this array.)

Vector(1l:5) # is strided with strides (1,)

A=1[15; 26; 37; 48] # is strided with strides (1,4)

= view(A, 1:2, :) # is strided with strides (1,4)

view(A, 1:2:3, 1:2) # is strided with strides (2,4)

view(A, [1,2,4]1, @) # is not strided, as the spacing between rows is not fixed.

v
v
\Y

15.5 Customizing broadcasting

Broadcasting is triggered by an explicit call to broadcast or broadcast!, or implicitly by "dot" operations
like A .+ borf.(x, y). Any object that has axes and supports indexing can participate as an argument
in broadcasting, and by default the result is stored in an Array. This basic framework is extensible in three
major ways:

* Ensuring that all arguments support broadcast
* Selecting an appropriate output array for the given set of arguments

* Selecting an efficient implementation for the given set of arguments

Not all types support axes and indexing, but many are convenient to allow in broadcast. The Base.broadcastable
function is called on each argument to broadcast, allowing it to return something different that supports

axes and indexing. By default, this is the identity function for all AbstractArrays and Numbers — they
already support axes and indexing.

If a type is intended to act like a "O-dimensional scalar" (a single object) rather than as a container for
broadcasting, then the following method should be defined:

Base.broadcastable(o: :MyType) = Ref(0)

that returns the argument wrapped in a O-dimensional Ref container. For example, such a wrapper method
is defined for types themselves, functions, special singletons like missing and nothing, and dates.

Custom array-like types can specialize Base.broadcastable to define their shape, but they should follow

the convention that collect (Base.broadcastable(x)) == collect(x). Anotable exceptionisAbstractString;
strings are special-cased to behave as scalars for the purposes of broadcast even though they are iterable
collections of their characters (see Strings for more).

The next two steps (selecting the output array and implementation) are dependent upon determining a
single answer for a given set of arguments. Broadcast must take all the varied types of its arguments and
collapse them down to just one output array and one implementation. Broadcast calls this single answer a
"style". Every broadcastable object each has its own preferred style, and a promotion-like system is used
to combine these styles into a single answer — the "destination style".
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Broadcast Styles

Base.BroadcastStyle is the abstract type from which all broadcast styles are derived. When used as a
function it has two possible forms, unary (single-argument) and binary. The unary variant states that you
intend to implement specific broadcasting behavior and/or output type, and do not wish to rely on the
default fallback Broadcast.DefaultArrayStyle.

To override these defaults, you can define a custom BroadcastStyle for your object:

struct MyStyle <: Broadcast.BroadcastStyle end
Base.BroadcastStyle(::Type{<:MyType}) = MyStyle()

In some cases it might be convenient not to have to define MyStyle, in which case you can leverage one
of the general broadcast wrappers:

e Base.BroadcastStyle(::Type{<:MyType}) = Broadcast.Style{MyType} () can be used for arbi-
trary types.

e Base.BroadcastStyle(::Type{<:MyType})
is an AbstractArray.

Broadcast.ArrayStyle{MyType} () is preferred if MyType

* ForAbstractArrays that only support a certain dimensionality, create a subtype of Broadcast.AbstractArrayStyle{N}
(see below).

When your broadcast operation involves several arguments, individual argument styles get combined to
determine a single DestStyle that controls the type of the output container. For more details, see below.

Selecting an appropriate output array

The broadcast style is computed for every broadcasting operation to allow for dispatch and specialization.
The actual allocation of the result array is handled by similar, using the Broadcasted object as its first
argument.

Base.similar(bc::Broadcasted{DestStyle}, ::Type{ElType})

The fallback definition is

similar(bc::Broadcasted{DefaultArrayStyle{N}}, ::Type{ElType}) where {N,ElType} =
similar(Array{ElType}, axes(bc))

However, if needed you can specialize on any or all of these arguments. The final argument bc is a lazy
representation of a (potentially fused) broadcast operation, a Broadcasted object. For these purposes, the
most important fields of the wrapper are f and args, describing the function and argument list, respectively.
Note that the argument list can — and often does — include other nested Broadcasted wrappers.

For a complete example, let's say you have created a type, ArrayAndChar, that stores an array and a single
character:
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struct ArrayAndChar{T,N} <: AbstractArray{T,N}
data: :Array{T,N}
char: :Char
end
Base.size(A::ArrayAndChar) = size(A.data)
Base.getindex(A::ArrayAndChar{T,N}, inds::Vararg{Int,N}) where {T,N} = A.data[inds...]

— val
Base.showarg(io::I0, A::ArrayAndChar, toplevel) = print(io, typeof(A), " with char '", A.char,
ooy

You might want broadcasting to preserve the char "metadata". First we define

Base.BroadcastStyle(::Type{<:ArrayAndChar}) = Broadcast.ArrayStyle{ArrayAndChar}()

This means we must also define a corresponding similar method:

function Base.similar(bc::Broadcast.Broadcasted{Broadcast.ArrayStyle{ArrayAndChar}},
— ::Type{ElType}) where ElType
# Scan the inputs for the ArrayAndChar:
A = find_aac(bc)
# Use the char field of A to create the output
ArrayAndChar(similar(Array{ElType}, axes(bc)), A.char)
end

"*A = find aac(As)’ returns the first ArrayAndChar among the arguments."
find_aac(bc::Base.Broadcast.Broadcasted) = find_aac(bc.args)

find aac(args::Tuple) = find aac(find aac(args[1]), Base.tail(args))
find aac(x) = x

find_aac(::Tuple{}) = nothing

find aac(a::ArrayAndChar, rest) = a

find aac(::Any, rest) = find aac(rest)

From these definitions, one obtains the following behavior:

julia> a = ArrayAndChar([1 2; 3 4], 'x")
2x2 ArrayAndChar{Int64, 2} with char 'x':
1 2

3 4

julia> a .+ 1

2x2 ArrayAndChar{Int64, 2} with char 'x':
2 3

4 5

julia> a .+ [5,10]

2x2 ArrayAndChar{Int64, 2} with char 'x':
6 7
13 14
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Base.setindex! (A::ArrayAndChar{T,N}, val, inds::Vararg{Int,N}) where {T,N} = A.data[inds...] =
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Extending broadcast with custom implementations

In general, a broadcast operation is represented by a lazy Broadcasted container that holds onto the func-
tion to be applied alongside its arguments. Those arguments may themselves be more nested Broadcasted
containers, forming a large expression tree to be evaluated. A nested tree of Broadcasted containers is
directly constructed by the implicit dot syntax; 5 .+ 2.*x is transiently represented by Broadcasted(+,
5, Broadcasted(*, 2, x)), for example. This is invisible to users as it is immediately realized through a
call to copy, but it is this container that provides the basis for broadcast's extensibility for authors of cus-
tom types. The built-in broadcast machinery will then determine the result type and size based upon the
arguments, allocate it, and then finally copy the realization of the Broadcasted object into it with a default
copyto! (::AbstractArray, ::Broadcasted) method. The built-in fallback broadcast and broadcast!
methods similarly construct a transient Broadcasted representation of the operation so they can follow the
same codepath. This allows custom array implementations to provide their own copyto! specialization to
customize and optimize broadcasting. This is again determined by the computed broadcast style. This is
such an important part of the operation that it is stored as the first type parameter of the Broadcasted
type, allowing for dispatch and specialization.

For some types, the machinery to "fuse" operations across nested levels of broadcasting is not available
or could be done more efficiently incrementally. In such cases, you may need or want to evaluate x .*
(x .+ 1) as if it had been written broadcast(*, x, broadcast(+, x, 1)), where the inner operation
is evaluated before tackling the outer operation. This sort of eager operation is directly supported by a
bit of indirection; instead of directly constructing Broadcasted objects, Julia lowers the fused expression x
.¥ (x .+ 1) to Broadcast.broadcasted(*, x, Broadcast.broadcasted(+, x, 1)). Now, by default,
broadcasted just calls the Broadcasted constructor to create the lazy representation of the fused expres-
sion tree, but you can choose to override it for a particular combination of function and arguments.

As an example, the builtin AbstractRange objects use this machinery to optimize pieces of broadcasted
expressions that can be eagerly evaluated purely in terms of the start, step, and length (or stop) instead
of computing every single element. Just like all the other machinery, broadcasted also computes and
exposes the combined broadcast style of its arguments, so instead of specializing on broadcasted(f,
args...), you can specialize on broadcasted(::DestStyle, f, args...) for any combination of style,
function, and arguments.

For example, the following definition supports the negation of ranges:
broadcasted(::DefaultArrayStyle{l}, ::typeof(-), r::0rdinalRange) = range(-first(r),
— step=-step(r), length=length(r))

Extending in-place broadcasting

In-place broadcasting can be supported by defining the appropriate copyto! (dest, bc::Broadcasted)
method. Because you might want to specialize either on dest or the specific subtype of bc, to avoid
ambiguities between packages we recommend the following convention.

If you wish to specialize on a particular style DestStyle, define a method for

copyto! (dest, bc::Broadcasted{DestStyle})

Optionally, with this form you can also specialize on the type of dest.

If instead you want to specialize on the destination type DestType without specializing on DestStyle, then
you should define a method with the following signature:
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copyto! (dest::DestType, bc::Broadcasted{Nothing})

This leverages a fallback implementation of copyto! that converts the wrapperinto a Broadcasted{Nothing}.
Consequently, specializing on DestType has lower precedence than methods that specialize on DestStyle.

Similarly, you can completely override out-of-place broadcasting with a copy(: :Broadcasted) method.

Working with Broadcasted objects

In order to implement such a copy or copyto!, method, of course, you must work with the Broadcasted
wrapper to compute each element. There are two main ways of doing so:

* Broadcast.flatten recomputes the potentially nested operation into a single function and flat list
of arguments. You are responsible for implementing the broadcasting shape rules yourself, but this
may be helpful in limited situations.

 |terating over the CartesianIndices of the axes(::Broadcasted) and using indexing with the re-
sulting CartesianIndex object to compute the result.

Writing binary broadcasting rules

The precedence rules are defined by binary BroadcastStyle calls:
‘ Base.BroadcastStyle(::Stylel, ::Style2) = Stylel2()

where Stylel2 is the BroadcastStyle you want to choose for outputs involving arguments of Stylel and
Style2. For example,

Base.BroadcastStyle(::Broadcast.Style{Tuple}, ::Broadcast.AbstractArrayStyle{0}) =
— Broadcast.Style{Tuple}()

indicates that Tuple "wins" over zero-dimensional arrays (the output container will be a tuple). It is worth
noting that you do not need to (and should not) define both argument orders of this call; defining one is
sufficient no matter what order the user supplies the arguments in.

For AbstractArray types, defining a BroadcastStyle supersedes the fallback choice, Broadcast.DefaultArrayStyle.
DefaultArrayStyle and the abstract supertype, AbstractArrayStyle, store the dimensionality as a type
parameter to support specialized array types that have fixed dimensionality requirements.

DefaultArrayStyle "loses" to any other AbstractArrayStyle that has been defined because of the fol-
lowing methods:

BroadcastStyle(a: :AbstractArrayStyle{Any}, ::DefaultArrayStyle) = a

BroadcastStyle(a: :AbstractArrayStyle{N}, ::DefaultArrayStyle{N}) where N = a

BroadcastStyle(a: :AbstractArrayStyle{M}, ::DefaultArrayStyle{N}) where {M,N} =
typeof(a) (Val(max(M, N)))

You do not need to write binary BroadcastStyle rules unless you want to establish precedence for two or
more non-DefaultArrayStyle types.

If your array type does have fixed dimensionality requirements, then you should subtype AbstractArrayStyle.
For example, the sparse array code has the following definitions:
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struct SparseVecStyle <: Broadcast.AbstractArrayStyle{1} end
struct SparseMatStyle <: Broadcast.AbstractArrayStyle{2} end
Base.BroadcastStyle(::Type{<:SparseVector}) = SparseVecStyle()
Base.BroadcastStyle(::Type{<:SparseMatrixCSC}) = SparseMatStyle()

Whenever you subtype AbstractArrayStyle, you also need to define rules for combining dimensionalities,
by creating a constructor for your style that takes a Val(N) argument. For example:

SparseVecStyle(::Val{0}) SparseVecStyle()
SparseVecStyle(::Val{l}) = SparseVecStyle()
SparseVecStyle(::Val{2}) = SparseMatStyle()
SparseVecStyle(::Val{N}) where N = Broadcast.DefaultArrayStyle{N}()

These rules indicate that the combination of a SparseVecStyle with 0- or 1-dimensional arrays yields
another SparseVecStyle, that its combination with a 2-dimensional array yields a SparseMatStyle, and
anything of higher dimensionality falls back to the dense arbitrary-dimensional framework. These rules
allow broadcasting to keep the sparse representation for operations that result in one or two dimensional
outputs, but produce an Array for any other dimensionality.

15.6 Instance Properties

Sometimes, it is desirable to change how the end-user interacts with the fields of an object. Instead of
granting direct access to type fields, an extra layer of abstraction between the user and the code can be
provided by overloading object.field. Properties are what the user sees of the object, fields what the
object actually is.

By default, properties and fields are the same. However, this behavior can be changed. For example, take
this representation of a point in a plane in polar coordinates:

julia> mutable struct Point
r::Float64
¢::Float64
end

julia> p = Point (7.0, pi/4)
Point (7.0, 0.7853981633974483)

As described in the table above dot access p.r is the same as getproperty(p, :r) which is by default
the same as getfield(p, :r):

julia> propertynames(p)
(:r, :9)

julia> getproperty(p, :r), getproperty(p, :¢)
(7.0, 0.7853981633974483)

julia> p.r, p.¢
(7.0, 0.7853981633974483)

julia> getfield(p, :r), getproperty(p, :¢)
(7.0, 0.7853981633974483)
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However, we may want users to be unaware that Point stores the coordinates as r and ¢ (fields), and
instead interact with x and y (properties). The methods in the first column can be defined to add new
functionality.

julia> Base.propertynames(::Point, private::Bool=false) = private ? (:x, :y, :r, :¢) : (:x, :y)

julia> function Base.getproperty(p::Point, s::Symbol)

if s === :x

return getfield(p, :r) * cos(getfield(p, :¢))
elseif s === :y

return getfield(p, :r) * sin(getfield(p, :¢))
else

# This allows accessing fields with p.r and p.¢
return getfield(p, s)
end
end

julia> function Base.setproperty!(p::Point, s::Symbol, f)
if s === :x
y =p.y
setfield!(p, :r, sqrt(f"2 + y”2))
setfield!(p, :¢, atan(y, f))
return f
elseif s === :y
X = p.X
setfield!(p, :r, sqrt(x"2 + 72))
setfield! (p, :¢, atan(f, x))
return f
else
# This allow modifying fields with p.r and p.¢
return setfield!(p, s, f)
end

end

It is important that getfield and setfield are used inside getproperty and setproperty! instead of
the dot syntax, since the dot syntax would make the functions recursive which can lead to type inference
issues. We can now try out the new functionality:

julia> propertynames(p)
(:x, ty)

julia> p.x
4.949747468305833

julia> p.y = 4.0
4.0

julia> p.r
6.363961030678928

Finally, it is worth noting that adding instance properties like this is quite rarely done in Julia and should in
general only be done if there is a good reason for doing so.
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Methods to Brief description

implement

size(A) Returns a tuple containing the dimensions of A
getindex(A, (if IndexLinear) Linear scalar indexing

i::Int)

getindex(A, (if IndexCartesian, where N = ndims(A)) N-dimensional

I::Vararg{Int,
N})

scalar indexing

Optional Default Brief description
methods definition
IndexStyle(::TypendexCartesian( )Returns either IndexLinear() or IndexCartesian(). See the
description below.
setindex! (A, (if IndexLinear) Scalar indexed assignment
v, i::Int)
setindex! (A, (if IndexCartesian, where N = ndims(A)) N-dimensional
v, scalar indexed assignment
I::Vararg{Int,
N})
getindex(A, defined in Multidimensional and nonscalar indexing
I...) terms of scalar
getindex
setindex! (A, defined in Multidimensional and nonscalar indexed assignment
X, I...) terms of scalar
setindex!
iterate defined in Iteration
terms of scalar
getindex
length(A) prod(size(A)) | Number of elements
similar(A) similar(A, Return a mutable array with the same shape and element type
eltype(A),
size(A))
similar(A, similar(A, S, | Return a mutable array with the same shape and the specified
::Type{S}) size(A)) element type
similar(A, similar(A, Return a mutable array with the same element type and size
dims::Dims) eltype(A), dims
dims)
similar(A, Array{S} (undef| Return a mutable array with the specified element type and
1 Type{S}, dims) size
dims::Dims)
Non-traditional Default Brief description
indices definition
axes(A) map (OneTo, Return a tuple of AbstractUnitRange{<:Integer} of valid
size(A)) indices. The axes should be their own axes, that is
axes. (axes(A),1l) == axes(A) should be satisfied.
similar(A, similar(A, S, | Return a mutable array with the specified indices inds (see
1 :Type{S}, Base.to shape (1indslpw)
inds)

similar(T::Union

inds)

{ Ty Ba sleurtot sdvapge (Redsh)an array similar to T with the specified indices inds

(see below)




CHAPTER 15. INTERFACES

203

Methods to Brief description
implement
strides(A) Return the distance in memory (in number of elements) between

adjacent elements in each dimension as a tuple. If Ais an
AbstractArray{T, 0}, this should return an empty tuple.

A)

Base.unsafe convert(::Type

{ Rat{ifh}the native address of an array.

Base.elsize(::Type{<:A})

Return the stride between consecutive elements in the array.

Optional De- Brief description
methods fault
defini-
tion
stride(A, strides (JARetlirn the distance in memory (in number of elements) between
i::Int) adjacent elements in dimension k.

Methods to implement

Brief description

Base.BroadcastStyle(::Type{SrcType}) = Broadcasting behavior of SrcType
SrcStyle()

Base.similar(bc: :Broadcasted{DestStyle}, Allocation of output container

1 :Type{ElType})

Optional methods

Stylel2()

Base.BroadcastStyle(::Stylel,

1:Style2) = Precedence rules for mixing styles

Base.axes(x)

Declaration of the indices of x, as per axes(x).

Base.broadcastable(x)

Convert x to an object that has axes and
supports indexing

Bypassing default machinery

Base.copy(bc::Broadcasted{DestStyle}) Custom implementation of broadcast

Base.copyto! (dest,

Custom implementation of broadcast!,

bc::Broadcasted{DestStyle}) specializing on DestStyle

Base.copyto! (dest::DestType, Custom implementation of broadcast!,
bc::Broadcasted{Nothing}) specializing on DestType
Base.Broadcast.broadcasted(f, args...) Override the default lazy behavior within a fused

expression

Base.Broadcast.instantiate(bc: :Broadcasted{D&Stigleefhe computation of the lazy broadcast's

axes

Methods to implement Default Brief description
definition
propertynames(x::0bjTypé&jieldnames (tRpon(a kuple of the properties (x.property) of an object x.
private::Bool=false) If private=true, also return property names intended to be
kept as private
getproperty(x::0bjType,getfield(x,| Return property s of x. x.s calls getproperty(x, :s).
s::Symbol) s)

setproperty! (x::0bjTyp
s::Symbol, v)

esetfield! (
S, V)

,Set property s of x to v. x.s = v calls setproperty! (x,
:s, V). Should return v.




Chapter 16

Modules

Modules in Julia help organize code into coherent units. They are delimited syntactically inside module
NameOfModule ... end, and have the following features:

1. Modules are separate namespaces, each introducing a new global scope. This is useful, because it
allows the same name to be used for different functions or global variables without conflict, as long
as they are in separate modules.

2. Modules have facilities for detailed namespace management: each defines a set of names it exports,
and can import names from other modules with using and import (we explain these below).

3. Modules can be precompiled for faster loading, and may contain code for runtime initialization.
Typically, in larger Julia packages you will see module code organized into files, eg

module SomeModule
# export, using, import statements are usually here; we discuss these below

include("filel.jl")
include("file2.j1")

end

Files and file names are mostly unrelated to modules; modules are associated only with module expressions.
One can have multiple files per module, and multiple modules per file. include behaves as if the contents
of the source file were evaluated in the global scope of the including module. In this chapter, we use short
and simplified examples, so we won't use include.

The recommended style is not to indent the body of the module, since that would typically lead to whole
files being indented. Also, it is common to use UpperCamelCase for module names (just like types), and
use the plural form if applicable, especially if the module contains a similarly named identifier, to avoid
name clashes. For example,

module FastThings

204
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struct FastThing
end

end

16.1 Namespace management

Namespace management refers to the facilities the language offers for making names in a module available
in other modules. We discuss the related concepts and functionality below in detail.

Qualified names

Names for functions, variables and types in the global scope like sin, ARGS, and UnitRange always belong
to a module, called the parent module, which can be found interactively with parentmodule, for example

julia> parentmodule(UnitRange)
Base

One can also refer to these names outside their parent module by prefixing them with their module, eg
Base.UnitRange. This is called a qualified name. The parent module may be accessible using a chain of
submodules like Base.Math.sin, where Base.Math is called the module path. Due to syntactic ambiguities,
qualifying a name that contains only symbols, such as an operator, requires inserting a colon, e.g. Base. : +.
A small number of operators additionally require parentheses, e.g. Base. : (==).

If a name is qualified, then it is always accessible, and in case of a function, it can also have methods added
to it by using the qualified name as the function name.

Within a module, a variable name can be “reserved” without assigning to it by declaring it as global x.
This prevents name conflicts for globals initialized after load time. The syntax M.x = y does not work to
assign a global in another module; global assignment is always module-local.

Export lists

Names (referring to functions, types, global variables, and constants) can be added to the export list of a
module with export: these are the symbols that are imported when using the module. Typically, they are
at or near the top of the module definition so that readers of the source code can find them easily, as in

julia> module NiceStuff
export nice, DOG

struct Dog end # singleton type, not exported
const DOG = Dog() # named instance, exported
nice(x) = "nice $x" # function, exported

end;

but this is just a style suggestion — a module can have multiple export statements in arbitrary locations.

It is common to export names which form part of the API (application programming interface). In the above
code, the export list suggests that users should use nice and DOG. However, since qualified names always
make identifiers accessible, this is just an option for organizing APIs: unlike other languages, Julia has no
facilities for truly hiding module internals.
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Also, some modules don't export names at all. This is usually done if they use common words, such as
derivative, in their API, which could easily clash with the export lists of other modules. We will see how
to manage name clashes below.

Standalone using and import

Possibly the most common way of loading a module is using ModuleName. This loads the code associated
with ModuleName, and brings

1. the module name

2. and the elements of the export list into the surrounding global namespace.

Technically, the statement using ModuleName means that a module called ModuleName will be available
for resolving names as needed. When a global variable is encountered that has no definition in the current
module, the system will search for it among variables exported by ModuleName and use it if it is found
there. This means that all uses of that global within the current module will resolve to the definition of that
variable in ModuleName.

To load a module from a package, the statement using ModuleName can be used. To load a module from
a locally defined module, a dot needs to be added before the module name like using .ModuleName.

To continue with our example,

julia> using .NiceStuff

would load the above code, making NiceStuff (the module name), DOG and nice available. Dog is not on
the export list, but it can be accessed if the name is qualified with the module path (which here is just the
module name) as NiceStuff.Dog.

Importantly, using ModuleName is the only form for which export lists matter at all.

In contrast,

julia> import .NiceStuff

brings only the module name into scope. Users would need to use NiceStuff.DOG, NiceStuff.Dog, and
NiceStuff.nice to access its contents. Usually, import ModuleName is used in contexts when the user
wants to keep the namespace clean. As we will see in the next section import .NiceStuff is equivalent
tousing .NiceStuff: NiceStuff.

You can combine multiple using and import statements of the same kind in a comma-separated expres-
sion, e.g.

julia> using LinearAlgebra, Statistics
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using and import with specific identifiers, and adding methods

When using ModuleName: or import ModuleName: is followed by a comma-separated list of names, the
module is loaded, but only those specific names are brought into the namespace by the statement. For
example,

julia> using .NiceStuff: nice, DOG

will import the names nice and DOG.

Importantly, the module name NiceStuff will not be in the namespace. If you want to make it accessible,
you have to list it explicitly, as

‘julia> using .NiceStuff: nice, DOG, NiceStuff

Julia has two forms for seemingly the same thing because only import ModuleName: f allows adding
methods to f without a module path. That is to say, the following example will give an error:

julia> using .NiceStuff: nice
julia> struct Cat end

julia> nice(::Cat) = "nice "
ERROR: invalid method definition in Main: function NiceStuff.nice must be explicitly imported to
< be extended
Stacktrace:
[1] top-level scope
@ none:0
[2] top-level scope
@ none:l

This error prevents accidentally adding methods to functions in other modules that you only intended to
use.

There are two ways to deal with this. You can always qualify function names with a module path:
julia> using .NiceStuff
julia> struct Cat end

julia> NiceStuff.nice(::Cat) = "nice "

Alternatively, you can import the specific function name:

julia> import .NiceStuff: nice
julia> struct Cat end

julia> nice(::Cat) = "nice "
nice (generic function with 2 methods)
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Which one you choose is a matter of style. The first form makes it clear that you are adding a method to
a function in another module (remember, that the imports and the method definition may be in separate
files), while the second one is shorter, which is especially convenient if you are defining multiple methods.

Once a variable is made visible via using or import, a module may not create its own variable with the
same name. Imported variables are read-only; assigning to a global variable always affects a variable
owned by the current module, or else raises an error.

Renaming with as

An identifier brought into scope by import or using can be renamed with the keyword as. This is useful for
working around name conflicts as well as for shortening names. For example, Base exports the function
name read, but the CSV.jl package also provides CSV.read. If we are going to invoke CSV reading many
times, it would be convenient to drop the CSV. qualifier. But then it is ambiguous whether we are referring
to Base.read or CSV.read:

julia> read;

julia> import CSV: read
WARNING: ignoring conflicting import of CSV.read into Main

Renaming provides a solution:

julia> import CSV: read as rd

Imported packages themselves can also be renamed:

import BenchmarkTools as BT

as works with using only when a single identifier is brought into scope. For example using CSV: read as
rd works, but using CSV as C does not, since it operates on all of the exported names in CSV.

Mixing multiple using and import statements

When multiple using or import statements of any of the forms above are used, their effect is combined in
the order they appear. For example,

julia> using .NiceStuff # exported names and the module name

julia> import .NiceStuff: nice # allows adding methods to unqualified functions

would bring all the exported names of NiceStuff and the module name itself into scope, and also allow
adding methods to nice without prefixing it with a module name.
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Handling name conflicts

Consider the situation where two (or more) packages export the same name, as in

julia> module A
export f
f() =1
end

A

julia> module B
export f
f() =2
end

B

The statement using .A, .B works, but when you try to call f, you get a warning

julia> using .A, .B

julia> f
WARNING: both B and A export "f"; uses of it in module Main must be qualified
ERROR: UndefVarError: “f° not defined

Here, Julia cannot decide which f you are referring to, so you have to make a choice. The following solutions
are commonly used:

1. Simply proceed with qualified names like A.f and B.f. This makes the context clear to the reader
of your code, especially if f just happens to coincide but has different meaning in various packages.
For example, degree has various uses in mathematics, the natural sciences, and in everyday life,
and these meanings should be kept separate.

2. Use the as keyword above to rename one or both identifiers, eg
julia> using .A: f as f
julia> using .B: f as g

would make B. f available as g. Here, we are assuming that you did not use using A before, which
would have brought f into the namespace.

3. When the names in question do share a meaning, it is common for one module to import it from
another, or have a lightweight “base” package with the sole function of defining an interface like
this, which can be used by other packages. It is conventional to have such package names end in
.. .Base (which has nothing to do with Julia's Base module).

Default top-level definitions and bare modules

Modules automatically contain using Core, using Base, and definitions of the eval and include func-
tions, which evaluate expressions/files within the global scope of that module.

If these default definitions are not wanted, modules can be defined using the keyword baremodule instead
(note: Core is still imported). In terms of baremodule, a standard module looks like this:
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baremodule Mod

using Base

eval(x) = Core.eval(Mod, x)
include(p) = Base.include(Mod, p)

end

If even Core is not wanted, a module that imports nothing and defines no names at all can be defined with
Module(:YourNameHere, false, false) and code can be evaluated into it with @eval or Core.eval:

julia> arithmetic = Module(:arithmetic, false, false)
Main.arithmetic

julia> @eval arithmetic add(x, y) = $(+)(x, y)
add (generic function with 1 method)

julia> arithmetic.add(12, 13)
25

Standard modules

There are three important standard modules:

e Core contains all functionality "built into" the language.
* Base contains basic functionality that is useful in almost all cases.

* Main is the top-level module and the current module, when Julia is started.

Standard library modules

By default Julia ships with some standard library modules. These behave like regular Julia
packages except that you don't need to install them explicitly. For example, if you wanted to
perform some unit testing, you could load the Test standard library as follows:

‘using Test

16.2 Submodules and relative paths

Modules can contain submodules, nesting the same syntaxmodule ... end. They can be used to introduce
separate namespaces, which can be helpful for organizing complex codebases. Note that each module
introduces its own scope, so submodules do not automatically “inherit” names from their parent.

It is recommended that submodules refer to other modules within the enclosing parent module (including
the latter) using relative module qualifiers in using and import statements. A relative module qualifier
starts with a period (.), which corresponds to the current module, and each successive . leads to the
parent of the current module. This should be followed by modules if necessary, and eventually the actual
name to access, all separated by .s.
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Consider the following example, where the submodule SubA defines a function, which is then extended in

its “sibling” module:

julia> module ParentModule
module SubA
export add D # exported interface
const D = 3
add D(x) = x + D
end
using .SubA # brings ‘add D' into the namespace
export add D # export it from ParentModule too
module SubB
import ..SubA: add D # relative path for a “sibling” module
struct Infinity end
add D(x::Infinity) = x
end
end;

You may see code in packages, which, in a similar situation, uses

julia> import .ParentModule.SubA: add D

However, this operates through code loading, and thus only works if ParentModule is in a package. It is

better to use relative paths.

Note that the order of definitions also matters if you are evaluating values. Consider

module TestPackage

export x, y

module Sub

using ..TestPackage

z = y # ERROR: UndefVarError: 'y  not defined
end

end

where Sub is trying to use TestPackage.y before it was defined, so it does not have a value.

For similar reasons, you cannot use a cyclic ordering:
module A
module B

using ..C # ERROR: UndefVarError: 'C' not defined
end



CHAPTER 16. MODULES 212

module C
using ..B
end

end

16.3 Module initialization and precompilation

Large modules can take several seconds to load because executing all of the statements in a module often
involves compiling a large amount of code. Julia creates precompiled caches of the module to reduce this
time.

Precompiled module files (sometimes called "cache files") are created and used automatically when import
or using loads a module. If the cache file(s) do not yet exist, the module will be compiled and saved for
future reuse. You can also manually call Base.compilecache(Base.identify package("modulename"))
to create these files without loading the module. The resulting cache files will be stored in the compiled
subfolder of DEPOT_PATH[1]. If nothing about your system changes, such cache files will be used when
you load the module with import or using.

Precompilation cache files store definitions of modules, types, methods, and constants. They may also store
method specializations and the code generated for them, but this typically requires that the developer add
explicit precompile directives or execute workloads that force compilation during the package build.

However, if you update the module's dependencies or change its source code, the module is automatically
recompiled upon using or import. Dependencies are modules it imports, the Julia build, files it includes,
or explicit dependencies declared by include dependency(path) in the module file(s).

For file dependencies, a change is determined by examining whether the modification time (mtime) of
each file loaded by include or added explicitly by include dependency is unchanged, or equal to the
modification time truncated to the nearest second (to accommodate systems that can't copy mtime with
sub-second accuracy). It also takes into account whether the path to the file chosen by the search logic
in require matches the path that had created the precompile file. It also takes into account the set of
dependencies already loaded into the current process and won't recompile those modules, even if their
files change or disappear, in order to avoid creating incompatibilities between the running system and the
precompile cache. Finally, it takes account of changes in any compile-time preferences.

If you know that a module is not safe to precompile (for example, for one of the reasons described below),
you should put  precompile (false) in the module file (typically placed at the top). This will cause
Base.compilecache to throw an error, and will cause using / import to load it directly into the current
process and skip the precompile and caching. This also thereby prevents the module from being imported
by any other precompiled module.

You may need to be aware of certain behaviors inherent in the creation of incremental shared libraries
which may require care when writing your module. For example, external state is not preserved. To ac-
commodate this, explicitly separate any initialization steps that must occur at runtime from steps that can
occur at compile time. For this purpose, Julia allows you to definean _init () function in your module
that executes any initialization steps that must occur at runtime. This function will not be called during
compilation (--output-*). Effectively, you can assume it will be run exactly once in the lifetime of the
code. You may, of course, call it manually if necessary, but the default is to assume this function deals with
computing state for the local machine, which does not need to be - or even should not be - captured in the
compiled image. It will be called after the module is loaded into a process, including if it is being loaded into
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an incremental compile (--output-incremental=yes), but not if it is being loaded into a full-compilation
process.

In particular, if you define a function _ init () inamodule, thenjuliawillcall _init () immediately
after the module is loaded (e.g., by import, using, or require) at runtime for the firsttime (i.e., init is
only called once, and only after all statements in the module have been executed). Because it is called after
the module is fully imported, any submodules or other imported modules have their __init  functions
called before the _init  of the enclosing module.

Two typicalusesof init are calling runtime initialization functions of external C libraries and initializing
global constants that involve pointers returned by external libraries. For example, suppose that we are call-
ing a C library libfoo that requires us to call a foo_init() initialization function at runtime. Suppose that
we also want to define a global constant foo _data ptr that holds the return value of a void *foo data()
function defined by libfoo - this constant must be initialized at runtime (not at compile time) because the
pointer address will change from run to run. You could accomplish this by defining the following init
function in your module:

const foo data ptr = Ref{Ptr{Cvoid}}(0)
function init ()

ccall((:foo_init, :libfoo), Cvoid, ())
foo_data ptr[] = ccall((:foo_data, :libfoo), Ptr{Cvoid}, ())
nothing

end

Notice that it is perfectly possible to define a global inside a function like init ; this is one of the
advantages of using a dynamic language. But by making it a constant at global scope, we can ensure that
the type is known to the compiler and allow it to generate better optimized code. Obviously, any other
globals in your module that depends on foo _data ptr would also have to be initialized in __init .

Constants involving most Julia objects that are not produced by ccall do not need to be placedin __init :
their definitions can be precompiled and loaded from the cached module image. This includes complicated
heap-allocated objects like arrays. However, any routine that returns a raw pointer value must be called
at runtime for precompilation to work (Ptr objects will turn into null pointers unless they are hidden inside
an isbits object). This includes the return values of the Julia functions @cfunction and pointer.

Dictionary and set types, or in general anything that depends on the output of a hash(key) method, are
a trickier case. In the common case where the keys are numbers, strings, symbols, ranges, Expr, or
compositions of these types (via arrays, tuples, sets, pairs, etc.) they are safe to precompile. However, for
a few other key types, such as Function or DataType and generic user-defined types where you haven't
defined a hash method, the fallback hash method depends on the memory address of the object (via its
objectid) and hence may change from run to run. If you have one of these key types, or if you aren't sure,
to be safe you can initialize this dictionary from within your init  function. Alternatively, you can use
the IdDict dictionary type, which is specially handled by precompilation so that it is safe to initialize at
compile-time.

When using precompilation, it is important to keep a clear sense of the distinction between the compilation
phase and the execution phase. In this mode, it will often be much more clearly apparent that Julia is a
compiler which allows execution of arbitrary Julia code, not a standalone interpreter that also generates
compiled code.

Other known potential failure scenarios include:
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1. Global counters (for example, for attempting to uniquely identify objects). Consider the following
code snippet:

mutable struct UniquedById

myid::Int
let counter =0

UniquedById() = new(counter += 1)
end

end

while the intent of this code was to give every instance a unique id, the counter value is recorded at
the end of compilation. All subsequent usages of this incrementally compiled module will start from
that same counter value.

Note that objectid (which works by hashing the memory pointer) has similar issues (see notes on
Dict usage below).

One alternative is to use a macro to capture@ MODULE and store it alone with the current counter
value, however, it may be better to redesign the code to not depend on this global state.

2. Associative collections (such as Dict and Set) need to be re-hashed in __init . (In the future, a
mechanism may be provided to register an initializer function.)

3. Depending on compile-time side-effects persisting through load-time. Example include: modifying
arrays or other variables in other Julia modules; maintaining handles to open files or devices; storing
pointers to other system resources (including memory);

4. Creating accidental "copies" of global state from another module, by referencing it directly instead
of via its lookup path. For example, (in global scope):

#mystdout = Base.stdout #= will not work correctly, since this will copy Base.stdout into
— this module =#

# instead use accessor functions:

getstdout() = Base.stdout #= best option =#

# or move the assignment into the runtime:

__init () = global mystdout = Base.stdout #= also works =#

Several additional restrictions are placed on the operations that can be done while precompiling code to
help the user avoid other wrong-behavior situations:

1. Calling eval to cause a side-effect in another module. This will also cause a warning to be emitted
when the incremental precompile flag is set.

2. global const statements from local scope after _init () has been started (see issue #12010
for plans to add an error for this)

3. Replacing a module is a runtime error while doing an incremental precompile.

A few other points to be aware of:

1. No code reload / cache invalidation is performed after changes are made to the source files them-
selves, (including by Pkg.update), and no cleanup is done after Pkg.rm
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2. The memory sharing behavior of a reshaped array is disregarded by precompilation (each view gets
its own copy)

3. Expecting the filesystem to be unchanged between compile-time and runtimee.g. @ FILE /source path()
to find resources at runtime, or the BinDeps @checked lib macro. Sometimes this is unavoidable.
However, when possible, it can be good practice to copy resources into the module at compile-time
so they won't need to be found at runtime.

4. WeakRef objects and finalizers are not currently handled properly by the serializer (this will be fixed
in an upcoming release).

5. It is usually best to avoid capturing references to instances of internal metadata objects such as
Method, MethodInstance, MethodTable, TypeMapLevel, TypeMapEntry and fields of those objects,
as this can confuse the serializer and may not lead to the outcome you desire. It is not necessarily
an error to do this, but you simply need to be prepared that the system will try to copy some of these
and to create a single unique instance of others.

It is sometimes helpful during module development to turn off incremental precompilation. The command
line flag --compiled-modules={yes|no} enables you to toggle module precompilation on and off. When
Julia is started with - -compiled-modules=no the serialized modules in the compile cache are ignored when
loading modules and module dependencies. More fine-grained control is available with --pkgimages=no,
which suppresses only native-code storage during precompilation. Base.compilecache can still be called
manually. The state of this command line flag is passed to Pkg.build to disable automatic precompilation
triggering when installing, updating, and explicitly building packages.

You can also debug some precompilation failures with environment variables. Setting JULIA VERBOSE LINKING=true
may help resolve failures in linking shared libraries of compiled native code. See the Developer Docu-
mentation part of the Julia manual, where you will find further details in the section documenting Julia's
internals under "Package Images".
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Documentation

17.1 Accessing Documentation

Documentation can be accessed at the REPL or in ljulia by typing ? followed by the name of a function or
macro, and pressing Enter. For example,

7cos
?@time
2pnn

will show documentation for the relevant function, macro or string macro respectively. Most Julia environ-
ments provide a way to access documentation directly:

* VS Code shows documentation when you hover over a function name. You can also use the Julia
panel in the sidebar to search for documentation.

* In Pluto, open the "Live Docs" panel on the bottom right.

* InJuno using Ctrl-J, Ctrl-D will show the documentation for the object under the cursor.

17.2 Writing Documentation

Julia enables package developers and users to document functions, types and other objects easily via a
built-in documentation system.

The basic syntax is simple: any string appearing just before an object (function, macro, type or instance)
will be interpreted as documenting it (these are called docstrings). Note that no blank lines or comments
may intervene between a docstring and the documented object. Here is a basic example:

"Tell whether there are too foo items in the array."
foo(xs::Array) = ...

Documentation is interpreted as Markdown, so you can use indentation and code fences to delimit code
examples from text. Technically, any object can be associated with any other as metadata; Markdown
happens to be the default, but one can construct other string macros and pass them to the @doc macro
just as well.
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Note

Markdown support is implemented in the Markdown standard library and for a full list of sup-
ported syntax see the documentation.

Here is a more complex example, still using Markdown:

bar(x[, yI)
Compute the Bar index between “x* and “y .

If “y' is unspecified, compute the Bar index between all pairs of columns of “x'.

# Examples
“Tjulia-repl
julia> bar([1, 2], [1, 2])

1

function bar(x, y)

As in the example above, we recommend following some simple conventions when writing documentation:

1. Always show the signature of a function at the top of the documentation, with a four-space indent
so that it is printed as Julia code.

This can be identical to the signature present in the Julia code (like mean(x: :AbstractArray)), or a
simplified form. Optional arguments should be represented with their default values (i.e. f(x, y=1))
when possible, following the actual Julia syntax. Optional arguments which do not have a default
value should be put in brackets (i.e. f(x[, yl) and f(x[, y[, zl1)). An alternative solution is
to use several lines: one without optional arguments, the other(s) with them. This solution can
also be used to document several related methods of a given function. When a function accepts
many keyword arguments, only include a <keyword arguments> placeholder in the signature (i.e.
f(x; <keyword arguments>)), and give the complete list under an # Arguments section (see point
4 below).

2. Include a single one-line sentence describing what the function does or what the object represents
after the simplified signature block. If needed, provide more details in a second paragraph, after a
blank line.

The one-line sentence should use the imperative form ("Do this", "Return that") instead of the third
person (do not write "Returns the length...") when documenting functions. It should end with a period.
If the meaning of a function cannot be summarized easily, splitting it into separate composable
parts could be beneficial (this should not be taken as an absolute requirement for every single case
though).

3. Do not repeat yourself.

Since the function name is given by the signature, there is no need to start the documentation with
"The function bar...": go straight to the point. Similarly, if the signature specifies the types of the
arguments, mentioning them in the description is redundant.
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4. Only provide an argument list when really necessary.

For simple functions, it is often clearer to mention the role of the arguments directly in the de-
scription of the function's purpose. An argument list would only repeat information already provided
elsewhere. However, providing an argument list can be a good idea for complex functions with many
arguments (in particular keyword arguments). In that case, insert it after the general description of
the function, under an # Arguments header, with one - bullet for each argument. The list should
mention the types and default values (if any) of the arguments:

# Arguments
- "n::Integer’: the number of elements to compute.
- "dim::Integer=1": the dimensions along which to perform the computation.

5. Provide hints to related functions.

Sometimes there are functions of related functionality. To increase discoverability please provide a
short list of these in a See also paragraph.

See also ['bar! ](@ref), ["baz ](@ref), [ baaz ]1(@ref).

6. Include any code examples in an # Examples section.

Examples should, whenever possible, be written as doctests. A doctest is a fenced code block (see
Code blocks) starting with * * * jldoctest and contains any number of julia> prompts together with
inputs and expected outputs that mimic the Julia REPL.

Note

Doctests are enabled by Documenter.jl. For more detailed documentation see Docu-
menter's manual.

For example in the following docstring a variable a is defined and the expected result, as printed in
a Julia REPL, appears afterwards:

Some nice documentation here.

# Examples

" jldoctest

julia> a = [1 2; 3 4]
2x2 Array{Int64,2}:

1 2

3 4

Warning

Calling rand and other RNG-related functions should be avoided in doctests since they
will not produce consistent outputs during different Julia sessions. If you would like to
show some random number generation related functionality, one option is to explicitly
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construct and seed your own RNG object (see Random) and pass it to the functions you
are doctesting.

Operating system word size (Int32 or Int64) as well as path separator differences (/ or
\) will also affect the reproducibility of some doctests.

Note that whitespace in your doctest is significant! The doctest will fail if you misalign
the output of pretty-printing an array, for example.

You can then run make -C doc doctest=true to run all the doctests in the Julia Manual and API
documentation, which will ensure that your example works.

To indicate that the output result is truncated, you may write [...] atthe line where checking should
stop. This is useful to hide a stacktrace (which contains non-permanent references to lines of julia
code) when the doctest shows that an exception is thrown, for example:

"*jldoctest
julia> div(1l, 0)
ERROR: DivideError: integer division error

[...]

Examples that are untestable should be written within fenced code blocks starting with ** " julia so
that they are highlighted correctly in the generated documentation.

Tip
Wherever possible examples should be self-contained and runnable so that readers
are able to try them out without having to include any dependencies.

7. Use backticks to identify code and equations.

Julia identifiers and code excerpts should always appear between backticks * to enable highlighting.
Equations in the LaTeX syntax can be inserted between double backticks * . Use Unicode characters
rather than their LaTeX escape sequence, i.e. “~“a = 1" rather than "~ “\\alpha = 1°°

8. Place the starting and ending """ characters on lines by themselves.

That is, write:

f(x, y) = ...

rather than:

f(x, y) = ...

This makes it clearer where docstrings start and end.
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9. Respect the line length limit used in the surrounding code.

Docstrings are edited using the same tools as code. Therefore, the same conventions should apply.
It is recommended that lines are at most 92 characters wide.

10. Provide information allowing custom types to implement the function in an # Implementation sec-
tion. These implementation details are intended for developers rather than users, explaining e.g.
which functions should be overridden and which functions automatically use appropriate fallbacks.
Such details are best kept separate from the main description of the function's behavior.

11. For long docstrings, consider splitting the documentation with an # Extended help header. The
typical help-mode will show only the material above the header; you can access the full help by
adding a '?' at the beginning of the expression (i.e., "??foo" rather than "?foo").

17.3 Functions & Methods

Functions in Julia may have multiple implementations, known as methods. While it's good practice for
generic functions to have a single purpose, Julia allows methods to be documented individually if necessary.
In general, only the most generic method should be documented, or even the function itself (i.e. the object
created without any methods by function bar end). Specific methods should only be documented if their
behaviour differs from the more generic ones. In any case, they should not repeat the information provided
elsewhere. For example:

(X, Yy, zo.y)

Multiplication operator. *x * y * z *,. " calls this function with multiple
arguments, i.e. “*(x, y, z...)"

function *(x, y, z...)
# ... [implementation sold separately]
end

*(x::AbstractString, y::AbstractString, z::AbstractString...)

When applied to strings, concatenates them.

function *(x::AbstractString, y::AbstractString, z::AbstractString...)
# ... [insert secret sauce here]
end

help?> *
search: * .*

(X, Y, Z..)

Multiplication operator. x * y * z *... calls this function with multiple
arguments, i.e. *(x,y,z...).

*(x::AbstractString, y::AbstractString, z::AbstractString...)

When applied to strings, concatenates them.
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When retrieving documentation for a generic function, the metadata for each method is concatenated with
the catdoc function, which can of course be overridden for custom types.

17.4 Advanced Usage

The @doc macro associates its first argument with its second in a per-module dictionary called META.

To make it easier to write documentation, the parser treats the macro name @doc specially: if a call to @doc
has one argument, but another expression appears after a single line break, then that additional expression
is added as an argument to the macro. Therefore the following syntax is parsed as a 2-argument call to
@doc:

@doc raw

f(x) = x

This makes it possible to use expressions other than normal string literals (such as the raw"" string macro)
as a docstring.

When used for retrieving documentation, the @doc macro (or equally, the doc function) will search all META
dictionaries for metadata relevant to the given object and return it. The returned object (some Markdown
content, for example) will by default display itself intelligently. This design also makes it easy to use the
doc system in a programmatic way; for example, to re-use documentation between different versions of a
function:

@doc "..." foo!
@doc (@doc foo!) foo

Or for use with Julia's metaprogramming functionality:

for (f, op) in ((:add, :+), (:subtract, :-), (:multiply, :*), (:divide, :/))
@eval begin
$f(a,b) = $op(a,b)
end
end
@doc "“add(a,b)” adds “a’ and “b" together" add
@doc "‘subtract(a,b)’ subtracts “b® from ‘a'" subtract

Documentation in non-toplevel blocks, such as begin, if, for, and let, should be added to the documen-
tation system via @doc as well. For example:

if condition()
@doc "..."
f(x) = x
end
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will add documentation to f(x) when condition() is true. Note that even if f(x) goes out of scope at
the end of a block, its documentation will remain.

It is possible to make use of metaprogramming to assist in the creation of documentation. When using
string-interpolation within the docstring you will need to use an extra $ as shown with $($name):

for func in (:day, :dayofmonth)
name = string(func)
@eval begin
@doc """
$($name) (dt::TimeType) -> Int64

The day of month of a “Date’ or ‘“DateTime’ as an “Int64'.
""" ¢func(dt::Dates.TimeType)
end
end

Dynamic documentation

Sometimes the appropriate documentation for an instance of a type depends on the field values of that
instance, rather than just on the type itself. In these cases, you can add a method to Docs.getdoc for your
custom type that returns the documentation on a per-instance basis. For instance,

struct MyType
value: :Int
end

Docs.getdoc(t::MyType) = "Documentation for MyType with value $(t.value)"

X = MyType(1)
MyType(2)

?x will display "Documentation for MyType with value 1" while ?y will display "Documentation for MyType

with value 2".

17.5 Syntax Guide

This guide provides a comprehensive overview of how to attach documentation to all Julia syntax constructs

for which providing documentation is possible.

In the following examples "..." is used to illustrate an arbitrary docstring.

$ and \ characters

The $ and \ characters are still parsed as string interpolation or start of an escape sequence in docstrings
too. The raw"" string macro together with the @doc macro can be used to avoid having to escape them.
This is handy when the docstrings include LaTeX or Julia source code examples containing interpolation:

@doc raw
““math
\LaTeX
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function f end
Functions and Methods

function f end

Adds docstring "..." to the function f. The first version is the preferred syntax, however both are equiv-
alent.
f(x) = x

function f(x)
X
end

f(x)

Adds docstring "..." to the method f(::Any).

f(x, y=1) =x +y
Adds docstring "..." to two Methods, namely f(::Any) and f(::Any, ::Any).

Macros

macro m(x) end
Adds docstring "..." to the @m(: :Any) macro definition.
‘ :(@m)

Adds docstring "..." to the macro named @m.



CHAPTER 17. DOCUMENTATION

Types

abstract type T1 end

mutable struct T2

end

struct T3

end

struct T
nyn
X

y

y
end

Adds the docstring "..." to types T1, T2, and T3.

224

Adds docstring "..." to type T, "x" to field T.x and "y" to field T.y. Also applicable to mutable struct

types.
Modules
module M end

module M

end

Adds docstring "..." to the Module M. Adding the docstring above the Module is the preferred syntax,

however both are equivalent.

baremodule M
# ...
end

baremodule M

import Base: @doc
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f(x) = x

end

Documenting a baremodule by placing a docstring above the expression automatically imports @doc into
the module. These imports must be done manually when the module expression is not documented.

Global Variables

const a =1

global c = 3
Adds docstring "..." to the Bindings a, b, and c.

Bindings are used to store a reference to a particular Symbol in a Module without storing the referenced
value itself.

Note

When a const definition is only used to define an alias of another definition, such as is the case
with the function div and its alias + in Base, do not document the alias and instead document
the actual function.

If the alias is documented and not the real definition then the docsystem (? mode) will not
return the docstring attached to the alias when the real definition is searched for.

For example you should write
f(x) =x+ 1
const alias = f

rather than

f(x) =x+1

const alias = f

Adds docstring "..." to the value associated with sym. Howeuver, it is preferred that sym is documented
where it is defined.
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Multiple Objects

Adds docstring "..." to a and b each of which should be a documentable expression. This syntax is
equivalent to

Any number of expressions many be documented together in this way. This syntax can be useful when two
functions are related, such as non-mutating and mutating versions f and f!.

Macro-generated code

@m expression

Adds docstring "..." to the expression generated by expanding @m expression. This allows for expres-
sions decorated with @inline, @noinline, @generated, or any other macro to be documented in the same
way as undecorated expressions.

Macro authors should take note that only macros that generate a single expression will automatically sup-
port docstrings. If a macro returns a block containing multiple subexpressions then the subexpression that
should be documented must be marked using the @ doc  macro.

The @enum macro makes use of @ doc__ to allow for documenting Enums. Examining its definition should
serve as an example of how touse @ doc__ correctly.

Core.@ doc__ - Macro.

‘@77d0c77(ex)

Low-level macro used to mark expressions returned by a macro that should be documented. If more
than one expression is marked then the same docstring is applied to each expression.

macro example(f)
quote
$(f)() =0
@ doc__ $(f)(x) =1
$(f)(x, y) =2
end |> esc

end

@ doc__ has no effect when a macro that uses it is not documented.

source
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Chapter 18

Metaprogramming

The strongest legacy of Lisp in the Julia language is its metaprogramming support. Like Lisp, Julia repre-
sents its own code as a data structure of the language itself. Since code is represented by objects that
can be created and manipulated from within the language, it is possible for a program to transform and
generate its own code. This allows sophisticated code generation without extra build steps, and also allows
true Lisp-style macros operating at the level of abstract syntax trees. In contrast, preprocessor "macro"
systems, like that of C and C++, perform textual manipulation and substitution before any actual parsing
or interpretation occurs. Because all data types and code in Julia are represented by Julia data structures,
powerful reflection capabilities are available to explore the internals of a program and its types just like
any other data.

Warning

Metaprogramming is a powerful tool, but it introduces complexity that can make code more
difficult to understand. For example, it can be surprisingly hard to get scope rules correct.
Metaprogramming should typically be used only when other approaches such as higher order
functions and closures cannot be applied.

eval and defining new macros should be typically used as a last resort. It is almost never a
good idea to use Meta.parse or convert an arbitrary string into Julia code. For manipulating
Julia code, use the Expr data structure directly to avoid the complexity of how Julia syntax is
parsed.

The best uses of metaprogramming often implement most of their functionality in runtime
helper functions, striving to minimize the amount of code they generate.

18.1 Program representation

Every Julia program starts life as a string:

julia> prog = "1 + 1"
"1+ 1"

What happens next?

The next step is to parse each string into an object called an expression, represented by the Julia type Expr:
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julia> exl = Meta.parse(prog)
(1 + 1)

julia> typeof(exl)
Expr

Expr objects contain two parts:

* aSymbol identifying the kind of expression. A symbol is an interned string identifier (more discussion
below).

julia> exl.head
:call

* the expression arguments, which may be symbols, other expressions, or literal values:

julia> exl.args
3-element Vector{Any}:
i+

Expressions may also be constructed directly in prefix notation:

julia> ex2 = Expr(:call, :+, 1, 1)
(1 + 1)

The two expressions constructed above - by parsing and by direct construction - are equivalent:

julia> exl == ex2

true

The key point here is that Julia code is internally represented as a data structure that is acces-
sible from the language itself.

The dump function provides indented and annotated display of Expr objects:

julia> dump(ex2)

Expr
head: Symbol call
args: Array{Any}((3,))

1: Symbol +
2: Int64 1
3: Int64 1

Expr objects may also be nested:
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julia> ex3 = Meta.parse("(4 + 4) / 2")
(4 +4) / 2)

Another way to view expressions is with Meta.show sexpr, which displays the S-expression form of a given
Expr, which may look very familiar to users of Lisp. Here's an example illustrating the display on a nested
Expr:

julia> Meta.show_sexpr(ex3)
(:call, :/, (:call, :+, 4, 4), 2)

Symbols

The : character has two syntactic purposes in Julia. The first form creates a Symbol, an interned string
used as one building-block of expressions, from valid identifiers:

julia> s = :foo
:foo

julia> typeof(s)
Symbol

The Symbol constructor takes any number of arguments and creates a new symbol by concatenating their
string representations together:

julia> :foo === Symbol("foo")
true

julia> Symbol("1foo") # ":1foo’ would not work, as “1foo' is not a valid identifier
Symbol("1foo")

julia> Symbol("func",10)
:funclo

julia> Symbol(:var,' ',"sym")

jvar_sym

In the context of an expression, symbols are used to indicate access to variables; when an expression is
evaluated, a symbol is replaced with the value bound to that symbol in the appropriate scope.

Sometimes extra parentheses around the argument to : are needed to avoid ambiguity in parsing:

julia> :(:)
()

julia> :(::)
()
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18.2 Expressions and evaluation

Quoting

The second syntactic purpose of the : character is to create expression objects without using the explicit
Expr constructor. This is referred to as quoting. The : character, followed by paired parentheses around a
single statement of Julia code, produces an Expr object based on the enclosed code. Here is an example
of the short form used to quote an arithmetic expression:

julia> ex = :(a+b*c+l)
(a+b*c+1)

julia> typeof(ex)
Expr

(to view the structure of this expression, try ex.head and ex.args, or use dump as above or Meta.@dump)

Note that equivalent expressions may be constructed using Meta.parse or the direct Expr form:

julia> :(a + b*c + 1) ==

Meta.parse("a + b*c + 1") ==

Expr(:call, :+, :a, Expr(:call, :*, :b, :c), 1)
true

Expressions provided by the parser generally only have symbols, other expressions, and literal values as
their args, whereas expressions constructed by Julia code can have arbitrary run-time values without literal
forms as args. In this specific example, + and a are symbols, *(b, c) is a subexpression, and 1 is a literal
64-bit signed integer.

There is a second syntactic form of quoting for multiple expressions: blocks of code enclosed in quote ...
end.

julia> ex = quote
X =1
y =2
X +y
end
quote
#= none:2 =#
x =1
#= none:3 =#
y =2
#= none:4 =#
X +y
end
julia> typeof(ex)
Expr
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Interpolation

Direct construction of Expr objects with value arguments is powerful, but Expr constructors can be tedious
compared to "normal" Julia syntax. As an alternative, Julia allows interpolation of literals or expressions
into quoted expressions. Interpolation is indicated by a prefix $.

In this example, the value of variable a is interpolated:

julia> a = 1;

julia> ex = :(%a + b)
(1 + b)

Interpolating into an unquoted expression is not supported and will cause a compile-time error:

julia> $a + b
ERROR: syntax: "$" expression outside quote

In this example, the tuple (1,2, 3) is interpolated as an expression into a conditional test:

julia> ex = :(a in $:((1,2,3)) )
:(a in (1, 2, 3))

The use of $ for expression interpolation is intentionally reminiscent of string interpolation and command
interpolation. Expression interpolation allows convenient, readable programmatic construction of complex
Julia expressions.

Splatting interpolation

Notice that the $ interpolation syntax allows inserting only a single expression into an enclosing expression.
Occasionally, you have an array of expressions and need them all to become arguments of the surrounding
expression. This can be done with the syntax $(xs...). For example, the following code generates a
function call where the number of arguments is determined programmatically:

julia> args = [:x, :y, :z];
julia> :(f(1, $(args...)))

H(F(L, x, y, 2))

Nested quote

Naturally, it is possible for quote expressions to contain other quote expressions. Understanding how
interpolation works in these cases can be a bit tricky. Consider this example:

julia> x (1 + 2);
julia> e = quote quote $x end end
quote

#= none:1 =#
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$(Expr(:quote, quote
#= none:1 =#
$(Expr(:$, :x))
end))
end

Notice that the result contains $x, which means that x has not been evaluated yet. In other words, the $
expression "belongs to" the inner quote expression, and so its argument is only evaluated when the inner
quote expression is:

julia> eval(e)

quote
#= none:1 =#
1+2

end

However, the outer quote expression is able to interpolate values inside the $ in the inner quote. This is
done with multiple $s:

julia> e = quote quote $$x end end
quote
#= none:1 =#
$(Expr(:quote, quote
#= none:1 =#
$(Expr(:$, : (1 + 2)))
end))
end

Notice that (1 + 2) now appears in the result instead of the symbol x. Evaluating this expression yields
an interpolated 3:

julia> eval(e)
quote
#= none:1 =#
3
end

The intuition behind this behavior is that x is evaluated once for each $: one $ works similarly to eval(:x),
giving x's value, while two $s do the equivalent of eval(eval(:x)).

QuoteNode

The usual representation of a quote form in an AST is an Expr with head :quote:

julia> dump(Meta.parse(":(1+2)"))
Expr
head: Symbol quote
args: Array{Any}((1,))
1: Expr
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head: Symbol call
args: Array{Any}((3,))

1: Symbol +
2: Int64 1
3: Int64 2
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As we have seen, such expressions support interpolation with $. However, in some situations it is necessary
to quote code without performing interpolation. This kind of quoting does not yet have syntax, but is

represented internally as an object of type QuoteNode:

julia> eval(Meta.quot(Expr(:$, :(1+2))))
3

julia> eval(QuoteNode(Expr(:$, :(1+2))))
($(Expr(:$, :(1 + 2))))

The parser yields QuoteNodes for simple quoted items like symbols:

julia> dump(Meta.parse(":x"))
QuoteNode
value: Symbol x

QuoteNode can also be used for certain advanced metaprogramming tasks.

Evaluating expressions

Given an expression object, one can cause Julia to evaluate (execute) it at global scope using eval:

julia> exl = : (1 + 2)
(1 + 2)

julia> eval(exl)
3

julia> ex = :(a + b)
:(a + b)

julia> eval(ex)
ERROR: UndefVarError: ‘b" not defined
[...]

julia> a = 1; b = 2;

julia> eval(ex)
3

Every module has its own eval function that evaluates expressions in its global scope. Expressions passed
to eval are not limited to returning values - they can also have side-effects that alter the state of the

enclosing module's environment:
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julia> ex = :(x = 1)
(x = 1)

julia> x
ERROR: UndefVarError: “x° not defined

julia> eval(ex)
1

julia> x
1

Here, the evaluation of an expression object causes a value to be assigned to the global variable x.
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Since expressions are just Expr objects which can be constructed programmatically and then evaluated,
it is possible to dynamically generate arbitrary code which can then be run using eval. Here is a simple

example:

julia> a = 1;

julia> ex = Expr(:call, :+, a, :b)
(1 + b)

julia> a = 0; b = 2;

julia> eval(ex)
3

The value of a is used to construct the expression ex which applies the + function to the value 1 and the

variable b. Note the important distinction between the way a and b are used:

* The value of the variable a at expression construction time is used as an immediate value in the
expression. Thus, the value of a when the expression is evaluated no longer matters: the value in

the expression is already 1, independent of whatever the value of a might be.

¢ On the other hand, the symbol : b is used in the expression construction, so the value of the variable
b at that time is irrelevant - :b is just a symbol and the variable b need not even be defined. At
expression evaluation time, however, the value of the symbol :b is resolved by looking up the value

of the variable b.

Functions on Expressions

As hinted above, one extremely useful feature of Julia is the capability to generate and manipulate Julia code
within Julia itself. We have already seen one example of a function returning Expr objects: the Meta.parse
function, which takes a string of Julia code and returns the corresponding Expr. A function can also take
one or more Expr objects as arguments, and return another Expr. Here is a simple, motivating example:

julia> function math_expr(op, opl, op2)

expr = Expr(:call, op, opl, op2)

return expr
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end
math expr (generic function with 1 method)

julia> ex = math expr(:+, 1, Expr(:call, :*, 4, 5))
(1 + 4 *5)

julia> eval(ex)
21

As another example, here is a function that doubles any numeric argument, but leaves expressions alone:

julia> function make expr2(op, oprl, opr2)
oprlf, opr2f = map(x -> isa(x, Number) ? 2*x : x, (oprl, opr2))
retexpr = Expr(:call, op, oprlf, opr2f)
return retexpr
end
make expr2 (generic function with 1 method)

julia> make expr2(:+, 1, 2)
(2 + 4)

julia> ex = make expr2(:+, 1, Expr(:call, :*, 5, 8))
(2 +5 % 8)

julia> eval(ex)
42

18.3 Macros

Macros provide a mechanism to include generated code in the final body of a program. A macro maps a
tuple of arguments to a returned expression, and the resulting expression is compiled directly rather than
requiring a runtime eval call. Macro arguments may include expressions, literal values, and symbols.

Basics
Here is an extraordinarily simple macro:
julia> macro sayhello()
return :( println("Hello, world!") )

end
@sayhello (macro with 1 method)

Macros have a dedicated character in Julia's syntax: the @ (at-sign), followed by the unique name declared
inamacro NAME ... end block. In this example, the compiler will replace all instances of @sayhello with:

‘:( println("Hello, world!") )

When @sayhello is entered in the REPL, the expression executes immediately, thus we only see the eval-
uation result:
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julia> @sayhello()
Hello, world!

Now, consider a slightly more complex macro:

julia> macro sayhello(name)
return :( println("Hello, ", $name) )
end
@sayhello (macro with 1 method)

This macro takes one argument: name. When @sayhello is encountered, the quoted expression is expanded
to interpolate the value of the argument into the final expression:

julia> @sayhello("human")
Hello, human

We can view the quoted return expression using the function macroexpand (important note: this is an
extremely useful tool for debugging macros):

julia> ex = macroexpand(Main, :(@sayhello("human")) )
:(Main.println("Hello, ", "human"))

julia> typeof(ex)
Expr

We can see that the "human" literal has been interpolated into the expression.

There also exists a macro @macroexpand that is perhaps a bit more convenient than the macroexpand
function:

julia> @macroexpand @sayhello "human"
:(println("Hello, ", "human"))

Hold up: why macros?

We have already seen a function f(::Expr...) -> Expr in a previous section. In fact, macroexpand is
also such a function. So, why do macros exist?

Macros are necessary because they execute when code is parsed, therefore, macros allow the programmer
to generate and include fragments of customized code before the full program is run. To illustrate the
difference, consider the following example:

julia> macro twostep(arg)
println("I execute at parse time. The argument is: ", arg)
return :(println("I execute at runtime. The argument is: ", $arg))
end
@twostep (macro with 1 method)

julia> ex = macroexpand(Main, :(@twostep :(1, 2, 3)) );
I execute at parse time. The argument is: :((1, 2, 3))
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The first call to println is executed when macroexpand is called. The resulting expression contains only
the second println:

julia> typeof(ex)
Expr

julia> ex
:(println("I execute at runtime. The argument is: ", $(Expr(:copyast, :($(QuoteNode(:((1, 2,
= 3)))))))))

julia> eval(ex)
I execute at runtime. The argument is: (1, 2, 3)

Macro invocation

Macros are invoked with the following general syntax:

@name exprl expr2 ...
@name(exprl, expr2, ...)

Note the distinguishing @ before the macro name and the lack of commas between the argument expres-
sions in the first form, and the lack of whitespace after @name in the second form. The two styles should
not be mixed. For example, the following syntax is different from the examples above; it passes the tuple
(exprl, expr2, ...) asone argument to the macro:

‘@name (exprl, expr2, ...)

An alternative way to invoke a macro over an array literal (or comprehension) is to juxtapose both without
using parentheses. In this case, the array will be the only expression fed to the macro. The following syntax
is equivalent (and different from @name [a b] * v):

@name[a b] * v
@name([a b]) * v

It is important to emphasize that macros receive their arguments as expressions, literals, or symbols. One
way to explore macro arguments is to call the show function within the macro body:

julia> macro showarg(x)
show(x)
# ... remainder of macro, returning an expression
end
@showarg (macro with 1 method)

julia> @showarg(a)
:a

julia> @showarg(1l+1)
(1 + 1)

julia> @showarg(println("Yo!"))
:(println("Yo!"))
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In addition to the given argument list, every macro is passed extra arguments named _ source  and
__module .

The argument __source__ provides information (in the form of a LineNumberNode object) about the parser
location of the @ sign from the macro invocation. This allows macros to include better error diagnostic
information, and is commonly used by logging, string-parser macros, and docs, for example, as well as to
implementthe@ LINE ,@ FILE ,and@ DIR macros.

The location information can be accessed by referencing _ source_ .line and _ source_ .file:

julia> macro _ LOCATION (); return QuoteNode( source ); end
@ LOCATION (macro with 1 method)

julia> dump(
@ LOCATION (
))
LineNumberNode
line: Int64 2
file: Symbol none

The argument _ module  provides information (in the form of a Module object) about the expansion
context of the macro invocation. This allows macros to look up contextual information, such as existing
bindings, or to insert the value as an extra argument to a runtime function call doing self-reflection in the
current module.

Building an advanced macro

Here is a simplified definition of Julia's @assert macro:

julia> macro assert(ex)

return :( $ex ? nothing : throw(AssertionError($(string(ex)))) )
end
@assert (macro with 1 method)

This macro can be used like this:

julia> @assert 1 == 1.0

julia> @assert 1 ==
ERROR: AssertionError: 1 ==

In place of the written syntax, the macro call is expanded at parse time to its returned result. This is
equivalent to writing:

1 == 1.0 ? nothing : throw(AssertionError("1l == 1.0"))
1 == 0 ? nothing : throw(AssertionError("l == 0"))

That s, in the first call, the expression : (1 == 1.0) is spliced into the test condition slot, while the value of
string(:(1 == 1.0)) is spliced into the assertion message slot. The entire expression, thus constructed,
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is placed into the syntax tree where the @assert macro call occurs. Then at execution time, if the test
expression evaluates to true, then nothing is returned, whereas if the test is false, an error is raised
indicating the asserted expression that was false. Notice that it would not be possible to write this as
a function, since only the value of the condition is available and it would be impossible to display the
expression that computed it in the error message.

The actual definition of @assert in Julia Base is more complicated. It allows the user to optionally specify
their own error message, instead of just printing the failed expression. Just like in functions with a variable
number of arguments (Varargs Functions), this is specified with an ellipses following the last argument:

julia> macro assert(ex, msgs...)
msg_body = isempty(msgs) ? ex : msgs[1]
msg = string(msg body)
return :($ex ? nothing : throw(AssertionError($msg)))
end
@assert (macro with 1 method)

Now @assert has two modes of operation, depending upon the number of arguments it receives! If there's
only one argument, the tuple of expressions captured by msgs will be empty and it will behave the same as
the simpler definition above. But now if the user specifies a second argument, it is printed in the message
body instead of the failing expression. You can inspect the result of a macro expansion with the aptly
named @macroexpand macro:

julia> @macroexpand @assert a ==
:(if Main.a == Main.b
Main.nothing
else
Main.throw(Main.AssertionError("a == b"))
end)

julia> @macroexpand @assert a==b "a should equal b!"
:(if Main.a == Main.b
Main.nothing
else
Main.throw(Main.AssertionError("a should equal b!"))

end)

There is yet another case that the actual @assert macro handles: what if, in addition to printing "a should
equal b," we wanted to print their values? One might naively try to use string interpolation in the custom
message, e.g., @assert a==b "a ($a) should equal b ($b)!", but this won't work as expected with
the above macro. Can you see why? Recall from string interpolation that an interpolated string is rewritten
to a call to string. Compare:

julia> typeof(:("a should equal b"))
String

julia> typeof(:("a ($a) should equal b ($b)!"))
Expr

julia> dump(:("a (%$a) should equal b ($b)!"))
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Expr

head: Symbol string

args: Array{Any}((5,))

1: String "a ("

Symbol a
String ") should equal b ("
Symbol b
String ")!"

U A W N

So now instead of getting a plain string in msg_body, the macro is receiving a full expression that will need
to be evaluated in order to display as expected. This can be spliced directly into the returned expression
as an argument to the string call; see error. j1 for the complete implementation.

The @assert macro makes great use of splicing into quoted expressions to simplify the manipulation of
expressions inside the macro body.

Hygiene

An issue that arises in more complex macros is that of hygiene. In short, macros must ensure that the
variables they introduce in their returned expressions do not accidentally clash with existing variables
in the surrounding code they expand into. Conversely, the expressions that are passed into a macro as
arguments are often expected to evaluate in the context of the surrounding code, interacting with and
modifying the existing variables. Another concern arises from the fact that a macro may be called in a
different module from where it was defined. In this case we need to ensure that all global variables are
resolved to the correct module. Julia already has a major advantage over languages with textual macro
expansion (like C) in that it only needs to consider the returned expression. All the other variables (such
as msg in @assert above) follow the normal scoping block behavior.

To demonstrate these issues, let us consider writing a @time macro that takes an expression as its argument,
records the time, evaluates the expression, records the time again, prints the difference between the before
and after times, and then has the value of the expression as its final value. The macro might look like this:

macro time(ex)
return quote
local t0@ = time ns()
local val = $ex
local tl1 = time ns()
println("elapsed time: ", (tl-t0)/1e9, " seconds")
val
end
end

Here, we want t0, t1, and val to be private temporary variables, and we want time ns to refer to the
time ns function in Julia Base, not to any time ns variable the user might have (the same applies to
println). Imagine the problems that could occur if the user expression ex also contained assignments to
a variable called t0, or defined its own time ns variable. We might get errors, or mysteriously incorrect
behavior.

Julia's macro expander solves these problems in the following way. First, variables within a macro result are
classified as either local or global. A variable is considered local if it is assigned to (and not declared global),
declared local, or used as a function argument name. Otherwise, it is considered global. Local variables
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are then renamed to be unique (using the gensym function, which generates new symbols), and global
variables are resolved within the macro definition environment. Therefore both of the above concerns are
handled; the macro's locals will not conflict with any user variables, and time ns and println will refer to
the Julia Base definitions.

One problem remains however. Consider the following use of this macro:

module MyModule
import Base.@time

time ns() = ... # compute something

@time time ns()
end

Here the user expression ex is a call to time ns, but not the same time ns function that the macro uses.
It clearly refers to MyModule.time ns. Therefore we must arrange for the code in ex to be resolved in the
macro call environment. This is done by "escaping" the expression with esc:

macro time(ex)
local val = $(esc(ex))

end

An expression wrapped in this manner is left alone by the macro expander and simply pasted into the
output verbatim. Therefore it will be resolved in the macro call environment.

This escaping mechanism can be used to "violate" hygiene when necessary, in order to introduce or ma-
nipulate user variables. For example, the following macro sets x to zero in the call environment:

julia> macro zerox()
return esc(:(x = 0))
end
@zerox (macro with 1 method)

julia> function foo()
X =1
@zerox
return x # is zero
end
foo (generic function with 1 method)

julia> foo()
0

This kind of manipulation of variables should be used judiciously, but is occasionally quite handy.

Getting the hygiene rules correct can be a formidable challenge. Before using a macro, you might want
to consider whether a function closure would be sufficient. Another useful strategy is to defer as much
work as possible to runtime. For example, many macros simply wrap their arguments in a QuoteNode or
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other similar Expr. Some examples of this include @task body which simply returns schedule(Task( ()
-> $body) ), and @eval expr, which simply returns eval (QuoteNode (expr)).

To demonstrate, we might rewrite the @time example above as:

macro time(expr)
return :(timeit(() -> $(esc(expr))))
end
function timeit(f)
t0 = time ns()
val = f()
tl = time ns()
println("elapsed time: ", (tl-t0)/1e9, " seconds")
return val
end

However, we don't do this for a good reason: wrapping the expr in a new scope block (the anonymous
function) also slightly changes the meaning of the expression (the scope of any variables in it), while we
want @time to be usable with minimum impact on the wrapped code.

Macros and dispatch

Macros, just like Julia functions, are generic. This means they can also have multiple method definitions,
thanks to multiple dispatch:

julia> macro m end
@m (macro with 0 methods)

julia> macro m(args...)
println("$(length(args)) arguments")
end
@m (macro with 1 method)

julia> macro m(x,y)
println("Two arguments")
end
@m (macro with 2 methods)

julia> @m "asd"
1 arguments

julia> @m 1 2
Two arguments

However one should keep in mind, that macro dispatch is based on the types of AST that are handed to
the macro, not the types that the AST evaluates to at runtime:

julia> macro m(::Int)
println("An Integer")
end
@m (macro with 3 methods)
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julia> @m 2
An Integer

julia> x = 2
2

julia> @m x
1 arguments

18.4 Code Generation

When a significant amount of repetitive boilerplate code is required, it is common to generate it program-
matically to avoid redundancy. In most languages, this requires an extra build step, and a separate program
to generate the repetitive code. In Julia, expression interpolation and eval allow such code generation to
take place in the normal course of program execution. For example, consider the following custom type

struct MyNumber
x: :Float64

end

# output

for which we want to add a number of methods to. We can do this programmatically in the following loop:

for op = (:sin, :cos, :tan, :log, :exp)
eval(quote
Base.$op(a: :MyNumber) = MyNumber($op(a.x))
end)
end
# output

and we can now use those functions with our custom type:

julia> x = MyNumber(m)
MyNumber(3.141592653589793)

julia> sin(x)
MyNumber(1.2246467991473532e-16)

julia> cos(x)
MyNumber(-1.0)

In this manner, Julia acts as its own preprocessor, and allows code generation from inside the language.
The above code could be written slightly more tersely using the : prefix quoting form:

for op = (:sin, :cos, :tan, :log, :exp)
eval(: (Base.$op(a: :MyNumber) = MyNumber($op(a.x))))
end
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This sort of in-language code generation, however, using the eval(quote(...)) pattern, is common
enough that Julia comes with a macro to abbreviate this pattern:

for op = (:sin, :cos, :tan, :log, :exp)
@eval Base.$op(a::MyNumber) = MyNumber($op(a.x))
end

The @eval macro rewrites this call to be precisely equivalent to the above longer versions. For longer
blocks of generated code, the expression argument given to @eval can be a block:

@eval begin
# multiple lines
end

18.5 Non-Standard String Literals

Recall from Strings that string literals prefixed by an identifier are called non-standard string literals, and
can have different semantics than un-prefixed string literals. For example:

e r"™\s*(?:#|$)" produces a regular expression object rather than a string

* b"DATA\xff\u2200" is a byte array literal for [68,65,84,65,255,226,136,128].

