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Chapter 1

Julia 1.10 Documentation

Welcome to the documentation for Julia 1.10.

Please read the release notes to see what has changed since the last release.

Note

The documentation is also available in PDF format: julia-1.10.4.pdf.

1.1 Important Links

Below is a non-exhasutive list of links that will be useful as you learn and use the Julia programming
language.

¢ Julia Homepage

¢ Download Julia

* Discussion forum

* Julia YouTube

* Find Julia Packages

* Learning Resources

* Read and write blogs on Julia

1.2 Introduction

Scientific computing has traditionally required the highest performance, yet domain experts have largely
moved to slower dynamic languages for daily work. We believe there are many good reasons to prefer
dynamic languages for these applications, and we do not expect their use to diminish. Fortunately, modern
language design and compiler techniques make it possible to mostly eliminate the performance trade-off
and provide a single environment productive enough for prototyping and efficient enough for deploying
performance-intensive applications. The Julia programming language fills this role: it is a flexible dynamic
language, appropriate for scientific and numerical computing, with performance comparable to traditional
statically-typed languages.


NEWS.md
https://raw.githubusercontent.com/JuliaLang/docs.julialang.org/assets/julia-1.10.4.pdf
https://julialang.org
https://julialang.org/downloads/
https://discourse.julialang.org
https://www.youtube.com/user/JuliaLanguage
https://julialang.org/packages/
https://julialang.org/learning/
https://forem.julialang.org
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Because Julia's compiler is different from the interpreters used for languages like Python or R, you may
find that Julia's performance is unintuitive at first. If you find that something is slow, we highly recommend
reading through the Performance Tips section before trying anything else. Once you understand how Julia
works, it is easy to write code that is nearly as fast as C.

1.3 Julia Compared to Other Languages

Julia features optional typing, multiple dispatch, and good performance, achieved using type inference
and just-in-time (JIT) compilation (and optional ahead-of-time compilation), implemented using LLVM. It
is multi-paradigm, combining features of imperative, functional, and object-oriented programming. Julia
provides ease and expressiveness for high-level numerical computing, in the same way as languages such
as R, MATLAB, and Python, but also supports general programming. To achieve this, Julia builds upon the
lineage of mathematical programming languages, but also borrows much from popular dynamic languages,
including Lisp, Perl, Python, Lua, and Ruby.

The most significant departures of Julia from typical dynamic languages are:

* The core language imposes very little; Julia Base and the standard library are written in Julia itself,
including primitive operations like integer arithmetic

* Arich language of types for constructing and describing objects, that can also optionally be used to
make type declarations

* The ability to define function behavior across many combinations of argument types via multiple
dispatch

* Automatic generation of efficient, specialized code for different argument types

* Good performance, approaching that of statically-compiled languages like C

Although one sometimes speaks of dynamic languages as being "typeless", they are definitely not. Every
object, whether primitive or user-defined, has a type. The lack of type declarations in most dynamic lan-
guages, however, means that one cannot instruct the compiler about the types of values, and often cannot
explicitly talk about types at all. In static languages, on the other hand, while one can - and usually must -
annotate types for the compiler, types exist only at compile time and cannot be manipulated or expressed
at run time. In Julia, types are themselves run-time objects, and can also be used to convey information to
the compiler.

What Makes Julia, Julia?

While the casual programmer need not explicitly use types or multiple dispatch, they are the core unifying
features of Julia: functions are defined on different combinations of argument types, and applied by dis-
patching to the most specific matching definition. This model is a good fit for mathematical programming,
where it is unnatural for the first argument to "own" an operation as in traditional object-oriented dispatch.
Operators are just functions with special notation - to extend addition to new user-defined data types, you
define new methods for the + function. Existing code then seamlessly applies to the new data types.

Partly because of run-time type inference (augmented by optional type annotations), and partly because
of a strong focus on performance from the inception of the project, Julia's computational efficiency exceeds
that of other dynamic languages, and even rivals that of statically-compiled languages. For large scale
numerical problems, speed always has been, continues to be, and probably always will be crucial: the
amount of data being processed has easily kept pace with Moore's Law over the past decades.


https://en.wikipedia.org/wiki/Just-in-time_compilation
https://github.com/JuliaLang/PackageCompiler.jl
https://en.wikipedia.org/wiki/Low_Level_Virtual_Machine
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Perl_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Lua_(programming_language)
https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://en.wikipedia.org/wiki/Multiple_dispatch
https://en.wikipedia.org/wiki/Multiple_dispatch
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Advantages of Julia

Julia aims to create an unprecedented combination of ease-of-use, power, and efficiency in a single lan-
guage. In addition to the above, some advantages of Julia over comparable systems include:

* Free and open source (MIT licensed)

* User-defined types are as fast and compact as built-ins

* No need to vectorize code for performance; devectorized code is fast

* Designed for parallelism and distributed computation

* Lightweight "green" threading (coroutines)

* Unobtrusive yet powerful type system

* Elegant and extensible conversions and promotions for numeric and other types

» Efficient support for Unicode, including but not limited to UTF-8

* Call C functions directly (no wrappers or special APIs needed)

* Powerful shell-like capabilities for managing other processes

* Lisp-like macros and other metaprogramming facilities


https://github.com/JuliaLang/julia/blob/master/LICENSE.md
https://en.wikipedia.org/wiki/Coroutine
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/UTF-8

Chapter 2

Getting Started

Julia installation is straightforward, whether using precompiled binaries or compiling from source. Download
and install Julia by following the instructions at https://julialang.org/downloads/.

If you are coming to Julia from one of the following languages, then you should start by reading the section
on noteworthy differences from MATLAB, R, Python, C/C++ or Common Lisp. This will help you avoid some
common pitfalls since Julia differs from those languages in many subtle ways.

The easiest way to learn and experiment with Julia is by starting an interactive session (also known as a
read-eval-print loop or "REPL") by double-clicking the Julia executable or running julia from the command
line:

$ julia
_ _ () | Documentation: https://docs.julialang.org
(L) | () Q) |
I I D | Type "?" for help, "1?" for Pkg help.
[ T 2 B
[T 111 11 (I | Version 1.10.4 (2024-06-04)
/ IN_" || I\N_"'" | | Official https://julialang.org/ release
[/ |

julia> 1 + 2
3

julia> ans
3

To exit the interactive session, type CTRL-D (press the Control/® key together with the d key), or type
exit(). When run in interactive mode, julia displays a banner and prompts the user for input. Once the
user has entered a complete expression, such as 1 + 2, and hits enter, the interactive session evaluates
the expression and shows its value. If an expression is entered into an interactive session with a trailing
semicolon, its value is not shown. The variable ans is bound to the value of the last evaluated expression
whether it is shown or not. The ans variable is only bound in interactive sessions, not when Julia code is
run in other ways.

To evaluate expressions written in a source file file. j1, write include("file.jl").


https://julialang.org/downloads/
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To run code in a file non-interactively, you can give it as the first argument to the julia command:
$ julia script.jl

You can pass additional arguments to Julia, and to your program script.jl. A detailed list of all the
available options can be found under Command-line Interface.

2.1 Resources

A curated list of useful learning resources to help new users get started can be found on the learning page
of the main Julia website.

You can use the REPL as a learning resource by switching into the help mode. Switch to help mode by
pressing ? at an empty julia> prompt, before typing anything else. Typing a keyword in help mode will
fetch the documentation for it, along with examples. Similarly for most functions or other objects you might
encounter!

help?> begin
search: begin disable sigint reenable sigint

begin
begin...end denotes a block of code.

If you already know Julia a bit, you might want to peek ahead at Performance Tips and Workflow Tips.


https://julialang.org/learning/

Chapter 3

Variables

A variable, in Julia, is a name associated (or bound) to a value. It's useful when you want to store a value
(that you obtained after some math, for example) for later use. For example:

# Assign the value 10 to the variable x
julia> x = 10
10

# Doing math with x's value
julia> x + 1
11

# Reassign x's value
julia> x = 1 + 1
2

# You can assign values of other types, like strings of text
julia> x = "Hello World!"
"Hello World!"

Julia provides an extremely flexible system for naming variables. Variable names are case-sensitive, and
have no semantic meaning (that is, the language will not treat variables differently based on their names).

julia> x = 1.0
1.0

julia> y = -3
-3

julia> Z = "My string"
"My string"

julia> customary phrase = "Hello world!"
"Hello world!"

julia> UniversalDeclarationOfHumanRightsStart = ""
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Unicode names (in UTF-8 encoding) are allowed:

julia> 6 = 0.00001
1.0e-5

julia> = "Hello"
"Hello"

In the Julia REPL and several other Julia editing environments, you can type many Unicode math symbols
by typing the backslashed LaTeX symbol name followed by tab. For example, the variable name 6 can
be entered by typing \delta-tab, or even a2’ by \alpha-tab-\hat- tab-\"(2)-tab. (If you find a symbol
somewhere, e.g. in someone else's code, that you don't know how to type, the REPL help will tell you: just
type ? and then paste the symbol.)

Julia will even let you redefine built-in constants and functions if needed (although this is not recommended
to avoid potential confusions):

julia> pi = 3
3

julia> pi
3

julia> sqrt = 4
4

However, if you try to redefine a built-in constant or function already in use, Julia will give you an error:

julia> pi
m = 3.1415926535897. ..

julia> pi = 3
ERROR: cannot assign a value to imported variable Base.pi from module Main

julia> sqrt(100)
10.0

julia> sqrt = 4
ERROR: cannot assign a value to imported variable Base.sqrt from module Main

3.1 Allowed Variable Names

Variable names must begin with a letter (A-Z or a-z), underscore, or a subset of Unicode code points greater
than 00AO; in particular, Unicode character categories Lu/LI/Lt/Lm/Lo/NI (letters), Sc/So (currency and other
symbols), and a few other letter-like characters (e.g. a subset of the Sm math symbols) are allowed.
Subsequent characters may also include ! and digits (0-9 and other characters in categories Nd/No), as
well as other Unicode code points: diacritics and other modifying marks (categories Mn/Mc/Me/Sk), some
punctuation connectors (category Pc), primes, and a few other characters.