Perhaps surprisingly, these behaviors are not hard-coded into the Julia parser or compiler. Instead, they
are custom behaviors provided by a general mechanism that anyone can use: prefixed string literals are
parsed as calls to specially-named macros. For example, the regular expression macro is just the following:

macro r_str(p)
Regex(p)
end

That's all. This macro says that the literal contents of the string literal r"~\s*(?:#|$)" should be passed
to the @r_str macro and the result of that expansion should be placed in the syntax tree where the string
literal occurs. In other words, the expression r"~\s*(?:#|$)" is equivalent to placing the following object
directly into the syntax tree:

Regex (" \\s*(?:#|\$)")

Not only is the string literal form shorter and far more convenient, but it is also more efficient: since
the regular expression is compiled and the Regex object is actually created when the code is compiled,
the compilation occurs only once, rather than every time the code is executed. Consider if the regular
expression occurs in a loop:

for line = lines
m = match(r" \s*(7:#[$)", line)
if m === nothing
# non-comment
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else
# comment
end
end

Since the regular expression r"~\s*(?:#|$)" is compiled and inserted into the syntax tree when this code
is parsed, the expression is only compiled once instead of each time the loop is executed. In order to
accomplish this without macros, one would have to write this loop like this:

re = Regex(""\\s*(?:#|\$)")
for line = lines
m = match(re, line)
if m === nothing
# non-comment
else
# comment
end
end

Moreover, if the compiler could not determine that the regex object was constant over all loops, certain
optimizations might not be possible, making this version still less efficient than the more convenient literal
form above. Of course, there are still situations where the non-literal form is more convenient: if one needs
to interpolate a variable into the regular expression, one must take this more verbose approach; in cases
where the regular expression pattern itself is dynamic, potentially changing upon each loop iteration, a
new regular expression object must be constructed on each iteration. In the vast majority of use cases,
however, regular expressions are not constructed based on run-time data. In this majority of cases, the
ability to write regular expressions as compile-time values is invaluable.

The mechanism for user-defined string literals is deeply, profoundly powerful. Not only are Julia's non-
standard literals implemented using it, but the command literal syntax (*echo "Hello, $person"’) is
also implemented using the following innocuous-looking macro:

macro cmd(str)
:(cmd_gen($(shell parse(str)[1])))
end

Of course, a large amount of complexity is hidden in the functions used in this macro definition, but they
are just functions, written entirely in Julia. You can read their source and see precisely what they do - and
all they do is construct expression objects to be inserted into your program's syntax tree.

Like string literals, command literals can also be prefixed by an identifier to form what are called non-
standard command literals. These command literals are parsed as calls to specially-named macros. For
example, the syntax custom™ literal’ is parsed as @custom cmd "literal". Julia itself does not contain
any non-standard command literals, but packages can make use of this syntax. Aside from the different
syntax and the cmd suffix instead of the str suffix, non-standard command literals behave exactly like
non-standard string literals.

In the event that two modules provide non-standard string or command literals with the same name, it
is possible to qualify the string or command literal with a module name. For instance, if both Foo and
Bar provide non-standard string literal @x_str, then one can write Foo.x"literal" orBar.x"literal" to
disambiguate between the two.



CHAPTER 18. METAPROGRAMMING 246

Another way to define a macro would be like this:

macro foo str(str, flag)
# do stuff
end

This macro can then be called with the following syntax:

foo"str"flag

The type of flag in the above mentioned syntax would be a String with contents of whatever trails after
the string literal.

18.6 Generated functions

A very special macro is @generated, which allows you to define so-called generated functions. These have
the capability to generate specialized code depending on the types of their arguments with more flexibility
and/or less code than what can be achieved with multiple dispatch. While macros work with expressions
at parse time and cannot access the types of their inputs, a generated function gets expanded at a time
when the types of the arguments are known, but the function is not yet compiled.

Instead of performing some calculation or action, a generated function declaration returns a quoted ex-
pression which then forms the body for the method corresponding to the types of the arguments. When a
generated function is called, the expression it returns is compiled and then run. To make this efficient, the
result is usually cached. And to make this inferable, only a limited subset of the language is usable. Thus,
generated functions provide a flexible way to move work from run time to compile time, at the expense of
greater restrictions on allowed constructs.

When defining generated functions, there are five main differences to ordinary functions:

1. You annotate the function declaration with the @generated macro. This adds some information to
the AST that lets the compiler know that this is a generated function.

2. Inthe body of the generated function you only have access to the types of the arguments - not their
values.

3. Instead of calculating something or performing some action, you return a quoted expression which,
when evaluated, does what you want.

4. Generated functions are only permitted to call functions that were defined before the definition of the
generated function. (Failure to follow this may result in getting MethodErrors referring to functions
from a future world-age.)

5. Generated functions must not mutate or observe any non-constant global state (including, for ex-
ample, 10, locks, non-local dictionaries, or using hasmethod). This means they can only read global
constants, and cannot have any side effects. In other words, they must be completely pure. Due to
an implementation limitation, this also means that they currently cannot define a closure or gener-
ator.

It's easiest to illustrate this with an example. We can declare a generated function foo as
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julia> @generated function foo(x)
Core.println(x)
return :(x * X)
end
foo (generic function with 1 method)

Note that the body returns a quoted expression, namely : (x * x), rather than just the value of x * x.

From the caller's perspective, this is identical to a regular function; in fact, you don't have to know whether
you're calling a regular or generated function. Let's see how foo behaves:

julia> x = foo(2); # note: output is from println() statement in the body
Inte4

julia> x # now we print x
4

julia> y = foo("bar");
String

julia> y
"barbar"

So, we see that in the body of the generated function, x is the type of the passed argument, and the value
returned by the generated function, is the result of evaluating the quoted expression we returned from the
definition, now with the value of x.

What happens if we evaluate foo again with a type that we have already used?

julia> foo(4)
16

Note that there is no printout of Int64. We can see that the body of the generated function was only
executed once here, for the specific set of argument types, and the result was cached. After that, for
this example, the expression returned from the generated function on the first invocation was re-used
as the method body. However, the actual caching behavior is an implementation-defined performance
optimization, so it is invalid to depend too closely on this behavior.

The number of times a generated function is generated might be only once, but it might also be more often,
or appear to not happen at all. As a consequence, you should never write a generated function with side
effects - when, and how often, the side effects occur is undefined. (This is true for macros too - and just like
for macros, the use of eval in a generated function is a sign that you're doing something the wrong way.)
However, unlike macros, the runtime system cannot correctly handle a call to eval, so it is disallowed.

It is also important to see how @generated functions interact with method redefinition. Following the
principle that a correct @generated function must not observe any mutable state or cause any mutation of
global state, we see the following behavior. Observe that the generated function cannot call any method
that was not defined prior to the definition of the generated function itself.

Initially f(x) has one definition

julia> f(x) = "original definition";
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Define other operations that use f(x):

julia> g(x) = f(x);
julia> @generated genl(x) = f(x);

julia> @generated gen2(x) = :(f(x));

We now add some new definitions for f(x):

julia> f(x::Int) = "definition for Int";

julia> f(x::Type{Int}) = "definition for Type{Int}";

and compare how these results differ:

julia> f(1)
"definition for Int"

julia> g(1)
"definition for Int"

julia> genl(1l)
"original definition"

julia> gen2(1)
"definition for Int"

Each method of a generated function has its own view of defined functions:

julia> @generated genl(x::Real) = f(x);

julia> genl(1l)
"definition for Type{Int}"

The example generated function foo above did not do anything a normal function foo(x) = x * x could
not do (except printing the type on the first invocation, and incurring higher overhead). However, the
power of a generated function lies in its ability to compute different quoted expressions depending on the
types passed to it:

julia> @generated function bar(x)
if x <: Integer
return :(x ~ 2)
else
return :(x)
end
end
bar (generic function with 1 method)
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julia> bar(4)
16

julia> bar("baz")
"baz"

(although of course this contrived example would be more easily implemented using multiple dispatch...)

Abusing this will corrupt the runtime system and cause undefined behavior:

julia> @generated function baz(x)
if rand() < .9
return :(x"2)
else
return :("boo!")
end
end

baz (generic function with 1 method)

Since the body of the generated function is non-deterministic, its behavior, and the behavior of all subse-
quent code is undefined.

Don't copy these examples!

These examples are hopefully helpful to illustrate how generated functions work, both in the definition end
and at the call site; however, don't copy them, for the following reasons:

* the foo function has side-effects (the call to Core.println), and it is undefined exactly when, how
often or how many times these side-effects will occur

* the bar function solves a problem that is better solved with multiple dispatch - defining bar(x) = x
and bar(x::Integer) = x ~ 2 will do the same thing, but it is both simpler and faster.

¢ the baz function is pathological
Note that the set of operations that should not be attempted in a generated function is unbounded, and
the runtime system can currently only detect a subset of the invalid operations. There are many other
operations that will simply corrupt the runtime system without notification, usually in subtle ways not

obviously connected to the bad definition. Because the function generator is run during inference, it must
respect all of the limitations of that code.

Some operations that should not be attempted include:

1. Caching of native pointers.
2. Interacting with the contents or methods of Core.Compiler in any way.

3. Observing any mutable state.

- Inference on the generated function may be run at any time, including while your code is
attempting to observe or mutate this state.
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4. Taking any locks: C code you call out to may use locks internally, (for example, it is not problematic
to call malloc, even though most implementations require locks internally) but don't attempt to hold
or acquire any while executing Julia code.

5. Calling any function that is defined after the body of the generated function. This condition is relaxed
for incrementally-loaded precompiled modules to allow calling any function in the module.

Alright, now that we have a better understanding of how generated functions work, let's use them to build
some more advanced (and valid) functionality...

An advanced example

Julia's base library has an internal sub2ind function to calculate a linear index into an n-dimensional array,
based on a set of n multilinear indices - in other words, to calculate the index i that can be used to index
into an array A using A[i], instead of A[x,y,z,...]. One possible implementation is the following:

julia> function sub2ind loop(dims::NTuple{N}, I::Integer...) where N
ind = I[N] - 1
for i = N-1:-1:1
ind = I[i]-1 + dims[i]*ind
end
return ind + 1
end
sub2ind loop (generic function with 1 method)

julia> sub2ind loop((3, 5), 1, 2)
4

The same thing can be done using recursion:

julia> sub2ind_rec(dims::Tuple{}) = 1;

julia> sub2ind rec(dims::Tuple{}, il::Integer, I::Integer...) =
il == 1 ? sub2ind rec(dims, I...) : throw(BoundsError());

julia> sub2ind rec(dims::Tuple{Integer, Vararg{Integer}}, il::Integer) = il;

julia> sub2ind rec(dims::Tuple{Integer, Vararg{Integer}}, il::Integer, I::Integer...) =
il + dims[1] * (sub2ind rec(Base.tail(dims), I...) - 1);

julia> sub2ind rec((3, 5), 1, 2)
4

Both these implementations, although different, do essentially the same thing: a runtime loop over the
dimensions of the array, collecting the offset in each dimension into the final index.

However, all the information we need for the loop is embedded in the type information of the arguments.
This allows the compiler to move the iteration to compile time and eliminate the runtime loops altogether.
We can utilize generated functions to achieve a similar effect; in compiler parlance, we use generated
functions to manually unroll the loop. The body becomes almost identical, but instead of calculating the
linear index, we build up an expression that calculates the index:
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julia> @generated function sub2ind gen(dims::NTuple{N}, I::Integer...) where N
ex = :(I[$N] - 1)
for i = (N - 1):-1:1
ex = :(I[$i] - 1 + dims[$i] * $ex)
end
return :($ex + 1)
end
sub2ind gen (generic function with 1 method)

julia> sub2ind gen((3, 5), 1, 2)
4

What code will this generate?

An easy way to find out is to extract the body into another (regular) function:

julia> @generated function sub2ind gen(dims::NTuple{N}, I::Integer...) where N
return sub2ind_gen_impl(dims, I...)
end
sub2ind gen (generic function with 1 method)

julia> function sub2ind gen impl(dims::Type{T}, I...) where T <: NTuple{N,Any} where N
length(I) == N || return :(error("partial indexing is unsupported"))
ex = :(I[$N] - 1)
for i = (N - 1):-1:1
ex = :(I[$i] - 1 + dims[$i] * $ex)
end
return :($ex + 1)
end
sub2ind gen impl (generic function with 1 method)

We can now execute sub2ind gen impl and examine the expression it returns:

julia> sub2ind gen impl(Tuple{Int,Int}, Int, Int)
(((If1] - 1) + dims[1] * (I[2] - 1)) + 1)

So, the method body that will be used here doesn't include a loop at all - just indexing into the two tuples,
multiplication and addition/subtraction. All the looping is performed compile-time, and we avoid looping
during execution entirely. Thus, we only loop once per type, in this case once per N (except in edge cases
where the function is generated more than once - see disclaimer above).

Optionally-generated functions

Generated functions can achieve high efficiency at run time, but come with a compile time cost: a new
function body must be generated for every combination of concrete argument types. Typically, Julia is able
to compile "generic" versions of functions that will work for any arguments, but with generated functions
this is impossible. This means that programs making heavy use of generated functions might be impossible
to statically compile.

To solve this problem, the language provides syntax for writing normal, non-generated alternative imple-
mentations of generated functions. Applied to the sub2ind example above, it would look like this:
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function sub2ind gen(dims: :NTuple{N}, I::Integer...) where N
if N !'= length(I)
throw(ArgumentError("Number of dimensions must match number of indices."))
end
if @generated
ex = :(I[$N] - 1)
for i = (N - 1):-1:1
ex = :(I[%$1] - 1 + dims[$i] * $ex)
end
return :($ex + 1)
else
ind = I[N] - 1
for i = (N - 1):-1:1
ind = I[i] - 1 + dims[i]*ind
end
return ind + 1
end
end

Internally, this code creates two implementations of the function: a generated one where the first block
in if @generated is used, and a normal one where the else block is used. Inside the then part of the if
@generated block, code has the same semantics as other generated functions: argument names refer to
types, and the code should return an expression. Multiple if @generated blocks may occur, in which case
the generated implementation uses all of the then blocks and the alternate implementation uses all of the
else blocks.

Notice that we added an error check to the top of the function. This code will be common to both versions,
and is run-time code in both versions (it will be quoted and returned as an expression from the generated
version). That means that the values and types of local variables are not available at code generation time
-- the code-generation code can only see the types of arguments.

In this style of definition, the code generation feature is essentially an optional optimization. The compiler
will use it if convenient, but otherwise may choose to use the normal implementation instead. This style
is preferred, since it allows the compiler to make more decisions and compile programs in more ways,
and since normal code is more readable than code-generating code. However, which implementation is
used depends on compiler implementation details, so it is essential for the two implementations to behave
identically.
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Single- and multi-dimensional Arrays

Julia, like most technical computing languages, provides a first-class array implementation. Most technical
computing languages pay a lot of attention to their array implementation at the expense of other contain-
ers. Julia does not treat arrays in any special way. The array library is implemented almost completely in
Julia itself, and derives its performance from the compiler, just like any other code written in Julia. As such,
it's also possible to define custom array types by inheriting from AbstractArray. See the manual section
on the AbstractArray interface for more details on implementing a custom array type.

An array is a collection of objects stored in a multi-dimensional grid. Zero-dimensional arrays are allowed,
see this FAQ entry. In the most general case, an array may contain objects of type Any. For most compu-
tational purposes, arrays should contain objects of a more specific type, such as Float64 or Int32.

In general, unlike many other technical computing languages, Julia does not expect programs to be written
in a vectorized style for performance. Julia's compiler uses type inference and generates optimized code
for scalar array indexing, allowing programs to be written in a style that is convenient and readable, without
sacrificing performance, and using less memory at times.

In Julia, all arguments to functions are passed by sharing (i.e. by pointers). Some technical computing
languages pass arrays by value, and while this prevents accidental modification by callees of a value in
the caller, it makes avoiding unwanted copying of arrays difficult. By convention, a function name ending
with a ! indicates that it will mutate or destroy the value of one or more of its arguments (compare, for
example, sort and sort!). Callees must make explicit copies to ensure that they don't modify inputs that
they don't intend to change. Many non-mutating functions are implemented by calling a function of the
same name with an added ! at the end on an explicit copy of the input, and returning that copy.

19.1 Basic Functions

19.2 Construction and Initialization

Many functions for constructing and initializing arrays are provided. In the following list of such functions,
calls with a dims. .. argument can either take a single tuple of dimension sizes or a series of dimension
sizes passed as a variable number of arguments. Most of these functions also accept a first input T, which
is the element type of the array. If the type T is omitted it will default to Float64.

To see the various ways we can pass dimensions to these functions, consider the following examples:

Liid, independently and identically distributed.
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Function Description

eltype(A) the type of the elements contained in A

length(A) the number of elements in A

ndims (A) the number of dimensions of A

size(A) a tuple containing the dimensions of A

size(A,n) the size of A along dimension n

axes(A) a tuple containing the valid indices of A

axes(A,n) a range expressing the valid indices along dimension n
eachindex(A) | an efficient iterator for visiting each position in A
stride(A, k) the stride (linear index distance between adjacent elements) along dimension k
strides(A) a tuple of the strides in each dimension

julia> zeros(Int8, 2, 3)
2x3 Matrix{Int8}:

0 0 0

0 0 0

julia> zeros(Int8, (2, 3))
2x3 Matrix{Int8}:

0 0 0

0 0 0

julia> zeros((2, 3))
2x3 Matrix{Float64}:
0.0 0.0 0.0
0.0 0.0 0.0

Here, (2, 3) is a Tuple and the first argument — the element type — is optional, defaulting to Float64.

19.3 Array literals

Arrays can also be directly constructed with square braces; the syntax [A, B, C, ...] creates a one-
dimensional array (i.e., a vector) containing the comma-separated arguments as its elements. The element
type (eltype) of the resulting array is automatically determined by the types of the arguments inside the
braces. If all the arguments are the same type, then that is its eltype. If they all have a common promotion
type then they get converted to that type using convert and that type is the array's eltype. Otherwise,
a heterogeneous array that can hold anything — a Vector{Any} — is constructed; this includes the literal
[1 where no arguments are given. Array literal can be typed with the syntax T[A, B, C, ...] whereTis
a type.

julia> [1, 2, 3] # An array of 'Int's
3-element Vector{Int64}:

julia> promote(l, 2.3, 4//5) # This combination of Int, Float64 and Rational promotes to Float64
(1.0, 2.3, 0.8)
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Function Description

Array{T} (undef,an uninitialized dense Array
dims...)

zeros(T, an Array of all zeros
dims...)

ones(T, an Array of all ones
dims...)

trues(dims...

a BitArray with all values true

falses(dims..

)a BitArray with all values false

reshape(A, an array containing the same data as A, but with different dimensions

dims...)

copy (A) copy A

deepcopy(A) copy A, recursively copying its elements

similar(A, an uninitialized array of the same type as A (dense, sparse, etc.), but with the

T, dims...) specified element type and dimensions. The second and third arguments are both

optional, defaulting to the element type and dimensions of A if omitted.

reinterpret(T
A)

an array with the same binary data as A, but with element type T

rand (T, an Array with random, iid * and uniformly distributed values. For floating point types
dims...) T, the values lie in the half-open interval [0, 1).

randn(T, an Array with random, iid and standard normally distributed values

dims...)

Matrix{T} (I, | m-by-n identity matrix. Requires using LinearAlgebra for I.

m, n)

range(start, | arange of nlinearly spaced elements from start to stop

stop, n)

fill! (A, x) fill the array A with the value x

fill(x, an Array filled with the value x. In particular, fill(x) constructs a zero-dimensional
dims...) Array containing x.

1.0
2.3
0.8

1.0
2.3
0.8

julia> []
Any[]

Concatenation

julia> [1, 2.3, 4//5] # Thus that's the element type of this Array
3-element Vector{Float64}:

julia> Float32[1, 2.3, 4//5] # Specify element type manually
3-element Vector{Float32}:

If the arguments inside the square brackets are separated by single semicolons (;) or newlines instead of
commas, then their contents are vertically concatenated together instead of the arguments being used as
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elements themselves.

julia> [1:2, 4:5] # Has a comma, so no concatenation occurs. The ranges are themselves the
— elements
2-element Vector{UnitRange{Int64}}:

1:2

4:5

julia> [1:2; 4:5]
4-element Vector{Int64}:
1

2
4
5

julia> [1:2
4:5
6]
5-element Vector{Int64}:
1

[o) BN O2 B S S ]

Similarly, if the arguments are separated by tabs or spaces or double semicolons, then their contents are
horizontally concatenated together.

julia> [1:2 4:5 7:8]
2x3 Matrix{Int64}:

1 4 7

2 5 8

julia> [[1,2] [4,51 1[7,8]]
2x3 Matrix{Int64}:

1 4 7

2 5 8

julia> [1 2 3] # Numbers can also be horizontally concatenated
1x3 Matrix{Int64}:
1 2 3

julia> [1;; 255 3;; 4]
1x4 Matrix{Int64}:
1 2 3 4

Single semicolons (or newlines) and spaces (or tabs) can be combined to concatenate both horizontally
and vertically at the same time.

julia> [1 2
3 4]
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2x2 Matrix{Int64}:
1 2
3 4

julia> [zeros(Int, 2, 2) [1; 2]
[3 4] 5]

3x3 Matrix{Int64}:

0 0 1

0 0 2

3 4 5

julia> [[1 1]; 2 3; [4 4]]
3x2 Matrix{Int64}:

1 1

2 3

4 4

Spaces (and tabs) have a higher precedence than semicolons, performing any horizontal concatenations
first and then concatenating the result. Using double semicolons for the horizontal concatenation, on the
other hand, performs any vertical concatenations before horizontally concatenating the result.

julia> [zeros(Int, 2, 2) ; [3 41 ;; [1; 21 ; 51
3x3 Matrix{Int64}:

0 0 1
0 0 2
3 4 5

julia> [1:2; 4;; 1; 3:4]
3x2 Matrix{Int64}:

1 1

2 3

4 4

Just as ; and ;; concatenate in the first and second dimension, using more semicolons extends this same
general scheme. The number of semicolons in the separator specifies the particular dimension, so ;;;
concatenates in the third dimension, ;;;; in the 4th, and so on. Fewer semicolons take precedence, so
the lower dimensions are generally concatenated first.

julia> [1; 2;; 3; 4;; 5; 6553
7; 8;; 9; 10;; 11; 12]

2x3x2 Array{Int64, 3}:

[:) ¢, 1] =

1 3 5

2 4 6
[:, 1, 2] =
7 9 11
8 10 12

Like before, spaces (and tabs) for horizontal concatenation have a higher precedence than any number of
semicolons. Thus, higher-dimensional arrays can also be written by specifying their rows first, with their
elements textually arranged in a manner similar to their layout:
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julia> [1 3 5

246;;;

79 11

8 10 12]
2x3x2 Array{Int64, 3}:
[:, :, 1] =

8 10 12

julia> [1 2;;; 3 4;;;; 5 6;;; 7 8]
1x2x2x2 Array{Int64, 4}:
[:, :, 1, 1] =

julia> [[1 2;;; 3 415555 [5 61555 [7
1x2x2x2 Array{Int64, 4}:
[+, +, 1, 1] =

811

258

Although they both mean concatenation in the second dimension, spaces (or tabs) and ; ; cannot appearin
the same array expression unless the double semicolon is simply serving as a "line continuation" character.
This allows a single horizontal concatenation to span multiple lines (without the line break being interpreted

as a vertical concatenation).

julia> [1 2 ;;

3 4]
1x4 Matrix{Int64}:
1 2 3 4

Terminating semicolons may also be used to add trailing length 1 dimensions.
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julia> [1;;]
1x1 Matrix{Int64}:
1

julia> [2; 3;;;]
2x1x1 Array{Int64, 3}:
[:, :, 1] =

2

3

More generally, concatenation can be accomplished through the cat function. These syntaxes are short-
hands for function calls that themselves are convenience functions:

Syntax Func- | Description
tion
cat concatenate input arrays along dimension(s) k
[A; B; C; vcat shorthand for cat(A...; dims=1)
-
[ABC...] hcat shorthand for cat(A...; dims=2)
[A B; CD; hvcat | simultaneous vertical and horizontal concatenation
-1
[A; C;; B; hvncat| simultaneous n-dimensional concatenation, where number of semicolons
D;;; ...] indicate the dimension to concatenate

Typed array literals

An array with a specific element type can be constructed using the syntax T[A, B, C, ...]. This will
construct a 1-d array with element type T, initialized to contain elements A, B, C, etc. For example, Any[Xx,
y, z] constructs a heterogeneous array that can contain any values.

Concatenation syntax can similarly be prefixed with a type to specify the element type of the result.

julia> [[1 2] [3 41]
1x4 Matrix{Int64}:
1 2 3 4

julia> Int8[[1 2] [3 4]]
1x4 Matrix{Int8}:
1 2 3 4

19.4 Comprehensions

Comprehensions provide a general and powerful way to construct arrays. Comprehension syntax is similar
to set construction notation in mathematics:

A=1[F(x, vy, ...) for x=rx, y=ry, ... 1]

The meaning of this form is that F(x,y, ...) is evaluated with the variables x, y, etc. taking on each value

in their given list of values. Values can be specified as any iterable object, but will commonly be ranges
like 1:n or 2:(n-1), or explicit arrays of values like [1.2, 3.4, 5.7]. The result is an N-d dense array
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with dimensions that are the concatenation of the dimensions of the variable ranges rx, ry, etc. and each
F(x,y,...) evaluation returns a scalar.

The following example computes a weighted average of the current element and its left and right neighbor
along a 1-d grid. :

julia> x = rand(8)
8-element Array{Float64,1}:
0.843025

.869052

.365105

.699456

.977653

.994953

.41084

.809411

el ol ool oM oMol

julia> [ 0.25%x[i-1] + 0.5%x[i] + 0.25*x[i+1] for i=2:1length(x)-1 ]
6-element Array{Float64,1}:

0.736559

.57468

.685417

.912429

.8446

.656511

[l ol oo O]

The resulting array type depends on the types of the computed elements just like array literals do. In order
to control the type explicitly, a type can be prepended to the comprehension. For example, we could have
requested the result in single precision by writing:

‘Float32[ 0.25*%x[1-1] + 0.5*x[1] + 0.25*x[i+1] for i=2:1length(x)-1 ]

19.5 Generator Expressions

Comprehensions can also be written without the enclosing square brackets, producing an object known
as a generator. This object can be iterated to produce values on demand, instead of allocating an array
and storing them in advance (see Iteration). For example, the following expression sums a series without
allocating memory:

julia> sum(1/n"2 for n=1:1000)
1.6439345666815615

When writing a generator expression with multiple dimensions inside an argument list, parentheses are
needed to separate the generator from subsequent arguments:

julia> map(tuple, 1/(i+j) for i=1:2, j=1:2, [1:4;])
ERROR: syntax: invalid iteration specification

All comma-separated expressions after for are interpreted as ranges. Adding parentheses lets us add a
third argument to map:
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julia> map(tuple, (1/(i+j) for i=1:2, j=1:2), [1 3; 2 4])
2x2 Matrix{Tuple{Float64, Int64}}:

(0.5, 1) (0.333333, 3)

(0.333333, 2) (0.25, 4)

Generators are implemented via inner functions. Just like inner functions used elsewhere in the language,
variables from the enclosing scope can be "captured" in the inner function. For example, sum(p[i] -
q[i] for i=1:n) captures the three variables p, g and n from the enclosing scope. Captured variables
can present performance challenges; see performance tips.

Ranges in generators and comprehensions can depend on previous ranges by writing multiple for key-
words:

julia> [(i, j) for i=1:3 for j=1:i]
6-element Vector{Tuple{Int64, Int64}}:
(1, 1)

(2, 1)

(2, 2)

(3, 1)

(3, 2)

(3, 3)

In such cases, the result is always 1-d.

Generated values can be filtered using the if keyword:
julia> [(i, j) for i=1:3 for j=1:i if i+j == 4]
2-element Vector{Tuple{Int64, Int64}}:

(2, 2)
(3, 1)

19.6 Indexing

The general syntax for indexing into an n-dimensional array A is:

|X = A1, 12, ..., In]

where each I_k may be a scalar integer, an array of integers, or any other supported index. This includes
Colon (:) to select all indices within the entire dimension, ranges of the form a:c or a:b:c to select
contiguous or strided subsections, and arrays of booleans to select elements at their true indices.

If all the indices are scalars, then the result X is a single element from the array A. Otherwise, X is an array
with the same number of dimensions as the sum of the dimensionalities of all the indices.

If all indices I k are vectors, for example, then the shape of X would be (length(I 1), length(I 2),
., length(I n)),withlocationi 1, i 2, ..., i nofXcontainingthevalueA[I 1[i 1], I 2[i 2],
., I n[i n]].

Example:

julia> A = reshape(collect(1:16), (2, 2, 2, 2))
2x2x2x2 Array{Int64, 4}:
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julia> A[1, 2, 1, 1] # all scalar indices
3

julia> A[[1, 21, [11, [1, 21, [11] # all vector indices
2x1x2x1 Array{Int64, 4}:

[:, :, 1, 1] =
1
2
[, :, 2, 1] =
5
6

julia> A[[1, 21, [11, [1, 21, 11 # a mix of index types
2x1x2 Array{Int64, 3}:
[+ ¢, 1] =

Note how the size of the resulting array is different in the last two cases.

IfI_1is changed to a two-dimensional matrix, then Xbecomes an n+1-dimensional array of shape (size(I 1,
1), size(I 1, 2), length(I 2), ..., length(I_n)). The matrix adds a dimension.

Example:

julia> A = reshape(collect(1:16), (2, 2, 2, 2));

julia> A[[1 2; 1 2]1]
2x2 Matrix{Int64}:
1 2
1 2
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julia> A[[1 2; 1 2], 1, 2, 1]
2x2 Matrix{Int64}:

5 6

5 6

The locationi 1, i 2, i 3, ..., i {n+1} contains the value at A[T 1[i 1, i 2], I 2[i 3], ...,
I n[i {n+1}]1]. All dimensions indexed with scalars are dropped. For example, if J is an array of indices,
then the result of A[2, J, 3] is an array with size size(J). Its jth element is populated by A[2, J[j],
3].

As a special part of this syntax, the end keyword may be used to represent the last index of each dimension
within the indexing brackets, as determined by the size of the innermost array being indexed. Indexing
syntax without the end keyword is equivalent to a call to getindex:

X = getindex(A, I.1, I 2, ..., I n)

Example:

julia> x = reshape(1l:16, 4, 4)
4x4 reshape(::UnitRange{Int64}, 4, 4) with eltype Int64:

1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

julia> x[2:3, 2:end-1]
2x2 Matrix{Int64}:

6 10

7 11

julia> x[1, [2 3; 4 1]1]
2x2 Matrix{Int64}:

5 9

13 1

19.7 Indexed Assignment

The general syntax for assigning values in an n-dimensional array A is:

|AlI1, 12, ..., In]=X

where each I _k may be a scalar integer, an array of integers, or any other supported index. This includes
Colon (:) to select all indices within the entire dimension, ranges of the form a:c or a:b:c to select
contiguous or strided subsections, and arrays of booleans to select elements at their true indices.

If all indices I_k are integers, then the value in locationI 1, I 2, ..., I n of Ais overwritten with the
value of X, converting to the eltype of A if necessary.

If any index I k is itself an array, then the right hand side X must also be an array with the same shape
as the result of indexing A[I 1, I 2, ..., I n] or a vector with the same number of elements. The
value in location I 1[i 1], I 2[i 2], ..., I n[i n] of Ais overwritten with the value X[I 1, I 2,

., I n], converting if necessary. The element-wise assignment operator .= may be used to broadcast
X across the selected locations:
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|AlT.1, 1.2, ..., In] .=X

Just as in Indexing, the end keyword may be used to represent the last index of each dimension within the
indexing brackets, as determined by the size of the array being assigned into. Indexed assignment syntax
without the end keyword is equivalent to a call to setindex!:

| setindex!(A, X, 1.1, 1.2, ..., In)
Example:
julia> x = collect(reshape(1:9, 3, 3))
3x3 Matrix{Int64}:
1 4 7
2 5 8
3 6 9
julia> x[3, 3] = -9;
julia> x[1:2, 1:2] = [-1 -4; -2 -51;
julia> x
3x3 Matrix{Int64}:
-1 -4 7
-2 -5 8
3 6 -9

19.8 Supported index types

In the expression A[I 1, I 2, ..., I n],eachI k may be a scalarindex, an array of scalar indices, or
an object that represents an array of scalar indices and can be converted to such by to indices:

1. Ascalarindex. By default this includes:

- Non-boolean integers

- CartesianIndex{N}s, which behave like an N-tuple of integers spanning multiple dimensions
(see below for more details)

2. An array of scalar indices. This includes:

- Vectors and multidimensional arrays of integers

- Empty arrays like [], which select no elements e.g. A[[]] (not to be confused with A[ 1)

Ranges like a:c ora:b:c, which select contiguous or strided subsections from a to c (inclusive)
- Any custom array of scalar indices that is a subtype of AbstractArray

- Arrays of CartesianIndex{N} (see below for more details)

3. An object that represents an array of scalar indices and can be converted to such by to indices.
By default this includes:

- Colon() (:), which represents all indices within an entire dimension or across the entire array
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- Arrays of booleans, which select elements at their true indices (see below for more details)

Some examples:

julia> A = reshape(collect(1:2:18), (3, 3))
3x3 Matrix{Int64}:

1 7 13
3 9 15
5 11 17

julia> A[4]
7

julia> A[[2, 5, 8]1]
3-element Vector{Int64}:
3
9
15

julia> A[[1 4; 3 8]1
2x2 Matrix{Int64}:

1 7

5 15

julia> A[[]]
Int64[]

julia> A[1:2:5]
3-element Vector{Int64}:
1
5
9

julia> A[2, :]

3-element Vector{Int64}:
3
9
15

julia> A[:, 3]

3-element Vector{Int64}:
13
15
17

julia> A[:, 3:3]
3x1 Matrix{Int64}:
13
15
17
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Cartesian indices

The special CartesianIndex{N} object represents a scalar index that behaves like an N-tuple of integers
spanning multiple dimensions. For example:

julia> A = reshape(1:32, 4, 4, 2);

julia> A[3, 2, 1]
7

julia> A[CartesianIndex(3, 2, 1)] == A[3, 2, 1] ==
true

Considered alone, this may seem relatively trivial; CartesianIndex simply gathers multiple integers to-
gether into one object that represents a single multidimensional index. When combined with other index-
ing forms and iterators that yield CartesianIndexes, however, this can produce very elegant and efficient
code. See Iteration below, and for some more advanced examples, see this blog post on multidimensional
algorithms and iteration.

Arrays of CartesianIndex{N} are also supported. They represent a collection of scalar indices that each
span N dimensions, enabling a form of indexing that is sometimes referred to as pointwise indexing. For
example, it enables accessing the diagonal elements from the first "page" of A from above:

julia> page = A[:, :, 1]
4x4 Matrix{Int64}:

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

julia> page[[CartesianIndex(1, 1),
CartesianIndex(2, 2),
CartesianIndex(3, 3),
CartesianIndex(4, 4)1]

4-element Vector{Int64}:

1
6
11
16

This can be expressed much more simply with dot broadcasting and by combining it with a normal integer
index (instead of extracting the first page from A as a separate step). It can even be combined with a : to
extract both diagonals from the two pages at the same time:

julia> A[CartesianIndex. (axes(A, 1), axes(A, 2)), 1]
4-element Vector{Int64}:
1
6
11
16



https://julialang.org/blog/2016/02/iteration
https://julialang.org/blog/2016/02/iteration
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julia> A[CartesianIndex. (axes(A, 1), axes(A, 2)), :]

4x2
1

6
11
16

Matrix{Int64}:
17
22
27
32

Warning

CartesianIndex and arrays of CartesianIndex are not compatible with the end keyword to
represent the last index of a dimension. Do not use end in indexing expressions that may
contain either CartesianIndex or arrays thereof.

Logical indexing

Often referred to as logical indexing or indexing with a logical mask, indexing by a boolean array selects
elements at the indices where its values are true. Indexing by a boolean vector B is effectively the same as
indexing by the vector of integers that is returned by findall(B). Similarly, indexing by a N-dimensional
boolean array is effectively the same as indexing by the vector of CartesianIndex{N}s where its values
are true. Alogical index must be a vector of the same length as the dimension it indexes into, or it must be
the only index provided and match the size and dimensionality of the array it indexes into. It is generally
more efficient to use boolean arrays as indices directly instead of first calling findall.

4x4
1

2
3
4

2x4
2
3

4x4
1

1
0
1

1
2
4
8
16

julia> x = reshape(1l:16, 4, 4)

reshape(::UnitRange{Int64}, 4, 4) with eltype Int64:
5 9 13
6 10 14
7 11 15
8 12 16

julia> x[[false, true, true, false], :]

Matrix{Int64}:
6 10 14
7 11 15

julia> mask = map(ispow2, X)

Matrix{Bool}:
0 0 0
0 0 0
0 0 0
1 0 1

julia> x[mask]
5-element Vector{Int64}:
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Number of indices
Cartesian indexing

The ordinary way to index into an N-dimensional array is to use exactly N indices; each index selects the
position(s) in its particular dimension. For example, in the three-dimensional array A = rand(4, 3, 2),
A[2, 3, 1] will select the number in the second row of the third column in the first "page" of the array.
This is often referred to as cartesian indexing.

Linear indexing

When exactly one index 1 is provided, that index no longer represents a location in a particular dimension
of the array. Instead, it selects the ith element using the column-major iteration order that linearly spans
the entire array. This is known as linear indexing. It essentially treats the array as though it had been
reshaped into a one-dimensional vector with vec.

julia> A = [2 6; 4 7; 3 1]
3x2 Matrix{Int64}:

2 6

4 7

3 1

julia> A[5]
7

julia> vec(A)[5]
7

Alinearindex into the array A can be converted to a CartesianIndex for cartesian indexing with CartesianIndices(A)[i]
(see CartesianIndices), and asetof N cartesian indices can be converted to a linear index with LinearIndices(A)[i 1,
i2, ..., i N](seelinearIndices).

julia> CartesianIndices(A)[5]
CartesianIndex(2, 2)

julia> LinearIndices(A)[2, 2]
5

It's important to note that there's a very large asymmetry in the performance of these conversions. Con-
verting a linear index to a set of cartesian indices requires dividing and taking the remainder, whereas
going the other way is just multiplies and adds. In modern processors, integer division can be 10-50 times
slower than multiplication. While some arrays — like Array itself — are implemented using a linear chunk
of memory and directly use a linear index in their implementations, other arrays — like Diagonal — need
the full set of cartesian indices to do their lookup (see IndexStyle to introspect which is which).

Warnings

When iterating over all the indices for an array, it is better to iterate over eachindex(A) instead
of 1:length(A). Not only will this be faster in cases where A is IndexCartesian, but it will also
support arrays with custom indexing, such as OffsetArrays. If only the values are needed, then
is better to just iterate the array directly, i.e. for a in A.


https://github.com/JuliaArrays/OffsetArrays.jl

CHAPTER 19. SINGLE- AND MULTI-DIMENSIONAL ARRAYS 269

Omitted and extra indices

In addition to linear indexing, an N-dimensional array may be indexed with fewer or more than N indices in
certain situations.

Indices may be omitted if the trailing dimensions that are not indexed into are all length one. In other
words, trailing indices can be omitted only if there is only one possible value that those omitted indices
could be for an in-bounds indexing expression. For example, a four-dimensional array with size (3, 4, 2,
1) may be indexed with only three indices as the dimension that gets skipped (the fourth dimension) has
length one. Note that linear indexing takes precedence over this rule.

julia> A = reshape(1:24, 3, 4, 2, 1)

3x4x2x1 reshape(::UnitRange{Int64}, 3, 4, 2, 1) with eltype Int64:
[:, :, 1, 1] =
7 10
8 11
9

1
2
3 12

o U N

[:, =, 2, 1] =
13 16 19 22
14 17 20 23
15 18 21 24

julia> A[1l, 3, 2] # Omits the fourth dimension (length 1)
19

julia> A[1l, 3] # Attempts to omit dimensions 3 & 4 (lengths 2 and 1)
ERROR: BoundsError: attempt to access 3x4x2x1 reshape(::UnitRange{Int64}, 3, 4, 2, 1) with eltype
<« Int64 at index [1, 3]

julia> A[19] # Linear indexing
19

When omitting all indices with A[], this semantic provides a simple idiom to retrieve the only element in
an array and simultaneously ensure that there was only one element.

Similarly, more than N indices may be provided if all the indices beyond the dimensionality of the array
are 1 (or more generally are the first and only element of axes (A, d) where d is that particular dimension
number). This allows vectors to be indexed like one-column matrices, for example:

julia> A = [8,6,7]
3-element Vector{Int64}:
8

6

7

julia> A[2,1]
6

19.9 Iteration

The recommended ways to iterate over a whole array are
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for a in A
# Do something with the element a
end

for i in eachindex(A)
# Do something with i and/or A[i]
end

The first construct is used when you need the value, but not index, of each element. In the second construct,
i will be an Int if Ais an array type with fast linear indexing; otherwise, it will be a CartesianIndex:

julia> A = rand(4, 3);
julia> B = view(A, 1:3, 2:3);

julia> for i in eachindex(B)
@show i

end
= CartesianIndex

’

= CartesianIndex

’

= CartesianIndex

’

= CartesianIndex

’

= CartesianIndex

’

N NN P ==

(1
(2
(3
(1
(2
(3

R = S TR SR

= CartesianIndex

’

Note

In contrast with for i = 1:length(A), iterating with eachindex provides an efficient way to
iterate over any array type. Besides, this also supports generic arrays with custom indexing
such as OffsetArrays.

19.10 Array traits

If you write a custom AbstractArray type, you can specify that it has fast linear indexing using
Base.IndexStyle(::Type{<:MyArray}) = IndexLinear()

This setting will cause eachindex iteration over a MyArray to use integers. If you don't specify this trait,
the default value IndexCartesian() is used.

19.11 Array and Vectorized Operators and Functions

The following operators are supported for arrays:

1. Unary arithmetic - -, +
2. Binary arithmetic - -, +, *, /, \, "

3. Comparison - ==, !=, = (isapprox), #


https://github.com/JuliaArrays/OffsetArrays.jl
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To enable convenient vectorization of mathematical and other operations, Julia provides the dot syntax
f.(args...), e.g. sin.(x) ormin. (x,y), for elementwise operations over arrays or mixtures of arrays
and scalars (a Broadcasting operation); these have the additional advantage of "fusing" into a single loop
when combined with other dot calls, e.g. sin. (cos.(x)).

Also, every binary operator supports a dot version that can be applied to arrays (and combinations of arrays
and scalars) in such fused broadcasting operations, e.g. z .== sin.(x .* y).

Note that comparisons such as == operate on whole arrays, giving a single boolean answer. Use dot op-
erators like .== for elementwise comparisons. (For comparison operations like <, only the elementwise .<
version is applicable to arrays.)

Also notice the difference between max. (a,b), which broadcasts max elementwise over a and b, and
maximum(a), which finds the largest value within a. The same relationship holds for min. (a,b) and
minimum(a).

19.12 Broadcasting

It is sometimes useful to perform element-by-element binary operations on arrays of different sizes, such
as adding a vector to each column of a matrix. An inefficient way to do this would be to replicate the vector
to the size of the matrix:

julia> a = rand(2, 1); A = rand(2, 3);

julia> repeat(a, 1, 3) + A

2x3 Array{Float64,2}:
1.20813 1.82068 1.25387
1.56851 1.86401 1.67846

This is wasteful when dimensions get large, so Julia provides broadcast, which expands singleton dimen-
sions in array arguments to match the corresponding dimension in the other array without using extra
memory, and applies the given function elementwise:

julia> broadcast(+, a, A)

2x3 Array{Float64,2}:
1.20813 1.82068 1.25387
1.56851 1.86401 1.67846

julia> b = rand(1,2)
1x2 Array{Float64,2}:
0.867535 0.00457906

julia> broadcast(+, a, b)
2x2 Array{Float64,2}:
1.71056 0.847604
1.73659 0.873631

Dotted operators such as .+ and .* are equivalent to broadcast calls (except that they fuse, as described
above). There is also a broadcast! function to specify an explicit destination (which can also be accessed
in a fusing fashion by .= assignment). In fact, f.(args...) is equivalent to broadcast(f, args...),
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providing a convenient syntax to broadcast any function (dot syntax). Nested "dot calls" f. (...) (including
calls to .+ etcetera) automatically fuse into a single broadcast call.

Additionally, broadcast is not limited to arrays (see the function documentation); it also handles scalars,
tuples and other collections. By default, only some argument types are considered scalars, including (but
not limited to) Numbers, Strings, Symbols, Types, Functions and some common singletons like missing
and nothing. All other arguments are iterated over or indexed into elementwise.

julia> convert.(Float32, [1, 2])
2-element Vector{Float32}:

1.0

2.0

julia> ceil. (UInt8, [1.2 3.4; 5.6 6.71)
2x2 Matrix{UInt8}:

0x02 0x04

0x06 0x07

julia> string.(1:3, ". ", ["First", "Second", "Third"])
3-element Vector{String}:

"1. First"

"2. Second"

"3, Third"

Sometimes, you want a container (like an array) that would normally participate in broadcast to be "pro-
tected" from broadcast's behavior of iterating over all of its elements. By placing it inside another container
(like a single element Tuple) broadcast will treat it as a single value.

julia> ([1, 2, 31, [4, 5, 6]) .+ ([1, 2, 31,)
(2, 4, 61, [5, 7, 9]1)

julia> ([1, 2, 31, [4, 5, 6]) .+ tuple([1, 2, 3])
({2, 4, 6], [5, 7, 9])

19.13 Implementation

The base array type in Julia is the abstract type AbstractArray{T,N}. It is parameterized by the number
of dimensions N and the element type T. AbstractVector and AbstractMatrix are aliases for the 1-d and
2-d cases. Operations on AbstractArray objects are defined using higher level operators and functions,
in a way that is independent of the underlying storage. These operations generally work correctly as a
fallback for any specific array implementation.

The AbstractArray type includes anything vaguely array-like, and implementations of it might be quite
different from conventional arrays. For example, elements might be computed on request rather than
stored. However, any concrete AbstractArray{T,N} type should generally implement at least size(A)
(returning an Int tuple), getindex(A,i) and getindex(A,il,...,1iN); mutable arrays should also im-
plement setindex!. It is recommended that these operations have nearly constant time complexity, as
otherwise some array functions may be unexpectedly slow. Concrete types should also typically provide
asimilar(A,T=eltype(A),dims=size(A)) method, which is used to allocate a similar array for copy and
other out-of-place operations. No matter how an AbstractArray{T,N} is represented internally, T is the
type of object returned by integer indexing (A[1, ..., 1], whenAisnotempty)and N should be the length
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of the tuple returned by size. For more details on defining custom AbstractArray implementations, see
the array interface guide in the interfaces chapter.

DenseArray is an abstract subtype of AbstractArray intended to include all arrays where elements are
stored contiguously in column-major order (see additional notes in Performance Tips). The Array type is
a specific instance of DenseArray; Vector and Matrix are aliases for the 1-d and 2-d cases. Very few
operations are implemented specifically for Array beyond those that are required for all AbstractArrays;
much of the array library is implemented in a generic manner that allows all custom arrays to behave
similarly.

SubArray is a specialization of AbstractArray that performs indexing by sharing memory with the original
array rather than by copying it. A SubArray is created with the view function, which is called the same
way as getindex (with an array and a series of index arguments). The result of view looks the same as
the result of getindex, except the data is left in place. view stores the input index vectors in a SubArray
object, which can later be used to index the original array indirectly. By putting the @views macro in front
of an expression or block of code, any array[...] slice in that expression will be converted to create a
SubArray view instead.

BitArrays are space-efficient "packed" boolean arrays, which store one bit per boolean value. They can
be used similarly to Array{Bool} arrays (which store one byte per boolean value), and can be converted
to/from the latter via Array(bitarray) and BitArray(array), respectively.

An array is "strided" if it is stored in memory with well-defined spacings (strides) between its elements.
A strided array with a supported element type may be passed to an external (non-jJulia) library like BLAS
or LAPACK by simply passing its pointer and the stride for each dimension. The stride(A, d) is the
distance between elements along dimension d. For example, the builtin Array returned by rand(5,7,2)
has its elements arranged contiguously in column major order. This means that the stride of the first
dimension — the spacing between elements in the same column — is 1:

julia> A = rand(5, 7, 2);

julia> stride(A, 1)
1

The stride of the second dimension is the spacing between elements in the same row, skipping as many
elements as there are in a single column (5). Similarly, jumping between the two "pages" (in the third
dimension) requires skipping 5*7 == 35 elements. The strides of this array is the tuple of these three
numbers together:

julia> strides(A)
(1, 5, 35)

In this particular case, the number of elements skipped in memory matches the number of linear indices
skipped. This is only the case for contiguous arrays like Array (and other DenseArray subtypes) and is not
true in general. Views with range indices are a good example of non-contiguous strided arrays; consider
V = @view A[1:3:4, 2:2:6, 2:-1:1]. This view V refers to the same memory as A but is skipping and
re-arranging some of its elements. The stride of the first dimension of V is 3 because we're only selecting
every third row from our original array:

julia> V = @view A[1:3:4, 2:2:6, 2:-1:1];
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julia> stride(v, 1)
3

This view is similarly selecting every other column from our original A — and thus it needs to skip the
equivalent of two five-element columns when moving between indices in the second dimension:

julia> stride(V, 2)
10

The third dimension is interesting because its order is reversed! Thus to get from the first "page" to the
second one it must go backwards in memory, and so its stride in this dimension is negative!

julia> stride(V, 3)
-35

This means that the pointer for V is actually pointing into the middle of A's memory block, and it refers
to elements both backwards and forwards in memory. See the interface guide for strided arrays for more
details on defining your own strided arrays. StridedVector and StridedMatrix are convenient aliases
for many of the builtin array types that are considered strided arrays, allowing them to dispatch to select
specialized implementations that call highly tuned and optimized BLAS and LAPACK functions using just
the pointer and strides.

It is worth emphasizing that strides are about offsets in memory rather than indexing. If you are looking to
convert between linear (single-index) indexing and cartesian (multi-index) indexing, see LinearIndices
and CartesianIndices.
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Missing Values

Julia provides support for representing missing values in the statistical sense. This is for situations where
no value is available for a variable in an observation, but a valid value theoretically exists. Missing values
are represented via the missing object, which is the singleton instance of the type Missing. missing is
equivalent to NULL in SQL and NA in R, and behaves like them in most situations.

20.1 Propagation of Missing Values

missing values propagate automatically when passed to standard mathematical operators and functions.
For these functions, uncertainty about the value of one of the operands induces uncertainty about the
result. In practice, this means a math operation involving a missing value generally returns missing:

julia> missing + 1
missing

julia> "a" * missing
missing

julia> abs(missing)
missing

Since missing is a normal Julia object, this propagation rule only works for functions which have opted in
to implement this behavior. This can be achieved by:

* adding a specific method defined for arguments of type Missing,

¢ accepting arguments of this type, and passing them to functions which propagate them (like standard
math operators).

Packages should consider whether it makes sense to propagate missing values when defining new func-
tions, and define methods appropriately if this is the case. Passing a missing value to a function which
does not have a method accepting arguments of type Missing throws a MethodError, just like for any
other type.

Functions that do not propagate missing values can be made to do so by wrapping them in the passmissing
function provided by the Missings.jl package. For example, f(x) becomes passmissing(f) (x).
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20.2 Equality and Comparison Operators

Standard equality and comparison operators follow the propagation rule presented above: if any of the
operands is missing, the result is missing. Here are a few examples:

julia> missing == 1
missing

julia> missing == missing
missing

julia> missing < 1
missing

julia> 2 >= missing
missing

In particular, note that missing == missing returns missing, so == cannot be used to test whether a value
is missing. To test whether x is missing, use ismissing(x).

Special comparison operators isequal and === are exceptions to the propagation rule. They will always
return a Bool value, even in the presence of missing values, considering missing as equal to missing and
as different from any other value. They can therefore be used to test whether a value is missing:

julia> missing ===
false

julia> isequal(missing, 1)
false

julia> missing === missing
true

julia> isequal(missing, missing)
true

The isless operator is another exception: missing is considered as greater than any other value. This
operator is used by sort!, which therefore places missing values after all other values:

julia> isless(1l, missing)
true

julia> isless(missing, Inf)
false

julia> isless(missing, missing)
false
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20.3 Logical operators

Logical (or boolean) operators |, & and xor are another special case since they only propagate missing
values when it is logically required. For these operators, whether or not the result is uncertain, depends on
the particular operation. This follows the well-established rules of three-valued logic which are implemented
by e.g. NULL in SQL and NA in R. This abstract definition corresponds to a relatively natural behavior which
is best explained via concrete examples.

Let us illustrate this principle with the logical "or" operator |. Following the rules of boolean logic, if one of
the operands is true, the value of the other operand does not have an influence on the result, which will
always be true:

julia> true | true
true

julia> true | false
true

julia> false | true
true

Based on this observation, we can conclude if one of the operands is true and the other missing, we know
that the result is true in spite of the uncertainty about the actual value of one of the operands. If we had
been able to observe the actual value of the second operand, it could only be true or false, and in both
cases the result would be true. Therefore, in this particular case, missingness does not propagate:

julia> true | missing
true

julia> missing | true
true

On the contrary, if one of the operands is false, the result could be either true or false depending on
the value of the other operand. Therefore, if that operand is missing, the result has to be missing too:

julia> false | true
true

julia> true | false
true

julia> false | false
false

julia> false | missing
missing

julia> missing | false
missing
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The behavior of the logical "and" operator & is similar to that of the | operator, with the difference that
missingness does not propagate when one of the operands is false. For example, when that is the case
of the first operand:

julia> false & false
false

julia> false & true
false

julia> false & missing
false

On the other hand, missingness propagates when one of the operands is true, for example the first one:

julia> true & true
true

julia> true & false
false

julia> true & missing

missing

Finally, the "exclusive or" logical operator xor always propagates missing values, since both operands
always have an effect on the result. Also note that the negation operator ! returns missing when the
operand is missing, just like other unary operators.

20.4 Control Flow and Short-Circuiting Operators

Control flow operators including if, while and the ternary operator x ? y : z do not allow for missing
values. This is because of the uncertainty about whether the actual value would be true or false if we
could observe it. This implies we do not know how the program should behave. In this case, a TypeError
is thrown as soon as a missing value is encountered in this context:

julia> if missing
println("here")
end
ERROR: TypeError: non-boolean (Missing) used in boolean context

For the same reason, contrary to logical operators presented above, the short-circuiting boolean operators
&& and | | do not allow for missing values in situations where the value of the operand determines whether
the next operand is evaluated or not. For example:

julia> missing || false
ERROR: TypeError: non-boolean (Missing) used in boolean context

julia> missing && false
ERROR: TypeError: non-boolean (Missing) used in boolean context
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julia> true && missing && false
ERROR: TypeError: non-boolean (Missing) used in boolean context

In contrast, there is no error thrown when the result can be determined without the missing values. This
is the case when the code short-circuits before evaluating the missing operand, and when the missing
operand is the last one:

julia> true && missing
missing

julia> false && missing
false

20.5 Arrays With Missing Values

Arrays containing missing values can be created like other arrays:

julia> [1, missing]

2-element Vector{Union{Missing, Int64}}:
1
missing

As this example shows, the element type of such arrays is Union{Missing, T}, with T the type of the
non-missing values. This reflects the fact that array entries can be either of type T (here, Int64) or of type
Missing. This kind of array uses an efficient memory storage equivalent to an Array{T} holding the actual
values combined with an Array{UInt8} indicating the type of the entry (i.e. whether it is Missing or T).

Arrays allowing for missing values can be constructed with the standard syntax. Use Array{Union{Missing,
T}}(missing, dims) to create arrays filled with missing values:

julia> Array{Union{Missing, String}}(missing, 2, 3)
2x3 Matrix{Union{Missing, String}}:

missing missing missing

missing missing missing

Note

Using undef or similar may currently give an array filled with missing, but this is not the
correct way to obtain such an array. Use a missing constructor as shown above instead.

An array with element type allowing missing entries (e.g. Vector{Union{Missing, T}}) which does not
contain any missing entries can be converted to an array type that does not allow for missing entries
(e.g. Vector{T}) using convert. If the array contains missing values, a MethodError is thrown during
conversion:

julia> x = Union{Missing, String}["a", "b"]
2-element Vector{Union{Missing, String}}:
g
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npn

julia> convert(Array{String}, x)
2-element Vector{String}:

a
"o

julia> y = Union{Missing, String}[missing, "b"]
2-element Vector{Union{Missing, String}}:
missing

npn

julia> convert(Array{String}, vy)
ERROR: MethodError: Cannot “convert’ an object of type Missing to an object of type String

20.6 Skipping Missing Values

Since missing values propagate with standard mathematical operators, reduction functions return missing
when called on arrays which contain missing values:

julia> sum([1, missing])
missing

In this situation, use the skipmissing function to skip missing values:

julia> sum(skipmissing([1, missing]l))
1

This convenience function returns an iterator which filters out missing values efficiently. It can therefore
be used with any function which supports iterators:

julia> x = skipmissing([3, missing, 2, 1])
skipmissing(Union{Missing, Int64}[3, missing, 2, 1])

julia> maximum(x)
3

julia> sum(x)
6

julia> mapreduce(sqrt, +, X)
4.146264369941973

Objects created by calling skipmissing on an array can be indexed using indices from the parent array.
Indices corresponding to missing values are not valid for these objects, and an error is thrown when trying
to use them (they are also skipped by keys and eachindex):

julia> x[1]
3



CHAPTER 20. MISSING VALUES 281

julia> x[2]
ERROR: MissingException: the value at index (2,) is missing
[...]

This allows functions which operate on indices to work in combination with skipmissing. This is notably
the case for search and find functions. These functions return indices valid for the object returned by
skipmissing, and are also the indices of the matching entries in the parent array:

julia> findall(==(1), x)
1-element Vector{Int64}:
4

julia> findfirst(!iszero, x)
1

julia> argmax(x)
1

Use collect to extract non-missing values and store them in an array:

julia> collect(x)
3-element Vector{Int64}:
3
2
1

20.7 Logical Operations on Arrays

The three-valued logic described above for logical operators is also used by logical functions applied to
arrays. Thus, array equality tests using the == operator return missing whenever the result cannot be
determined without knowing the actual value of the missing entry. In practice, this means missing is
returned if all non-missing values of the compared arrays are equal, but one or both arrays contain missing
values (possibly at different positions):

julia> [1, missing] == [2, missing]

false

julia> [1, missing] == [1, missing]
missing

julia> [1, 2, missing] == [1, missing, 2]
missing

As for single values, use isequal to treat missing values as equal to other missing values, but different
from non-missing values:

julia> isequal([1l, missing], [1, missing])
true
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julia> isequal([1l, 2, missing]l, [1, missing, 2])
false

Functions any and all also follow the rules of three-valued logic. Thus, returning missing when the result
cannot be determined:

julia> all([true, missing])
missing

julia> all([false, missing])
false

julia> any([true, missing])
true

julia> any([false, missing])
missing
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Networking and Streams

Julia provides a rich interface to deal with streaming I/O objects such as terminals, pipes and TCP sockets.
This interface, though asynchronous at the system level, is presented in a synchronous manner to the
programmer and it is usually unnecessary to think about the underlying asynchronous operation. This is
achieved by making heavy use of Julia cooperative threading (coroutine) functionality.

21.1 Basic Stream I/O

All Julia streams expose at least a read and a write method, taking the stream as their first argument,
e.g.:

julia> write(stdout, "Hello World"); # suppress return value 11 with ;
Hello World
julia> read(stdin, Char)

‘\n': ASCII/Unicode U+000a (category Cc: Other, control)

Note that write returns 11, the number of bytes (in "Hello World") written to stdout, but this return
value is suppressed with the ;.

Here Enter was pressed again so that Julia would read the newline. Now, as you can see from this example,
write takes the data to write as its second argument, while read takes the type of the data to be read as
the second argument.

For example, to read a simple byte array, we could do:

julia> x = zeros(UInt8, 4)
4-element Array{UInt8,1}:
0x00

0x00

0x00

0x00

julia> read!(stdin, x)
abcd

4-element Array{UInt8,1}:
0x61
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0x62
0x63
0x64

However, since this is slightly cumbersome, there are several convenience methods provided. For example,
we could have written the above as:

julia> read(stdin, 4)
abcd

4-element Array{UInt8,1}:
0x61

0x62

0x63

0x64

or if we had wanted to read the entire line instead:

julia> readline(stdin)
abcd
"abcd"

Note that depending on your terminal settings, your TTY may be line buffered and might thus require an
additional enter before the data is sent to Julia.

To read every line from stdin you can use eachline:
for line in eachline(stdin)

print("Found $line")
end

or read if you wanted to read by character instead:

while 'eof(stdin)
X = read(stdin, Char)
println("Found: $x")
end

21.2 Text1/0

Note that the write method mentioned above operates on binary streams. In particular, values do not get
converted to any canonical text representation but are written out as is:

julia> write(stdout, 0x61); # suppress return value 1 with ;
a

Note that a is written to stdout by the write function and that the returned value is 1 (since 0x61 is one
byte).

For text I/O, use the print or show methods, depending on your needs (see the documentation for these
two methods for a detailed discussion of the difference between them):
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julia> print(stdout, 0x61)
97

See Custom pretty-printing for more information on how to implement display methods for custom types.

21.3 10 Output Contextual Properties

Sometimes |0 output can benefit from the ability to pass contextual information into show methods. The
I0Context object provides this framework for associating arbitrary metadata with an IO object. For exam-
ple, :compact => true adds a hinting parameter to the 10 object that the invoked show method should
print a shorter output (if applicable). See the I0Context documentation for a list of common properties.

21.4 Working with Files

You can write content to a file with the write(filename::String, content) method:

julia> write("hello.txt", "Hello, World!")
13

(13 is the number of bytes written.)

You can read the contents of a file with the read (filename: :String) method, or read(filename::String,
String) to the contents as a string:

julia> read("hello.txt", String)
"Hello, World!"

Advanced: streaming files

The read and write methods above allow you to read and write file contents. Like many other environ-
ments, Julia also has an open function, which takes a filename and returns an I0Stream object that you
can use to read and write things from the file. For example, if we have a file, hello. txt, whose contents
are Hello, World!:

julia> f = open("hello.txt")
I0Stream(<file hello.txt>)

julia> readlines(f)

1l-element Array{String,1}:
"Hello, World!"

If you want to write to a file, you can open it with the write ("w") flag:

julia> f = open("hello.txt","w")
I0Stream(<file hello.txt>)

julia> write(f,"Hello again.")
12
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If you examine the contents of hello. txt at this point, you will notice that it is empty; nothing has actually
been written to disk yet. This is because the I0Stream must be closed before the write is actually flushed
to disk:

julia> close(f)

Examining hello. txt again will show its contents have been changed.

Opening a file, doing something to its contents, and closing it again is a very common pattern. To make this
easier, there exists another invocation of open which takes a function as its first argument and filename
as its second, opens the file, calls the function with the file as an argument, and then closes it again. For
example, given a function:

function read and capitalize(f::I0Stream)
return uppercase(read(f, String))
end

You can call:

julia> open(read_and capitalize, "hello.txt")
"HELLO AGAIN."

to open hello. txt, call read and capitalize onit, close hello.txt and return the capitalized contents.

To avoid even having to define a named function, you can use the do syntax, which creates an anonymous
function on the fly:

julia> open("hello.txt") do f
uppercase(read(f, String))
end
"HELLO AGAIN."

21.5 A simple TCP example

Let's jump right in with a simple example involving TCP sockets. This functionality is in a standard library
package called Sockets. Let's first create a simple server:

julia> using Sockets

julia> errormonitor(@async begin
server = listen(2000)
while true
sock = accept(server)
println("Hello World\n")
end
end)
Task (runnable) @Ox00007fd31dcllae0
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To those familiar with the Unix socket API, the method names will feel familiar, though their usage is
somewhat simpler than the raw Unix socket API. The first call to Listen will create a server waiting for
incoming connections on the specified port (2000) in this case. The same function may also be used to
create various other kinds of servers:

julia> listen(2000) # Listens on localhost:2000 (IPv4)
Sockets.TCPServer(active)

julia> listen(ip"127.0.0.1",2000) # Equivalent to the first
Sockets.TCPServer(active)

julia> listen(ip"::1",2000) # Listens on localhost:2000 (IPv6)
Sockets.TCPServer(active)

julia> listen(IPv4(0),2001) # Listens on port 2001 on all IPv4 interfaces
Sockets.TCPServer(active)

julia> listen(IPv6(0),2001) # Listens on port 2001 on all IPv6 interfaces
Sockets.TCPServer(active)

julia> listen("testsocket") # Listens on a UNIX domain socket
Sockets.PipeServer(active)

julia> listen("\\\\.\\pipe\\testsocket") # Listens on a Windows named pipe
Sockets.PipeServer(active)

Note that the return type of the last invocation is different. This is because this server does not listen on
TCP, but rather on a named pipe (Windows) or UNIX domain socket. Also note that Windows named pipe
format has to be a specific pattern such that the name prefix (\\.\pipe\) uniquely identifies the file type.
The difference between TCP and named pipes or UNIX domain sockets is subtle and has to do with the
accept and connect methods. The accept method retrieves a connection to the client that is connecting
on the server we just created, while the connect function connects to a server using the specified method.
The connect function takes the same arguments as Listen, so, assuming the environment (i.e. host, cwd,
etc.) is the same you should be able to pass the same arguments to connect as you did to listen to establish
the connection. So let's try that out (after having created the server above):

julia> connect(2000)
TCPSocket (open, 0 bytes waiting)

julia> Hello World

As expected we saw "Hello World" printed. So, let's actually analyze what happened behind the scenes.
When we called connect, we connect to the server we had just created. Meanwhile, the accept function
returns a server-side connection to the newly created socket and prints "Hello World" to indicate that the
connection was successful.

A great strength of Julia is that since the API is exposed synchronously even though the I/O is actually
happening asynchronously, we didn't have to worry about callbacks or even making sure that the server
gets to run. When we called connect the current task waited for the connection to be established and
only continued executing after that was done. In this pause, the server task resumed execution (because
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a connection request was now available), accepted the connection, printed the message and waited for
the next client. Reading and writing works in the same way. To see this, consider the following simple echo
server:

julia> errormonitor(@async begin
server = listen(2001)
while true
sock = accept(server)
@async while isopen(sock)
write(sock, readline(sock, keep=true))
end
end
end)
Task (runnable) @Ox00007fd31dcl2e60

julia> clientside = connect(2001)
TCPSocket (RawFD(28) open, 0 bytes waiting)

julia> errormonitor(@async while isopen(clientside)
write(stdout, readline(clientside, keep=true))
end)
Task (runnable) @Ox00007fd31dc11870

julia> println(clientside, "Hello World from the Echo Server")
Hello World from the Echo Server

As with other streams, use close to disconnect the socket:

‘ julia> close(clientside)

21.6 Resolving IP Addresses

One of the connect methods that does not follow the Listen methods is connect(host::String,port),
which will attempt to connect to the host given by the host parameter on the port given by the port
parameter. It allows you to do things like:

julia> connect("google.com", 80)
TCPSocket (RawFD(30) open, 0 bytes waiting)

At the base of this functionality is getaddrinfo, which will do the appropriate address resolution:

julia> getaddrinfo("google.com")
ip"74.125.226.225"

21.7 Asynchronous I/O

All I/O operations exposed by Base.read and Base.write can be performed asynchronously through the
use of coroutines. You can create a new coroutine to read from or write to a stream using the @async macro:
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julia> task = @async open("foo.txt", "w") do io
write(io, "Hello, World!")
end;

julia> wait(task)
julia> readlines("foo.txt")

l-element Array{String,1}:
"Hello, World!"

It's common to run into situations where you want to perform multiple asynchronous operations concur-
rently and wait until they've all completed. You can use the @sync macro to cause your program to block
until all of the coroutines it wraps around have exited:

julia> using Sockets

julia> @sync for hostname in ("google.com", "github.com", "julialang.org")
@async begin
conn = connect(hostname, 80)
write(conn, "GET / HTTP/1.1\r\nHost:$(hostname)\r\n\r\n")
readline(conn, keep=true)
println("Finished connection to $(hostname)")
end
end
Finished connection to google.com
Finished connection to julialang.org
Finished connection to github.com

21.8 Multicast

Julia supports multicast over IPv4 and IPv6 using the User Datagram Protocol (UDP) as transport.

Unlike the Transmission Control Protocol (TCP), UDP makes almost no assumptions about the needs of the
application. TCP provides flow control (it accelerates and decelerates to maximize throughput), reliability
(lost or corrupt packets are automatically retransmitted), sequencing (packets are ordered by the operating
system before they are given to the application), segment size, and session setup and teardown. UDP
provides no such features.

A common use for UDP is in multicast applications. TCP is a stateful protocol for communication between
exactly two devices. UDP can use special multicast addresses to allow simultaneous communication be-
tween many devices.

Receiving IP Multicast Packets

To transmit data over UDP multicast, simply recv on the socket, and the first packet received will be
returned. Note that it may not be the first packet that you sent however!

using Sockets

group = ip"228.5.6.7"

socket = Sockets.UDPSocket()
bind(socket, ip"0.0.0.0", 6789)
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join multicast group(socket, group)
println(String(recv(socket)))

leave multicast group(socket, group)
close(socket)

Sending IP Multicast Packets

To transmit data over UDP multicast, simply send to the socket. Notice that it is not necessary for a sender
to join the multicast group.

using Sockets

group = ip"228.5.6.7"

socket = Sockets.UDPSocket()

send(socket, group, 6789, "Hello over IPv4")
close(socket)

IPv6 Example

This example gives the same functionality as the previous program, but uses IPv6 as the network-layer
protocol.

Listener:

using Sockets

group = Sockets.IPv6("ff05::5:6:7")
socket = Sockets.UDPSocket()
bind(socket, Sockets.IPv6("::"), 6789)
join multicast group(socket, group)
println(String(recv(socket)))

leave multicast group(socket, group)
close(socket)

Sender:

using Sockets

group = Sockets.IPv6("ff05::5:6:7")

socket = Sockets.UDPSocket()

send(socket, group, 6789, "Hello over IPv6")
close(socket)
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Parallel Computing

Julia supports these four categories of concurrent and parallel programming:

1. Asynchronous "tasks", or coroutines:

Julia Tasks allow suspending and resuming computations for I/O, event handling, producer-consumer
processes, and similar patterns. Tasks can synchronize through operations like wait and fetch,
and communicate via Channels. While strictly not parallel computing by themselves, Julia lets you
schedule Tasks on several threads.

2. Multi-threading:

Julia's multi-threading provides the ability to schedule Tasks simultaneously on more than one thread
or CPU core, sharing memory. This is usually the easiest way to get parallelism on one's PC or on
a single large multi-core server. Julia's multi-threading is composable. When one multi-threaded
function calls another multi-threaded function, Julia will schedule all the threads globally on available
resources, without oversubscribing.

3. Distributed computing:

Distributed computing runs multiple Julia processes with separate memory spaces. These can be on
the same computer or multiple computers. The Distributed standard library provides the capability
for remote execution of a Julia function. With this basic building block, it is possible to build many
different kinds of distributed computing abstractions. Packages like DistributedArrays.jl are an
example of such an abstraction. On the other hand, packages like MPI.jl and Elemental.jl provide
access to the existing MPI ecosystem of libraries.

4. GPU computing:

The Julia GPU compiler provides the ability to run Julia code natively on GPUs. There is a rich ecosys-
tem of Julia packages that target GPUs. The JuliaGPU.org website provides a list of capabilities,
supported GPUs, related packages and documentation.
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Chapter 23

Asynchronous Programming

When a program needs to interact with the outside world, for example communicating with another ma-
chine over the internet, operations in the program may need to happen in an unpredictable order. Say
your program needs to download a file. We would like to initiate the download operation, perform other
operations while we wait for it to complete, and then resume the code that needs the downloaded file
when it is available. This sort of scenario falls in the domain of asynchronous programming, sometimes
also referred to as concurrent programming (since, conceptually, multiple things are happening at once).

To address these scenarios, Julia provides Tasks (also known by several other names, such as symmetric
coroutines, lightweight threads, cooperative multitasking, or one-shot continuations). When a piece of
computing work (in practice, executing a particular function) is designated as a Task, it becomes possible
to interrupt it by switching to another Task. The original Task can later be resumed, at which point it will
pick up right where it left off. At first, this may seem similar to a function call. However there are two
key differences. First, switching tasks does not use any space, so any number of task switches can occur
without consuming the call stack. Second, switching among tasks can occur in any order, unlike function
calls, where the called function must finish executing before control returns to the calling function.

23.1 Basic Task operations
You can think of a Task as a handle to a unit of computational work to be performed. It has a create-start-

run-finish lifecycle. Tasks are created by calling the Task constructor on a 0-argument function to run, or
using the @task macro:

julia> t = @task begin; sleep(5); println("done"); end
Task (runnable) @Ox00007f13a40c0eb0d

@task x is equivalent to Task(()->x).

This task will wait for five seconds, and then print done. However, it has not started running yet. We can
run it whenever we're ready by calling schedule:

julia> schedule(t);

If you try this in the REPL, you will see that schedule returns immediately. That is because it simply adds
t to an internal queue of tasks to run. Then, the REPL will print the next prompt and wait for more input.
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Waiting for keyboard input provides an opportunity for other tasks to run, so at that point t will start. t
calls sleep, which sets a timer and stops execution. If other tasks have been scheduled, they could run
then. After five seconds, the timer fires and restarts t, and you will see done printed. t is then finished.

The wait function blocks the calling task until some other task finishes. So for example if you type
julia> schedule(t); wait(t)

instead of only calling schedule, you will see a five second pause before the next input prompt appears.
That is because the REPL is waiting for t to finish before proceeding.

It is common to want to create a task and schedule it right away, so the macro @async is provided for that
purpose -- @async x is equivalent to schedule(@task x).

23.2 Communicating with Channels

In some problems, the various pieces of required work are not naturally related by function calls; there is
no obvious "caller" or "callee" among the jobs that need to be done. An example is the producer-consumer
problem, where one complex procedure is generating values and another complex procedure is consuming
them. The consumer cannot simply call a producer function to get a value, because the producer may have
more values to generate and so might not yet be ready to return. With tasks, the producer and consumer
can both run as long as they need to, passing values back and forth as necessary.

Julia provides a Channel mechanism for solving this problem. A Channel is a waitable first-in first-out queue
which can have multiple tasks reading from and writing to it.

Let's define a producer task, which produces values via the put! call. To consume values, we need to
schedule the producer to run in a new task. A special Channel constructor which accepts a 1-arg function
as an argument can be used to run a task bound to a channel. We can then take! values repeatedly from
the channel object:

julia> function producer(c::Channel)
put!(c, "start")
for n=1:4
put!(c, 2n)
end
put!(c, "stop")
end;

julia> chnl = Channel(producer);

julia> take!(chnl)
"start"

julia> take!(chnl)
2

julia> take!(chnl)
4

julia> take!(chnl)
6
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julia> take!(chnl)
8

julia> take!(chnl)
"stop"

One way to think of this behavior is that producer was able to return multiple times. Between calls to put!,
the producer's execution is suspended and the consumer has control.

The returned Channel can be used as an iterable object in a for loop, in which case the loop variable takes
on all the produced values. The loop is terminated when the channel is closed.

julia> for x in Channel(producer)
println(x)
end

stop

Note that we did not have to explicitly close the channel in the producer. This is because the act of binding
a Channel to a Task associates the open lifetime of a channel with that of the bound task. The channel
object is closed automatically when the task terminates. Multiple channels can be bound to a task, and
vice-versa.

While the Task constructor expects a 0-argument function, the Channel method that creates a task-bound
channel expects a function that accepts a single argument of type Channel. A common pattern is for the
producer to be parameterized, in which case a partial function application is needed to create a O or 1
argument anonymous function.

For Task objects this can be done either directly or by use of a convenience macro:
function mytask(myarg)

end

taskHdl = Task(() -> mytask(7))

# or, equivalently
taskHdl = @task mytask(7)

To orchestrate more advanced work distribution patterns, bind and schedule can be used in conjunction
with Task and Channel constructors to explicitly link a set of channels with a set of producer/consumer
tasks.

More on Channels

A channel can be visualized as a pipe, i.e., it has a write end and a read end :
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¢ Multiple writers in different tasks can write to the same channel concurrently via put! calls.
* Multiple readers in different tasks can read data concurrently via take! calls.
* As an example:

# Given Channels cl and c2,
cl = Channel(32)
c2 = Channel(32)

# and a function "foo" which reads items from cl, processes the item read
# and writes a result to c2,
function foo()

while true
data = take!(cl)
[...] # process data
put!(c2, result) # write out result
end

end

# we can schedule "n° instances of “foo' to be active concurrently.
for _in 1:n
errormonitor(@async foo())

end

e Channels are created via the Channel{T} (sz) constructor. The channel will only hold objects of type
T. If the type is not specified, the channel can hold objects of any type. sz refers to the maximum
number of elements that can be held in the channel at any time. For example, Channel(32) creates
a channel that can hold a maximum of 32 objects of any type. A Channel{MyType} (64) can hold up
to 64 objects of MyType at any time.

» If a Channel is empty, readers (on a take! call) will block until data is available.
e If a Channel is full, writers (on a put! call) will block until space becomes available.

¢ isready tests for the presence of any object in the channel, while wait waits for an object to become
available.

¢ A Channel is in an open state initially. This means that it can be read from and written to freely via
take! and put! calls. close closes a Channel. On a closed Channel, put! will fail. For example:

julia> c = Channel(2);

julia> put!(c, 1) # “put!’ on an open channel succeeds
1

julia> close(c);

julia> put!(c, 2) # ‘put!’ on a closed channel throws an exception.
ERROR: InvalidStateException: Channel is closed.

Stacktrace:

[...]

« take! and fetch (which retrieves but does not remove the value) on a closed channel successfully
return any existing values until it is emptied. Continuing the above example:
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julia> fetch(c) # Any number of "fetch® calls succeed.
1

julia> fetch(c)
1

julia> take!(c) # The first “take!' removes the value.
1

julia> take!(c) # No more data available on a closed channel.
ERROR: InvalidStateException: Channel is closed.

Stacktrace:

[...]