Operators like + are also valid identifiers, but are parsed specially. In some contexts, operators can be
used just like variables; for example (+) refers to the addition function, and (+) = f will reassign it. Most


https://www.fileformat.info/info/unicode/category/index.htm

CHAPTER 3. VARIABLES 9

of the Unicode infix operators (in category Sm), such as @, are parsed as infix operators and are available
for user-defined methods (e.g. you can use const ® = kron to define ® as an infix Kronecker product).
Operators can also be suffixed with modifying marks, primes, and sub/superscripts, e.g. +a” is parsed as
an infix operator with the same precedence as +. A space is required between an operator that ends with
a subscript/superscript letter and a subsequent variable name. For example, if +2 is an operator, then +2x
must be written as +2 x to distinguish it from + 2x where 2x is the variable name.

A particular class of variable names is one that contains only underscores. These identifiers can only be
assigned values, which are immediately discarded, and cannot therefore be used to assign values to other
variables (i.e., they cannot be used as rvalues) or use the last value assigned to them in any way.

julia> x, = size([2 2; 1 1])
(2, 2)

julia> y =
ERROR: syntax: all-underscore identifier used as rvalue

julia> println(_ )
ERROR: syntax: all-underscore identifier used as rvalue

The only explicitly disallowed names for variables are the names of the built-in Keywords:

julia> else = false
ERROR: syntax: unexpected "else"

julia> try = "No"
ERROR: syntax: unexpected "="

Some Unicode characters are considered to be equivalent in identifiers. Different ways of entering Unicode
combining characters (e.g., accents) are treated as equivalent (specifically, Julia identifiers are NFC. Julia
also includes a few non-standard equivalences for characters that are visually similar and are easily entered
by some input methods. The Unicode characters € (U+025B: Latin small letter open e) and u (U+00B5:
micro sign) are treated as equivalent to the corresponding Greek letters. The middle dot - (U+00B7) and
the Greek interpunct - (U+0387) are both treated as the mathematical dot operator - (U+22C5). The
minus sign — (U+2212) is treated as equivalent to the hyphen-minus sign - (U+002D).

3.2 Assignment expressions and assignment versus mutation

An assignment variable = value "binds" the name variable to the value computed on the right-hand
side, and the whole assignment is treated by Julia as an expression equal to the right-hand-side value. This
means that assignments can be chained (the same value assigned to multiple variables with variablel =
variable2 = value) or used in other expressions, and is also why their result is shown in the REPL as the
value of the right-hand side. (In general, the REPL displays the value of whatever expression you evaluate.)
For example, here the value 4 of b = 2+2 is used in another arithmetic operation and assignment:

julia> a = (b = 2+2) + 3
7

julia> a


https://en.wikipedia.org/wiki/Value_(computer_science)#Assignment:_l-values_and_r-values
https://en.wikipedia.org/wiki/Unicode_equivalence
https://en.wikipedia.org/wiki/Interpunct
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julia> b
4

A common confusion is the distinction between assignment (giving a new "name" to a value) and mutation
(changing a value). If you run a = 2 followed by a = 3, you have changed the "name" a to refer to a new
value 3 ... you haven't changed the number 2, so 2+2 will still give 4 and not 6! This distinction becomes
more clear when dealing with mutable types like arrays, whose contents can be changed:

julia> a = [1,2,3] # an array of 3 integers
3-element Vector{Int64}:

1

2

3

julia> b = a # both b and a are names for the same array!
3-element Vector{Int64}:

1

2

3

Here, the line b = a does not make a copy of the array a, it simply binds the name b to the same array a:
both b and a "point" to one array [1,2,3] in memory. In contrast, an assignment a[i] = value changes
the contents of the array, and the modified array will be visible through both the names a and b:

julia> a[l] = 42 # change the first element
42

julia> a = 3.14159 # a is now the name of a different object
3.14159

julia> b # b refers to the original array object, which has been mutated
3-element Vector{Int64}:

42

2

3

Thatis, a[i] = value (an alias for setindex!) mutates an existing array object in memory, accessible via
either a or b. Subsequently setting a = 3.14159 does not change this array, it simply binds a to a different
object; the array is still accessible via b. The other common syntax to mutate an existing objectis a.field
= value (an alias for setproperty!), which can be used to change a mutable struct.

When you call a function in Julia, it behaves as if you assigned the argument values to new variable names
corresponding to the function arguments, as discussed in Argument-Passing Behavior. (By convention,
functions that mutate one or more of their arguments have names ending with !.)

3.3 Stylistic Conventions

While Julia imposes few restrictions on valid names, it has become useful to adopt the following conventions:
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* Names of variables are in lower case.

* Word separation can be indicated by underscores (' '), but use of underscores is discouraged unless
the name would be hard to read otherwise.

* Names of Types and Modules begin with a capital letter and word separation is shown with upper
camel case instead of underscores.

* Names of functions and macros are in lower case, without underscores.

¢ Functions that write to their arguments have names that end in !. These are sometimes called
"mutating" or "in-place" functions because they are intended to produce changes in their arguments
after the function is called, not just return a value.

For more information about stylistic conventions, see the Style Guide.



Chapter 4

Integers and Floating-Point Numbers

Integers and floating-point values are the basic building blocks of arithmetic and computation. Built-in
representations of such values are called numeric primitives, while representations of integers and floating-
point numbers as immediate values in code are known as numeric literals. For example, 1 is an integer
literal, while 1.0 is a floating-point literal; their binary in-memory representations as objects are numeric
primitives.

Julia provides a broad range of primitive numeric types, and a full complement of arithmetic and bitwise
operators as well as standard mathematical functions are defined over them. These map directly onto
numeric types and operations that are natively supported on modern computers, thus allowing Julia to
take full advantage of computational resources. Additionally, Julia provides software support for Arbitrary
Precision Arithmetic, which can handle operations on numeric values that cannot be represented effectively
in native hardware representations, but at the cost of relatively slower performance.

The following are Julia's primitive numeric types:

* Integer types:

Type Signed? | Number of bits | Smallest value | Largest value
Int8 v 8 =277 27°7-1
UInt8 8 0 27°8-1
Intl6 v 16 -2715 2715-1
UIntle 16 0 2716 -1
Int32 v 32 -2731 2731-1
UInt32 32 0 2732-1
Int64 v 64 -2763 2763-1
UInt64 64 0 2764 -1
Int128 v 128 -27°127 27127 -1
UInt128 128 0 27128 -1
Bool N/A 8 false (0) true (1)

* Floating-point types:
Additionally, full support for Complex and Rational Numbers is built on top of these primitive numeric types.
All numeric types interoperate naturally without explicit casting, thanks to a flexible, user-extensible type

promotion system.

12
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Type Precision | Number of bits
Floatl6 | half 16
Float32 | single 32
Float64 | double 64

4.1 Integers

Literal integers are represented in the standard manner:

julia> 1
1

julia> 1234
1234

13

The default type for an integer literal depends on whether the target system has a 32-bit architecture or a
64-bit architecture:

Int32

Int64

The Julia internal variable Sys.WORD SIZE indicates whether the target system is 32-bit or 64-bit:

32

64

# 32-bit system:
julia> typeof(1)

# 64-bit system:
julia> typeof(1)

# 32-bit system:
julia> Sys.WORD SIZE

# 64-bit system:
julia> Sys.WORD SIZE

Julia also defines the types Int and UInt, which are aliases for the system's signed and unsigned native
integer types respectively:

julia> Int
Int32
julia> UInt
UInt32

julia> Int
Int64
julia> UInt
UInt64

# 32-bit system:

# 64-bit system:


https://en.wikipedia.org/wiki/Half-precision_floating-point_format
https://en.wikipedia.org/wiki/Single_precision_floating-point_format
https://en.wikipedia.org/wiki/Double_precision_floating-point_format
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Larger integer literals that cannot be represented using only 32 bits but can be represented in 64 bits
always create 64-bit integers, regardless of the system type:

# 32-bit or 64-bit system:
julia> typeof(3000000000)
Int64

Unsigned integers are input and output using the 0x prefix and hexadecimal (base 16) digits 0-9a-f (the
capitalized digits A-F also work for input). The size of the unsigned value is determined by the number of
hex digits used:

julia> x = 0x1
0x01

julia> typeof(x)
UInt8

julia> x = 0x123
0x0123

julia> typeof(x)
UIntl6

julia> x = 0x1234567
0x01234567

julia> typeof(x)
UInt32

julia> x = 0x123456789abcdef
0x0123456789abcdef

julia> typeof(x)
UInt64

julia> x = 0x11112222333344445555666677778888
0x11112222333344445555666677778888

julia> typeof(x)
UInt128

This behavior is based on the observation that when one uses unsigned hex literals for integer values, one
typically is using them to represent a fixed numeric byte sequence, rather than just an integer value.

Binary and octal literals are also supported:

julia> x = 0b10O
0x02

julia> typeof(x)
UInt8
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julia> x = 00010
0x08

julia> typeof(x)
UInt8

julia> x = 0x00000000000000001111222233334444
0x00000000000000001111222233334444

julia> typeof(x)
UInt128

As for hexadecimal literals, binary and octal literals produce unsigned integer types. The size of the binary
data item is the minimal needed size, if the leading digit of the literal is not 0. In the case of leading zeros,
the size is determined by the minimal needed size for a literal, which has the same length but leading digit
1. It means that:

¢ 0x1 and 0x12 are UInt8 literals,
e 0x123 and 0x1234 are UInt16 literals,
e 0x12345 and 0x12345678 are UInt32 literals,

e 0x123456789 and 0x1234567890adcdef are UInt64 literals, etc.

Even if there are leading zero digits which don't contribute to the value, they count for determining storage
size of a literal. So 0x01 is a UInt8 while 0x0001 is a UInt16.

That allows the user to control the size.

Unsigned literals (starting with 0x) that encode integers too large to be represented as UInt128 values will
construct BigInt values instead. This is not an unsigned type but it is the only built-in type big enough to
represent such large integer values.

Binary, octal, and hexadecimal literals may be signed by a - immediately preceding the unsigned literal.
They produce an unsigned integer of the same size as the unsigned literal would do, with the two's com-
plement of the value:

julia> -0x2
Oxfe

julia> -0x0002
Oxfffe

The minimum and maximum representable values of primitive numeric types such as integers are given
by the typemin and typemax functions:

julia> (typemin(Int32), typemax(Int32))
(-2147483648, 2147483647)
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julia> for T in [Int8,Int16,Int32,Int64,Int128,UInt8,UIntl6,UInt32,UInt64,UInt128]
println("$(lpad(T,7)): [$(typemin(T)),$(typemax(T))]")
end
Int8: [-128,127]
Intl6: [-32768,32767]
Int32: [-2147483648,2147483647]
Int64: [-9223372036854775808,9223372036854775807]
Intl128: [-170141183460469231731687303715884105728,170141183460469231731687303715884105727]
UInt8: [0,255]
UInt16: [0,65535]
UInt32: [0,4294967295]
UInt64: [0,18446744073709551615]
UInt128: [0,340282366920938463463374607431768211455]

The values returned by typemin and typemax are always of the given argument type. (The above expres-
sion uses several features that have yet to be introduced, including for loops, Strings, and Interpolation,
but should be easy enough to understand for users with some existing programming experience.)

Overflow behavior

In Julia, exceeding the maximum representable value of a given type results in a wraparound behavior:

julia> x = typemax(Int64)
9223372036854775807

julia> x + 1
-9223372036854775808

julia> x + 1 == typemin(Int64)
true

Thus, arithmetic with Julia integers is actually a form of modular arithmetic. This reflects the characteristics
of the underlying arithmetic of integers as implemented on modern computers. In applications where
overflow is possible, explicit checking for wraparound produced by overflow is essential; otherwise, the
BigInt type in Arbitrary Precision Arithmetic is recommended instead.

An example of overflow behavior and how to potentially resolve it is as follows:

julia> 10719
-8446744073709551616

julia> big(10)"19
10000000000000000000

Division errors

Integer division (the div function) has two exceptional cases: dividing by zero, and dividing the lowest
negative number (typemin) by -1. Both of these cases throw a DivideError. The remainder and modulus
functions (rem and mod) throw a DivideError when their second argument is zero.


https://en.wikipedia.org/wiki/Modular_arithmetic
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4.2 Floating-Point Numbers

Literal floating-point numbers are represented in the standard formats, using E-notation when necessary:

julia> 1.0
1.0

julia> 1.
1.0

julia> 0.5
0.5

julia> .5
0.5

julia> -1.23
-1.23

julia> 1lel0
1.0el10

julia> 2.5e-4
0.00025

The above results are all Float64 values. Literal Float32 values can be entered by writing an f in place
of e:

julia> x = 0.5f0
0.5f0

julia> typeof(x)
Float32

julia> 2.5f-4
0.00025f0

Values can be converted to Float32 easily:

julia> x = Float32(-1.5)
-1.5f0

julia> typeof(x)
Float32

Hexadecimal floating-point literals are also valid, but only as Float64 values, with p preceding the base-2
exponent:

julia> 0x1p0
1.0


https://en.wikipedia.org/wiki/Scientific_notation#E_notation
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julia> 0x1.8p3
12.0

julia> x = 0x.4p-1
0.125

julia> typeof(x)
Float64

Half-precision floating-point numbers are also supported (Float16), but they are implemented in software
and use Float32 for calculations.

julia> sizeof(Floatl6(4.))
2

julia> 2*Floatl6(4.)
Float16(8.0)

The underscore can be used as digit separator:

julia> 10 000, 0.000 000 005, Oxdead beef, 0bl01l 0010
(10000, 5.0e-9, 0Oxdeadbeef, 0xb2)

Floating-point zero

Floating-point numbers have two zeros, positive zero and negative zero. They are equal to each other but
have different binary representations, as can be seen using the bitstring function:

julia> 0.0 == -0.0
true

julia> bitstring(0.0)
"0000000000000000000000000000000000000000000000000000000000000000"

julia> bitstring(-0.0)
"1000000000000000000000000000000000000000000000000000000000000000"

Special floating-point values

There are three specified standard floating-point values that do not correspond to any point on the real
number line:

For further discussion of how these non-finite floating-point values are ordered with respect to each other
and other floats, see Numeric Comparisons. By the IEEE 754 standard, these floating-point values are the
results of certain arithmetic operations:

julia> 1/Inf
0.0


https://en.wikipedia.org/wiki/Signed_zero
https://en.wikipedia.org/wiki/IEEE_754-2008
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Floatl6 | Float32| Float64| Name Description

Infl6 Inf32 Inf positive a value greater than all finite floating-point values
infinity

-Infl6 -Inf32 -Inf negative a value less than all finite floating-point values
infinity

NaN16 NaN32 NaN not a number a value not == to any floating-point value (including

itself)

julia> 1/0

Inf

julia> -5/0

-Inf

julia> 0.000001/0
Inf

julia> 0/0
NaN

julia> 500 + Inf
Inf

julia> 500 - Inf
-Inf

julia> Inf + Inf
Inf

julia> Inf - Inf
NaN

julia> Inf * Inf
Inf

julia> Inf / Inf
NaN

julia> 0 * Inf
NaN

julia> NaN == NaN
false

julia> NaN != NaN
true

julia> NaN < NaN
false

julia> NaN > NaN
false
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The typemin and typemax functions also apply to floating-point types:

julia> (typemin(Floatl6),typemax(Floatl6))
(-Infl6, Infl6)

julia> (typemin(Float32),typemax(Float32))
(-Inf32, Inf32)

julia> (typemin(Float64),typemax(Float64))
(-Inf, Inf)

Machine epsilon

Most real numbers cannot be represented exactly with floating-point numbers, and so for many purposes
it is important to know the distance between two adjacent representable floating-point numbers, which is
often known as machine epsilon.

Julia provides eps, which gives the distance between 1.0 and the next larger representable floating-point
value:

julia> eps(Float32)
1.1920929f-7

julia> eps(Float64)
2.220446049250313e-16

julia> eps() # same as eps(Float64)
2.220446049250313e-16

These values are 2.0"-23 and 2.07-52 as Float32 and Float64 values, respectively. The eps function
can also take a floating-point value as an argument, and gives the absolute difference between that value
and the next representable floating point value. That is, eps(x) yields a value of the same type as x such
that x + eps(x) is the next representable floating-point value larger than x:

julia> eps(1.0)
2.220446049250313e-16

julia> eps(1000.)
1.1368683772161603e-13

julia> eps(le-27)
1.793662034335766e-43

julia> eps(0.0)
5.0e-324

The distance between two adjacent representable floating-point numbers is not constant, but is smaller for
smaller values and larger for larger values. In other words, the representable floating-point numbers are
densest in the real number line near zero, and grow sparser exponentially as one moves farther away from
zero. By definition, eps(1.0) is the same as eps(Float64) since 1.0 is a 64-bit floating-point value.


https://en.wikipedia.org/wiki/Machine_epsilon
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Julia also provides the nextfloat and prevfloat functions which return the next largest or smallest rep-
resentable floating-point number to the argument respectively:

julia> x = 1.25f0
1.25f0

julia> nextfloat(x)
1.2500001f0

julia> prevfloat(x)
1.2499999f0

julia> bitstring(prevfloat(x))
"00111111100111111111111111111111"

julia> bitstring(x)
"00111111101000000000000000000000"

julia> bitstring(nextfloat(x))
"00111111101000000000000000000001"

This example highlights the general principle that the adjacent representable floating-point numbers also
have adjacent binary integer representations.

Rounding modes

If a number doesn't have an exact floating-point representation, it must be rounded to an appropriate
representable value. However, the manner in which this rounding is done can be changed if required
according to the rounding modes presented in the IEEE 754 standard.

The default mode used is always RoundNearest, which rounds to the nearest representable value, with ties
rounded towards the nearest value with an even least significant bit.

Background and References

Floating-point arithmetic entails many subtleties which can be surprising to users who are unfamiliar with
the low-level implementation details. However, these subtleties are described in detail in most books on
scientific computation, and also in the following references:

¢ The definitive guide to floating point arithmetic is the IEEE 754-2008 Standard; however, it is not
available for free online.

* For a brief but lucid presentation of how floating-point numbers are represented, see John D. Cook's
article on the subject as well as his introduction to some of the issues arising from how this repre-
sentation differs in behavior from the idealized abstraction of real numbers.

¢ Also recommended is Bruce Dawson's series of blog posts on floating-point numbers.

* For an excellent, in-depth discussion of floating-point numbers and issues of numerical accuracy
encountered when computing with them, see David Goldberg's paper What Every Computer Scientist
Should Know About Floating-Point Arithmetic.


https://en.wikipedia.org/wiki/IEEE_754-2008
https://standards.ieee.org/standard/754-2008.html
https://www.johndcook.com/blog/2009/04/06/anatomy-of-a-floating-point-number/
https://www.johndcook.com/blog/2009/04/06/numbers-are-a-leaky-abstraction/
https://randomascii.wordpress.com/2012/05/20/thats-not-normalthe-performance-of-odd-floats/
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.6768&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.6768&rep=rep1&type=pdf
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* For even more extensive documentation of the history of, rationale for, and issues with floating-
point numbers, as well as discussion of many other topics in numerical computing, see the collected
writings of William Kahan, commonly known as the "Father of Floating-Point". Of particular interest

may be An Interview with the Old Man of Floating-Point.

4.3 Arbitrary Precision Arithmetic

To allow computations with arbitrary-precision integers and floating point numbers, Julia wraps the GNU Mul-
tiple Precision Arithmetic Library (GMP) and the GNU MPFR Library, respectively. The BigInt and BigFloat

types are available in Julia for arbitrary precision integer and floating point numbers respectively.

Constructors exist to create these types from primitive numerical types, and the string literal @big str or
parse can be used to construct them from AbstractStrings. BigInts can also be input as integer literals
when they are too big for other built-in integer types. Note that as there is no unsigned arbitrary-precision
integer type in Base (BigInt is sufficient in most cases), hexadecimal, octal and binary literals can be used

(in addition to decimal literals).