Consider a simple example using channels for inter-task communication. We start 4 tasks to process data
from a single jobs channel. Jobs, identified by an id (job_id), are written to the channel. Each task in this
simulation reads a job id, waits for a random amount of time and writes back a tuple of job id and the
simulated time to the results channel. Finally all the results are printed out.

julia> const jobs = Channel{Int}(32);
julia> const results = Channel{Tuple}(32);

julia> function do work()

for job id in jobs
exec_time = rand()
sleep(exec_time) # simulates elapsed time doing actual work

# typically performed externally.

put!(results, (job id, exec time))

end

end;

julia> function make jobs(n)
for i in 1:n
put!(jobs, 1)
end
end;

julia> n = 12;
julia> errormonitor(@async make jobs(n)); # feed the jobs channel with "n" jobs

julia> for i in 1:4 # start 4 tasks to process requests in parallel
errormonitor(@async do work())
end

julia> @elapsed while n > 0 # print out results
job id, exec time = take!(results)
println("$job_id finished in $(round(exec_time; digits=2)) seconds")
global n=n - 1
end
4 finished in 0.22 seconds
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.45 seconds
.5 seconds
.14 seconds
.78 seconds
.9 seconds
.36 seconds
.87 seconds
finished in 0.79 seconds
10 finished in 0.64 seconds
12 finished in 0.5 seconds
11 finished in 0.97 seconds
0.029772311
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Instead of errormonitor(t), a more robust solution may be touse bind(results, t), asthatwill notonly
log any unexpected failures, but also force the associated resources to close and propagate the exception
everywhere.

23.3 More task operations

Task operations are built on a low-level primitive called yieldto. yieldto(task, value) suspends the
current task, switches to the specified task, and causes that task's last yieldto call to return the spec-
ified value. Notice that yieldto is the only operation required to use task-style control flow; instead of
calling and returning we are always just switching to a different task. This is why this feature is also called
"'symmetric coroutines"; each task is switched to and from using the same mechanism.

yieldto is powerful, but most uses of tasks do not invoke it directly. Consider why this might be. If
you switch away from the current task, you will probably want to switch back to it at some point, but
knowing when to switch back, and knowing which task has the responsibility of switching back, can require
considerable coordination. For example, put! and take! are blocking operations, which, when used in the
context of channels maintain state to remember who the consumers are. Not needing to manually keep
track of the consuming task is what makes put! easier to use than the low-level yieldto.

In addition to yieldto, a few other basic functions are needed to use tasks effectively.

e current task gets a reference to the currently-running task.
* istaskdone queries whether a task has exited.
e istaskstarted queries whether a task has run yet.

* task local storage manipulates a key-value store specific to the current task.

23.4 Tasks and events

Most task switches occur as a result of waiting for events such as 1/O requests, and are performed by a
scheduler included in Julia Base. The scheduler maintains a queue of runnable tasks, and executes an
event loop that restarts tasks based on external events such as message arrival.

The basic function for waiting for an event is wait. Several objects implement wait; for example, given a
Process object, wait will wait for it to exit. wait is often implicit; for example, a wait can happen inside
a call to read to wait for data to be available.



CHAPTER 23. ASYNCHRONOUS PROGRAMMING 298

In all of these cases, wait ultimately operates on a Condition object, which is in charge of queueing and
restarting tasks. When a task calls wait on a Condition, the task is marked as non-runnable, added to the
condition's queue, and switches to the scheduler. The scheduler will then pick another task to run, or block
waiting for external events. If all goes well, eventually an event handler will call notify on the condition,
which causes tasks waiting for that condition to become runnable again.

A task created explicitly by calling Task is initially not known to the scheduler. This allows you to manage
tasks manually using yieldto if you wish. However, when such a task waits for an event, it still gets
restarted automatically when the event happens, as you would expect.



Chapter 24

Multi-Threading

Visit this blog post for a presentation of Julia multi-threading features.

24.1 Starting Julia with multiple threads

By default, Julia starts up with a single thread of execution. This can be verified by using the command
Threads.nthreads():

julia> Threads.nthreads()
1

The number of execution threads is controlled either by using the -t/--threads command line argument
or by using the JULIA NUM THREADS environment variable. When both are specified, then -t/--threads
takes precedence.

The number of threads can either be specified as an integer (- -threads=4) or as auto (- -threads=auto),
where auto tries to infer a useful default number of threads to use (see Command-line Options for more
details).

Julia 1.5

The -t/--threads command line argument requires at least Julia 1.5. In older versions you
must use the environment variable instead.

Julia 1.7

Using auto as value of the environment variable JULIA NUM_THREADS requires at least Julia
1.7. In older versions, this value is ignored.

Lets start Julia with 4 threads:

|$ julia --threads 4

Let's verify there are 4 threads at our disposal.

julia> Threads.nthreads()
4
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But we are currently on the master thread. To check, we use the function Threads.threadid

julia> Threads.threadid()
1

Note
If you prefer to use the environment variable you can set it as follows in Bash (Linux/macOS):

| export JULIA NUM THREADS=4

C shell on Linux/macOS, CMD on Windows:

| set JULIA_NUM_THREADS=4

Powershell on Windows:

| $env:JULIA NUM_THREADS=4

Note that this must be done before starting Julia.

Note

The number of threads specified with -t/--threads is propagated to worker processes that
are spawned using the -p/--procs or --machine-file command line options. For example,
julia -p2 -t2spawns 1 main process with 2 worker processes, and all three processes have
2 threads enabled. For more fine grained control over worker threads use addprocs and pass
-t/--threads as exeflags.

Multiple GC Threads

The Garbage Collector (GC) can use multiple threads. The amount used is either half the number of com-
pute worker threads or configured by either the --gcthreads command line argument or by using the
JULIA NUM GC THREADS environment variable.

Julia 1.10

The - -gcthreads command line argument requires at least Julia 1.10.

24.2 Threadpools

When a program's threads are busy with many tasks to run, tasks may experience delays which may
negatively affect the responsiveness and interactivity of the program. To address this, you can specify that
a task is interactive when you Threads.@spawn it:

using Base.Threads
@spawn :interactive f()

Interactive tasks should avoid performing high latency operations, and if they are long duration tasks,
should yield frequently.

Julia may be started with one or more threads reserved to run interactive tasks:
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‘$ julia --threads 3,1

The environment variable JULIA NUM THREADS can also be used similarly:

| export JULIA NUM THREADS=3,1

This starts Julia with 3 threads in the :default threadpool and 1 thread in the :interactive threadpool:

julia> using Base.Threads

julia> nthreadpools()
2

julia> threadpool() # the main thread is in the interactive thread pool
tinteractive

julia> nthreads(:default)
3

julia> nthreads(:interactive)
1

julia> nthreads()
3

Note

The zero-argument version of nthreads returns the number of threads in the default pool.

Note

Depending on whether Julia has been started with interactive threads, the main thread is either
in the default or interactive thread pool.

Either or both numbers can be replaced with the word auto, which causes Julia to choose a reasonable
default.

24.3 Communication and synchronization

Although Julia's threads can communicate through shared memory, it is notoriously difficult to write correct
and data-race free multi-threaded code. Julia's Channels are thread-safe and may be used to communicate
safely.

Data-race freedom

You are entirely responsible for ensuring that your program is data-race free, and nothing promised here
can be assumed if you do not observe that requirement. The observed results may be highly unintuitive.

The best way to ensure this is to acquire a lock around any access to data that can be observed from
multiple threads. For example, in most cases you should use the following code pattern:
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julia> lock(lk) do
use(a)
end

julia> begin
lock(1k)
try
use(a)
finally
unlock(1lk)
end

end

where 1k is a lock (e.g. ReentrantLock()) and a data.

Additionally, Julia is not memory safe in the presence of a data race. Be very careful about reading any
data if another thread might write to it! Instead, always use the lock pattern above when changing data
(such as assigning to a global or closure variable) accessed by other threads.

Thread 1:

global b = false
global a = rand()
global b = true

Thread 2:
while 'b; end
bad readl(a) # it is NOT safe to access “a  here!

Thread 3:
while '@isdefined(a); end
bad read2(a) # it is NOT safe to access “a  here

24.4 The @threads Macro

Let's work a simple example using our native threads. Let us create an array of zeros:

julia> a = zeros(10)
10-element Vector{Float64}:
0.0

ol ool ool o oo o)
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Let us operate on this array simultaneously using 4 threads. We'll have each thread write its thread ID into
each location.
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Julia supports parallel loops using the Threads.@threads macro. This macro is affixed in front of a for loop
to indicate to Julia that the loop is a multi-threaded region:

julia> Threads.@threads for i = 1:10
al[i] = Threads.threadid()
end

The iteration space is split among the threads, after which each thread writes its thread ID to its assigned
locations:

julia> a
10-element Vector{Float64}:
1.0

S, W W NDNNRF =
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Note that Threads.@threads does not have an optional reduction parameter like @distributed.

Using @threads without data races

Taking the example of a naive sum

julia> function sum single(a)

s =0

for i in a

s += 1
end
S
end

sum_single (generic function with 1 method)

julia> sum single(1l:1 000 000)
500000500000

Simply adding @threads exposes a data race with multiple threads reading and writing s at the same time.

julia> function sum multi bad(a)

s =0

Threads.@threads for i in a
s += 1

end

S

end
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sum multi bad (generic function with 1 method)

julia> sum multi bad(1l:1 000 000)
70140554652

Note that the result is not 500000500000 as it should be, and will most likely change each evaluation.

To fix this, buffers that are specific to the task may be used to segment the sum into chunks that are
race-free. Here sum_single is reused, with its own internal buffer s, and vector a is split into nthreads ()
chunks for parallel work via nthreads () @spawn-ed tasks.

julia> function sum multi good(a)
chunks = Iterators.partition(a, length(a) + Threads.nthreads())
tasks = map(chunks) do chunk
Threads.@spawn sum_single(chunk)
end
chunk sums = fetch. (tasks)
return sum_single(chunk sums)
end
sum multi good (generic function with 1 method)

julia> sum multi good(1l:1 000 000)
500000500000

Note

Buffers should not be managed based on threadid() i.e. buffers = zeros(Threads.nthreads())
because concurrent tasks can yield, meaning multiple concurrent tasks may use the same
buffer on a given thread, introducing risk of data races. Further, when more than one thread

is available tasks may change thread at yield points, which is known as task migration.

Another option is the use of atomic operations on variables shared across tasks/threads, which may be
more performant depending on the characteristics of the operations.

24.5 Atomic Operations

Julia supports accessing and modifying values atomically, that is, in a thread-safe way to avoid race condi-
tions. A value (which must be of a primitive type) can be wrapped as Threads.Atomic to indicate it must
be accessed in this way. Here we can see an example:

julia> i = Threads.Atomic{Int}(0);
julia> ids = zeros(4);
julia> old is = zeros(4);
julia> Threads.@threads for id in 1:4
old is[id] = Threads.atomic add! (i, id)

ids[id] = id
end
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julia> old is
4-element Vector{Float64}:
0.0
1.0
7.0
3.0

julia> i[]
10

julia> ids
4-element Vector{Float64}:
1.0
2.0
3.0
4.0

Had we tried to do the addition without the atomic tag, we might have gotten the wrong answer due to a
race condition. An example of what would happen if we didn't avoid the race:

julia> using Base.Threads

julia> Threads.nthreads()
4

julia> acc = Ref(0)
Base.RefValue{Int64}(0)

julia> @threads for i in 1:1000
acc[] += 1
end

julia> accl]
926

julia> acc = Atomic{Int64}(0)
Atomic{Int64}(0)

julia> @threads for i in 1:1000
atomic add!(acc, 1)
end

julia> acc[]
1000

24.6 Per-field atomics

We can also use atomics on a more granular level using the @atomic, @atomicswap, and @atomicreplace
macros.

Specific details of the memory model and other details of the design are written in the Julia Atomics Mani-
festo, which will later be published formally.
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Any field in a struct declaration can be decorated with @atomic, and then any write must be marked
with @atomic also, and must use one of the defined atomic orderings (:monotonic, :acquire, :release,
racquire release, or :sequentially consistent). Any read of an atomic field can also be annotated
with an atomic ordering constraint, or will be done with monotonic (relaxed) ordering if unspecified.

Julia 1.7

Per-field atomics requires at least Julia 1.7.

24.7 Side effects and mutable function arguments

When using multi-threading we have to be careful when using functions that are not pure as we might
get a wrong answer. For instance functions that have a name ending with ! by convention modify their
arguments and thus are not pure.

24.8 @threadcall

External libraries, such as those called via ccall, pose a problem for Julia's task-based I/O mechanism. If
a C library performs a blocking operation, that prevents the Julia scheduler from executing any other tasks
until the call returns. (Exceptions are calls into custom C code that call back into Julia, which may then
yield, or C code that calls j1 yield(), the C equivalent of yield.)

The @threadcall macro provides a way to avoid stalling execution in such a scenario. It schedules a C
function for execution in a separate thread. A threadpool with a default size of 4 is used for this. The size of
the threadpool is controlled via environment variable UV_THREADPOOL_SIZE. While waiting for a free thread,
and during function execution once a thread is available, the requesting task (on the main Julia event loop)
yields to other tasks. Note that @threadcall does not return until the execution is complete. From a user
point of view, it is therefore a blocking call like other Julia APIs.

It is very important that the called function does not call back into Julia, as it will segfault.

@threadcall may be removed/changed in future versions of Julia.

24.9 Caveats

At this time, most operations in the Julia runtime and standard libraries can be used in a thread-safe
manner, if the user code is data-race free. However, in some areas work on stabilizing thread support
is ongoing. Multi-threaded programming has many inherent difficulties, and if a program using threads
exhibits unusual or undesirable behavior (e.g. crashes or mysterious results), thread interactions should
typically be suspected first.

There are a few specific limitations and warnings to be aware of when using threads in Julia:

¢ Base collection types require manual locking if used simultaneously by multiple threads where at
least one thread modifies the collection (common examples include push! on arrays, or inserting
items into a Dict).

* The schedule used by @spawn is nondeterministic and should not be relied on.

* Compute-bound, non-memory-allocating tasks can prevent garbage collection from running in other
threads that are allocating memory. In these cases it may be necessary to insert a manual call to
GC.safepoint() to allow GC to run. This limitation will be removed in the future.
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* Avoid running top-level operations, e.g. include, or eval of type, method, and module definitions
in parallel.

* Be aware that finalizers registered by a library may break if threads are enabled. This may require
some transitional work across the ecosystem before threading can be widely adopted with confi-
dence. See the next section for further details.

24.10 Task Migration

After a task starts running on a certain thread it may move to a different thread if the task yields.

Such tasks may have been started with @spawn or @threads, although the :static schedule option for
@threads does freeze the threadid.

This means that in most cases threadid() should not be treated as constant within a task, and therefore
should not be used to index into a vector of buffers or stateful objects.

Julia 1.7

Task migration was introduced in Julia 1.7. Before this tasks always remained on the same
thread that they were started on.

24.11 Safe use of Finalizers

Because finalizers can interrupt any code, they must be very careful in how they interact with any global
state. Unfortunately, the main reason that finalizers are used is to update global state (a pure function is
generally rather pointless as a finalizer). This leads us to a bit of a conundrum. There are a few approaches
to dealing with this problem:

1. When single-threaded, code could call the internal j1_gc_enable finalizers C function to prevent
finalizers from being scheduled inside a critical region. Internally, this is used inside some func-
tions (such as our C locks) to prevent recursion when doing certain operations (incremental package
loading, codegen, etc.). The combination of a lock and this flag can be used to make finalizers safe.

2. A second strategy, employed by Base in a couple places, is to explicitly delay a finalizer until it may
be able to acquire its lock non-recursively. The following example demonstrates how this strategy
could be applied to Distributed.finalize ref:

function finalize ref(r::AbstractRemoteRef)
if r.where > 0 # Check if the finalizer is already run
if islocked(client refs) || !trylock(client refs)
# delay finalizer for later if we aren't free to acquire the lock
finalizer(finalize ref, r)
return nothing
end
try # “lock™ should always be followed by “try’
if r.where > 0 # Must check again here
# Do actual cleanup here
r.where = 0
end
finally
unlock(client refs)
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end
end
nothing
end

3. Arelated third strategy is to use a yield-free queue. We don't currently have a lock-free queue imple-
mented in Base, but Base.IntrusiveLinkedListSynchronized{T} is suitable. This can frequently
be a good strategy to use for code with event loops. For example, this strategy is employed by
Gtk.jl to manage lifetime ref-counting. In this approach, we don't do any explicit work inside the
finalizer, and instead add it to a queue to run at a safer time. In fact, Julia's task scheduler already
uses this, so defining the finalizer as x -> @spawn do_cleanup(x) is one example of this approach.
Note however that this doesn't control which thread do_cleanup runs on, so do_cleanup would still
need to acquire a lock. That doesn't need to be true if you implement your own queue, as you can
explicitly only drain that queue from your thread.
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Multi-processing and Distributed Computing

An implementation of distributed memory parallel computing is provided by module Distributed as part
of the standard library shipped with Julia.

Most modern computers possess more than one CPU, and several computers can be combined together in
a cluster. Harnessing the power of these multiple CPUs allows many computations to be completed more
quickly. There are two major factors that influence performance: the speed of the CPUs themselves, and
the speed of their access to memory. In a cluster, it's fairly obvious that a given CPU will have fastest access
to the RAM within the same computer (node). Perhaps more surprisingly, similar issues are relevant on a
typical multicore laptop, due to differences in the speed of main memory and the cache. Consequently, a
good multiprocessing environment should allow control over the "ownership" of a chunk of memory by a
particular CPU. Julia provides a multiprocessing environment based on message passing to allow programs
to run on multiple processes in separate memory domains at once.

Julia's implementation of message passing is different from other environments such as MPIt. Communi-
cation in Julia is generally "one-sided", meaning that the programmer needs to explicitly manage only one
process in a two-process operation. Furthermore, these operations typically do not look like "message
send" and "message receive" but rather resemble higher-level operations like calls to user functions.

Distributed programming in Julia is built on two primitives: remote references and remote calls. A remote
reference is an object that can be used from any process to refer to an object stored on a particular process.
A remote call is a request by one process to call a certain function on certain arguments on another (possibly
the same) process.

Remote references come in two flavors: Future and RemoteChannel.

A remote call returns a Future to its result. Remote calls return immediately; the process that made the call
proceeds to its next operation while the remote call happens somewhere else. You can wait for a remote
call to finish by calling wait on the returned Future, and you can obtain the full value of the result using
fetch.

On the other hand, RemoteChannel s are rewritable. For example, multiple processes can coordinate their
processing by referencing the same remote Channel.

Each process has an associated identifier. The process providing the interactive Julia prompt always has
an id equal to 1. The processes used by default for parallel operations are referred to as "workers". When
there is only one process, process 1 is considered a worker. Otherwise, workers are considered to be all
processes other than process 1. As a result, adding 2 or more processes is required to gain benefits from
parallel processing methods like pmap. Adding a single process is beneficial if you just wish to do other
things in the main process while a long computation is running on the worker.

309
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Let's try this out. Starting with julia -p n provides n worker processes on the local machine. Generally
it makes sense for n to equal the number of CPU threads (logical cores) on the machine. Note that the -p
argument implicitly loads module Distributed.

$ julia -p 2

julia> r = remotecall(rand, 2, 2, 2)
Future(2, 1, 4, nothing)

julia> s = @spawnat 2 1 .+ fetch(r)
Future(2, 1, 5, nothing)

julia> fetch(s)

2x2 Array{Float64,2}:
1.18526 1.50912
1.16296 1.60607

The first argument to remotecall is the function to call. Most parallel programming in Julia does not
reference specific processes or the number of processes available, but remotecall is considered a low-
level interface providing finer control. The second argument to remotecall is the id of the process that
will do the work, and the remaining arguments will be passed to the function being called.

As you can see, in the first line we asked process 2 to construct a 2-by-2 random matrix, and in the second
line we asked it to add 1 to it. The result of both calculations is available in the two futures, r and s. The
@spawnat macro evaluates the expression in the second argument on the process specified by the first
argument.

Occasionally you might want a remotely-computed value immediately. This typically happens when you
read from a remote object to obtain data needed by the next local operation. The function remotecall fetch
exists for this purpose. It is equivalent to fetch(remotecall(...)) butis more efficient.

julia> remotecall fetch(r-> fetch(r)[1, 11, 2, r)
0.18526337335308085

This fetches the array on worker 2 and returns the first value. Note, that fetch doesn't move any data in
this case, since it's executed on the worker that owns the array. One can also write:

julia> remotecall fetch(getindex, 2, r, 1, 1)
0.10824216411304866

Remember that getindex(r,1,1) isequivalentto r[1,1], so this call fetches the first element of the future
r.

To make things easier, the symbol :any can be passed to @spawnat, which picks where to do the operation
for you:

julia> r = @spawnat :any rand(2,2)
Future(2, 1, 4, nothing)

julia> s = @spawnat :any 1 .+ fetch(r)
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Future(3, 1, 5, nothing)

julia> fetch(s)

2x2 Array{Float64,2}:
1.38854 1.9098
1.20939 1.57158

Note that we used 1 .+ fetch(r) instead of 1 .+ r. This is because we do not know where the code will
run, so in general a fetch might be required to move r to the process doing the addition. In this case,
@spawnat is smart enough to perform the computation on the process that owns r, so the fetch will be a
no-op (no work is done).

(It is worth noting that @spawnat is not built-in but defined in Julia as a macro. It is possible to define your
own such constructs.)

An important thing to remember is that, once fetched, a Future will cache its value locally. Further fetch
calls do not entail a network hop. Once all referencing Futures have fetched, the remote stored value is
deleted.

@async is similar to @spawnat, but only runs tasks on the local process. We use it to create a "feeder" task
for each process. Each task picks the next index that needs to be computed, then waits for its process to
finish, then repeats until we run out of indices. Note that the feeder tasks do not begin to execute until
the main task reaches the end of the @sync block, at which point it surrenders control and waits for all the
local tasks to complete before returning from the function. As for v0.7 and beyond, the feeder tasks are
able to share state via nextidx because they all run on the same process. Even if Tasks are scheduled
cooperatively, locking may still be required in some contexts, as in asynchronous 1/0O. This means context
switches only occur at well-defined points: in this case, when remotecall fetch is called. This is the
current state of implementation and it may change for future Julia versions, as it is intended to make it
possible to run up to N Tasks on M Process, aka M:N Threading. Then a lock acquiring\releasing model for
nextidx will be needed, as it is not safe to let multiple processes read-write a resource at the same time.

25.1 Code Availability and Loading Packages

Your code must be available on any process that runs it. For example, type the following into the Julia
prompt:

julia> function rand2(dims...)
return 2*rand(dims...)
end

julia> rand2(2,2)

2x2 Array{Float64,2}:
0.153756 0.368514
1.15119 0.918912

julia> fetch(@spawnat :any rand2(2,2))

ERROR: RemoteException(2, CapturedException(UndefVarError(Symbol("#rand2"))
Stacktrace:

[...]

Process 1 knew about the function rand2, but process 2 did not.
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Most commonly you'll be loading code from files or packages, and you have a considerable amount of flex-
ibility in controlling which processes load code. Consider a file, DummyModule. j1, containing the following
code:

module DummyModule

export MyType, f

mutable struct MyType
a::Int

end

f(x) = x"2+1

println("loaded")

end

In order to refer to MyType across all processes, DummyModule. j1l needs to be loaded on every process.
Calling include ("DummyModule. j1") loads it only on a single process. To load it on every process, use the
@everywhere macro (starting Julia with julia -p 2):

julia> @everywhere include("DummyModule.jl")
loaded

From worker 3: loaded

From worker 2: loaded

As usual, this does not bring DummyModule into scope on any of the process, which requires using or import.
Moreover, when DummyModule is brought into scope on one process, it is not on any other:

julia> using .DummyModule

julia> MyType(7)
MyType(7)

julia> fetch(@spawnat 2 MyType(7))
ERROR: On worker 2:
UndefVarError: “MyType ™ not defined

julia> fetch(@spawnat 2 DummyModule.MyType(7))
MyType(7)

However, it's still possible, for instance, to send a MyType to a process which has loaded DummyModule even
if it's not in scope:

julia> put! (RemoteChannel(2), MyType(7))
RemoteChannel{Channel{Any}}(2, 1, 13)
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A file can also be preloaded on multiple processes at startup with the -L flag, and a driver script can be
used to drive the computation:

‘julia -p <n> -L filel.jl -L file2.jl driver.jl

The Julia process running the driver script in the example above has an id equal to 1, just like a process
providing an interactive prompt.

Finally, if DummyModule.jl is not a standalone file but a package, then using DummyModule will load
DummyModule. j1 on all processes, but only bring it into scope on the process where using was called.

25.2 Starting and managing worker processes

The base Julia installation has in-built support for two types of clusters:

* A local cluster specified with the -p option as shown above.

* A cluster spanning machines using the - -machine-file option. This uses a passwordless ssh login
to start Julia worker processes (from the same path as the current host) on the specified machines.
Each machine definition takes the form [count*] [user@]host[:port] [bind addr[:port]]. user
defaults to current user, port to the standard ssh port. count is the number of workers to spawn on
the node, and defaults to 1. The optional bind-to bind addr[:port] specifies the IP address and
port that other workers should use to connect to this worker.

Note

While Julia generally strives for backward compatibility, distribution of code to worker pro-
cesses relies on Serialization.serialize. As pointed out in the corresponding documen-
tation, this can not be guaranteed to work across different Julia versions, so it is advised that
all workers on all machines use the same version.

Functions addprocs, rmprocs, workers, and others are available as a programmatic means of adding,
removing and querying the processes in a cluster.

julia> using Distributed

julia> addprocs(2)
2-element Array{Int64,1}:
2
3

Module Distributed must be explicitly loaded on the master process before invoking addprocs. It is
automatically made available on the worker processes.

Note that workers do not runa ~/.julia/config/startup. j1 startup script, nor do they synchronize their
global state (such as global variables, new method definitions, and loaded modules) with any of the other
running processes. You may use addprocs (exeflags="--project") to initialize a worker with a particular
environment, and then @everywhere using <modulename> or @everywhere include("file.jl").

Other types of clusters can be supported by writing your own custom ClusterManager, as described below
in the ClusterManagers section.
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25.3 Data Movement

Sending messages and moving data constitute most of the overhead in a distributed program. Reducing
the number of messages and the amount of data sent is critical to achieving performance and scalability.
To this end, it is important to understand the data movement performed by Julia's various distributed
programming constructs.

fetch can be considered an explicit data movement operation, since it directly asks that an object be
moved to the local machine. @spawnat (and a few related constructs) also moves data, but this is not as
obvious, hence it can be called an implicit data movement operation. Consider these two approaches to
constructing and squaring a random matrix:

Method 1:

julia> A = rand(1000,1000);

julia> Bref = @spawnat :any A"2;

julia> fetch(Bref);

Method 2:

julia> Bref = @spawnat :any rand(1000,1000)"2;

julia> fetch(Bref);

The difference seems trivial, but in fact is quite significant due to the behavior of @spawnat. In the first
method, a random matrix is constructed locally, then sent to another process where it is squared. In the
second method, a random matrix is both constructed and squared on another process. Therefore the
second method sends much less data than the first.

In this toy example, the two methods are easy to distinguish and choose from. However, in a real program
designing data movement might require more thought and likely some measurement. For example, if the
first process needs matrix A then the first method might be better. Or, if computing A is expensive and
only the current process has it, then moving it to another process might be unavoidable. Or, if the current
process has very little to do between the @spawnat and fetch(Bref), it might be better to eliminate the
parallelism altogether. Or imagine rand(1000,1000) is replaced with a more expensive operation. Then it
might make sense to add another @spawnat statement just for this step.

25.4 Global variables

Expressions executed remotely via @spawnat, or closures specified for remote execution using remotecall
may refer to global variables. Global bindings under module Main are treated a little differently compared
to global bindings in other modules. Consider the following code snippet:

A = rand(10,10)
remotecall fetch(()->sum(A), 2)
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In this case sum MUST be defined in the remote process. Note that A is a global variable defined in the
local workspace. Worker 2 does not have a variable called A under Main. The act of shipping the closure
()->sum(A) to worker 2 results in Main.A being defined on 2. Main.A continues to exist on worker 2
even after the call remotecall fetch returns. Remote calls with embedded global references (under Main
module only) manage globals as follows:

* New global bindings are created on destination workers if they are referenced as part of a remote
call.

¢ Global constants are declared as constants on remote nodes too.

* Globals are re-sent to a destination worker only in the context of a remote call, and then only if
its value has changed. Also, the cluster does not synchronize global bindings across nodes. For
example:

A = rand(10,10)

remotecall fetch(()->sum(A), 2) # worker 2
A = rand(10,10)

remotecall fetch(()->sum(A), 3) # worker 3
A = nothing

Executing the above snippet results in Main.A on worker 2 having a different value from Main.A on
worker 3, while the value of Main.A on node 1 is set to nothing.

As you may have realized, while memory associated with globals may be collected when they are reas-
signed on the master, no such action is taken on the workers as the bindings continue to be valid. clear!
can be used to manually reassign specific globals on remote nodes to nothing once they are no longer
required. This will release any memory associated with them as part of a regular garbage collection cycle.

Thus programs should be careful referencing globals in remote calls. In fact, it is preferable to avoid them
altogether if possible. If you must reference globals, consider using let blocks to localize global variables.

For example:

julia> A = rand(10,10);

julia> remotecall fetch(()->A, 2);

julia> B = rand(10,10);

julia> let B = B
remotecall_fetch(()->B, 2)

end;

julia> @fetchfrom 2 InteractiveUtils.varinfo()

name size summary

A 800 bytes 10x10 Array{Float64,2}
Base Module

Core Module

Main Module

As can be seen, global variable A is defined on worker 2, but B is captured as a local variable and hence a
binding for B does not exist on worker 2.
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25.5 Parallel Map and Loops

Fortunately, many useful parallel computations do not require data movement. A common example is a
Monte Carlo simulation, where multiple processes can handle independent simulation trials simultaneously.
We can use @spawnat to flip coins on two processes. First, write the following function in count heads.jl:

function count heads(n)
c::Int =0
for i = 1:n
c += rand(Bool)
end
c
end

The function count heads simply adds together n random bits. Here is how we can perform some trials on
two machines, and add together the results:

julia> @everywhere include string(Main, $(read("count heads.jl", String)), "count heads.jl")

julia> a = @spawnat :any count heads(100000000)
Future(2, 1, 6, nothing)

julia> b = @spawnat :any count heads(100000000)
Future(3, 1, 7, nothing)

julia> fetch(a)+fetch(b)
100001564

This example demonstrates a powerful and often-used parallel programming pattern. Many iterations
run independently over several processes, and then their results are combined using some function. The
combination process is called a reduction, since it is generally tensor-rank-reducing: a vector of numbers
is reduced to a single number, or a matrix is reduced to a single row or column, etc. In code, this typically
looks like the pattern x = f(x,v[1]), where x is the accumulator, f is the reduction function, and the v[1i]
are the elements being reduced. It is desirable for f to be associative, so that it does not matter what order
the operations are performed in.

Notice that our use of this pattern with count heads can be generalized. We used two explicit @spawnat
statements, which limits the parallelism to two processes. To run on any number of processes, we can use
a parallel for loop, running in distributed memory, which can be written in Julia using @distributed like
this:

nheads = @distributed (+) for i = 1:200000000
Int(rand(Bool))
end

This construct implements the pattern of assigning iterations to multiple processes, and combining them
with a specified reduction (in this case (+)). The result of each iteration is taken as the value of the last
expression inside the loop. The whole parallel loop expression itself evaluates to the final answer.

Note that although parallel for loops look like serial for loops, their behavior is dramatically different. In
particular, the iterations do not happen in a specified order, and writes to variables or arrays will not be
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globally visible since iterations run on different processes. Any variables used inside the parallel loop will
be copied and broadcast to each process.

For example, the following code will not work as intended:

a = zeros(100000)

@distributed for i = 1:100000
alil =1

end

This code will not initialize all of a, since each process will have a separate copy of it. Parallel for loops like
these must be avoided. Fortunately, Shared Arrays can be used to get around this limitation:

using SharedArrays

a = SharedArray{Float64}(10)

@distributed for i = 1:10
al[i]l =1

end

Using "outside" variables in parallel loops is perfectly reasonable if the variables are read-only:

a = randn(1000)

@distributed (+) for i = 1:100000
f(a[rand(1l:end)])

end

Here each iteration applies f to a randomly-chosen sample from a vector a shared by all processes.

As you could see, the reduction operator can be omitted if it is not needed. In that case, the loop executes
asynchronously, i.e. it spawns independent tasks on all available workers and returns an array of Future
immediately without waiting for completion. The caller can wait for the Future completions at a later point
by calling fetch on them, or wait for completion at the end of the loop by prefixing it with @sync, like @sync
@distributed for.

In some cases no reduction operator is needed, and we merely wish to apply a function to all integers in
some range (or, more generally, to all elements in some collection). This is another useful operation called
parallel map, implemented in Julia as the pmap function. For example, we could compute the singular values
of several large random matrices in parallel as follows:

julia> M = Matrix{Float64}[rand(1000,1000) for i = 1:10];

julia> pmap(svdvals, M);

Julia's pmap is designed for the case where each function call does a large amount of work. In contrast,
@distributed for can handle situations where each iteration is tiny, perhaps merely summing two num-
bers. Only worker processes are used by both pmap and @distributed for for the parallel computation.
In case of @distributed for, the final reduction is done on the calling process.
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25.6 Remote References and AbstractChannels

Remote references always refer to an implementation of an AbstractChannel.

A concrete implementation of an AbstractChannel (like Channel), is required to implement put!, take!,
fetch, isready and wait. The remote object referred to by a Future is stored in a Channel{Any} (1), i.e.,
a Channel of size 1 capable of holding objects of Any type.

RemoteChannel, which is rewritable, can point to any type and size of channels, or any other implementa-
tion of an AbstractChannel.

The constructor RemoteChannel(f::Function, pid) () allows us to construct references to channels hold-
ing more than one value of a specific type. fis a function executed on pid and it must return an AbstractChannel.

For example, RemoteChannel(()->Channel{Int}(10), pid), will return a reference to a channel of type
Int and size 10. The channel exists on worker pid.

Methods put!, take!, fetch, isready and wait on a RemoteChannel are proxied onto the backing store
on the remote process.

RemoteChannel can thus be used to refer to userimplemented AbstractChannel objects. A simple example
of this is provided in dictchannel.jl in the Examples repository, which uses a dictionary as its remote
store.

25.7 Channels and RemoteChannels

* A Channel is local to a process. Worker 2 cannot directly refer to a Channel on worker 3 and vice-
versa. A RemoteChannel, however, can put and take values across workers.

* A RemoteChannel can be thought of as a handle to a Channel.

* The process id, pid, associated with a RemoteChannel identifies the process where the backing store,
i.e., the backing Channel exists.

* Any process with a reference to a RemoteChannel can put and take items from the channel. Data is
automatically sent to (or retrieved from) the process a RemoteChannel is associated with.

¢ Serializing a Channel also serializes any data present in the channel. Deserializing it therefore ef-
fectively makes a copy of the original object.

* On the other hand, serializing a RemoteChannel only involves the serialization of an identifier that
identifies the location and instance of Channel referred to by the handle. A deserialized RemoteChannel
object (on any worker), therefore also points to the same backing store as the original.

The channels example from above can be modified for interprocess communication, as shown below.

We start 4 workers to process a single jobs remote channel. Jobs, identified by an id (job_id), are written
to the channel. Each remotely executing task in this simulation reads a job_id, waits for a random amount
of time and writes back a tuple of job_id, time taken and its own pid to the results channel. Finally all the
results are printed out on the master process.

julia> addprocs(4); # add worker processes

julia> const jobs = RemoteChannel(()->Channel{Int}(32));


https://github.com/JuliaAttic/Examples
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julia> const results = RemoteChannel(()->Channel{Tuple}(32));

julia> @everywhere function do work(jobs, results) # define work function everywhere

while true
job_id = take!(jobs)
exec_time = rand()
sleep(exec_time) # simulates elapsed time doing actual work
put!(results, (job_id, exec_time, myid()))

end

end

julia> function make jobs(n)
for i in 1:n
put!(jobs, 1)
end
end;

julia> n = 12;
julia> errormonitor(@async make jobs(n)); # feed the jobs channel with "n" jobs

julia> for p in workers() # start tasks on the workers to process requests in parallel
remote do(do_work, p, jobs, results)
end

julia> @elapsed while n > 0 # print out results

job id, exec time, where = take!(results)

println("$job_id finished in $(round(exec_time; digits=2)) seconds on worker $where")

global n=n - 1

end

finished in
finished in
finished in

.18 seconds on worker
.26 seconds on worker
.12 seconds on worker
.18 seconds on worker
.35 seconds on worker
.68 seconds on worker
finished in 0.73 seconds on worker
11 finished in 0.01 seconds on worker 3
12 finished in 0.02 seconds on worker 3
9 finished in 0.26 seconds on worker 5
8 finished in 0.57 seconds on worker 4
10 finished in 0.58 seconds on worker 2
0.055971741

finished in
finished in
finished in
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Remote References and Distributed Garbage Collection

Objects referred to by remote references can be freed only when all held references in the cluster are
deleted.

The node where the value is stored keeps track of which of the workers have a reference to it. Every time
a RemoteChannel or a (unfetched) Future is serialized to a worker, the node pointed to by the reference is
notified. And every time a RemoteChannel or a (unfetched) Future is garbage collected locally, the node
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owning the value is again notified. This is implemented in an internal cluster aware serializer. Remote
references are only valid in the context of a running cluster. Serializing and deserializing references to and
from regular I0 objects is not supported.

The notifications are done via sending of "tracking" messages-an "add reference" message when a ref-
erence is serialized to a different process and a "delete reference" message when a reference is locally
garbage collected.

Since Futures are write-once and cached locally, the act of fetching a Future also updates reference
tracking information on the node owning the value.

The node which owns the value frees it once all references to it are cleared.

With Futures, serializing an already fetched Future to a different node also sends the value since the
original remote store may have collected the value by this time.

It is important to note that when an object is locally garbage collected depends on the size of the object
and the current memory pressure in the system.

In case of remote references, the size of the local reference object is quite small, while the value stored
on the remote node may be quite large. Since the local object may not be collected immediately, it is a
good practice to explicitly call finalize on local instances of a RemoteChannel, or on unfetched Futures.
Since calling fetch on a Future also removes its reference from the remote store, this is not required on
fetched Futures. Explicitly calling finalize results in an immediate message sent to the remote node to
go ahead and remove its reference to the value.

Once finalized, a reference becomes invalid and cannot be used in any further calls.

25.8 Local invocations

Data is necessarily copied over to the remote node for execution. This is the case for both remotecalls and
when data is stored to a RemoteChannel / Future on a different node. As expected, this results in a copy of
the serialized objects on the remote node. However, when the destination node is the local node, i.e. the
calling process id is the same as the remote node id, it is executed as a local call. It is usually (not always)
executed in a different task - but there is no serialization/deserialization of data. Consequently, the call
refers to the same object instances as passed - no copies are created. This behavior is highlighted below:

julia> using Distributed;
julia> rc = RemoteChannel(()->Channel(3)); # RemoteChannel created on local node
julia> v = [0];
julia> for i in 1:3
v[1l] =1 # Reusing “v°
put!(rc, v)
end;

julia> result = [take!(rc) for _ in 1:3];

julia> println(result);
Array{Int64,1}[[3], [31, [3]1]

julia> println("Num Unique objects : ", length(unique(map(objectid, result))));
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Num Unique objects : 1
julia> addprocs(1)
julia> rc = RemoteChannel(()->Channel(3), workers()[1]); # RemoteChannel created on remote node
julia> v = [0];
julia> for i in 1:3

v[1l] =1

put!(rc, v)

end;

julia> result = [take!(rc) for in 1:3];

julia> println(result);
Array{Int64,1}[[1], [2], [3]]

julia> println("Num Unique objects : ", length(unique(map(objectid, result))));
Num Unique objects : 3

As can be seen, put! on a locally owned RemoteChannel with the same object v modified between calls
results in the same single object instance stored. As opposed to copies of v being created when the node
owning rc is a different node.

It is to be noted that this is generally not an issue. It is something to be factored in only if the object is both
being stored locally and modified post the call. In such cases it may be appropriate to store a deepcopy of
the object.

This is also true for remotecalls on the local node as seen in the following example:

julia> using Distributed; addprocs(1);

julia> v = [0];

julia> v2 = remotecall fetch(x->(x[1] = 1; x), myid(), v); # Executed on local node

julia> println("v=$v, v2=$v2, ", v === v2);
v=[1], v2=[1], true

julia> v = [0];
julia> v2 = remotecall fetch(x->(x[1] = 1; x), workers()[1], v); # Executed on remote node

julia> println("v=$v, v2=$v2, ", v === v2);
v=[0], v2=[1], false

As can be seen once again, a remote call onto the local node behaves just like a direct invocation. The
call modifies local objects passed as arguments. In the remote invocation, it operates on a copy of the
arguments.

To repeat, in general this is not an issue. If the local node is also being used as a compute node, and the
arguments used post the call, this behavior needs to be factored in and if required deep copies of arguments
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must be passed to the call invoked on the local node. Calls on remote nodes will always operate on copies
of arguments.

25.9 Shared Arrays

Shared Arrays use system shared memory to map the same array across many processes. While there are
some similarities to a DArray, the behavior of a SharedArray is quite different. In a DArray, each process
has local access to just a chunk of the data, and no two processes share the same chunk; in contrast, in a
SharedArray each "participating" process has access to the entire array. A SharedArray is a good choice
when you want to have a large amount of data jointly accessible to two or more processes on the same
machine.

Shared Array support is available via module SharedArrays which must be explicitly loaded on all partici-
pating workers.

SharedArray indexing (assignment and accessing values) works just as with regular arrays, and is efficient
because the underlying memory is available to the local process. Therefore, most algorithms work naturally
on SharedArrays, albeit in single-process mode. In cases where an algorithm insists on an Array input, the
underlying array can be retrieved from a SharedArray by calling sdata. For other AbstractArray types,
sdata just returns the object itself, so it's safe to use sdata on any Array-type object.

The constructor for a shared array is of the form:
SharedArray{T,N}(dims: :NTuple; init=false, pids=Int[])

which creates an N-dimensional shared array of a bits type T and size dims across the processes specified
by pids. Unlike distributed arrays, a shared array is accessible only from those participating workers
specified by the pids named argument (and the creating process too, if it is on the same host). Note that
only elements that are isbits are supported in a SharedArray.

If an init function, of signature initfn(S::SharedArray), is specified, it is called on all the participating
workers. You can specify that each worker runs the init function on a distinct portion of the array, thereby
parallelizing initialization.

Here's a brief example:

julia> using Distributed

julia> addprocs(3)
3-element Array{Int64,1}:
2
3

julia> @everywhere using SharedArrays

julia> S = SharedArray{Int,2}((3,4), init = S -> S[localindices(S)] = repeat([myid()],
— length(localindices(S))))

3x4 SharedArray{Int64,2}:

2 2 3 4

2 3 3 4

2 3 4 4



https://github.com/JuliaParallel/DistributedArrays.jl
https://github.com/JuliaParallel/DistributedArrays.jl
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julia> S[3,2] = 7
7

julia> S
3x4 SharedArray{Int64,2}:
2 2 3 4

SharedArrays.localindices provides disjoint one-dimensional ranges of indices, and is sometimes con-
venient for splitting up tasks among processes. You can, of course, divide the work any way you wish:

julia> S = SharedArray{Int,2}((3,4), init = S -> S[indexpids(S):length(procs(S)):length(S)] =
— repeat([myid()], length( indexpids(S):length(procs(S)):length(S))))
3x4 SharedArray{Int64,2}:

2 2 2 2
3 3 3 3
4 4 4 4

Since all processes have access to the underlying data, you do have to be careful not to set up conflicts.
For example:

@sync begin
for p in procs(S)
@async begin
remotecall wait(fill!, p, S, p)
end
end
end

would result in undefined behavior. Because each process fills the entire array with its own pid, whichever
process is the last to execute (for any particular element of S) will have its pid retained.

As a more extended and complex example, consider running the following "kernel" in parallel:
|qli,j,t+1] = qli,3,t] + uli,j,t]

In this case, if we try to split up the work using a one-dimensional index, we are likely to run into trouble:
if q[1,],t] is near the end of the block assigned to one worker and q[1i,],t+1] is near the beginning of
the block assigned to another, it's very likely that q[1,j,t] will not be ready at the time it's needed for
computing q[i,j,t+1]. In such cases, one is better off chunking the array manually. Let's split along the
second dimension. Define a function that returns the (irange, jrange) indices assigned to this worker:

julia> @everywhere function myrange(q::SharedArray)
idx = indexpids(q)
if idx == 0 # This worker is not assigned a piece
return 1:0, 1:0
end
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nchunks = length(procs(q))
splits = [round(Int, s) for s in range(0, stop=size(q,2), length=nchunks+1)]
l:size(q,1), splits[idx]+1:splits[idx+1]

end

Next, define the kernel:

julia> @everywhere function advection chunk!(q, u, irange, jrange, trange)
@show (irange, jrange, trange) # display so we can see what's happening
for t in trange, j in jrange, i in irange
qli,j,t+1] = qli,j,t] + uli,j,t]
end

q
end

We also define a convenience wrapper for a SharedArray implementation

julia> @everywhere advection shared chunk!(q, u) =
advection chunk!(q, u, myrange(q)..., l:size(q,3)-1)

Now let's compare three different versions, one that runs in a single process:

julia> advection serial!(q, u) = advection chunk!(q, u, 1l:size(q,1), l:size(q,2), l:size(q,3)-1);

one that uses @distributed:

julia> function advection parallel!(q, u)
for t = 1:size(q,3)-1
@sync @distributed for j = l:size(q,2)
for i = 1:size(q,1)
qli,j, t+11= qli,j,t] + uli,j,t]
end
end
end
q
end;

and one that delegates in chunks:

julia> function advection shared!(q, u)
@sync begin
for p in procs(q)
@async remotecall wait(advection shared chunk!, p, q, u)
end
end

q
end;

If we create SharedArrays and time these functions, we get the following results (with julia -p 4):
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julia> q = SharedArray{Float64,3}((500,500,500));

julia> u = SharedArray{Float64,3}((500,500,500));

Run the functions once to JIT-compile and @time them on the second run:

julia> @time advection serial!(q, u);
(irange, jrange,trange) = (1:500,1:500,1:499)
830.220 milliseconds (216 allocations: 13820 bytes)

julia> @time advection parallel!(q, u);
2.495 seconds (3999 k allocations: 289 MB, 2.09% gc time)

julia> @time advection shared!(q,u);

From worker 2: (irange,jrange,trange) = (1:500,1:125,1:499)

From worker 4: (irange,jrange, trange) = (1:500,251:375,1:499)
From worker 3: (irange,jrange,trange) = (1:500,126:250,1:499)
From worker 5: (irange,jrange, trange) = (1:500,376:500,1:499)

238.119 milliseconds (2264 allocations: 169 KB)

The biggest advantage of advection shared! is that it minimizes traffic among the workers, allowing
each to compute for an extended time on the assigned piece.

Shared Arrays and Distributed Garbage Collection

Like remote references, shared arrays are also dependent on garbage collection on the creating node to
release references from all participating workers. Code which creates many short lived shared array objects
would benefit from explicitly finalizing these objects as soon as possible. This results in both memory and
file handles mapping the shared segment being released sooner.

25.10 ClusterManagers

The launching, management and networking of Julia processes into a logical cluster is done via cluster
managers. A ClusterManager is responsible for

¢ launching worker processes in a cluster environment
* managing events during the lifetime of each worker

¢ optionally, providing data transport
A Julia cluster has the following characteristics:

e The initial Julia process, also called the master, is special and has an id of 1.
* Only the master process can add or remove worker processes.

» All processes can directly communicate with each other.

Connections between workers (using the in-built TCP/IP transport) is established in the following manner:
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* addprocs is called on the master process with a ClusterManager object.

» addprocs calls the appropriate Llaunch method which spawns required number of worker processes
on appropriate machines.

* Each worker starts listening on a free port and writes out its host and port information to stdout.

* The cluster manager captures the stdout of each worker and makes it available to the master pro-
cess.

* The master process parses this information and sets up TCP/IP connections to each worker.

* Every worker is also notified of other workers in the cluster.

» Each worker connects to all workers whose id is less than the worker's own id.

* In this way a mesh network is established, wherein every worker is directly connected with every

other worker.

While the default transport layer uses plain TCPSocket, it is possible for a Julia cluster to provide its own
transport.

Julia provides two in-built cluster managers:

* LocalManager, used when addprocs() or addprocs(np::Integer) are called

* SSHManager, used when addprocs (hostnames: :Array) is called with a list of hostnames

LocalManager is used to launch additional workers on the same host, thereby leveraging multi-core and
multi-processor hardware.

Thus, a minimal cluster manager would need to:

* be a subtype of the abstract ClusterManager

* implement launch, a method responsible for launching new workers

* implement manage, which is called at various events during a worker's lifetime (for example, sending
an interrupt signal)

addprocs(manager: :FooManager) requires FooManager to implement:

function launch(manager::FooManager, params::Dict, launched::Array, c::Condition)
[...1

end

function manage(manager::FooManager, id::Integer, config::WorkerConfig, op::Symbol)

[...1]

end

As an example let us see how the LocalManager, the manager responsible for starting workers on the same
host, is implemented:
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struct LocalManager <: ClusterManager
np::Integer
end

function launch(manager::LocalManager, params::Dict, launched::Array, c::Condition)

[...1]

end

function manage(manager::LocalManager, id::Integer, config::WorkerConfig, op::Symbol)
[...]

end

The launch method takes the following arguments:

* manager: :ClusterManager: the cluster manager that addprocs is called with
e params::Dict: all the keyword arguments passed to addprocs
* launched: :Array: the array to append one or more WorkerConfig objects to

e c::Condition: the condition variable to be notified as and when workers are launched

The launch method is called asynchronously in a separate task. The termination of this task signals that all
requested workers have been launched. Hence the Launch function MUST exit as soon as all the requested
workers have been launched.

Newly launched workers are connected to each other and the master process in an all-to-all manner. Spec-
ifying the command line argument --worker[=<cookie>] results in the launched processes initializing
themselves as workers and connections being set up via TCP/IP sockets.

All workers in a cluster share the same cookie as the master. When the cookie is unspecified, i.e, with the
- -worker option, the worker tries to read it from its standard input. LocalManager and SSHManager both
pass the cookie to newly launched workers via their standard inputs.

By default a worker will listen on a free port at the address returned by a call to getipaddr(). A specific
address to listen on may be specified by optional argument --bind-to bind addr[:port]. This is useful
for multi-homed hosts.

As an example of a non-TCP/IP transport, an implementation may choose to use MPI, in which case - -worker
must NOT be specified. Instead, newly launched workers should call init worker(cookie) before using
any of the parallel constructs.

For every worker launched, the launch method must add a WorkerConfig object (with appropriate fields
initialized) to launched

mutable struct WorkerConfig
# Common fields relevant to all cluster managers
io::Union{I0, Nothing}
host::Union{AbstractString, Nothing}
port::Union{Integer, Nothing}

# Used when launching additional workers at a host
count: :Union{Int, Symbol, Nothing}
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exename: :Union{AbstractString, Cmd, Nothing}
exeflags: :Union{Cmd, Nothing}

# External cluster managers can use this to store information at a per-worker level
# Can be a dict if multiple fields need to be stored.
userdata: :Any

# SSHManager / SSH tunnel connections to workers
tunnel: :Union{Bool, Nothing}

bind addr::Union{AbstractString, Nothing}
sshflags: :Union{Cmd, Nothing}
max_parallel::Union{Integer, Nothing}

# Used by Local/SSH managers
connect_at::Any

end

Most of the fields in WorkerConfig are used by the inbuilt managers. Custom cluster managers would
typically specify only io or host / port:

» If io is specified, it is used to read host/port information. A Julia worker prints out its bind address
and port at startup. This allows Julia workers to listen on any free port available instead of requiring
worker ports to be configured manually.

* If io is not specified, host and port are used to connect.

e count, exename and exeflags are relevant for launching additional workers from a worker. For
example, a cluster manager may launch a single worker per node, and use that to launch additional
workers.

- count with an integer value n will launch a total of n workers.

- count with a value of :auto will launch as many workers as the number of CPU threads (logical
cores) on that machine.

- exename is the name of the julia executable including the full path.

- exeflags should be set to the required command line arguments for new workers.

* tunnel, bind addr, sshflags and max parallel are used when a ssh tunnel is required to connect
to the workers from the master process.

* userdata is provided for custom cluster managers to store their own worker-specific information.
manage (manager: :FooManager, id::Integer, config::WorkerConfig, op::Symbol) is called at differ-
ent times during the worker's lifetime with appropriate op values:

* with :register/:deregister when a worker is added / removed from the Julia worker pool.

e with :interrupt when interrupt(workers) is called. The ClusterManager should signal the ap-
propriate worker with an interrupt signal.

e with :finalize for cleanup purposes.
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Cluster Managers with Custom Transports

Replacing the default TCP/IP all-to-all socket connections with a custom transport layer is a little more
involved. Each Julia process has as many communication tasks as the workers it is connected to. For
example, consider a Julia cluster of 32 processes in an all-to-all mesh network:

¢ Each Julia process thus has 31 communication tasks.
* Each task handles all incoming messages from a single remote worker in a message-processing loop.

* The message-processing loop waits on an I0 object (for example, a TCPSocket in the default imple-
mentation), reads an entire message, processes it and waits for the next one.

¢ Sending messages to a process is done directly from any Julia task-not just communication tasks-again,
via the appropriate I0 object.

Replacing the default transport requires the new implementation to set up connections to remote workers
and to provide appropriate I0 objects that the message-processing loops can wait on. The manager-specific
callbacks to be implemented are:

connect(manager: :FooManager, pid::Integer, config::WorkerConfig)
kill(manager: :FooManager, pid::Int, config::WorkerConfig)

The default implementation (which uses TCP/IP sockets) is implemented as connect (manager: : ClusterManager,
pid::Integer, config::WorkerConfig).

connect should return a pair of I0 objects, one for reading data sent from worker pid, and the other to write
data that needs to be sent to worker pid. Custom cluster managers can use an in-memory BufferStream
as the plumbing to proxy data between the custom, possibly non-I0 transport and Julia's in-built parallel
infrastructure.

A BufferStream is an in-memory I0Buffer which behaves like an I0-it is a stream which can be handled
asynchronously.

The folder clustermanager/0mq in the Examples repository contains an example of using ZeroMQ to con-
nect Julia workers in a star topology with a OMQ broker in the middle. Note: The Julia processes are still all
logically connected to each other-any worker can message any other worker directly without any aware-
ness of OMQ being used as the transport layer.

When using custom transports:

* Julia workers must NOT be started with - -worker. Starting with --worker will result in the newly
launched workers defaulting to the TCP/IP socket transport implementation.

» For every incoming logical connection with a worker, Base.process messages(rd::I0, wr::I0)()
must be called. This launches a new task that handles reading and writing of messages from/to the
worker represented by the I0 objects.

* init worker(cookie, manager::FooManager) must be called as part of worker process initializa-
tion.


https://github.com/JuliaAttic/Examples

CHAPTER 25. MULTI-PROCESSING AND DISTRIBUTED COMPUTING 330

* Field connect _at::Any in WorkerConfig can be set by the cluster manager when launch is called.
The value of this field is passed in all connect callbacks. Typically, it carries information on how to
connect to a worker. For example, the TCP/IP socket transport uses this field to specify the (host,
port) tuple at which to connect to a worker.

kill(manager, pid, config) is called to remove a worker from the cluster. On the master process, the
corresponding I0 objects must be closed by the implementation to ensure proper cleanup. The default
implementation simply executes an exit() call on the specified remote worker.

The Examples folder clustermanager/simple is an example that shows a simple implementation using
UNIX domain sockets for cluster setup.

Network Requirements for LocalManager and SSHManager

Julia clusters are designed to be executed on already secured environments on infrastructure such as local
laptops, departmental clusters, or even the cloud. This section covers network security requirements for
the inbuilt LocalManager and SSHManager:

* The master process does not listen on any port. It only connects out to the workers.

* Each worker binds to only one of the local interfaces and listens on an ephemeral port number
assigned by the OS.

* LocalManager, used by addprocs(N), by default binds only to the loopback interface. This means
that workers started later on remote hosts (or by anyone with malicious intentions) are unable to
connect to the cluster. An addprocs(4) followed by an addprocs(["remote host"]) will fail. Some
users may need to create a cluster comprising their local system and a few remote systems. This
can be done by explicitly requesting LocalManager to bind to an external network interface via the
restrict keyword argument: addprocs(4; restrict=false).

* SSHManager, used by addprocs(list of remote hosts), launches workers on remote hosts via
SSH. By default SSH is only used to launch Julia workers. Subsequent master-worker and worker-
worker connections use plain, unencrypted TCP/IP sockets. The remote hosts must have password-
less login enabled. Additional SSH flags or credentials may be specified via keyword argument
sshflags.

* addprocs(list of remote hosts; tunnel=true, sshflags=<ssh keys and other flags>) isuse-
ful when we wish to use SSH connections for master-worker too. A typical scenario for this is a local
laptop running the Julia REPL (i.e., the master) with the rest of the cluster on the cloud, say on
Amazon EC2. In this case only port 22 needs to be opened at the remote cluster coupled with SSH
client authenticated via public key infrastructure (PKI). Authentication credentials can be supplied
via sshflags, for example sshflags="-1i <keyfile>".

In an all-to-all topology (the default), all workers connect to each other via plain TCP sockets. The
security policy on the cluster nodes must thus ensure free connectivity between workers for the
ephemeral port range (varies by 0OS).

Securing and encrypting all worker-worker traffic (via SSH) or encrypting individual messages can
be done via a custom ClusterManager.

* If you specify multiplex=true as an option to addprocs, SSH multiplexing is used to create a tunnel
between the master and workers. If you have configured SSH multiplexing on your own and the
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connection has already been established, SSH multiplexing is used regardless of multiplex option.
If multiplexing is enabled, forwarding is set by using the existing connection (-0 forward option
in ssh). This is beneficial if your servers require password authentication; you can avoid authen-
tication in Julia by logging in to the server ahead of addprocs. The control socket will be located
at ~/.ssh/julia-%r@%h:%p during the session unless the existing multiplexing connection is used.
Note that bandwidth may be limited if you create multiple processes on a node and enable multi-
plexing, because in that case processes share a single multiplexing TCP connection.

Cluster Cookie

All processes in a cluster share the same cookie which, by default, is a randomly generated string on the
master process:

* cluster cookie() returnsthe cookie, while cluster cookie(cookie) () setsitand returnsthe new
cookie.

* All connections are authenticated on both sides to ensure that only workers started by the master
are allowed to connect to each other.

* The cookie may be passed to the workers at startup via argument - -worker=<cookie>. If argument
--worker is specified without the cookie, the worker tries to read the cookie from its standard input
(stdin). The stdin is closed immediately after the cookie is retrieved.

e ClusterManagers can retrieve the cookie on the master by calling cluster cookie(). Cluster
managers not using the default TCP/IP transport (and hence not specifying --worker) must call
init worker(cookie, manager) with the same cookie as on the master.

Note that environments requiring higher levels of security can implement this via a custom ClusterManager.
For example, cookies can be pre-shared and hence not specified as a startup argument.

25.11 Specifying Network Topology (Experimental)

The keyword argument topology passed to addprocs is used to specify how the workers must be connected
to each other:

e :all to all, the default: all workers are connected to each other.
* :master worker: only the driver process, i.e. pid 1, has connections to the workers.

e :custom: the launch method of the cluster manager specifies the connection topology via the fields
ident and connect idents in WorkerConfig. A worker with a cluster-manager-provided identity
ident will connect to all workers specified in connect idents.

Keyword argument lazy=true| false only affects topology option :all to_all. If true, the cluster starts
off with the master connected to all workers. Specific worker-worker connections are established at the first
remote invocation between two workers. This helps in reducing initial resources allocated for intra-cluster
communication. Connections are setup depending on the runtime requirements of a parallel program.
Default value for lazy is true.

Currently, sending a message between unconnected workers results in an error. This behaviour, as with
the functionality and interface, should be considered experimental in nature and may change in future
releases.
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25.12 Noteworthy external packages

Outside of Julia parallelism there are plenty of external packages that should be mentioned. For example
MPL.jl is a Julia wrapper for the MPI protocol, Dagger.jl provides functionality similar to Python's Dask, and
DistributedArrays.jl provides array operations distributed across workers, as presented in Shared Arrays.

A mention must be made of Julia's GPU programming ecosystem, which includes:

1. CUDA.jl wraps the various CUDA libraries and supports compiling Julia kernels for Nvidia GPUs.

2. oneAPl.jl wraps the oneAPI unified programming model, and supports executing Julia kernels on sup-
ported accelerators. Currently only Linux is supported.

3. AMDGPU.jl wraps the AMD ROCm libraries and supports compiling Julia kernels for AMD GPUs. Cur-
rently only Linux is supported.

4. High-level libraries like KernelAbstractions.jl, Tullio.jl and ArrayFire.jl.

In the following example we will use both DistributedArrays.jl and CUDA. j1 to distribute an array across
multiple processes by first casting it through distribute() and CuArray().

Remember when importing DistributedArrays. j1 to import it across all processes using @everywhere
$ ./julia -p 4

julia> addprocs()

julia> @everywhere using DistributedArrays

julia> using CUDA

julia> B = ones(10 000) ./ 2;

julia> A = ones(10 000) .* m;
julia> C =2 .* A ./ B;

julia> all(C .= 4*nm)
true

julia> typeof(C)
Array{Float64,1}

julia> dB = distribute(B);

julia> dA

distribute(A);

julia> dC = 2 .* dA ./ dB;

julia> all(dC .= 4*m)
true

julia> typeof(dC)


https://github.com/JuliaParallel/MPI.jl
https://github.com/JuliaParallel/Dagger.jl
https://dask.org/
https://github.com/JuliaParallel/Distributedarrays.jl
https://github.com/JuliaGPU/CUDA.jl
https://github.com/JuliaGPU/oneAPI.jl
https://github.com/JuliaGPU/AMDGPU.jl
https://github.com/JuliaGPU/KernelAbstractions.jl
https://github.com/mcabbott/Tullio.jl
https://github.com/JuliaComputing/ArrayFire.jl
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DistributedArrays.DArray{Float64,1,Array{Float64,1}}

julia> cuB = CuArray(B);
julia> cuA = CuArray(A);
julia> cuC = 2 .* cuA ./ cuB;

julia> all(cuC .= 4*mn);
true

julia> typeof(cuC)
CuArray{Float64,1}

333

In the following example we will use both DistributedArrays.jl and CUDA. j1 to distribute an array across

multiple processes and call a generic function on it.

function power method(M, v)
for i in 1:100
v = M*v
v /= norm(v)
end

return v, norm(M*v) / norm(v) # or
end

(M*v)

v

power method repeatedly creates a new vector and normalizes it. We have not specified any type signature

in function declaration, let's see if it works with the aforementioned datatypes:

julia> M

[2. 1; 111;

julia> v = rand(2)
2-element Array{Float64,1}:
0.40395

0.445877

julia> power _method(M,v)
([0.850651, 0.525731], 2.618033988749895)

julia> cuM CuArray(M);
julia> cuv = CuArray(v);

julia> curesult = power method(cuM, cuv);

julia> typeof(curesult)
CuArray{Float64,1}

julia> dM = distribute(M);

julia> dv = distribute(v);
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julia> dC = power method(dM, dv);

julia> typeof(dC)
Tuple{DistributedArrays.DArray{Float64,1,Array{Float64,1}},Float64}

To end this short exposure to external packages, we can consider MPI. j1, aJulia wrapper of the MPI protocol.
As it would take too long to consider every inner function, it would be better to simply appreciate the
approach used to implement the protocol.

Consider this toy script which simply calls each subprocess, instantiate its rank and when the master
process is reached, performs the ranks' sum

import MPI
MPI.Init()

comm = MPI.COMM_WORLD
MPI.Barrier(comm)

root = 0
r = MPI.Comm_rank(comm)

sr = MPI.Reduce(r, MPI.SUM, root, comm)
if (MPI.Comm_rank(comm) == root)

@printf("sum of ranks: %s\n", sr)
end

MPI.Finalize()

mpirun -np 4 ./julia example.jl

LIn this context, MPI refers to the MPI-1 standard. Beginning with MPI-2, the MPI standards committee introduced a new set
of communication mechanisms, collectively referred to as Remote Memory Access (RMA). The motivation for adding rma to the MPI
standard was to facilitate one-sided communication patterns. For additional information on the latest MPI standard, see https://mpi-
forum.org/docs.


https://mpi-forum.org/docs
https://mpi-forum.org/docs

Chapter 26

Running External Programs

Julia borrows backtick notation for commands from the shell, Perl, and Ruby. However, in Julia, writing

julia> ‘echo hello®
“echo hello®

differs in several aspects from the behavior in various shells, Perl, or Ruby:

* Instead of immediately running the command, backticks create a Cmd object to represent the com-
mand. You can use this object to connect the command to others via pipes, runit, and read orwrite
to it.

* When the command is run, Julia does not capture its output unless you specifically arrange for it to.
Instead, the output of the command by default goes to stdout as it would using libc's system call.

e The command is never run with a shell. Instead, Julia parses the command syntax directly, appro-
priately interpolating variables and splitting on words as the shell would, respecting shell quoting
syntax. The command is run as julia's immediate child process, using fork and exec calls.

Note

The following assumes a Posix environment as on Linux or MacOS. On Windows, many similar
commands, such as echo and dir, are not external programs and instead are built into the
shell cmd. exe itself. One option to run these commands is to invoke cmd. exe, for example cmd
/C echo hello. Alternatively Julia can be run inside a Posix environment such as Cygwin.

Here's a simple example of running an external program:

julia> mycommand = “echo hello’
“echo hello®

julia> typeof (mycommand)
Cmd

julia> run(mycommand);
hello

335
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The hello is the output of the echo command, sent to stdout. If the external command fails to run
successfully, the run method throws an ProcessFailedException.

If you want to read the output of the external command, read or readchomp can be used instead:

julia> read( echo hello', String)
"hello\n"

julia> readchomp( echo hello")
"hello"

More generally, you can use open to read from or write to an external command.

julia> open( less’, "w", stdout) do io

for i = 1:3

println(io, i)
end
end

1
2
3

The program name and the individual arguments in a command can be accessed and iterated over as if
the command were an array of strings:

julia> collect( echo "foo bar"")
2-element Vector{String}:

"echo"

"foo bar"

julia> ‘echo "foo bar" [2]
"foo bar"

26.1 Interpolation

Suppose you want to do something a bit more complicated and use the name of a file in the variable file
as an argument to a command. You can use $ for interpolation much as you would in a string literal (see
Strings):

julia> file = "/etc/passwd"
"/etc/passwd"

julia> ‘sort $file’
“sort /etc/passwd’

A common pitfall when running external programs via a shell is that if a file name contains characters
that are special to the shell, they may cause undesirable behavior. Suppose, for example, rather than
/etc/passwd, we wanted to sort the contents of the file /Volumes/External HD/data.csv. Let's try it:
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julia> file = "/Volumes/External HD/data.csv"
"/Volumes/External HD/data.csv"

julia> ‘sort $file’
“sort '/Volumes/External HD/data.csv'"

How did the file name get quoted? Julia knows that file is meant to be interpolated as a single argument,
so it quotes the word for you. Actually, that is not quite accurate: the value of file is never interpreted
by a shell, so there's no need for actual quoting; the quotes are inserted only for presentation to the user.
This will even work if you interpolate a value as part of a shell word:

julia> path = "/Volumes/External HD"
"/Volumes/External HD"

julia> name = "data"
"data"

julia> ext = "csv"
"esy!

julia> ‘sort $path/$name.s$ext’
“sort '/Volumes/External HD/data.csv'"

As you can see, the space in the path variable is appropriately escaped. But what if you want to interpolate
multiple words? In that case, just use an array (or any other iterable container):

julia> files = ["/etc/passwd","/Volumes/External HD/data.csv"]
2-element Vector{String}:

"/etc/passwd"

"/Volumes/External HD/data.csv"

julia> "grep foo $files’
“grep foo /etc/passwd '/Volumes/External HD/data.csv'’

If you interpolate an array as part of a shell word, Julia emulates the shell's {a, b, c} argument generation:

julia> names = ["foo","bar","baz"]
3-element Vector{String}:

"foo"

"bar"

"baz"

julia> ‘grep xylophone $names.txt’
‘grep xylophone foo.txt bar.txt baz.txt®

Moreover, if you interpolate multiple arrays into the same word, the shell's Cartesian product generation
behavior is emulated:
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julia> names = ["foo","bar","baz"]
3-element Vector{String}:

"foo"

"bar"

"baz"

julia> exts = ["aux","log"]
2-element Vector{String}:
"aux"
"Log"

julia> ‘rm -f $names.$exts’
‘rm -f foo.aux foo.log bar.aux bar.log baz.aux baz.log"

Since you can interpolate literal arrays, you can use this generative functionality without needing to create
temporary array objects first:

julia> ‘rm -rf $["foo","bar","baz","qux"].$["aux","log","pdf"]"
“rm -rf foo.aux foo.log foo.pdf bar.aux bar.log bar.pdf baz.aux baz.log baz.pdf qux.aux qux.log

— qux.pdf’

26.2 Quoting

Inevitably, one wants to write commands that aren't quite so simple, and it becomes necessary to use
quotes. Here's a simple example of a Perl one-liner at a shell prompt:

sh$ perl -le '$|=1; for (0..3) { print }'
0

1
2
3

The Perl expression needs to be in single quotes for two reasons: so that spaces don't break the expression
into multiple shell words, and so that uses of Perl variables like $| (yes, that's the name of a variable in
Perl), don't cause interpolation. In other instances, you may want to use double quotes so that interpolation
does occur:

sh$ first="A"

sh$ second="B"

sh$ perl -le '$|=1; print for @ARGV' "1: $first" "2: $second"
1: A

2: B

In general, the Julia backtick syntax is carefully designed so that you can just cut-and-paste shell commands
as is into backticks and they will work: the escaping, quoting, and interpolation behaviors are the same as
the shell's. The only difference is that the interpolation is integrated and aware of Julia's notion of what is
a single string value, and what is a container for multiple values. Let's try the above two examples in Julia:

julia> A = ‘perl -le '$|=1; for (0..3) { print }'°
“perl -le '$|=1; for (0..3) { print }'°

julia> run(A);
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w N = o

julia> first = "A"; second = "B";

julia> B = "perl -le 'print for @ARGV' "1: $first" "2: $second"’
‘perl -le 'print for @ARGV' 'l: A' '2: B'

julia> run(B);
1: A
2: B

The results are identical, and Julia's interpolation behavior mimics the shell's with some improvements
due to the fact that Julia supports first-class iterable objects while most shells use strings split on spaces
for this, which introduces ambiguities. When trying to port shell commands to Julia, try cut and pasting
first. Since Julia shows commands to you before running them, you can easily and safely just examine its
interpretation without doing any damage.

26.3 Pipelines

Shell metacharacters, such as |, & and >, need to be quoted (or escaped) inside of Julia's backticks:

julia> run( echo hello '|' sort’);
hello | sort

julia> run( echo hello \| sort’);
hello | sort

This expression invokes the echo command with three words as arguments: hello, |, and sort. The result
is that a single line is printed: hello | sort. How, then, does one construct a pipeline? Instead of using
'"| " inside of backticks, one uses pipeline:

julia> run(pipeline( echo hello", “sort’));
hello

This pipes the output of the echo command to the sort command. Of course, this isn't terribly interesting
since there's only one line to sort, but we can certainly do much more interesting things:

julia> run(pipeline( cut -d: -f3 /etc/passwd’, “sort -n', “tail -n5"))
210
211
212
213
214

This prints the highest five user IDs on a UNIX system. The cut, sort and tail commands are all spawned
as immediate children of the current julia process, with no intervening shell process. Julia itself does the
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work to setup pipes and connect file descriptors that is normally done by the shell. Since Julia does this
itself, it retains better control and can do some things that shells cannot.

Julia can run multiple commands in parallel:

julia> run( echo hello’” & “echo world');
world
hello

The order of the output here is non-deterministic because the two echo processes are started nearly simul-
taneously, and race to make the first write to the stdout descriptor they share with each other and the
julia parent process. Julia lets you pipe the output from both of these processes to another program:

julia> run(pipeline( echo world" & ‘echo hello’, ‘sort’));
hello
world

In terms of UNIX plumbing, what's happening here is that a single UNIX pipe object is created and written
to by both echo processes, and the other end of the pipe is read from by the sort command.

10 redirection can be accomplished by passing keyword arguments stdin, stdout, and stderr to the
pipeline function:

‘pipeline(‘do work®, stdout=pipeline( sort’, "out.txt"), stderr="errs.txt")

Avoiding Deadlock in Pipelines

When reading and writing to both ends of a pipeline from a single process, it is important to avoid forcing
the kernel to buffer all of the data.

For example, when reading all of the output from a command, call read (out, String), notwait(process),
since the former will actively consume all of the data written by the process, whereas the latter will attempt
to store the data in the kernel's buffers while waiting for a reader to be connected.

Another common solution is to separate the reader and writer of the pipeline into separate Tasks:

writer = @async write(process, "data")

reader = @async do_compute(read(process, String))
wait(writer)

fetch(reader)

(commonly also, reader is not a separate task, since we immediately fetch it anyways).

Complex Example

The combination of a high-level programming language, a first-class command abstraction, and automatic
setup of pipes between processes is a powerful one. To give some sense of the complex pipelines that can
be created easily, here are some more sophisticated examples, with apologies for the excessive use of Perl
one-liners:
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julia> prefixer(prefix, sleep) = ‘perl -nle '$|=1; print "'$prefix' ", $_; sleep '$sleep';"'";

julia> run(pipeline( perl -le '$|=1; for(0..5){ print; sleep 1 }'", prefixer("A",2) &
— prefixer("B",2)));

> W > W > W
U B WN R O

This is a classic example of a single producer feeding two concurrent consumers: one perl process gen-
erates lines with the numbers 0 through 5 on them, while two parallel processes consume that output,
one prefixing lines with the letter "A", the other with the letter "B". Which consumer gets the first line is
non-deterministic, but once that race has been won, the lines are consumed alternately by one process
and then the other. (Setting $|=1 in Perl causes each print statement to flush the stdout handle, which is
necessary for this example to work. Otherwise all the output is buffered and printed to the pipe at once,
to be read by just one consumer process.)

Here is an even more complex multi-stage producer-consumer example:
julia> run(pipeline( perl -le '$|=1; for(0..5){ print; sleep 1 }'",

prefixer("X",3) & prefixer("Y",3) & prefixer("z",3),
prefixer("A",2) & prefixer("B",2)));

@ > W > W >
N < X N < X
U A WN RO

This example is similar to the previous one, except there are two stages of consumers, and the stages have
different latency so they use a different number of parallel workers, to maintain saturated throughput.

We strongly encourage you to try all these examples to see how they work.
26.4 Cmd Objects

The backtick syntax create an object of type Cmd. Such object may also be constructed directly from an
existing Cmd or list of arguments:

run(Cmd( " pwd*, dir=".."))
run(Cmd(["pwd"], detach=true, ignorestatus=true))

This allows you to specify several aspects of the Cmd's execution environment via keyword arguments. For
example, the dir keyword provides control over the Cmd's working directory:

julia> run(Cmd( pwd', dir="/"));
/
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And the env keyword allows you to set execution environment variables:

julia> run(Cmd( sh -c "echo foo \$HOWLONG"', env=("HOWLONG" => "ever!",)));
foo ever!

See Cmd for additional keyword arguments. The setenv and addenv commands provide another means for
replacing or adding to the Cmd execution environment variables, respectively:

julia> run(setenv('sh -c "echo foo \$HOWLONG"', ("HOWLONG" => "ever!",)));
foo ever!

julia> run(addenv( sh -c "echo foo \$HOWLONG"', "HOWLONG" => "ever!"));
foo ever!



Chapter 27

Calling C and Fortran Code

Though most code can be written in Julia, there are many high-quality, mature libraries for numerical com-
puting already written in C and Fortran. To allow easy use of this existing code, Julia makes it simple and
efficient to call C and Fortran functions. Julia has a "no boilerplate" philosophy: functions can be called
directly from Julia without any "glue" code, code generation, or compilation - even from the interactive
prompt. This is accomplished just by making an appropriate call with the @ccall macro (or the less con-
venient ccall syntax, see the ccall syntax section).

The code to be called must be available as a shared library. Most C and Fortran libraries ship compiled as
shared libraries already, but if you are compiling the code yourself using GCC (or Clang), you will need to
use the -shared and - fPIC options. The machine instructions generated by Julia's JIT are the same as a
native C call would be, so the resulting overhead is the same as calling a library function from C code. *

By default, Fortran compilers generate mangled names (for example, converting function names to lower-
case or uppercase, often appending an underscore), and so to call a Fortran function you must pass the
mangled identifier corresponding to the rule followed by your Fortran compiler. Also, when calling a Fortran
function, all inputs must be passed as pointers to allocated values on the heap or stack. This applies not
only to arrays and other mutable objects which are normally heap-allocated, but also to scalar values such
as integers and floats which are normally stack-allocated and commonly passed in registers when using C
or Julia calling conventions.

The syntax for @ccall to generate a call to the library function is:

@ccall library.function name(argvaluel::argtypel, ...)::returntype
@ccall function name(argvaluel::argtypel, ...)::returntype
@ccall $function_pointer(argvaluel::argtypel, ...)::returntype

where library is a string constant or literal (but see Non-constant Function Specifications below). The
library may be omitted, in which case the function name is resolved in the current process. This form can
be used to call C library functions, functions in the Julia runtime, or functions in an application linked to
Julia. The full path to the library may also be specified. Alternatively, @ccall may also be used to call a
function pointer $function pointer, such as one returned by Libdl.dlsym. The argtypes corresponds to
the C-function signature and the argvalues are the actual argument values to be passed to the function.

Note

See below for how to map C types to Julia types.