Once created, they participate in arithmetic with all other numeric types thanks to Julia's type promotion

and conversion mechanism:

julia> BigInt(typemax(Int64)) + 1
9223372036854775808

julia> big"123456789012345678901234567890" + 1
123456789012345678901234567891

julia> parse(BigInt, "123456789012345678901234567890") + 1
123456789012345678901234567891

julia> string(big"2""200, base=16)
"100000000000000000000000000000000000000000000000000™"

julia> 0x100000000000000000000000000000000-1 == typemax(UInt128)
true

julia> 0x000000000000000000000000000000000
0

julia> typeof(ans)
BigInt

julia> big"1.23456789012345678901"

1.234567890123456789010000000000000000000000000000000000000000000000000000000004

julia> parse(BigFloat, "1.23456789012345678901")

1.234567890123456789010000000000000000000000000000000000000000000000000000000004

julia> BigFloat(2.0766) / 3

2.459565876494606882133333333333333333333333333333333333333333333333333333333344e+19

julia> factorial(BigInt(40))
815915283247897734345611269596115894272000000000



https://people.eecs.berkeley.edu/{~}wkahan/
https://people.eecs.berkeley.edu/{~}wkahan/
https://en.wikipedia.org/wiki/William_Kahan
https://people.eecs.berkeley.edu/{~}wkahan/ieee754status/754story.html
https://gmplib.org
https://gmplib.org
https://www.mpfr.org
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However, type promotion between the primitive types above and BigInt/BigFloat is not automatic and
must be explicitly stated.

julia> x = typemin(Int64)
-9223372036854775808

julia> x = x - 1
9223372036854775807

julia> typeof(x)
Int64

julia> y = BigInt(typemin(Int64))
-9223372036854775808

julia> y =y - 1
-9223372036854775809

julia> typeof(y)
BigInt

The default precision (in number of bits of the significand) and rounding mode of BigFloat operations can
be changed globally by calling setprecision and setrounding, and all further calculations will take these
changes in account. Alternatively, the precision or the rounding can be changed only within the execution
of a particular block of code by using the same functions with a do block:

julia> setrounding(BigFloat, RoundUp) do
BigFloat(1l) + parse(BigFloat, "0.1")
end
1.100000000000000000000000000000000000000000000000000000000000000000000000000003

julia> setrounding(BigFloat, RoundDown) do
BigFloat(1l) + parse(BigFloat, "0.1")
end
1.099999999999999999999999999999999999999999999999999999999999999999999999999986

julia> setprecision(40) do
BigFloat(1l) + parse(BigFloat, "0.1")
end
1.1000000000004

4.4 Numeric Literal Coefficients

To make common numeric formulae and expressions clearer, Julia allows variables to be immediately
preceded by a numeric literal, implying multiplication. This makes writing polynomial expressions much
cleaner:

julia> x = 3
3

julia> 2x™2 - 3x + 1
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julia> 1.5x"2 - .5x + 1
13.0

It also makes writing exponential functions more elegant:

julia> 272x
64

The precedence of numeric literal coefficients is slightly lower than that of unary operators such as nega-
tion. So -2x is parsed as (-2) * x and v2x is parsed as (v2) * x. However, numeric literal coefficients
parse similarly to unary operators when combined with exponentiation. For example 2"3x is parsed as
27 (3x), and 2x"3 is parsed as 2*(x"3).

Numeric literals also work as coefficients to parenthesized expressions:

julia> 2(x-1)"2 - 3(x-1) + 1
3

Note

The precedence of numeric literal coefficients used for implicit multiplication is higher than
other binary operators such as multiplication (*), and division (/, \, and //). This means, for
example, that 1 / 2im equals -0.5imand 6 // 2(2 + 1) equals1 // 1.

Additionally, parenthesized expressions can be used as coefficients to variables, implying multiplication of
the expression by the variable:

julia> (x-1)x
6

Neither juxtaposition of two parenthesized expressions, nor placing a variable before a parenthesized ex-
pression, however, can be used to imply multiplication:

julia> (x-1)(x+1)
ERROR: MethodError: objects of type Int64 are not callable

julia> x(x+1)
ERROR: MethodError: objects of type Int64 are not callable

Both expressions are interpreted as function application: any expression that is not a numeric literal, when
immediately followed by a parenthetical, is interpreted as a function applied to the values in parentheses
(see Functions for more about functions). Thus, in both of these cases, an error occurs since the left-hand
value is not a function.

The above syntactic enhancements significantly reduce the visual noise incurred when writing common
mathematical formulae. Note that no whitespace may come between a numeric literal coefficient and the
identifier or parenthesized expression which it multiplies.
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Syntax Conflicts

Juxtaposed literal coefficient syntax may conflict with some numeric literal syntaxes: hexadecimal, octal
and binary integer literals and engineering notation for floating-point literals. Here are some situations
where syntactic conflicts arise:

* The hexadecimal integer literal expression 0xff could be interpreted as the numeric literal @ mul-
tiplied by the variable xff. Similar ambiguities arise with octal and binary literals like 00777 or
0b010010160.

* The floating-point literal expression 1e10 could be interpreted as the numeric literal 1 multiplied by
the variable €10, and similarly with the equivalent E form.

* The 32-bit floating-point literal expression 1.5f22 could be interpreted as the numeric literal 1.5
multiplied by the variable f22.

In all cases the ambiguity is resolved in favor of interpretation as numeric literals:

* Expressions starting with 0x/00/0b are always hexadecimal/octal/binary literals.

* Expressions starting with a numeric literal followed by e or E are always floating-point literals.

» Expressions starting with a numeric literal followed by f are always 32-bit floating-point literals.
Unlike E, which is equivalent to e in numeric literals for historical reasons, F is just another letter and does
not behave like f in numeric literals. Hence, expressions starting with a numeric literal followed by F are

interpreted as the numerical literal multiplied by a variable, which means that, for example, 1.5F22 is
equalto 1.5 * F22.

4.5 Literal zero and one

Julia provides functions which return literal 0 and 1 corresponding to a specified type or the type of a given
variable.

Function | Description
zero(x) Literal zero of type x or type of variable x
one(x) Literal one of type x or type of variable x

These functions are useful in Numeric Comparisons to avoid overhead from unnecessary type conversion.

Examples:

julia> zero(Float32)
0.0f0

julia> zero(1.0)
0.0

julia> one(Int32)
1

julia> one(BigFloat)
1.0
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Mathematical Operations and Elementary
Functions

Julia provides a complete collection of basic arithmetic and bitwise operators across all of its numeric
primitive types, as well as providing portable, efficient implementations of a comprehensive collection of
standard mathematical functions.

5.1 Arithmetic Operators

The following arithmetic operators are supported on all primitive numeric types:

Expression | Name Description

+X unary plus the identity operation

-X unary minus maps values to their additive inverses
X +y binary plus performs addition

X -y binary minus performs subtraction

X *y times performs multiplication
X/y divide performs division

X +y integer divide | x /vy, truncated to an integer
X \y inverse divide | equivalenttoy / x

X~y power raises x to the yth power

X %Yy remainder equivalent to rem(x,y)

A numeric literal placed directly before an identifier or parentheses, e.g. 2x or 2(x+y), is treated as a mul-
tiplication, except with higher precedence than other binary operations. See Numeric Literal Coefficients
for details.

Julia's promotion system makes arithmetic operations on mixtures of argument types "just work" naturally
and automatically. See Conversion and Promotion for details of the promotion system.

The =+ sign can be conveniently typed by writing \div<tab> to the REPL or Julia IDE. See the manual section
on Unicode input for more information.

Here are some simple examples using arithmetic operators:

julia> 1 + 2 + 3
6

26


https://en.wikipedia.org/wiki/Arithmetic#Arithmetic_operations
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julia> 1 - 2
-1

julia> 3*%2/12
0.5

(By convention, we tend to space operators more tightly if they get applied before other nearby operators.
For instance, we would generally write -x + 2 to reflect that first x gets negated, and then 2 is added to
that result.)

When used in multiplication, false acts as a strong zero:

julia> NaN * false
0.0

julia> false * Inf
0.0

This is useful for preventing the propagation of NaN values in quantities that are known to be zero. See
Knuth (1992) for motivation.

5.2 Boolean Operators

The following Boolean operators are supported on Bool types:

Expression | Name

X negation

X && y short-circuiting and
x ||y short-circuiting or

Negation changes true to false and vice versa. The short-circuiting operations are explained on the linked
page.

Note that Bool is an integer type and all the usual promotion rules and numeric operators are also defined
on it.

5.3 Bitwise Operators
The following bitwise operators are supported on all primitive integer types:

Here are some examples with bitwise operators:

julia> ~123
-124

julia> 123 & 234
106

julia> 123 | 234



https://arxiv.org/abs/math/9205211
https://en.wikipedia.org/wiki/Boolean_algebra#Operations
https://en.wikipedia.org/wiki/Bitwise_operation#Bitwise_operators
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Expression | Name

~X bitwise not

X &y bitwise and

x|y bitwise or

x Vy bitwise xor (exclusive or)
X y bitwise nand (not and)

X y bitwise nor (not or)

X >>> y logical shift right

X >>y arithmetic shift right

X <<y logical/arithmetic shift left

251

julia> 123 V 234
145

julia> xor(123, 234)
145

julia> nand(123, 123)
-124

julia> 123 123
124

julia> nor(123, 124)
-128

julia> 123 124
-128

julia> ~UInt32(123)
Oxffffff84

julia> ~UInt8(123)
0x84

5.4 Updating operators

Every binary arithmetic and bitwise operator also has an updating version that assigns the result of the
operation back into its left operand. The updating version of the binary operator is formed by placing a =
immediately after the operator. For example, writing x += 3 is equivalent to writing x = x + 3:

julia> x = 1
1

julia> x += 3
4


https://en.wikipedia.org/wiki/Logical_shift
https://en.wikipedia.org/wiki/Arithmetic_shift
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julia> x
4

The updating versions of all the binary arithmetic and bitwise operators are:

+= -= *= /= \= = %= "= &= |= V= >>>= >>= <<=

Note
An updating operator rebinds the variable on the left-hand side. As a result, the type of the

variable may change.

julia> x = 0x01; typeof(x)
UInt8

julia> x *= 2 # Same as x = x * 2
2

julia> typeof(x)
Int64

5.5 Vectorized "dot" operators

For every binary operation like *, there is a corresponding "dot" operation .” that is automatically defined
to perform ~ element-by-element on arrays. For example, [1,2,3] ~ 3 is not defined, since there is no
standard mathematical meaning to "cubing" a (non-square) array, but [1,2,3] .”~ 3 is defined as com-
puting the elementwise (or "vectorized") result [173, 273, 373]. Similarly for unary operators like ! or
Vv, there is a corresponding .V that applies the operator elementwise.

julia> [1,2,3] .~ 3
3-element Vector{Int64}:
1
8
27

More specifically, a .” b is parsed as the "dot" call (). (a,b), which performs a broadcast operation:
it can combine arrays and scalars, arrays of the same size (performing the operation elementwise), and
even arrays of different shapes (e.g. combining row and column vectors to produce a matrix). Moreover,
like all vectorized "dot calls," these "dot operators" are fusing. For example, if you compute 2 .* A."2 .+
sin. (A) (or equivalently @. 2A~2 + sin(A), using the @. macro) for an array A, it performs a single loop
over A, computing 2a”2 + sin(a) for each element a of A. In particular, nested dot calls like . (g.(x))
are fused, and "adjacent" binary operators like x .+ 3 .* x.”2 are equivalent to nested dot calls (+) . (X,
(*).(3, (").(x, 2))).

Furthermore, "dotted" updating operators likea .+= b(or@. a += b)areparsedasa .= a .+ b, where
.= is a fused in-place assignment operation (see the dot syntax documentation).

Note the dot syntax is also applicable to user-defined operators. For example, if you define ®(A,B) =
kron(A,B) to give a convenient infix syntax A ® B for Kronecker products (kron), then [A,B] .® [C,D]
will compute [AeC, BeD] with no additional coding.
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Combining dot operators with numeric literals can be ambiguous. For example, it is not clear whether
l.+x means 1. + xor1l .+ x. Therefore this syntax is disallowed, and spaces must be used around the
operator in such cases.

5.6 Numeric Comparisons

Standard comparison operations are defined for all the primitive numeric types:

Operator | Name

== equality
=, # inequality
< less than

A
]
IA

less than or equal to
> greater than
greater than or equal to

\
]
\%

Here are some simple examples:

julia> 1 == 1
true

julia> 1 ==
false

julia> 1 !=2
true

julia> 1 == 1.0
true

julia> 1 < 2
true

julia> 1.0 > 3
false

julia> 1 >= 1.0
true

julia> -1 <=1
true

julia> -1 <= -1
true

julia> -1 <= -2
false

julia> 3 < -0.5
false
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Integers are compared in the standard manner - by comparison of bits. Floating-point numbers are com-
pared according to the IEEE 754 standard:

* Finite numbers are ordered in the usual manner.

» Positive zero is equal but not greater than negative zero.

¢ Infis equal to itself and greater than everything else except NaN.

* -Inf is equal to itself and less than everything else except NaN.

* NaN is not equal to, not less than, and not greater than anything, including itself.

The last point is potentially surprising and thus worth noting:

julia> NaN == NaN
false

julia> NaN != NaN
true

julia> NaN < NaN
false

julia> NaN > NaN

false

and can cause headaches when working with arrays:

julia> [1 NaN] == [1 NaN]
false

Julia provides additional functions to test numbers for special values, which can be useful in situations like
hash key comparisons:

Function Tests if

isequal(x, y) | xandy are identical
isfinite(x) X is a finite number
isinf(x) x is infinite
isnan(x) X is not a number

isequal considers NaNs equal to each other:

julia> isequal(NaN, NaN)
true

julia> isequal([1 NaN], [1 NaN])
true

julia> isequal(NaN, NaN32)
true



https://en.wikipedia.org/wiki/IEEE_754-2008
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isequal can also be used to distinguish signed zeros:

julia> -0.0 == 0.0
true

julia> isequal(-0.0, 0.0)
false

Mixed-type comparisons between signed integers, unsigned integers, and floats can be tricky. A great deal
of care has been taken to ensure that Julia does them correctly.

For other types, isequal defaults to calling ==, so if you want to define equality for your own types then
you only need to add a == method. If you define your own equality function, you should probably define a
corresponding hash method to ensure that isequal(x,y) implies hash(x) == hash(y).

Chaining comparisons

Unlike most languages, with the notable exception of Python, comparisons can be arbitrarily chained:

julia> 1 <2 <=2<3=3>2>=1==1<31=5
true

Chaining comparisons is often quite convenient in numerical code. Chained comparisons use the && opera-
tor for scalar comparisons, and the & operator for elementwise comparisons, which allows them to work on
arrays. For example, ® .< A .< 1 gives a boolean array whose entries are true where the corresponding
elements of A are between 0 and 1.

Note the evaluation behavior of chained comparisons:

julia> v(x) = (println(x); x)
v (generic function with 1 method)

julia> v(1) < v(2) <= v(3)
2

1

3

true

julia> v(1) > v(2) <= v(3)
2

1

false

The middle expression is only evaluated once, rather than twice as it would be if the expression were
written as v(1) < v(2) && v(2) <= v(3). However, the order of evaluations in a chained comparison
is undefined. It is strongly recommended not to use expressions with side effects (such as printing) in
chained comparisons. If side effects are required, the short-circuit && operator should be used explicitly
(see Short-Circuit Evaluation).


https://en.wikipedia.org/wiki/Python_syntax_and_semantics#Comparison_operators
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Elementary Functions

Julia provides a comprehensive collection of mathematical functions and operators. These mathematical
operations are defined over as broad a class of numerical values as permit sensible definitions, including
integers, floating-point numbers, rationals, and complex numbers, wherever such definitions make sense.

Moreover, these functions (like any Julia function) can be applied in "vectorized" fashion to arrays and other
collections with the dot syntax f. (A), e.g. sin. (A) will compute the sine of each element of an array A.

5.7 Operator Precedence and Associativity

Julia applies the following order and associativity of operations, from highest precedence to lowest:

Category Operators Associativity
Syntax . followed by :: Left
Exponentiation | * Right

Unary + -V Right!
Bitshifts << >> >>> Left
Fractions // Left
Multiplication /% &\ + Left?
Addition +- |V Left?
Syntax Left

Syntax |> Left

Syntax <| Right
Comparisons > < >= <= == === |= l== < Non-associative
Control flow && followed by || followed by ? Right

Pair => Right
Assignments = += -= *= /= [/= \= "= += %= |= & V= <<= >>= >>>= | Right

For a complete list of every Julia operator's precedence, see the top of this file: src/julia-parser.scm.
Note that some of the operators there are not defined in the Base module but may be given definitions by
standard libraries, packages or user code.

You can also find the numerical precedence for any given operator via the built-in function Base.operator precedence,
where higher numbers take precedence:

julia> Base.operator precedence(:+), Base.operator precedence(:*), Base.operator precedence(:.)
(11, 12, 17)

julia> Base.operator_precedence(:sin), Base.operator precedence(:+=),
< Base.operator precedence(:(=)) i(=)")
(6, 1, 1)

# (Note the necessary parens on

A symbol representing the operator associativity can also be found by calling the built-in function Base.operator_associativity:

1The unary operators + and - require explicit parentheses around their argument to disambiguate them from the operator ++,
etc. Other compositions of unary operators are parsed with right-associativity, e. g., vv-a as V(v(-a)).

2The operators +, ++ and * are non-associative. a + b + cis parsed as+(a, b, c) not+(+(a, b), c). However, the fallback
methods for +(a, b, ¢, d...) and *(a, b, ¢, d...) both default to left-associative evaluation.


https://github.com/JuliaLang/julia/blob/master/src/julia-parser.scm
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julia> Base.operator associativity(:-), Base.operator associativity(:+),
— Base.operator _associativity(:")
(:left, :none, :right)

julia> Base.operator associativity(:e), Base.operator associativity(:sin),
< Base.operator associativity(:-)
(:left, :none, :right)

Note that symbols such as :sin return precedence 0. This value represents invalid operators and not
operators of lowest precedence. Similarly, such operators are assigned associativity :none.

Numeric literal coefficients, e.g. 2x, are treated as multiplications with higher precedence than any other
binary operation, with the exception of ~ where they have higher precedence only as the exponent.

julia> x = 3; 2x"2
18
julia> x = 3; 272x

64

Juxtaposition parses like a unary operator, which has the same natural asymmetry around exponents: -x"y
and 2x™y parse as - (x"y) and 2(x"y) whereas x~-y and x*2y parse as x~(-y) and x~(2y).
5.8 Numerical Conversions

Julia supports three forms of numerical conversion, which differ in their handling of inexact conversions.

* The notation T(x) or convert(T,x) converts x to a value of type T.

- If Tis a floating-point type, the result is the nearest representable value, which could be positive
or negative infinity.

- If Tis an integer type, an InexactError is raised if x is not representable by T.

* X % T converts an integer x to a value of integer type T congruent to x modulo 2”n, where n is the
number of bits in T. In other words, the binary representation is truncated to fit.

¢ The Rounding functions take a type T as an optional argument. For example, round(Int,x) is a
shorthand for Int(round(x)).

The following examples show the different forms.

julia> Int8(127)
127

julia> Int8(128)

ERROR: InexactError: trunc(Int8, 128)
Stacktrace:

[...]
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julia> Int8(127.0)
127

julia> Int8(3.14)

ERROR: InexactError: Int8(3.14)
Stacktrace:

[...]

julia> Int8(128.0)
ERROR: InexactError: Int8(128.0)
Stacktrace:

[...1]

julia> 127 % Int8
127

julia> 128 % Int8
-128

julia> round(Int8,127.4)
127

julia> round(Int8,127.6)

ERROR: InexactError: trunc(Int8, 128.0)
Stacktrace:

[...]

See Conversion and Promotion for how to define your own conversions and promotions.

Rounding functions

Function Description Return type
round(x) round x to the nearest integer | typeof(x)
round(T, Xx) round x to the nearest integer | T

floor(x) round x towards -Inf typeof(x)
floor(T, x) round x towards -Inf T

ceil(x) round x towards +Inf typeof(x)
ceil(T, x) round x towards +Inf T

trunc(x) round x towards zero typeof(x)
trunc(T, x) round x towards zero T

Division functions
Sign and absolute value functions

Powers, logs and roots

For an overview of why functions like hypot, expml, and loglp are necessary and useful, see John D. Cook's
excellent pair of blog posts on the subject: expm1, loglp, erfc, and hypot.


https://www.johndcook.com/blog/2010/06/07/math-library-functions-that-seem-unnecessary/
https://www.johndcook.com/blog/2010/06/02/whats-so-hard-about-finding-a-hypotenuse/
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Function Description

div(x,y), truncated division; quotient rounded towards zero

X+y

fld(x,y) floored division; quotient rounded towards -Inf

cld(x,y) ceiling division; quotient rounded towards +Inf

rem(x,y), remainder; satisfies x == div(x,y)*y + rem(x,y); sign matches x

X%y

mod (X,Y) modulus; satisfies x == fld(x,y)*y + mod(x,y); sign matches y

modl(x,y) mod with offset 1; returns r€(0,y] for y>0 or r€[y,0) for y<0, where mod(r, y) ==
mod(x, y)

mod2pi(x) modulus with respect to 2pi; @ <= mod2pi(x) < 2pi

divrem(x,y) | returns (div(x,y),rem(x,y))

fldmod(x,y) | returns (fld(x,y),mod(x,y))

gcd(x,y...) | greatest positive common divisor of x, y,...

lem(x,y...) | least positive common multiple of x, v,...