343
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As a complete but simple example, the following calls the clock function from the standard C library on
most Unix-derived systems:

julia> t = @ccall clock()::Int32
2292761

julia> typeof(t)
Int32

clock takes no arguments and returns an Int32. To call the getenv function to get a pointer to the value
of an environment variable, one makes a call like this:

julia> path = @ccall getenv("SHELL"::Cstring)::Cstring
Cstring(@Ox00007fff5fbffc45)

julia> unsafe string(path)
"/bin/bash"

In practice, especially when providing reusable functionality, one generally wraps @ccall uses in Julia
functions that set up arguments and then check for errors in whatever manner the C or Fortran function
specifies. And if an error occurs it is thrown as a normal Julia exception. This is especially important since
C and Fortran APIs are notoriously inconsistent about how they indicate error conditions. For example,
the getenv C library function is wrapped in the following Julia function, which is a simplified version of the
actual definition from env.jl:

function getenv(var::AbstractString)
val = @ccall getenv(var::Cstring)::Cstring
if val == C NULL
error("getenv: undefined variable: ", var)
end
return unsafe string(val)

end

The C getenv function indicates an error by returning C_NULL, but other standard C functions indicate
errors in different ways, including by returning -1, 0, 1, and other special values. This wrapper throws an
exception indicating the problem if the caller tries to get a non-existent environment variable:

julia> getenv("SHELL")
"/bin/bash"

julia> getenv("FOOBAR")
ERROR: getenv: undefined variable: FOOBAR

Here is a slightly more complex example that discovers the local machine's hostname.

function gethostname()
hostname = Vector{UInt8} (undef, 256) # MAXHOSTNAMELEN
err = @ccall gethostname(hostname: :Ptr{UInt8}, sizeof(hostname)::Csize_t)::Int32
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Base.systemerror("gethostname", err != 0)

hostname[end] = 0 # ensure null-termination

return GC.@preserve hostname unsafe string(pointer(hostname))
end

This example first allocates an array of bytes. It then calls the C library function gethostname to populate
the array with the hostname. Finally, it takes a pointer to the hostname buffer, and converts the pointer to
a Julia string, assuming that it is a null-terminated C string.

It is common for C libraries to use this pattern of requiring the caller to allocate memory to be passed to
the callee and populated. Allocation of memory from Julia like this is generally accomplished by creating an
uninitialized array and passing a pointer to its data to the C function. This is why we don't use the Cstring
type here: as the array is uninitialized, it could contain null bytes. Converting to a Cstring as part of the
@ccall checks for contained null bytes and could therefore throw a conversion error.

Dereferencing pointer(hostname) with unsafe string is an unsafe operation as it requires access to
the memory allocated for hostname that may have been in the meanwhile garbage collected. The macro
GC.@preserve prevents this from happening and therefore accessing an invalid memory location.

Finally, here is an example of specifying a library via a path. We create a shared library with the following
content

#include <stdio.h>

void say y(int y)

{
printf("Hello from C: got y = %d.\n", y);

and compile it with gcc -fPIC -shared -o mylib.so mylib.c. It can then be called by specifying the
(absolute) path as the library name:

julia> @ccall "./mylib.so".say y(5::Cint)::Cvoid
Hello from C: got y = 5.

27.1 Creating C-Compatible Julia Function Pointers

It is possible to pass Julia functions to native C functions that accept function pointer arguments. For
example, to match C prototypes of the form:

typedef returntype (*functiontype)(argumenttype, ...)

The macro @cfunction generates the C-compatible function pointer for a call to a Julia function. The
arguments to @cfunction are:

1. Aulia function

2. The function's return type

3. A tuple of input types, corresponding to the function signature

Note

As with @ccall, the return type and the input types must be literal constants.
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Note

Currently, only the platform-default C calling convention is supported. This means that@cfunction-
generated pointers cannot be used in calls where WINAPI expects a stdcall function on 32-bit
Windows, but can be used on WIN64 (where stdcall is unified with the C calling convention).

Note

Callback functions exposed via @cfunction should not throw errors, as that will return control
to the Julia runtime unexpectedly and may leave the program in an undefined state.

A classic example is the standard C library gsort function, declared as:

void gsort(void *base, size t nitems, size t size,
int (*compare) (const void*, const void*));

The base argument is a pointer to an array of length nitems, with elements of size bytes each. compare is
a callback function which takes pointers to two elements a and b and returns an integer less/greater than
zero if a should appear before/after b (or zero if any order is permitted).

Now, suppose that we have a 1-d array A of values in Julia that we want to sort using the gsort function
(rather than Julia's built-in sort function). Before we consider calling qsort and passing arguments, we
need to write a comparison function:

julia> function mycompare(a, b)::Cint
return (a <b) ? -1 : ((a>Db) ? +1 : 0)
end;

gsort expects a comparison function that return a C int, so we annotate the return type to be Cint.

In order to pass this function to C, we obtain its address using the macro @cfunction:
‘julia> mycompare ¢ = @cfunction(mycompare, Cint, (Ref{Cdouble}, Ref{Cdouble}));

@cfunction requires three arguments: the Julia function (mycompare), the return type (Cint), and a literal
tuple of the input argument types, in this case to sort an array of Cdouble (Float64) elements.

The final call to gsort looks like this:

julia> A = [1.3, -2.7, 4.4, 3.1];

julia> @ccall gsort(A::Ptr{Cdouble}, length(A)::Csize_t, sizeof(eltype(A))::Csize_t,
< mycompare c::Ptr{Cvoid})::Cvoid

julia> A
4-element Vector{Float64}:
-2.7
1.3
3.1
4.4
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As the example shows, the original Julia array A has now been sorted: [-2.7, 1.3, 3.1, 4.4]. Note that
Julia takes care of converting the array to a Ptr{Cdouble}), computing the size of the element type in
bytes, and so on.

For fun, try inserting a println("mycompare($a, $b)") line into mycompare, which will allow you to see
the comparisons that qsort is performing (and to verify that it is really calling the Julia function that you
passed to it).

27.2 Mapping C Types to Julia

It is critical to exactly match the declared C type with its declaration in Julia. Inconsistencies can cause
code that works correctly on one system to fail or produce indeterminate results on a different system.

Note that no C header files are used anywhere in the process of calling C functions: you are responsible
for making sure that your Julia types and call signatures accurately reflect those in the C header file.?

Automatic Type Conversion

Julia automatically inserts calls to the Base.cconvert function to convert each argument to the specified
type. For example, the following call:

‘ @ccall "libfoo".foo(x::Int32, y::Float64)::Cvoid
will behave as if it were written like this:

@ccall "libfoo".foo(

Base.unsafe convert(Int32, Base.cconvert(Int32, x))::Int32,
Base.unsafe _convert(Float64, Base.cconvert(Float64, y))::Float64
) ::Cvoid

Base.cconvert normally just calls convert, but can be defined to return an arbitrary new object more
appropriate for passing to C. This should be used to perform all allocations of memory that will be accessed
by the C code. For example, this is used to convert an Array of objects (e.g. strings) to an array of pointers.

Base.unsafe convert handles conversion to Ptr types. It is considered unsafe because converting an
object to a native pointer can hide the object from the garbage collector, causing it to be freed prematurely.
Type Correspondences

First, let's review some relevant Julia type terminology:

Bits Types

There are several special types to be aware of, as no other type can be defined to behave the same:

* Float32
Exactly corresponds to the float type in C (or REAL*4 in Fortran).

¢ Float64
Exactly corresponds to the double type in C (or REAL*8 in Fortran).
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Syntax / Example Description
Keyword
mutable BitSet "Leaf Type" :: A group of related data that includes a type-tag, is
struct managed by the Julia GC, and is defined by object-identity. The type
parameters of a leaf type must be fully defined (no TypeVars are
allowed) in order for the instance to be constructed.
abstract | Any, "Super Type" :: A super-type (not a leaf-type) that cannot be
type AbstractArray{T)} instantiated, but can be used to describe a group of types.
N}, Complex{T}
T{A} Vector{Int} "Type Parameter" :: A specialization of a type (typically used for
dispatch or storage optimization).
"TypeVar" :: The T in the type parameter declaration is referred to as a
TypeVar (short for type variable).
primitive Int, Float64 "Primitive Type" :: A type with no fields, but a size. It is stored and
type defined by-value.
struct Pair{Int, Int} "Struct" :: A type with all fields defined to be constant. It is defined
by-value, and may be stored with a type-tag.
ComplexF64 "Is-Bits" :: Aprimitive type, or a struct type where all fields are
(isbits) other isbits types. It is defined by-value, and is stored without a
type-tag.
struct nothing "Singleton" :: a Leaf Type or Struct with no fields.
end
(...)or | (1, 2, 3) "Tuple" :: an immutable data-structure similar to an anonymous struct
tuple(...) type, or a constant array. Represented as either an array or a struct.

* ComplexF32

Exactly corresponds to the complex float type in C (or COMPLEX*8 in Fortran).

e ComplexF64

Exactly corresponds to the complex double type in C (or COMPLEX*16 in Fortran).

* Signed

Exactly corresponds to the signed type annotation in C (or any INTEGER type in Fortran). Any Julia
type that is not a subtype of Signed is assumed to be unsigned.

* Ref{T}

Behaves like a Ptr{T} that can manage its memory via the Julia GC.

Array{T,6N}
When an array is passed to C as a Ptr{T} argument, it is not reinterpret-cast: Julia requires that the

element type of the array matches T, and the address of the first element is passed.

Therefore, if an Array contains data in the wrong format, it will have to be explicitly converted using
a call such as trunc. (Int32, A).

To pass an array A as a pointer of a different type without converting the data beforehand (for ex-
ample, to pass a Float64 array to a function that operates on uninterpreted bytes), you can declare
the argument as Ptr{Cvoid}.
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If an array of eltype Ptr{T} is passed as a Ptr{Ptr{T}} argument, Base.cconvert will attempt to
first make a null-terminated copy of the array with each element replaced by its Base.cconvert
version. This allows, for example, passing an argv pointer array of type Vector{String} to an
argument of type Ptr{Ptr{Cchar}}.

On all systems we currently support, basic C/C++ value types may be translated to Julia types as follows.
Every C type also has a corresponding Julia type with the same name, prefixed by C. This can help when
writing portable code (and remembering that an int in C is not the same as an Int in Julia).

System Independent Types

The Cstring type is essentially a synonym for Ptr{UInt8}, except the conversion to Cstring throws an
error if the Julia string contains any embedded null characters (which would cause the string to be silently
truncated if the C routine treats null as the terminator). If you are passing a char* to a C routine that does
not assume null termination (e.g. because you pass an explicit string length), or if you know for certain
that your Julia string does not contain null and want to skip the check, you can use Ptr{UInt8} as the
argument type. Cstring can also be used as the ccall return type, but in that case it obviously does not
introduce any extra checks and is only meant to improve the readability of the call.

System Dependent Types

Note

When calling Fortran, all inputs must be passed by pointers to heap- or stack-allocated values,
so all type correspondences above should contain an additional Ptr{..} orRef{..} wrapper
around their type specification.

Warning

For string arguments (char*) the Julia type should be Cstring (if null-terminated data is ex-
pected), or either Ptr{Cchar} or Ptr{UInt8} otherwise (these two pointer types have the
same effect), as described above, not String. Similarly, for array arguments (T[] or T*), the
Julia type should again be Ptr{T}, not Vector{T}.

Warning

Julia's Char type is 32 bits, which is not the same as the wide-character type (wchar_t or
wint_t) on all platforms.

Warning

A return type of Union{} means the function will not return, i.e., C++11 [[noreturn]] or C11
_Noreturn (e.g. j1 throw or longjmp). Do not use this for functions that return no value
(void) but do return, for those, use Cvoid instead.

Note

For wchar_t* arguments, the Julia type should be Cwstring (if the C routine expects a null-
terminated string), or Ptr{Cwchar_t} otherwise. Note also that UTF-8 string data in Julia is
internally null-terminated, so it can be passed to C functions expecting null-terminated data
without making a copy (but using the Cwstring type will cause an error to be thrown if the
string itself contains null characters).
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Note

C functions that take an argument of type char** can be called by using a Ptr{Ptr{UInt8}}
type within Julia. For example, C functions of the form:

‘int main(int argc, char **argv);
can be called via the following Julia code:

argv = [ "a.out", "argl", "arg2" ]
@ccall main(length(argv)::Int32, argv::Ptr{Ptr{UInt8}})::Int32

Note

For Fortran functions taking variable length strings of type character(1len=*) the string lengths
are provided as hidden arguments. Type and position of these arguments in the list are com-
piler specific, where compiler vendors usually default to using Csize t astype and append the
hidden arguments at the end of the argument list. While this behaviour is fixed for some com-
pilers (GNU), others optionally permit placing hidden arguments directly after the character
argument (Intel, PGI). For example, Fortran subroutines of the form

subroutine test(strl, str2)
character(len=*) :: strl,str2

can be called via the following Julia code, where the lengths are appended

strl = "foo"

str2 = "bar"

ccall(:test, Cvoid, (Ptr{UInt8}, Ptr{UInt8}, Csize_t, Csize_t),
strl, str2, sizeof(strl), sizeof(str2))

Warning

Fortran compilers may also add other hidden arguments for pointers, assumed-shape (:) and
assumed-size (*) arrays. Such behaviour can be avoided by using IS0 C BINDING and includ-
ing bind(c) in the definition of the subroutine, which is strongly recommended for interop-
erable code. In this case, there will be no hidden arguments, at the cost of some language
features (e.g. only character(len=1) will be permitted to pass strings).

Note

A C function declared to return Cvoid will return the value nothing in Julia.

Struct Type Correspondences

Composite types such as struct in C or TYPE in Fortran90 (or STRUCTURE / RECORD in some variants of F77),
can be mirrored in Julia by creating a struct definition with the same field layout.

When used recursively, isbits types are stored inline. All other types are stored as a pointer to the data.
When mirroring a struct used by-value inside another struct in C, it is imperative that you do not attempt
to manually copy the fields over, as this will not preserve the correct field alignment. Instead, declare an
isbits struct type and use that instead. Unnamed structs are not possible in the translation to Julia.

Packed structs and union declarations are not supported by Julia.
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You can get an approximation of a union if you know, a priori, the field that will have the greatest size
(potentially including padding). When translating your fields to Julia, declare the Julia field to be only of
that type.

Arrays of parameters can be expressed with NTuple. For example, the struct in C notation is written as

struct B {
int A[3];
+

b a 2 = B.A[2];

can be written in Julia as

struct B
A::NTuple{3, Cint}
end

b a 2 = B.A[3] # note the difference in indexing (1l-based in Julia, 0-based in C)

Arrays of unknown size (C99-compliant variable length structs specified by [] or [0]) are not directly
supported. Often the best way to deal with these is to deal with the byte offsets directly. For example, if a
C library declared a proper string type and returned a pointer to it:

struct String {
int strlen;
char datal];
}

In Julia, we can access the parts independently to make a copy of that string:

str = from c::Ptr{Cvoid}
len = unsafe load(Ptr{Cint}(str))
unsafe string(str + Core.sizeof(Cint), len)

Type Parameters

The type arguments to @ccall and @cfunction are evaluated statically, when the method containing the
usage is defined. They therefore must take the form of a literal tuple, not a variable, and cannot reference
local variables.

This may sound like a strange restriction, but remember that since C is not a dynamic language like Julia,
its functions can only accept argument types with a statically-known, fixed signature.

However, while the type layout must be known statically to compute the intended C ABI, the static param-
eters of the function are considered to be part of this static environment. The static parameters of the
function may be used as type parameters in the call signature, as long as they don't affect the layout of
the type. For example, f(x::T) where {T} = @ccall valid(x::Ptr{T})::Ptr{T} is valid, since Ptris
always a word-size primitive type. But, g(x::T) where {T} = @ccall notvalid(x::T)::T is not valid,
since the type layout of T is not known statically.
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SIMD Values
Note: This feature is currently implemented on 64-bit x86 and AArch64 platforms only.

If a C/C++ routine has an argument or return value that is a native SIMD type, the corresponding Julia type
is a homogeneous tuple of VecElement that naturally maps to the SIMD type. Specifically:

* The tuple must be the same size as the SIMD type. For example, a tuple representing an
~m128 on x86 must have a size of 16 bytes.

* The element type of the tuple must be an instance of VecElement{T} where T is a prim-
itive type that is 1, 2, 4 or 8 bytes.

For instance, consider this C routine that uses AVX intrinsics:
#include <immintrin.h>
_ m256 dist( _m256 a, m256 b ) {

return mm256 sqrt ps( mm256 add ps( mm256 mul ps(a, a),
~mm256_mul _ps(b, b)));

The following Julia code calls dist using ccall:

const m256 = NTuple{8, VecElement{Float32}}

a = m256(ntuple(i -> VecElement(sin(Float32(i))), 8))
m256 (ntuple(i -> VecElement(cos(Float32(i))), 8))

function call dist(a::m256, b::m256)
@ccall "libdist".dist(a::m256, b::m256)::m256
end

println(call _dist(a,b))

The host machine must have the requisite SIMD registers. For example, the code above will not work on
hosts without AVX support.

Memory Ownership
malloc/free

Memory allocation and deallocation of such objects must be handled by calls to the appropriate cleanup
routines in the libraries being used, just like in any C program. Do not try to free an object received from a
C library with Libc. free in Julia, as this may result in the free function being called via the wrong library
and cause the process to abort. The reverse (passing an object allocated in Julia to be freed by an external
library) is equally invalid.

When to use T, Ptr{T} and Ref{T}

In Julia code wrapping calls to external C routines, ordinary (non-pointer) data should be declared to be
of type T inside the @ccall, as they are passed by value. For C code accepting pointers, Ref{T} should
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generally be used for the types of input arguments, allowing the use of pointers to memory managed
by either Julia or C through the implicit call to Base.cconvert. In contrast, pointers returned by the C
function called should be declared to be of the output type Ptr{T}, reflecting that the memory pointed to
is managed by C only. Pointers contained in C structs should be represented as fields of type Ptr{T} within
the corresponding Julia struct types designed to mimic the internal structure of corresponding C structs.

In Julia code wrapping calls to external Fortran routines, all input arguments should be declared as of type
Ref{T}, as Fortran passes all variables by pointers to memory locations. The return type should either be
Cvoid for Fortran subroutines, or a T for Fortran functions returning the type T.

27.3 Mapping C Functions to Julia

@ccall / @cfunction argument translation guide

For translating a C argument list to Julia:

* T, where T is one of the primitive types: char, int, long, short, float, double, complex, enum or
any of their typedef equivalents

- T, where T is an equivalent Julia Bits Type (per the table above)
- if T is an enum, the argument type should be equivalent to Cint or Cuint

- argument value will be copied (passed by value)
e struct T (including typedef to a struct)

- T, where T is a Julia leaf type

- argument value will be copied (passed by value)
e void*

- depends on how this parameter is used, first translate this to the intended pointer type, then
determine the Julia equivalent using the remaining rules in this list

- this argument may be declared as Ptr{Cvoid} if it really is just an unknown pointer
* jl value_t*

- Any

- argument value must be a valid Julia object

* jl value t* const*

- Ref{Any}
- argument list must be a valid Julia object (or C_NULL)

- cannot be used for an output parameter, unless the user is able to separately arrange for the
object to be GC-preserved

- Ref{T}, where T is the Julia type corresponding to T
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- argument value will be copied if it is an inlinealloc type (which includes isbits otherwise,
the value must be a valid Julia object

T (*)(...) (e.g. a pointer to a function)

- Ptr{Cvoid} (you may need to use @cfunction explicitly to create this pointer)

* ... (e.g. avararg)
for ccall : T..., where T is the single Julia type of all remaining arguments
for@ccall :; va argl::T, va arg2::S, etc, whereTandS are the Julia type (i.e. separate the regular

arguments from varargs with a ;)

- currently unsupported by @cfunction
* va arg

- not supported by ccall or @cfunction

@ccall /@cfunction return type translation guide

For translating a C return type to Julia:

* void
- Cvoid (this will return the singleton instance nothing: :Cvoid)

* T, where T is one of the primitive types: char, int, long, short, float, double, complex, enum or
any of their typedef equivalents

- T, where T is an equivalent Julia Bits Type (per the table above)
- if T is an enum, the argument type should be equivalent to Cint or Cuint

- argument value will be copied (returned by-value)
e struct T (including typedef to a struct)

- T, where T is a Julia Leaf Type

- argument value will be copied (returned by-value)
e void*

- depends on how this parameter is used, first translate this to the intended pointer type, then
determine the Julia equivalent using the remaining rules in this list

- this argument may be declared as Ptr{Cvoid} if it really is just an unknown pointer
* jl value t*

- Any

- argument value must be a valid Julia object

* j1 value t**
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- Ptr{Any} (Ref{Any} is invalid as a return type)
o T¥

- If the memory is already owned by Julia, or is an isbits type, and is known to be non-null:

*x Ref{T}, where T is the Julia type corresponding to T

* areturn type of Ref{Any} isinvalid, it should either be Any (correspondingto j1 value t*)
or Ptr{Any} (corresponding to j1 value t**)

* C MUST NOT modify the memory returned via Ref{T} if T is an isbits type
- If the memory is owned by C:

* Ptr{T}, where T is the Julia type corresponding to T
T (*)(...) (e.g. a pointer to a function)

- Ptr{Cvoid} to call this directly from Julia you will need to pass this as the first argument to
@ccall. See Indirect Calls.

Passing Pointers for Modifying Inputs

Because C doesn't support multiple return values, often C functions will take pointers to data that the
function will modify. To accomplish this within a @ccall, you need to first encapsulate the value inside a
Ref{T} of the appropriate type. When you pass this Ref object as an argument, Julia will automatically
pass a C pointer to the encapsulated data:

width Ref{Cint}(0)
range = Ref{Cfloat}(0)
@ccall foo(width::Ref{Cint}, range::Ref{Cfloat})::Cvoid

Upon return, the contents of width and range can be retrieved (if they were changed by foo) by width[]
and range[]; that is, they act like zero-dimensional arrays.

27.4 C Wrapper Examples

Let's start with a simple example of a C wrapper that returns a Ptr type:

mutable struct gsl permutation
end

# The corresponding C signature is
# gsl permutation * gsl permutation alloc (size t n);
function permutation_alloc(n::Integer)
output ptr = @ccall "libgsl".gsl permutation alloc(n::Csize_t)::Ptr{gsl permutation}
if output ptr == C NULL # Could not allocate memory
throw(OutOfMemoryError())
end
return output_ptr
end




CHAPTER 27. CALLING C AND FORTRAN CODE 356

The GNU Scientific Library (here assumed to be accessible through :1ibgsl) defines an opaque pointer,
gsl permutation *, as the return type of the C function gsl permutation alloc. As user code never
has to look inside the gs1 permutation struct, the corresponding Julia wrapper simply needs a new type
declaration, gsl permutation, that has no internal fields and whose sole purpose is to be placed in the
type parameter of a Ptr type. The return type of the ccall is declared as Ptr{gsl permutation}, since
the memory allocated and pointed to by output ptris controlled by C.

The input n is passed by value, and so the function's input signature is simply declared as : :Csize t with-
out any Ref or Ptr necessary. (If the wrapper was calling a Fortran function instead, the corresponding
function input signature would instead be ::Ref{Csize t}, since Fortran variables are passed by point-
ers.) Furthermore, n can be any type that is convertible to a Csize t integer; the ccall implicitly calls
Base.cconvert(Csize t, n).

Here is a second example wrapping the corresponding destructor:

# The corresponding C signature is
# void gsl permutation free (gsl permutation * p);
function permutation_free(p::Ptr{gsl permutation})
@ccall "libgsl".gsl permutation free(p::Ptr{gsl permutation})::Cvoid
end

Here is a third example passing Julia arrays:

# The corresponding C signature 1is
# int gsl sf bessel Jn array (int nmin, int nmax, double X,
# double result array[])
function sf bessel Jn array(nmin::Integer, nmax::Integer, x::Real)
if nmax < nmin
throw(DomainError())
end
result array = Vector{Cdouble}(undef, nmax - nmin + 1)
errorcode = @ccall "libgsl".gsl sf bessel Jn array(
nmin::Cint, nmax::Cint, x::Cdouble, result array::Ref{Cdouble})::Cint
if errorcode != 0
error("GSL error code $errorcode")
end
return result array
end

The C function wrapped returns an integer error code; the results of the actual evaluation of the Bessel |
function populate the Julia array result_array. This variable is declared as a Ref{Cdouble}, since its mem-
ory is allocated and managed by Julia. The implicit call to Base.cconvert (Ref{Cdouble}, result array)
unpacks the Julia pointer to a Julia array data structure into a form understandable by C.

27.5 Fortran Wrapper Example

The following example utilizes ccall to call a function in a common Fortran library (libBLAS) to compute a
dot product. Notice that the argument mapping is a bit different here than above, as we need to map from
Julia to Fortran. On every argument type, we specify Ref or Ptr. This mangling convention may be specific
to your Fortran compiler and operating system and is likely undocumented. However, wrapping each in a
Ref (or Ptr, where equivalent) is a frequent requirement of Fortran compiler implementations:


https://www.gnu.org/software/gsl/
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function compute dot(DX::Vector{Float64}, DY::Vector{Float64})
@assert length(DX) == length(DY)
n = length(DX)
incx = incy = 1
product = @ccall "LibLAPACK".ddot(
n::Ref{Int32}, DX::Ptr{Float64}, incx::Ref{Int32}, DY::Ptr{Float64},
— incy::Ref{Int32})::Float64
return product
end

27.6 Garbage Collection Safety

When passing data to a@ccall, itis best to avoid using the pointer function. Instead define a Base.cconvert
method and pass the variables directly to the @ccall. @ccall automatically arranges that all of its argu-
ments will be preserved from garbage collection until the call returns. If a C API will store a reference to
memory allocated by Julia, after the @ccall returns, you must ensure that the object remains visible to the
garbage collector. The suggested way to do this is to make a global variable of type Array{Ref, 1} to hold
these values until the C library notifies you that it is finished with them.

Whenever you have created a pointer to Julia data, you must ensure the original data exists until you
have finished using the pointer. Many methods in Julia such as unsafe load and String make copies of
data instead of taking ownership of the buffer, so that it is safe to free (or alter) the original data without
affecting Julia. A notable exception is unsafe wrap which, for performance reasons, shares (or can be told
to take ownership of) the underlying buffer.

The garbage collector does not guarantee any order of finalization. That is, if a contained a reference to b
and both a and b are due for garbage collection, there is no guarantee that b would be finalized after a. If
proper finalization of a depends on b being valid, it must be handled in other ways.

27.7 Non-constant Function Specifications

In some cases, the exact name or path of the needed library is not known in advance and must be com-
puted at run time. To handle such cases, the library component specification can be a function call, e.g.
find blas().dgemm. The call expression will be executed when the ccall itself is executed. However, it
is assumed that the library location does not change once it is determined, so the result of the call can be
cached and reused. Therefore, the number of times the expression executes is unspecified, and returning
different values for multiple calls results in unspecified behavior.

If even more flexibility is needed, it is possible to use computed values as function names by staging
through eval as follows:

@eval @ccall "lib".$(string("a", "b"))()::Cint

This expression constructs a name using string, then substitutes this name into a new @ccall expression,
which is then evaluated. Keep in mind that eval only operates at the top level, so within this expression
local variables will not be available (unless their values are substituted with $). For this reason, eval is
typically only used to form top-level definitions, for example when wrapping libraries that contain many
similar functions. A similar example can be constructed for @cfunction.

However, doing this will also be very slow and leak memory, so you should usually avoid this and instead
keep reading. The next section discusses how to use indirect calls to efficiently achieve a similar effect.
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27.8 Indirect Calls

The first argument to @ccall can also be an expression evaluated at run time. In this case, the expression
must evaluate to a Ptr, which will be used as the address of the native function to call. This behavior occurs
when the first @ccall argument contains references to non-constants, such as local variables, function
arguments, or non-constant globals.

For example, you might look up the function via dlsym, then cache it in a shared reference for that session.
For example:

macro dlsym(lib, func)
z = Ref{Ptr{Cvoid}}(C NULL)
quote
let zlocal = $z[]
if zlocal == C NULL
zlocal = dlsym($(esc(lib))::Ptr{Cvoid}, $(esc(func)))::Ptr{Cvoid}
$z[] = zlocal
end
zlocal
end
end
end

mylibvar = Libdl.dlopen("mylib")
@ccall $(@dlsym(mylibvar, "myfunc"))()::Cvoid

27.9 Closure cfunctions

The first argument to @cfunction can be marked with a $, in which case the return value will instead be a
struct CFunction which closes over the argument. You must ensure that this return object is kept alive
until all uses of it are done. The contents and code at the cfunction pointer will be erased via a finalizer
when this reference is dropped and atexit. This is not usually needed, since this functionality is not present
in C, but can be useful for dealing with ill-designed APIs which don't provide a separate closure environment
parameter.

function gsort(a::Vector{T}, cmp) where T
isbits(T) || throw(ArgumentError("this method can only gsort isbits arrays"))
callback = @cfunction $cmp Cint (Ref{T}, Ref{T})
# Here, “callback®™ isa Base.CFunction, which will be converted to Ptr{Cvoid}
# (and protected against finalization) by the ccall
@ccall gsort(a::Ptr{T}, length(a)::Csize_t, Base.elsize(a)::Csize_t, callback::Ptr{Cvoid})
# We could instead use:
# GC.@preserve callback begin

# use(Base.unsafe convert(Ptr{Cvoid}, callback))
# end
# if we needed to use it outside of a “ccall’
return a
end
Note

Closure @cfunction relies on LLVM trampolines, which are not available on all platforms (for
example ARM and PowerPC).
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27.10 Closing a Library

It is sometimes useful to close (unload) a library so that it can be reloaded. For instance, when developing
C code for use with Julia, one may need to compile, call the C code from Julia, then close the library, make
an edit, recompile, and load in the new changes. One can either restart Julia or use the Libd1 functions to
manage the library explicitly, such as:

lib = Libdl.dlopen("./my lib.so") # Open the library explicitly.

sym = Libdl.dlsym(lib, :my_ fcn) # Get a symbol for the function to call.
@ccall $sym(...) # Use the pointer “sym’ instead of the library.symbol tuple.
Libdl.dlclose(lib) # Close the library explicitly.

Note that when using @ccall with the input (e.g., @ccall "./my lib.so".my fcn(...)::Cvoid), the li-
brary is opened implicitly and it may not be explicitly closed.

27.11 Variadic function calls

To call variadic C functions a semicolon can be used in the argument list to separate required arguments
from variadic arguments. An example with the printf function is given below:

julia> @ccall printf("%s = %d\n"::Cstring ; "foo"::Cstring, foo::Cint)::Cint
foo = 3
8

27.12 ccall interface

There is another alternative interface to @ccall. This interface is slightly less convenient but it does allow
one to specify a calling convention.

The arguments to ccall are:

1. A (:function, "library") pair (most common),
OR
a :function name symbol or "function" name string (for symbols in the current process or libc),
OR

a function pointer (for example, from dlsym).
2. The function's return type

3. A tuple of input types, corresponding to the function signature. One common mistake is forgetting
that a 1-tuple of argument types must be written with a trailing comma.

4. The actual argument values to be passed to the function, if any; each is a separate parameter.

Note

The (:function, "library") pair, return type, and input types must be literal constants (i.e.,
they can't be variables, but see Non-constant Function Specifications).

The remaining parameters are evaluated at compile-time, when the containing method is
defined.
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A table of translations between the macro and function interfaces is given below.

27.13 Calling Convention

The second argument to ccall (immediately preceding return type) can optionally be a calling convention
specifier (the @ccall macro currently does not support giving a calling convention). Without any specifier,
the platform-default C calling convention is used. Other supported conventions are: stdcall, cdecl,
fastcall, and thiscall (no-op on 64-bit Windows). For example (from base/libc.j1l) we see the same
gethostnameccall as above, but with the correct signature for Windows:

hn = Vector{UInt8}(undef, 256)
err = ccall(:gethostname, stdcall, Int32, (Ptr{UInt8}, UInt32), hn, length(hn))

For more information, please see the LLVM Language Reference.

There is one additional special calling convention 1lvmcall, which allows inserting calls to LLVM intrinsics
directly. This can be especially useful when targeting unusual platforms such as GPGPUs. For example, for
CUDA, we need to be able to read the thread index:

‘ccall("llvm.nvvm.read.ptx.sreg.tid.x", 1lvmcall, Int32, ())

As with any ccall, it is essential to get the argument signature exactly correct. Also, note that there is
no compatibility layer that ensures the intrinsic makes sense and works on the current target, unlike the
equivalent Julia functions exposed by Core.Intrinsics.

27.14 Accessing Global Variables

Global variables exported by native libraries can be accessed by name using the cglobal function. The
arguments to cglobal are a symbol specification identical to that used by ccall, and a type describing
the value stored in the variable:

julia> cglobal((:errno, :libc), Int32)
Ptr{Int32} @0x00007f418d0816b8

The result is a pointer giving the address of the value. The value can be manipulated through this pointer
using unsafe load and unsafe storel!.

Note

This errno symbol may not be found in a library named "libc", as this is an implementation
detail of your system compiler. Typically standard library symbols should be accessed just
by name, allowing the compiler to fill in the correct one. Also, however, the errno symbol
shown in this example is special in most compilers, and so the value seen here is probably not
what you expect or want. Compiling the equivalent code in C on any multi-threaded-capable
system would typically actually call a different function (via macro preprocessor overloading),
and may give a different result than the legacy value printed here.


https://llvm.org/docs/LangRef.html#calling-conventions
https://llvm.org/docs/NVPTXUsage.html

CHAPTER 27. CALLING C AND FORTRAN CODE 361

27.15 Accessing Data through a Pointer

The following methods are described as "unsafe" because a bad pointer or type declaration can cause Julia
to terminate abruptly.

Given a Ptr{T}, the contents of type T can generally be copied from the referenced memory into a Julia
object using unsafe load(ptr, [index]). The index argument is optional (default is 1), and follows the
Julia-convention of 1-based indexing. This function is intentionally similar to the behavior of getindex and
setindex! (e.g. [] access syntax).

The return value will be a new object initialized to contain a copy of the contents of the referenced memory.
The referenced memory can safely be freed or released.

If Tis Any, then the memory is assumed to contain a reference to a Julia object (a j1 value t*), the result
will be a reference to this object, and the object will not be copied. You must be careful in this case to ensure
that the object was always visible to the garbage collector (pointers do not count, but the new reference
does) to ensure the memory is not prematurely freed. Note that if the object was not originally allocated
by Julia, the new object will never be finalized by Julia's garbage collector. If the Ptr itself is actually a
j1 value t*, it can be converted back to a Julia object reference by unsafe pointer to objref(ptr).
(Julia values v can be convertedto j1_value_ t* pointers, as Ptr{Cvoid}, by calling pointer from objref(v).)

The reverse operation (writing data to a Ptr{T}), can be performed using unsafe store! (ptr, value,
[index]). Currently, this is only supported for primitive types or other pointer-free (isbits) immutable
struct types.

Any operation that throws an error is probably currently unimplemented and should be posted as a bug so
that it can be resolved.

If the pointer of interest is a plain-data array (primitive type orimmutable struct), the function unsafe wrap(Array,
ptr,dims, own = false) may be more useful. The final parameter should be true if Julia should "take
ownership" of the underlying buffer and call free(ptr) when the returned Array object is finalized. If the

own parameter is omitted or false, the caller must ensure the buffer remains in existence until all access is
complete.

Arithmetic on the Ptr type in Julia (e.g. using +) does not behave the same as C's pointer arithmetic.
Adding an integer to a Ptr in Julia always moves the pointer by some number of bytes, not elements. This
way, the address values obtained from pointer arithmetic do not depend on the element types of pointers.

27.16 Thread-safety

Some C libraries execute their callbacks from a different thread, and since Julia isn't thread-safe you'll need
to take some extra precautions. In particular, you'll need to set up a two-layered system: the C callback
should only schedule (via Julia's event loop) the execution of your "real" callback. To do this, create an
AsyncCondition object and wait on it:

cond = Base.AsyncCondition()
wait(cond)

The callback you pass to C should only execute a ccall to :uv_async_send, passing cond.handle as the
argument, taking care to avoid any allocations or other interactions with the Julia runtime.

Note that events may be coalesced, so multiple calls to uv_async_send may result in a single wakeup
notification to the condition.
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27.17 More About Callbacks

For more details on how to pass callbacks to C libraries, see this blog post.

27.18 C++

For tools to create C++ bindings, see the CxxWrap package.

INon-library function calls in both C and Julia can be inlined and thus may have even less overhead than calls to shared library
functions. The point above is that the cost of actually doing foreign function call is about the same as doing a call in either native
language.

2The Clang package can be used to auto-generate Julia code from a C header file.


https://julialang.org/blog/2013/05/callback
https://github.com/JuliaInterop/CxxWrap.jl
https://github.com/ihnorton/Clang.jl
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C name Fortran Stan- Julia Base Type

name dard

Julia
Alias

unsigned char CHARACTER | Cuchar UInt8
bool (_Bool in C99+) Cuchar UInt8
short INTEGER*2, | Cshort Intl6

LOGICAL*2
unsigned short Cushort UIntl6
int, BOOL (C, typical) INTEGER*4, | Cint Int32

LOGICAL*4
unsigned int Cuint UInt32
long long INTEGER*8, | Clonglong Int64

LOGICAL*8
unsigned long long CulonglongUInt64
intmax_t Cintmax_t Int64
uintmax_t Cuintmax |tUInt64
float REAL*41 Cfloat Float32
double REAL*8 Cdouble Float64
complex float COMPLEX*8 | ComplexF32Complex{Float32}
complex double COMPLEX*16| ComplexF@4Complex{Float64}
ptrdiff t Cptrdiff [tInt
ssize t Cssize t | Int
size t Csize t UInt
void Cvoid
void and [[noreturn]] Union{}
or Noreturn
void* Ptr{Cvoid} (or similarly Ref{Cvoid})
T* (where T represents Ref{T} (T may be safely mutated only if T is an
an appropriately defined isbits type)
type)
char* (or char[], e.qg. a CHARACTER*N Cstring if null-terminated, or Ptr{UInt8} if not

string)

char** (or *char[1])

Ptr{Ptr{UInt8}}

j1 value t* (any Julia
Type)

Any

jl value_t* const* (a
reference to a Julia value)

Ref{Any} (const, since mutation would require
a write barrier, which is not possible to insert
correctly)

va_arg

Not supported

. (variadic function
specification)

T... (where T is one of the above types, when
using the ccall function)

. (variadic function
specification)

; va_argl::T, va arg2::S, etc. (only
supported with @ccall macro)
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C name Standard Julia Alias | Julia Base Type
char Cchar Int8 (x86, x86_64), UInt8 (powerpc, arm)
long Clong Int (UNIX), Int32 (Windows)
unsigned long | Culong UInt (UNIX), UInt32 (Windows)
wchar_t Cwchar_t Int32 (UNIX), UInt16 (Windows)
@ccall ccall

@ccall clock()::Int32

ccall(:clock, Int32, ())

@ccall f(a::Cint)::Cint

ccall(:a, Cint, (Cint,), a)

@ccall "mylib".f(a::Cint,
b::Cdouble)::Cvoid

ccall((:f, "mylib"), Cvoid, (Cint,
Cdouble), (a, b))

@ccall $fptr.f()::Cvoid

ccall(fptr, f, Cvoid, ())

@ccall printf("%s = %d\n"::Cstring ;
"foo"::Cstring, foo::Cint)::Cint

<unavailable>

@ccall printf("%ss = %d\n"::Cstring ; "2 +
2"::Cstring, "5"::Cstring)::Cint

ccall(:printf, Cint, (Cstring,
Cstring...), "%s = %s\n", "2 + 2", "5")

<unavailable>

ccall(:gethostname, stdcall, Int32,
(Ptr{UInt8}, UInt32), hn, length(hn))
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Handling Operating System Variation

When writing cross-platform applications or libraries, it is often necessary to allow for differences between
operating systems. The variable Sys .KERNEL can be used to handle such cases. There are several functions
in the Sys module intended to make this easier, such as isunix, islinux, isapple, isbsd, isfreebsd,
and iswindows. These may be used as follows:

if Sys.iswindows()
windows specific_thing(a)
end

Note that islinux, isapple, and isfreebsd are mutually exclusive subsets of isunix. Additionally, there
is @ macro @static which makes it possible to use these functions to conditionally hide invalid code, as
demonstrated in the following examples.

Simple blocks:

ccall((@static Sys.iswindows() ? : fopen : :fopen), ...)

Complex blocks:

@static if Sys.islinux()
linux_specific_thing(a)
elseif Sys.isapple()
apple_specific_thing(a)
else
generic_thing(a)
end

When nesting conditionals, the @static must be repeated for each level (parentheses optional, but rec-
ommended for readability):

@static Sys.iswindows() ? :a : (@static Sys.isapple() ? :b : :c)

365
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Environment Variables

Julia can be configured with a number of environment variables, set either in the usual way for each operat-
ing system, or in a portable way from within Julia. Supposing that you want to set the environment variable
JULIA EDITORto vim, you cantype ENV["JULIA EDITOR"] = "vim" (forinstance, in the REPL) to make this
change on a case by case basis, or add the same to the user configuration file~/. julia/config/startup.jl
in the user's home directory to have a permanent effect. The current value of the same environment vari-
able can be determined by evaluating ENV["JULIA EDITOR"].

The environment variables that Julia uses generally start with JULIA. If InteractiveUtils.versioninfois
called with the keyword verbose=true, then the output will list any defined environment variables relevant
for Julia, including those which include JULIA in their names.

Note

Some variables, such as JULIA NUM THREADS and JULIA PROJECT, need to be set before Ju-
lia starts, therefore adding these to ~/.julia/config/startup.jl is too late in the startup
process. In Bash, environment variables can either be set manually by running, e.g., export
JULIA NUM THREADS=4 before starting Julia, or by adding the same command to ~/.bashrc or
~/.bash _profile to set the variable each time Bash is started.

29.1 File locations

JULIA_BINDIR

The absolute path of the directory containing the Julia executable, which sets the global variable Sys . BINDIR.
If $JULIA BINDIR is not set, then Julia determines the value Sys.BINDIR at run-time.

The executable itself is one of
$JULIA BINDIR/julia
$JULIA_BINDIR/julia-debug
by default.

The global variable Base.DATAROOTDIR determines a relative path from Sys.BINDIR to the data directory
associated with Julia. Then the path

‘ $JULIA_BINDIR/$DATAROOTDIR/julia/base

366
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determines the directory in which Julia initially searches for source files (via Base.find source file()).

Likewise, the global variable Base.SYSCONFDIR determines a relative path to the configuration file directory.
Then Julia searches for a startup.jl file at

$JULIA BINDIR/$SYSCONFDIR/julia/startup.jl
$JULIA BINDIR/../etc/julia/startup.jl

by default (via Base.load julia startup()).

For example, a Linux installation with a Julia executable located at /bin/julia, a DATAROOTDIR of . ./share,
and a SYSCONFDIR of . ./etc will have JULIA BINDIR set to /bin, a source-file search path of

‘ /share/julia/base

and a global configuration search path of

‘ /etc/julia/startup.jl

JULIA_PROJECT

A directory path that indicates which project should be the initial active project. Setting this environment
variable has the same effect as specifying the - -project start-up option, but - -project has higher prece-
dence. If the variable is set to @. (note the trailing dot) then Julia tries to find a project directory that
contains Project.toml or JuliaProject. toml file from the current directory and its parents. See also the
chapter on Code Loading.

Note

JULIA PROJECT must be defined before starting julia; defining it in startup.jl is too late in
the startup process.

JULIA_LOAD_PATH

The JULIA LOAD PATH environment variable is used to populate the global Julia LOAD PATH variable, which
determines which packages can be loaded via import and using (see Code Loading).

Unlike the shell PATH variable, empty entries in JULIA LOAD PATH are expanded to the default value
of LOAD PATH, ["@", "@v#.#", "@stdlib"] when populating LOAD PATH. This allows easy appending,
prepending, etc. of the load path value in shell scripts regardless of whether JULIA LOAD PATH is already
set or not. For example, to prepend the directory /foo/bar to LOAD PATH just do

export JULIA LOAD PATH="/foo/bar:$JULIA LOAD_PATH"

If the JULIA LOAD_ PATH environment variable is already set, its old value will be prepended with /foo/bar.
On the other hand, if JULIA LOAD PATH is not set, then it will be set to /foo/bar: which will expand to a
LOAD PATH value of ["/foo/bar", "@", "@v#.#", "@stdlib"]. If JULIA LOAD PATH is set to the empty
string, it expands to an empty LOAD PATH array. In other words, the empty string is interpreted as a zero-
element array, not a one-element array of the empty string. This behavior was chosen so that it would be
possible to set an empty load path via the environment variable. If you want the default load path, either
unset the environment variable or if it must have a value, set it to the string :.

Note

On Windows, path elements are separated by the ; character, as is the case with most path
lists on Windows. Replace : with ; in the above paragraph.
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JULIA_DEPOT_PATH

The JULIA DEPOT PATH environment variable is used to populate the global Julia DEPOT PATH variable,
which controls where the package manager, as well as Julia's code loading mechanisms, look for pack-
age registries, installed packages, named environments, repo clones, cached compiled package images,
configuration files, and the default location of the REPL's history file.

Unlike the shell PATH variable but similar to JULIA LOAD PATH, empty entries in JULIA DEPOT_PATH are
expanded to the default value of DEPOT PATH. This allows easy appending, prepending, etc. of the depot
path value in shell scripts regardless of whether JULIA DEPOT PATH is already set or not. For example, to
prepend the directory /foo/bar to DEPOT PATH just do

export JULIA DEPOT_PATH="/foo/bar:$JULIA DEPOT_PATH"

Ifthe JULIA DEPOT PATH environment variable is already set, its old value will be prepended with /foo/bar.
On the other hand, if JULIA DEPOT PATH is not set, then it will be set to /foo/bar: which will have the
effect of prepending /foo/bar to the default depot path. If JULIA DEPOT PATH is set to the empty string, it
expands to an empty DEPOT_PATH array. In other words, the empty string is interpreted as a zero-element
array, not a one-element array of the empty string. This behavior was chosen so that it would be possible
to set an empty depot path via the environment variable. If you want the default depot path, either unset
the environment variable or if it must have a value, set it to the string :.

Note

On Windows, path elements are separated by the ; character, as is the case with most path
lists on Windows. Replace : with ; in the above paragraph.

Note

JULIA DEPOT PATH must be defined before starting julia; defining it in startup.jlis too late
in the startup process; at that point you can instead directly modify the DEPOT PATH array,
which is populated from the environment variable.

JULIA_HISTORY

The absolute path REPL.find hist file() of the REPL's history file. If $JULIA HISTORY is not set, then
REPL.find hist file() defaults to

| $(DEPOT_PATH[1])/logs/repl_history.jl

JULIA_MAX_NUM_PRECOMPILE_FILES

Sets the maximum number of different instances of a single package that are to be stored in the precompile
cache (default = 10).

JULIA_VERBOSE_LINKING

If set to true, linker commands will be displayed during precompilation.
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29.2 Pkg.jl

JULIA CI

If set to true, this indicates to the package server that any package operations are part of a continuous
integration (Cl) system for the purposes of gathering package usage statistics.

JULIA_NUM_PRECOMPILE_TASKS

The number of parallel tasks to use when precompiling packages. See Pkg.precompile.

JULIA_PKG_DEVDIR

The default directory used by Pkg.develop for downloading packages.

JULIA_PKG_IGNORE_HASHES

If set to 1, this will ignore incorrect hashes in artifacts. This should be used carefully, as it disables verifi-
cation of downloads, but can resolve issues when moving files across different types of file systems. See
Pkg.jl issue #2317 for more details.

Julia 1.6

This is only supported in Julia 1.6 and above.

JULIA_PKG_OFFLINE

If set to true, this will enable offline mode: see Pkg.offline.

Julia 1.5

Pkg's offline mode requires Julia 1.5 or later.

JULIA_PKG_PRECOMPILE_AUTO

If set to 0, this will disable automatic precompilation by package actions which change the manifest. See
Pkg.precompile.

JULIA_PKG_SERVER

Specifies the URL of the package registry to use. By default, Pkg uses https://pkg.julialang.org to
fetch Julia packages. In addition, you can disable the use of the PkgServer protocol, and instead access
the packages directly from their hosts (GitHub, GitLab, etc.) by setting: export JULIA PKG SERVER=""

JULIA_PKG_SERVER_REGISTRY_PREFERENCE

Specifies the preferred registry flavor. Currently supported values are conservative (the default), which
will only publish resources that have been processed by the storage server (and thereby have a higher
probability of being available from the PkgServers), whereas eager will publish registries whose resources
have not necessarily been processed by the storage servers. Users behind restrictive firewalls that do not
allow downloading from arbitrary servers should not use the eager flavor.


https://pkgdocs.julialang.org/v1/api/#Pkg.precompile
https://pkgdocs.julialang.org/v1/api/#Pkg.develop
https://github.com/JuliaLang/Pkg.jl/issues/2317
https://pkgdocs.julialang.org/v1/api/#Pkg.offline
https://pkgdocs.julialang.org/v1/api/#Pkg.precompile
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Julia 1.7

This only affects Julia 1.7 and above.

JULIA_PKG_UNPACK_REGISTRY

If set to true, this will unpack the registry instead of storing it as a compressed tarball.

Julia 1.7

This only affects Julia 1.7 and above. Earlier versions will always unpack the registry.

JULIA_PKG_USE_CLI_GIT

If set to true, Pkg operations which use the git protocol will use an external git executable instead of the
default libgit2 library.

Julia 1.7

Use of the git executable is only supported on Julia 1.7 and above.

JULIA_PKGRESOLVE_ACCURACY

The accuracy of the package resolver. This should be a positive integer, the default is 1.

JULIA_PKG_PRESERVE_TIERED_INSTALLED

Change the default package installation strategy to Pkg.PRESERVE TIERED INSTALLED to let the package
manager try to install versions of packages while keeping as many versions of packages already installed
as possible.

Julia 1.9

This only affects Julia 1.9 and above.

29.3 Network transport

JULIA_NO_VERIFY_HOSTS / JULIA_SSL_NO_VERIFY_HOSTS / JULIA_SSH_NO_VERIFY_HOSTS /
JULIA_ALWAYS_VERIFY_HOSTS

Specify hosts whose identity should or should not be verified for specific transport layers. See NetworkOptions.verify host

JULIA_SSL_CA_ROOTS_PATH

Specify the file or directory containing the certificate authority roots. See NetworkOptions.ca roots

29.4 External applications

JULIA SHELL

The absolute path of the shell with which Julia should execute external commands (via Base.repl cmd()).
Defaults to the environment variable $SHELL, and falls back to /bin/sh if $SHELL is unset.


https://github.com/JuliaLang/NetworkOptions.jl#verify_host
https://github.com/JuliaLang/NetworkOptions.jl#ca_roots

CHAPTER 29. ENVIRONMENT VARIABLES 371

Note

On Windows, this environment variable is ignored, and external commands are executed di-
rectly.

JULIA_EDITOR

The editor returned by InteractiveUtils.editor() and usedin, e.g., InteractiveUtils.edit, referring
to the command of the preferred editor, for instance vim.

$JULIA EDITOR takes precedence over $VISUAL, which in turn takes precedence over $EDITOR. If none
of these environment variables is set, then the editor is taken to be open on Windows and OS X, or
/etc/alternatives/editor if it exists, or emacs otherwise.

To use Visual Studio Code on Windows, set $JULIA EDITOR to code.cmd.

29.5 Parallelization

JULIA_CPU_THREADS

Overrides the global variable Base.Sys.CPU THREADS, the number of logical CPU cores available.

JULIA_WORKER_TIMEOUT

A Float64 that sets the value of Distributed.worker_timeout() (default: 60.0). This function gives the
number of seconds a worker process will wait for a master process to establish a connection before dying.

JULIA_NUM_THREADS

An unsigned 64-bit integer (uint64 t) that sets the maximum number of threads available to Julia. If
$JULIA NUM THREADS is not positive or is not set, or if the number of CPU threads cannot be determined
through system calls, then the number of threads is set to 1.

If $JULIA NUM THREADS is set to auto, then the number of threads will be set to the number of CPU threads.

Note

JULIA NUM THREADS must be defined before starting julia; defining itin startup.jlis too late
in the startup process.

Julia 1.5

In Julia 1.5 and above the number of threads can also be specified on startup using the -t/- -
threads command line argument.

Julia 1.7
The auto value for $JULIA NUM THREADS requires Julia 1.7 or above.

JULIA_THREAD_SLEEP_THRESHOLD

If set to a string that starts with the case-insensitive substring "infinite", then spinning threads never
sleep. Otherwise, $JULIA THREAD SLEEP THRESHOLD is interpreted as an unsigned 64-bitinteger (uint64 t)
and gives, in nanoseconds, the amount of time after which spinning threads should sleep.
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JULIA_NUM_GC_THREADS

Sets the number of threads used by Garbage Collection. If unspecified is set to half of the number of worker
threads.

Julia 1.10

The environment variable was added in 1.10

JULIA_IMAGE_THREADS

An unsigned 32-bit integer that sets the number of threads used by image compilation in this Julia process.
The value of this variable may be ignored if the module is a small module. If left unspecified, the smaller
of the value of JULIA CPU_THREADS or half the number of logical CPU cores is used in its place.
JULIA_IMAGE_TIMINGS

A boolean value that determines if detailed timing information is printed during during image compilation.
Defaults to 0.

JULIA_EXCLUSIVE

If set to anything besides 0, then Julia's thread policy is consistent with running on a dedicated machine:
the master thread is on proc 0, and threads are affinitized. Otherwise, Julia lets the operating system
handle thread policy.

29.6 REPL formatting

Environment variables that determine how REPL output should be formatted at the terminal. Generally,
these variables should be set to ANS| terminal escape sequences. Julia provides a high-level interface with
much of the same functionality; see the section on The Julia REPL.

JULIA_ERROR_COLOR

The formatting Base.error_color() (default: light red, "\033[91m") that errors should have at the termi-
nal.

JULIA_WARN_COLOR

The formatting Base.warn_color() (default: yellow, "\033[93m") that warnings should have at the termi-
nal.

JULIA_INFO_COLOR

The formatting Base.info color() (default: cyan, "\033[36m") that info should have at the terminal.

JULIA_INPUT_COLOR

The formatting Base.input color() (default: normal, "\033[0m") that input should have at the terminal.


https://en.wikipedia.org/wiki/ANSI_escape_code
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JULIA_ANSWER_COLOR

The formatting Base.answer color() (default: normal, "\033[0m") that output should have at the termi-
nal.

29.7 System and Package Image Building

JULIA_CPU_TARGET

Modify the target machine architecture for (pre)compiling system and package images. JULIA CPU_TARGET
only affects machine code image generation being output to a disk cache. Unlike the --cpu-target, or -C,
command line option, it does not influence just-in-time (JIT) code generation within a Julia session where
machine code is only stored in memory.

Valid values for JULIA CPU TARGET can be obtained by executing julia -C help.

Setting JULIA CPU_TARGET is important for heterogeneous compute systems where processors of distinct
types or features may be present. This is commonly encountered in high performance computing (HPC)
clusters since the component nodes may be using distinct processors.

The CPU target string is a list of strings separated by ; each string starts with a CPU or architecture name
and followed by an optional list of features separated by ,. A generic or empty CPU name means the basic
required feature set of the target ISA which is at least the architecture the C/C++ runtime is compiled with.
Each string is interpreted by LLVM.

A few special features are supported:

1. clone_all
This forces the target to have all functions in sysimg cloned. When used in negative form (i.e.
-clone_all), this disables full clone that's enabled by default for certain targets.

2. base([0-9]*)

This specifies the (0-based) base target index. The base target is the target that the current target
is based on, i.e. the functions that are not being cloned will use the version in the base target. This
option causes the base target to be fully cloned (as if clone_all is specified for it) if it is not the
default target (0). The index can only be smaller than the current index.

3. opt size

Optimize for size with minimum performance impact. Clang/GCC's -0s.
4. min_size
Optimize only for size. Clang's -0z.
29.8 Debugging and profiling

JULIA_DEBUG

Enable debug logging for a file or module, see Logging for more information.
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JULIA_GC_ALLOC_POOL, JULIA_GC_ALLOC_OTHER, JULIA_GC_ALLOC_PRINT

If set, these environment variables take strings that optionally start with the character 'r', followed by a
string interpolation of a colon-separated list of three signed 64-bit integers (int64 t). This triple of integers
a:b:c represents the arithmetic sequence a, a + b, a + 2*b, ... c.

» If it's the nth time that j1 gc pool alloc() has been called, and n belongs to the arithmetic se-
quence represented by $JULIA GC ALLOC POOL, then garbage collection is forced.

» Ifit's the nth time that maybe collect() has been called, and n belongs to the arithmetic sequence
represented by $JULIA GC ALLOC OTHER, then garbage collection is forced.

 Ifit's the nth time that j1_gc_collect() has been called, and n belongs to the arithmetic sequence
represented by $JULIA GC ALLOC PRINT, then counts for the numberofcallsto j1 gc pool alloc()
and maybe collect() are printed.

If the value of the environment variable begins with the character 'r', then the interval between garbage
collection events is randomized.

Note

These environment variables only have an effect if Julia was compiled with garbage-collection
debugging (that is, if WITH GC DEBUG_ENV is set to 1 in the build configuration).

JULIA_GC_NO_GENERATIONAL

If set to anything besides 0, then the Julia garbage collector never performs "quick sweeps" of memory.

Note

This environment variable only has an effect if Julia was compiled with garbage-collection
debugging (that is, if WITH GC DEBUG ENV is set to 1 in the build configuration).

JULIA_GC_WAIT_FOR_DEBUGGER
If set to anything besides 0, then the Julia garbage collector will wait for a debugger to attach instead of

aborting whenever there's a critical error.

Note

This environment variable only has an effect if Julia was compiled with garbage-collection
debugging (that is, if WITH GC DEBUG_ENV is set to 1 in the build configuration).

ENABLE_JITPROFILING
If set to anything besides 0, then the compiler will create and register an event listener for just-in-time (JIT)

profiling.

Note

This environment variable only has an effect if Julia was compiled with JIT profiling support,
using either
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* Intel's VTune™ Amplifier (USE_INTEL JITEVENTS set to 1 in the build configuration), or
* OProfile (USE_OPROFILE JITEVENTS setto 1 in the build configuration).

» Perf (USE_PERF_JITEVENTS setto 1 in the build configuration). This integration is enabled
by default.

ENABLE_GDBLISTENER

If set to anything besides 0 enables GDB registration of Julia code on release builds. On debug builds of
Julia this is always enabled. Recommended to use with -g 2.

JULIA_LLVM_ARGS

Arguments to be passed to the LLVM backend.


https://software.intel.com/en-us/vtune
https://oprofile.sourceforge.io/news/
https://perf.wiki.kernel.org
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Embedding Julia

As we have seen in Calling C and Fortran Code, Julia has a simple and efficient way to call functions written
in C. But there are situations where the opposite is needed: calling Julia functions from C code. This can be
used to integrate Julia code into a larger C/C++ project, without the need to rewrite everything in C/C++.
Julia has a C API to make this possible. As almost all programming languages have some way to call C
functions, the Julia C API can also be used to build further language bridges (e.g. calling Julia from Python,
Rust or C#). Even though Rust and C++ can use the C embedding API directly, both have packages helping
with it, for C++ Jluna is useful.

30.1 High-Level Embedding

Note: This section covers embedding Julia code in C on Unix-like operating systems. For doing this on
Windows, please see the section following this, High-Level Embedding on Windows with Visual Studio.

We start with a simple C program that initializes Julia and calls some Julia code:

#include <julia.h>
JULIA DEFINE FAST TLS // only define this once, in an executable (not in a shared library) if you
want fast code.

int main(int argc, char *argv[])

{
/* required: setup the Julia context */
jl init();

/* run Julia commands */
j1 eval string("print(sqrt(2.0))");

/* strongly recommended: notify Julia that the
program is about to terminate. this allows
Julia time to cleanup pending write requests
and run all finalizers

*/

jl1 atexit hook(0);

return 0;

376
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In order to build this program you must add the path to the Julia header to the include path and link against
libjulia. For instance, when Julia is installed to $JULIA DIR, one can compile the above test program
test.c with gcc using:

gcc -o test -fPIC -I$JULIA DIR/include/julia -L$JULIA DIR/lib -W1,-rpath,$JULIA DIR/lib test.c -
ljulia

Alternatively, look at the embedding. c program in the Julia source tree in the test/embedding/ folder. The
file cli/loader exe.c program is another simple example of how to set j1 options options while linking
against libjulia.

The first thing that must be done before calling any other Julia C function is to initialize Julia. This is done
by calling j1 _init, which tries to automatically determine Julia's install location. If you need to specify a
custom location, or specify which system image to load, use j1_init with image instead.

The second statement in the test program evaluates a Julia statement using a call to j1 _eval string.

Before the program terminates, it is strongly recommended that j1 atexit hook is called. The above
example program calls this just before returning from main.

Note

Currently, dynamically linking with the libjulia shared library requires passing the RTLD GLOBAL
option. In Python, this looks like:

>>> julia=CDLL('./libjulia.dylib',RTLD GLOBAL)
>>> julia.jl init.argtypes = []

>>> julia.jl init()

250593296

Note

If the julia program needs to access symbols from the main executable, it may be necessary
to add the -W1, - -export-dynamic linker flag at compile time on Linux in addition to the ones
generated by julia-config.jl described below. This is not necessary when compiling a
shared library.

Using julia-config to automatically determine build parameters

The script julia-config.jl was created to aid in determining what build parameters are required by a
program that uses embedded Julia. This script uses the build parameters and system configuration of
the particular Julia distribution it is invoked by to export the necessary compiler flags for an embedding
program to interact with that distribution. This script is located in the Julia shared data directory.

Example

#include <julia.h>

int main(int argc, char *argv[])
{
jl init();
(void)jl eval string("println(sqrt(2.0))");
j1 _atexit hook(0);
return 0;
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On the command line

A simple use of this script is from the command line. Assuming that julia-config.jl is located in
/usr/local/julia/share/julia, it can be invoked on the command line directly and takes any com-
bination of three flags:

/usr/local/julia/share/julia/julia-config.jl
Usage: julia-config [--cflags|--ldflags|--ldlibs]

If the above example source is saved in the file embed example. ¢, then the following command will compile
it into an executable program on Linux and Windows (MSYS2 environment). On macOS, substitute clang
for gcc.:

/usr/local/julia/share/julia/julia-config.jl --cflags --ldflags --ldlibs | xargs gcc
embed example.c

Use in Makefiles

In general, embedding projects will be more complicated than the above example, and so the following
allows general makefile support as well - assuming GNU make because of the use of the shell macro
expansions. Furthermore, although julia-config.jl is usually in the /usr/local directory, if it isn't,
then Julia itself can be used to find julia-config.j1, and the makefile can take advantage of this. The
above example is extended to use a makefile:

JL_SHARE = $(shell julia -e 'print(joinpath(Sys.BINDIR, Base.DATAROOTDIR, "julia"))')
CFLAGS  += $(shell $(JL_SHARE)/julia-config.jl --cflags)
CXXFLAGS += $(shell $(JL SHARE)/julia-config.jl --cflags)
LDFLAGS += $(shell $(JL SHARE)/julia-config.jl --ldflags)
LDLIBS  += $(shell $(JL SHARE)/julia-config.jl --1dlibs)

all: embed example

Now the build command is simply make.

30.2 High-Level Embedding on Windows with Visual Studio
If the JULIA DIR environment variable hasn't been setup, add it using the System panel before starting
Visual Studio. The bin folder under JULIA_DIR should be on the system PATH.

We start by opening Visual Studio and creating a new Console Application project. Open the 'stdafx.h’
header file, and add the following lines at the end:

#include <julia.h>

Then, replace the main() function in the project with this code:

int main(int argc, char *argv[])

{
/* required: setup the Julia context */
jl init();

/* run Julia commands */
j1 eval string("print(sqrt(2.0))");
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/* strongly recommended: notify Julia that the
program is about to terminate. this allows
Julia time to cleanup pending write requests
and run all finalizers

*/

j1 atexit hook(0);

return 0;

The next step is to set up the project to find the Julia include files and the libraries. It's important to know
whether the Julia installation is 32- or 64-bit. Remove any platform configuration that doesn't correspond
to the Julia installation before proceeding.

Using the project Properties dialog, go to C/C++ | General and add $(JULIA DIR)\include\julia\ to the

Additional Include Directories property. Then, go to the Linker | General section and add $(JULIA DIR)\1lib

to the Additional Library Directories property. Finally, under Linker | Input, add libjulia.dll.a;libopenlibm.d1ll.a;
to the list of libraries.

At this point, the project should build and run.

30.3 Converting Types

Real applications will not only need to execute expressions, but also return their values to the host program.
j1 eval stringreturnsa jl value t*, which is a pointer to a heap-allocated Julia object. Storing simple
data types like Float64 in this way is called boxing, and extracting the stored primitive data is called
unboxing. Our improved sample program that calculates the square root of 2 in Julia and reads back the
result in C has a body that now contains this code:

jl value t *ret = jl eval string("sqrt(2.0)");
if (jl_typeis(ret, jl_float64 type)) {

double ret unboxed = j1l unbox float64(ret);
printf("sqrt(2.0) in C: %e \n", ret unboxed);

}
else {

printf("ERROR: unexpected return type from sqrt(::Float64)\n");
}

In order to check whether ret is of a specific Julia type, we can use the j1 isa, jl typeis,orjl is ...
functions. By typing typeof(sqrt(2.0)) into the Julia shell we can see that the return type is Float64
(double in C). To convert the boxed Julia value into a C double the j1 _unbox_float64 function is used in
the above code snippet.

Corresponding j1 box ... functions are used to convert the other way:

j1 value t *a = j1 box float64(3.0);
jl value t *b = j1 box float32(3.0f);
jl value t *c = jl box int32(3);

As we will see next, boxing is required to call Julia functions with specific arguments.
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30.4 Calling Julia Functions

While j1 eval string allows C to obtain the result of a Julia expression, it does not allow passing argu-
ments computed in C to Julia. For this you will need to invoke Julia functions directly, using j1 call:

j1 function_t *func = j1 get function(jl base module, "sqrt");
j1 value t *argument = jl box float64(2.0);
j1 value t *ret = jl calll(func, argument);

In the first step, a handle to the Julia function sqrt is retrieved by calling j1 get function. The first ar-
gument passed to j1 get function is a pointer to the Base module in which sqrt is defined. Then, the
double value is boxed using j1_box_float64. Finally, in the last step, the function is called using j1 calll.
j1 callo, j1_call2, and j1_call3 functions also exist, to conveniently handle different numbers of argu-
ments. To pass more arguments, use j1 call:

jl value t *j1 call(jl_function_t *f, jl value t **args, int32_t nargs)

Its second argument args is an array of j1 value t* arguments and nargs is the number of arguments.

There is also an alternative, possibly simpler, way of calling Julia functions and that is via @cfunction.
Using @cfunction allows you to do the type conversions on the Julia side which typically is easier than
doing it on the C side. The sqrt example above would with @cfunction be written as:

double (*sqrt jl)(double) = jl unbox voidpointer(jl eval string("@cfunction(sqrt, Float64, (
Float64,))"));
double ret = sqrt j1(2.0);

where we first define a C callable function in Julia, extract the function pointer from it and finally call it.

30.5 Memory Management

As we have seen, Julia objects are represented in C as pointers of type j1 value t*. This raises the
question of who is responsible for freeing these objects.

Typically, Julia objects are freed by the garbage collector (GC), but the GC does not automatically know
that we are holding a reference to a Julia value from C. This means the GC can free objects out from under
you, rendering pointers invalid.

The GC will only run when new Julia objects are being allocated. Calls like j1 box float64 perform allo-
cation, but allocation might also happen at any point in running Julia code.

When writing code that embeds Julia, it is generally safe to use j1 value t* values in between j1 ...
calls (as GC will only get triggered by those calls). But in order to make sure that values can survive j1 ...
calls, we have to tell Julia that we still hold a reference to Julia root values, a process called "GC rooting".
Rooting a value will ensure that the garbage collector does not accidentally identify this value as unused
and free the memory backing that value. This can be done using the JL_GC_PUSH macros:

jl value t *ret = jl eval string("sqrt(2.0)");
JL _GC_PUSH1(&ret);

// Do something with ret

JL GC POP();

The JL_GC_POP call releases the references established by the previous JL_GC_PUSH. Note that JL_GC_PUSH
stores references on the C stack, so it must be exactly paired with a JL_GC_POP before the scope is exited.


https://www.cs.purdue.edu/homes/hosking/690M/p611-fenichel.pdf
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That is, before the function returns, or control flow otherwise leaves the block in which the JL_GC PUSH
was invoked.

Several Julia values can be pushed at once using the JL_GC PUSH2 to JL_GC PUSH6 macros:

JL GC PUSH2(&retl, &ret2);
/] ...
JL_GC_PUSH6 (&retl, &ret2, &ret3, &ret4, &ret5, &ret6);

To push an array of Julia values one can use the JL_GC_PUSHARGS macro, which can be used as follows:

jl value_t **args;

JL_GC_PUSHARGS(args, 2); // args can now hold 2 “jl value t*' objects
args[0] = some_value;

args[1] = some other value;

// Do something with args (e.g. call jl ... functions)

JL _GC_POP();

Each scope must have only one call to JL_GC PUSH*, and should be paired with only a single JL_GC POP
call. If all necessary variables you want to root cannot be pushed by a one single call to JL_GC_PUSH*, or if
there are more than 6 variables to be pushed and using an array of arguments is not an option, then one
can use inner blocks:

jl value_t *retl = jl eval string("sqrt(2.0)");
JL_GC_PUSH1(&retl);
jl value_t *ret2 = 0;

{
jl function_t *func = j1 _get function(jl base module, "exp");
ret2 = jl calll(func, retl);
JL_GC_PUSH1(&ret2);
// Do something with ret2.
JL GC POP(); // This pops ret2.
}
JL_GC POP(); // This pops retl.

Note that it is not necessary to have valid j1 value t* values before calling JL_GC PUSH*. It is fine to
have a number of them initialized to NULL, pass those to JL_GC PUSH* and then create the actual Julia
values. For example:

jl value t *retl = NULL, *ret2 = NULL;
JL_GC_PUSH2 (&retl, &ret2);

retl = jl eval string("sqrt(2.0)");
ret2 = j1 eval string("sqrt(3.0)");
// Use retl and ret2

JL_GC POP();

If it is required to hold the pointer to a variable between functions (or block scopes), then it is not possible
to use JL_GC_PUSH*. In this case, it is necessary to create and keep a reference to the variable in the Julia
global scope. One simple way to accomplish this is to use a global IdDict that will hold the references,
avoiding deallocation by the GC. However, this method will only work properly with mutable types.

// This functions shall be executed only once, during the initialization.
jl1 value t* refs = jl eval string("refs = IdDict()");
j1 function t* setindex = jl get function(jl base module, "setindex!");
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// “var' is the variable we want to protect between function calls.
j1 value t* var = 0;

// “var® is a ‘Vector{Float64} , which is mutable.
var = jl eval _string("[sqrt(2.0); sqrt(4.0); sqrt(6.0)]1");

// To protect ‘var', add its reference to ‘refs'.
j1 _call3(setindex, refs, var, var);

If the variable is immutable, then it needs to be wrapped in an equivalent mutable container or, preferably,
in a RefValue{Any} before it is pushed to IdDict. In this approach, the container has to be created or filled
in via C code using, for example, the function j1 new struct. If the containeris created by j1 call*, then
you will need to reload the pointer to be used in C code.

// This functions shall be executed only once, during the initialization.
j1 value t* refs = jl eval string("refs = IdDict()");

j1 function t* setindex = jl get function(jl base module, "setindex!");

j1 datatype t* reft = (jl datatype t*)jl eval string("Base.RefValue{Any}");

// “var® 1is the variable we want to protect between function calls.
jl value t* var = 0;

// “var® is a “Float64', which is immutable.
var = j1 eval string("sqrt(2.0)");

// Protect “var® until we add its reference to “refs’.
JL_GC_PUSH1(&var);

// Wrap “var® in “RefValue{Any}" and push to “refs® to protect it.
j1 value t* rvar = jl new struct(reft, var);

JL_GC_POP();

jl call3(setindex, refs, rvar, rvar);

The GC can be allowed to deallocate a variable by removing the reference to it from refs using the function
delete!, provided that no other reference to the variable is kept anywhere:

j1_function_t* delete = jl _get function(jl_base module, "delete!");
jl call2(delete, refs, rvar);

As an alternative for very simple cases, it is possible to just create a global container of type Vector{Any}
and fetch the elements from that when necessary, or even to create one global variable per pointer using

j1 module t *mod = jl main module;

jl sym t *var = j1 symbol("var");

j1 binding t *bp = jl get binding wr(mod, var);
j1 _checked assignment(bp, mod, var, val);
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Updating fields of GC-managed objects

The garbage collector also operates under the assumption that it is aware of every older-generation object
pointing to a younger-generation one. Any time a pointer is updated breaking that assumption, it must be
signaled to the collector with the j1 gc_wb (write barrier) function like so:

j1 value t *parent = some old value, *child = some young value;
((some_specific type*)parent)->field = child;
jl _gc_wb(parent, child);

It is in general impossible to predict which values will be old at runtime, so the write barrier must be
inserted after all explicit stores. One notable exception is if the parent object has just been allocated and
no garbage collection has run since then. Note that most j1 ... functions can sometimes invoke garbage
collection.

The write barrier is also necessary for arrays of pointers when updating their data directly. For example:

jl array t *some array = ...; // e.g. a Vector{Any}
void **data = (void**)jl array data(some array);

jl value_ t *some_value = ...;

datal[0] = some value;

jl _gc_wb(some_array, some value);

Controlling the Garbage Collector

There are some functions to control the GC. In normal use cases, these should not be necessary.

Function Description

j1 gc_collect() Force a GC run

j1 gc_enable(0) Disable the GC, return previous state as int
j1 gc_enable(1) Enable the GC, return previous state as int
jl gc_is enabled() | Return current state as int

30.6 Working with Arrays

Julia and C can share array data without copying. The next example will show how this works.

Julia arrays are represented in C by the datatype jl array t*. Basically, j1 array t is a struct that
contains:

* Information about the datatype

* A pointer to the data block

* Information about the sizes of the array

To keep things simple, we start with a 1D array. Creating an array containing Float64 elements of length
10 can be done like this:

j1 value t* array type
jl array t* x

j1 apply array type((jl value t*)jl float64 type, 1);
j1 alloc_array ld(array type, 10);
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Alternatively, if you have already allocated the array you can generate a thin wrapper around its data:
double *existingArray = (double*)malloc(sizeof(double)*10);
jl array t *x = jl ptr_to array ld(array type, existingArray, 10, 0);
The last argument is a boolean indicating whether Julia should take ownership of the data. If this argument
is non-zero, the GC will call free on the data pointer when the array is no longer referenced.
In order to access the data of x, we can use j1 array data:

‘double *xData = (double*)jl array data(x);

Now we can fill the array:
for(size t i=0; i<jl array_len(x); i++)
xDatal[i] = i;
Now let us call a Julia function that performs an in-place operation on x:

j1 function_ t *func = jl get function(jl base module, "reverse!");
j1 calll(func, (jl value t*)x);

By printing the array, one can verify that the elements of x are now reversed.

Accessing Returned Arrays

If a Julia function returns an array, the return value of j1 eval string and jl call can be cast to a
jl array t*:

j1 function t *func = jl get function(jl base module, "reverse");
jlarray t *y = (jl _array t*)jl _calll(func, (jl value t*)x);

Now the content of y can be accessed as before using j1 array data. As always, be sure to keep a
reference to the array while it is in use.

Multidimensional Arrays

Julia's multidimensional arrays are stored in memory in column-major order. Here is some code that creates
a 2D array and accesses its properties:

// Create 2D array of float64 type
j1 value t *array type = jl apply array type((jl value t*)jl float64 type, 2);
jl array t *x = jl alloc array 2d(array type, 10, 5);

// Get array pointer

double *p = (double*)jl array data(x);
// Get number of dimensions

int ndims = jl array ndims(x);

// Get the size of the i-th dim
size t size® = j1 array dim(x,0);
size t sizel = j1 array dim(x,1);

// Fill array with data
for(size t i=0; i<sizel; i++)
for(size t j=0; j<size0®; j++)
plj + sizeb*i] = 1 + j;
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Notice that while Julia arrays use 1-based indexing, the C APl uses 0-based indexing (for example in calling
j1 array dim) in order to read as idiomatic C code.

30.7 Exceptions

Julia code can throw exceptions. For example, consider:

‘jlievalistring("thisifunctionidoesinotiexist()");

This call will appear to do nothing. However, it is possible to check whether an exception was thrown:
if (j1 exception occurred())

printf("%s \n", jl typeof str(jl exception_ occurred()));

If you are using the Julia C API from a language that supports exceptions (e.g. Python, C#, C++), it makes
sense to wrap each call into libjulia with a function that checks whether an exception was thrown, and
then rethrows the exception in the host language.

Throwing Julia Exceptions

When writing Julia callable functions, it might be necessary to validate arguments and throw exceptions to
indicate errors. A typical type check looks like:

if ('j1 typeis(val, jl float64 type)) {
j1_type error(function name, (jl value t*)jl float64 type, val);

General exceptions can be raised using the functions:

void jl error(const char *str);
void jl errorf(const char *fmt, ...);

j1 error takes a C string, and j1 _errorf is called like printf:

jl errorf("argument x = %d is too large", x);

where in this example x is assumed to be an integer.

Thread-safety

In general, the Julia C API is not fully thread-safe. When embedding Julia in a multi-threaded application
care needs to be taken not to violate the following restrictions:

* j1 init() may only be called once in the application life-time. The same appliesto j1 atexit hook(),
and it may only be called after j1_init().

* j1 ... () API functions may only be called from the thread in which j1 _init() was called, or from
threads started by the Julia runtime. Calling Julia API functions from user-started threads is not
supported, and may lead to undefined behaviour and crashes.

The second condition above implies that you can not safely call j1 ... () functions from threads that were
not started by Julia (the thread calling j1 init() being the exception). For example, the following is not
supported and will most likely segfault:
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void *func(void*)
{
// Wrong, jl eval string() called from thread that was not started by Julia
j1 eval string("println(Threads.threadid())");
return NULL;
}
int main()
{
pthread t t;
jl init();
// Start a new thread
pthread create(&t, NULL, func, NULL);
pthread join(t, NULL);
j1 atexit _hook(0);
}

Instead, performing all Julia calls from the same user-created thread will work:

void *func(void*)

{
// Okay, all jl ...() calls from the same thread,
// even though it is not the main application thread
jl init();
j1 eval string("println(Threads.threadid())");
j1 atexit_hook(0);
return NULL;
}
int main()
{
pthread t t;
// Create a new thread, which runs func()
pthread create(&t, NULL, func, NULL);
pthread_join(t, NULL);
}

An example of calling the Julia C API from a thread started by Julia itself:

#include <julia/julia.h>
JULIA DEFINE_FAST TLS

double c func(int i)

{
printf("[C %08x] i = %d\n", pthread self(), 1i);

// Call the Julia sqrt() function to compute the square root of i, and return it
jl1 function_t *sqrt = j1 get function(jl base module, "sqrt");

jl value t* arg = jl box_int32(i);

double ret = j1 unbox float64(jl calll(sqrt, arg));
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int

return ret;

main()

j1 init();

// Define a Julia function func() that calls our c func() defined in C above
jl eval_string("func(i) = ccall(:c_func, Float64, (Int32,), i)");

// Call func() multiple times, using multiple threads to do so

jl eval string("println(Threads.threadpoolsize())");

jl eval string("use(i) = println(\"[J $(Threads.threadid())] i = $(i) -> $(func(i))\")");
jl eval string("Threads.@threads for i in 1:5 use(i) end");

jl_atexit_hook(0);

If we run this code with 2 Julia threads we get the following output (note: the output will vary per run and

system):

$ JULIA NUM_THREADS=2 ./thread_example
2

[C 3bfd9c0O] i =1

[C 23938640] i = 4
[J1]1i=1->1.0

[C 3bfd9c00] i = 2

[J1] 1 =2 -> 1.4142135623730951
[C 3bfd9c00] i = 3
[J2]1i=4->2.0

[C 23938640] i =5

[J 1] 1i =3 -> 1.7320508075688772
[J 2] 1i=5 ->2.23606797749979

As can be seen, Julia thread 1 corresponds to pthread ID 3bfd9c00, and Julia thread 2 corresponds to ID
23938640, showing that indeed multiple threads are used at the C level, and that we can safely call Julia
C API routines from those threads.
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Code Loading

Note

This chapter covers the technical details of package loading. To install packages, use Pkg,
Julia's built-in package manager, to add packages to your active environment. To use packages
already in your active environment, write import X or using X, as described in the Modules
documentation.

31.1 Definitions

Julia has two mechanisms for loading code:

1. Code inclusion: e.g. include("source.jl"). Inclusion allows you to split a single program
across multiple source files. The expression include("source.jl") causes the contents of the
file source.jl to be evaluated in the global scope of the module where the include call occurs.
If include("source.jl") is called multiple times, source.jl is evaluated multiple times. The in-
cluded path, source.jl, is interpreted relative to the file where the include call occurs. This makes
it simple to relocate a subtree of source files. In the REPL, included paths are interpreted relative to
the current working directory, pwd ().

2. Package loading: e.g. import X or using X. The import mechanism allows you to load a pack-
age—i.e. an independent, reusable collection of Julia code, wrapped in a module—and makes the
resulting module available by the name X inside of the importing module. If the same X package
is imported multiple times in the same Julia session, it is only loaded the first time—on subsequent
imports, the importing module gets a reference to the same module. Note though, that import X
can load different packages in different contexts: X can refer to one package named X in the main
project but potentially to different packages also named X in each dependency. More on this below.

Code inclusion is quite straightforward and simple: it evaluates the given source file in the context of the
caller. Package loading is built on top of code inclusion and serves a different purpose. The rest of this
chapter focuses on the behavior and mechanics of package loading.

A package is a source tree with a standard layout providing functionality that can be reused by other
Julia projects. A package is loaded by import X or using X statements. These statements also make the
module named X—which results from loading the package code—available within the module where the
import statement occurs. The meaning of X in import X is context-dependent: which X package is loaded

388
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depends on what code the statement occurs in. Thus, handling of import X happens in two stages: first,
it determines what package is defined to be X in this context; second, it determines where that particular
X package is found.

These questions are answered by searching through the project environments listed in LOAD PATH for
projectfiles (Project.toml orJuliaProject.toml), manifest files (Manifest.tomlorJuliaManifest.toml),
or folders of source files.

31.2 Federation of packages

Most of the time, a package is uniquely identifiable simply from its name. However, sometimes a project
might encounter a situation where it needs to use two different packages that share the same name. While
you might be able fix this by renaming one of the packages, being forced to do so can be highly disruptive
in a large, shared code base. Instead, Julia's code loading mechanism allows the same package name to
refer to different packages in different components of an application.

Julia supports federated package management, which means that multiple independent parties can main-
tain both public and private packages and registries of packages, and that projects can depend on a mix
of public and private packages from different registries. Packages from various registries are installed and
managed using a common set of tools and workflows. The Pkg package manager that ships with Julia
lets you install and manage your projects' dependencies. It assists in creating and manipulating project
files (which describe what other projects that your project depends on), and manifest files (which snapshot
exact versions of your project's complete dependency graph).

One consequence of federation is that there cannot be a central authority for package naming. Different
entities may use the same name to refer to unrelated packages. This possibility is unavoidable since these
entities do not coordinate and may not even know about each other. Because of the lack of a central
naming authority, a single project may end up depending on different packages that have the same name.
Julia's package loading mechanism does not require package names to be globally unique, even within the
dependency graph of a single project. Instead, packages are identified by universally unique identifiers
(UUIDs), which get assigned when each package is created. Usually you won't have to work directly with
these somewhat cumbersome 128-bit identifiers since Pkg will take care of generating and tracking them
for you. However, these UUIDs provide the definitive answer to the question of "what package does X refer
to?"

Since the decentralized naming problem is somewhat abstract, it may help to walk through a concrete
scenario to understand the issue. Suppose you're developing an application called App, which uses two
packages: Pub and Priv. Priv is a private package that you created, whereas Pub is a public package
that you use but don't control. When you created Priv, there was no public package by the name Priv.
Subsequently, however, an unrelated package also named Priv has been published and become popular.
In fact, the Pub package has started to use it. Therefore, when you next upgrade Pub to get the latest
bug fixes and features, App will end up depending on two different packages named Priv—through no
action of yours other than upgrading. App has a direct dependency on your private Priv package, and an
indirect dependency, through Pub, on the new public Priv package. Since these two Priv packages are
different but are both required for App to continue working correctly, the expression import Priv must
refer to different Priv packages depending on whether it occurs in App's code or in Pub's code. To handle
this, Julia's package loading mechanism distinguishes the two Priv packages by their UUID and picks the
correct one based on its context (the module that called import). How this distinction works is determined
by environments, as explained in the following sections.


https://en.wikipedia.org/wiki/Universally_unique_identifier
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31.3 Environments

An environment determines what import X and using X mean in various code contexts and what files
these statements cause to be loaded. Julia understands two kinds of environments:

1. A project environment is a directory with a project file and an optional manifest file, and forms
an explicit environment. The project file determines what the names and identities of the direct
dependencies of a project are. The manifest file, if present, gives a complete dependency graph,
including all direct and indirect dependencies, exact versions of each dependency, and sufficient
information to locate and load the correct version.

2. A package directory is a directory containing the source trees of a set of packages as subdirecto-
ries, and forms an implicit environment. If X is a subdirectory of a package directory and X/src/X.jl
exists, then the package X is available in the package directory environment and X/src/X.jlis the
source file by which it is loaded.

These can be intermixed to create a stacked environment: an ordered set of project environments and
package directories, overlaid to make a single composite environment. The precedence and visibility rules
then combine to determine which packages are available and where they get loaded from. Julia's load path
forms a stacked environment, for example.

These environment each serve a different purpose:

* Project environments provide reproducibility. By checking a project environment into version con-
trol—e.g. a git repository—along with the rest of the project's source code, you can reproduce the
exact state of the project and all of its dependencies. The manifest file, in particular, captures the ex-
act version of every dependency, identified by a cryptographic hash of its source tree, which makes
it possible for Pkg to retrieve the correct versions and be sure that you are running the exact code
that was recorded for all dependencies.

* Package directories provide convenience when a full carefully-tracked project environment is un-
necessary. They are useful when you want to put a set of packages somewhere and be able to
directly use them, without needing to create a project environment for them.

» Stacked environments allow for adding tools to the primary environment. You can push an envi-
ronment of development tools onto the end of the stack to make them available from the REPL and
scripts, but not from inside packages.

At a high-level, each environment conceptually defines three maps: roots, graph and paths. When resolving
the meaning of import X, the roots and graph maps are used to determine the identity of X, while the paths
map is used to locate the source code of X. The specific roles of the three maps are:

e roots: name: :Symbol — uuid::UUID

An environment's roots map assigns package names to UUIDs for all the top-level dependencies that
the environment makes available to the main project (i.e. the ones that can be loaded in Main).
When Julia encounters import X in the main project, it looks up the identity of X as roots[:X].



CHAPTER 31. CODE LOADING 391

» graph: context::UUID — name::Symbol — uuid: :UUID

An environment's graph is a multilevel map which assigns, for each context UUID, a map from
names to UUIDs, similar to the roots map but specific to that context. When Julia sees import Xin
the code of the package whose UUID is context, it looks up the identity of Xas graph[context][:X].
In particular, this means that import X can refer to different packages depending on context.

* paths: uuid: :UUID x name::Symbol — path::String

The paths map assigns to each package UUID-name pair, the location of that package's entry-point
source file. After the identity of X in import X has been resolved to a UUID via roots or graph
(depending on whether it is loaded from the main project or a dependency), Julia determines what
file to load to acquire X by looking up paths[uuid, :X] in the environment. Including this file should
define a module named X. Once this package is loaded, any subsequent import resolving to the same
uuid will create a new binding to the already-loaded package module.

Each kind of environment defines these three maps differently, as detailed in the following sections.

Note

For ease of understanding, the examples throughout this chapter show full data structures
for roots, graph and paths. However, Julia's package loading code does not explicitly create
these. Instead, it lazily computes only as much of each structure as it needs to load a given
package.

Project environments

A project environment is determined by a directory containing a project file called Project.toml, and
optionally a manifest file called Manifest.toml. These files may also be called JuliaProject.toml and
JuliaManifest.toml, in which case Project.toml and Manifest.toml are ignored. This allows for coex-
istence with other tools that might consider files called Project.toml and Manifest.toml significant. For
pure Julia projects, however, the names Project.toml and Manifest.toml are preferred.

The roots, graph and paths maps of a project environment are defined as follows:

The roots map of the environment is determined by the contents of the project file, specifically, its top-
level name and uuid entries and its [deps] section (all optional). Consider the following example project
file for the hypothetical application, App, as described earlier:

name = "App"
uuid = "8f986787-14fe-4607-ba5d-fbff2944afag"

[deps]
Priv = "bal3f791-aeld-465a-978b-69c3ad90f72b"
Pub = "c07ecb7d-0dc9-4db7-8803-fadaaeaf08el"

This project file implies the following roots map, if it was represented by a Julia dictionary:

roots = Dict(
:App => UUID("8f986787-14fe-4607-ba5d-fbff2944afa9"),
:Priv => UUID("bal3f791-aeld-465a-978b-69c3ad90f72b"),
:Pub => UUID("c07ecb7d-0dc9-4db7-8803-fadaaeaf08el"),
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Given this roots map, in App's code the statement import Priv will cause Julia to look up roots[:Priv],
which yields bal3f791-aeld-465a-978b-69c3ad90f72b, the UUID of the Priv package that is to be loaded
in that context. This UUID identifies which Priv package to load and use when the main application eval-
uates import Priv.

The dependency graph of a project environment is determined by the contents of the manifest file, if
present. If there is no manifest file, graph is empty. A manifest file contains a stanza for each of a project's
direct or indirect dependencies. For each dependency, the file lists the package's UUID and a source tree
hash or an explicit path to the source code. Consider the following example manifest file for App:

[[Priv]] # the private one

deps = ["Pub", "Zebra"]
"bal3f791-aeld-465a-978b-69c3ad90f72b"
"deps/Priv"

uuid
path

[[Priv]] # the public one

uuid = "2d15fe94-alf7-436c-a4d8-07a%9a496e01c"
git-tree-shal = "1bf63d3be994fe83456a03b874b409cfd59a6373"
version = "0.1.5"

[[Pub]]

uuid = "c07ecb7d-0dc9-4db7-8803-fadaaeaf08el"
git-tree-shal = "9ebd50e2b0dd1lel110e842df3b433cb5869b0dd38"
version = "2.1.4"

[Pub.deps]
Priv = "2d15fe94-alf7-436¢c-a4d8-07a%9a496e01c"
Zebra = "f7a24cb4-21fc-4002-ac70-f0e3a0dd3f62"

[[Zebra]l]

uuid = "f7a24cb4-21fc-4002-ac70-f0e3a0dd3f62"
git-tree-shal = "eB808e36a5d7173974b90al5a353b56413494092f"
version = "3.4.2"

This manifest file describes a possible complete dependency graph for the App project:

* There are two different packages named Priv that the application uses. It uses a private package,
which is a root dependency, and a public one, which is an indirect dependency through Pub. These
are differentiated by their distinct UUIDs, and they have different deps:

- The private Priv depends on the Pub and Zebra packages.

- The public Priv has no dependencies.

* The application also depends on the Pub package, which in turn depends on the public Priv and the
same Zebra package that the private Priv package depends on.

This dependency graph represented as a dictionary, looks like this:

graph = Dict(
# Priv — the private one:
UUID("bal3f791-aeld-465a-978b-69c3ad90f72b") => Dict(
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:Pub => UUID("cO7ecb7d-0dc9-4db7-8803-fadaaeaf08el"),
:Zebra => UUID("f7a24cb4-21fc-4002-ac70-f0e3a0dd3f62"),
)y
# Priv — the public one:
UUID("2d15fe94-alf7-436c-a4d8-07a9a496e01c") => Dict(),
# Pub:
UUID("cO7ecb7d-0dc9-4db7-8803-fadaaeaf08el") => Dict(
:Priv => UUID("2d15fe94-alf7-436c-a4d8-07a9a496e01c"),
:Zebra => UUID("f7a24ch4-21fc-4002-ac70-f0e3a0dd3f62"),
)
# Zebra:
UUID("f7a24cb4-21fc-4002-ac70-f0e3a0dd3f62") => Dict(),

Given this dependency graph, when Julia sees import Privinthe Pub package—which has UUID c07ecb7d-0dc9-4db7-
8803 - fadaaeaf08el—it looks up:

‘ graph[UUID("c07ech7d-0dc9-4db7-8803-fadaaeaf08el")][:Priv]

and gets 2d15fe94-alf7-436c-a4d8-07a9a496e01c, which indicates that in the context of the Pub pack-
age, import Priv refers to the public Priv package, rather than the private one which the app depends
on directly. This is how the name Priv can refer to different packages in the main project than it does in
one of its package's dependencies, which allows for duplicate names in the package ecosystem.

What happens if import Zebra is evaluated in the main App code base? Since Zebra does not appear in
the project file, the import will fail even though Zebra does appear in the manifest file. Moreover, if import
Zebraoccursinthe public Priv package—the one with UUID 2d15fe94-alf7-436¢-a4d8-07a9a496e01c—then
that would also fail since that Priv package has no declared dependencies in the manifest file and there-
fore cannot load any packages. The Zebra package can only be loaded by packages for which it appear as
an explicit dependency in the manifest file: the Pub package and one of the Priv packages.

The paths map of a project environment is extracted from the manifest file. The path of a package uuid
named X is determined by these rules (in order):

1. If the project file in the directory matches uuid and name X, then either:

- It has a toplevel path entry, then uuid will be mapped to that path, interpreted relative to the
directory containing the project file.

- Otherwise, uuid is mapped to src/X.jl relative to the directory containing the project file.

2. |If the above is not the case and the project file has a corresponding manifest file and the manifest
contains a stanza matching uuid then:

- If it has a path entry, use that path (relative to the directory containing the manifest file).

- Ifithasagit-tree-shal entry, compute a deterministic hash function of uuid and git-tree-shal—call
it slug—and look for a directory named packages/X/$slugin each directory in the Julia DEPOT_PATH
global array. Use the first such directory that exists.
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If any of these result in success, the path to the source code entry point will be either that result, the relative
path from that result plus src/X. j1; otherwise, there is no path mapping for uuid. When loading X, if no
source code path is found, the lookup will fail, and the user may be prompted to install the appropriate
package version or to take other corrective action (e.g. declaring X as a dependency).

In the example manifest file above, to find the path of the first Priv package—the one with UUID bal3f791-aeld-
465a-978b-69c3ad90f72b—Julia looks for its stanza in the manifest file, sees that it has a path entry, looks
atdeps/Priv relative to the App project directory—let's suppose the App code lives in /home/me/projects/App—sees
that /home/me/projects/App/deps/Priv exists and therefore loads Priv from there.

If, on the other hand, Julia was loading the other Priv package—the one with UUID 2d15fe94-alf7-436¢-
a4d8-07a9a496e01c—it finds its stanza in the manifest, see that it does not have a path entry, but that it
does have a git-tree-shal entry. It then computes the slug for this UUID/SHA-1 pair, which is HDkrT (the
exact details of this computation aren't important, but it is consistent and deterministic). This means that
the path to this Priv package will be packages/Priv/HDkrT/src/Priv.jl in one of the package depots.
Suppose the contents of DEPOT PATH is ["/home/me/.julia", "/usr/local/julia"l], then Julia will look
at the following paths to see if they exist:

1. /home/me/.julia/packages/Priv/HDkrT

2. /usr/local/julia/packages/Priv/HDkrT

Julia uses the first of these that exists to try to load the public Priv package from the file packages/Priv/HDKrT/src/Priv.jl
in the depot where it was found.

Here is a representation of a possible paths map for our example App project environment, as provided in
the Manifest given above for the dependency graph, after searching the local file system:

paths = Dict(

# Priv — the private one:

(UUID("bal3f791-aeld-465a-978b-69c3ad90f72b"), :Priv) =>
# relative entry-point inside “App’ repo:
"/home/me/projects/App/deps/Priv/src/Priv.jl",

# Priv — the public one:

(UUID("2d15fe94-alf7-436c-a4d8-07a9a496e01c"), :Priv) =>
# package installed in the system depot:
"/usr/local/julia/packages/Priv/HDkr/src/Priv.jl",

# Pub:

(UUID("cO7ecb7d-0dc9-4db7-8803-fadaaeaf08el"), :Pub) =>
# package installed in the user depot:
"/home/me/ . julia/packages/Pub/oKpw/src/Pub.jl",

# Zebra:

(UUID("f7a24ch4-21fc-4002-ac70-f0e3a0dd3f62"), :Zebra) =>
# package installed in the system depot:
"/usr/local/julia/packages/Zebra/me9k/src/Zebra.j1",

This example map includes three different kinds of package locations (the first and third are part of the
default load path):

1. The private Priv package is "vendored" inside the App repository.
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2. ThepublicPriv and Zebra packages are in the system depot, where packages installed and managed
by the system administrator live. These are available to all users on the system.

3. The Pub package is in the user depot, where packages installed by the user live. These are only

available to the user who installed them.

Package directories

Package directories provide a simpler kind of environment without the ability to handle name collisions. In
a package directory, the set of top-level packages is the set of subdirectories that "look like" packages. A
package X exists in a package directory if the directory contains one of the following "entry point" files:

« X.jl

e X/src/X.jl

e X.jl/src/X.jl

Which dependencies a package in a package directory can import depends on whether the package con-
tains a project file:

« If it has a project file, it can only import those packages which are identified in the [deps] section of
the project file.
« If it does not have a project file, it can import any top-level package—i.e. the same packages that

can be loaded in Main or the REPL.

The roots map is determined by examining the contents of the package directory to generate a list of all
packages that exist. Additionally, a UUID will be assigned to each entry as follows: For a given package
found inside the folder X...

1. If X/Project.toml exists and has a uuid entry, then uuid is that value.

2. If X/Project.toml exists and but does not have a top-level UUID entry, uuid is a dummy UUID
generated by hashing the canonical (real) path to X/Project.toml.

3. Otherwise (if Project.toml does not exist), then uuid is the all-zero nil UUID.

The dependency graph of a project directory is determined by the presence and contents of project files
in the subdirectory of each package. The rules are:

* If a package subdirectory has no project file, then it is omitted from graph and import statements in
its code are treated as top-level, the same as the main project and REPL.
* If a package subdirectory has a project file, then the graph entry for its UUID is the [deps] map of

the project file, which is considered to be empty if the section is absent.

As an example, suppose a package directory has the following structure and content:
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Aardvark/
src/Aardvark.jl:
import Bobcat
import Cobra

Bobcat/
Project.toml:
[deps]
Cobra = "4725e24d-f727-424b-bcab-c4307a3456fa"
Dingo = "7a7925be-828c-4418-bbeb-bac8dfc843bc"

src/Bobcat.jl:
import Cobra
import Dingo

Cobra/
Project.toml:
uuid = "4725e24d-f727-424b-bca0-c4307a3456fa"
[deps]
Dingo = "7a7925be-828c-4418-bbeb-bac8dfc843bc"

src/Cobra.jl:
import Dingo

Dingo/
Project.toml:
uuid = "7a7925be-828c-4418-bbeb-bac8dfc843bc"

src/Dingo.jl:
# no imports

Here is a corresponding roots structure, represented as a dictionary:

roots = Dict(
:Aardvark => UUID("00000000-0000-0000-0000-000000000000"), # no project file, nil UUID
:Bobcat => UUID("85adllc7-31f6-5d08-84db-0a4914d4cadf"), # dummy UUID based on path
:Cobra => UUID("4725e24d-f727-424b-bca0-c4307a3456fa"), # UUID from project file
:Dingo => UUID("7a7925be-828c-4418-bbeb-bac8dfc843bc"), # UUID from project file

Here is the corresponding graph structure, represented as a dictionary:

graph = Dict(

# Bobcat:

UUID("85ad11c7-31f6-5d08-84db-0a4914d4cadf") => Dict(
:Cobra => UUID("4725e24d-f727-424b-bca0-c4307a3456fa"),
:Dingo => UUID("7a7925be-828c-4418-bbeb-bac8dfc843bc"),

)

# Cobra:

UUID("4725e24d-f727-424b-bcad-c4307a3456fa") => Dict(
:Dingo => UUID("7a7925be-828c-4418-bbeb-bac8dfc843bc"),

)

396
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# Dingo:
UUID("7a7925be-828c-4418-bbeb-bac8dfc843bc") => Dict(),

A few general rules to note:

1. A package without a project file can depend on any top-level dependency, and since every package
in a package directory is available at the top-level, it can import all packages in the environment.

2. A package with a project file cannot depend on one without a project file since packages with project
files can only load packages in graph and packages without project files do not appear in graph.

3. A package with a project file but no explicit UUID can only be depended on by packages without
project files since dummy UUIDs assigned to these packages are strictly internal.

Observe the following specific instances of these rules in our example:

* Aardvark can import on any of Bobcat, Cobra or Dingo; it does import Bobcat and Cobra.

* Bobcat can and does import both Cobra and Dingo, which both have project files with UUIDs and
are declared as dependencies in Bobcat's [deps] section.

* Bobcat cannot depend on Aardvark since Aardvark does not have a project file.

* Cobracan and does import Dingo, which has a project file and UUID, and is declared as a dependency
in Cobra's [deps] section.

¢ Cobra cannot depend on Aardvark or Bobcat since neither have real UUIDs.

* Dingo cannot import anything because it has a project file without a [deps] section.

The paths map in a package directory is simple: it maps subdirectory names to their corresponding
entry-point paths. In other words, if the path to our example project directory is /home/me/animals then
the paths map could be represented by this dictionary:

paths = Dict(

(UUID("00000000-0000-0000-0000-000000000000"), :Aardvark) =>
"/home/me/AnimalPackages/Aardvark/src/Aardvark.jl",

(UUID("85ad11c7-31f6-5d08-84db-0a4914d4cadf"), :Bobcat) =>
"/home/me/AnimalPackages/Bobcat/src/Bobcat.jl",

(UUID("4725e24d-f727-424b-bcab-c4307a3456fa"), :Cobra) =>
"/home/me/AnimalPackages/Cobra/src/Cobra.jl",

(UUID("7a7925be-828c-4418-bbeb-bac8dfc843bc"), :Dingo) =>
"/home/me/AnimalPackages/Dingo/src/Dingo.jl",

Since all packages in a package directory environment are, by definition, subdirectories with the expected
entry-point files, their paths map entries always have this form.
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Environment stacks

The third and final kind of environment is one that combines other environments by overlaying several
of them, making the packages in each available in a single composite environment. These composite
environments are called environment stacks. The Julia LOAD_PATH global defines an environment stack—the
environment in which the Julia process operates. If you want your Julia process to have access only to the
packages in one project or package directory, make it the only entry in LOAD_PATH. It is often quite useful,
however, to have access to some of your favorite tools—standard libraries, profilers, debuggers, personal
utilities, etc.—even if they are not dependencies of the project you're working on. By adding an environment
containing these tools to the load path, you immediately have access to them in top-level code without
needing to add them to your project.

The mechanism for combining the roots, graph and paths data structures of the components of an environ-
ment stack is simple: they are merged as dictionaries, favoring earlier entries over later ones in the case
of key collisions. In other words, if we have stack = [envi, env:, ..] then we have:

roots = reduce(merge, reverse([rootsi, rootsz, ..]))
graph = reduce(merge, reverse([graphi, graph:z, ..1))
paths = reduce(merge, reverse([pathsi, pathsz, ..]))

The subscripted rootsi, graph: and pathsi variables correspond to the subscripted environments, envi,
contained in stack. The reverse is present because merge favors the last argument rather than first when
there are collisions between keys in its argument dictionaries. There are a couple of noteworthy features
of this design:

1. The primary environment—i.e. the first environment in a stack—is faithfully embedded in a stacked
environment. The full dependency graph of the first environment in a stack is guaranteed to be
included intact in the stacked environment including the same versions of all dependencies.

2. Packages in non-primary environments can end up using incompatible versions of their dependen-
cies even if their own environments are entirely compatible. This can happen when one of their
dependencies is shadowed by a version in an earlier environment in the stack (either by graph or
path, or both).

Since the primary environment is typically the environment of a project you're working on, while envi-
ronments later in the stack contain additional tools, this is the right trade-off: it's better to break your
development tools but keep the project working. When such incompatibilities occur, you'll typically want
to upgrade your dev tools to versions that are compatible with the main project.

Package Extensions

A package "extension" is a module that is automatically loaded when a specified set of other packages
(its "extension dependencies") are loaded in the current Julia session. Extensions are defined under the
[extensions] section in the project file. The extension dependencies of an extension are a subset of those
packages listed under the [weakdeps] section of the project file. Those packages can have compat entries
like other packages.

name = "MyPackage"

[compat]



CHAPTER 31. CODE LOADING 399

ExtDep = "1.0"
OtherExtDep = "1.0"

[weakdeps]

ExtDep = "c9a23..." # uuid
OtherExtDep = "862e..." # uuid
[extensions]

BarExt = ["ExtDep", "OtherExtDep"]

FooExt = "ExtDep"

The keys under extensions are the names of the extensions. They are loaded when all the packages on
the right hand side (the extension dependencies) of that extension are loaded. If an extension only has
one extension dependency the list of extension dependencies can be written as just a string for brevity.
The location for the entry point of the extension is either in ext/FooExt.jl or ext/FooExt/FooExt.jl for
extension FooExt. The content of an extension is often structured as:

module FooExt

# Load main package and extension dependencies
using MyPackage, ExtDep

# Extend functionality in main package with types from the extension dependencies
MyPackage. func(x: :ExtDep.SomeStruct) = ...

end

When a package with extensions is added to an environment, the weakdeps and extensions sections are
stored in the manifest file in the section for that package. The dependency lookup rules for a package
are the same as for its "parent" except that the listed extension dependencies are also considered as
dependencies.

Package/Environment Preferences

Preferences are dictionaries of metadata that influence package behavior within an environment. The pref-
erences system supports reading preferences at compile-time, which means that at code-loading time, we
must ensure that the precompilation files selected by Julia were built with the same preferences as the cur-
rent environment before loading them. The public APl for modifying Preferences is contained within the Pref-
erences.jl package. Preferences are stored as TOML dictionaries within a (Julia)LocalPreferences.toml
file next to the currently-active project. If a preference is "exported", it is instead stored within the
(Julia)Project.toml instead. The intention is to allow shared projects to contain shared preferences,
while allowing for users themselves to override those preferences with their own settings in the LocalPref-
erences.toml file, which should be .gitignored as the name implies.

Preferences that are accessed during compilation are automatically marked as compile-time preferences,
and any change recorded to these preferences will cause the Julia compiler to recompile any cached pre-
compilation file(s) (.ji and corresponding .so, .d1l1l, or .dylib files) for that module. This is done by
serializing the hash of all compile-time preferences during compilation, then checking that hash against
the current environment when searching for the proper file(s) to load.

Preferences can be set with depot-wide defaults; if package Foo is installed within your global environment
and it has preferences set, these preferences will apply as long as your global environment is part of


https://github.com/JuliaPackaging/Preferences.jl
https://github.com/JuliaPackaging/Preferences.jl

CHAPTER 31. CODE LOADING 400

your LOAD PATH. Preferences in environments higher up in the environment stack get overridden by the
more proximal entries in the load path, ending with the currently active project. This allows depot-wide
preference defaults to exist, with active projects able to merge or even completely overwrite these inherited
preferences. See the docstring for Preferences.set preferences! () for the full details of how to set
preferences to allow or disallow merging.

31.4 Conclusion

Federated package management and precise software reproducibility are difficult but worthy goals in a
package system. In combination, these goals lead to a more complex package loading mechanism than
most dynamic languages have, but it also yields scalability and reproducibility that is more commonly
associated with static languages. Typically, Julia users should be able to use the built-in package man-
ager to manage their projects without needing a precise understanding of these interactions. A call to
Pkg.add("X") will add to the appropriate project and manifest files, selected via Pkg.activate("Y"), so
that a future call to import X will load X without further thought.
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Profiling

The Profile module provides tools to help developers improve the performance of their code. When used,
it takes measurements on running code, and produces output that helps you understand how much time is
spent on individual line(s). The most common usage is to identify "bottlenecks" as targets for optimization.

Profile implements what is known as a "sampling" or statistical profiler. It works by periodically taking
a backtrace during the execution of any task. Each backtrace captures the currently-running function and
line number, plus the complete chain of function calls that led to this line, and hence is a "snapshot" of the
current state of execution.

If much of your run time is spent executing a particular line of code, this line will show up frequently in the
set of all backtraces. In other words, the "cost" of a given line-or really, the cost of the sequence of function
calls up to and including this line-is proportional to how often it appears in the set of all backtraces.

A sampling profiler does not provide complete line-by-line coverage, because the backtraces occur at
intervals (by default, 1 ms on Unix systems and 10 ms on Windows, although the actual scheduling is
subject to operating system load). Moreover, as discussed further below, because samples are collected
at a sparse subset of all execution points, the data collected by a sampling profiler is subject to statistical
noise.

Despite these limitations, sampling profilers have substantial strengths:

* You do not have to make any modifications to your code to take timing measurements.
¢ |t can profile into Julia's core code and even (optionally) into C and Fortran libraries.

* By running "infrequently" there is very little performance overhead; while profiling, your code can
run at nearly native speed.

For these reasons, it's recommended that you try using the built-in sampling profiler before considering
any alternatives.

32.1 Basic usage
Let's work with a simple test case:

julia> function myfunc()
A = rand (200, 200, 400)

401
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maximum(A)
end

It's a good idea to first run the code you intend to profile at least once (unless you want to profile Julia's
JIT-compiler):

‘julia> myfunc() # run once to force compilation
Now we're ready to profile this function:

julia> using Profile

julia> @profile myfunc()

To see the profiling results, there are several graphical browsers. One "family" of visualizers is based on
FlameGraphs.jl, with each family member providing a different user interface:

* VS Code is a full IDE with built-in support for profile visualization
e ProfileView.jl is a stand-alone visualizer based on GTK
* ProfileVega.jl uses VegalLight and integrates well with Jupyter notebooks

» StatProfilerHTML.jl produces HTML and presents some additional summaries, and also integrates well
with Jupyter notebooks

* ProfileSVG.jl renders SVG
¢ PProf.jl serves a local website for inspecting graphs, flamegraphs and more

* ProfileCanvas.jl is a HTML canvas based profile viewer Ul, used by the Julia VS Code extension, but
can also generate interactive HTML files.

An entirely independent approach to profile visualization is PProf.jl, which uses the external pprof tool.

Here, though, we'll use the text-based display that comes with the standard library:

julia> Profile.print()
80 ./event.jl:73; (::Base.REPL.##1#2{Base.REPL.REPLBackend}) ()
80 ./REPL.jl1:97; macro expansion
80 ./REPL.jl1:66; eval user input(::Any, ::Base.REPL.REPLBackend)
80 ./boot.jl:235; eval(::Module, ::Any)
80 ./<missing>:7?; anonymous
80 ./profile.jl:23; macro expansion
52 ./REPL[1]:2; myfunc()
38 ./random.jl:431; rand!(::MersenneTwister, ::Array{Float64,3}, ::Int64, ::Type{B...
38 ./dSFMT.jl1:84; dsfmt fill array close open!(::Base.dSFMT.DSFMT state, ::Ptr{F...
14 ./random.j1:278; rand
14 ./random.jl:277; rand
14 ./random.jl:366; rand
14 ./random.j1:369; rand
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28 ./REPL[1]1:3; myfunc()
28 ./reduce.jl:270; mapreduce(::Base.#identity, ::Base.#scalarmax, ::IndexLinear,...
3 ./reduce.jl:426; mapreduce impl(::Base.#identity, ::Base.#scalarmax, ::Array{F...
25 ./reduce.jl:428; mapreduce impl(::Base.#identity, ::Base.#scalarmax, ::Array{F...

Each line of this display represents a particular spot (line number) in the code. Indentation is used to
indicate the nested sequence of function calls, with more-indented lines being deeper in the sequence
of calls. In each line, the first "field" is the number of backtraces (samples) taken at this line or in any
functions executed by this line. The second field is the file name and line number and the third field is the
function name. Note that the specific line numbers may change as Julia's code changes; if you want to
follow along, it's best to run this example yourself.

In this example, we can see that the top level function called is in the file event.j1l. This is the function
that runs the REPL when you launch Julia. If you examine line 97 of REPL. j1, you'll see this is where the
function eval user input() is called. This is the function that evaluates what you type at the REPL, and
since we're working interactively these functions were invoked when we entered @profile myfunc(). The
next line reflects actions taken in the @profile macro.

The first line shows that 80 backtraces were taken at line 73 of event. j1, but it's not that this line was
"expensive" on its own: the third line reveals that all 80 of these backtraces were actually triggered inside
its call to eval _user_input, and so on. To find out which operations are actually taking the time, we need
to look deeper in the call chain.

The first "important" line in this output is this one:

52 ./REPL[1]:2; myfunc()

REPL refers to the fact that we defined myfunc in the REPL, rather than putting it in a file; if we had used
a file, this would show the file name. The [1] shows that the function myfunc was the first expression
evaluated in this REPL session. Line 2 of myfunc() contains the call to rand, and there were 52 (out of 80)
backtraces that occurred at this line. Below that, you can see a call to dsfmt_fill array close open!
inside dSFMT. j 1.

A little further down, you see:

28 ./REPL[1]:3; myfunc()

Line 3 of myfunc contains the call to maximum, and there were 28 (out of 80) backtraces taken here. Below
that, you can see the specific places in base/reduce. jl that carry out the time-consuming operations in
the maximum function for this type of input data.

Overall, we can tentatively conclude that generating the random numbers is approximately twice as ex-
pensive as finding the maximum element. We could increase our confidence in this result by collecting
more samples:

julia> @profile (for i = 1:100; myfunc(); end)

julia> Profile.print()

[....]

3821 ./REPL[1]:2; myfunc()
3511 ./random.jl:431; rand!(::MersenneTwister, ::Array{Float64,3}, ::Int64, ::Type...
3511 ./dSFMT.j1:84; dsfmt fill array close open!(::Base.dSFMT.DSFMT state, ::Ptr...
310 ./random.jl:278; rand
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[....]
2893 ./REPL[1]:3; myfunc()
2893 ./reduce.jl:270; mapreduce(::Base.#identity, ::Base.#scalarmax, ::IndexLinea...

[....]

In general, if you have N samples collected at a line, you can expect an uncertainty on the order of sqrt(N)
(barring other sources of noise, like how busy the computer is with other tasks). The major exception to this
rule is garbage collection, which runs infrequently but tends to be quite expensive. (Since Julia's garbage
collector is written in C, such events can be detected using the C=true output mode described below, or
by using ProfileView.jl.)

This illustrates the default "tree" dump; an alternative is the "flat" dump, which accumulates counts inde-
pendent of their nesting:

julia> Profile.print(format=:flat)

Count File Line Function

6714 ./<missing> -1 anonymous

6714 ./REPL.jl 66 eval user input(::Any, ::Base.REPL.REPLBackend)

6714 ./REPL.j1 97 macro expansion

3821 ./REPL[1] 2 myfunc()

2893 ./REPL[1] 3 myfunc()

6714 ./REPL[7] 1 macro expansion

6714 ./boot.jl 235 eval(::Module, ::Any)

3511 ./dSFMT.jl 84 dsfmt_fill array close open!(::Base.dSFMT.DSFMT s...
6714 ./event.jl 73 (::Base.REPL.##1#2{Base.REPL.REPLBackend}) ()

6714 ./profile.jl 23 macro expansion
3511 ./random.jl 431 rand!(::MersenneTwister, ::Array{Float64,3}, ::In...
310 ./random.jl 277 rand
310 ./random.jl 278 rand
310 ./random.jl 366 rand
310 ./random.jl 369 rand
2893 ./reduce.jl 270 mapreduce(::Base.#identity, ::Base.#scalarmax,
5 ./reduce.jl 420 mapreduce impl(::Base.#identity, ::Base.#scalarma...
253 ./reduce.jl 426 mapreduce impl(::Base.#identity, ::Base.#scalarma...
2592 ./reduce.jl 428 mapreduce impl(::Base.#identity, ::Base.#scalarma...
43 ./reduce.jl 429 mapreduce impl(::

Base.#identity, ::Base.#scalarma...

If your code has recursion, one potentially-confusing point is that a line in a "child" function can accumulate
more counts than there are total backtraces. Consider the following function definitions:

dumbsum(n::Integer) = n ==17 1 : 1 + dumbsum(n-1)
dumbsum3() = dumbsum(3)

If you were to profile dumbsum3, and a backtrace was taken while it was executing dumbsum(1), the back-
trace would look like this:

dumbsum3
dumbsum(3)
dumbsum(2)
dumbsum(1)


https://github.com/timholy/ProfileView.jl
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Consequently, this child function gets 3 counts, even though the parent only gets one. The "tree" repre-
sentation makes this much clearer, and for this reason (among others) is probably the most useful way to
view the results.

32.2 Accumulation and clearing

Results from @profile accumulate in a buffer; if you run multiple pieces of code under @profile, then
Profile.print() will show you the combined results. This can be very useful, but sometimes you want
to start fresh; you can do so with Profile.clear().

32.3 Options for controlling the display of profile results

Profile.print has more options than we've described so far. Let's see the full declaration:
function print(io::I0 = stdout, data = fetch(); kwargs...)
Let's first discuss the two positional arguments, and later the keyword arguments:

¢ io - Allows you to save the results to a buffer, e.g. a file, but the default is to print to stdout (the
console).

¢ data - Contains the data you want to analyze; by default that is obtained from Profile. fetch(),
which pulls out the backtraces from a pre-allocated buffer. For example, if you want to profile the
profiler, you could say:

data = copy(Profile.fetch())

Profile.clear()

@profile Profile.print(stdout, data) # Prints the previous results
Profile.print() # Prints results from Profile.print()

The keyword arguments can be any combination of:

e« format - Introduced above, determines whether backtraces are printed with (default, :tree) or
without (: flat) indentation indicating tree structure.

¢ C-If true, backtraces from C and Fortran code are shown (normally they are excluded). Try running
the introductory example with Profile.print(C = true). This can be extremely helpful in deciding
whether it's Julia code or C code that is causing a bottleneck; setting C = true also improves the
interpretability of the nesting, at the cost of longer profile dumps.

e combine - Some lines of code contain multiple operations; for example, s += A[i] contains both an
array reference (A[1i]) and a sum operation. These correspond to different lines in the generated
machine code, and hence there may be two or more different addresses captured during backtraces
on this line. combine = true lumps them together, and is probably what you typically want, but you
can generate an output separately for each unique instruction pointer with combine = false.

¢ maxdepth - Limits frames at a depth higher than maxdepth in the :tree format.

* sortedby - Controls the order in : flat format. :filefuncline (default) sorts by the source line,
whereas :count sorts in order of number of collected samples.
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* noisefloor - Limits frames that are below the heuristic noise floor of the sample (only applies to
format :tree). A suggested value to try for this is 2.0 (the default is 0). This parameter hides
samples for which n <= noisefloor * VN, where n is the number of samples on this line, and N is
the number of samples for the callee.

e mincount - Limits frames with less than mincount occurrences.

File/function names are sometimes truncated (with ...), and indentation is truncated with a +n at the
beginning, where n is the number of extra spaces that would have been inserted, had there been room.
If you want a complete profile of deeply-nested code, often a good idea is to save to a file using a wide
displaysizein an IOContext:

open("/tmp/prof.txt", "w") do s
Profile.print(I0Context(s, :displaysize => (24, 500)))
end

32.4 Configuration

@profile just accumulates backtraces, and the analysis happens when you call Profile.print(). For a
long-running computation, it's entirely possible that the pre-allocated buffer for storing backtraces will be
filled. If that happens, the backtraces stop but your computation continues. As a consequence, you may
miss some important profiling data (you will get a warning when that happens).

You can obtain and configure the relevant parameters this way:

Profile.init() # returns the current settings
Profile.init(n = 1077, delay = 0.01)

n is the total number of instruction pointers you can store, with a default value of 1076. If your typical
backtrace is 20 instruction pointers, then you can collect 50000 backtraces, which suggests a statistical
uncertainty of less than 1%. This may be good enough for most applications.

Consequently, you are more likely to need to modify delay, expressed in seconds, which sets the amount
of time that Julia gets between snapshots to perform the requested computations. A very long-running job
might not need frequent backtraces. The default setting is delay = 0.001. Of course, you can decrease
the delay as well as increase it; however, the overhead of profiling grows once the delay becomes similar
to the amount of time needed to take a backtrace (~30 microseconds on the author's laptop).

32.5 Memory allocation analysis

One of the most common techniques to improve performance is to reduce memory allocation. Julia provides
several tools measure this:

@time

The total amount of allocation can be measured with @time, @allocated and @allocations, and specific
lines triggering allocation can often be inferred from profiling via the cost of garbage collection that these
lines incur. However, sometimes it is more efficient to directly measure the amount of memory allocated
by each line of code.
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GC Logging

While @time logs high-level stats about memory usage and garbage collection over the course of evaluating
an expression, it can be useful to log each garbage collection event, to get an intuitive sense of how often
the garbage collector is running, how long it's running each time, and how much garbage it collects each
time. This can be enabled with GC.enable logging(true), which causes Julia to log to stderr every time
a garbage collection happens.

Allocation Profiler

Julia 1.8

This functionality requires at least Julia 1.8.

The allocation profiler records the stack trace, type, and size of each allocation while it is running. It can
be invoked with Profile.Allocs.@profile.

This information about the allocations is returned as an array of Alloc objects, wrapped inan AllocResults
object. The best way to visualize these is currently with the PProf.jl and ProfileCanvas.jl packages, which
can visualize the call stacks which are making the most allocations.

The allocation profiler does have significant overhead, so a sample rate argument can be passed to speed
it up by making it skip some allocations. Passing sample_rate=1.0 will make it record everything (which
is slow); sample rate=0.1 will record only 10% of the allocations (faster), etc.

Note

The current implementation of the Allocations Profiler does not capture types for all allocations.
Allocations for which the profiler could not capture the type are represented as having type
Profile.Allocs.UnknownType.

You can read more about the missing types and the plan to improve this, here: issue #43688.

Line-by-Line Allocation Tracking

An alternative way to measure allocations is to start Julia with the - -track-allocation=<setting>command-
line option, for which you can choose none (the default, do not measure allocation), user (measure memory
allocation everywhere except Julia's core code), or all (measure memory allocation at each line of Julia
code). Allocation gets measured for each line of compiled code. When you quit Julia, the cumulative results
are written to text files with .mem appended after the file name, residing in the same directory as the source
file. Each line lists the total number of bytes allocated. The Coverage package contains some elementary
analysis tools, for example to sort the lines in order of number of bytes allocated.

In interpreting the results, there are a few important details. Under the user setting, the first line of any
function directly called from the REPL will exhibit allocation due to events that happen in the REPL code
itself. More significantly, JIT-compilation also adds to allocation counts, because much of Julia's compiler is
written in Julia (and compilation usually requires memory allocation). The recommended procedure is to
force compilation by executing all the commands you want to analyze, then call Profile.clear malloc data()
to reset all allocation counters. Finally, execute the desired commands and quit Julia to trigger the gener-
ation of the . menm files.

Note


https://github.com/JuliaPerf/PProf.jl
https://github.com/pfitzseb/ProfileCanvas.jl
https://github.com/JuliaLang/julia/issues/43688
https://github.com/JuliaCI/Coverage.jl
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--track-allocation changes code generation to log the allocations, and so the allocations
may be different than what happens without the option. We recommend using the allocation
profiler instead.

32.6 External Profiling

Currently Julia supports Intel VTune, OProfile and perf as external profiling tools.

Depending on the tool you choose, compile with USE_INTEL JITEVENTS, USE OPROFILE JITEVENTS and
USE_PERF_JITEVENTS set to 1 in Make.user. Multiple flags are supported.

Before running Julia set the environment variable ENABLE _JITPROFILING to 1.

Now you have a multitude of ways to employ those tools! For example with OProfile you can try a simple
recording :

>ENABLE_JITPROFILING=1 sudo operf -Vdebug ./julia test/fastmath.jl
>opreport -1 ‘which ./julia’

Or similarly with perf :

$ ENABLE JITPROFILING=1 perf record -o /tmp/perf.data --call-graph dwarf -k 1 ./julia /test/
fastmath.jl

$ perf inject --jit --input /tmp/perf.data --output /tmp/perf-jit.data

$ perf report --call-graph -G -i /tmp/perf-jit.data

There are many more interesting things that you can measure about your program, to get a comprehensive
list please read the Linux perf examples page.

Remember that perf saves for each execution a perf.data file that, even for small programs, can get quite
large. Also the perf LLVM module saves temporarily debug objects in ~/.debug/jit, remember to clean
that folder frequently.


https://www.brendangregg.com/perf.html
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Stack Traces

The StackTraces module provides simple stack traces that are both human readable and easy to use
programmatically.

33.1 Viewing a stack trace

The primary function used to obtain a stack trace is stacktrace:

6-element Array{Base.StackTraces.StackFrame,1}:

top-level scope

eval at boot.jl:317 [inlined]

eval(::Module, ::Expr) at REPL.jl:5

eval _user_input(::Any, ::REPL.REPLBackend) at REPL.jl:85

macro expansion at REPL.jl:116 [inlined]

(::getfield(REPL, Symbol("##28#29")){REPL.REPLBackend})() at event.jl:92

Calling stacktrace() returns a vector of StackTraces.StackFrames. For ease of use, the alias StackTraces.StackTrace
can be used in place of Vector{StackFrame}. (Examples with [...] indicate that output may vary de-
pending on how the code is run.)

julia> example() = stacktrace()
example (generic function with 1 method)

julia> example()

7-element Array{Base.StackTraces.StackFrame,1}:
example() at REPL[1]:1

top-level scope

eval at boot.jl:317 [inlined]

[...]

julia> @noinline child() = stacktrace()
child (generic function with 1 method)

julia> @noinline parent() = child()
parent (generic function with 1 method)

409
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julia> grandparent() = parent()
grandparent (generic function with 1 method)

julia> grandparent()
9-element Array{Base.StackTraces.StackFrame,1}:
child() at REPL[3]:1
parent() at REPL[4]:1
grandparent() at REPL[5]:1
[...]

Note that when calling stacktrace() you'll typically see a frame with eval at boot.jl. When calling
stacktrace() from the REPL you'll also have a few extra frames in the stack from REPL. j1, usually looking
something like this:

julia> example() = stacktrace()
example (generic function with 1 method)

julia> example()
7-element Array{Base.StackTraces.StackFrame,1}:
example() at REPL[1]:1
top-level scope
eval at boot.jl:317 [inlined]
eval(::Module, ::Expr) at REPL.jl:5
eval user input(::Any, ::REPL.REPLBackend) at REPL.jl:85
macro expansion at REPL.jl:116 [inlined]
(::getfield(REPL, Symbol("##28#29")){REPL.REPLBackend})() at event.jl:92

33.2 Extracting useful information

Each StackTraces.StackFrame contains the function name, file name, line number, lambda info, a flag
indicating whether the frame has been inlined, a flag indicating whether it is a C function (by default
C functions do not appear in the stack trace), and an integer representation of the pointer returned by
backtrace:

julia> frame = stacktrace()[3]
eval(::Module, ::Expr) at REPL.jl:5

julia> frame.func
reval

julia> frame.file
Symbol("~/julia/usr/share/julia/stdlib/v0.7/REPL/src/REPL.j1")

julia> frame.line
5

julia> frame.linfo
MethodInstance for eval(::Module, ::Expr)

julia> frame.inlined
false
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julia> frame.from c
false

julia> frame.pointer
0x00007192d6293171

This makes stack trace information available programmatically for logging, error handling, and more.

33.3 Error handling

411

While having easy access to information about the current state of the callstack can be helpful in many

places, the most obvious application is in error handling and debugging.

julia> @noinline bad_function() = undeclared variable
bad function (generic function with 1 method)

julia> @noinline example() = try
bad function()
catch
stacktrace()
end
example (generic function with 1 method)

julia> example()

7-element Array{Base.StackTraces.StackFrame,1}:
example() at REPL[2]:4

top-level scope

eval at boot.jl:317 [inlined]

[...]

You may notice that in the example above the first stack frame points at line 4, where stacktrace is
called, rather than line 2, where bad_function is called, and bad_function's frame is missing entirely. This
is understandable, given that stacktrace is called from the context of the catch. While in this example
it's fairly easy to find the actual source of the error, in complex cases tracking down the source of the error

becomes nontrivial.

This can be remedied by passing the result of catch backtrace to stacktrace.

Instead of returning

callstack information for the current context, catch backtrace returns stack information for the context

of the most recent exception:

julia> @noinline bad function() = undeclared variable
bad function (generic function with 1 method)

julia> @noinline example() = try
bad function()
catch
stacktrace(catch backtrace())
end
example (generic function with 1 method)
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julia> example()
8-element Array{Base.StackTraces.StackFrame,1}:
bad function() at REPL[1]:1
example() at REPL[2]:2
[...]

Notice that the stack trace now indicates the appropriate line number and the missing frame.

julia> @noinline child() = error("Whoops!")
child (generic function with 1 method)

julia> @noinline parent() = child()
parent (generic function with 1 method)

julia> @noinline function grandparent()

try
parent()
catch err
println("ERROR: ", err.msg)
stacktrace(catch_backtrace())
end
end

grandparent (generic function with 1 method)

julia> grandparent()

ERROR: Whoops!

10-element Array{Base.StackTraces.StackFrame,1}:
error at error.jl:33 [inlined]

child() at REPL[1]:1

parent() at REPL[2]:1

grandparent() at REPL[3]:3

[...]

33.4 Exception stacks and current_exceptions

Julia 1.1

Exception stacks requires at least Julia 1.1.

While handling an exception further exceptions may be thrown. It can be useful to inspect all these excep-
tions to identify the root cause of a problem. The julia runtime supports this by pushing each exception onto
an internal exception stack as it occurs. When the code exits a catch normally, any exceptions which were
pushed onto the stack in the associated try are considered to be successfully handled and are removed
from the stack.

The stack of current exceptions can be accessed using the current exceptions function. For example,

julia> try
error("(A) The root cause")
catch
try
error("(B) An exception while handling the exception")
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catch
for (exc, bt) in current exceptions()
showerror(stdout, exc, bt)
println(stdout)
end
end
end
(A) The root cause
Stacktrace:
[1] error(::String) at error.jl:33
[2] top-level scope at REPL[7]:2
[3] eval(::Module, ::Any) at boot.jl:319
[4] eval user input(::Any, ::REPL.REPLBackend) at REPL.j1:85
[5] macro expansion at REPL.jl:117 [inlined]
[6] (::getfield(REPL, Symbol("##26#27")){REPL.REPLBackend})() at task.jl:259
(B) An exception while handling the exception
Stacktrace:
[1] error(::String) at error.jl:33
[2] top-level scope at REPL[7]:5
[3] eval(::Module, ::Any) at boot.jl:319
[4] eval user input(::Any, ::REPL.REPLBackend) at REPL.j1:85
[5] macro expansion at REPL.jl:117 [inlined]
[6] (::getfield(REPL, Symbol("##26#27")){REPL.REPLBackend}) () at task.jl:259

In this example the root cause exception (A) is first on the stack, with a further exception (B) following
it. After exiting both catch blocks normally (i.e., without throwing a further exception) all exceptions are
removed from the stack and are no longer accessible.

The exception stack is stored on the Task where the exceptions occurred. When a task fails with uncaught
exceptions, current_exceptions(task) may be used to inspect the exception stack for that task.

33.5 Comparison with backtrace

A call to backtrace returns a vector of Union{Ptr{Nothing}, Base.InterpreterIP}, which may then be
passed into stacktrace for translation:

julia> trace = backtrace()
18-element Array{Union{Ptr{Nothing}, Base.InterpreterIP},1}:
Ptr{Nothing} @O0x00007fd8734c6209
Ptr{Nothing} @0x00007fd87362b342
Ptr{Nothing} @0x00007fd87362c136
Ptr{Nothing} @O0x00007fd87362c986
Ptr{Nothing} @0x00007fd87362d089
Base.InterpreterIP(CodeInfo(: (begin
Core.SSAValue(0) = backtrace()
trace = Core.SSAValue(0)
return Core.SSAValue(0)
end)), 0x0000000000000000)
Ptr{Nothing} @0x00007fd87362e4cf
[...]

julia> stacktrace(trace)
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6-element Array{Base.StackTraces.StackFrame,1}:

top-level scope

eval at boot.jl:317 [inlined]

eval(::Module, ::Expr) at REPL.jl:5

eval user input(::Any, ::REPL.REPLBackend) at REPL.jl:85

macro expansion at REPL.jl:116 [inlined]

(::getfield(REPL, Symbol("##28#29")){REPL.REPLBackend})() at event.jl:92

Notice that the vector returned by backtrace had 18 elements, while the vector returned by stacktrace
only has 6. This is because, by default, stacktrace removes any lower-level C functions from the stack. If
you want to include stack frames from C calls, you can do it like this:

julia> stacktrace(trace, true)
21-element Array{Base.StackTraces.StackFrame,1}:

j1 apply generic at gf.c:2167

do call at interpreter.c:324

eval value at interpreter.c:416

eval body at interpreter.c:559

jU interpret toplevel thunk callback at interpreter.c:798
top-level scope

jl interpret _toplevel thunk at interpreter.c:807

j1 toplevel eval flex at toplevel.c:856

j1 toplevel eval in at builtins.c:624

eval at boot.jl:317 [inlined]

eval(::Module, ::Expr) at REPL.jl:5

jl apply generic at gf.c:2167

eval user input(::Any, ::REPL.REPLBackend) at REPL.j1:85
jl apply generic at gf.c:2167

macro expansion at REPL.jl:116 [inlined]
(::getfield(REPL, Symbol("##28#29")){REPL.REPLBackend})() at event.jl1:92
jl fptr trampoline at gf.c:1838

jl apply generic at gf.c:2167

jl apply at julia.h:1540 [inlined]

start task at task.c:268

ip:Oxffffffffffffffff

Individual pointers returned by backtrace can be translated into StackTraces.StackFrame s by passing
them into StackTraces. Lookup

julia> pointer = backtrace()[1];

julia> frame = StackTraces.lookup(pointer)
1-element Array{Base.StackTraces.StackFrame,1}:
jl apply generic at gf.c:2167

julia> println("The top frame is from $(frame[1].func)!")
The top frame is from jl apply generic!
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Performance Tips

In the following sections, we briefly go through a few techniques that can help make your Julia code run as
fast as possible.

34.1 Performance critical code should be inside a function

Any code that is performance critical should be inside a function. Code inside functions tends to run much
faster than top level code, due to how Julia's compiler works.

The use of functions is not only important for performance: functions are more reusable and testable, and
clarify what steps are being done and what their inputs and outputs are, Write functions, not just scripts is
also a recommendation of Julia's Styleguide.

The functions should take arguments, instead of operating directly on global variables, see the next point.

34.2 Avoid untyped global variables

The value of an untyped global variable might change at any point, possibly leading to a change of its type.
This makes it difficult for the compiler to optimize code using global variables. This also applies to type-
valued variables, i.e. type aliases on the global level. Variables should be local, or passed as arguments
to functions, whenever possible.

We find that global names are frequently constants, and declaring them as such greatly improves perfor-
mance:

const DEFAULT_VAL = 0

If a global is known to always be of the same type, the type should be annotated.

Uses of untyped globals can be optimized by annotating their types at the point of use:

global x = rand(1000)

function loop over global()

s =0.0
for i in x::Vector{Float64}
s += 1

415
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end
return s
end

Passing arguments to functions is better style. It leads to more reusable code and clarifies what the inputs
and outputs are.

Note

All code in the REPL is evaluated in global scope, so a variable defined and assigned at top
level will be a global variable. Variables defined at top level scope inside modules are also
global.

In the following REPL session:

julia> x = 1.0

is equivalent to:

julia> global x = 1.0

so all the performance issues discussed previously apply.

34.3 Measure performance with @time and pay attention to memory
allocation

A useful tool for measuring performance is the @time macro. We here repeat the example with the global
variable above, but this time with the type annotation removed:

julia> x = rand(1000);

julia> function sum global()
s =0.0
for i in x
s += 1
end
return s
end;

julia> @time sum_global()
0.011539 seconds (9.08 k allocations: 373.386 KiB, 98.69% compilation time)
523.0007221951678

julia> @time sum_global()
0.000091 seconds (3.49 k allocations: 70.156 KiB)
523.0007221951678
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On the first call (@time sum _global()) the function gets compiled. (If you've not yet used @time in this
session, it will also compile functions needed for timing.) You should not take the results of this run seriously.
For the second run, note that in addition to reporting the time, it also indicated that a significant amount
of memory was allocated. We are here just computing a sum over all elements in a vector of 64-bit floats
so there should be no need to allocate (heap) memory.

We should clarify that what @time reports is specifically heap allocations, which are typically needed for
either mutable objects or for creating/growing variable-sized containers (such as Array or Dict, strings,
or "type-unstable" objects whose type is only known at runtime). Allocating (or deallocating) such blocks
of memory may require an expensive system call (e.g. via malloc in C), and they must be tracked for
garbage collection. In contrast, immutable values like numbers (except bignums), tuples, and immutable
structs can be stored much more cheaply, e.g. in stack or CPU-register memory, so one doesn’t typically
worry about the performance cost of "allocating" them.

Unexpected memory allocation is almost always a sign of some problem with your code, usually a problem
with type-stability or creating many small temporary arrays. Consequently, in addition to the allocation
itself, it's very likely that the code generated for your function is far from optimal. Take such indications
seriously and follow the advice below.

In this particular case, the memory allocation is due to the usage of a type-unstable global variable x, so if
we instead pass x as an argument to the function it no longer allocates memory (the remaining allocation
reported below is due to running the @time macro in global scope) and is significantly faster after the first
call:

julia> x = rand(1000);

julia> function sum_arg(x)
s =0.0
for i in x
s += 1
end
return s
end;

julia> @time sum_arg(x)
0.007551 seconds (3.98 k allocations: 200.548 KiB, 99.77% compilation time)
523.0007221951678

julia> @time sum_arg(x)
0.000006 seconds (1 allocation: 16 bytes)
523.0007221951678

The 1 allocation seen is from running the @time macro itself in global scope. If we instead run the timing
in a function, we can see that indeed no allocations are performed:

julia> time sum(x) = @time sum_arg(x);

julia> time sum(x)
0.000002 seconds
523.0007221951678
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In some situations, your function may need to allocate memory as part of its operation, and this can
complicate the simple picture above. In such cases, consider using one of the tools below to diagnose
problems, or write a version of your function that separates allocation from its algorithmic aspects (see
Pre-allocating outputs).

Note

For more serious benchmarking, consider the BenchmarkTools.jl package which among other
things evaluates the function multiple times in order to reduce noise.

34.4 Tools

Julia and its package ecosystem includes tools that may help you diagnose problems and improve the
performance of your code:

¢ Profiling allows you to measure the performance of your running code and identify lines that serve
as bottlenecks. For complex projects, the ProfileView package can help you visualize your profiling
results.

* The Traceur package can help you find common performance problems in your code.

* Unexpectedly-large memory allocations-as reported by @time, @allocated, or the profiler (through
calls to the garbage-collection routines)-hint that there might be issues with your code. If you don't
see another reason for the allocations, suspect a type problem. You can also start Julia with the
--track-allocation=user option and examine the resulting *.mem files to see information about
where those allocations occur. See Memory allocation analysis.

* @code warntype generates a representation of your code that can be helpful in finding expressions
that result in type uncertainty. See @code warntype below.

34.5 Avoid containers with abstract type parameters

When working with parameterized types, including arrays, it is best to avoid parameterizing with abstract
types where possible.

Consider the following:

julia> a = Real[]
Reall]

julia> push!(a, 1); push!(a, 2.0); push!(a, m)
3-element Vector{Real}:
1
2.0
n = 3.1415926535897...

Because a is an array of abstract type Real, it must be able to hold any Real value. Since Real objects can
be of arbitrary size and structure, a must be represented as an array of pointers to individually allocated
Real objects. However, if we instead only allow numbers of the same type, e.g. Float64, to be stored in
a these can be stored more efficiently:


https://github.com/JuliaCI/BenchmarkTools.jl
https://github.com/timholy/ProfileView.jl
https://github.com/JunoLab/Traceur.jl
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julia> a = Float64[]
Float64[]

julia> push!(a, 1); push!(a, 2.0); push!(a, m)
3-element Vector{Float64}:

1.0

2.0

3.141592653589793

Assigning numbers into a will now convert them to Float64 and a will be stored as a contiguous block of
64-bit floating-point values that can be manipulated efficiently.

If you cannot avoid containers with abstract value types, it is sometimes better to parametrize with Any to
avoid runtime type checking. E.g. IdDict{Any, Any} performs better than IdDict{Type, Vector}

See also the discussion under Parametric Types.

34.6 Type declarations

In many languages with optional type declarations, adding declarations is the principal way to make code
run faster. This is not the case in Julia. In Julia, the compiler generally knows the types of all function ar-
guments, local variables, and expressions. However, there are a few specific instances where declarations
are helpful.

Avoid fields with abstract type

Types can be declared without specifying the types of their fields:

julia> struct MyAmbiguousType
a
end

This allows a to be of any type. This can often be useful, but it does have a downside: for objects of type
MyAmbiguousType, the compiler will not be able to generate high-performance code. The reason is that the
compiler uses the types of objects, not their values, to determine how to build code. Unfortunately, very
little can be inferred about an object of type MyAmbiguousType:

julia> b = MyAmbiguousType("Hello")
MyAmbiguousType("Hello")

julia> c = MyAmbiguousType(17)
MyAmbiguousType(17)

julia> typeof(b)
MyAmbiguousType

julia> typeof(c)
MyAmbiguousType

The values of b and ¢ have the same type, yet their underlying representation of data in memory is very
different. Even if you stored just numeric values in field a, the fact that the memory representation of a
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UInt8 differs from a Float64 also means that the CPU needs to handle them using two different kinds of
instructions. Since the required information is not available in the type, such decisions have to be made
at run-time. This slows performance.

You can do better by declaring the type of a. Here, we are focused on the case where a might be any one
of several types, in which case the natural solution is to use parameters. For example:

julia> mutable struct MyType{T<:AbstractFloat}
a::T
end

This is a better choice than

julia> mutable struct MyStillAmbiguousType
a::AbstractFloat
end

because the first version specifies the type of a from the type of the wrapper object. For example:

julia> m = MyType(3.2)
MyType{Float64}(3.2)

julia> t = MyStillAmbiguousType(3.2)
MyStillAmbiguousType(3.2)

julia> typeof(m)
MyType{Float64}

julia> typeof(t)
MyStillAmbiguousType

The type of field a can be readily determined from the type of m, but not from the type of t. Indeed, in t
it's possible to change the type of the field a:

julia> typeof(t.a)
Float64

julia> t.a = 4.5f0
4.5f0

julia> typeof(t.a)
Float32

In contrast, once m is constructed, the type of m.a cannot change:

julia> m.a = 4.5f0
4.5f0

julia> typeof(m.a)
Float64
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The fact that the type of m.a is known from m's type—coupled with the fact that its type cannot change
mid-function—allows the compiler to generate highly-optimized code for objects like m but not for objects
like t.

Of course, all of this is true only if we construct m with a concrete type. We can break this by explicitly
constructing it with an abstract type:

julia> m = MyType{AbstractFloat}(3.2)
MyType{AbstractFloat}(3.2)

julia> typeof(m.a)
Float64

julia> m.a = 4.50
4.5f0

julia> typeof(m.a)
Float32

For all practical purposes, such objects behave identically to those of MyStillAmbiguousType.

It's quite instructive to compare the sheer amount of code generated for a simple function

func(m::MyType) = m.a+1

using

code llvm(func, Tuple{MyType{Float64}})
code_llvm(func, Tuple{MyType{AbstractFloat}})

For reasons of length the results are not shown here, but you may wish to try this yourself. Because the
type is fully-specified in the first case, the compiler doesn't need to generate any code to resolve the type
at run-time. This results in shorter and faster code.

One should also keep in mind that not-fully-parameterized types behave like abstract types. For example,
even though a fully specified Array{T, n} is concrete, Array itself with no parameters given is not concrete:

julia> !'isconcretetype(Array), !isabstracttype(Array), isstructtype(Array),
< lisconcretetype(Array{Int}), isconcretetype(Array{Int,1})
(true, true, true, true, true)

In this case, it would be better to avoid declaring MyType with a field a: :Array and instead declare the
field as a: :Array{T,N} or as a: :A, where {T,N} or A are parameters of MyType.

Avoid fields with abstract containers

The same best practices also work for container types:
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julia> struct MySimpleContainer{A<:AbstractVector}

a::A
end

julia> struct MyAmbiguousContainer{T}
a::AbstractVector{T}
end

julia> struct MyAlsoAmbiguousContainer
a::Array
end

For example:

julia> c = MySimpleContainer(1:3);

julia> typeof(c)
MySimpleContainer{UnitRange{Int64}}

julia> c = MySimpleContainer([1:3;]);

julia> typeof(c)
MySimpleContainer{Vector{Int64}}

julia> b = MyAmbiguousContainer(1:3);

julia> typeof(b)
MyAmbiguousContainer{Int64}

julia> b = MyAmbiguousContainer([1:3;]);

julia> typeof(b)
MyAmbiguousContainer{Int64}

julia> d = MyAlsoAmbiguousContainer(1:3);

julia> typeof(d), typeof(d.a)
(MyAlsoAmbiguousContainer, Vector{Int64})

julia> typeof(d), typeof(d.a)

julia> d = MyAlsoAmbiguousContainer(1:1.0:3);

(MyAlsoAmbiguousContainer, Vector{Float64})

422

For MySimpleContainer, the object is fully-specified by its type and parameters, so the compiler can gen-

erate optimized functions. In most instances, this will probably suffice.

While the compiler can now do its job perfectly well, there are cases where you might wish that your code
could do different things depending on the element type of a. Usually the best way to achieve this is to

wrap your specific operation (here, foo) in a separate function:

julia> function sumfoo(c::MySimpleContainer)

s =0
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for x in c.a
s += foo(x)
end
s
end

sumfoo (generic function with 1 method)

julia> foo(x::Integer) = x
foo (generic function with 1 method)

julia> foo(x::AbstractFloat) = round(x)
foo (generic function with 2 methods)

This keeps things simple, while allowing the compiler to generate optimized code in all cases.

However, there are cases where you may need to declare different versions of the outer function for dif-
ferent element types or types of the AbstractVector of the field a in MySimpleContainer. You could do it
like this:

julia>

myfunc

julia>

myfunc

julia>

myfunc

julia>
2
julia>
3.0
julia>
4

function myfunc(c::MySimpleContainer{<:AbstractArray{<:Integer}})
return c.a[l]+1

end

(generic function with 1 method)

function myfunc(c::MySimpleContainer{<:AbstractArray{<:AbstractFloat}})
return c.a[l]+2

end

(generic function with 2 methods)

function myfunc(c::MySimpleContainer{Vector{T}}) where T <: Integer
return c.a[1]+3

end

(generic function with 3 methods)

myfunc (MySimpleContainer(1:3))

myfunc(MySimpleContainer(1.0:3))

myfunc(MySimpleContainer([1:3;1))

Annotate values taken from untyped locations

It is often convenient to work with data structures that may contain values of any type (arrays of type
Array{Any}). But, if you're using one of these structures and happen to know the type of an element, it
helps to share this knowledge with the compiler:

function foo(a::Array{Any,1})

X
b

all]::Int32
x+1
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end

Here, we happened to know that the first element of a would be an Int32. Making an annotation like this
has the added benefit that it will raise a run-time error if the value is not of the expected type, potentially
catching certain bugs earlier.

In the case that the type of a[l] is not known precisely, x can be declared via x = convert(Int32,
all])::Int32. The use of the convert function allows a[1l] to be any object convertible to an Int32
(such as UInt8), thus increasing the genericity of the code by loosening the type requirement. Notice that
convert itself needs a type annotation in this context in order to achieve type stability. This is because
the compiler cannot deduce the type of the return value of a function, even convert, unless the types of
all the function's arguments are known.

Type annotation will not enhance (and can actually hinder) performance if the type is abstract, or con-
structed at run-time. This is because the compiler cannot use the annotation to specialize the subsequent
code, and the type-check itself takes time. For example, in the code:

function nr(a, prec)
ctype = prec == 32 7 Float32 : Float64
b = Complex{ctype}(a)
c = (b+ 1.0f0)::Complex{ctype}
abs(c)
end

the annotation of ¢ harms performance. To write performant code involving types constructed at run-time,
use the function-barrier technique discussed below, and ensure that the constructed type appears among
the argument types of the kernel function so that the kernel operations are properly specialized by the
compiler. For example, in the above snippet, as soon as b is constructed, it can be passed to another
function k, the kernel. If, for example, function k declares b as an argument of type Complex{T}, where T
is a type parameter, then a type annotation appearing in an assignment statement within k of the form:

c=(b+ 1.0f0)::Complex{T}

does not hinder performance (but does not help either) since the compiler can determine the type of c at
the time k is compiled.

Be aware of when Julia avoids specializing

As a heuristic, Julia avoids automatically specializing on argument type parameters in three specific cases:
Type, Function, and Vararg. Julia will always specialize when the argument is used within the method,
but not if the argument is just passed through to another function. This usually has no performance impact
at runtime and improves compiler performance. If you find it does have a performance impact at runtime
in your case, you can trigger specialization by adding a type parameter to the method declaration. Here
are some examples:

This will not specialize:

function f type(t) # or t::Type
x = ones(t, 10)
return sum(map(sin, x))

end
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but this will:

function g type(t::Type{T}) where T
X = ones(T, 10)
return sum(map(sin, X))

end

These will not specialize:

f func(f, num) = ntuple(f, div(num, 2))
g func(g::Function, num) = ntuple(g, div(num, 2))

but this will:

h _func(h::H, num) where {H} = ntuple(h, div(num, 2))

This will not specialize:

f _vararg(x::Int...) = tuple(x...)

but this will:

g vararg(x::Vararg{Int, N}) where {N} = tuple(x...)

One only needs to introduce a single type parameter to force specialization, even if the other types are
unconstrained. For example, this will also specialize, and is useful when the arguments are not all of the
same type:

h_vararg(x::Vararg{Any, N}) where {N} = tuple(x...)

Note that @code typed and friends will always show you specialized code, even if Julia would not normally
specialize that method call. You need to check the method internals if you want to see whether specializa-
tions are generated when argument types are changed, i.e., if Base.specializations(@which f(...))
contains specializations for the argument in question.

34.7 Break functions into multiple definitions

Writing a function as many small definitions allows the compiler to directly call the most applicable code,
or even inline it.

Here is an example of a "compound function" that should really be written as multiple definitions:
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using LinearAlgebra

function mynorm(A)
if isa(A, Vector)
return sqrt(real(dot(A,A)))
elseif isa(A, Matrix)
return maximum(svdvals(A))
else
error("mynorm: invalid argument")
end
end

This can be written more concisely and efficiently as:

mynorm(x::Vector) = sqrt(real(dot(x, x)))
mynorm(A: :Matrix) = maximum(svdvals(A))

It should however be noted that the compiler is quite efficient at optimizing away the dead branches in
code written as the mynorm example.

34.8 Write "type-stable" functions

When possible, it helps to ensure that a function always returns a value of the same type. Consider the
following definition:

pos(x) = x <0 7?20 : X

Although this seems innocent enough, the problem is that 0 is an integer (of type Int) and x might be of
any type. Thus, depending on the value of x, this function might return a value of either of two types. This
behavior is allowed, and may be desirable in some cases. But it can easily be fixed as follows:

‘pos(x) =X < 0 ? zero(x) : x

There is also a oneunit function, and a more general oftype(x, y) function, which returns y converted
to the type of x.

34.9 Avoid changing the type of a variable

An analogous "type-stability" problem exists for variables used repeatedly within a function:

function foo()

x =1
for i = 1:10
X /= rand()
end
return x

end
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Local variable x starts as an integer, and after one loop iteration becomes a floating-point number (the
result of / operator). This makes it more difficult for the compiler to optimize the body of the loop. There
are several possible fixes:

* Initialize x with x = 1.0
* Declare the type of x explicitly as x: :Float64 = 1
* Use an explicit conversion by x = oneunit(Float64)

* Initialize with the first loop iteration, tox = 1 / rand(), thenloop for i = 2:10

34.10 Separate kernel functions (aka, function barriers)

Many functions follow a pattern of performing some set-up work, and then running many iterations to
perform a core computation. Where possible, it is a good idea to put these core computations in separate
functions. For example, the following contrived function returns an array of a randomly-chosen type:

julia> function strange twos(n)
a = Vector{rand(Bool) ? Int64 : Float64}(undef, n)
for i = 1:n
al[i] = 2
end
return a
end;

julia> strange twos(3)
3-element Vector{Int64}:
2
2
2

This should be written as:

julia> function fill twos!(a)
for i = eachindex(a)
ali] = 2
end
end;

julia> function strange twos(n)
a = Vector{rand(Bool) ? Int64 : Float64}(undef, n)
fill twos! (a)
return a
end;

julia> strange twos(3)
3-element Vector{Int64}:
2
2
2
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Julia's compiler specializes code for argument types at function boundaries, so in the original implemen-
tation it does not know the type of a during the loop (since it is chosen randomly). Therefore the second
version is generally faster since the inner loop can be recompiled as part of fill twos! for different types
of a.

The second form is also often better style and can lead to more code reuse.

This pattern is used in several places in Julia Base. For example, see vcat and hcat in abstractarray.jl,
or the fill! function, which we could have used instead of writing our own fill_twos!.

Functions like strange twos occur when dealing with data of uncertain type, for example data loaded from
an input file that might contain either integers, floats, strings, or something else.

34.11 Types with values-as-parameters

Let's say you want to create an N-dimensional array that has size 3 along each axis. Such arrays can be
created like this:

julia> A = fill(5.0, (3, 3))
3x3 Matrix{Float64}:

5.0 5.0 5.0

5.0 5.0 5.0

5.6 5.0 5.0

This approach works very well: the compiler can figure out that Ais an Array{Float64,2} because it knows
the type of the fill value (5.0::Float64) and the dimensionality ((3, 3)::NTuple{2,Int}). This implies
that the compiler can generate very efficient code for any future usage of A in the same function.

But now let's say you want to write a function that creates a 3x3x... array in arbitrary dimensions; you
might be tempted to write a function

julia> function array3(fillval, N)
fill(fillval, ntuple(d->3, N))
end
array3 (generic function with 1 method)

julia> array3(5.0, 2)
3x3 Matrix{Float64}:
5.0 5.0 5.0

5.0 5.0 5.0

5.0 5.0 5.0

This works, but (as you can verify for yourself using @code_warntype array3(5.0, 2))the problem is that
the output type cannot be inferred: the argument N is a value of type Int, and type-inference does not
(and cannot) predict its value in advance. This means that code using the output of this function has to be
conservative, checking the type on each access of A; such code will be very slow.

Now, one very good way to solve such problems is by using the function-barrier technique. However, in
some cases you might want to eliminate the type-instability altogether. In such cases, one approach is to
pass the dimensionality as a parameter, for example through Val{T}() (see "Value types"):


https://github.com/JuliaLang/julia/blob/40fe264f4ffaa29b749bcf42239a89abdcbba846/base/abstractarray.jl#L1205-L1206
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julia> function array3(fillval, ::Val{N}) where N
fill(fillval, ntuple(d->3, Val(N)))
end
array3 (generic function with 1 method)

julia> array3(5.0, val(2))
3x3 Matrix{Float64}:

5.0 5.0 5.0

5.0 5.0 5.0

5.0 5.0 5.0

Julia has a specialized version of ntuple that accepts a Val{::Int} instance as the second parameter; by
passing N as a type-parameter, you make its "value" known to the compiler. Consequently, this version of
array3 allows the compiler to predict the return type.