Function Description

abs(x) a positive value with the magnitude of x

abs2(x) the squared magnitude of x

sign(x) indicates the sign of x, returning -1, 0, or +1

signbit(x) indicates whether the sign bit is on (true) or off (false)

copysign(x,y)

a value with the magnitude of x and the sign of y

flipsign(x,y)

a value with the magnitude of x and the sign of x*y

Function Description

sqrt(x), vx square root of x

cbrt(x), ¥x cube root of x

hypot(x,y) hypotenuse of right-angled triangle with other sides of length x and y
exp(x) natural exponential function at x

expml(x) accurate exp(x) -1 for x near zero

ldexp(x,n) x*2”n computed efficiently for integer values of n
log(x) natural logarithm of x

log (b, x) base b logarithm of x

log2(x) base 2 logarithm of x

logl0(x) base 10 logarithm of x

loglp(x) accurate log(1+x) for x near zero

exponent (X

)

binary exponent of x

significand(x)

binary significand (a.k.a. mantissa) of a floating-point number x

Trigonometric and hyperbolic functions

All the standard trigonometric and hyperbolic functions are also defined:

sin cos

sinh cosh
asin acos
asinh acosh
sinc cosc

tan cot sec csc
tanh coth sech csch
atan acot asec acsc
atanh acoth asech acsch
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These are all single-argument functions, with atan also accepting two arguments corresponding to a tra-
ditional atan2 function.

Additionally, sinpi(x) and cospi(x) are provided for more accurate computations of sin(pi*x) and
cos (pi*x) respectively.

In order to compute trigonometric functions with degrees instead of radians, suffix the function with d. For
example, sind(x) computes the sine of x where x is specified in degrees. The complete list of trigonometric
functions with degree variants is:

sind cosd tand cotd secd cscd
asind acosd atand acotd asecd acscd

Special functions

Many other special mathematical functions are provided by the package SpecialFunctions.jl.


https://en.wikipedia.org/wiki/Atan2
https://github.com/JuliaMath/SpecialFunctions.jl

Chapter 6

Complex and Rational Numbers

Julia includes predefined types for both complex and rational numbers, and supports all the standard Math-
ematical Operations and Elementary Functions on them. Conversion and Promotion are defined so that
operations on any combination of predefined numeric types, whether primitive or composite, behave as
expected.

6.1 Complex Numbers

The global constant imis bound to the complex number i, representing the principal square root of -1. (Using
mathematicians' i or engineers' j for this global constant was rejected since they are such popular index
variable names.) Since Julia allows numeric literals to be juxtaposed with identifiers as coefficients, this
binding suffices to provide convenient syntax for complex numbers, similar to the traditional mathematical
notation:

julia> 1+2im
1+ 2im

You can perform all the standard arithmetic operations with complex numbers:

julia> (1 + 2im)*(2 - 3im)
8 + 1lim

julia> (1 + 2im)/(1 - 2im)
-0.6 + 0.8im

julia> (1 + 2im) + (1 - 2im)
2 + 0im

julia> (-3 + 2im) - (5 - 1im)
-8 + 3im

julia> (-1 + 2im)"2
-3 - 4im

julia> (-1 + 2im)~2.5
2.729624464784009 - 6.9606644595719im

38
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julia> (-1 + 2im)~(1 + 1im)
-0.27910381075826657 + 0.08708053414102428im

julia> 3(2 - 5im)
6 - 15im

julia> 3(2 - 5im)"2
-63 - 60im

julia> 3(2 - 5im)~-1.0
0.20689655172413793 + 0.5172413793103449im

The promotion mechanism ensures that combinations of operands of different types just work:

julia> 2(1 - 1im)
2 - 2im

julia> (2 + 3im) - 1
1+ 3im

julia> (1 + 2im) + 0.5
1.5 + 2.0im

julia> (2 + 3im) - 0.5im
2.0 + 2.5im

julia> 0.75(1 + 2im)
0.75 + 1.5im

julia> (2 + 3im) / 2
1.0 + 1.5im

julia> (1 - 3im) / (2 + 2im)
-0.5 - 1.0im

julia> 2im"2
-2 + 0im

julia> 1 + 3/4im
1.0 - 0.75im

Note that 3/4im == 3/(4*im) == -(3/4*im), since a literal coefficient binds more tightly than division.

Standard functions to manipulate complex values are provided:

julia> z = 1 + 2im
1+ 2im

julia> real(l + 2im) # real part of z
1
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julia> imag(l + 2im) # imaginary part of z
2

julia> conj (1l + 2im) # complex conjugate of z
1 - 2im

julia> abs(1 + 2im) # absolute value of z
2.23606797749979

julia> abs2(1 + 2im) # squared absolute value
5

julia> angle(1l + 2im) # phase angle in radians
1.1071487177940904

As usual, the absolute value (abs) of a complex number is its distance from zero. abs2 gives the square
of the absolute value, and is of particular use for complex numbers since it avoids taking a square root.
angle returns the phase angle in radians (also known as the argument or arg function). The full gamut of
other Elementary Functions is also defined for complex numbers:

julia> sqrt(lim)
0.7071067811865476 + 0.7071067811865475im

julia> sqrt(l + 2im)
1.272019649514069 + 0.7861513777574233im

julia> cos(1l + 2im)
2.0327230070196656 - 3.0518977991517997im

julia> exp(l + 2im)
-1.1312043837568135 + 2.4717266720048188im

julia> sinh(1 + 2im)
-0.4890562590412937 + 1.4031192506220405im

Note that mathematical functions typically return real values when applied to real numbers and complex

values when applied to complex numbers. For example, sqrt behaves differently when applied to -1 versus
-1 + 0imeven though -1 == -1 + 0im:

julia> sqrt(-1)
ERROR: DomainError with -1.0:
sqrt was called with a negative real argument but will only return a complex result if called

— with a complex argument. Try sqrt(Complex(x)).
Stacktrace:

[...]

julia> sqrt(-1 + 0im)
0.0 + 1.0im

The literal numeric coefficient notation does not work when constructing a complex number from variables.
Instead, the multiplication must be explicitly written out:
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julia> a = 1; b = 2; a + b*im
1+ 2im

However, this is not recommended. Instead, use the more efficient complex function to construct a complex
value directly from its real and imaginary parts:

julia> a = 1; b = 2; complex(a, b)
1+ 2im

This construction avoids the multiplication and addition operations.

Inf and NaN propagate through complex numbers in the real and imaginary parts of a complex number as
described in the Special floating-point values section:

julia> 1 + Inf*im
1.0 + Inf*im

julia> 1 + NaN*im
1.0 + NaN*im

6.2 Rational Numbers

Julia has a rational number type to represent exact ratios of integers. Rationals are constructed using the
// operator:

julia> 2//3
2//3

If the numerator and denominator of a rational have common factors, they are reduced to lowest terms
such that the denominator is non-negative:

julia> 6//9
2//3

julia> -4//8
-1//2

julia> 5//-15
-1//3

julia> -4//-12
1//3

This normalized form for a ratio of integers is unique, so equality of rational values can be tested by checking
for equality of the numerator and denominator. The standardized numerator and denominator of a rational
value can be extracted using the numerator and denominator functions:
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julia> numerator(2//3)
2

julia> denominator(2//3)
3

Direct comparison of the numerator and denominator is generally not necessary, since the standard arith-
metic and comparison operations are defined for rational values:

julia> 2//3 == 6//9
true

julia> 2//3 == 9//27
false

julia> 3//7 < 1//2
true

julia> 3//4 > 2//3
true

julia> 2//4 + 1//6
2//3

julia> 5//12 - 1//4
1//6

julia> 5//8 * 3//12
5//32

julia> 6//5 / 10//7
21//25

Rationals can easily be converted to floating-point numbers:

julia> float(3//4)
0.75

Conversion from rational to floating-point respects the following identity for any integral values of a and b,
with the exception of the two casesb == @anda == 0 & b < 0:

julia> a = 1; b = 2;

julia> isequal(float(a//b), a/b)
true

Constructing infinite rational values is acceptable:
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julia> 5//0
1//0

julia> x = -3//0
-1//0

julia> typeof(x)
Rational{Int64}

Trying to construct a NaN rational value, however, is invalid

julia> 0//0
ERROR: ArgumentError: invalid rational: zero(Int64)//zero(Int64)
Stacktrace:

[...]

As usual, the promotion system makes interactions with other numeric types effortless:

julia> 3//5 + 1
8//5

julia> 3//5 - 0.5
0.09999999999999998

julia> 2//7 * (1 + 2im)
2//7 + 4//7*im

julia> 2//7 * (1.5 + 2im)
0.42857142857142855 + 0.5714285714285714im

julia> 3//2 / (1 + 2im)
3//10 - 3//5*im

julia> 1//2 + 2im
1//2 + 2//1*im

julia> 1 + 2//3im
1//1 - 2//3*im

julia> 0.5 == 1//2
true

julia> 0.33 == 1//3
false

julia> 0.33 < 1//3
true

julia> 1//3 - 0.33
0.0033333333333332993

43



Chapter 7

Strings

Strings are finite sequences of characters. Of course, the real trouble comes when one asks what a char-
acter is. The characters that English speakers are familiar with are the letters A, B, C, etc., together with
numerals and common punctuation symbols. These characters are standardized together with a mapping
to integer values between 0 and 127 by the ASCII standard. There are, of course, many other characters
used in non-English languages, including variants of the ASCIl characters with accents and other modifi-
cations, related scripts such as Cyrillic and Greek, and scripts completely unrelated to ASCIl and English,
including Arabic, Chinese, Hebrew, Hindi, Japanese, and Korean. The Unicode standard tackles the com-
plexities of what exactly a character is, and is generally accepted as the definitive standard addressing
this problem. Depending on your needs, you can either ignore these complexities entirely and just pretend
that only ASCII characters exist, or you can write code that can handle any of the characters or encodings
that one may encounter when handling non-ASCI| text. Julia makes dealing with plain ASCII text simple and
efficient, and handling Unicode is as simple and efficient as possible. In particular, you can write C-style
string code to process ASCII strings, and they will work as expected, both in terms of performance and
semantics. If such code encounters non-ASCII text, it will gracefully fail with a clear error message, rather
than silently introducing corrupt results. When this happens, modifying the code to handle non-ASCII data
is straightforward.