However, making use of such techniques can be surprisingly subtle. For example, it would be of no help if
you called array3 from a function like this:

function call array3(fillval, n)
A = array3(fillval, Val(n))
end

Here, you've created the same problem all over again: the compiler can't guess whatn is, so it doesn't know
the type of Val(n). Attempting to use Val, but doing so incorrectly, can easily make performance worse in
many situations. (Only in situations where you're effectively combining Val with the function-barrier trick,
to make the kernel function more efficient, should code like the above be used.)

An example of correct usage of Val would be:

function filter3(A::AbstractArray{T,N}) where {T,N}
kernel = array3(1, Val(N))
filter(A, kernel)

end

In this example, N is passed as a parameter, so its "value" is known to the compiler. Essentially, Val(T)
works only when T is either hard-coded/literal (Val(3)) or already specified in the type-domain.

34.12 The dangers of abusing multiple dispatch (aka, more on types with
values-as-parameters)

Once one learns to appreciate multiple dispatch, there's an understandable tendency to go overboard and
try to use it for everything. For example, you might imagine using it to store information, e.g.

struct Car{Make, Model}
year::Int
...more fields...
end

and then dispatch on objects like Car{:Honda, :Accord} (year, args...).

This might be worthwhile when either of the following are true:
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* You require CPU-intensive processing on each Car, and it becomes vastly more efficient if you know
the Make and Model at compile time and the total number of different Make or Model that will be used
is not too large.

* You have homogeneous lists of the same type of Car to process, so that you can store them all in an
Array{Car{:Honda, :Accord},N}.

When the latter holds, a function processing such a homogeneous array can be productively specialized:
Julia knows the type of each element in advance (all objects in the container have the same concrete type),
so Julia can "look up" the correct method calls when the function is being compiled (obviating the need to
check at run-time) and thereby emit efficient code for processing the whole list.

When these do not hold, then it's likely that you'll get no benefit; worse, the resulting "combinatorial
explosion of types" will be counterproductive. If items[i+1] has a different type than item[i], Julia has
to look up the type at run-time, search for the appropriate method in method tables, decide (via type
intersection) which one matches, determine whether it has been JIT-compiled yet (and do so if not), and then
make the call. In essence, you're asking the full type- system and JIT-compilation machinery to basically
execute the equivalent of a switch statement or dictionary lookup in your own code.

Some run-time benchmarks comparing (1) type dispatch, (2) dictionary lookup, and (3) a "switch" state-
ment can be found on the mailing list.

Perhaps even worse than the run-time impact is the compile-time impact: Julia will compile specialized
functions for each different Car{Make, Model}; if you have hundreds or thousands of such types, then
every function that accepts such an object as a parameter (from a custom get year function you might
write yourself, to the generic push! function in Julia Base) will have hundreds or thousands of variants
compiled for it. Each of these increases the size of the cache of compiled code, the length of internal lists
of methods, etc. Excess enthusiasm for values-as-parameters can easily waste enormous resources.

34.13 Access arrays in memory order, along columns

Multidimensional arrays in Julia are stored in column-major order. This means that arrays are stacked one
column at a time. This can be verified using the vec function or the syntax [:] as shown below (notice
that the array is ordered [1 3 2 4], not [1 2 3 4]):

julia> x = [1 2; 3 4]
2x2 Matrix{Int64}:

1 2

3 4

julia> x[:]
4-element Vector{Int64}:

1
3
2
4

This convention for ordering arrays is common in many languages like Fortran, Matlab, and R (to name a
few). The alternative to column-major ordering is row-major ordering, which is the convention adopted by
C and Python (numpy) among other languages. Remembering the ordering of arrays can have significant
performance effects when looping over arrays. A rule of thumb to keep in mind is that with column-major


https://groups.google.com/forum/#!msg/julia-users/jUMu9A3QKQQ/qjgVWr7vAwAJ
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arrays, the first index changes most rapidly. Essentially this means that looping will be faster if the inner-
most loop index is the first to appear in a slice expression. Keep in mind that indexing an array with : is an
implicit loop that iteratively accesses all elements within a particular dimension; it can be faster to extract
columns than rows, for example.

Consider the following contrived example. Imagine we wanted to write a function that accepts a Vector
and returns a square Matrix with either the rows or the columns filled with copies of the input vector.
Assume that it is not important whether rows or columns are filled with these copies (perhaps the rest of
the code can be easily adapted accordingly). We could conceivably do this in at least four ways (in addition
to the recommended call to the built-in repeat):

function copy cols(x::Vector{T}) where T
inds = axes(x, 1)
out = similar(Array{T}, inds, inds)
for i = inds
out[:, i] = x
end
return out
end

function copy rows(x::Vector{T}) where T
inds = axes(x, 1)
out = similar(Array{T}, inds, inds)
for i = inds
out[i, :] = x
end
return out
end

function copy col row(x::Vector{T}) where T
inds = axes(x, 1)
out = similar(Array{T}, inds, inds)
for col = inds, row = inds
out[row, col] = x[row]
end
return out
end

function copy row col(x::Vector{T}) where T
inds = axes(x, 1)
out = similar(Array{T}, inds, inds)
for row = inds, col = inds
out[row, col] = x[col]
end
return out
end

Now we will time each of these functions using the same random 10000 by 1 input vector:

julia> x = randn(10000);

julia> fmt(f) = println(rpad(string(f)*": ", 14, ' '), @elapsed f(x))
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julia> map(fmt, [copy cols, copy rows, copy col row, copy row col]);

copy cols: 0.331706323
Copy _rows: 1.799009911
copy col row: 0.415630047
copy row col: 1.721531501

Notice that copy cols is much faster than copy rows. This is expected because copy cols respects the
column-based memory layout of the Matrix and fills it one column at a time. Additionally, copy col row
is much faster than copy row col because it follows our rule of thumb that the first element to appear in
a slice expression should be coupled with the inner-most loop.

34.14 Pre-allocating outputs

If your function returns an Array or some other complex type, it may have to allocate memory. Unfortu-
nately, oftentimes allocation and its converse, garbage collection, are substantial bottlenecks.

Sometimes you can circumvent the need to allocate memory on each function call by preallocating the
output. As a trivial example, compare

julia> function xinc(x)
return [x, x+1, x+2]
end;

julia> function loopinc()

y =0

for i = 1:1077
ret = xinc(1i)
y += ret[2]

end

return y

end;

with

julia> function xinc!(ret::AbstractVector{T}, x::T) where T

ret[1] = x
ret[2] = x+1
ret[3] = x+2
nothing

end;

julia> function loopinc prealloc()
ret = Vector{Int}(undef, 3)
y =0
for i = 1:10"7
xinc!(ret, i)
y += ret[2]
end
return y
end;
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Timing results:

julia> @time loopinc()
0.529894 seconds (40.00 M allocations: 1.490 GiB, 12.14% gc time)
50000015000000

julia> @time loopinc prealloc()
0.030850 seconds (6 allocations: 288 bytes)
50000015000000

Preallocation has other advantages, for example by allowing the caller to control the "output" type from
an algorithm. In the example above, we could have passed a SubArray rather than an Array, had we so
desired.

Taken to its extreme, pre-allocation can make your code uglier, so performance measurements and some
judgment may be required. However, for "vectorized" (element-wise) functions, the convenient syntax x
.= f.(y) can be used for in-place operations with fused loops and no temporary arrays (see the dot syntax
for vectorizing functions).

34.15 More dots: Fuse vectorized operations

Julia has a special dot syntax that converts any scalar function into a "vectorized" function call, and any
operator into a "vectorized" operator, with the special property that nested "dot calls" are fusing: they are
combined at the syntax level into a single loop, without allocating temporary arrays. If you use .= and
similar assignment operators, the result can also be stored in-place in a pre-allocated array (see above).

In a linear-algebra context, this means that even though operations like vector + vector and vector
* scalar are defined, it can be advantageous to instead use vector .+ vector and vector .* scalar
because the resulting loops can be fused with surrounding computations. For example, consider the two
functions:

julia> f(x) = 3x.72 + 4x + 7x.73;

julia> fdot(x) = @. 3x™2 + 4x + 7x73; # equivalent to 3 .* x.”2 .+ 4 .* x .+ 7 .* x."3

Both f and fdot compute the same thing. However, fdot (defined with the help of the @. macro) is
significantly faster when applied to an array:

julia> x = rand(1076);

julia> @time f(x);
0.019049 seconds (16 allocations: 45.777 MiB, 18.59% gc time)

julia> @time fdot(x);
0.002790 seconds (6 allocations: 7.630 MiB)

julia> @time f.(x);
0.002626 seconds (8 allocations: 7.630 MiB)
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Thatis, fdot (x) is ten times faster and allocates 1/6 the memory of f(x), because each * and + operation
in f(x) allocates a new temporary array and executes in a separate loop. In this example f. (x) is as fast
as fdot(x) but in many contexts it is more convenient to sprinkle some dots in your expressions than to
define a separate function for each vectorized operation.

34.16 Consider using views for slices

In Julia, an array "slice" expression like array[1:5, :] creates a copy of that data (except on the left-hand
side of an assignment, where array[1:5, :] = ... assigns in-place to that portion of array). If you are
doing many operations on the slice, this can be good for performance because it is more efficient to work
with a smaller contiguous copy than it would be to index into the original array. On the other hand, if you
are just doing a few simple operations on the slice, the cost of the allocation and copy operations can be
substantial.

An alternative is to create a "view" of the array, which is an array object (a SubArray) that actually refer-
ences the data of the original array in-place, without making a copy. (If you write to a view, it modifies the
original array's data as well.) This can be done for individual slices by calling view, or more simply for a
whole expression or block of code by putting @views in front of that expression. For example:

julia> fcopy(x) = sum(x[2:end-1]);
julia> @views fview(x) = sum(x[2:end-1]);
julia> x = rand(1076);

julia> @time fcopy(x);
0.003051 seconds (3 allocations: 7.629 MB)

julia> @time fview(x);
0.001020 seconds (1 allocation: 16 bytes)

Notice both the 3x speedup and the decreased memory allocation of the fview version of the function.

34.17 Copying data is not always bad

Arrays are stored contiguously in memory, lending themselves to CPU vectorization and fewer memory
accesses due to caching. These are the same reasons that it is recommended to access arrays in column-
major order (see above). Irregular access patterns and non-contiguous views can drastically slow down
computations on arrays because of non-sequential memory access.

Copying irregularly-accessed data into a contiguous array before repeated access it can result in a large
speedup, such as in the example below. Here, a matrix is being accessed at randomly-shuffled indices
before being multiplied. Copying into plain arrays speeds up the multiplication even with the added cost
of copying and allocation.

julia> using Random

julia> A = randn(3000, 3000);

julia> x randn(2000) ;
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julia> inds = shuffle(1:3000)[1:2000];

julia> function iterated neural network(A, x, depth)
for _ in 1l:depth
X .= max. (0, A * x)
end
argmax(x)
end

julia> @time iterated neural network(view(A, inds, inds), x, 10)
0.324903 seconds (12 allocations: 157.562 KiB)
1569

julia> @time iterated neural network(A[inds, inds], x, 10)
0.054576 seconds (13 allocations: 30.671 MiB, 13.33% gc time)
1569

Provided there is enough memory, the cost of copying the view to an array is outweighed by the speed
boost from doing the repeated matrix multiplications on a contiguous array.

34.18 Consider StaticArrays.jl for small fixed-size vector/matrix operations

If your application involves many small (< 100 element) arrays of fixed sizes (i.e. the size is known prior
to execution), then you might want to consider using the StaticArrays.jl package. This package allows you
to represent such arrays in a way that avoids unnecessary heap allocations and allows the compiler to
specialize code for the size of the array, e.g. by completely unrolling vector operations (eliminating the
loops) and storing elements in CPU registers.

For example, if you are doing computations with 2d geometries, you might have many computations with
2-component vectors. By using the SVector type from StaticArrays.jl, you can use convenient vector
notation and operations like norm(3v - w) on vectors v and w, while allowing the compiler to unroll the
code to a minimal computation equivalent to @inbounds hypot (3v[1]-w[1], 3v[2]-w[2]).

34.19 Avoid string interpolation for 1/0

When writing data to a file (or other I/O device), forming extra intermediate strings is a source of overhead.
Instead of:

println(file, "$a $b")
use:
println(file, a, " ", b)

The first version of the code forms a string, then writes it to the file, while the second version writes values
directly to the file. Also notice that in some cases string interpolation can be harder to read. Consider:

printin(file, "$(f(a))$(f(b))")


https://github.com/JuliaArrays/StaticArrays.jl
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versus:
| printin(file, f(a), (b))

34.20 Optimize network I/O during parallel execution

When executing a remote function in parallel:

using Distributed

responses = Vector{Any}(undef, nworkers())
@sync begin
for (idx, pid) in enumerate(workers())
@async responses[idx] = remotecall fetch(foo, pid, args...)
end
end

is faster than:

using Distributed

refs = Vector{Any}(undef, nworkers())

for (idx, pid) in enumerate(workers())
refs[idx] = @spawnat pid foo(args...)

end

responses = [fetch(r) for r in refs]

The former results in a single network round-trip to every worker, while the latter results in two network
calls - first by the @spawnat and the second due to the fetch (or even a wait). The fetch/wait is also
being executed serially resulting in an overall poorer performance.

34.21 Fix deprecation warnings

A deprecated function internally performs a lookup in order to print a relevant warning only once. This
extra lookup can cause a significant slowdown, so all uses of deprecated functions should be modified as
suggested by the warnings.

34.22 Tweaks

These are some minor points that might help in tight inner loops.

¢ Avoid unnecessary arrays. For example, instead of sum([x,y,z]) use x+y+z.

¢ Use abs2(z) instead of abs (z)"2 for complex z. In general, try to rewrite code to use abs2 instead
of abs for complex arguments.

e Usediv(x,y) fortruncating division of integers instead of trunc(x/y), fld(x,y) instead of floor(x/y),
and cld(x,y) instead of ceil(x/y).
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34.23 Performance Annotations

Sometimes you can enable better optimization by promising certain program properties.

* Use @inbounds to eliminate array bounds checking within expressions. Be certain before doing this.

If the subscripts are ever out of bounds, you may suffer crashes or silent corruption.

Use @fastmath to allow floating point optimizations that are correct for real numbers, but lead to
differences for IEEE numbers. Be careful when doing this, as this may change numerical results. This
corresponds to the -ffast-math option of clang.

Write @simd in front of for loops to promise that the iterations are independent and may be re-
ordered. Note that in many cases, Julia can automatically vectorize code without the @simd macro;
it is only beneficial in cases where such a transformation would otherwise be illegal, including cases
like allowing floating-point re-associativity and ignoring dependent memory accesses (@simd ivdep).
Again, be very careful when asserting @simd as erroneously annotating a loop with dependent itera-
tions may result in unexpected results. In particular, note that setindex! on some AbstractArray
subtypes is inherently dependent upon iteration order. This feature is experimental and could
change or disappear in future versions of Julia.

The common idiom of using 1:n to index into an AbstractArray is not safe if the Array uses unconventional
indexing, and may cause a segmentation fault if bounds checking is turned off. Use LinearIndices(x) or
eachindex(x) instead (see also Arrays with custom indices).

Note

While @simd needs to be placed directly in front of an innermost for loop, both @inbounds
and @fastmath can be applied to either single expressions or all the expressions that appear
within nested blocks of code, e.g., using @inbounds begin or @inbounds for ....

Here is an example with both @inbounds and @simd markup (we here use @noinline to prevent the opti-
mizer from trying to be too clever and defeat our benchmark):

end

end

@noinline function inner(x, y)

s = zero(eltype(x))
for i=eachindex(x)
@inbounds s += x[1]*y[i]
end
return s

@noinline function innersimd(x, y)

s = zero(eltype(x))

@simd for i = eachindex(x)
@inbounds s += x[i] * y[i]

end

return s

function timeit(n, reps)

x = rand(Float32, n)
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y rand (Float32, n)
s = zero(Float64)
time = @elapsed for j in 1:reps
s += inner(x, y)
end
println("GFlop/sec =", 2n*reps / time*1E-9)
time = @elapsed for j in 1:reps
s += innersimd(x, y)
end
println("GFlop/sec (SIMD) = ", 2n*reps / time*1E-9)
end

timeit (1000, 1000)

On a computer with a 2.4GHz Intel Core i5 processor, this produces:

GFlop/sec
GFlop/sec (SIMD)

1.9467069505224963
17.578554163920018

(GFlop/sec measures the performance, and larger numbers are better.)

Here is an example with all three kinds of markup. This program first calculates the finite difference of a
one-dimensional array, and then evaluates the L2-norm of the result:

function init!(u::Vector)
n = length(u)
dx = 1.0 / (n-1)
@fastmath @inbounds @simd for i in 1:n #by asserting that "u’ is a "Vector® we can assume it
— has 1l-based indexing
uli] = sin(2pi*dx*i)
end
end

function deriv! (u::Vector, du)

n = length(u)

dx = 1.0 / (n-1)

@fastmath @inbounds du[l] = (u[2] - u[l]) / dx

@fastmath @inbounds @simd for i in 2:n-1

duli] = (u[i+1] - u[i-1]) / (2*dx)

end

@fastmath @inbounds du[n] = (u[n] - u[n-1]) / dx
end

function mynorm(u: :Vector)
n length(u)
T = eltype(u)
s = zero(T)
@fastmath @inbounds @simd for i in 1:n
s += u[i]"2

end
@fastmath @inbounds return sqrt(s)
end
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function main()

n = 2000
u = Vector{Float64} (undef, n)
init!(u)

du = similar(u)

deriv!(u, du)
nu = mynorm(du)

@time for i in 1:1076
deriv!(u, du)
nu = mynorm(du)
end

println(nu)
end

main()

On a computer with a 2.7 GHz Intel Core i7 processor, this produces:

$ julia wave.jl;
1.207814709 seconds
4.443986180758249

$ julia --math-mode=ieee wave.jl;
4.487083643 seconds
4.443986180758249

Here, the option - -math-mode=ieee disables the @fastmath macro, so that we can compare results.

In this case, the speedup due to @fastmath is a factor of about 3.7. This is unusually large - in general, the
speedup will be smaller. (In this particular example, the working set of the benchmark is small enough to
fit into the L1 cache of the processor, so that memory access latency does not play a role, and computing
time is dominated by CPU usage. In many real world programs this is not the case.) Also, in this case this
optimization does not change the result - in general, the result will be slightly different. In some cases,
especially for numerically unstable algorithms, the result can be very different.

The annotation @fastmath re-arranges floating point expressions, e.g. changing the order of evaluation, or
assuming that certain special cases (inf, nan) cannot occur. In this case (and on this particular computer),
the main difference is that the expression 1 / (2*dx) in the function deriv is hoisted out of the loop (i.e.
calculated outside the loop), as if one had written idx = 1 / (2*dx). In the loop, the expression ... /
(2*dx) then becomes ... * idx, which is much faster to evaluate. Of course, both the actual optimization
that is applied by the compiler as well as the resulting speedup depend very much on the hardware. You
can examine the change in generated code by using Julia's code native function.

Note that @fastmath also assumes that NaNs will not occur during the computation, which can lead to

surprising behavior:

julia> f(x) = isnan(x);

julia> f(NaN)
true
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julia> f fast(x) = @fastmath isnan(x);

julia> f_fast(NaN)
false

34.24 Treat Subnormal Numbers as Zeros

Subnormal numbers, formerly called denormal numbers, are useful in many contexts, but incur a perfor-
mance penalty on some hardware. Acall set zero subnormals(true) grants permission for floating-point
operations to treat subnormal inputs or outputs as zeros, which may improve performance on some hard-
ware. A call set zero subnormals(false) enforces strict IEEE behavior for subnormal numbers.

Below is an example where subnormals noticeably impact performance on some hardware:

function timestep(b::Vector{T}, a::Vector{T}, At::T) where T

@assert length(a)==length(b)

n = length(b)

b[1] =1 # Boundary condition

for i=2:n-1

b[i] = al[i]l + (ali-1] - T(2)*a[i] + a[i+1]) * At

end

b[n] =0 # Boundary condition
end

function heatflow(a::Vector{T}, nstep::Integer) where T
b = similar(a)
for t=1:div(nstep,2) # Assume nstep is even
timestep(b,a,T(0.1))
timestep(a,b,T(0.1))
end
end

heatflow(zeros(Float32,10),2) # Force compilation

for trial=1:6
a = zeros(Float32,1000)
set zero subnormals(iseven(trial)) # 0dd trials use strict IEEE arithmetic
@time heatflow(a,1000)

end

This gives an output similar to

0.002202 seconds (1 allocation: 4.063 KiB)
0.001502 seconds (1 allocation: 4.063 KiB)
0.002139 seconds (1 allocation: 4.063 KiB)
0.001454 seconds (1 allocation: 4.063 KiB)
0.002115 seconds (1 allocation: 4.063 KiB)
0.001455 seconds (1 allocation: 4.063 KiB)

Note how each even iteration is significantly faster.

This example generates many subnormal numbers because the values in a become an exponentially de-
creasing curve, which slowly flattens out over time.


https://en.wikipedia.org/wiki/Denormal_number
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Treating subnormals as zeros should be used with caution, because doing so breaks some identities, such
as x-y == 0 implies x == y:

julia> x = 3f-38; y = 2f-38;

julia> set zero subnormals(true); (x - y, x ==y)
(0.0f0, false)

julia> set zero subnormals(false); (x - y, X ==Y)
(1.0000001f-38, false)

In some applications, an alternative to zeroing subnormal numbers is to inject a tiny bit of noise. For
example, instead of initializing a with zeros, initialize it with:

|a = rand(Float32,1000) * 1.f-9

34.25 @code_warntype

The macro @code warntype (orits function variant code warntype) can sometimes be helpful in diagnosing
type-related problems. Here's an example:

julia> @noinline pos(x) = x <0 7?7 0 : x;

julia> function f(x)
y = pos(x)
return sin(y*x + 1)
end;

julia> @code warntype f(3.2)
MethodInstance for f(::Float64)
from f(x) @ Main REPL[9]:1

Arguments
#self#::Core.Const(f)
x::Float64
Locals
y::Union{Float64, Int64}
Body: :Float64
1 - (y = Main.pos(x))
| %2 = (y * x)::Float64
| %3 = (%2 + 1)::Float64
| Main.sin(%3)::Float64
— return %4

o°
B
I

Interpreting the output of @code warntype, like that of its cousins @code lowered, @code typed, @code 1lvm,
and @code native, takes a little practice. Your code is being presented in form that has been heavily di-
gested on its way to generating compiled machine code. Most of the expressions are annotated by a
type, indicated by the ::T (where T might be Float64, for example). The most important characteris-
tic of @code warntype is that non-concrete types are displayed in red; since this document is written in
Markdown, which has no color, in this document, red text is denoted by uppercase.
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At the top, the inferred return type of the function is shown as Body: : Float64. The next lines represent
the body of f in Julia's SSA IR form. The numbered boxes are labels and represent targets for jumps (via
goto) in your code. Looking at the body, you can see that the first thing that happens is that pos is called
and the return value has been inferred as the Union type Union{Float64, Int64} shown in uppercase
since it is a non-concrete type. This means that we cannot know the exact return type of pos based on the
input types. However, the result of y*xis a Float64 no matter if y is a Float64 or Int64 The net result is
that f(x::Float64) will not be type-unstable in its output, even if some of the intermediate computations
are type-unstable.

How you use this information is up to you. Obviously, it would be far and away best to fix pos to be type-
stable: if you did so, all of the variables in f would be concrete, and its performance would be optimal.
However, there are circumstances where this kind of ephemeral type instability might not matter too much:
for example, if pos is never used in isolation, the fact that f's output is type-stable (for Float64 inputs)
will shield later code from the propagating effects of type instability. This is particularly relevant in cases
where fixing the type instability is difficult or impossible. In such cases, the tips above (e.g., adding type
annotations and/or breaking up functions) are your best tools to contain the "damage" from type instability.
Also, note that even Julia Base has functions that are type unstable. For example, the function findfirst
returns the index into an array where a key is found, or nothing if it is not found, a clear type instability. In
order to make it easier to find the type instabilities that are likely to be important, Unions containing either
missing or nothing are color highlighted in yellow, instead of red.

The following examples may help you interpret expressions marked as containing non-leaf types:

¢ Function body starting with Body: :Union{T1,T2})

- Interpretation: function with unstable return type

- Suggestion: make the return value type-stable, even if you have to annotate it
* invoke Main.g(%%x::Int64)::Union{Float64, Int64}

- Interpretation: call to a type-unstable function g.

- Suggestion: fix the function, or if necessary annotate the return value
* invoke Base.getindex(%%x::Array{Any,1}, 1::Int64)::Any

- Interpretation: accessing elements of poorly-typed arrays

- Suggestion: use arrays with better-defined types, or if necessary annotate the type of individual
element accesses

* Base.getfield(%%x, :(:data))::Array{Float64,N} where N

- Interpretation: getting a field that is of non-leaf type. In this case, the type of x, say ArrayContainer,
had a field data: :Array{T}. But Array needs the dimension N, too, to be a concrete type.

- Suggestion: use concrete types like Array{T,3} or Array{T,N}, where N is now a parameter
of ArrayContainer
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34.26 Performance of captured variable

Consider the following example that defines an inner function:

function abmult(r::Int)
ifr<o
r=-r
end
f=x->x*r
return f

end

Function abmult returns a function f that multiplies its argument by the absolute value of r. The inner
function assigned to f is called a "closure". Inner functions are also used by the language for do-blocks
and for generator expressions.

This style of code presents performance challenges for the language. The parser, when translating it into
lower-level instructions, substantially reorganizes the above code by extracting the inner function to a
separate code block. "Captured" variables such as r that are shared by inner functions and their enclosing
scope are also extracted into a heap-allocated "box" accessible to both inner and outer functions because
the language specifies that r in the inner scope must be identical to r in the outer scope even after the
outer scope (or another inner function) modifies r.

The discussion in the preceding paragraph referred to the "parser", that is, the phase of compilation that
takes place when the module containing abmult is first loaded, as opposed to the later phase when it is
first invoked. The parser does not "know" that Int is a fixed type, or that the statement r = -r transforms
an Int to another Int. The magic of type inference takes place in the later phase of compilation.

Thus, the parser does not know that r has a fixed type (Int). nor that r does not change value once the
inner function is created (so that the box is unneeded). Therefore, the parser emits code for box that holds
an object with an abstract type such as Any, which requires run-time type dispatch for each occurrence
of r. This can be verified by applying @code warntype to the above function. Both the boxing and the
run-time type dispatch can cause loss of performance.

If captured variables are used in a performance-critical section of the code, then the following tips help
ensure that their use is performant. First, if it is known that a captured variable does not change its type,
then this can be declared explicitly with a type annotation (on the variable, not the right-hand side):

function abmult2(r0::Int)
r::Int = r@
ifr<o
r=-r
end
f=x->x*r
return f
end

The type annotation partially recovers lost performance due to capturing because the parser can associate
a concrete type to the object in the box. Going further, if the captured variable does not need to be boxed
at all (because it will not be reassigned after the closure is created), this can be indicated with let blocks
as follows.
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function abmult3(r::Int)
if r<o
r=-r
end
f="1let r
X ->x *r

]
-

end
return f
end

The let block creates a new variable r whose scope is only the inner function. The second technique
recovers full language performance in the presence of captured variables. Note that this is a rapidly evolv-
ing aspect of the compiler, and it is likely that future releases will not require this degree of programmer
annotation to attain performance. In the mean time, some user-contributed packages like FastClosures
automate the insertion of let statements as in abmult3.

34.27 Multithreading and linear algebra

This section applies to multithreaded Julia code which, in each thread, performs linear algebra operations.
Indeed, these linear algebra operations involve BLAS / LAPACK calls, which are themselves multithreaded.
In this case, one must ensure that cores aren't oversubscribed due to the two different types of multi-
threading.

Julia compiles and uses its own copy of OpenBLAS for linear algebra, whose number of threads is controlled
by the environment variable OPENBLAS NUM THREADS. It can either be set as a command line option when
launching Julia, or modified during the Julia session with BLAS.set num_threads(N) (the submodule BLAS
is exported by using LinearAlgebra). Its current value can be accessed with BLAS.get num threads().

When the user does not specify anything, Julia tries to choose a reasonable value for the number of Open-
BLAS threads (e.g. based on the platform, the Julia version, etc.). However, it is generally recommended
to check and set the value manually. The OpenBLAS behavior is as follows:

* If OPENBLAS NUM THREADS=1, OpenBLAS uses the calling Julia thread(s), i.e. it "lives in" the Julia
thread that runs the computation.

* If OPENBLAS NUM THREADS=N>1, OpenBLAS creates and manages its own pool of threads (N in total).
There is just one OpenBLAS thread pool shared among all Julia threads.

When you start Julia in multithreaded mode with JULIA NUM THREADS=X, it is generally recommended to set
OPENBLAS NUM_THREADS=1. Given the behavior described above, increasing the number of BLAS threads
to N>1 can very easily lead to worse performance, in particular when N<<X. However this is just a rule of
thumb, and the best way to set each number of threads is to experiment on your specific application.

34.28 Alternative linear algebra backends

As an alternative to OpenBLAS, there exist several other backends that can help with linear algebra per-
formance. Prominent examples include MKL.jl and AppleAccelerate.jl.

These are external packages, so we will not discuss them in detail here. Please refer to their respective
documentations (especially because they have different behaviors than OpenBLAS with respect to multi-
threading).


https://github.com/c42f/FastClosures.jl
https://github.com/JuliaLinearAlgebra/MKL.jl
https://github.com/JuliaMath/AppleAccelerate.jl

Chapter 35

Workflow Tips

Here are some tips for working with Julia efficiently.

35.1 REPL-based workflow

As already elaborated in The Julia REPL, Julia's REPL provides rich functionality that facilitates an efficient
interactive workflow. Here are some tips that might further enhance your experience at the command line.

A basic editor/REPL workflow

The most basic Julia workflows involve using a text editor in conjunction with the julia command line. A
common pattern includes the following elements:

* Put code under development in a temporary module. Create a file, say Tmp.j1, and include
within it

module Tmp
export say hello

say hello() = println("Hello!")
# your other definitions here

end

* Put your test code in another file. Create another file, say tst.j1, which looks like

include("Tmp.jl")
import .Tmp
# using .Tmp # we can use "using” to bring the exported symbols in “Tmp® into our namespace

Tmp.say hello()
# say hello()

# your other test code here

and includes tests for the contents of Tmp. Alternatively, you can wrap the contents of your test file
in a module, as
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module Tst
include("Tmp.jl")
import .Tmp
#using .Tmp

Tmp.say hello()
# say hello()

# your other test code here
end

The advantage is that your testing code is now contained in a module and does not use the global
scope in Main for definitions, which is a bit more tidy.

e include the tst.j1 file in the Julia REPL with include("tst.jl").

* Lather. Rinse. Repeat. Explore ideas at the julia command prompt. Save good ideas in tst.jl.
To execute tst.jl after it has been changed, just include it again.

35.2 Browser-based workflow

There are a few ways to interact with Julia in a browser:

* Using Pluto notebooks through Pluto.jl

* Using Jupyter notebooks through ljulia.jl

35.3 Revise-based workflows

Whether you're at the REPL or in ljulia, you can typically improve your development experience with Revise.
It is common to configure Revise to start whenever julia is started, as per the instructions in the Revise
documentation. Once configured, Revise will track changes to files in any loaded modules, and to any
files loaded in to the REPL with includet (but not with plain include); you can then edit the files and the
changes take effect without restarting your julia session. A standard workflow is similar to the REPL-based
workflow above, with the following modifications:

1. Put your code in a module somewhere on your load path. There are several options for achieving
this, of which two recommended choices are:

- For long-term projects, use PkgTemplates:

using PkgTemplates
t = Template()
t("MyPkg")
This will create a blank package, "MyPkg", in your .julia/dev directory. Note that PkgTem-
plates allows you to control many different options through its Template constructor.
In step 2 below, editMyPkg/src/MyPkg. j1to change the source code, and MyPkg/test/runtests.jl
for the tests.
- For "throw-away" projects, you can avoid any need for cleanup by doing your work in your
temporary directory (e.g., /tmp).
Navigate to your temporary directory and launch Julia, then do the following:


https://github.com/fonsp/Pluto.jl
https://github.com/JuliaLang/IJulia.jl
https://github.com/timholy/Revise.jl
https://timholy.github.io/Revise.jl/stable/
https://timholy.github.io/Revise.jl/stable/
https://github.com/invenia/PkgTemplates.jl
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pkg> generate MyPkg # type ] to enter pkg mode
julia> push!(LOAD PATH, pwd()) # hit backspace to exit pkg mode

If you restart your Julia session you'll have to re-issue that command modifying LOAD PATH.

In step 2 below, edit MyPkg/src/MyPkg. jl to change the source code, and create any test file
of your choosing.

2. Develop your package

Before loading any code, make sure you're running Revise: say using Revise or follow its documen-
tation on configuring it to run automatically.

Then navigate to the directory containing your test file (here assumed to be "runtests.jl") and do
the following:

julia> using MyPkg
julia> include("runtests.jl")

You can iteratively modify the code in MyPkg in your editor and re-run the tests with include("runtests.jl").
You generally should not need to restart your Julia session to see the changes take effect (subject to
a few limitations).


https://timholy.github.io/Revise.jl/stable/limitations/

Chapter 36

Style Guide

The following sections explain a few aspects of idiomatic Julia coding style. None of these rules are abso-
lute; they are only suggestions to help familiarize you with the language and to help you choose among
alternative designs.

36.1 Indentation

Use 4 spaces per indentation level.

36.2 Write functions, not just scripts

Writing code as a series of steps at the top level is a quick way to get started solving a problem, but
you should try to divide a program into functions as soon as possible. Functions are more reusable and
testable, and clarify what steps are being done and what their inputs and outputs are. Furthermore, code
inside functions tends to run much faster than top level code, due to how Julia's compiler works.

It is also worth emphasizing that functions should take arguments, instead of operating directly on global
variables (aside from constants like pi).

36.3 Avoid writing overly-specific types

Code should be as generic as possible. Instead of writing:

‘ Complex{Float64}(x)

it's better to use available generic functions:
complex(float(x))

The second version will convert x to an appropriate type, instead of always the same type.

This style point is especially relevant to function arguments. For example, don't declare an argument to
be of type Int or Int32 if it really could be any integer, expressed with the abstract type Integer. In fact,
in many cases you can omit the argument type altogether, unless it is needed to disambiguate from other
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method definitions, since a MethodError will be thrown anyway if a type is passed that does not support
any of the requisite operations. (This is known as duck typing.)

For example, consider the following definitions of a function addone that returns one plus its argument:

addone(x::Int) = x + 1 # works only for Int

addone(x: :Integer) = x + oneunit(x) # any integer type

addone(x: :Number) = x + oneunit(x) # any numeric type

addone(x) = x + oneunit(x) # any type supporting + and oneunit

The last definition of addone handles any type supporting oneunit (which returns 1 in the same type as
x, which avoids unwanted type promotion) and the + function with those arguments. The key thing to
realize is that there is no performance penalty to defining only the general addone(x) = x + oneunit(x),
because Julia will automatically compile specialized versions as needed. For example, the first time you
call addone(12), Julia will automatically compile a specialized addone function for x: : Int arguments, with
the call to oneunit replaced by its inlined value 1. Therefore, the first three definitions of addone above
are completely redundant with the fourth definition.

36.4 Handle excess argument diversity in the caller

Instead of:

function foo(x, y)
x = Int(x); y = Int(y)

end
foo(x, y)

use:

function foo(x::Int, y::Int)

end
foo(Int(x), Int(y))

This is better style because foo does not really accept numbers of all types; it really needs Int s.

One issue here is that if a function inherently requires integers, it might be better to force the caller to
decide how non-integers should be converted (e.g. floor or ceiling). Another issue is that declaring more
specific types leaves more "space" for future method definitions.

36.5 Append ! to names of functions that modify their arguments

Instead of:

function double(a::AbstractArray{<:Number})
for i = firstindex(a):lastindex(a)
al[i] *= 2
end
return a
end


https://en.wikipedia.org/wiki/Duck_typing
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use:

function double! (a::AbstractArray{<:Number})
for i = firstindex(a):lastindex(a)
a[i] *= 2
end
return a
end

Julia Base uses this convention throughout and contains examples of functions with both copying and
modifying forms (e.g., sort and sort!), and others which are just modifying (e.g., push!, pop!, splice!).
It is typical for such functions to also return the modified array for convenience.

Functions related to 10 or making use of random number generators (RNG) are notable exceptions: Since
these functions almost invariably must mutate the 10 or RNG, functions ending with ! are used to signify a
mutation other than mutating the 10 or advancing the RNG state. For example, rand (x) mutates the RNG,
whereas rand! (x) mutates both the RNG and x; similarly, read(io) mutates io, whereas read! (io, x)
mutates both arguments.

36.6 Avoid strange type Unions

Types such as Union{Function,AbstractString} are often a sign that some design could be cleaner.

36.7 Avoid elaborate container types

It is usually not much help to construct arrays like the following:
‘a = Vector{Union{Int,AbstractString, Tuple,Array}}(undef, n)

In this case Vector{Any}(undef, n) is better. It is also more helpful to the compiler to annotate specific
uses (e.g. a[i]::Int) than to try to pack many alternatives into one type.

36.8 Prefer exported methods over direct field access

Idiomatic Julia code should generally treat a module's exported methods as the interface to its types. An
object's fields are generally considered implementation details and user code should only access them
directly if this is stated to be the API. This has several benefits:

* Package developers are freer to change the implementation without breaking user code.

* Methods can be passed to higher-order constructs like map (e.g. map(imag, zs)) ratherthan [z.im
for z in zs]).

* Methods can be defined on abstract types.

* Methods can describe a conceptual operation that can be shared across disparate types (e.g. real(z)
works on Complex numbers or Quaternions).
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Julia's dispatch system encourages this style because play(x: :MyType) only defines the play method on
that particular type, leaving other types to have their own implementation.

Similarly, non-exported functions are typically internal and subject to change, unless the documentations
states otherwise. Names sometimes are given a _ prefix (or suffix) to further suggest that something is
"internal" or an implementation-detail, but it is not a rule.

Counter-examples to this rule include NamedTuple, RegexMatch, StatStruct.

36.9 Use naming conventions consistent with Julia base/

* modules and type names use capitalization and camel case: module SparseArrays, struct UnitRange.

» functions are lowercase (maximum, convert) and, when readable, with multiple words squashed to-
gether (isequal, haskey). When necessary, use underscores as word separators. Underscores are
also used to indicate a combination of concepts (remotecall fetch as a more efficient implemen-
tation of fetch(remotecall(...))) or as modifiers.

» functions mutating at least one of their arguments end in !.
e conciseness is valued, but avoid abbreviation (indexin rather than indxin) as it becomes difficult

to remember whether and how particular words are abbreviated.

If a function name requires multiple words, consider whether it might represent more than one concept
and might be better split into pieces.

36.10 Write functions with argument ordering similar to Julia Base

As a general rule, the Base library uses the following order of arguments to functions, as applicable:
1. Function argument. Putting a function argument first permits the use of do blocks for passing
multiline anonymous functions.

2. 1/0 stream. Specifying the I0 object first permits passing the function to functions such as sprint,
e.g. sprint(show, x).

3. Input being mutated. For example, in fill! (x, v), x is the object being mutated and it appears
before the value to be inserted into x.

4. Type. Passing a type typically means that the output will have the given type. In parse(Int, "1"),
the type comes before the string to parse. There are many such examples where the type appears
first, but it's useful to note that in read(io, String), the I0 argument appears before the type,
which is in keeping with the order outlined here.

5. Input not being mutated. In fill! (x, v), v is not being mutated and it comes after x.

6. Key. For associative collections, this is the key of the key-value pair(s). For other indexed collections,
this is the index.

7. Value. For associative collections, this is the value of the key-value pair(s). In cases like fill!(x,
v), this is v.

8. Everything else. Any other arguments.
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9. Varargs. This refers to arguments that can be listed indefinitely at the end of a function call. For ex-
ample, inMatrix{T} (undef, dims), the dimensionscanbegivenasaTuple, e.g. Matrix{T} (undef,
(1,2)), orasVarargs, e.g. Matrix{T}(undef, 1, 2).

10. Keyword arguments. InJulia keyword arguments have to come last anyway in function definitions;
they're listed here for the sake of completeness.

The vast majority of functions will not take every kind of argument listed above; the numbers merely denote
the precedence that should be used for any applicable arguments to a function.

There are of course a few exceptions. For example, in convert, the type should always come first. In
setindex!, the value comes before the indices so that the indices can be provided as varargs.

When designing APIs, adhering to this general order as much as possible is likely to give users of your
functions a more consistent experience.

36.11 Don't overuse try-catch

It is better to avoid errors than to rely on catching them.

36.12 Don't parenthesize conditions

Julia doesn't require parens around conditions in if and while. Write:
‘if a ==

instead of:

|if (a == b)

36.13 Don't overuse ...

Splicing function arguments can be addictive. Instead of [a..., b...], usesimply [a; bl, which already
concatenates arrays. collect(a) is better than [a...], but since a is already iterable it is often even
better to leave it alone, and not convert it to an array.

36.14 Don't use unnecessary static parameters

A function signature:
foo(x::T) where {T<:Real} = ...
should be written as:

foo(x::Real) = ...
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instead, especially if T is not used in the function body. Even if T is used, it can be replaced with typeof(x)
if convenient. There is no performance difference. Note that this is not a general caution against static
parameters, just against uses where they are not needed.

Note also that container types, specifically may need type parameters in function calls. See the FAQ Avoid
fields with abstract containers for more information.

36.15 Avoid confusion about whether something is an instance or a type

Sets of definitions like the following are confusing:

foo(::Type{MyType}) = ...
foo(::MyType) = foo(MyType)
Decide whether the concept in question will be written as MyType or MyType(), and stick to it.

The preferred style is to use instances by default, and only add methods involving Type{MyType} later if
they become necessary to solve some problems.

If a type is effectively an enumeration, it should be defined as a single (ideally immutable struct or primitive)
type, with the enumeration values being instances of it. Constructors and conversions can check whether
values are valid. This design is preferred over making the enumeration an abstract type, with the "values"
as subtypes.

36.16 Don't overuse macros

Be aware of when a macro could really be a function instead.

Calling eval inside a macro is a particularly dangerous warning sign; it means the macro will only work
when called at the top level. If such a macro is written as a function instead, it will naturally have access
to the run-time values it needs.

36.17 Don't expose unsafe operations at the interface level

If you have a type that uses a native pointer:

mutable struct NativeType
p::Ptr{UInt8}

end
don't write definitions like the following:
getindex(x::NativeType, i) = unsafe load(x.p, i)

The problem is that users of this type can write x[1] without realizing that the operation is unsafe, and
then be susceptible to memory bugs.

Such a function should either check the operation to ensure it is safe, or have unsafe somewhere in its
name to alert callers.
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36.18 Don't overload methods of base container types

It is possible to write definitions like the following:
show(io::I0, v::Vector{MyType}) = ...

This would provide custom showing of vectors with a specific new element type. While tempting, this
should be avoided. The trouble is that users will expect a well-known type like Vector() to behave in a
certain way, and overly customizing its behavior can make it harder to work with.

36.19 Avoid type piracy

"Type piracy" refers to the practice of extending or redefining methods in Base or other packages on types
that you have not defined. In extreme cases, you can crash Julia (e.g. if your method extension or redefini-
tion causes invalid input to be passed to a ccall). Type piracy can complicate reasoning about code, and
may introduce incompatibilities that are hard to predict and diagnose.

As an example, suppose you wanted to define multiplication on symbols in a module:

module A

import Base.*

*(x::Symbol, y::Symbol) = Symbol(x,y)
end

The problem is that now any other module that uses Base.* will also see this definition. Since Symbol is
defined in Base and is used by other modules, this can change the behavior of unrelated code unexpectedly.
There are several alternatives here, including using a different function name, or wrapping the Symbols in
another type that you define.

Sometimes, coupled packages may engage in type piracy to separate features from definitions, especially
when the packages were designed by collaborating authors, and when the definitions are reusable. For
example, one package might provide some types useful for working with colors; another package could
define methods for those types that enable conversions between color spaces. Another example might
be a package that acts as a thin wrapper for some C code, which another package might then pirate to
implement a higher-level, Julia-friendly API.

36.20 Be careful with type equality

You generally want to use isa and <: for testing types, not ==. Checking types for exact equality typically
only makes sense when comparing to a known concrete type (e.g. T == Float64), or if you really, really
know what you're doing.

36.21 Don't write a trivial anonymous function x->f(x) for a named function f

Since higher-order functions are often called with anonymous functions, it is easy to conclude that this
is desirable or even necessary. But any function can be passed directly, without being "wrapped" in an
anonymous function. Instead of writing map (x->f(x), a), write map(f, a).
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36.22 Avoid using floats for numeric literals in generic code when possible

If you write generic code which handles numbers, and which can be expected to run with many different

numeric type arguments, try using literals of a numeric type that will affect the arguments as little as
possible through promotion.

For example,

julia> f(x) = 2.0 * x
f (generic function with 1 method)

julia> f(1//2)
1.0

julia> f(1/2)
1.0

julia> f(1)
2.0

while

julia> g(x) = 2 * X
g (generic function with 1 method)

julia> g(1//2)
1//1

julia> g(1/2)
1.0

julia> g(1)
2

As you can see, the second version, where we used an Int literal, preserved the type of the input argument,
while the first didn't. This is because e.g. promote type(Int, Float64) == Float64, and promotion

happens with the multiplication. Similarly, Rational literals are less type disruptive than Float64 literals,
but more disruptive than Ints:

julia> h(x) = 2//1 * x
h (generic function with 1 method)

julia> h(1//2)
1//1

julia> h(1/2)
1.0

julia> h(1)
2//1

Thus, use Int literals when possible, with Rational{Int} for literal non-integer numbers, in order to make
it easier to use your code.
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Frequently Asked Questions

37.1 General

Is Julia named after someone or something?

No.

Why don't you compile Matlab/Python/R/... code to Julia?

Since many people are familiar with the syntax of other dynamic languages, and lots of code has already
been written in those languages, it is natural to wonder why we didn't just plug a Matlab or Python front-
end into a Julia back-end (or “transpile” code to Julia) in order to get all the performance benefits of Julia
without requiring programmers to learn a new language. Simple, right?

The basic issue is that there is nothing special about Julia's compiler: we use a commonplace compiler
(LLVM) with no “secret sauce” that other language developers don't know about. Indeed, Julia's compiler
is in many ways much simpler than those of other dynamic languages (e.g. PyPy or LuaJIT). Julia's perfor-
mance advantage derives almost entirely from its front-end: its language semantics allow a well-written
Julia program to give more opportunities to the compiler to generate efficient code and memory layouts.
If you tried to compile Matlab or Python code to Julia, our compiler would be limited by the semantics of
Matlab or Python to producing code no better than that of existing compilers for those languages (and
probably worse). The key role of semantics is also why several existing Python compilers (like Numba and
Pythran) only attempt to optimize a small subset of the language (e.g. operations on Numpy arrays and
scalars), and for this subset they are already doing at least as well as we could for the same semantics.
The people working on those projects are incredibly smart and have accomplished amazing things, but
retrofitting a compiler onto a language that was designed to be interpreted is a very difficult problem.

Julia's advantage is that good performance is not limited to a small subset of “built-in” types and operations,
and one can write high-level type-generic code that works on arbitrary user-defined types while remaining
fast and memory-efficient. Types in languages like Python simply don't provide enough information to the
compiler for similar capabilities, so as soon as you used those languages as a Julia front-end you would be
stuck.

For similar reasons, automated translation to Julia would also typically generate unreadable, slow, non-
idiomatic code that would not be a good starting point for a native Julia port from another language.

On the other hand, language interoperability is extremely useful: we want to exploit existing high-quality
code in other languages from Julia (and vice versa)! The best way to enable this is not a transpiler, but
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rather via easy inter-language calling facilities. We have worked hard on this, from the built-in ccall
intrinsic (to call C and Fortran libraries) to Julialnterop packages that connect Julia to Python, Matlab, C++,
and more.

37.2 Public API

How does Julia define its public API?

Julia Base and standard library functionality described in the the documentation that is not marked as
unstable (e.g. experimental and internal) is covered by SemVer. Functions, types, and constants are not
part of the public API if they are not included in the documentation, even if they have docstrings.

There is a useful undocumented function/type/constant. Can | use it?

Updating Julia may break your code if you use non-public API. If the code is self-contained, it may be a good
idea to copy it into your project. If you want to rely on a complex non-public API, especially when using it
from a stable package, it is a good idea to open an issue or pull request to start a discussion for turning it
into a public API. However, we do not discourage the attempt to create packages that expose stable public
interfaces while relying on non-public implementation details of Julia and buffering the differences across
different Julia versions.

The documentation is not accurate enough. Can I rely on the existing behavior?

Please open an issue or pull request to start a discussion for turning the existing behavior into a public API.

37.3 Sessions and the REPL

How do | delete an object in memory?

Julia does not have an analog of MATLAB's clear function; once a name is defined in a Julia session (tech-
nically, in module Main), it is always present.

If memory usage is your concern, you can always replace objects with ones that consume less memory.
For example, if A is a gigabyte-sized array that you no longer need, you can free the memory with A =
nothing. The memory will be released the next time the garbage collector runs; you can force this to
happen with GC.gc (). Moreover, an attempt to use A will likely result in an error, because most methods
are not defined on type Nothing.

How can | modify the declaration of a type in my session?

Perhaps you've defined a type and then realize you need to add a new field. If you try this at the REPL, you
get the error:

ERROR: invalid redefinition of constant MyType

Types in module Main cannot be redefined.

While this can be inconvenient when you are developing new code, there's an excellent workaround. Mod-
ules can be replaced by redefining them, and so if you wrap all your new code inside a module you can
redefine types and constants. You can't import the type names into Main and then expect to be able to re-
define them there, but you can use the module name to resolve the scope. In other words, while developing
you might use a workflow something like this:


https://github.com/JuliaInterop
https://docs.julialang.org/
https://semver.org/
https://github.com/JuliaLang/julia/issues
https://github.com/JuliaLang/julia/pulls
https://github.com/JuliaLang/julia/issues
https://github.com/JuliaLang/julia/pulls
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include("mynewcode.jl") # this defines a module MyModule

objl = MyModule.ObjConstructor(a, b)

obj2 = MyModule.somefunction(objl)

# Got an error. Change something in "mynewcode.jl"

include("mynewcode.jl") # reload the module

objl = MyModule.ObjConstructor(a, b) # old objects are no longer valid, must reconstruct
obj2 = MyModule.somefunction(objl) # this time it worked!

obj3 = MyModule.someotherfunction(obj2, c)

37.4 Scripting

How do | check if the current file is being run as the main script?

When a file is run as the main script using julia file.j1l one might want to activate extra functionality
like command line argument handling. A way to determine that a file is run in this fashion is to check if
abspath(PROGRAM FILE) == @ FILE is true.

However, it is recommended to not write files that double as a script and as an importable library. If one
needs functionality both available as a library and a script, it is better to write is as a library, then import
the functionality into a distinct script.

How do | catch CTRL-C in a script?

Running a Julia script using julia file.j1 does notthrow InterruptException when you try to terminate
it with CTRL-C (SIGINT). To run a certain code before terminating a Julia script, which may or may not
be caused by CTRL-C, use atexit. Alternatively, you can use julia -e 'include(popfirst! (ARGS))'
file.jl to execute a script while being able to catch InterruptException in the try block. Note that
with this strategy PROGRAM FILE will not be set.

How do | pass options to julia using #!/usr/bin/env?

Passing options to julia in a so-called shebang line, as in #!/usr/bin/env julia --startup-file=no,
will not work on many platforms (BSD, macOS, Linux) where the kernel, unlike the shell, does not split
arguments at space characters. The option env -S, which splits a single argument string into multiple
arguments at spaces, similar to a shell, offers a simple workaround:

#!/usr/bin/env -S julia --color=yes --startup-file=no
@show ARGS # put any Julia code here

Note

Option env -S appeared in FreeBSD 6.0 (2005), macOS Sierra (2016) and GNU/Linux coreutils
8.30 (2018).

Why doesn't run support * or pipes for scripting external programs?

Julia's run function launches external programs directly, without invoking an operating-system shell (unlike
the system("...") function in other languages like Python, R, or C). That means that run does not perform
wildcard expansion of * ("globbing"), nor does it interpret shell pipelines like | or >.


https://en.wikipedia.org/wiki/Shell_(computing)
https://en.wikipedia.org/wiki/Glob_(programming)
https://en.wikipedia.org/wiki/Pipeline_(Unix)
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You can still do globbing and pipelines using Julia features, however. For example, the built-in pipeline
function allows you to chain external programs and files, similar to shell pipes, and the Glob.jl package
implements POSIX-compatible globbing.

You can, of course, run programs through the shell by explicitly passing a shell and a command string
to run, e.g. run('sh -c "ls > files.txt"" ) to use the Unix Bourne shell, but you should generally
prefer pure-Julia scripting like run(pipeline( 1s", "files.txt")). The reason why we avoid the shell
by default is that shelling out sucks: launching processes via the shell is slow, fragile to quoting of special
characters, has poor error handling, and is problematic for portability. (The Python developers came to a
similar conclusion.)

37.5 Variables and Assignments

Why am | getting UndefVarError from a simple loop?

You might have something like:

X =0

while x < 10
X += 1

end

and notice that it works fine in an interactive environment (like the Julia REPL), but gives UndefVarError:
“x* not defined when you try to run it in script or other file. What is going on is that Julia generally
requires you to be explicit about assigning to global variables in a local scope.

Here, x is a global variable, while defines a local scope, and x += 1 is an assignment to a global in that
local scope.

As mentioned above, Julia (version 1.5 or later) allows you to omit the global keyword for code in the REPL
(and many other interactive environments), to simplify exploration (e.g. copy-pasting code from a function
to run interactively). However, once you move to code in files, Julia requires a more disciplined approach
to global variables. You have least three options:

1. Putthe codeinto a function (so that x is a local variable in a function). In general, it is good software
engineering to use functions rather than global scripts (search online for "why global variables bad"
to see many explanations). In Julia, global variables are also slow.

2. Wrap the code in a let block. (This makes x a local variable within the let ... end statement,
again eliminating the need for global).

3. Explicitly mark x as global inside the local scope before assigning to it, e.g. write global x += 1.

More explanation can be found in the manual section on soft scope.

37.6 Functions

I passed an argument x to a function, modified it inside that function, but on the
outside, the variable x is still unchanged. Why?

Suppose you call a function like this:


https://github.com/vtjnash/Glob.jl
https://en.wikipedia.org/wiki/Bourne_shell
https://julialang.org/blog/2012/03/shelling-out-sucks/
https://www.python.org/dev/peps/pep-0324/#motivation
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julia> x = 10
10

julia> function change value!(y)
y = 17
end
change value! (generic function with 1 method)

julia> change value! (x)
17

julia> x # x is unchanged!
10

In Julia, the binding of a variable x cannot be changed by passing x as an argument to a function. When
calling change_value! (x) in the above example, y is a newly created variable, bound initially to the value
of x, i.e. 10; then y is rebound to the constant 17, while the variable x of the outer scope is left untouched.

However, if x is bound to an object of type Array (or any other mutable type). From within the function,
you cannot "unbind" x from this Array, but you can change its content. For example:

julia> x = [1,2,3]
3-element Vector{Int64}:
1
2
3

julia> function change array!(A)
A[1] =5
end
change _array! (generic function with 1 method)

julia> change array!(x)
5

julia> x

3-element Vector{Int64}:
5

2

3

Here we created a function change array!, that assigns 5 to the first element of the passed array (bound
to x at the call site, and bound to A within the function). Notice that, after the function call, x is still bound
to the same array, but the content of that array changed: the variables A and x were distinct bindings
referring to the same mutable Array object.

Can | use using or import inside a function?

No, you are not allowed to have a using or import statement inside a function. If you want to import a
module but only use its symbols inside a specific function or set of functions, you have two options:

1. Use import:
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import Foo
function bar(...)

# ... refer to Foo symbols via Foo.baz ...
end

This loads the module Foo and defines a variable Foo that refers to the module, but does not import
any of the other symbols from the module into the current namespace. You refer to the Foo symbols
by their qualified names Foo.bar etc.

2. Wrap your function in a module:

module Bar
export bar
using Foo
function bar(...)
# ... refer to Foo.baz as simply baz ....
end
end
using Bar

This imports all the symbols from Foo, but only inside the module Bar.

What does the ... operator do?
The two uses of the ... operator: slurping and splatting
Many newcomers to Julia find the use of ... operator confusing. Part of what makes the ... operator

confusing is that it means two different things depending on context.

. combines many arguments into one argument in function definitions

In the context of function definitions, the ... operator is used to combine many different arguments into a
single argument. This use of ... for combining many different arguments into a single argument is called
slurping:

julia> function printargs(args...)
println(typeof(args))
for (i, arg) in enumerate(args)
println("Arg #$i = $arg")
end
end
printargs (generic function with 1 method)

julia> printargs(1l, 2, 3)
Tuple{Int64, Int64, Int64}

Arg #1 = 1
Arg #2 = 2
Arg #3 = 3

If Julia were a language that made more liberal use of ASCIl characters, the slurping operator might have
been written as <-. .. instead of . ...



CHAPTER 37. FREQUENTLY ASKED QUESTIONS 462

. splits one argument into many different arguments in function calls

In contrast to the use of the ... operator to denote slurping many different arguments into one argument
when defining a function, the ... operator is also used to cause a single function argument to be split
apart into many different arguments when used in the context of a function call. This use of ... is called
splatting:

julia> function threeargs(a, b, c)
println("a = $a::$(typeof(a))")
println("b = $b::$(typeof(b))")
println("c = $c::$(typeof(c))")

end

threeargs (generic function with 1 method)

julia> x = [1, 2, 3]
3-element Vector{Int64}:

julia> threeargs(x...)
a = 1::Int64
b = 2::Int64
c = 3::Int64

If Julia were a language that made more liberal use of ASCIl characters, the splatting operator might have
been written as . ..->instead of ....

What is the return value of an assignment?

The operator = always returns the right-hand side, therefore:

julia> function threeint()
x::Int = 3.0
X # returns variable x
end
threeint (generic function with 1 method)

julia> function threefloat()
x::Int = 3.0 # returns 3.0
end
threefloat (generic function with 1 method)

julia> threeint()
3

julia> threefloat()
3.0

and similarly:
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julia> function twothreetup()
x, y = [2, 3] # assigns 2 to x and 3 to y
X, y # returns a tuple
end
twothreetup (generic function with 1 method)

julia> function twothreearr()
x, y = [2, 3] # returns an array
end
twothreearr (generic function with 1 method)

julia> twothreetup()
(2, 3)

julia> twothreearr()
2-element Vector{Int64}:
2
3

37.7 Types, type declarations, and constructors

What does "type-stable" mean?

It means that the type of the output is predictable from the types of the inputs. In particular, it means
that the type of the output cannot vary depending on the values of the inputs. The following code is not
type-stable:

julia> function unstable(flag::Bool)
if flag
return 1
else
return 1.0
end
end
unstable (generic function with 1 method)

It returns either an Int or a Float64 depending on the value of its argument. Since Julia can't predict the
return type of this function at compile-time, any computation that uses it must be able to cope with values
of both types, which makes it hard to produce fast machine code.

Why does Julia give a DomainError for certain seemingly-sensible operations?

Certain operations make mathematical sense but result in errors:

julia> sqrt(-2.0)

ERROR: DomainError with -2.0:

sqrt was called with a negative real argument but will only return a complex result if called
— with a complex argument. Try sqrt(Complex(x)).

Stacktrace:

[...]
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This behavior is an inconvenient consequence of the requirement for type-stability. In the case of sqrt,
most users want sqrt(2.0) to give a real number, and would be unhappy if it produced the complex
number 1.4142135623730951 + 0.0im. One could write the sqrt function to switch to a complex-valued
output only when passed a negative number (which is what sqrt does in some other languages), but then
the result would not be type-stable and the sqrt function would have poor performance.

In these and other cases, you can get the result you want by choosing an input type that conveys your
willingness to accept an output type in which the result can be represented:

julia> sqrt(-2.0+0im)
0.0 + 1.4142135623730951im

How can I constrain or compute type parameters?

The parameters of a parametric type can hold either types or bits values, and the type itself chooses how it
makes use of these parameters. For example, Array{Float64, 2} is parameterized by the type Float64
to express its element type and the integer value 2 to express its number of dimensions. When defining
your own parametric type, you can use subtype constraints to declare that a certain parameter must be
a subtype (<:) of some abstract type or a previous type parameter. There is not, however, a dedicated
syntax to declare that a parameter must be a value of a given type — that is, you cannot directly declare
that a dimensionality-like parameter isa Int within the struct definition, for example. Similarly, you
cannot do computations (including simple things like addition or subtraction) on type parameters. Instead,
these sorts of constraints and relationships may be expressed through additional type parameters that are
computed and enforced within the type's constructors.

As an example, consider

struct ConstrainedType{T,N,N+1} # NOTE: INVALID SYNTAX
A::Array{T,N}
B::Array{T,N+1}

end

where the user would like to enforce that the third type parameter is always the second plus one. This can
be implemented with an explicit type parameter that is checked by an inner constructor method (where it
can be combined with other checks):

struct ConstrainedType{T,N,M}
A::Array{T, N}
B::Array{T,M}
function ConstrainedType(A::Array{T,N}, B::Array{T,M}) where {T,N,M}
N+ 1==M || throw(ArgumentError("second argument should have one more axis" ))
new{T,N,M} (A, B)
end
end

This check is usually costless, as the compiler can elide the check for valid concrete types. If the second
argument is also computed, it may be advantageous to provide an outer constructor method that performs
this calculation:

ConstrainedType(A) = ConstrainedType(A, compute B(A))
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Why does Julia use native machine integer arithmetic?

Julia uses machine arithmetic for integer computations. This means that the range of Int values is bounded
and wraps around at either end so that adding, subtracting and multiplying integers can overflow or un-
derflow, leading to some results that can be unsettling at first:

julia> x = typemax(Int)
9223372036854775807

julia> y = x+1
-9223372036854775808

julia> z = -y
-9223372036854775808

julia> 2*z
0

Clearly, this is far from the way mathematical integers behave, and you might think it less than ideal for
a high-level programming language to expose this to the user. For numerical work where efficiency and
transparency are at a premium, however, the alternatives are worse.

One alternative to consider would be to check each integer operation for overflow and promote results
to bigger integer types such as Int128 or BigInt in the case of overflow. Unfortunately, this introduces
major overhead on every integer operation (think incrementing a loop counter) - it requires emitting code to
perform run-time overflow checks after arithmetic instructions and branches to handle potential overflows.
Worse still, this would cause every computation involving integers to be type-unstable. As we mentioned
above, type-stability is crucial for effective generation of efficient code. If you can't count on the results
of integer operations being integers, it's impossible to generate fast, simple code the way C and Fortran
compilers do.

A variation on this approach, which avoids the appearance of type instability is to merge the Int and
BigInt types into a single hybrid integer type, that internally changes representation when a result no
longer fits into the size of a machine integer. While this superficially avoids type-instability at the level
of Julia code, it just sweeps the problem under the rug by foisting all of the same difficulties onto the C
code implementing this hybrid integer type. This approach can be made to work and can even be made
quite fast in many cases, but has several drawbacks. One problem is that the in-memory representation
of integers and arrays of integers no longer match the natural representation used by C, Fortran and other
languages with native machine integers. Thus, to interoperate with those languages, we would ultimately
need to introduce native integer types anyway. Any unbounded representation of integers cannot have a
fixed number of bits, and thus cannot be stored inline in an array with fixed-size slots - large integer values
will always require separate heap-allocated storage. And of course, no matter how clever a hybrid integer
implementation one uses, there are always performance traps - situations where performance degrades
unexpectedly. Complex representation, lack of interoperability with C and Fortran, the inability to represent
integer arrays without additional heap storage, and unpredictable performance characteristics make even
the cleverest hybrid integer implementations a poor choice for high-performance numerical work.

An alternative to using hybrid integers or promoting to Bigints is to use saturating integer arithmetic, where
adding to the largest integer value leaves it unchanged and likewise for subtracting from the smallest
integer value. This is precisely what Matlab™ does:

>> 1nt64(9223372036854775807)
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ans =

9223372036854775807

>> int64(9223372036854775807) + 1

ans =

9223372036854775807

>> int64(-9223372036854775808)

ans =

-9223372036854775808

>> int64(-9223372036854775808) - 1

ans =

-9223372036854775808

At first blush, this seems reasonable enough since 9223372036854775807 is much closerto 9223372036854775808
than -9223372036854775808 is and integers are still represented with a fixed size in a natural way that is
compatible with C and Fortran. Saturated integer arithmetic, however, is deeply problematic. The first and

most obvious issue is that this is not the way machine integer arithmetic works, so implementing saturated
operations requires emitting instructions after each machine integer operation to check for underflow or
overflow and replace the result with typemin(Int) or typemax(Int) as appropriate. This alone expands

each integer operation from a single, fast instruction into half a dozen instructions, probably including
branches. Ouch. But it gets worse - saturating integer arithmetic isn't associative. Consider this Matlab
computation:

>> n = int64(2)"62
4611686018427387904

>n+ (n - 1)
9223372036854775807

> (n+n) -1
9223372036854775806

This makes it hard to write many basic integer algorithms since a lot of common techniques depend on
the fact that machine addition with overflow is associative. Consider finding the midpoint between integer
values 1o and hi in Julia using the expression (lo + hi) >>> 1:

julia> n = 2762
4611686018427387904

julia> (n + 2n) >>> 1
6917529027641081856
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See? No problem. That's the correct midpoint between 2762 and 2763, despite the fact that n + 2nis
-4611686018427387904. Now try it in Matlab:

>> (n + 2*n)/2
ans =

4611686018427387904

Oops. Adding a >>> operator to Matlab wouldn't help, because saturation that occurs when adding n and
2n has already destroyed the information necessary to compute the correct midpoint.

Not only is lack of associativity unfortunate for programmers who cannot rely it for techniques like this, but
it also defeats almost anything compilers might want to do to optimize integer arithmetic. For example,
since Julia integers use normal machine integer arithmetic, LLVM is free to aggressively optimize simple
little functions like f (k) = 5k-1. The machine code for this function is just this:

julia> code native(f, Tuple{Int})
Ltext
Filename: none
pushq Srbp
movq %rsp, %rbp
Source line: 1
leaq -1(%rdi,%rdi,4), %rax
popq S%rbp
retq
nopl (%rax,%rax)

The actual body of the function is a single leaq instruction, which computes the integer multiply and add
at once. This is even more beneficial when f gets inlined into another function:

julia> function g(k, n)
for i = 1:n
k = f(k)
end
return k
end
g (generic function with 1 methods)

julia> code native(g, Tuple{Int,Int})
Ltext
Filename: none
pushq Srbp
movq %rsp, %rbp
Source line: 2
testq %rsi, %rsi
jle L26
nopl (%rax)
Source line: 3
L16:
leaq -1(%rdi,%rdi,4), %rdi
Source line: 2
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decq %rsi

jne L16
Source line: 5
L26:

movq %rdi, %rax

popq S%rbp

retq

nop

Since the call to f gets inlined, the loop body ends up being just a single leaq instruction. Next, consider
what happens if we make the number of loop iterations fixed:

julia> function g(k)

for i = 1:10
k = f(k)

end

return k

end
g (generic function with 2 methods)

julia> code native(g, (Int,))
Ltext
Filename: none
pushq Srbp
movq %rsp, %rbp
Source line: 3
imulq $9765625, S%rdi, %rax # imm = Ox9502F9

addq $-2441406, %rax # imm = OxFFDABF42
Source line: 5

popq %rbp

retq

nopw %cCs: (%rax,%rax)

Because the compiler knows that integer addition and multiplication are associative and that multiplication
distributes over addition - neither of which is true of saturating arithmetic - it can optimize the entire loop
down to just a multiply and an add. Saturated arithmetic completely defeats this kind of optimization since
associativity and distributivity can fail at each loop iteration, causing different outcomes depending on
which iteration the failure occurs in. The compiler can unroll the loop, but it cannot algebraically reduce
multiple operations into fewer equivalent operations.

The most reasonable alternative to having integer arithmetic silently overflow is to do checked arithmetic
everywhere, raising errors when adds, subtracts, and multiplies overflow, producing values that are not
value-correct. In this blog post, Dan Luu analyzes this and finds that rather than the trivial cost that this
approach should in theory have, it ends up having a substantial cost due to compilers (LLVM and GCC) not
gracefully optimizing around the added overflow checks. If this improves in the future, we could consider
defaulting to checked integer arithmetic in Julia, but for now, we have to live with the possibility of overflow.

In the meantime, overflow-safe integer operations can be achieved through the use of external libraries
such as Saferintegers.jl. Note that, as stated previously, the use of these libraries significantly increases
the execution time of code using the checked integer types. However, for limited usage, this is far less of
an issue than if it were used for all integer operations. You can follow the status of the discussion here.


https://danluu.com/integer-overflow/
https://github.com/JeffreySarnoff/SaferIntegers.jl
https://github.com/JuliaLang/julia/issues/855
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What are the possible causes of an UndefVarError during remote execution?

As the error states, an immediate cause of an UndefVarError on a remote node is that a binding by that
name does not exist. Let us explore some of the possible causes.

julia> module Foo
foo() = remotecall fetch(x->x, 2, "Hello")
end

julia> Foo.foo()

ERROR: On worker 2:
UndefVarError: “Foo' not defined
Stacktrace:

[...]

The closure x->x carries a reference to Foo, and since Foo is unavailable on node 2, an UndefVarError is
thrown.

Globals under modules other than Main are not serialized by value to the remote node. Only a reference
is sent. Functions which create global bindings (except under Main) may cause an UndefVarError to be
thrown later.

julia> @everywhere module Foo
function foo()
global gvar = "Hello"
remotecall fetch(()->gvar, 2)
end
end

julia> Foo.foo()

ERROR: On worker 2:
UndefVarError: “gvar’ not defined
Stacktrace:

[...]

In the above example, @everywhere module Foo defined Foo on all nodes. However the call to Foo. foo()
created a new global binding gvar on the local node, but this was not found on node 2 resulting in an
UndefVarError error.

Note that this does not apply to globals created under module Main. Globals under module Main are
serialized and new bindings created under Main on the remote node.

julia> gvar self = "Nodel"

"Nodel"

julia> remotecall fetch(()->gvar self, 2)
"Nodel"

julia> remotecall fetch(varinfo, 2)
name size summary

Base Module
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Core Module
Main Module
gvar_self 13 bytes String

This does not apply to function or struct declarations. However, anonymous functions bound to global
variables are serialized as can be seen below.

julia> bar() =1
bar (generic function with 1 method)

julia> remotecall fetch(bar, 2)
ERROR: On worker 2:
UndefVarError: “#bar' not defined
[...]

julia> anon_bar = ()->1
(::#21) (generic function with 1 method)

julia> remotecall fetch(anon_bar, 2)
1

37.8 Troubleshooting "method not matched": parametric type invariance
and MethodErrors

Why doesn't it work to declare foo(bar::Vector{Real}) = 42 and then call foo([1])?

As you'll see if you try this, the result is a MethodError:

julia> foo(x::Vector{Real}) = 42
foo (generic function with 1 method)

julia> foo([1])
ERROR: MethodError: no method matching foo(::Vector{Int64})

Closest candidates are:
foo(!Matched: :Vector{Real})
@ Main none:1

Stacktrace:
[...]

This is because Vector{Real} is not a supertype of Vector{Int}! You can solve this problem with some-
thing like foo(bar::Vector{T}) where {T<:Real} (or the short form foo(bar::Vector{<:Real}) if the
static parameter T is not needed in the body of the function). The T is a wild card: you first specify that it
must be a subtype of Real, then specify the function takes a Vector of with elements of that type.

This same issue goes for any composite type Comp, not just Vector. If Comp has a parameter declared of
type Y, then another type Comp2 with a parameter of type X<:Y is not a subtype of Comp. This is type-
invariance (by contrast, Tuple is type-covariant in its parameters). See Parametric Composite Types for
more explanation of these.
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Why does Julia use * for string concatenation? Why not + or something else?

The main argument against + is that string concatenation is not commutative, while + is generally used as a
commutative operator. While the Julia community recognizes that other languages use different operators
and * may be unfamiliar for some users, it communicates certain algebraic properties.

Note that you can also use string(...) to concatenate strings (and other values converted to strings);
similarly, repeat can be used instead of ~ to repeat strings. The interpolation syntax is also useful for
constructing strings.

37.9 Packages and Modules

What is the difference between "using" and "import"?

There are several differences between using and import (see the Modules section), but there is an im-
portant difference that may not seem intuitive at first glance, and on the surface (i.e. syntax-wise) it may

seem very minor. When loading modules with using, you need to say function Foo.bar(... to extend
module Foo's function bar with a new method, but with import Foo.bar, you only need to say function
bar(... and it automatically extends module Foo's function bar.

The reason this is important enough to have been given separate syntax is that you don't want to acciden-
tally extend a function that you didn't know existed, because that could easily cause a bug. This is most
likely to happen with a method that takes a common type like a string or integer, because both you and the
other module could define a method to handle such a common type. If you use import, then you'll replace
the other module's implementation of bar(s::AbstractString) with your new implementation, which
could easily do something completely different (and break all/many future usages of the other functions in
module Foo that depend on calling bar).

37.10 Nothingness and missing values

How does "null", "nothingness" or "missingness"” work in Julia?

Unlike many languages (for example, C and Java), Julia objects cannot be "null" by default. When a refer-
ence (variable, object field, or array element) is uninitialized, accessing it will immediately throw an error.
This situation can be detected using the isdefined or isassigned functions.

Some functions are used only for their side effects, and do not need to return a value. In these cases,
the convention is to return the value nothing, which is just a singleton object of type Nothing. This is an
ordinary type with no fields; there is nothing special about it except for this convention, and that the REPL
does not print anything for it. Some language constructs that would not otherwise have a value also yield
nothing, for example if false; end.

For situations where a value x of type T exists only sometimes, the Union{T, Nothing} type can be used
for function arguments, object fields and array element types as the equivalent of Nullable, Option or
Maybe in other languages. If the value itself can be nothing (notably, when T is Any), the Union{Some{T},
Nothing} type is more appropriate since x == nothing then indicates the absence of a value, and x ==
Some (nothing) indicates the presence of a value equal to nothing. The something function allows un-
wrapping Some objects and using a default value instead of nothing arguments. Note that the compiler is
able to generate efficient code when working with Union{T, Nothing} arguments or fields.

To represent missing data in the statistical sense (NA in R or NULL in SQL), use the missing object. See the
Missing Values section for more details.


https://docs.julialang.org/en/v1/manual/modules/#modules
https://en.wikipedia.org/wiki/Nullable_type
https://en.wikipedia.org/wiki/Nullable_type
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In some languages, the empty tuple (()) is considered the canonical form of nothingness. However, in julia
it is best thought of as just a regular tuple that happens to contain zero values.

The empty (or "bottom") type, written as Union{} (an empty union type), is a type with no values and no
subtypes (except itself). You will generally not need to use this type.

37.11 Memory

Why does x += y allocate memory when x and y are arrays?

In Julia, x += y gets replaced during lowering by x = x + y. For arrays, this has the consequence that,
rather than storing the result in the same location in memory as x, it allocates a new array to store the
result. If you prefer to mutate x, use x .+= y to update each element individually.

While this behavior might surprise some, the choice is deliberate. The main reason is the presence of
immutable objects within Julia, which cannot change their value once created. Indeed, a number is an
immutable object; the statements x = 5; x += 1 do not modify the meaning of 5, they modify the value
bound to x. For an immutable, the only way to change the value is to reassign it.

To amplify a bit further, consider the following function:

function power by squaring(x, n::Int)

ispow2(n) || error("This implementation only works for powers of 2")
while n >= 2
X *= X
n >>= 1
end
X
end
After a call like x = 5; y = power by squaring(x, 4), you would get the expected result: x == 5 &&
y == 625. However, now suppose that *=, when used with matrices, instead mutated the left hand side.

There would be two problems:

* For general square matrices, A = A*B cannot be implemented without temporary storage: A[1,1]
gets computed and stored on the left hand side before you're done using it on the right hand side.

* Suppose you were willing to allocate a temporary for the computation (which would eliminate most of
the point of making *= work in-place); if you took advantage of the mutability of x, then this function
would behave differently for mutable vs. immutable inputs. In particular, for immutable x, after the
call you'd have (in general) y !'= x, but for mutable x you'd havey == x.

Because supporting generic programming is deemed more important than potential performance optimiza-
tions that can be achieved by other means (e.g., using broadcasting or explicit loops), operators like +=
and *= work by rebinding new values.

37.12 Asynchronous IO and concurrent synchronous writes

Why do concurrent writes to the same stream result in inter-mixed output?

While the streaming I/O APl is synchronous, the underlying implementation is fully asynchronous.
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Consider the printed output from the following:

julia> @sync for i in 1:3
@async write(stdout, string(i), " Foo ", " Bar ")
end
123 Foo Foo Foo Bar Bar Bar

This is happening because, while the write call is synchronous, the writing of each argument yields to
other tasks while waiting for that part of the I/O to complete.

print and println "lock" the stream during a call. Consequently changing write to println in the above
example results in:

julia> @sync for i in 1:3
@async println(stdout, string(i), " Foo ", " Bar ")
end
1 Foo Bar
2 Foo Bar
3 Foo Bar

You can lock your writes with a ReentrantLock like this:

julia> 1 = ReentrantLock();

julia> @sync for i in 1:3
@async begin
Tlock ()
try
write(stdout, string(i), " Foo ", " Bar ")
finally
unlock(1)
end
end
end
1 Foo Bar 2 Foo Bar 3 Foo Bar

37.13 Arrays

What are the differences between zero-dimensional arrays and scalars?

Zero-dimensional arrays are arrays of the form Array{T,0}. They behave similar to scalars, but there
are important differences. They deserve a special mention because they are a special case which makes
logical sense given the generic definition of arrays, but might be a bit unintuitive at first. The following line
defines a zero-dimensional array:

julia> A = zeros()
0-dimensional Array{Float64,0}:
0.0

In this example, A is a mutable container that contains one element, which can be setby A[] = 1.0 and re-
trieved with A[]. All zero-dimensional arrays have the same size (size(A) == ()), and length (length(A)
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== 1). In particular, zero-dimensional arrays are not empty. If you find this unintuitive, here are some ideas
that might help to understand Julia's definition.

« Zero-dimensional arrays are the "point" to vector's "line" and matrix's "plane". Just as a line has no
area (but still represents a set of things), a point has no length or any dimensions at all (but still
represents a thing).

* We define prod(()) to be 1, and the total number of elements in an array is the product of the size.
The size of a zero-dimensional array is (), and therefore its length is 1.

* Zero-dimensional arrays don't natively have any dimensions into which you index - they're just A[].
We can apply the same "trailing one" rule for them as for all other array dimensionalities, so you can
indeed index them as A[1], A[1,1], etc; see Omitted and extra indices.

It is also important to understand the differences to ordinary scalars. Scalars are not mutable containers
(even though they are iterable and define things like length, getindex, e.g. 1[] == 1). In particular, if
x = 0.0 is defined as a scalar, it is an error to attempt to change its value via x[] = 1.0. A scalar x can
be converted into a zero-dimensional array containing it via fill(x), and conversely, a zero-dimensional
array a can be converted to the contained scalar via a[ ]. Another difference is that a scalar can participate
in linear algebra operations such as 2 * rand(2,2), but the analogous operation with a zero-dimensional
array fill(2) * rand(2,2) is an error.

Why are my Julia benchmarks for linear algebra operations different from other
languages?

You may find that simple benchmarks of linear algebra building blocks like

using BenchmarkTools
A = randn(1000, 1000)
B = randn(1000, 1000)
@btime $A \ $B
@btime $A * $B

can be different when compared to other languages like Matlab or R.

Since operations like this are very thin wrappers over the relevant BLAS functions, the reason for the
discrepancy is very likely to be

1. the BLAS library each language is using,

2. the number of concurrent threads.

Julia compiles and uses its own copy of OpenBLAS, with threads currently capped at 8 (or the number of
your cores).

Modifying OpenBLAS settings or compiling Julia with a different BLAS library, eg Intel MKL, may provide
performance improvements. You can use MKL.jl, a package that makes Julia's linear algebra use Intel MKL
BLAS and LAPACK instead of OpenBLAS, or search the discussion forum for suggestions on how to set this
up manually. Note that Intel MKL cannot be bundled with Julia, as it is not open source.


https://software.intel.com/en-us/mkl
https://github.com/JuliaComputing/MKL.jl
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37.14 Computing cluster

How do | manage precompilation caches in distributed file systems?

When using Julia in high-performance computing (HPC) facilities with shared filesystems, it is recommended
to use a shared depot (via the JULIA DEPOT_PATH environment variable). Since Julia v1.10, multiple Julia
processes on functionally similar workers and using the same depot will coordinate via pidfile locks to
only spend effort precompiling on one process while the others wait. The precompilation process will
indicate when the process is precompiling or waiting for another that is precompiling. If non-interactive
the messages are via @debug.

However, due to caching of binary code, the cache rejection since v1.9 is more strict and users may need to
set the JULIA CPU TARGET environment variable appropriately to get a single cache that is usable through-
out the HPC environment.

37.15 Julia Releases

Do | want to use the Stable, LTS, or nightly version of Julia?

The Stable version of Julia is the latest released version of Julia, this is the version most people will want
to run. It has the latest features, including improved performance. The Stable version of Julia is versioned
according to SemVer as vl.x.y. A new minor release of Julia corresponding to a new Stable version is
made approximately every 4-5 months after a few weeks of testing as a release candidate. Unlike the LTS
version the Stable version will not normally receive bugfixes after another Stable version of Julia has been
released. However, upgrading to the next Stable release will always be possible as each release of Julia
v1.x will continue to run code written for earlier versions.

You may prefer the LTS (Long Term Support) version of Julia if you are looking for a very stable code base.
The current LTS version of Julia is versioned according to SemVer as v1.6.x; this branch will continue to
receive bugfixes until a new LTS branch is chosen, at which point the v1.6.x series will no longer received
regular bug fixes and all but the most conservative users will be advised to upgrade to the new LTS version
series. As a package developer, you may prefer to develop for the LTS version, to maximize the number of
users who can use your package. As per SemVer, code written for v1.0 will continue to work for all future
LTS and Stable versions. In general, even if targeting the LTS, one can develop and run code in the latest
Stable version, to take advantage of the improved performance; so long as one avoids using new features
(such as added library functions or new methods).

You may prefer the nightly version of Julia if you want to take advantage of the latest updates to the
language, and don't mind if the version available today occasionally doesn't actually work. As the name
implies, releases to the nightly version are made roughly every night (depending on build infrastructure
stability). In general nightly released are fairly safe to use—your code will not catch on fire. However, they
may be occasional regressions and or issues that will not be found until more thorough pre-release testing.
You may wish to test against the nightly version to ensure that such regressions that affect your use case
are caught before a release is made.

Finally, you may also consider building Julia from source for yourself. This option is mainly for those indi-
viduals who are comfortable at the command line, or interested in learning. If this describes you, you may
also be interested in reading our guidelines for contributing.

Links to each of these download types can be found on the download page at https://julialang.org/down-
loads/. Note that not all versions of Julia are available for all platforms.


https://semver.org/
https://github.com/JuliaLang/julia/blob/master/CONTRIBUTING.md
https://julialang.org/downloads/
https://julialang.org/downloads/
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How can | transfer the list of installed packages after updating my version of Julia?

Each minor version of julia has its own default environment. As a result, upon installing a new minor version
of Julia, the packages you added using the previous minor version will not be available by default. The
environment for a given julia version is defined by the files Project.toml and Manifest.toml in a folder
matching the version number in .julia/environments/, for instance, .julia/environments/v1.3.

If you install a new minor version of Julia, say 1.4, and want to use in its default environment the same
packages as in a previous version (e.g. 1.3), you can copy the contents of the file Project.toml from the
1.3 folder to 1.4. Then, in a session of the new Julia version, enter the "package management mode" by
typing the key 1, and run the command instantiate.

This operation will resolve a set of feasible packages from the copied file that are compatible with the
target Julia version, and will install or update them if suitable. If you want to reproduce not only the set
of packages, but also the versions you were using in the previous Julia version, you should also copy the
Manifest.toml file before running the Pkg command instantiate. However, note that packages may
define compatibility constraints that may be affected by changing the version of Julia, so the exact set of
versions you had in 1.3 may not work for 1.4.


https://docs.julialang.org/en/v1/manual/code-loading/#Environments-1
https://julialang.github.io/Pkg.jl/v1/api/#Pkg.instantiate

Chapter 38

Noteworthy Differences from other
Languages

38.1 Noteworthy differences from MATLAB

Although MATLAB users may find Julia's syntax familiar, Julia is not a MATLAB clone. There are major
syntactic and functional differences. The following are some noteworthy differences that may trip up Julia
users accustomed to MATLAB:

Julia arrays are indexed with square brackets, A[i,j].

Julia arrays are not copied when assigned to another variable. After A = B, changing elements of B
will modify A as well. To avoid this, use A = copy(B).

Julia values are not copied when passed to a function. If a function modifies an array, the changes
will be visible in the caller.

Julia does not automatically grow arrays in an assignment statement. Whereas in MATLAB a(4) =
3.2 cancreatethearraya = [0 0 0 3.2] anda(5) = 7cangrowitintoa = [0 0 0 3.2 7], the
corresponding Julia statement a[5] = 7 throws an error if the length of a is less than 5 or if this
statement is the first use of the identifier a. Julia has push! and append!, which grow Vectors much
more efficiently than MATLAB's a(end+1) = val.

The imaginary unit sqrt(-1) is represented in Julia as im, not i or j as in MATLAB.

In Julia, literal numbers without a decimal point (such as 42) create integers instead of floating point
numbers. As a result, some operations can throw a domain error if they expect a float; for example,
julia> a = -1; 2”a throws a domain error, as the result is not an integer (see the FAQ entry on
domain errors for details).

In Julia, multiple values are returned and assigned as tuples, e.g. (a, b) = (1, 2)ora, b=1,
2. MATLAB's nargout, which is often used in MATLAB to do optional work based on the number of
returned values, does not exist in Julia. Instead, users can use optional and keyword arguments to
achieve similar capabilities.

Julia has true one-dimensional arrays. Column vectors are of size N, not Nx1. For example, rand(N)
makes a 1-dimensional array.

477
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e InJulia, [x,y,z] will always construct a 3-element array containing x, y and z.

- To concatenate in the first ("vertical") dimension use either vcat(x,y, z) or separate with semi-
colons ([x; y; zl).

- To concatenate in the second ("horizontal") dimension use either hcat(x,y, z) or separate with
spaces ([x y z]).

- To construct block matrices (concatenating in the first two dimensions), use either hvcat or
combine spaces and semicolons ([a b; ¢ dl).

* InJulia, a:b and a:b:c construct AbstractRange objects. To construct a full vector like in MATLAB,
use collect(a:b). Generally, there is no need to call collect though. An AbstractRange object
will act like a normal array in most cases but is more efficient because it lazily computes its values.
This pattern of creating specialized objects instead of full arrays is used frequently, and is also seen
in functions such as range, or with iterators such as enumerate, and zip. The special objects can
mostly be used as if they were normal arrays.

e Functions in Julia return values from their last expression or the return keyword instead of listing
the names of variables to return in the function definition (see The return Keyword for details).

* AJulia script may contain any number of functions, and all definitions will be externally visible when
the file is loaded. Function definitions can be loaded from files outside the current working directory.

* In Julia, reductions such as sum, prod, and max are performed over every element of an array when
called with a single argument, as in sum(A), even if A has more than one dimension.

* InJulia, parentheses must be used to call a function with zero arguments, like in rand().

¢ Julia discourages the use of semicolons to end statements. The results of statements are not au-
tomatically printed (except at the interactive prompt), and lines of code do not need to end with
semicolons. println or @printf can be used to print specific output.

¢ InJulia, if A and B are arrays, logical comparison operations like A == B do not return an array of
booleans. Instead, use A .== B, and similarly for the other boolean operators like <, >.

¢ InJulia, the operators &, |, and Y (xor) perform the bitwise operations equivalent to and, or, and xor
respectively in MATLAB, and have precedence similar to Python's bitwise operators (unlike C). They
can operate on scalars or element-wise across arrays and can be used to combine logical arrays, but
note the difference in order of operations: parentheses may be required (e.g., to select elements of
Aequaltolor2use (A .==1) .| (A .== 2)).

* InJulia, the elements of a collection can be passed as arguments to a function using the splat operator
...,asinxs=[1,2]; f(xs...).

 Julia's svd returns singular values as a vector instead of as a dense diagonal matrix.

¢ InJulia, ... is not used to continue lines of code. Instead, incomplete expressions automatically
continue onto the next line.

* In both Julia and MATLAB, the variable ans is set to the value of the last expression issued in an
interactive session. In Julia, unlike MATLAB, ans is not set when Julia code is run in non-interactive
mode.

e Julia's structs do not support dynamically adding fields at runtime, unlike MATLAB's classes. In-
stead, use a Dict. DictinJulia isn't ordered.
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In Julia each module has its own global scope/namespace, whereas in MATLAB there is just one global
scope.

In MATLAB, an idiomatic way to remove unwanted values is to use logical indexing, like in the
expression x(x>3) or in the statement x(x>3) = [] to modify x in-place. In contrast, Julia pro-
vides the higher order functions filter and filter!, allowing users to write filter(z->z>3, x)
and filter!(z->z>3, x) as alternatives to the corresponding transliterations x[x.>3] and x =
x[x.>3]. Using filter! reduces the use of temporary arrays.

The analogue of extracting (or "dereferencing") all elements of a cell array, e.g. in vertcat(A{:})
in MATLAB, is written using the splat operator in Julia, e.g. as vcat(A...).

In Julia, the adjoint function performs conjugate transposition; in MATLAB, adjoint provides the
"adjugate" or classical adjoint, which is the transpose of the matrix of cofactors.

In Julia, a~b”c is evaluated a”~ (b~ c) while in MATLAB it's (a”b)"c.

38.2 Noteworthy differences from R

One of Julia's goals is to provide an effective language for data analysis and statistical programming. For
users coming to Julia from R, these are some noteworthy differences:

Julia's single quotes enclose characters, not strings.

Julia can create substrings by indexing into strings. In R, strings must be converted into character
vectors before creating substrings.

In Julia, like Python but unlike R, strings can be created with triple quotes """ ... """. This syntax
is convenient for constructing strings that contain line breaks.

In Julia, varargs are specified using the splat operator . . ., which always follows the name of a specific
variable, unlike R, for which ... can occur in isolation.

In Julia, modulus ismod(a, b), nota %% b. % in Julia is the remainder operator.
Julia constructs vectors using brackets. Julia's [1, 2, 3] is the equivalent of R's c(1, 2, 3).

In Julia, not all data structures support logical indexing. Furthermore, logical indexing in Julia is
supported only with vectors of length equal to the object being indexed. For example:

- InR,c(1, 2, 3, 4)[c(TRUE, FALSE)] is equivalentto c(1, 3).
- InR,c(1, 2, 3, 4)[c(TRUE, FALSE, TRUE, FALSE)] is equivalentto c(1, 3).
- InJulia, [1, 2, 3, 4]1[[true, false]] throws a BoundsError.

- InJulia, [1, 2, 3, 4]1[[true, false, true, false]] produces [1, 3].

Like many languages, Julia does not always allow operations on vectors of different lengths, unlike R
where the vectors only need to share a common index range. For example, c(1, 2, 3, 4) + c(1,
2) is valid R but the equivalent [1, 2, 3, 4] + [1, 2] will throw an error in Julia.

Julia allows an optional trailing comma when that comma does not change the meaning of code.
This can cause confusion among R users when indexing into arrays. For example, x[1,] in R would
return the first row of a matrix; in Julia, however, the comma is ignored, so x[1,] == x[1], and will
return the first element. To extract a row, be sure to use :, asin x[1, :].
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e Julia's map takes the function first, then its arguments, unlike lapply(<structure>, function,
.) in R. Similarly Julia's equivalent of apply (X, MARGIN, FUN, ...) in R is mapslices where
the function is the first argument.

* Multivariate apply inR, e.g. mapply(choose, 11:13, 1:3), canbe written asbroadcast(binomial,
11:13, 1:3)injulia. Equivalently Julia offers a shorter dot syntax for vectorizing functions binomial. (11:13,
1:3).

* Julia uses end to denote the end of conditional blocks, like if, loop blocks, like while/ for, and
functions. In lieu of the one-line if ( cond ) statement, Julia allows statements of the form if
cond; statement; end, cond && statement and !cond || statement. Assignment statements in
the latter two syntaxes must be explicitly wrapped in parentheses, e.g. cond && (x = value).

* InJulia, <-, <<- and -> are not assignment operators.
* Julia's -> creates an anonymous function.

* Julia's * operator can perform matrix multiplication, unlike in R. If A and B are matrices, then A * B
denotes a matrix multiplication in Julia, equivalent to R's A %*% B. In R, this same notation would
perform an element-wise (Hadamard) product. To get the element-wise multiplication operation, you
need to write A .* Bin Julia.

 Julia performs matrix transposition using the transpose function and conjugated transposition using
the ' operator or the adjoint function. Julia's transpose(A) is therefore equivalent to R's t(A).
Additionally a non-recursive transpose in Julia is provided by the permutedims function.

¢ Julia does not require parentheses when writing if statements or for/while loops: use for i in
[1, 2, 3] instead of for (i in c(1, 2, 3)) and if i == 1linstead of if (i == 1).

* Julia does not treat the numbers 0 and 1 as Booleans. You cannot write if (1) in Julia, because if
statements accept only booleans. Instead, you can write if true, if Bool(1l), or if 1==1.

* Julia does not provide nrow and ncol. Instead, use size(M, 1) for nrow(M) and size(M, 2) for
ncol(M).

 Julia is careful to distinguish scalars, vectors and matrices. In R, 1 and c(1) are the same. In Julia,
they cannot be used interchangeably.

e Julia's diag and diagm are not like R's.

* Julia cannot assign to the results of function calls on the left hand side of an assignment operation:
you cannot write diag(M) = fill(1, n).

¢ Julia discourages populating the main namespace with functions. Most statistical functionality for
Julia is found in packages under the JuliaStats organization. For example:

- Functions pertaining to probability distributions are provided by the Distributions package.
- The DataFrames package provides data frames.
- Generalized linear models are provided by the GLM package.
* Julia provides tuples and real hash tables, but not R-style lists. When returning multiple items, you

should typically use a tuple or a named tuple: instead of list(a = 1, b = 2),use (1, 2) or (a=1,
b=2).


https://pkg.julialang.org/
https://github.com/JuliaStats
https://github.com/JuliaStats/Distributions.jl
https://github.com/JuliaData/DataFrames.jl
https://github.com/JuliaStats/GLM.jl

CHAPTER 38. NOTEWORTHY DIFFERENCES FROM OTHER LANGUAGES 481

Julia encourages users to write their own types, which are easier to use than S3 or S4 objects in
R. Julia's multiple dispatch system means that table(x::TypeA) and table(x::TypeB) act like R's
table.TypeA(x) and table.TypeB(x).

In Julia, values are not copied when assigned or passed to a function. If a function modifies an array,
the changes will be visible in the caller. This is very different from R and allows new functions to
operate on large data structures much more efficiently.

In Julia, vectors and matrices are concatenated using hcat, vcat and hvcat, not ¢, rbind and cbind
like in R.

In Julia, a range like a:b is not shorthand for a vector like in R, but is a specialized AbstractRange
object that is used for iteration. To convert a range into a vector, use collect(a:b).

The : operator has a different precedence in R and Julia. In particular, in Julia arithmetic operators
have higher precedence than the : operator, whereas the reverse is true in R. For example, 1:n-1
in Julia is equivalent to 1: (n-1) in R.

Julia's max and min are the equivalent of pmax and pmin respectively in R, but both arguments need
to have the same dimensions. While maximum and minimum replace max and min in R, there are
important differences.

Julia's sum, prod, maximum, and minimum are different from their counterparts in R. They all accept an
optional keyword argument dims, which indicates the dimensions, over which the operation is carried
out. Forinstance, letA = [1 2; 3 4] inJuliaandB <- rbind(c(1,2),c(3,4)) be the same matrix
in R. Then sum(A) gives the same result as sum(B), but sum(A, dims=1) is a row vector containing
the sum over each column and sum(A, dims=2) is a column vector containing the sum over each row.
This contrasts to the behavior of R, where separate colSums (B) and rowSums (B) functions provide
these functionalities. If the dims keyword argument is a vector, then it specifies all the dimensions
over which the sum is performed, while retaining the dimensions of the summed array, e.g. sum(A,
dims=(1,2)) == hcat(10). It should be noted that there is no error checking regarding the second
argument.

Julia has several functions that can mutate their arguments. For example, it has both sort and
sort!.

In R, performance requires vectorization. In Julia, almost the opposite is true: the best performing
code is often achieved by using devectorized loops.

Julia is eagerly evaluated and does not support R-style lazy evaluation. For most users, this means
that there are very few unquoted expressions or column names.

Julia does not support the NULL type. The closest equivalent is nothing, but it behaves like a scalar
value rather than like a list. Use x === nothing instead of is.null(x).

In Julia, missing values are represented by the missing object rather than by NA. Use ismissing(x)
(or ismissing. (x) for element-wise operation on vectors) instead of is.na(x). The skipmissing
function is generally used instead of na. rm=TRUE (though in some particular cases functions take a
skipmissing argument).

Julia lacks the equivalent of R's assign or get.

In Julia, return does not require parentheses.
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* In R, an idiomatic way to remove unwanted values is to use logical indexing, like in the expression
x[x>3] orin the statement x = x[x>3] to modify x in-place. In contrast, Julia provides the higher or-
der functions filterand filter!, allowing users to write filter(z->z>3, x) and filter!(z->z>3,
X) as alternatives to the corresponding transliterations x[x.>3] and x = x[x.>3]. Using filter!
reduces the use of temporary arrays.

38.3 Noteworthy differences from Python

e Julia's for, if, while, etc. blocks are terminated by the end keyword. Indentation level is not
significant as it is in Python. Unlike Python, Julia has no pass keyword.

» Strings are denoted by double quotation marks ("text") in Julia (with three double quotation marks
for multi-line strings), whereas in Python they can be denoted either by single ('text"') or double
quotation marks ("text"). Single quotation marks are used for characters in Julia ('c').

* String concatenation is done with * in Julia, not + like in Python. Analogously, string repetition is
done with *, not *. Implicit string concatenation of string literals like in Python (e.g. 'ab' 'cd' ==
'abcd') is not done in Julia.

¢ Python Lists—flexible but slow—correspond to the Julia Vector{Any} type or more generally Vector{T}
where T is some non-concrete element type. "Fast" arrays like NumPy arrays that store elements
in-place (i.e., dtype is np.float64, [('fl', np.uint64), ('f2', np.int32)], etc.) can be rep-
resented by Array{T} where T is a concrete, immutable element type. This includes built-in types
like Float64, Int32, Int64 but also more complex types like Tuple{UInt64,Float64} and many
user-defined types as well.

* InJulia, indexing of arrays, strings, etc. is 1-based not 0-based.
* Julia's slice indexing includes the last element, unlike in Python. a[2:3] inJuliais a[1:3] in Python.

* Unlike Python, Julia allows AbstractArrays with arbitrary indexes. Python's special interpretation of
negative indexing, a[-1] and a[-2], should be written a[end] and a[end-1] in Julia.

¢ Julia requires end for indexing until the last element. x[1:] in Python is equivalent to x[2:end] in
Julia.

* InJulia, : before any object creates a Symbol or quotes an expression; so, x[:5] is same as x[5]. If
you want to get the first n elements of an array, then use range indexing.

* Julia'srangeindexing has the format of x[start:step:stop], whereas Python's formatis x[start: (stop+1) :step].
Hence, x[0:10:2] in Python is equivalent to x[1:2:10] in Julia. Similarly, x[::-1] in Python, which
refers to the reversed array, is equivalent to x[end:-1:1] in Julia.

* In Julia, ranges can be constructed independently as start:step:stop, the same syntax it uses in
array-indexing. The range function is also supported.

* In Julia, indexing a matrix with arrays like X[[1,2], [1,3]] refers to a sub-matrix that contains
the intersections of the first and second rows with the first and third columns. In Python, X[[1,2],
[1,3]] refers to a vector that contains the values of cell [1,1] and [2,3] in the matrix. X[[1,2],
[1,3]] inJulia is equivalent with X[np.ix ([0,1],[0,2])] in Python. X[[0,1], [0,2]] in Python
is equivalent with X[ [CartesianIndex(1,1), CartesianIndex(2,3)]] in Julia.


https://julialang.org/blog/2017/04/offset-arrays/
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Julia has no line continuation syntax: if, at the end of a line, the input so far is a complete expression,
it is considered done; otherwise the input continues. One way to force an expression to continue is
to wrap it in parentheses.

Julia arrays are column-major (Fortran-ordered) whereas NumPy arrays are row-major (C-ordered)
by default. To get optimal performance when looping over arrays, the order of the loops should be
reversed in Julia relative to NumPy (see relevant section of Performance Tips).

Julia's updating operators (e.g. +=, -=, ...) are not in-place whereas NumPy's are. This means A =
[1, 1]; B = A; B += [3, 3] doesn't change values in A, it rather rebinds the name B to the result
of the right-hand side B = B + 3, which is a new array. For in-place operation, use B .+= 3 (see
also dot operators), explicit loops, or InplaceOps.j1.

Julia evaluates default values of function arguments every time the method is invoked, unlike in
Python where the default values are evaluated only once when the function is defined. For example,
the function f(x=rand()) = x returns a new random number every time it is invoked without argu-
ment. On the other hand, the function g(x=[1,2]) = push!(x,3) returns [1,2,3] every time itis
called as g().

In Julia, keyword arguments must be passed using keywords, unlike Python in which it is usually
possible to pass them positionally. Attempting to pass a keyword argument positionally alters the
method signature leading to a MethodError or calling of the wrong method.

In Julia % is the remainder operator, whereas in Python it is the modulus.

In Julia, the commonly used Int type corresponds to the machine integer type (Int32 or Int64),
unlike in Python, where int is an arbitrary length integer. This means in Julia the Int type will
overflow, such that 2764 == 0. If you need larger values use another appropriate type, such as
Int128, BigInt or a floating point type like Float64.

The imaginary unit sqrt(-1) is represented in Julia as im, not j as in Python.
In Julia, the exponentiation operator is *, not ** as in Python.

Julia uses nothing of type Nothing to represent a null value, whereas Python uses None of type
NoneType.

In Julia, the standard operators over a matrix type are matrix operations, whereas, in Python, the
standard operators are element-wise operations. When both A and B are matrices, A * B in Julia per-
forms matrix multiplication, not element-wise multiplication as in Python. A * B inJulia is equivalent
with A @ B in Python, whereas A * B in Python is equivalent with A .* B in Julia.

The adjoint operator ' in Julia returns an adjoint of a vector (a lazy representation of row vector),
whereas the transpose operator . T over a vector in Python returns the original vector (non-op).

In Julia, a function may contain multiple concrete implementations (called methods), which are se-
lected via multiple dispatch based on the types of all arguments to the call, as compared to functions
in Python, which have a single implementation and no polymorphism (as opposed to Python method
calls which use a different syntax and allows dispatch on the receiver of the method).

There are no classes in Julia. Instead there are structures (mutable or immutable), containing data
but no methods.
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* Calling a method of a class instance in Python (x = MyClass(*args); x.f(y)) corresponds to a
function call in Julia, e.g. x = MyType(args...); f(x, y). In general, multiple dispatch is more
flexible and powerful than the Python class system.

* Julia structures may have exactly one abstract supertype, whereas Python classes can inherit from
one or more (abstract or concrete) superclasses.

* The logical Julia program structure (Packages and Modules) is independent of the file structure
(include for additional files), whereas the Python code structure is defined by directories (Packages)
and files (Modules).

* The ternary operator x > 0 ? 1 : -1 in Julia corresponds to a conditional expression in Python 1
if x > 0 else -1.

* In Julia the @ symbol refers to a macro, whereas in Python it refers to a decorator.

* Exception handling in Julia is done using try — catch — finally, instead of try — except —
finally. In contrast to Python, it is not recommended to use exception handling as part of the
normal workflow in Julia (compared with Python, Julia is faster at ordinary control flow but slower at
exception-catching).

* InJulia loops are fast, there is no need to write "vectorized" code for performance reasons.

* Be careful with non-constant global variables in Julia, especially in tight loops. Since you can write
close-to-metal code in Julia (unlike Python), the effect of globals can be drastic (see Performance
Tips).

* In Julia, rounding and truncation are explicit. Python's int(3.7) should be floor(Int, 3.7) or
Int(floor(3.7)) and is distinguished from round(Int, 3.7). floor(x) and round(x) on their
own return an integer value of the same type as x rather than always returning Int.

¢ InJulia, parsing is explicit. Python's float("3.7") would be parse(Float64, "3.7") inJulia.

* In Python, the majority of values can be used in logical contexts (e.g. if "a": means the following
block is executed, and if "": means itis not). InJulia, you need explicit conversion to Bool (e.g. if
"a" throws an exception). If you want to test for a non-empty string in Julia, you would explicitly write
if lisempty(""). Perhaps surprisingly, in Python if "False" and bool("False") both evaluate
to True (because "False" is a non-empty string); in Julia, parse(Bool, "false") returns false.

* InJulia, a new local scope is introduced by most code blocks, including loops and try — catch —
finally. Note that comprehensions (list, generator, etc.) introduce a new local scope both in Python
and Julia, whereas if blocks do not introduce a new local scope in both languages.

38.4 Noteworthy differences from C/C++

 Julia arrays are indexed with square brackets, and can have more than one dimension A[1,j]. This
syntax is not just syntactic sugar for a reference to a pointer or address as in C/C++. See the manual
entry about array construction.

* InJulia, indexing of arrays, strings, etc. is 1-based not 0-based.

* Julia arrays are not copied when assigned to another variable. After A = B, changing elements of B
will modify A as well. Updating operators like += do not operate in-place, they are equivalentto A =
A + B which rebinds the left-hand side to the result of the right-hand side expression.
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Julia arrays are column major (Fortran ordered) whereas C/C++ arrays are row major ordered by
default. To get optimal performance when looping over arrays, the order of the loops should be
reversed in Julia relative to C/C++ (see relevant section of Performance Tips).

Julia values are not copied when assigned or passed to a function. If a function modifies an array,
the changes will be visible in the caller.

InJulia, whitespace is significant, unlike C/C++, so care must be taken when adding/removing whites-
pace from a Julia program.

In Julia, literal numbers without a decimal point (such as 42) create signed integers, of type Int, but
literals too large to fit in the machine word size will automatically be promoted to a larger size type,
such as Int64 (if Int is Int32), Int128, or the arbitrarily large BigInt type. There are no numeric
literal suffixes, such as L, LL, U, UL, ULL to indicate unsigned and/or signed vs. unsigned. Decimal
literals are always signed, and hexadecimal literals (which start with 0x like C/C++), are unsigned,
unless when they encode more than 128 bits, in which case they are of type BigInt. Hexadecimal
literals also, unlike C/C++/Java and unlike decimal literals in Julia, have a type based on the length
of the literal, including leading Os. For example, 0x0 and 0x00 have type UInt8, 0x000 and 0x0000
have type UIntl6, then literals with 5 to 8 hex digits have type UInt32, 9 to 16 hex digits type
UInt64, 17 to 32 hex digits type UInt128, and more that 32 hex digits type BigInt. This needs to be
taken into account when defining hexadecimal masks, for example ~0xf == 0xf0 is very different
from ~0x000f == Oxfff0O. 64 bit Float64 and 32 bit Float32 bit literals are expressed as 1.0 and
1.0f0 respectively. Floating point literals are rounded (and not promoted to the BigFloat type) if
they can not be exactly represented. Floating point literals are closer in behavior to C/C++. Octal
(prefixed with o) and binary (prefixed with 0b) literals are also treated as unsigned (or BigInt for
more than 128 bits).

In Julia, the division operator / returns a floating point number when both operands are of integer
type. To perform integer division, use div or +.

Indexing an Array with floating point types is generally an error in Julia. The Julia equivalent of the
C expressiona[i / 2]isal[i + 2 + 1], where i is of integer type.

String literals can be delimited with either " or """, """ delimited literals can contain " characters
without quoting it like "\"". String literals can have values of other variables or expressions interpo-
lated into them, indicated by $variablename or $(expression), which evaluates the variable name
or the expression in the context of the function.

// indicates a Rational number, and not a single-line comment (which is # in Julia)
#= indicates the start of a multiline comment, and =# ends it.

Functions in Julia return values from their last expression(s) or the return keyword. Multiple values
can be returned from functions and assigned as tuples, e.g. (a, b) = myfunction() ora, b =
myfunction(), instead of having to pass pointers to values as one would have to do in C/C++ (i.e.
a = myfunction(&b).

Julia does not require the use of semicolons to end statements. The results of expressions are not
automatically printed (except at the interactive prompt, i.e. the REPL), and lines of code do not need
to end with semicolons. println or @printf can be used to print specific output. In the REPL, ; can
be used to suppress output. ; also has a different meaning within [ 1, something to watch out for.
; can be used to separate expressions on a single line, but are not strictly necessary in many cases,
and are more an aid to readability.
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Julia

In Julia, the operator Y (xor) performs the bitwise XOR operation, i.e. ~ in C/C++. Also, the bitwise
operators do not have the same precedence as C/C++, so parenthesis may be required.

Julia's ~ is exponentiation (pow), not bitwise XOR as in C/C++ (use Y, or xor, in Julia)

Julia has two right-shift operators, >> and >>>. >> performs an arithmetic shift, >>> always performs a
logical shift, unlike C/C++, where the meaning of >> depends on the type of the value being shifted.

Julia's -> creates an anonymous function, it does not access a member via a pointer.

Julia does not require parentheses when writing if statements or for/while loops: use for i in
[1, 2, 3] instead of for (int i=1; i <= 3; i++) and if i == linstead of if (i == 1).

Julia does not treat the numbers 0 and 1 as Booleans. You cannot write if (1) in Julia, because if
statements accept only booleans. Instead, you can write if true, if Bool(1l), or if 1==1.

Julia uses end to denote the end of conditional blocks, like if, loop blocks, like while/ for, and
functions. In lieu of the one-line if ( cond ) statement, Julia allows statements of the form if
cond; statement; end, cond && statement and !cond || statement. Assignment statements
in the latter two syntaxes must be explicitly wrapped in parentheses, e.g. cond && (x = value),
because of the operator precedence.

Julia has no line continuation syntax: if, at the end of a line, the input so far is a complete expression,
it is considered done; otherwise the input continues. One way to force an expression to continue is
to wrap it in parentheses.

Julia macros operate on parsed expressions, rather than the text of the program, which allows them
to perform sophisticated transformations of Julia code. Macro names start with the @ character,
and have both a function-like syntax, @mymacro(argl, arg2, arg3), and a statement-like syntax,
@mymacro argl arg2 arg3. The forms are interchangeable; the function-like form is particularly
useful if the macro appears within another expression, and is often clearest. The statement-like
form is often used to annotate blocks, as in the distributed for construct: @distributed for i in
1:n; #= body =#; end. Where the end of the macro construct may be unclear, use the function-like
form.

Julia has an enumeration type, expressed using the macro @enum(name, valuel, value2, ...)
For example: @enum(Fruit, banana=1l, apple, pear)

By convention, functions that modify their arguments have a ! at the end of the name, for example
push!.

In C++, by default, you have static dispatch, i.e. you need to annotate a function as virtual, in order
to have dynamic dispatch. On the other hand, in Julia every method is "virtual" (although it's more
general than that since methods are dispatched on every argument type, not only this, using the
most-specific-declaration rule).

< C/C++: Namespaces

C/C++ namespaces correspond roughly to Julia modules.

There are no private globals or fields in Julia. Everything is publicly accessible through fully qualified
paths (or relative paths, if desired).

using MyNamespace: :myfun (C++) corresponds roughly to import MyModule: myfun (Julia).
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Julia

using namespace MyNamespace (C++) corresponds roughly to using MyModule (Julia)

- InJulia, only exported symbols are made available to the calling module.

- In C++, only elements found in the included (public) header files are made available.

Caveat: import/using keywords (Julia) also load modules (see below).

Caveat: import/using (Julia) works only at the global scope level (modules)

- In C++, using namespace X works within arbitrary scopes (ex: function scope).

& C/C++: Module loading

When you think of a C/C++ "library", you are likely looking for a Julia "package".

- Caveat: C/C++ libraries often house multiple "software modules" whereas Julia "packages"
typically house one.

- Reminder: Julia modules are global scopes (not necessarily "software modules").

Instead of build/make scripts, Julia uses "Project Environments" (sometimes called either "Project"
or "Environment").

- Build scripts are only needed for more complex applications (like those needing to compile or
download C/C++ executables).

- To develop application or project in Julia, you can initialize its root directory as a "Project En-
vironment", and house application-specific code/packages there. This provides good control
over project dependencies, and future reproducibility.

- Available packages are added to a "Project Environment" with the Pkg.add() function or Pkg
REPL mode. (This does not load said package, however).

- The list of available packages (direct dependencies) for a "Project Environment" are saved in
its Project.toml file.

- The full dependency information for a "Project Environment" is auto-generated & saved in its
Manifest.toml file by Pkg.resolve().

Packages ("software modules") available to the "Project Environment" are loaded with import or
using.

- In C/C++, you #include <moduleheader> to get object/function declarations, and link in li-
braries when you build the executable.

- InJulia, calling using/import again just brings the existing module into scope, but does not load
it again (similar to adding the non-standard #pragma once to C/C++).

Directory-based package repositories (Julia) can be made available by adding repository paths
to the Base.LOAD_PATH array.

- Packages from directory-based repositories do not require the Pkg.add() tool prior to being
loaded with import or using. They are simply available to the project.

- Directory-based package repositories are the quickest solution to developping local libraries
of "software modules".
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Julia ® C/C++: Assembling modules
e In C/C++, .c/.cpp files are compiled & added to a library with build/make scripts.
- Injulia, import [PkgName]l/using [PkgName] statementsload [PkgName].jllocated in a pack-
age's [PkgName]/src/ subdirectory.
- Inturn, [PkgName] . j1 typically loads associated source files with callsto include "[someotherfile].jl".

e include "./path/to/somefile.jl" (Julia) is very similar to #include "./path/to/somefile.jl"
(C/C++).

- However include "..." (Julia) is not used to include header files (not required).

- Donotuseinclude "..." (Julia) toload code from other "software modules" (use import/using
instead).

- include "path/to/some/module.jl" (Julia) would instantiate multiple versions of the same
code in different modules (creating distinct types (etc.) with the same names).

- include "somefile.jl"istypically used to assemble multiple files within the same Julia pack-
age ("software module"). It is therefore relatively straightforward to ensure file are included
only once (No #ifdef confusion).

Julia & C/C++: Module interface

* C++ exposes interfaces using "public" .h/.hpp files whereas Julia modules mark specific symbols
that are intended for their users as publicor exported.

- Often, Julia modules simply add functionality by generating new "methods" to existing functions
(ex: Base.push!).

- Developers of Julia packages therefore cannot rely on header files for interface documentation.

- Interfaces for Julia packages are typically described using docstrings, README.md, static web
pages, ...

¢ Some developers choose not to export all symbols required to use their package/module.

- Users might be expected to access these components by qualifying functions/structs/... with
the package/module name (ex: MyModule.run this task(...)).
Julia & C/C++: Quick reference

* The Julia package manager supports registering multiple packages from a single Git repository.<br> *
This allows users to house a library of related packages in a single repository.<br> ** Julia registries are
primarily designed to provide versioning \& distribution of packages.<br> ** Custom package registries
can be used to create a type of module library.

38.5 Noteworthy differences from Common Lisp

* Julia uses 1-based indexing for arrays by default, and it can also handle arbitrary index offsets.

» Functions and variables share the same namespace (“Lisp-1").



CHAPTER 38. NOTEWORTHY DIFFERENCES FROM OTHER LANGUAGES

489

Software Concept Julia C/C++

unnamed scope begin ... end {..}

function scope function x() ... end int x() {...}

global scope module MyMod ... end namespace MyNS { ... }

software module

A Julia "package"

.h/.hpp files<br>+compiled
somelib.a

assem-
bling<br>software
modules

SomePkg. jl:

...<br>import("subfilel.jl")<br>import("

$(AR) *.o0 &rArr; somelib.a
subfile2.j1")<br>...

import<br>soft- import SomePkg #include

ware <somelib><br>+link in
module somelib.a

module library LOAD PATHI[], *Git repository,<br>**custom more .h/.hpp

package registry files<br>+bigger compiled

somebiglib.a

e There is a Pair type, but it is not meant to be used as a COMMON-LISP:CONS. Various iterable

collections can be used interchangeably in most parts of the language (eg splatting, tuples, etc).
Tuples are the closest to Common Lisp lists for short collections of heterogeneous elements. Use
NamedTuples in place of alists. For larger collections of homogeneous types, Arrays and Dicts should
be used.

The typical Julia workflow for prototyping also uses continuous manipulation of the image, imple-
mented with the Revise.jl package.

For performance, Julia prefers that operations have type stability. Where Common Lisp abstracts
away from the underlying machine operations, Julia cleaves closer to them. For example:

Integer division using / always returns a floating-point result, even if the computation is exact.
* // always returns a rational result
* + always returns a (truncated) integer result

- Bignums are supported, but conversion is not automatic; ordinary integers overflow.

- Complex numbers are supported, but to get complex results, you need complex inputs.

There are multiple Complex and Rational types, with different component types.

Modules (namespaces) can be hierarchical. import and using have a dual role: they load the code
and make it available in the namespace. import for only the module name is possible (roughly
equivalent to ASDF:LOAD-0P). Slot names don't need to be exported separately. Global variables
can't be assigned to from outside the module (except with eval(mod, :(var = val)) as an escape
hatch).

Macros start with @, and are not as seamlessly integrated into the language as Common Lisp;
consequently, macro usage is not as widespread as in the latter. A form of hygiene for macros
is supported by the language. Because of the different surface syntax, there is no equivalent to
COMMON-LISP:&BODY.

» All functions are generic and use multiple dispatch. Argument lists don't have to follow the same

template, which leads to a powerful idiom (see do). Optional and keyword arguments are handled dif-
ferently. Method ambiguities are not resolved like in the Common Lisp Object System, necessitating
the definition of a more specific method for the intersection.


https://github.com/timholy/Revise.jl
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¢ Symbols do not belong to any package, and do not contain any values per se. M.var evaluates the
symbol var in the module M.

* A functional programming style is fully supported by the language, including closures, but isn't al-
ways the idiomatic solution for Julia. Some workarounds may be necessary for performance when
modifying captured variables.
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Unicode Input

The following table lists Unicode characters that can be entered via tab completion of LaTeX-like abbrevia-
tions in the Julia REPL (and in various other editing environments). You can also get information on how to
type a symbol by entering it in the REPL help, i.e. by typing ? and then entering the symbol in the REPL
(e.g., by copy-paste from somewhere you saw the symbol).

Warning

This table may appear to contain missing characters in the second column, or even show
characters that are inconsistent with the characters as they are rendered in the Julia REPL.
In these cases, users are strongly advised to check their choice of fonts in their browser and
REPL environment, as there are known issues with glyphs in many fonts.
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Command-line Interface

40.1 Using arguments inside scripts

When running a script using julia, you can pass additional arguments to your script:

‘$ julia script.jl argl arg2...

These additional command-line arguments are passed in the global constant ARGS. The name of the script
itself is passed in as the global PROGRAM FILE. Note that ARGS is also set when a Julia expression is given
using the -e option on the command line (see the julia help output below) but PROGRAM FILE will be
empty. For example, to just print the arguments given to a script, you could do this:

$ julia -e 'println(PROGRAM FILE); for x in ARGS; println(x); end' foo bar

foo
bar

Or you could put that code into a script and run it:

$ echo 'println(PROGRAM FILE); for x in ARGS; println(x); end' > script.jl
$ julia script.jl foo bar

script.jl

foo

bar

The - - delimiter can be used to separate command-line arguments intended for the script file from argu-
ments intended for Julia:

‘$ julia --color=yes -0 -- script.jl argl arg2..

See also Scripting for more information on writing Julia scripts.

40.2 Parallel mode

Julia can be started in parallel mode with either the -p or the - -machine-file options. -p n will launch an
additional n worker processes, while --machine-file file will launch a worker for each line in file file.
The machines defined in file must be accessible via a password-less ssh login, with Julia installed at the
same location as the current host. Each machine definition takes the form [count*] [user@]lhost[:port]
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[bind addr[:port]]. user defaults to current user, port to the standard ssh port. count is the number
of workers to spawn on the node, and defaults to 1. The optional bind-to bind addr[:port] specifies
the IP address and port that other workers should use to connect to this worker.

40.3 Startup file

If you have code that you want executed whenever Julia is run, you can putitin~/.julia/config/startup.jl:
$ echo 'println("Greetings! ! ?")' > ~/.julia/config/startup.jl

$ julia

Greetings! ! ?

Note that although you should have a ~/. julia directory once you've run Julia for the first time, you may
need to create the ~/.julia/config folder and the ~/.julia/config/startup.jl file if you use it.

To have startup code run only in The Julia REPL (and not when juliais e.g. run on a script), use atreplinit
in startup.jl:

atreplinit() do repl
# ...
end

40.4 Command-line switches for Julia

There are various ways to run Julia code and provide options, similar to those available for the perl and
ruby programs:

julia [switches] -- [programfile] [args...]

The following is a complete list of command-line switches available when launching julia (a '*' marks the
default value, if applicable; settings marked '($)' may trigger package precompilation):

Julia 1.1

In Julia 1.0, the default - -project=@. option did not search up from the root directory of a Git
repository for the Project. toml file. From Julia 1.1 forward, it does.



CHAPTER 40. COMMAND-LINE INTERFACE

494

Switch Description
-v, --version Display version information
-h, --help Print command-line options (this message).

--help-hidden

Uncommon options not shown by -h

project[={<dir>|@.]

Set <dir> as the home project/environment. The default @. option will search
Jthrough parent directories until a Project.toml or JuliaProject.toml file is
found.

-J, --sysimage

Start up with the given system image file

modules={yes*|no}

<file>

-H, --home <dir> Set location of julia executable

--startup- Load JULIA DEPOT PATH/config/startup.jl; if JULIA_DEPOT_PATH
file={yes*|no} environment variable is unset, load ~/.julia/config/startup.jl
--handle- Enable or disable Julia's default signal handlers

signals={yes*|no}

--sysimage- Use native code from system image if available

native-

code={yes*|no}

--compiled- Enable or disable incremental precompilation of modules

pkgimages={yes*|no}

Enable or disable usage of native code caching in the form of pkgimages

-e, --eval <expr> Evaluate <expr>

-E, --print <expr> | Evaluate <expr> and display the result

-L, --load <file> Load <file> immediately on all processors

-t, --threads Enable N threads; auto tries to infer a useful default number of threads to use
{N]auto} but the exact behavior might change in the future. Currently, auto uses the

number of CPUs assigned to this julia process based on the OS-specific affinity
assignment interface, if supported (Linux and Windows). If this is not
supported (macOS) or process affinity is not configured, it uses the number of
CPU threads.

--gcthreads=N[,M]

Use N threads for the mark phase of GC and M (0 or 1) threads for the
concurrent sweeping phase of GC. N is set to half of the number of compute
threads and M is set to 0 if unspecified.

-p, --procs Integer value N launches N additional local worker processes; auto launches
{N]auto} as many workers as the number of local CPU threads (logical cores)
--machine-file Run processes on hosts listed in <file>

<file>

-1 Interactive mode; REPL runs and isinteractive() is true

-g, --quiet Quiet startup: no banner, suppress REPL warnings

banner={yes|no|aut

Enable or disable startup banner
*}

color={yes|no|auto

Enable or disable color text

}

--history-
file={yes*|no}

Load or save history

depwarn={yes|no*|e

Enable or disable syntax and method deprecation warnings (error turns

rreBFnings into errors)

scope={yes*|no}

--warn- Enable or disable method overwrite warnings
overwrite={yes|no*]
--warn- Enable or disable warning for ambiguous top-level scope

-C, --cpu-target

Limit usage of CPU features up to <target>; set to help to see the available

info={0,1%*,2}

<target> options

-0, -- Set the optimization level (level is 3 if -0 is used without a level) ($)
optimize={0,1,2*,3}

--min- Set the lower bound on per-module optimization

optlevel={0%*,1,2,3}

-g, - -debug- Set the level of debug info generation (level is 2 if -g is used without a level)

($)

--inline={yes|no}

Control whether inlining is permitted, including overriding @inline
declarations
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Essentials

41.1 Introduction

Julia Base contains a range of functions and macros appropriate for performing scientific and numerical
computing, but is also as broad as those of many general purpose programming languages. Additional
functionality is available from a growing collection of available packages. Functions are grouped by topic
below.

Some general notes:
¢ To use module functions, use import Module to import the module, and Module.fn(x) to use the
functions.

* Alternatively, using Module will import all exported Module functions into the current namespace.
* By convention, function names ending with an exclamation point (!) modify their arguments. Some

functions have both modifying (e.g., sort!) and non-modifying (sort) versions.

The behaviors of Base and standard libraries are stable as defined in SemVer only if they are documented;
i.e., included in the Julia documentation and not marked as unstable. See APl FAQ for more information.

41.2 Getting Around

Base.exit - Function.

exit(code=0)

Stop the program with an exit code. The default exit code is zero, indicating that the program completed
successfully. In an interactive session, exit() can be called with the keyboard shortcut "D.

source

Base.atexit - Function.

atexit(f)
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Register a zero- or one-argument function f() to be called at process exit. atexit() hooks are called
in last in first out (LIFO) order and run before object finalizers.

If f has a method defined for one integer argument, it will be called as f(n::Int32), where n is the
current exit code, otherwise it will be called as f().

Julia 1.9
The one-argument form requires Julia 1.9

Exit hooks are allowed to call exit(n), in which case Julia will exit with exit code n (instead of the
original exit code). If more than one exit hook calls exit(n), then Julia will exit with the exit code
corresponding to the last called exit hook that calls exit(n). (Because exit hooks are called in LIFO
order, "last called" is equivalent to "first registered".)

Note: Once all exit hooks have been called, no more exit hooks can be registered, and any call to
atexit(f) after all hooks have completed will throw an exception. This situation may occur if you are
registering exit hooks from background Tasks that may still be executing concurrently during shutdown.

source

Base.isinteractive - Function.

isinteractive() -> Bool

Determine whether Julia is running an interactive session.

source

Base.summarysize - Function.

Base.summarysize(obj; exclude=Union{...}, chargeall=Union{...}) -> Int

Compute the amount of memory, in bytes, used by all unique objects reachable from the argument.

Keyword Arguments

* exclude: specifies the types of objects to exclude from the traversal.

* chargeall: specifies the types of objects to always charge the size of all of their fields, even if
those fields would normally be excluded.

See also sizeof.

Examples

julia> Base.summarysize(1.0)
8

julia> Base.summarysize(Ref(rand(100)))
848

julia> sizeof(Ref(rand(100)))
8

source


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/initdefs.jl#L371-L395
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/initdefs.jl#L35-L39
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/summarysize.jl#L11-L34
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Base. precompile - Function.

‘ __precompile (isprecompilable::Bool)

Specify whether the file calling this function is precompilable, defaulting to true. If a module or file
is not safely precompilable, it should call precompile (false) in order to throw an error if Julia
attempts to precompile it.

source
Base.include - Function.

Base.include([mapexpr: :Function,] m::Module, path::AbstractString)

Evaluate the contents of the input source file in the global scope of module m. Every module (except
those defined with baremodule) has its own definition of include omitting the m argument, which
evaluates the file in that module. Returns the result of the last evaluated expression of the input file.
During including, a task-local include path is set to the directory containing the file. Nested calls to
include will search relative to that path. This function is typically used to load source interactively, or
to combine files in packages that are broken into multiple source files.

The optional first argument mapexpr can be used to transform the included code before it is evaluated:
for each parsed expression expr in path, the include function actually evaluates mapexpr(expr). If it
is omitted, mapexpr defaults to identity.

Julia 1.5

Julia 1.5 is required for passing the mapexpr argument.

source
Base.MainInclude.include - Function.

‘ include([mapexpr: :Function,] path::AbstractString)

Evaluate the contents of the input source file in the global scope of the containing module. Every
module (except those defined with baremodule) has its own definition of include, which evaluates the
file in that module. Returns the result of the last evaluated expression of the input file. During including,
a task-local include path is set to the directory containing the file. Nested calls to include will search
relative to that path. This function is typically used to load source interactively, or to combine files in
packages that are broken into multiple source files. The argument path is normalized using normpath
which will resolve relative path tokens such as .. and convert / to the appropriate path separator.

The optional first argument mapexpr can be used to transform the included code before it is evaluated:
for each parsed expression expr in path, the include function actually evaluates mapexpr(expr). If it
is omitted, mapexpr defaults to identity.

Use Base.include to evaluate a file into another module.

Julia 1.5
Julia 1.5 is required for passing the mapexpr argument.

source


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/loading.jl#L1704-L1710
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/loading.jl#L2105-L2122
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/client.jl#L522-L543
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Base.include string - Function.

include string([mapexpr::Function,] m::Module, code::AbstractString,
— filename: :AbstractString="string")

Like include, except reads code from the given string rather than from a file.

The optional first argument mapexpr can be used to transform the included code before it is eval-
uated: for each parsed expression expr in code, the include string function actually evaluates
mapexpr(expr). If it is omitted, mapexpr defaults to identity.

Julia 1.5
Julia 1.5 is required for passing the mapexpr argument.

source
Base.include dependency - Function.

include dependency(path::AbstractString)

In @ module, declare that the file, directory, or symbolic link specified by path (relative or absolute)
is a dependency for precompilation; that is, the module will need to be recompiled if the modification
time of path changes.

This is only needed if your module depends on a path that is not used via include. It has no effect
outside of compilation.

source
__init__ - Keyword.
__init

The init () function in a module executes immediately after the module is loaded at runtime for
the first time. Itis called once, after all other statements in the module have been executed. Because it
is called after fully importing the module, init  functions of submodules will be executed first. Two
typicalusesof init are calling runtime initialization functions of external C libraries and initializing
global constants that involve pointers returned by external libraries. See the manual section about
modules for more details.

Examples

const foo data ptr = Ref{Ptr{Cvoid}}(0)

function _ init ()
ccall((:foo init, :libfoo), Cvoid, ())
foo data ptr[] = ccall((:foo data, :libfoo), Ptr{Cvoid}, ())
nothing

end

source
Base.which - Method.

‘which(f, types)


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/loading.jl#L2046-L2057
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/loading.jl#L1679-L1688
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L127-L147
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Returns the method of f (a Method object) that would be called for arguments of the given types.
If types is an abstract type, then the method that would be called by invoke is returned.

See also: parentmodule, and @which and @edit in InteractiveUtils.

source

Base.methods - Function.

methods (f, [types], [module])

Return the method table for f.

If types is specified, return an array of methods whose types match. If module is specified, return an
array of methods defined in that module. A list of modules can also be specified as an array.

Julia 1.4

At least Julia 1.4 is required for specifying a module.
See also: which and @which.
source

Base.@show - Macro.

‘ @show exs. ..

Prints one or more expressions, and their results, to stdout, and returns the last result.
See also: show, @info, println.

Examples

julia> x = @show 1+2
1+2=3

3

julia> @show x"2 x/2;

XxX~2=9
x/ 2=1.5
source

Base.MainInclude.ans - Constant.

ans
A variable referring to the last computed value, automatically imported to the interactive prompt.
source

Base.MainInclude.err - Constant.

err


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L1708-L1716
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L1053-L1066
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/show.jl#L1159-L1176
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/client.jl#L493-L497
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A variable referring to the last thrown errors, automatically imported to the interactive prompt. The
thrown errors are collected in a stack of exceptions.

source
Base.active project - Function.

active project()

Return the path of the active Project.toml file. See also Base.set active project.

source
Base.set active project - Function.

set active project(projfile::Union{AbstractString,Nothing})
Set the active Project.toml file to projfile. See also Base.active project.

Julia 1.8
This function requires at least Julia 1.8.

source

41.3 Keywords

This is the list of reserved keywords in Julia: baremodule, begin, break, catch, const, continue, do, else,
elseif, end, export, false, finally, for, function, global, if, import, let, local, macro, module,
quote, return, struct, true, try, using, while. Those keywords are not allowed to be used as variable
names.

The following two-word sequences are reserved: abstract type, mutable struct, primitive type. How-
ever, you can create variables with names: abstract, mutable, primitive and type.

Finally: where is parsed as an infix operator for writing parametric method and type definitions; in and isa
are parsed as infix operators; outer is parsed as a keyword when used to modify the scope of a variable
in an iteration specification of a for loop; and as is used as a keyword to rename an identifier brought into
scope by import or using. Creation of variables named where, in, isa, outer and as is allowed, though.

module - Keyword.

module

module declares a Module, which is a separate global variable workspace. Within a module, you can
control which names from other modules are visible (via importing), and specify which of your names
are intended to be public (via exporting). Modules allow you to create top-level definitions without
worrying about name conflicts when your code is used together with somebody else’s. See the manual
section about modules for more details.

Examples
module Foo

import Base.show
export MyType, foo


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/client.jl#L500-L505
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/initdefs.jl#L293-L297
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/initdefs.jl#L322-L329
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struct MyType
X
end

bar(x) = 2x

foo(a::MyType) = bar(a.x) + 1

show(io::I0, a::MyType) = print(io, "MyType $(a.x)")
end

source
export - Keyword.
export
export is used within modules to tell Julia which functions should be made available to the user. For

example: export foo makes the name foo available when using the module. See the manual section
about modules for details.

source
import - Keyword.
import
import Foo will load the module or package Foo. Names from the imported Foo module can be ac-

cessed with dot syntax (e.g. Foo. foo to access the name foo). See the manual section about modules
for details.

source
using - Keyword.
using
using Foo will load the module or package Foo and make its exported names available for direct use.

Names can also be used via dot syntax (e.g. Foo.foo to access the name foo), whether they are
exported or not. See the manual section about modules for details.

source
as - Keyword.
as
as is used as a keyword to rename an identifier brought into scope by import or using, for the pur-

pose of working around name conflicts as well as for shortening names. (Outside of import or using
statements, as is not a keyword and can be used as an ordinary identifier.)

import LinearAlgebra as LA brings the imported LinearAlgebra standard library into scope as LA.

import LinearAlgebra: eigen as eig, cholesky as chol brings the eigen and cholesky meth-
ods from LinearAlgebra into scope as eig and chol respectively.


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L99-L124
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L52-L59
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L42-L49
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L32-L39
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as works with using only when individual identifiers are brought into scope. For example, using
LinearAlgebra: eigen as eigorusing LinearAlgebra: eigen as eig, cholesky as chol works,
butusing LinearAlgebra as LAisinvalid syntax, sinceitis nonsensical to rename all exported names
from LinearAlgebra to LA.

source
baremodule - Keyword.

baremodule

baremodule declares a module that does not contain using Base or local definitions of eval and
include. It does still import Core. In other words,

module Mod

end

is equivalent to
baremodule Mod
using Base

eval(x) = Core.eval(Mod, x)
include(p) = Base.include(Mod, p)

end

source
function - Keyword.

function

Functions are defined with the function keyword:
function add(a, b)

return a + b
end

Or the short form notation:
|add(a, b) =a + b

The use of the return keyword is exactly the same as in other languages, but is often optional. A
function without an explicit return statement will return the last expression in the function body.

source


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L62-L80
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L150-L178
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L784-L803
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macro - Keyword.

macro

macro defines a method for inserting generated code into a program. A macro maps a sequence of
argument expressions to a returned expression, and the resulting expression is substituted directly into
the program at the point where the macro is invoked. Macros are a way to run generated code without
calling eval, since the generated code instead simply becomes part of the surrounding program. Macro
arguments may include expressions, literal values, and symbols. Macros can be defined for variable
number of arguments (varargs), but do not accept keyword arguments. Every macro also implicitly
gets passed the arguments  source , which contains the line number and file name the macro is
called from, and module , which is the module the macro is expanded in.

See the manual section on Metaprogramming for more information about how to write a macro.

Examples

julia> macro sayhello(name)
return :( println("Hello, ", $name, "!") )
end
@sayhello (macro with 1 method)

julia> @sayhello "Charlie"
Hello, Charlie!

julia> macro saylots(x...)
return :( println("Say: ", $(x...)) )
end
@saylots (macro with 1 method)

julia> @saylots "hey " "there " "friend"
Say: hey there friend

source

return - Keyword.

return

return xcauses the enclosing function to exit early, passing the given value x back to its caller. return
by itself with no value is equivalent to return nothing (see nothing).

function compare(a, b)

a == b && return "equal to"

a <b ? "less than" : "greater than"
end

In general you can place a return statement anywhere within a function body, including within deeply
nested loops or conditionals, but be careful with do blocks. For example:

function testl(xs)
for x in xs
iseven(x) && return 2x


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L199-L234
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end
end

function test2(xs)
map(xs) do x
iseven(x) && return 2x
X
end
end

In the first example, the return breaks out of test1 as soon as it hits an even number, so test1([5,6,7]1)
returns 12.

You might expect the second example to behave the same way, butin fact the return there only breaks
out of the inner function (inside the do block) and gives a value back to map. test2([5,6,7]) then
returns [5,12,7].

When used in a top-level expression (i.e. outside any function), return causes the entire current top-
level expression to terminate early.

source
do - Keyword.

do

Create an anonymous function and pass it as the first argument to a function call. For example:

map(1:10) do x
2X
end

is equivalent to map (x->2x, 1:10).

Use multiple arguments like so:

map(1:10, 11:20) do x, y
X+y
end

source
begin - Keyword.

begin

begin...end denotes a block of code.

begin
println("Hello, ")
println("World!")
end


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L832-L872
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L1103-L1125
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Usually begin will not be necessary, since keywords such as function and let implicitly begin blocks
of code. See also ;.

begin may also be used when indexing to represent the first index of a collection or the first index of
a dimension of an array.

Examples

julia> A = [1 2; 3 4]
2x2 Array{Int64,2}:

1 2

3 4

julia> A[begin, :]
2-element Array{Int64,1}:
1
2

source

end - Keyword.

end

end marks the conclusion of a block of expressions, for example module, struct, mutable struct,
begin, let, for etc.

end may also be used when indexing to represent the last index of a collection or the last index of a
dimension of an array.

Examples

julia> A = [1 2; 3 4]
2x2 Array{Int64, 2}:
1 2
3 4

julia> Alend, :]

2-element Array{Int64, 1}:
3
4

source
let - Keyword.

‘ let

let blocks create a new hard scope and optionally introduce new local bindings.

Just like the other scope constructs, let blocks define the block of code where newly introduced local
variables are accessible. Additionally, the syntax has a special meaning for comma-separated assign-
ments and variable names that may optionally appear on the same line as the let:


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L1322-L1352
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L974-L996
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let varl = valuel, var2, var3 = value3
code
end

The variables introduced on this line are local to the let block and the assignments are evaluated in
order, with each right-hand side evaluated in the scope without considering the name on the left-hand
side. Therefore it makes sense to write something like let x = x, since the two x variables are distinct
with the left-hand side locally shadowing the x from the outer scope. This can even be a useful idiom as
new local variables are freshly created each time local scopes are entered, but this is only observable
in the case of variables that outlive their scope via closures. A let variable without an assignment,
such as var2 in the example above, declares a new local variable that is not yet bound to a value.

By contrast, begin blocks also group multiple expressions together but do not introduce scope or have
the special assignment syntax.

Examples

In the function below, there is a single x that is iteratively updated three times by the map. The closures
returned all reference that one x at its final value:

julia> function test outer x()

X =0
map(1:3) do _
X += 1
return ()->x
end

end
test outer x (generic function with 1 method)

julia> [f() for f in test outer x()]
3-element Vector{Int64}:

3

3

3

If, however, we add a let block that introduces a new local variable we will end up with three distinct
variables being captured (one at each iteration) even though we chose to use (shadow) the same name.

julia> function test let x()
X =0
map(1:3) do _
X += 1
let x = x
return ()->x
end
end
end
test let x (generic function with 1 method)

julia> [f() for f in test let x()]
3-element Vector{Int64}:

1

2

3
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All scope constructs that introduce new local variables behave this way when repeatedly run; the
distinctive feature of let is its ability to succinctly declare new locals that may shadow outer variables
of the same name. For example, directly using the argument of the do function similarly captures three
distinct variables:

julia> function test do x()
map(1:3) do x
return ()->x
end
end
test do x (generic function with 1 method)

julia> [f() for f in test do x()]
3-element Vector{Int64}:

1

2

3

source
if - Keyword.

‘ if/elseif/else

if/elseif/else performs conditional evaluation, which allows portions of code to be evaluated or not
evaluated depending on the value of a boolean expression. Here is the anatomy of the if/elseif/else
conditional syntax:

if x <y

println("x is less than y")
elseif x >y

println("x is greater than y")
else

println("x is equal to y")
end

If the condition expression x < y is true, then the corresponding block is evaluated; otherwise the
condition expression x > vy is evaluated, and if it is true, the corresponding block is evaluated; if neither
expression is true, the else block is evaluated. The elseif and else blocks are optional, and as many
elseif blocks as desired can be used.

In contrast to some other languages conditions must be of type Bool. It does not suffice for conditions
to be convertible to Bool.

julia> if 1 end
ERROR: TypeError: non-boolean (Int64) used in boolean context

source

for - Keyword.

for


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L500-L596
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L875-L903
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for loops repeatedly evaluate a block of statements while iterating over a sequence of values.

The iteration variable is always a new variable, even if a variable of the same name exists in the
enclosing scope. Use outer to reuse an existing local variable for iteration.

Examples
julia> for i in [1, 4, 0]

println(i)
end

source
while - Keyword.

while

while loops repeatedly evaluate a conditional expression, and continue evaluating the body of the

while loop as long as the expression remains true. If the condition expression is false when the while
loop is first reached, the body is never evaluated.

Examples

julia> i =1
1

julia> while i < 5
println(i)
global i +=1

end

A W N P

source
break - Keyword.

break

Break out of a loop immediately.

Examples

julia> i = 0
0

julia> while true
global i +=1
i > 5 & break
println(i)



https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L928-L947
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L950-L971
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end

u b WN =

source

continue - Keyword.

continue

Skip the rest of the current loop iteration.

Examples

julia> for i = 1:6
iseven(i) && continue
println(i)
end

source
try - Keyword.

‘try/catch

A try/catch statement allows intercepting errors (exceptions) thrown by throw so that program exe-

cution can continue. For example, the following code attempts to write a file, but warns the user and
proceeds instead of terminating execution if the file cannot be written:

try
open("/danger", "w") do f
println(f, "Hello")
end
catch
@warn "Could not write file."
end

or, when the file cannot be read into a variable:

lines = try
open("/danger", "r") do f
readlines(f)
end
catch
@warn "File not found."

end


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L1061-L1082
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L1085-L1100
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The syntax catch e (where e is any variable) assigns the thrown exception object to the given variable
within the catch block.

The power of the try/catch construct lies in the ability to unwind a deeply nested computation imme-
diately to a much higher level in the stack of calling functions.

source
finally - Keyword.
finally

Run some code when a given block of code exits, regardless of how it exits. For example, here is how
we can guarantee that an opened file is closed:

f = open("file")
try
operate on file(f)
finally
close(f)
end

When control leaves the try block (for example, due to a return, or just finishing normally), close(f)
will be executed. If the try block exits due to an exception, the exception will continue propagating.
A catch block may be combined with try and finally as well. In this case the finally block will run
after catch has handled the error.

source

quote - Keyword.

quote

quote creates multiple expression objects in a block without using the explicit Expr constructor. For
example:

ex = quote

end

Unlike the other means of quoting, : ( ... ), this form introduces QuoteNode elements to the expres-
sion tree, which must be considered when directly manipulating the tree. For other purposes, : (
) and quote .. end blocks are treated identically.

source
local - Keyword.

local

localintroduces a new local variable. See the manual section on variable scoping for more information.

Examples


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L999-L1034
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L1037-L1058
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L599-L615
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julia> function foo(n)
x =0
for i = 1:n
local x # introduce a loop-local x
X =1
end

end
foo (generic function with 1 method)

julia> foo(10)
0

source
global - Keyword.
global
global x makes x in the current scope and its inner scopes refer to the global variable of that name.
See the manual section on variable scoping for more information.
Examples

julia> z = 3
3

julia> function foo()
global z = 6 # use the z variable defined outside foo
end
foo (generic function with 1 method)

julia> foo()
6

julia> z
6

source
outer - Keyword.

for outer

Reuse an existing local variable for iteration in a for loop.

See the manual section on variable scoping for more information.
See also for.

Examples

julia> function f()

i=0
for i = 1:3


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L255-L276
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L279-L302
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# empty
end
return i
end;

julia> f()
0

julia> function f()
i=20
for outer i = 1:3
# empty
end
return i
end;

julia> ()
3

julia> i = 0 # global variable
for outer i = 1:3
end
ERROR: syntax: no outer local variable declaration exists for "for outer"

[...]

source
const - Keyword.
const

const is used to declare global variables whose values will not change. In almost all code (and partic-
ularly performance sensitive code) global variables should be declared constant in this way.

const x =5

Multiple variables can be declared within a single const:

consty, z=7, 11

Note that const only applies to one = operation, therefore const x = y = 1 declares x to be constant

but not y. On the other hand, const x = const y = 1 declares both x and y constant.

Note that "constant-ness" does not extend into mutable containers; only the association between a
variable and its value is constant. If x is an array or dictionary (for example) you can still modify, add,
or remove elements.

In some cases changing the value of a const variable gives a warning instead of an error. However, this
can produce unpredictable behavior or corrupt the state of your program, and so should be avoided.
This feature is intended only for convenience during interactive use.

source

struct - Keyword.


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L305-L349
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L752-L781
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struct

The most commonly used kind of type in Julia is a struct, specified as a name and a set of fields.

struct Point
X

y
end

Fields can have type restrictions, which may be parameterized:

struct Point{X}
x::X
y::Float64
end

A struct can also declare an abstract super type via <: syntax:

struct Point <: AbstractPoint
X

y
end

structs are immutable by default; an instance of one of these types cannot be modified after con-
struction. Use mutable struct instead to declare a type whose instances can be modified.

See the manual section on Composite Types for more details, such as how to define constructors.

source

mutable struct - Keyword.

mutable struct

mutable struct is similar to struct, but additionally allows the fields of the type to be set after
construction. See the manual section on Composite Types for more information.

source
Base.@kwdef - Macro.

‘ @kwdef typedef

This is a helper macro that automatically defines a keyword-based constructor for the type declared in
the expression typedef, which must be a struct ormutable struct expression. The default argument
is supplied by declaring fields of the form field::T = default or field = default. If no default is

provided then the keyword argument becomes a required keyword argument in the resulting type
constructor.

Inner constructors can still be defined, but at least one should accept arguments in the same form as
the default inner constructor (i.e. one positional argument per field) in order to function correctly with
the keyword outer constructor.


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L1355-L1392
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L1395-L1401
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Julia 1.1

Base.@kwdef for parametric structs, and structs with supertypes requires at least Julia 1.1.

Julia 1.9

This macro is exported as of Julia 1.9.

Examples

julia> @kwdef struct Foo
a::Int =1 # specified default
b::String # required keyword
end
Foo

julia> Foo(b="hi")
Foo(1, "hi")

julia> Foo()

ERROR: UndefKeywordError: keyword argument “b" not assigned
Stacktrace:

[...]

source
abstract type - Keyword.

abstract type
abstract type declares a type that cannot be instantiated, and serves only as a node in the type
graph, thereby describing sets of related concrete types: those concrete types which are their descen-

dants. Abstract types form the conceptual hierarchy which makes Julia’s type system more than just a
collection of object implementations. For example:

abstract type Number end
abstract type Real <: Number end

Number has no supertype, whereas Real is an abstract subtype of Number.
source
primitive type - Keyword.
primitive type
primitive type declares a concrete type whose data consists only of a series of bits. Classic exam-

ples of primitive types are integers and floating-point values. Some example built-in primitive type
declarations:

primitive type Char 32 end
primitive type Bool <: Integer 8 end


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/util.jl#L530-L566
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L83-L96
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The number after the name indicates how many bits of storage the type requires. Currently, only sizes
that are multiples of 8 bits are supported. The Bool declaration shows how a primitive type can be
optionally declared to be a subtype of some supertype.

source
where - Keyword.

where

The where keyword creates a type that is an iterated union of other types, over all values of some
variable. For example Vector{T} where T<:Realincludes all Vectors where the element type is some
kind of Real number.

The variable bound defaults to Any if it is omitted:

‘Vector{T} where T # short for “where T<:Any"

Variables can also have lower bounds:

Vector{T} where T>:Int
Vector{T} where Int<:T<:Real

There is also a concise syntax for nested where expressions. For example, this:
‘Pair{T, S} where S<:Array{T} where T<:Number

can be shortened to:

‘Pair{T, S} where {T<:Number, S<:Array{T}}

This form is often found on method signatures.

Note that in this form, the variables are listed outermost-first. This matches the order in which variables
are substituted when a type is "applied" to parameter values using the syntax T{pl, p2, ...}.

source

. - Keyword.

The "splat" operator, . . ., represents a sequence of arguments. ... can be used in function definitions,
to indicate that the function accepts an arbitrary number of arguments. ... can also be used to apply
a function to a sequence of arguments.

Examples

julia> add(xs...) = reduce(+, xs)
add (generic function with 1 method)

julia> add(1, 2, 3, 4, 5)
15


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L181-L196
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L1414-L1447

CHAPTER 41. ESSENTIALS 517

julia> add([1, 2, 31...)
6

julia> add(7, 1:100..., 1000:1100...)
111107

source

; - Keyword.

; has a similar role in Julia as in many C-like languages, and is used to delimit the end of the previous
statement.

; is not necessary at the end of a line, but can be used to separate statements on a single line or to
join statements into a single expression.

Adding ; at the end of a line in the REPL will suppress printing the result of that expression.
In function declarations, and optionally in calls, ; separates regular arguments from keywords.

In array literals, arguments separated by semicolons have their contents concatenated together. A
separator made of a single ; concatenates vertically (i.e. along the first dimension), ;; concatenates
horizontally (second dimension), ;;; concatenates along the third dimension, etc. Such a separator
can also be used in last position in the square brackets to add trailing dimensions of length 1.

A ; in first position inside of parentheses can be used to construct a named tuple. The same (; ...)
syntax on the left side of an assignment allows for property destructuring.

In the standard REPL, typing ; on an empty line will switch to shell mode.

Examples

julia> function foo()
X = "Hello, "; x *= "World!"
return x
end
foo (generic function with 1 method)

julia> bar() = (x = "Hello, Mars!"; return Xx)
bar (generic function with 1 method)

julia> foo();

julia> bar()
"Hello, Mars!"

julia> function plot(x, y; style="solid", width=1, color="black")
H#Hit#
end

julia> A = [1 2; 3 4]
2x2 Matrix{Int64}:

1 2

3 4



https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L1128-L1150
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julia> [1; 3;; 2; 4;;; 10%A]
2x2x2 Array{Int64, 3}:
[:, :, 1] =

2

4

[:, :, 2] =
10 20
30 40

julia> [2; 3;;;1

2x1x1 Array{Int64, 3}:
[:, :, 1] =

2

3

julia> nt = (; x=1) # without the ; or a trailing comma this would assign to x
(x =1,)

julia> key = :a; c = 3;

julia> nt2 = (; key => 1, b=2, ¢, nt.x)
(a=1,b=2,c=3, x=1)

julia> (; b, x) = nt2; # set variables b and x using property destructuring

julia> b, x
(2, 1)

shell> echo hello
julia> ; # upon typing ;, the prompt changes (in place) to: shell>
hello

source

= - Keyword.

= is the assignment operator.

* For variable a and expression b, a = b makes a refer to the value of b.

¢ For functions f(x), f(x) = x defines a new function constant f, or adds a new method to f if f
is already defined; this usage is equivalent to function f(x); x; end.

e a[i] = vcalls setindex!(a,v,1).
* a.b = ccalls setproperty!(a,:b,c).
¢ Inside a function call, f(a=b) passes b as the value of keyword argument a.

* Inside parentheses with commas, (a=1,) constructs a NamedTuple.

Examples

Assigning a to b does not create a copy of b; instead use copy or deepcopy.


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L1153-L1237
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julia> b = [1]; a = b; b[1l] = 2; a
1l-element Array{Int64, 1}:
2

julia> b = [1]; a = copy(b); b[l] = 2; a
1-element Array{Int64, 1}:
1

Collections passed to functions are also not copied. Functions can modify (mutate) the contents of the
objects their arguments refer to. (The names of functions which do this are conventionally suffixed
with '!')

julia> function f!(x); x[:] .+= 1; end
f! (generic function with 1 method)

julia> a = [1]; f!(a); a
1l-element Array{Int64, 1}:
2

Assignment can operate on multiple variables in parallel, taking values from an iterable:

julia> a, b = 4, 5
(4, 5)

Il
=
w

julia> a, b
1:3

julia> a, b
(1, 2)

Assignment can operate on multiple variables in series, and will return the value of the right-hand-most
expression:

julia> a = [1]; b =1[2]; c=1[3]; a=b=c
1-element Array{Int64, 1}:
3

julia> b[1l] = 2; a, b, c
(121, 121, [21)

Assignment at out-of-bounds indices does not grow a collection. If the collection is a Vector it can
instead be grown with push! or append!.

julia> a = [1, 1]; a[3] =2
ERROR: BoundsError: attempt to access 2-element Array{Int64, 1} at index [3]
[...]

julia> push!(a, 2, 3)
4-element Array{Int64, 1}:
1

1
2
3
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Assigning [] does not eliminate elements from a collection; instead use filter!.

julia> a = collect(1:3); ala .<= 1] = []
ERROR: DimensionMismatch: tried to assign 0 elements to 1 destinations
[...]

julia> filter!(x -> x > 1, a) # in-place & thus more efficient than a = ala .> 1]
2-element Array{Int64, 1}:

2

3

source
?7: - Keyword.

a?b:c

Short form for conditionals; read "if a, evaluate b otherwise evaluate c". Also known as the ternary
operator.

This syntax is equivalent to if a; b else c end, but is often used to emphasize the value b-or-c

which is being used as part of a larger expression, rather than the side effects that evaluating b or ¢
may have.

See the manual section on control flow for more details.
Examples

julia> x = 1; y = 2;

julia> x >y ? println("x is larger") : println("y is larger")
y is larger

source

41.4 Standard Modules

Main - Module.
Main

Main is the top-level module, and Julia starts with Main set as the current module. Variables defined at
the prompt go in Main, and varinfo lists variables in Main.

julia> @ MODULE
Main

source
Core - Module.

Core


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L365-L447
https://en.wikipedia.org/wiki/%3F:
https://en.wikipedia.org/wiki/%3F:
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L906-L925
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L3165-L3173
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Core is the module that contains all identifiers considered "built in" to the language, i.e. part of the core
language and not libraries. Every module implicitly specifies using Core, since you can't do anything
without those definitions.

source

Base - Module.