There are a few noteworthy high-level features about Julia's strings:

* The built-in concrete type used for strings (and string literals) in Julia is String. This supports the full
range of Unicode characters via the UTF-8 encoding. (A transcode function is provided to convert
to/from other Unicode encodings.)

» All string types are subtypes of the abstract type AbstractString, and external packages define
additional AbstractString subtypes (e.g. for other encodings). If you define a function expecting a
string argument, you should declare the type as AbstractString in order to accept any string type.

e Like C and Java, but unlike most dynamic languages, Julia has a first-class type for representing
a single character, called AbstractChar. The built-in Char subtype of AbstractChar is a 32-bit
primitive type that can represent any Unicode character (and which is based on the UTF-8 encoding).

e As in Java, strings are immutable: the value of an AbstractString object cannot be changed. To
construct a different string value, you construct a new string from parts of other strings.

¢ Conceptually, a string is a partial function from indices to characters: for some index values, no
character value is returned, and instead an exception is thrown. This allows for efficient indexing
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into strings by the byte index of an encoded representation rather than by a character index, which
cannot be implemented both efficiently and simply for variable-width encodings of Unicode strings.

7.1 Characters

A Char value represents a single character: it is just a 32-bit primitive type with a special literal represen-
tation and appropriate arithmetic behaviors, and which can be converted to a numeric value representing
a Unicode code point. (Julia packages may define other subtypes of AbstractChar, e.g. to optimize oper-
ations for other text encodings.) Here is how Char values are input and shown (note that character literals
are delimited with single quotes, not double quotes):

julia> c = 'x
'x"': ASCII/Unicode U+0078 (category Ll: Letter, lowercase)

julia> typeof(c)
Char

You can easily convert a Char to its integer value, i.e. code point:

julia> c = Int('x")
120

julia> typeof(c)
Int64

On 32-bit architectures, typeof(c) will be Int32. You can convert an integer value back to a Char just as
easily:

julia> Char(120)
'x': ASCII/Unicode U+0078 (category Ll: Letter, lowercase)

Not all integer values are valid Unicode code points, but for performance, the Char conversion does not
check that every character value is valid. If you want to check that each converted value is a valid code
point, use the isvalid function:

julia> Char(0x110000)
'\U110000"': Unicode U+110000 (category In: Invalid, too high)

julia> isvalid(Char, 0x110000)
false

As of this writing, the valid Unicode code points are U+0000 through U+D7FF and U+E0GO through U+10FFFF.
These have not all been assigned intelligible meanings yet, nor are they necessarily interpretable by ap-
plications, but all of these values are considered to be valid Unicode characters.

You can input any Unicode character in single quotes using \u followed by up to four hexadecimal digits or
\U followed by up to eight hexadecimal digits (the longest valid value only requires six):
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julia> '\uo'
'\0': ASCII/Unicode U+0000 (category Cc: Other, control)

julia> '\u78'
'x': ASCII/Unicode U+0078 (category Ll: Letter, lowercase)

julia> '\u2200'
'Y': Unicode U+2200 (category Sm: Symbol, math)

julia> '\UlOffff'
"\Uloffff': Unicode U+1OFFFF (category Cn: Other, not assigned)

Julia uses your system's locale and language settings to determine which characters can be printed as-is
and which must be output using the generic, escaped \u or \U input forms. In addition to these Unicode
escape forms, all of C's traditional escaped input forms can also be used:

julia> Int('\0')
0

julia> Int('\t')
9

julia> Int('\n"')
10

julia> Int('\e')
27

julia> Int('\x7f')
127

julia> Int('\177")
127

You can do comparisons and a limited amount of arithmetic with Char values:

julia> 'A' < 'a'
true

julia> 'A' <= 'a' <= 'Z'
false

julia> 'A' <= 'X' <= 'Z'
true

julia> 'x' - 'a’
23

julia> 'A' + 1
'B': ASCII/Unicode U+0042 (category Lu: Letter, uppercase)



https://en.wikipedia.org/wiki/C_syntax#Backslash_escapes

CHAPTER 7. STRINGS 47

7.2 String Basics

String literals are delimited by double quotes or triple double quotes (not single quotes):

julia> str = "Hello, world.\n"
"Hello, world.\n"

julia> """Contains "quote" characters"""
"Contains \"quote\" characters"

Long lines in strings can be broken up by preceding the newline with a backslash (\):

julia> "This is a long \
line"
"This is a long line"

If you want to extract a character from a string, you index into it:

julia> str[begin]
'H': ASCII/Unicode U+0048 (category Lu: Letter, uppercase)

julia> str[1]
'H': ASCII/Unicode U+0048 (category Lu: Letter, uppercase)

julia> str[6]
', 't ASCII/Unicode U+002C (category Po: Punctuation, other)

julia> str[end]
‘\n': ASCII/Unicode U+000A (category Cc: Other, control)

Many Julia objects, including strings, can be indexed with integers. The index of the first element (the first
character of a string) is returned by firstindex(str), and the index of the last element (character) with
lastindex(str). The keywords begin and end can be used inside an indexing operation as shorthand for
the first and last indices, respectively, along the given dimension. String indexing, like most indexing in
Julia, is 1-based: firstindex always returns 1 for any AbstractString. As we will see below, however,
lastindex(str) is notin general the same as length(str) for a string, because some Unicode characters
can occupy multiple "code units".

You can perform arithmetic and other operations with end, just like a normal value:

julia> str[end-1]
".'": ASCII/Unicode U+002E (category Po: Punctuation, other)

julia> str[end=2]
' ': ASCII/Unicode U+0020 (category Zs: Separator, space)

Using an index less than begin (1) or greater than end raises an error:
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julia> str[begin-1]
ERROR: BoundsError: attempt to access 14-codeunit String at index [0]
[...]

julia> str[end+1]
ERROR: BoundsError: attempt to access 14-codeunit String at index [15]
[...]

You can also extract a substring using range indexing:

julia> str[4:9]
"lo, wo"

Notice that the expressions str[k] and str[k:k] do not give the same result:

julia> str[6]
',': ASCII/Unicode U+002C (category Po: Punctuation, other)

julia> str[6:6]

non
’

The former is a single character value of type Char, while the latter is a string value that happens to contain
only a single character. In Julia these are very different things.

Range indexing makes a copy of the selected part of the original string. Alternatively, it is possible to
create a view into a string using the type SubString. More simply, using the @views macro on a block of
code converts all string slices into substrings. For example:

julia> str = "long string"
"long string"

julia> substr = SubString(str, 1, 4)
"long"

julia> typeof(substr)
SubString{String}

julia> @views typeof(str[1:4]) # @views converts slices to SubStrings
SubString{String}

Several standard functions like chop, chomp or strip return a SubString.

7.3 Unicode and UTF-8

Julia fully supports Unicode characters and strings. As discussed above, in character literals, Unicode code
points can be represented using Unicode \u and \U escape sequences, as well as all the standard C escape
sequences. These can likewise be used to write string literals:

julia> s = "\u2200 x \u2203 y"
M ERL
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Whether these Unicode characters are displayed as escapes or shown as special characters depends on
your terminal's locale settings and its support for Unicode. String literals are encoded using the UTF-8
encoding. UTF-8 is a variable-width encoding, meaning that not all characters are encoded in the same
number of bytes ("code units"). In UTF-8, ASCIl characters — i.e. those with code points less than 0x80
(128) - are encoded as they are in ASCII, using a single byte, while code points 0x80 and above are encoded
using multiple bytes — up to four per character.

String indices in Julia refer to code units (= bytes for UTF-8), the fixed-width building blocks that are used
to encode arbitrary characters (code points). This means that not every index into a String is necessarily
a valid index for a character. If you index into a string at such an invalid byte index, an error is thrown:

julia> s[1]
'Y': Unicode U+2200 (category Sm: Symbol, math)

julia> s[2]
ERROR: StringIndexError: invalid index [2], valid nearby indices [1]=>'V', [4]=>' "'
Stacktrace:

[...]

julia> s[3]

ERROR: StringIndexError: invalid index [3], valid nearby indices [1]=>'V', [4]=>' '
Stacktrace:

[...]

julia> s[4]

' 't ASCII/Unicode U+0020 (category Zs: Separator, space)

In this case, the character V is a three-byte character, so the indices 2 and 3 are invalid and the next
character's index is 4; this next valid index can be computed by nextind(s,1), and the next index after
that by nextind(s,4) and so on.

Since end is always the last valid index into a collection, end-1 references an invalid byte index if the
second-to-last character is multibyte.

julia> s[end-1]
' ': ASCII/Unicode U+0020 (category Zs: Separator, space)

julia> s[end-2]
ERROR: StringIndexError: invalid index [9], valid nearby indices [7]=>'3', [10]=>' '
Stacktrace:

[...]

julia> s[prevind(s, end, 2)]
'3': Unicode U+2203 (category Sm: Symbol, math)

The first case works, because the last character y and the space are one-byte characters, whereas end-2
indexes into the middle of the 3 multibyte representation. The correct way for this case is using prevind(s,
lastindex(s), 2) or, if you're using that value to index into s you can write s[prevind(s, end, 2)] and
end expands to lastindex(s).