Base

The base library of Julia. Base is a module that contains basic functionality (the contents of base/). All
modules implicitly contain using Base, since this is needed in the vast majority of cases.

source

41.5 Base Submodules

Base.Broadcast - Module.

‘ Base.Broadcast

Module containing the broadcasting implementation.

source
Base.Docs - Module.

‘DOCS

The Docs module provides the @doc macro which can be used to set and retrieve documentation meta-
data for Julia objects.

Please see the manual section on documentation for more information.

source
Base.Iterators - Module.

Methods for working with Iterators.

source
Base.Libc - Module.

Interface to libc, the C standard library.

source
Base.Meta - Module.

Convenience functions for metaprogramming.

source
Base.StackTraces - Module.

Tools for collecting and manipulating stack traces. Mainly used for building errors.

source


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L3158-L3162
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L3176-L3180
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/broadcast.jl#L3-L7
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/Docs.jl#L3-L11
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/iterators.jl#L3-L5
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/libc.jl#L4-L6
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/meta.jl#L3-L5
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/stacktraces.jl#L3-L5
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Base.Sys - Module.

Provide methods for retrieving information about hardware and the operating system.

source

Base.Threads - Module.
Multithreading support.
source

Base.GC - Module.

Base.GC

Module with garbage collection utilities.

source

41.6 All Objects

Core. :=== - Function.
===(x,y) -> Bool

=(x,y) -> Bool

Determine whether x and y are identical, in the sense that no program could distinguish them. First
the types of x and y are compared. If those are identical, mutable objects are compared by address
in memory and immutable objects (such as numbers) are compared by contents at the bit level. This
function is sometimes called "egal". It always returns a Bool value.

Examples
julia> a = [1, 2]; b = [1, 2];

julia> a ==
true

julia> a === b
false

julia> a === a

true

source
Core.isa - Function.
isa(x, type) -> Bool

Determine whether x is of the given type. Can also be used as an infix operator, e.g. x isa type.

Examples


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/sysinfo.jl#L4-L6
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/threads.jl#L3-L5
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/gcutils.jl#L106-L110
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/operators.jl#L279-L302
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julia> isa(l, Int)
true

julia> isa(l, Matrix)
false

julia> isa(1l, Char)
false

julia> isa(1l, Number)
true

julia> 1 isa Number
true

source
Base.isequal - Function.

isequal(x, y) -> Bool

Similar to ==, except for the treatment of floating point numbers and of missing values. isequal treats
all floating-point NaN values as equal to each other, treats -0.0 as unequal to 0.0, and missing as
equal to missing. Always returns a Bool value.

isequal is an equivalence relation - it is reflexive (=== implies isequal), symmetric (isequal(a, b)
implies isequal(b, a)) and transitive (isequal(a, b) and isequal(b, c) implies isequal(a, c)).

Implementation

The default implementation of isequal calls ==, so a type that does not involve floating-point values
generally only needs to define ==.

isequalis the comparison function used by hash tables (Dict). isequal(x,y) mustimply that hash(x)
== hash(y).

This typically means that types for which a custom == or isequal method exists must implement
a corresponding hash method (and vice versa). Collections typically implement isequal by calling
isequal recursively on all contents.

Furthermore, isequal is linked with isless, and they work together to define a fixed total ordering,
where exactly one of isequal(x, y), isless(x, y), or isless(y, x) must be true (and the other
two false).

Scalar types generally do not need to implement isequal separate from ==, unless they represent
floating-point numbers amenable to a more efficient implementation than that provided as a generic
fallback (based on isnan, signbit, and ==).

Examples

julia> isequal([1., NaN], [1., NaN])
true

julia> [1., NaN] == [1., NaN]
false


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L1944-L1967
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julia> 0.0 == -0.0
true

julia> isequal(0.0, -0.0)
false

julia> missing == missing
missing

julia> isequal(missing, missing)
true

source

isequal(x)

Create a function that compares its argument to x using isequal, i.e. a function equivalenttoy ->
isequal(y, x).

The returned function is of type Base.Fix2{typeof(isequal)}, which can be used to implement spe-
cialized methods.

source
Base.isless - Function.

isless(x, y)

Test whether x is less than y, according to a fixed total order (defined together with isequal). isless is
not defined for pairs (x, y) of all types. However, if it is defined, it is expected to satisfy the following:

e If isless(x, y) is defined, then so is isless(y, x) and isequal(x, y), and exactly one of
those three yields true.
* Therelation defined by isless is transitive, i.e., isless(x, y) && isless(y, z) impliesisless(x,
z).
Values that are normally unordered, such as NaN, are ordered after regular values. missing values are
ordered last.
This is the default comparison used by sort!.

Implementation

Non-numeric types with a total order should implement this function. Numeric types only need to
implement it if they have special values such as NaN. Types with a partial order should implement <.
See the documentation on Alternate Orderings for how to define alternate ordering methods that can
be used in sorting and related functions.

Examples

julia> isless(1, 3)
true

julia> isless("Red", "Blue")
false


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/operators.jl#L81-L132
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/operators.jl#L1137-L1145
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source
Base.isunordered - Function.

isunordered(x)

Return true if x is a value that is not orderable according to <, such as NaN or missing.

The values that evaluate to true with this predicate may be orderable with respect to other orderings
such as isless.

Julia 1.7
This function requires Julia 1.7 or later.

source
Base.ifelse - Function.

‘ifelse(condition: :Bool, x, vy)

Return x if condition is true, otherwise return y. This differs from ? or if in that it is an ordinary func-
tion, so all the arguments are evaluated first. In some cases, using ifelse instead of an if statement
can eliminate the branch in generated code and provide higher performance in tight loops.

Examples

julia> ifelse(l > 2, 1, 2)
2

source
Core.typeassert - Function.
typeassert(x, type)

Throw a TypeError unless x isa type. The syntax x: :type calls this function.

Examples

julia> typeassert(2.5, Int)

ERROR: TypeError: in typeassert, expected Int64, got a value of type Float64
Stacktrace:

[...]

source
Core.typeof - Function.
typeof(x)
Get the concrete type of x.

See also eltype.

Examples


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/operators.jl#L142-L174
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/operators.jl#L234-L245
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/essentials.jl#L633-L646
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L2992-L3005
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julia> a = 1//2;

julia> typeof(a)
Rational{Int64}

julia> M = [1 2; 3.5 41;

julia> typeof (M)
Matrix{Float64} (alias for Array{Float64, 2})

source

Core. tuple - Function.

tuple(xs...)

Construct a tuple of the given objects.
See also Tuple, ntuple, NamedTuple.

Examples

julia> tuple(1, 'b', pi)

(1, 'b", m
julia> ans === (1, 'b', m)
true

julia> Tuple(Real[l, 2, pi]) # takes a collection
(1, 2, m

source

Base.ntuple - Function.

ntuple(f::Function, n::Integer)

Create a tuple of length n, computing each element as f(1), where i is the index of the element.
Examples

julia> ntuple(i -> 2*i, 4)

(2, 4, 6, 8)

source
| ntuple(f, ::Val{N})

Create a tuple of length N, computing each element as (i), where i is the index of the element.
By taking a Val(N) argument, it is possible that this version of ntuple may generate more efficient

code than the version taking the length as an integer. But ntuple(f, N) is preferable to ntuple(f,
Val(N)) in cases where N cannot be determined at compile time.

Examples


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L2342-L2361
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L2134-L2152
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/ntuple.jl#L5-L16
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julia> ntuple(i -> 2*i, Val(4))
(2, 4, 6, 8)

source
Base.objectid - Function.

objectid(x) -> UInt

Get a hash value for x based on object identity.
Ifx === ythenobjectid(x) == objectid(y), andusually whenx !== y,objectid(x) != objectid(y).
See also hash, IdDict.
source
Base.hash - Function.
hash(x[, h::UInt]) -> UInt
Compute an integer hash code such that isequal(x,y) implies hash(x)==hash(y). The optional sec-
ond argument h is another hash code to be mixed with the result.

New types should implement the 2-argument form, typically by calling the 2-argument hash method
recursively in order to mix hashes of the contents with each other (and with h). Typically, any type
that implements hash should also implement its own == (hence isequal) to guarantee the property
mentioned above. Types supporting subtraction (operator -) should also implement widen, which is
required to hash values inside heterogeneous arrays.

The hash value may change when a new Julia process is started.

julia> a = hash(10)
0x95ea2955abd45275

julia> hash(10, a) # only use the output of another hash function as the second argument
0xd42bad54a8575b16

See also: objectid, Dict, Set.
source
Base.finalizer - Function.
finalizer(f, x)
Register a function f(x) to be called when there are no program-accessible references to x, and return
X. The type of x must be a mutable struct, otherwise the function will throw.

f must not cause a task switch, which excludes most I/O operations such as println. Using the @async
macro (to defer context switching to outside of the finalizer) or ccall to directly invoke 10 functions in
C may be helpful for debugging purposes.

Note that there is no guaranteed world age for the execution of f. It may be called in the world age in
which the finalizer was registered or any later world age.

Examples


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/ntuple.jl#L52-L68
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L597-L605
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/hashing.jl#L5-L29
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finalizer(my mutable struct) do x
@async println("Finalizing $x.")
end

finalizer(my mutable struct) do x
ccall(:jl safe printf, Cvoid, (Cstring, Cstring), "Finalizing %s.", repr(x))

end

A finalizer may be registered at object construction. In the following example note that we implicitly
rely on the finalizer returning the newly created mutable struct x.

Example

mutable struct MyMutableStruct
bar
function MyMutableStruct(bar)
X = new(bar)
f(t) = @sync println("Finalizing $t.")
finalizer(f, x)
end
end

source
Base.finalize - Function.

finalize(x)

Immediately run finalizers registered for object x.

source
Base.copy - Function.

copy(x)

Create a shallow copy of x: the outer structure is copied, but not all internal values. For example,
copying an array produces a new array with identically-same elements as the original.

See also copy!, copyto!, deepcopy.

source
Base.deepcopy - Function.

deepcopy(x)

Create a deep copy of x: everything is copied recursively, resulting in a fully independent object. For
example, deep-copying an array produces a new array whose elements are deep copies of the original
elements. Calling deepcopy on an object should generally have the same effect as serializing and then
deserializing it.

While it isn't normally necessary, user-defined types can override the default deepcopy behavior by
defining a specialized version of the function deepcopy internal(x::T, dict::IdDict) (whichshouldn't
otherwise be used), where T is the type to be specialized for, and dict keeps track of objects copied so


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/gcutils.jl#L45-L84
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/gcutils.jl#L98-L102
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/array.jl#L400-L408
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far within the recursion. Within the definition, deepcopy internal should be used in place of deepcopy,
and the dict variable should be updated as appropriate before returning.

source
Base.getproperty - Function.

getproperty(value, name::Symbol)
getproperty(value, name::Symbol, order: :Symbol)

The syntax a.b calls getproperty(a, :b). The syntax @atomic order a.b calls getproperty(a,
:b, :order) and the syntax @atomic a.b calls getproperty(a, :b, :sequentially consistent).

Examples

julia> struct MyType{T <: Number}
x::T
end

julia> function Base.getproperty(obj::MyType, sym::Symbol)
if sym === :special
return obj.x + 1
else # fallback to getfield
return getfield(obj, sym)
end
end

julia> obj = MyType(1)

julia> obj.special
2

julia> obj.x
1

One should overload getproperty only when necessary, as it can be confusing if the behavior of the
syntax obj.f is unusual. Also note that using methods is often preferable. See also this style guide
documentation for more information: Prefer exported methods over direct field access.

See also getfield, propertynames and setproperty!.
source
Base.setproperty! - Function.

setproperty!(value, name::Symbol, x)
setproperty! (value, name::Symbol, x, order::Symbol)

Thesyntaxa.b = ccallssetproperty!(a, :b, c). Thesyntax@atomic order a.b = ccallssetproperty!(a,
:b, ¢, :order) andthesyntax@atomic a.b = ccallssetproperty!(a, :b, c, :sequentially consistent).

Julia 1.8
setproperty! on modules requires at least Julia 1.8.


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/deepcopy.jl#L8-L23
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L3008-L3047
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See also setfield!, propertynames and getproperty.

source
Base.replaceproperty! - Function.

replaceproperty!(x, f::Symbol, expected, desired, success order::Symbol=:not atomic,
— fail order::Symbol=success order)

Perform a compare-and-swap operation on x.f from expected to desired, per egal. The syntax
@atomic replace! x.f expected => desired can be used instead of the function call form.
See also replacefield! and setproperty!.

source
Base.swapproperty! - Function.
swapproperty!(x, f::Symbol, v, order::Symbol=:not atomic)
The syntax@tomic a.b, = ¢, a.breturns (c, swapproperty!(a, :b, c, :sequentially consistent)),
where there must be one getproperty expression common to both sides.
See also swapfield! and setproperty!.

source
Base.modifyproperty! - Function.

modifyproperty!(x, f::Symbol, op, v, order::Symbol=:not atomic)

The syntax@atomic op(x.f, v) (anditsequivalent@atomic x.f op v)returnsmodifyproperty!(x,
:f, op, v, :sequentially consistent), where the first argument must be a getproperty expres-
sion and is modified atomically.

Invocation of op(getproperty(x, f), v) must return a value that can be stored in the field f of the
object x by default. In particular, unlike the default behavior of setproperty!, the convert function is
not called automatically.

See also modifyfield! and setproperty!.

source
Base.propertynames - Function.
propertynames(x, private=false)
Get a tuple or a vector of the properties (x.property) of an object x. This is typically the same as

fieldnames (typeof(x) ), buttypesthatoverload getproperty should generally overload propertynames
as well to get the properties of an instance of the type.

propertynames (x) may return only "public" property names that are part of the documented interface
of x. If you want it to also return "private" property names intended for internal use, pass true for the
optional second argument. REPL tab completion on x. shows only the private=false properties.

See also: hasproperty, hasfield.

source


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L3050-L3064
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L3095-L3104
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L3067-L3075
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L3078-L3092
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L2066-L2080
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Base.hasproperty - Function.

hasproperty(x, s::Symbol)
Return a boolean indicating whether the object x has s as one of its own properties.

Julia 1.2
This function requires at least Julia 1.2.

See also: propertynames, hasfield.

source
Core.getfield - Function.

getfield(value, name::Symbol, [order::Symboll])
getfield(value, i::Int, [order::Symbol])

Extract a field from a composite value by name or position. Optionally, an ordering can be defined
for the operation. If the field was declared @atomic, the specification is strongly recommended to be
compatible with the stores to that location. Otherwise, if not declared as @atomic, this parameter must
be :not_atomic if specified. See also getproperty and fieldnames.

Examples

julia> a = 1//2
1//72

julia> getfield(a, :num)
1

julia> a.num
1

julia> getfield(a, 1)
1

source
Core.setfield! - Function.

setfield! (value, name::Symbol, x, [order::Symbol])
setfield!(value, i::Int, x, [order::Symbol])

Assign x to a named field in value of composite type. The value must be mutable and x must be
a subtype of fieldtype(typeof(value), name). Additionally, an ordering can be specified for this
operation. If the field was declared @atomic, this specification is mandatory. Otherwise, if not declared
as @atomic, it must be :not_atomic if specified. See also setproperty!.

Examples
julia> mutable struct MyMutableStruct

field::Int
end


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L2085-L2094
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L2155-L2180
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julia> a = MyMutableStruct(1);
julia> setfield!(a, :field, 2);

julia> getfield(a, :field)
2

julia> a = 1//2
1//2

julia> setfield!(a, :num, 3);
ERROR: setfield!: immutable struct of type Rational cannot be changed

source
Core.modifyfield! - Function.

modifyfield! (value, name::Symbol, op, x, [order::Symbol]) -> Pair
modifyfield!(value, i::Int, op, x, [order::Symbol]) -> Pair

These atomically perform the operations to get and set a field after applying the function op.

y getfield(value, name)
z = op(y, x)

setfield! (value, name, z)
return y => z

If supported by the hardware (for example, atomic increment), this may be optimized to the appropriate
hardware instruction, otherwise it'll use a loop.

source
Core.replacefield! - Function.

replacefield! (value, name::Symbol, expected, desired,
[success order::Symbol, [fail order::Symbol=success order]) -> (; old,
< success: :Bool)

replacefield! (value, i::Int, expected, desired,
[success order::Symbol, [fail order::Symbol=success order]) -> (; old,
< success: :Bool)

These atomically perform the operations to get and conditionally set a field to a given value.

y = getfield(value, name, fail order)
ok = y === expected
if ok
setfield!(value, name, desired, success order)
end

return (; old =y, success = ok)

If supported by the hardware, this may be optimized to the appropriate hardware instruction, otherwise
it'll use a loop.

source


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L2183-L2213
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L2228-L2242
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L2245-L2263
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Core.swapfield! - Function.

swapfield!(value, name::Symbol, X,

swapfield!(value, i::Int, x, [order::Symbol])

These atomically perform the operations to simultaneously get and set a field:

y = getfield(value, name)
setfield! (value, name, X)

return

source

y

Core.isdefined - Function.

isdefined(m: :Module, s::Symbol,

isdefined(object, s::Symbol, [order::Symbol])
isdefined(object, index::Int, [order::Symbol])

[order: :Symbol])

[order: :Symbol])

533

Tests whether a global variable or object field is defined. The arguments can be a module and a symbol
or a composite object and field name (as a symbol) or index. Optionally, an ordering can be defined
for the operation. If the field was declared @atomic, the specification is strongly recommended to be
compatible with the stores to that location. Otherwise, if not declared as @atomic, this parameter must
be :not atomic if specified.

To test whether an array element is defined, use isassigned instead.

See also @isdefined.

Examples

julia> isdefined(Base, :sum)
true

julia> isdefined(Base, :NonExistentMethod)
false

julia> a = 1//2;

julia> isdefined(a, 2)

true

julia> isdefined(a, 3)

false

julia> isdefined(a, :num)

true

julia> isdefined(a, :numerator)
false

source

Core.getglobal - Function.

getglobal(module: :Module, name::Symbol, [order

::Symbol=:monotonic])


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L2216-L2225
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L2364-L2402
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Retrieve the value of the binding name from the module module. Optionally, an atomic ordering can be
defined for the operation, otherwise it defaults to monotonic.

While accessing module bindings using getfield is still supported to maintain compatibility, using
getglobal should always be preferred since getglobal allows for control over atomic ordering (getfield
is always monotonic) and better signifies the code's intent both to the user as well as the compiler.

Most users should not have to call this function directly - The getproperty function or corresponding
syntax (i.e. module.name) should be preferred in all but few very specific use cases.

Julia 1.9
This function requires Julia 1.9 or later.

See also getproperty and setgloball.

Examples

julia> a =1
1

julia> module M
a=2

end;

julia> getglobal(@ MODULE , :a)

julia> getglobal(M, :a)

source

Core.setglobal! - Function.
setglobal! (module: :Module, name::Symbol, x, [order::Symbol=:monotonic])
Set or change the value of the binding name in the module module to x. No type conversion is performed,

so if a type has already been declared for the binding, x must be of appropriate type or an error is
thrown.

Additionally, an atomic ordering can be specified for this operation, otherwise it defaults to monotonic.
Users will typically access this functionality through the setproperty! function or corresponding syn-

tax (i.e. module.name = x) instead, so this is intended only for very specific use cases.

Julia 1.9
This function requires Julia 1.9 or later.

See also setproperty! and getglobal

Examples


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L2266-L2303
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julia> module M end;

julia> M.a # same as "getglobal(M,
julia> setglobal!(M, :a, 1)

1

julia> M.a
1

source
Base.@isdefined - Macro.

| @isdefined s -> Bool

Tests whether variable s is defined in the current scope.

ERROR: UndefVarError: “a° not defined

535

See also isdefined for field properties and isassigned for array indexes or haskey for other mappings.

Examples

julia> @isdefined newvar
false

julia> newvar = 1
1

julia> @isdefined newvar
true

julia> function f()
println(@isdefined x)
X =3
println(@isdefined x)
end
f (generic function with 1 method)

julia> f()
false
true

source
Base.convert - Function.

convert(T, x)

Convert x to a value of type T.

If Tis an Integer type, an InexactError will be raised if x is not representable by T, for example if x

is not integer-valued, or is outside the range supported by T.

Examples


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L2306-L2339
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/essentials.jl#L146-L176
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julia> convert(Int, 3.0)
3

julia> convert(Int, 3.5)

ERROR: InexactError: Int64(3.5)
Stacktrace:

[...]

If Tis a AbstractFloat type, then it will return the closest value to x representable by T.

julia> x = 1/3
0.3333333333333333

julia> convert(Float32, x)
0.33333334f0

julia> convert(BigFloat, x)
0.333333333333333314829616256247390992939472198486328125

If T is a collection type and x a collection, the result of convert (T, x) may alias all or part of x.
julia> x = Int[1, 2, 31;
julia> y = convert(Vector{Int}, x);

julia> y === x
true
See also: round, trunc, oftype, reinterpret.
source
Base.promote - Function.
promote(xs...)
Convert all arguments to a common type, and return them all (as a tuple). If no arguments can be
converted, an error is raised.
See also: promote type, promote rule.

Examples

julia> promote(Int8(1), Floatl6(4.5), Float32(4.1))
(1.0f0, 4.5f0, 4.1f0)

julia> promote type(Int8, Floatl6, Float32)
Float32

julia> reduce(Base.promote typejoin, (Int8, Floatl6, Float32))
Real

julia> promote(1, "x")
ERROR: promotion of types Int64 and String failed to change any arguments



https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/essentials.jl#L265-L311
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julia> promote type(Int, String)
Any

source
Base.oftype - Function.

| oftype(x, y)

Convert y to the type of x i.e. convert(typeof(x), y).

Examples
julia> x = 4;
julia> y = 3.;

julia> oftype(x, y)
3

julia> oftype(y, x)
4.0

source

Base.widen - Function.
widen(x)
If x is a type, return a "larger" type, defined so that arithmetic operations + and - are guaranteed not
to overflow nor lose precision for any combination of values that type x can hold.
For fixed-size integer types less than 128 bits, widen will return a type with twice the number of bits.
If x is a value, it is converted to widen(typeof(x)).

Examples

julia> widen(Int32)
Int64

julia> widen(1.5f0)
1.5

source
Base.identity - Function.

identity(x)

The identity function. Returns its argument.
See also: one, oneunit, and LinearAlgebra's I.

Examples


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/promotion.jl#L338-L364
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/essentials.jl#L504-L521
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/operators.jl#L870-L890

CHAPTER 41. ESSENTIALS 538

julia> identity("Well, what did you expect?")
"Well, what did you expect?"

source
Core.WeakRef - Type.

WeakRef (x)

w = WeakRef(x) constructs a weak reference to the Julia value x: although w contains a reference to
X, it does not prevent x from being garbage collected. w.value is either x (if x has not been garbage-
collected yet) or nothing (if x has been garbage-collected).

julia> x = "a string"
"a string"

julia> w = WeakRef(x)
WeakRef ("a string")

julia> GC.gc()

julia> w # a reference is maintained via “x°
WeakRef("a string")

julia> x = nothing # clear reference
julia> GC.gc()

julia> w
WeakRef (nothing)

source

41.7 Properties of Types

Type relations

Base.supertype - Function.
‘supertype(T::DataType)

Return the supertype of DataType T.

Examples

julia> supertype(Int32)
Signed

source
Core.Type - Type.

Core.Type{T}


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/operators.jl#L509-L521
https://en.wikipedia.org/wiki/Weak_reference
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/gcutils.jl#L4-L31
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/operators.jl#L32-L42
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Core.Type is an abstract type which has all type objects as its instances. The only instance of the

singleton type Core.Type{T} is the object T.

Examples

julia>
true
julia>
true
julia>
false
julia>
true

source

isa(Type{Float64}, Type)

isa(Float64, Type)

isa(Real, Type{Float64})

isa(Real, Type{Real})

Core.DataType - Type.

DataType <: Type{T}

DataType represents explicitly declared types that have names, explicitly declared supertypes, and,

optionally, parameters. Every concrete value in the system is an instance of some DataType.

Examples
julia> typeof(Real)
DataType
julia> typeof(Int)
DataType
julia> struct Point

x::Int

y

end

julia> typeof(Point)
DataType
source

Core. :<: - Function.

\<:(T1, T2)

Subtype operator: returns true if and only if all values of type T1 are also of type T2.

Examples

julia>
true

Float64 <: AbstractFloat


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L1513-L1534
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L1537-L1560
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julia> Vector{Int} <: AbstractArray
true

julia> Matrix{Float64} <: Matrix{AbstractFloat}
false

source

Base.:>: - Function.

>:(T1, T2)

Supertype operator, equivalentto T2 <: T1.
source
Base.typejoin - Function.
typejoin(T, S, ...)
Return the closest common ancestor of types T and S, i.e. the narrowest type from which they both
inherit. Recurses on additional varargs.

Examples

julia> typejoin(Int, Float64)
Real

julia> typejoin(Int, Float64, ComplexF32)
Number

source
Base.typeintersect - Function.
typeintersect(T::Type, S::Type)
Compute a type that contains the intersection of T and S. Usually this will be the smallest such type or
one close to it.

source

Base.promote type - Function.
promote type(typel, type2, ...)
Promotion refers to converting values of mixed types to a single common type. promote type repre-
sents the default promotion behavior in Julia when operators (usually mathematical) are given argu-
ments of differing types. promote type generally tries to return a type which can at least approximate
most values of either input type without excessively widening. Some loss is tolerated; for example,

promote type(Int64, Float64) returns Float64 even though strictly, not all Int64 values can be
represented exactly as Float64 values.

See also: promote, promote typejoin, promote rule.

Examples


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/operators.jl#L5-L22
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/operators.jl#L25-L29
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/promotion.jl#L5-L19
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L743-L748
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julia> promote type(Int64, Float64)
Float64

julia> promote type(Int32, Int64)
Int64

julia> promote type(Float32, BigInt)
BigFloat

julia> promote type(Intl6, Floatl6)
Floatl6

julia> promote type(Int64, Floatl6)
Floatl6

julia> promote type(Int8, UIntl6)
UIntl6

Don't overload this directly

To overload promotion for your own types you should overload promote rule. promote type
calls promote rule internally to determine the type. Overloading promote type directly
can cause ambiguity errors.

source
Base.promote rule - Function.

promote rule(typel, type2)

Specifies what type should be used by promote when given values of types typel and type2. This

function should not be called directly, but should have definitions added to it for new types as appro-
priate.

source
Base.promote typejoin - Function.

promote typejoin(T, S)

Compute a type that contains both T and S, which could be either a parent of both types, or a Union if
appropriate. Falls back to typejoin.

See instead promote, promote type.

Examples

julia> Base.promote typejoin(Int, Float64)
Real

julia> Base.promote type(Int, Float64)
Float64

source


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/promotion.jl#L255-L294
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/promotion.jl#L316-L322
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/promotion.jl#L153-L170
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Base.isdispatchtuple - Function.
isdispatchtuple(T)

Determine whether type T is a tuple "leaf type", meaning it could appear as a type signature in dispatch
and has no subtypes (or supertypes) which could appear in a call.

source

Declared structure
Base.ismutable - Function.
‘ismutable(v) -> Bool
Return true if and only if value v is mutable. See Mutable Composite Types for a discussion of im-

mutability. Note that this function works on values, so if you give it a DataType, it will tell you that a
value of the type is mutable.

Note

For technical reasons, ismutable returns true for values of certain special types (for exam-
ple String and Symbol) even though they cannot be mutated in a permissible way.

See also isbits, isstructtype.

Examples

julia> ismutable(1)
false

julia> ismutable([1,2])
true

Julia 1.5

This function requires at least Julia 1.5.

source
Base.isimmutable - Function.

isimmutable(v) -> Bool

Warning

Considerusing !ismutable(v) instead, as isimmutable(v) will be replaced by !ismutable(v)
in a future release. (Since Julia 1.5)

Return true iff value v is immutable. See Mutable Composite Types for a discussion of immutability.
Note that this function works on values, so if you give it a type, it will tell you that a value of DataType
is mutable.

Examples


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L619-L625
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L492-L516
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julia> isimmutable(1)
true

julia> isimmutable([1,2])
false

source
Base.ismutabletype - Function.

ismutabletype(T) -> Bool

Determine whether type T was declared as a mutable type (i.e. using mutable struct keyword).

Julia 1.7
This function requires at least Julia 1.7.

source
Base.isabstracttype - Function.

isabstracttype(T)

Determine whether type T was declared as an abstract type (i.e. using the abstract type syntax).

Examples

julia> isabstracttype(AbstractArray)
true

julia> isabstracttype(Vector)
false

source
Base.isprimitivetype - Function.
isprimitivetype(T) -> Bool
Determine whether type T was declared as a primitive type (i.e. using the primitive type syntax).
source

Base.issingletontype - Function.

Base.issingletontype(T)
Determine whether type T has exactly one possible instance; for example, a struct type with no fields.
source

Base.isstructtype - Function.

isstructtype(T) -> Bool


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/deprecated.jl#L227-L243
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L521-L529
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L713-L727
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L551-L556
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L735-L740
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Determine whether type T was declared as a struct type (i.e. using the struct or mutable struct
keyword).

source
Base.nameof - Method.

nameof (t::DataType) -> Symbol

Get the name of a (potentially UnionAll-wrapped) DataType (without its parent module) as a symbol.

Examples

julia> module Foo
struct S{T}
end
end
Foo

julia> nameof(Fo0o0.S{T} where T)
:S

source
Base.fieldnames - Function.

fieldnames(x: :DataType)

Get a tuple with the names of the fields of a DataType.
See also propertynames, hasfield.

Examples

julia> fieldnames(Rational)
(:num, :den)

julia> fieldnames(typeof(1l+im))
(:re, :im)

source
Base.fieldname - Function.

fieldname(x: :DataType, i::Integer)

Get the name of field i of a DataType.

Examples

julia> fieldname(Rational, 1)
:num

julia> fieldname(Rational, 2)
:den


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L537-L542
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L199-L216
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L151-L166
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source
Core.fieldtype - Function.

fieldtype(T, name::Symbol | index::Int)

Determine the declared type of a field (specified by name or index) in a composite DataType T.

Examples

julia> struct Foo
x::Int64
y::String
end

julia> fieldtype(Foo, :x)
Int64

julia> fieldtype(Foo, 2)
String

source
Base.fieldtypes - Function.

fieldtypes(T: :Type)
The declared types of all fields in a composite DataType T as a tuple.

Julia 1.1
This function requires at least Julia 1.1.

Examples

julia> struct Foo
x::Int64
y::String
end

julia> fieldtypes(Foo)
(Int64, String)

source
Base.fieldcount - Function.

fieldcount(t::Type)

Get the number of fields that an instance of the given type would have. An error is thrown if the type
is too abstract to determine this.

source

Base.hasfield - Function.


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L117-L130
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L781-L799
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L900-L918
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L874-L879
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hasfield(T::Type, name::Symbol)

Return a boolean indicating whether T has name as one of its own fields.

See also fieldnames, fieldcount, hasproperty.

Julia 1.2
This function requires at least Julia 1.2.

Examples
julia> struct Foo
bar::Int

end

julia> hasfield(Foo, :bar)
true

julia> hasfield(Foo, :x)
false

source
Core.nfields - Function.

nfields(x) -> Int

Get the number of fields in the given object.

Examples

julia> a = 1//2;

julia> nfields(a)
2

julia> b = 1
1

julia> nfields(b)
0

julia> ex = ErrorException("I've done a bad thing");

julia> nfields(ex)
1

In these examples, a is a Rational, which has two fields. b is an Int, which is a primitive bitstype with
no fields at all. ex is an ErrorException, which has one field.

source

Base.isconst - Function.


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L174-L196
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L1772-L1799
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isconst(m::Module, s::Symbol) -> Bool

Determine whether a global is declared const in a given module m.
source

isconst(t::DataType, s::Union{Int,Symbol}) -> Bool

Determine whether a field s is declared const in a given type t.
source
Base.isfieldatomic - Function.

isfieldatomic(t::DataType, s::Union{Int,Symbol}) -> Bool

Determine whether a field s is declared @atomic in a given type t.

source

Memory layout
Base.sizeof - Method.
sizeof(T::DataType)
sizeof(obj)
Size, in bytes, of the canonical binary representation of the given DataType T, if any. Or the size, in
bytes, of object obj if it is not a DataType.
See also Base.summarysize.

Examples

julia> sizeof(Float32)
4

julia> sizeof(ComplexF64)
16

julia> sizeof(1.0)
8

julia> sizeof(collect(1.0:10.0))
80

julia> struct StructWithPadding
x::Int64
flag: :Bool
end

julia> sizeof(StructWithPadding) # not the sum of “sizeof' of fields due to padding
16

julia> sizeof(Int64) + sizeof(Bool) # different from above



https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L242-L246
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L254-L258
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L276-L280
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If DataType T does not have a specific size, an error is thrown.

julia> sizeof(AbstractArray)
ERROR: Abstract type AbstractArray does not have a definite size.
Stacktrace:

[...]

source
Base.isconcretetype - Function.
isconcretetype(T)
Determine whether type T is a concrete type, meaning it could have direct instances (values x such
that typeof(x) === T).
See also: isbits, isabstracttype, issingletontype.

Examples

julia> isconcretetype(Complex)
false

julia> isconcretetype(Complex{Float32})
true

julia> isconcretetype(Vector{Complex})
true

julia> isconcretetype(Vector{Complex{Float32}})
true

julia> isconcretetype(Union{})
false

julia> isconcretetype(Union{Int,String})
false

source
Base.isbits - Function.
isbits(x)
Return true if x is an instance of an isbitstype type.
source
Base.isbitstype - Function.
isbitstype(T)
Return true if type T is a "plain data" type, meaning it is immutable and contains no references to

other values, only primitive types and other isbitstype types. Typical examples are numeric types
such as UInt8, Float64, and Complex{Float64}. This category of types is significant since they are


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/essentials.jl#L587-L630
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L682-L710
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L590-L594
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valid as type parameters, may not track isdefined / isassigned status, and have a defined layout
that is compatible with C.

See also isbits, isprimitivetype, ismutable.

Examples

julia> isbitstype(Complex{Float64})
true

julia> isbitstype(Complex)
false

source
Base.fieldoffset - Function.

fieldoffset(type, i)

The byte offset of field i of a type relative to the data start. For example, we could use it in the following
manner to summarize information about a struct:

julia> structinfo(T) = [(fieldoffset(T,i), fieldname(T,i), fieldtype(T,i)) for i =
— 1:fieldcount(T)];

julia> structinfo(Base.Filesystem.StatStruct)
13-element Vector{Tuple{UInt64, Symbol, Type}}:
(0x0000000000000000, :desc, Union{RawFD, String})
0x0000000000000008, :device, UInt64)
0x0000000000000010, :inode, UInt64)
0x0000000000000018, :mode, UInt64)
0x0000000000000020, :nlink, Int64)
0x0000000000000028, :uid, UInt64)
0x0000000000000030, :gid, UInt64)
0x0000000000000038, :rdev, UInt64)
0x0000000000000040, :size, Int64)
0x0000000000000048, :blksize, Int64)
0x0000000000000050, :blocks, Int64)
0x0000000000000058, :mtime, Float64)
0x0000000000000060, :ctime, Float64)

(
(
(
(
(
(
(
(
(
(
(
(

source

Base.datatype alignment - Function.

Base.datatype alignment(dt::DataType) -> Int
Memory allocation minimum alignment for instances of this type. Can be called on any isconcretetype.
source

Base.datatype haspadding - Function.

Base.datatype haspadding(dt::DataType) -> Bool


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L565-L587
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L753-L778
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L352-L357
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Return whether the fields of instances of this type are packed in memory, with no intervening padding
bytes. Can be called on any isconcretetype.

source
Base.datatype pointerfree - Function.

Base.datatype pointerfree(dt::DataType) -> Bool

Return whether instances of this type can contain references to gc-managed memory. Can be called
on any isconcretetype.

source

Special values
Base.typemin - Function.
‘typemin(T)
The lowest value representable by the given (real) numeric DataType T.

See also: floatmin, typemax, eps.

Examples

julia> typemin(Int8)
-128

julia> typemin(UInt32)
0x00000000

julia> typemin(Floatl6)
-Infl6

julia> typemin(Float32)
-Inf32

julia> nextfloat(-Inf32) # smallest finite Float32 floating point number
-3.4028235f38

source
Base.typemax - Function.
typemax(T)
The highest value representable by the given (real) numeric DataType.

See also: floatmax, typemin, eps.

Examples

julia> typemax(Int8)
127


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L394-L400
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L420-L425
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/int.jl#L805-L829
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julia> typemax(UInt32)
Oxffffffff

julia> typemax(Float64)
Inf

julia> typemax(Float32)
Inf32

julia> floatmax(Float32) # largest finite Float32 floating point number
3.4028235f38

source
Base.floatmin - Function.

floatmin(T = Float64)

Return the smallest positive normal number representable by the floating-point type T.

Examples

julia> floatmin(Floatl6)
Floatl6(6.104e-5)

julia> floatmin(Float32)
1.1754944f-38

julia> floatmin()
2.2250738585072014e-308

source
Base.floatmax - Function.

floatmax(T = Float64)

Return the largest finite number representable by the floating-point type T.
See also: typemax, floatmin, eps

Examples

julia> floatmax(Floatl6)
Floatl6(6.55e4)

julia> floatmax(Float32)
3.4028235f38

julia> floatmax()
1.7976931348623157e308

julia> typemax(Float64)
Inf



https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/int.jl#L832-L856
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/float.jl#L973-L990
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source
Base.maxintfloat - Function.
maxintfloat(T=Float64)
The largest consecutive integer-valued floating-point number that is exactly represented in the given
floating-point type T (which defaults to Float64).

That is, maxintfloat returns the smallest positive integer-valued floating-point number n such that
n+1 is not exactly representable in the type T.

When an Integer-type value is needed, use Integer(maxintfloat(T)).

source

maxintfloat (T, S)

The largest consecutive integer representable in the given floating-point type T that also does not

exceed the maximum integer representable by the integer type S. Equivalently, it is the minimum of
maxintfloat(T) and typemax(S).

source
Base.eps - Method.
eps(::Type{T}) where T<:AbstractFloat

eps()

Return the machine epsilon of the floating point type T (T = Float64 by default). This is defined as
the gap between 1 and the next largest value representable by typeof(one(T)), and is equivalent to
eps(one(T)). (Since eps(T) is a bound on the relative error of T, it is a "dimensionless" quantity like
one.)

Examples

julia> eps()
2.220446049250313e-16

julia> eps(Float32)
1.1920929f-7

julia> 1.0 + eps()
1.0000000000000002

julia> 1.0 + eps()/2
1.0

source
Base.eps - Method.
‘ eps(x::AbstractFloat)
Return the unit in last place (ulp) of x. This is the distance between consecutive representable floating

point values at x. In most cases, if the distance on either side of x is different, then the larger of the
two is taken, that is


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/float.jl#L993-L1014
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/floatfuncs.jl#L19-L29
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/floatfuncs.jl#L35-L41
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/float.jl#L1020-L1043
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eps(x) == max(x-prevfloat(x), nextfloat(x)-x)
The exceptions to this rule are the smallest and largest finite values (e.g. nextfloat(-Inf) and
prevfloat(Inf) for Float64), which round to the smaller of the values.

The rationale for this behavior is that eps bounds the floating point rounding error. Under the default
RoundNearest rounding mode, if y is a real number and x is the nearest floating point number to v,
then

ly — x| < eps(x)/2.

See also: nextfloat, issubnormal, floatmax.

Examples

julia> eps(1.0)
2.220446049250313e-16

julia> eps(prevfloat(2.0))
2.220446049250313e-16

julia> eps(2.0)
4.440892098500626e-16

julia> x = prevfloat(Inf) # largest finite Float64
1.7976931348623157e308

julia> x + eps(x)/2 # rounds up
Inf

julia> x + prevfloat(eps(x)/2) # rounds down
1.7976931348623157e308

source
Base.instances - Function.

‘instances(T::Type)

Return a collection of all instances of the given type, if applicable. Mostly used for enumerated types
(see @enum).

Example

julia> @enum Color red blue green

julia> instances(Color)
(red, blue, green)

source


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/float.jl#L1046-L1089
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L923-L936
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41.8 Special Types

Core.Any - Type.
‘Any::DataType
Any is the union of all types. It has the defining property isa(x, Any) == true forany x. Any therefore

describes the entire universe of possible values. For example Integer is a subset of Any that includes
Int, Int8, and other integer types.

source
Core.Union - Type.

‘Union{Types...}

A type union is an abstract type which includes all instances of any of its argument types. The empty
union Union{} is the bottom type of Julia.

Examples

julia> IntOrString = Union{Int,AbstractString}
Union{Int64, AbstractString}

julia> 1 isa IntOrString
true

julia> "Hello!" isa IntOrString
true

julia> 1.0 isa IntOrString
false

source
Union{} - Keyword.

‘Union{}

Union{}, the empty Union of types, is the type that has no values. That is, it has the defining property
isa(x, Union{}) == false for any x. Base.Bottom is defined as its alias and the type of Union{} is
Core.TypeofBottom.

Examples

julia> isa(nothing, Union{})
false

source
Core.UnionAll - Type.

UnionAll


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L2779-L2785
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L2803-L2823
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L2788-L2800
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A union of types over all values of a type parameter. UnionAll is used to describe parametric types
where the values of some parameters are not known.

Examples

julia> typeof(Vector)
UnionAll

julia> typeof(Vector{Int})
DataType

source
Core.Tuple - Type.

‘Tuple{Types...}

A tuple is a fixed-length container that can hold any values of different types, but cannot be modified
(it is immutable). The values can be accessed via indexing. Tuple literals are written with commas and
parentheses:

julia> (1, 1+1)
(1, 2)

julia> (1,)
(1,)

julia> x = (0.0, "hello", 6%*7)
(0.0, "hello", 42)

julia> x[2]
"hello"

julia> typeof(x)
Tuple{Float64, String, Int64}

A length-1 tuple must be written with a comma, (1, ), since (1) would just be a parenthesized value.
() represents the empty (length-0) tuple.

A tuple can be constructed from an iterator by using a Tuple type as constructor:

julia> Tuple(["a", 1])
("a", 1)

julia> Tuple{String, Float64}(["a", 1])
("a", 1.0)

Tuple types are covariant in their parameters: Tuple{Int} is a subtype of Tuple{Any}. Therefore
Tuple{Any} is considered an abstract type, and tuple types are only concrete if their parameters are.
Tuples do not have field names; fields are only accessed by index. Tuple types may have any number
of parameters.

See the manual section on Tuple Types.


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L2827-L2841
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See also Vararg, NTuple, ntuple, tuple, NamedTuple.

source
Core.NTuple - Type.

| NTuple{N, T}

A compact way of representing the type for a tuple of length N where all elements are of type T.
Examples

julia> isa((1, 2, 3, 4, 5, 6), NTuple{6, Int})

true

See also ntuple.

source

Core.NamedTuple - Type.

NamedTuple

NamedTuples are, as their name suggests, named Tuples. That is, they're a tuple-like collection of
values, where each entry has a unique name, represented as a Symbol. Like Tuples, NamedTuples are
immutable; neither the names nor the values can be modified in place after construction.

A named tuple can be created as a tuple literal with keys, e.g. (a=1, b=2), or as a tuple literal
with semicolon after the opening parenthesis, e.g. (; a=1, b=2) (this form also accepts program-
matically generated names as described below), or using a NamedTuple type as constructor, e.g.
NamedTuple{(:a, :b)}((1,2)).

Accessing the value associated with a name in a named tuple can be done using field access syntax,
e.g. x.a, or using getindex, e.g. x[:a] or x[(:a, :b)]. A tuple of the names can be obtained using
keys, and a tuple of the values can be obtained using values.

Note

Iteration over NamedTuples produces the values without the names. (See example below.)
To iterate over the name-value pairs, use the pairs function.

The @NamedTuple macro can be used for conveniently declaring NamedTuple types.

Examples

julia> x = (a=1, b=2)
(a=1, b=2)

julia> x.a
1

julia> x[:a]
1

julia> x[(:a,)]
(a=1,)



https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L2910-L2955
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/tuple.jl#L4-L16
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julia> keys(x)
(:a, :b)

julia> values(x)
(1, 2)

julia> collect(x)
2-element Vector{Int64}:
1

2

julia> collect(pairs(x))

2-element Vector{Pair{Symbol, Int64}}:
ta=>1
b => 2

In a similar fashion as to how one can define keyword arguments programmatically, a named tuple can
be created by giving pairs name: :Symbol => value after a semicolon inside a tuple literal. This and
the name=value syntax can be mixed:

julia> (; :a =>1, :b => 2, c=3)
(a=1, b=2, c =23)

The name-value pairs can also be provided by splatting a named tuple or any iterator that yields two-
value collections holding each a symbol as first value:

julia> keys = (:a, :b, :c); values = (1, 2, 3);

julia> NamedTuple{keys}(values)
(a=1, b=2, c =23)

julia> (; (keys .=> values)...)
(a=1, b=2, c=23)

julia> ntl = (a=1, b=2);
julia> nt2 = (c=3, d=4);

julia> (; ntl..., nt2..., b=20) # the final b overwrites the value from ntl
(a=1, b=20, c =3, d=4)

julia> (; zip(keys, values)...) # zip yields tuples such as (:a, 1)
(a=1, b=2, c =3)

As in keyword arguments, identifiers and dot expressions imply names:

1}
(=]

julia> x
0

julia> t = (; x)
(x =0,)
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julia> (; t.x)
(x =0,)
Julia 1.5

Implicit names from identifiers and dot expressions are available as of Julia 1.5.

Julia 1.7

Use of getindex methods with multiple Symbols is available as of Julia 1.7.

source
Base.@NamedTuple - Macro.

@NamedTuple{keyl: :Typel, key2::Type2, ...}
@NamedTuple begin keyl::Typel; key2::Type2; ...; end

This macro gives a more convenient syntax for declaring NamedTuple types. It returns a NamedTuple

type with the given keys and types, equivalent to NamedTuple{(:keyl, :key2, ...), Tuple{Typel,Type2,...

If the ::Type declaration is omitted, it is taken to be Any. The begin ... end form allows the decla-
rations to be split across multiple lines (similar to a struct declaration), but is otherwise equivalent.
The NamedTuple macro is used when printing NamedTuple types to e.g. the REPL.

For example, the tuple (a=3.1, b="hello") has a type NamedTuple{(:a, :b), Tuple{Float64,
String}}, which can also be declared via @NamedTuple as:

julia> @NamedTuple{a::Float64, b::String}
@NamedTuple{a::Float64, b::String}

julia> @NamedTuple begin
a::Float64
b::String
end
@NamedTuple{a::Float64, b::String}

Julia 1.5
This macro is available as of Julia 1.5.

source
Base.@Kwargs - Macro.

‘ @Kwargs{keyl: :Typel, key2::Type2, ...}

This macro gives a convenient way to construct the type representation of keyword arguments from
the same syntax as @NamedTuple. For example, when we have a function call like func([positional
arguments]; kwl=1.0, kw2="2"), we can use this macro to construct the internal type representation
of the keyword arguments as @Kwargs{kwl::Float64, kw2::String}. The macro syntax is specifi-
cally designed to simplify the signature type of a keyword method when it is printed in the stack trace
view.


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/namedtuple.jl#L3-L110
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/namedtuple.jl#L460-L486
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julia> @Kwargs{init::Int} # the internal representation of keyword arguments
Base.Pairs{Symbol, Int64, Tuple{Symbol}, @NamedTuple{init::Int64}}

julia> sum("julia"; init=1)
ERROR: MethodError: no method matching +(::Char, ::Char)

Closest candidates are:
+(::Any, ::Any, ::Any, ::Any...)
@ Base operators.jl:585
+(::Integer, ::AbstractChar)
@ Base char.jl:247
+(::T, ::Integer) where T<:AbstractChar
@ Base char.jl1:237

Stacktrace:

[1] add sum(x::Char, y::Char)
@ Base ./reduce.jl:24

[2] BottomRF
@ Base ./reduce.j1:86 [inlined]

[3] foldl impl(op::Base.BottomRF{typeof(Base.add sum)}, init::Int64, itr::String)
@ Base ./reduce.jl:62

[4] foldl impl(op::Base.BottomRF{typeof(Base.add sum)}, nt::Int64, itr::String)
@ Base ./reduce.jl:48 [inlined]

[5] mapfoldl impl(f::typeof(identity), op::typeof(Base.add sum), nt::Int64, itr::String)
@ Base ./reduce.jl:44 [inlined]

[6] mapfoldl(f::typeof(identity), op::typeof(Base.add sum), itr::String; init::Int64)
@ Base ./reduce.jl:175 [inlined]

[7] mapreduce(f::typeof(identity), op::typeof(Base.add sum), itr::String;

— kw::@Kwargs{init::Int64})
@ Base ./reduce.j1:307 [inlined]

[8] sum(f::typeof(identity), a::String; kw::@Kwargs{init::Int64})
@ Base ./reduce.jl:535 [inlined]

[9] sum(a::String; kw::@Kwargs{init::Int64})
@ Base ./reduce.jl:564 [inlined]

[10] top-level scope
@ REPL[12]:1

Julia 1.10
This macro is available as of Julia 1.10.

source

Base.Val - Type.
Val(c)
Return Val{c} (), which contains no run-time data. Types like this can be used to pass the information
between functions through the value c, which must be an isbits value or a Symbol. The intent of this

construct is to be able to dispatch on constants directly (at compile time) without having to test the
value of the constant at run time.

Examples


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/namedtuple.jl#L498-L549
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julia> f(::Val{true}) = "Good"
f (generic function with 1 method)

julia> f(::Val{false}) = "Bad"
f (generic function with 2 methods)

julia> f(vVal(true))
"Good"

source
Core.Vararg - Constant.
‘Vararg{T,N}
The last parameter of a tuple type Tuple can be the special value Vararg, which denotes any number
of trailing elements. Vararg{T,N} corresponds to exactly N elements of type T. Finally Vararg{T}

corresponds to zero or more elements of type T. Vararg tuple types are used to represent the arguments
accepted by varargs methods (see the section on Varargs Functions in the manual.)

See also NTuple.

Examples

julia> mytupletype = Tuple{AbstractString, Vararg{Int}}
Tuple{AbstractString, Vararg{Int64}}

julia> isa(("1",), mytupletype)
true

julia> isa(("1",1), mytupletype)
true

julia> isa(("1",1,2), mytupletype)
true

julia> isa(("1",1,2,3.0), mytupletype)
false

source
Core.Nothing - Type.

Nothing

A type with no fields that is the type of nothing.
See also: isnothing, Some, Missing.
source

Base.isnothing - Function.

isnothing(x)

Return true if x === nothing, and return false if not.


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/essentials.jl#L851-L870
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L2880-L2907
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L1487-L1493
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Julia 1.1
This function requires at least Julia 1.1.

See also something, Base.notnothing, ismissing.
source
Base.notnothing - Function.

notnothing(x)

Throw an error if x === nothing, and return x if not.
source
Base.Some - Type.
| Some{T}
A wrapper type used in Union{Some{T}, Nothing} to distinguish between the absence of a value
(nothing) and the presence of a nothing value (i.e. Some(nothing)).
Use something to access the value wrapped by a Some object.
source
Base.something - Function.
something(x...)
Return the first value in the arguments which is not equal to nothing, if any. Otherwise throw an error.
Arguments of type Some are unwrapped.
See also coalesce, skipmissing, @something.

Examples

julia> something(nothing, 1)
1

julia> something(Some(1l), nothing)
1

julia> something(Some(nothing), 2) === nothing
true

julia> something(missing, nothing)
missing

julia> something(nothing, nothing)
ERROR: ArgumentError: No value arguments present

source

Base.@something - Macro.


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/some.jl#L59-L68
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/some.jl#L51-L55
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/some.jl#L3-L10
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/some.jl#L72-L98
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@something(x...)

Short-circuiting version of something.

Examples
julia> f(x) = (println("f($x)"); nothing);
julia> a = 1;
julia> a = @something a f(2) f(3) error("Unable to find default for
1
julia> b = nothing;
julia> b = @something b f(2) f(3) error("Unable to find default for
f(2)
f(3)
ERROR: Unable to find default for “b’
[...]
julia> b = @something b f(2) f(3) Some(nothing)
f(2)
f(3)
julia> b === nothing
true
Julia 1.7

This macro is available as of Julia 1.7.

source

Base.Enums.Enum - Type.

‘Enum{T<:Integer}

The abstract supertype of all enumerated types defined with @enum.

source

Base.Enums.@enum - Macro.

@enum EnumName[ : :BaseType] valuel[=x] value2[=y]

am)

)

562

Create an Enum{BaseType} subtype with name EnumName and enum member values of valuel and
value2 with optional assigned values of x and y, respectively. EnumName can be used just like other
types and enum member values as regular values, such as

Examples

julia>

julia>

@enum Fruit apple=1 orange=2 kiwi=3

f(x::Fruit) = "I'm a Fruit with value: $(Int(x))"


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/some.jl#L107-L139
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/Enums.jl#L10-L14
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f (generic function with 1 method)

julia> f(apple)
"I'm a Fruit with value: 1"

julia> Fruit(1)
apple::Fruit =1

Values can also be specified inside a begin block, e.g.

@enum EnumName begin
valuel
value2

end

BaseType, which defaults to Int32, must be a primitive subtype of Integer. Member values can be
converted between the enum type and BaseType. read and write perform these conversions auto-
matically. In case the enum is created with a non-default BaseType, Integer(valuel) will return the
integer valuel with the type BaseType.

To list all the instances of an enum use instances, e.g.

julia> instances(Fruit)
(apple, orange, kiwi)

It is possible to construct a symbol from an enum instance:

julia> Symbol(apple)
rapple

source
Core.Expr - Type.

‘Expr(head::Symbol, args...)

A type representing compound expressions in parsed julia code (ASTs). Each expression consists of a
head Symbol identifying which kind of expression it is (e.g. a call, for loop, conditional statement, etc.),
and subexpressions (e.g. the arguments of a call). The subexpressions are stored in a Vector{Any}
field called args.

See the manual chapter on Metaprogramming and the developer documentation Julia ASTs.

Examples

julia> Expr(:call, :+, 1, 2)
(1 + 2)

julia> dump(:(a ? b : c))
Expr
head: Symbol if
args: Array{Any}((3,))
1: Symbol a
2: Symbol b
3: Symbol c



https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/Enums.jl#L95-L143
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source
Core.Symbol - Type.

Symbol

The type of object used to represent identifiers in parsed julia code (ASTs). Also often used as a name
or label to identify an entity (e.g. as a dictionary key). Symbols can be entered using the : quote
operator:

julia> :name
:name

julia> typeof(:name)
Symbol

julia> x = 42
42

julia> eval(:x)
42

Symbols can also be constructed from strings or other values by calling the constructor Symbol(x...).

Symbols are immutable and theirimplementation re-uses the same object for all Symbols with the same
name.

Unlike strings, Symbols are "atomic" or "scalar" entities that do not support iteration over characters.
source
Core.Symbol - Method.

| symbol(x...) -> Symbol

Create a Symbol by concatenating the string representations of the arguments together.

Examples

julia> Symbol("my", "name")
:myname

julia> Symbol("day", 4)
:day4

source

Core.Module - Type.

Module

A Module is a separate global variable workspace. See module and the manual section about modules
for details.

‘Module(name::Symbol=:anonymous, std_imports=true, default names=true)


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L681-L706
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L2088-L2115
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L2118-L2131
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Return a module with the specified name. A baremodule corresponds to Module(:ModuleName, false)

An empty module containing no names at all can be created with Module(:ModuleName, false,
false). This module will not import Base or Core and does not contain a reference to itself.

source

41.9 Generic Functions
Core.Function - Type.

‘Function

Abstract type of all functions.

Examples

julia> isa(+, Function)
true

julia> typeof(sin)
typeof(sin) (singleton type of function sin, subtype of Function)

julia> ans <: Function

true

source

Base.hasmethod - Function.
hasmethod(f, t::Type{<:Tuple}[, kwnames]; world=get world counter()) -> Bool
Determine whether the given generic function has a method matching the given Tuple of argument
types with the upper bound of world age given by world.

If a tuple of keyword argument names kwnames is provided, this also checks whether the method of
f matching t has the given keyword argument names. If the matching method accepts a variable
number of keyword arguments, e.g. with kwargs..., any names given in kwnames are considered
valid. Otherwise the provided names must be a subset of the method's keyword arguments.

See also applicable.

Julia 1.2
Providing keyword argument names requires Julia 1.2 or later.

Examples

julia> hasmethod(length, Tuple{Array})
true

julia> f(; oranges=0) = oranges;

julia> hasmethod(f, Tuple{}, (:oranges,))
true



https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L3144-L3155
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L1563-L1579
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julia> hasmethod(f, Tuple{}, (:apples, :bananas))
false

julia> g(; xs...) = 4;

julia> hasmethod(g, Tuple{}, (:a, :b, :c, :d)) # g accepts arbitrary kwargs
true

source
Core.applicable - Function.

applicable(f, args...) -> Bool

Determine whether the given generic function has a method applicable to the given arguments.
See also hasmethod.

Examples

julia> function f(x, y)

X +y
end;

julia> applicable(f, 1)
false

julia> applicable(f, 1, 2)
true

source
Base.isambiguous - Function.

Base.isambiguous(ml, m2; ambiguous bottom=false) -> Bool

Determine whether two methods m1 and m2 may be ambiguous for some call signature. This test is
performed in the context of other methods of the same function; in isolation, m1 and m2 might be
ambiguous, but if a third method resolving the ambiguity has been defined, this returns false. Alter-
natively, in isolation m1 and m2 might be ordered, but if a third method cannot be sorted with them,
they may cause an ambiguity together.

For parametric types, the ambiguous bottom keyword argument controls whether Union{} counts as
an ambiguous intersection of type parameters - when true, it is considered ambiguous, when false
it is not.

Examples

julia> foo(x::Complex{<:Integer}) =1
foo (generic function with 1 method)

julia> foo(x::Complex{<:Rational}) = 2
foo (generic function with 2 methods)


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L1799-L1834
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L1874-L1893
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julia> ml, m2 = collect(methods(foo));

julia> typeintersect(ml.sig, m2.sig)
Tuple{typeof(foo), Complex{Union{}}}

julia> Base.isambiguous(ml, m2, ambiguous bottom=true)
true

julia> Base.isambiguous(ml, m2, ambiguous bottom=false)
false

source
Core.invoke - Function.

‘invoke(f, argtypes::Type, args...; kwargs...)

Invoke a method for the given generic function f matching the specified types argtypes on the speci-
fied arguments args and passing the keyword arguments kwargs. The arguments args must conform
with the specified types in argtypes, i.e. conversion is not automatically performed. This method
allows invoking a method other than the most specific matching method, which is useful when the be-
havior of a more general definition is explicitly needed (often as part of the implementation of a more
specific method of the same function).

Be careful when using invoke for functions that you don't write. What definition is used for given
argtypes is an implementation detail unless the function is explicitly states that calling with certain
argtypes is a part of public APl. For example, the change between f1 and f2 in the example below is
usually considered compatible because the change is invisible by the caller with a normal (non-invoke)
call. However, the change is visible if you use invoke.

Examples
julia> f(x::Real) = x"2;
julia> f(x::Integer) = 1 + invoke(f, Tuple{Real}, x);

julia> f(2)
5

julia> f1(::Integer) = Integer
f1(::Real) = Real;

julia> f2(x::Real) = f2(x)
_f2(::Integer) = Integer
~f2( ) = Real;

julia> f1(1)
Integer

julia> f2(1)
Integer

julia> invoke(fl, Tuple{Real}, 1)


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L1907-L1940
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Real

julia> invoke(f2, Tuple{Real}, 1)
Integer

source
Base.@invoke - Macro.

‘@invoke f(arg::T, ...; kwargs...)

Provides a convenient way to call invoke by expanding@invoke f(argl::T1l, arg2::T2; kwargs...)
to invoke(f, Tuple{T1,T2}, argl, arg2; kwargs...). When an argument's type annotation is
omitted, it's replaced with Core.Typeof that argument. To invoke a method where an argument is
untyped or explicitly typed as Any, annotate the argument with : : Any.

It also supports the following syntax:

* @invoke (x::X).f expands to invoke(getproperty, Tuple{X,Symbol}, x, :f)

* @invoke (x::X).f = v::V expands to invoke(setproperty!, Tuple{X,Symbol,bV}, x, :f,
v)

* @invoke (xs::Xs)[i::I] expandsto invoke(getindex, Tuple{Xs,I}, xs, i)

e @invoke (xs::Xs)[i::I] = v::Vexpandstoinvoke(setindex!, Tuple{Xs,V,I}, xs, v, 1)
Examples

julia> @macroexpand @invoke f(x::T, y)
:(Core.invoke(f, Tuple{T, Core.Typeof(y)}, x, y))

julia> @invoke 420::Integer % Unsigned
0x00000000000001a4

julia> @macroexpand @invoke (x::X).f
:(Core.invoke(Base.getproperty, Tuple{X, Core.Typeof(:f)}, x, :f))

julia> @macroexpand @invoke (x::X).f = v::V
:(Core.invoke(Base.setproperty!, Tuple{X, Core.Typeof(:f), V}, x, :f, v))

julia> @macroexpand @invoke (xs::Xs)[i::I]
:(Core.invoke(Base.getindex, Tuple{Xs, I}, xs, 1))

julia> @macroexpand @invoke (xs::Xs)[i::I] = v::V
:(Core.invoke(Base.setindex!, Tuple{Xs, V, I}, xs, v, 1i))

Julia 1.7
This macro requires Julia 1.7 or later.

Julia 1.9
This macro is exported as of Julia 1.9.

Julia 1.10
The additional syntax is supported as of Julia 1.10.


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L1896-L1941
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source

Base.invokelatest - Function.

‘invokelatest(f, args...; kwargs...)

Calls f(args...; kwargs...), butguarantees that the most recent method of f will be executed. This
is useful in specialized circumstances, e.g. long-running event loops or callback functions that may call
obsolete versions of a function f. (The drawback is that invokelatest is somewhat slower than calling
f directly, and the type of the result cannot be inferred by the compiler.)

Julia 1.9
Prior to Julia 1.9, this function was not exported, and was called as Base.invokelatest.

source

Base.@invokelatest - Macro.

‘@invokelatest f(args...; kwargs...)

Provides a convenient way to call invokelatest. @invokelatest f(args...; kwargs...) will simply
be expanded into Base.invokelatest(f, args...; kwargs...).

It also supports the following syntax:

* @invokelatest x.f expands to Base.invokelatest(getproperty, x, :f)

* @invokelatest x.f = v expands to Base.invokelatest(setproperty!, x, :f, v)

* @invokelatest xs[i] expands to Base.invokelatest(getindex, xs, i)

* @invokelatest xs[i] = v expands to Base.invokelatest(setindex!, xs, v, i)

julia>

julia>

julia>

julia>

julia>

: (Base.

: (Base.

: (Base.

: (Base.

: (Base.

@macroexpand @invokelatest f(x; kw=kwv)
invokelatest(f, x; kw = kwv))

@macroexpand @invokelatest x.f
invokelatest(Base.getproperty, x, :f))

@macroexpand @invokelatest x.f = v
invokelatest(Base.setproperty!, x, :f, v))

@macroexpand @invokelatest xs[i]
invokelatest(Base.getindex, xs, 1))

@macroexpand @invokelatest xs[i] = v
invokelatest(Base.setindex!, xs, v, 1i))

Julia 1.7
This macro requires Julia 1.7 or later.

Julia 1.9
Prior to Julia 1.9, this macro was not exported, and was called as Base.@invokelatest.


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L2097-L2142
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/essentials.jl#L876-L888
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Julia 1.10
The additional x.f and xs[i] syntax requires Julia 1.10.

source

new - Keyword.

‘new, or new{A,B,...}

Special function available to inner constructors which creates a new object of the type. The form
new{A,B,...} explicitly specifies values of parameters for parametric types. See the manual section on
Inner Constructor Methods for more information.

source
Base. : |> - Function.
| 1>(x, f)
Infix operator which applies function f to the argument x. This allows f(g(x)) to be written x |> g

|> f. When used with anonymous functions, parentheses are typically required around the definition
to get the intended chain.

Examples

julia> 4 |> inv
0.25

julia> [2, 3, 5] |> sum |> inv
0.1

julia> [0 1; 2 3] .|> (x -> x"2) |> sum
14

source

Base. : o - Function.

fog

Compose functions: i.e. (f o g)(args...; kwargs...) means f(g(args...; kwargs...)). The
o symbol can be entered in the Julia REPL (and most editors, appropriately configured) by typing
\circ<tab>.

Function composition also works in prefix form: o (f, g) isthesameas f o g. The prefix form supports
composition of multiple functions: o (f, g, h) = f o g o h and splatting o(fs...) for composing
an iterable collection of functions. The last argument to o execute first.

Julia 1.4
Multiple function composition requires at least Julia 1.4.

Julia 1.5
Composition of one function o(f) requires at least Julia 1.5.


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/reflection.jl#L2163-L2201
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/docs/basedocs.jl#L1404-L1411
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/operators.jl#L897-L916
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Julia 1.7
Using keyword arguments requires at least Julia 1.7.

Examples

julia> map(uppercaseofirst, ["apple", "banana", "carrot"])
3-element Vector{Char}:
'A': ASCII/Unicode U+0041 (category Lu: Letter, uppercase)
'B': ASCII/Unicode U+0042 (category Lu: Letter, uppercase)
'C': ASCII/Unicode U+0043 (category Lu: Letter, uppercase)

julia> (==(6)elength).(["apple", "banana", "carrot"])
3-element BitVector:

0

1

1

julia> fs = [
X -> 2X
X -> Xx-1
X -> X/2
X -> X+1

I;

julia> o(fs...)(3)
2.0

See also ComposedFunction, ! f::Function.

source
Base.ComposedFunction - Type.

ComposedFunction{Outer,Inner} <: Function

Represents the composition of two callable objects outer: :0Quter and inner::Inner. Thatis
ComposedFunction(outer, inner)(args...; kw...) === outer(inner(args...; kw...))

The preferred way to construct an instance of ComposedFunction is to use the composition operator o:

julia> sin o cos === ComposedFunction(sin, cos)
true

julia> typeof(sinocos)
ComposedFunction{typeof(sin), typeof(cos)}

The composed pieces are stored in the fields of ComposedFunction and can be retrieved as follows:

julia> composition = sin o cos
sin o cos

julia> composition.outer === sin


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/operators.jl#L955-L1000
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true

julia> composition.inner === cos
true

Julia 1.6
ComposedFunction requires at least Julia 1.6. In earlier versions o returns an anonymous

function instead.
See also o.

source
Base.splat - Function.

splat(f)
Equivalent to
my_splat(f) = args->f(args...)

i.e. given a function returns a new function that takes one argument and splats it into the original
function. This is useful as an adaptor to pass a multi-argument function in a context that expects a
single argument, but passes a tuple as that single argument.

Example usage:

julia> map(splat(+), zip(1l:3,4:6))
3-element Vector{Int64}:

5

7

9

julia> my add = splat(+)
splat(+)

julia> my add((1,2,3))
6

source
Base.Fix1 - Type.
Fix1(f, x)
A type representing a partially-applied version of the two-argument function f, with the first argument
fixed to the value "x". In other words, Fix1(f, x) behaves similarly to y->f(x, y).
See also Fix2.
source
Base.Fix2 - Type.

Fix2(f, x)


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/operators.jl#L1003-L1033
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/operators.jl#L1224-L1250
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/operators.jl#L1101-L1109
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A type representing a partially-applied version of the two-argument function f, with the second argu-
ment fixed to the value "x". In other words, Fix2(f, x) behaves similarly to y->f(y, x).

source

41.10 Syntax

Core.eval - Function.

‘ Core.eval(m::Module, expr)

Evaluate an expression in the given module and return the result.
source
Base.MainInclude.eval - Function.
eval(expr)
Evaluate an expression in the global scope of the containing module. Every Module (except those

defined with baremodule) has its own 1-argument definition of eval, which evaluates expressions in
that module.

source
Base.@eval - Macro.
‘ @eval [mod,] ex
Evaluate an expression with values interpolated into it using eval. If two arguments are provided, the
first is the module to evaluate in.
source
Base.evalfile - Function.
evalfile(path: :AbstractString, args::Vector{String}=String[])
Load the file into an anonymous module using include, evaluate all expressions, and return the value
of the last expression. The optional args argument can be used to set the input arguments of the

script (i.e. the global ARGS variable). Note that definitions (e.g. methods, globals) are evaluated in the
anonymous module and do not affect the current module.

Example

julia> write("testfile.jl", """

@show ARGS
1+1
"),
julia> x = evalfile("testfile.jl", ["ARG1l", "ARG2"]);
ARGS = ["ARG1", "ARG2"]
julia> x
2

julia> rm("testfile.jl")


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/operators.jl#L1120-L1126
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/expr.jl#L183-L187
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/client.jl#L513-L519
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/essentials.jl#L323-L328
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source

Base.esc - Function.
‘ esc(e)
Only valid in the context of an Expr returned from a macro. Prevents the macro hygiene pass from

turning embedded variables into gensym variables. See the Macros section of the Metaprogramming
chapter of the manual for more details and examples.

source
Base.@inbounds - Macro.

‘@inbounds(blk)

Eliminates array bounds checking within expressions.

In the example below the in-range check for referencing element i of array A is skipped to improve
performance.

function sum(A::AbstractArray)
r = zero(eltype(A))
for i in eachindex(A)
@inbounds r += A[i]

end
return r
end

Warning
Using @inbounds may return incorrect results/crashes/corruption for out-of-bounds indices.
The user is responsible for checking it manually. Only use @inbounds when it is certain
from the information locally available that all accesses are in bounds. In particular, using
1:1length(A) instead of eachindex(A) in a function like the one above is not safely in-
bounds because the first index of A may not be 1 for all user defined types that subtype
AbstractArray.

source

Base.@boundscheck - Macro.
‘@boundscheck(blk)
Annotates the expression blk as a bounds checking block, allowing it to be elided by @inbounds.

Note

The function in which @boundscheck is written must be inlined into its caller in order for
@inbounds to have effect.

Examples


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/loading.jl#L2146-L2170
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/essentials.jl#L652-L658
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/essentials.jl#L709-L736
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julia> @inline function g(A, i)
@boundscheck checkbounds (A, 1)
return "accessing ($A)[$i]"

end;

julia> f1() = return g(1:2, -1);

julia> f2() @inbounds return g(1:2, -1);
julia> f1()
ERROR: BoundsError: attempt to access 2-element UnitRange{Int64} at index [-1]
Stacktrace:
[1] throw boundserror(::UnitRange{Int64}, ::Tuple{Int64}) at ./abstractarray.jl:455
[2] checkbounds at ./abstractarray.jl:420 [inlined]
[3] g at ./none:2 [inlined]
[4] f1() at ./none:l
[5] top-level scope

julia> f2()
"accessing (1:2)[-11"

Warning

The @boundscheck annotation allows you, as a library writer, to opt-in to allowing other code
to remove your bounds checks with @inbounds. As noted there, the caller must verify—us-
ing information they can access—that their accesses are valid before using @inbounds. For
indexing into your AbstractArray subclasses, for example, this involves checking the in-
dices against its axes. Therefore, @boundscheck annotations should only be added to a
getindex or setindex! implementation after you are certain its behavior is correct.

source
Base.@propagate inbounds - Macro.
‘@propagateiinbounds
Tells the compiler to inline a function while retaining the caller's inbounds context.
source
Base.@inline - Macro.
‘@inline
Give a hint to the compiler that this function is worth inlining.

Small functions typically do not need the @inline annotation, as the compiler does it automatically.
By using @inline on bigger functions, an extra nudge can be given to the compiler to inline it.

@inline can be applied immediately before a function definition or within a function body.

# annotate long-form definition
@inline function longdef(x)

end


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/essentials.jl#L661-L704
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/expr.jl#L803-L807
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# annotate short-form definition
@inline shortdef(x) = ...

# annotate anonymous function that a "do” block creates
f() do
@inline

end

Julia 1.8
The usage within a function body requires at least Julia 1.8.

576

@inline block
Give a hint to the compiler that calls within block are worth inlining.

# The compiler will try to inline " f°
@inline f(...)

# The compiler will try to inline “"f°, “g  and "+
@inline f(...) + g(...)

Note
A callsite annotation always has the precedence over the annotation applied to the definition
of the called function:

@noinline function explicit noinline(args...)
# body
end
let
@inline explicit_noinline(args...) # will be inlined
end
Note

When there are nested callsite annotations, the innermost annotation has the precedence:

@noinline let a0@, b0 = ...
a = @inline f(a@®) # the compiler will try to inline this call
b = f(b0) # the compiler will NOT try to inline this call
return a, b

end

Warning

Although a callsite annotation will try to force inlining in regardless of the cost model, there
are still chances it can't succeed in it. Especially, recursive calls can not be inlined even if
they are annotated as @inlined.

Julia 1.8
The callsite annotation requires at least Julia 1.8.
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source

Base.@noinline - Macro.

‘@noinline

Give a hint to the compiler that it should not inline a function.

Small functions are typically inlined automatically. By using @hoinline on small functions, auto-inlining
can be prevented.

@noinline can be applied immediately before a function definition or within a function body.

# annotate long-form definition
@noinline function longdef(x)

end

# annotate short-form definition
@noinline shortdef(x) = ...

# annotate anonymous function that a "do” block creates
f() do

@noinline

end

Julia 1.8
The usage within a function body requires at least Julia 1.8.

@noinline block
Give a hint to the compiler that it should not inline the calls within block.

# The compiler will try to not inline " f°
@noinline f(...)

# The compiler will try to not inline “f°, “g " and "+
@noinline f(...) + g(...)

Note

A callsite annotation always has the precedence over the annotation applied to the definition
of the called function:

@inline function explicit inline(args...)
# body
end

let
@noinline explicit inline(args...) # will not be inlined
end



https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/expr.jl#L190-L263
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Note

When there are nested callsite annotations, the innermost annotation has the precedence:

@inline let a0, bO = ...
a = @noinline f(a@) # the compiler will NOT try to inline this call
b = f(b0) # the compiler will try to inline this call
return a, b

end

Julia 1.8
The callsite annotation requires at least Julia 1.8.

578

Note
If the function is trivial (for example returning a constant) it might get inlined anyway.

source

Base.@nospecialize - Macro.

‘@nospecialize

Applied to a function argument name, hints to the compiler that the method implementation should not
be specialized for different types of that argument, but instead use the declared type for that argument.
It can be applied to an argument within a formal argument list, or in the function body. When applied
to an argument, the macro must wrap the entire argument expression, e.g., @hospecialize(x: :Real)
or @nospecialize(i::Integer...) rather than wrapping just the argument name. When used in a
function body, the macro must occur in statement position and before any code.

When used without arguments, it applies to all arguments of the parent scope. In local scope, this
means all arguments of the containing function. In global (top-level) scope, this means all methods
subsequently defined in the current module.

Specialization can reset back to the default by using @specialize.

end

end

end

function example function(@nospecialize x)

function example function(x, @nospecialize(y = 1))

function example function(x, y, 2z)

@nospecialize x y

@nospecialize
f(y) = [x for x in y]
@specialize


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/expr.jl#L268-L340
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Note

@nospecialize affects code generation but not inference: it limits the diversity of the re-
sulting native code, but it does not impose any limitations (beyond the standard ones) on
type-inference. Use Base.@nospecializeinfer together with @hospecialize to addition-
ally suppress inference.

Example

julia> f(A::AbstractArray) = g(A)
f (generic function with 1 method)

julia> @noinline g(@nospecialize(A::AbstractArray)) = A[1]
g (generic function with 1 method)

julia> @code typed f([1.0])

CodeInfo(

1 — %1 = invoke Main.g(_2::AbstractArray)::Float64
L return %1

) => Float64

Here, the @nospecialize annotation results in the equivalent of
f(A::AbstractArray) = invoke(g, Tuple{AbstractArray}, A)

ensuring that only one version of native code will be generated for g, one that is generic for any
AbstractArray. However, the specific return type is still inferred for both g and f, and this is still used
in optimizing the callers of f and g.

source

Base.@specialize - Macro.
‘@specialize
Reset the specialization hint for an argument back to the default. For details, see @nospecialize.
source

Base.@nospecializeinfer - Macro.

Base.@nospecializeinfer function f(args...)
@nospecialize ...

end
Base.@nospecializeinfer f(@nospecialize args...) = ...

Tells the compiler to infer f using the declared types of @nhospecialized arguments. This can be used
to limit the number of compiler-generated specializations during inference.
Example

julia> f(A::AbstractArray) = g(A)
f (generic function with 1 method)


https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/essentials.jl#L47-L117
https://github.com/JuliaLang/julia/blob/bd47eca2c8aacd145b6c5c02e47e2b9ec27ab456/base/essentials.jl#L129-L134
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julia> @noinline Base.@nospecializeinfer g(@nospecialize(A::AbstractArray)) = A[1]
g (generic function with 1 method)

julia> @code typed f([1.0])

CodeInfo(

1 — %1 = invoke Main.g(_2::AbstractArray)::Any
— return %1

) => Any

In this example, f will be inferred for each specific type of A, but g will only be inferred once with the de-
clared argument type A: : AbstractArray, meaning that the compiler will not likely see the excessive in-
ference time on it while it can not infer the concrete return type of it. Without the @nospecializeinfer,
f([1.0]) wouldinferthe return type of g as Float64, indicating that inference ran forg(: :Vector{Float64})
despite the prohibition on specialized code generation.

source
Base.@constprop - Macro.

‘@constprop setting [ex]

Control the mode of interprocedural constant propagation for the annotated function.

Two settings are supported:

* @constprop :aggressive [ex]: apply constant propagation aggressively. For a method where
the return type depends on the value of the arguments, this can yield improved inference results
at the cost of additional compile time.

* @constprop :none [ex]: disable constant propagation. This can reduce compile times for func-
tions that Julia might otherwise deem worthy of constant-propagation. Common cases are for
functions with Bool- or Symbol-valued arguments or keyword arguments.

@const