Extraction of a substring using range indexing also expects valid byte indices or an error is thrown:
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julia> s[1:1]
ny

julia> s[1:2]

ERROR: StringIndexError: invalid index [2], valid nearby indices [1]=>'V', [4]=>' "'
Stacktrace:

[...]

julia> s[1:4]
wy

Because of variable-length encodings, the number of characters in a string (given by length(s)) is not
always the same as the last index. If you iterate through the indices 1 through lastindex(s) andindex into
s, the sequence of characters returned when errors aren't thrown is the sequence of characters comprising
the string s. Thus length(s) <= lastindex(s), since each character in a string must have its own index.
The following is an inefficient and verbose way to iterate through the characters of s:

julia> for i = firstindex(s):lastindex(s)

try
println(s[i])
catch
# ignore the index error
end
end
\
X
El
y

The blank lines actually have spaces on them. Fortunately, the above awkward idiom is unnecessary for
iterating through the characters in a string, since you can just use the string as an iterable object, no
exception handling required:

julia> for c in s
println(c)
end
v
X
3
y

If you need to obtain valid indices for a string, you can use the nextind and prevind functions to incre-
ment/decrement to the next/previous valid index, as mentioned above. You can also use the eachindex
function to iterate over the valid character indices:
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julia> collect(eachindex(s))
7-element Vector{Int64}:

=

51

To access the raw code units (bytes for UTF-8) of the encoding, you can use the codeunit(s,i) function,
where the index i runs consecutively from 1 to ncodeunits(s). The codeunits(s) function returns an

AbstractVector{UInt8} wrapper that lets you access these raw codeunits (bytes) as an array.

Strings in Julia can contain invalid UTF-8 code unit sequences. This convention allows to treat any byte
sequence as a String. In such situations a rule is that when parsing a sequence of code units from left to
right characters are formed by the longest sequence of 8-bit code units that matches the start of one of

the following bit patterns (each x can be 0 or 1):

* OXXXXXXX;

* 110XXXXX LOXXXXXX;

e 1110xXXX LOXXXXXX 1OXXXXXX;

* 11110xXX LOXXXXXX 1OXXXXXX 1OXXXXXX;
* 1OXXXXXX;

e 11111xxX.

In particular this means that overlong and too-high code unit sequences and prefixes thereof are treated
as a single invalid character rather than multiple invalid characters. This rule may be best explained with

an example:

julia> s = "\xc0\xa0\xe2\x88\xe2|"
"\xc0\xa0\xe2\x88\xe2|"

julia> foreach(display, s)

"\xc0\xa0': [overlong] ASCII/Unicode U+0020 (category Zs: Separator,
'\xe2\x88': Malformed UTF-8 (category Ma: Malformed, bad data)
'\xe2': Malformed UTF-8 (category Ma: Malformed, bad data)

"|': ASCII/Unicode U+007C (category Sm: Symbol, math)

julia> isvalid. (collect(s))
4-element BitArray{1l}:
0

0
0
1

julia> s2 = "\xf7\xbf\xbf\xbf"

space)
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"\ULfffff"

julia> foreach(display, s2)
"\U1fffff': Unicode U+1FFFFF (category In: Invalid, too high)

We can see that the first two code units in the string s form an overlong encoding of space character. It
is invalid, but is accepted in a string as a single character. The next two code units form a valid start of a
three-byte UTF-8 sequence. However, the fifth code unit \xe2 is not its valid continuation. Therefore code
units 3 and 4 are also interpreted as malformed characters in this string. Similarly code unit 5 forms a
malformed character because | is not a valid continuation to it. Finally the string s2 contains one too high
code point.

Julia uses the UTF-8 encoding by default, and support for new encodings can be added by packages. For
example, the LegacyStrings.jl package implements UTF16String and UTF32String types. Additional dis-
cussion of other encodings and how to implement support for them is beyond the scope of this document
for the time being. For further discussion of UTF-8 encoding issues, see the section below on byte array lit-
erals. The transcode function is provided to convert data between the various UTF-xx encodings, primarily
for working with external data and libraries.

7.4 Concatenation

One of the most common and useful string operations is concatenation:

julia> greet = "Hello"
"Hello"

julia> whom = "world"
"world"

julia> string(greet, ", ", whom, ".\n")
"Hello, world.\n"

It's important to be aware of potentially dangerous situations such as concatenation of invalid UTF-8 strings.
The resulting string may contain different characters than the input strings, and its number of characters
may be lower than sum of numbers of characters of the concatenated strings, e.g.:

julia> a, b = "\xe2\x88", "\x80"
("\xe2\x88", "\x80")

julia> c = string(a, b)
nyn

julia> collect.([a, b, c])
3-element Vector{Vector{Char}}:
["\xe2\x88"]
['\x80']
['v']

julia> length.([a, b, c])
3-element Vector{Int64}:
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This situation can happen only for invalid UTF-8 strings. For valid UTF-8 strings concatenation preserves
all characters in strings and additivity of string lengths.

Julia also provides * for string concatenation:

julia> greet * ", " * whom * ".\n"
"Hello, world.\n"

While * may seem like a surprising choice to users of languages that provide + for string concatenation,
this use of * has precedent in mathematics, particularly in abstract algebra.

In mathematics, + usually denotes a commutative operation, where the order of the operands does not
matter. An example of this is matrix addition, where A + B == B + A for any matrices A and B that have
the same shape. In contrast, * typically denotes a noncommutative operation, where the order of the
operands does matter. An example of this is matrix multiplication, where in general A * B != B * A,
As with matrix multiplication, string concatenation is noncommutative: greet * whom != whom * greet.
As such, * is a more natural choice for an infix string concatenation operator, consistent with common
mathematical use.

More precisely, the set of all finite-length strings S together with the string concatenation operator * forms
a free monoid (S, *). The identity element of this set is the empty string, "". Whenever a free monoid is
not commutative, the operation is typically represented as \cdot, *, or a similar symbol, rather than +,
which as stated usually implies commutativity.

7.5 Interpolation

Constructing strings using concatenation can become a bit cumbersome, however. To reduce the need for
these verbose calls to string or repeated multiplications, Julia allows interpolation into string literals using
$, as in Perl:

julia> greet = "Hello"; whom = "world";

julia> "$greet, $whom.\n"
"Hello, world.\n"

This is more readable and convenient and equivalent to the above string concatenation - the system

rewrites this apparent single string literal into the call string(greet, ", ", whom, ".\n").

The shortest complete expression after the $ is taken as the expression whose value is to be interpolated
into the string. Thus, you can interpolate any expression into a string using parentheses:

julia> "1 + 2 = $(1 + 2)"
"142=3"
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Both concatenation and string interpolation call string to convert objects into string form. However,
string actually just returns the output of print, so new types should add methods to print or show
instead of string.

Most non-AbstractString objects are converted to strings closely corresponding to how they are entered
as literal expressions:

julia> v = [1,2,3]
3-element Vector{Int64}:
1

2

3
julia> "v: $v"

"v: [1, 2, 31"

stringis the identity for AbstractString and AbstractChar values, so these are interpolated into strings
as themselves, unquoted and unescaped:

julia> c = 'x'
'x': ASCII/Unicode U+0078 (category Ll: Letter, lowercase)

julia> "hi, $c"

"hi, x
To include a literal $ in a string literal, escape it with a backslash:

julia> print("I have \$100 in my account.\n")
I have $100 in my account.

7.6 Triple-Quoted String Literals

When strings are created using triple-quotes ("""...""") they have some special behavior that can be
useful for creating longer blocks of text.

First, triple-quoted strings are also dedented to the level of the least-indented line. This is useful for defining
strings within code that is indented. For example:

julia> str = """
Hello,
world.

" Hello,\n world.\n"

In this case the final (empty) line before the closing """ sets the indentation level.

The dedentation level is determined as the longest common starting sequence of spaces or tabs in all lines,
excluding the line following the opening """ and lines containing only spaces or tabs (the line containing
the closing """ is always included). Then for all lines, excluding the text following the opening """, the
common starting sequence is removed (including lines containing only spaces and tabs if they start with
this sequence), e.qg.:



CHAPTER 7. STRINGS 55

julia> """  This
is
a test"""
! This\nis\n a test"

Next, if the opening is followed by a newline, the newline is stripped from the resulting string.

winhello" "

is equivalent to

hello"""

but

hello"""

will contain a literal newline at the beginning.

Stripping of the newline is performed after the dedentation. For example:

Hello,
world."""
"Hello,\nworld."

julia>

If the newline is removed using a backslash, dedentation will be respected as well:

julia> """
Averylong\
word"""

"Averylongword"

Trailing whitespace is left unaltered.
Triple-quoted string literals can contain " characters without escaping.

Note that line breaks in literal strings, whether single- or triple-quoted, result in a newline (LF) character
\n in the string, even if your editor uses a carriage return \r (CR) or CRLF combination to end lines. To
include a CR in a string, use an explicit escape \r; for example, you can enter the literal string "a CRLF
line ending\r\n".
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7.7 Common Operations

You can

julia>
true
julia>
false
julia>
true
julia>
true

You can

julia>
4

julia>
7

julia>

You can

julia>
4

julia>
7

julia>
4

julia>

You can

julia>
true
julia>
true
julia>
false
julia>
true

lexicographically compare strings using the standard comparison operators:

"abracadabra" < "xylophone"

"abracadabra" == "xylophone"
"Hello, world." != "Goodbye, world."
"1+ 2=3"=="1+2=%(1+2)"

search for the index of a particular character using the findfirst and findlast functions:

findfirst('o', "xylophone")

findlast('o', "xylophone")

findfirst('z', "xylophone")

start the search for a character at a given offset by using the functions findnext and findprev:

findnext('o', "xylophone", 1)

findnext('o', "xylophone", 5)

findprev('o', "xylophone", 5)

findnext('o', "xylophone", 8)

use the occursin function to check if a substring is found within a string

occursin("world", "Hello, world.")
occursin("o", "Xylophon")
occursin("a", "Xylophon")
occursin('o', "Xylophon")



CHAPTER 7. STRINGS 57

The last example shows that occursin can also look for a character literal.

Two other handy string functions are repeat and join:
julia> repeat(".:Z:.", 10)
A A S A R A S A S A I A S A S A SR A T
julia> join(["apples", "bananas", "pineapples"], ", ", " and ")
"apples, bananas and pineapples"
Some other useful functions include:
o firstindex(str) gives the minimal (byte) index that can be used to index into str (always 1 for
strings, not necessarily true for other containers).
e lastindex(str) gives the maximal (byte) index that can be used to index into str.
* length(str) the number of characters in str.
* length(str, i, j) the number of valid character indices in str from i to j.
* ncodeunits(str) number of code units in a string.
* codeunit(str, i) gives the code unit value in the string str atindex i.

e thisind(str, i) givenan arbitraryindexinto a string find the first index of the character into which
the index points.

e nextind(str, i, n=1) find the start of the nth character starting after index i.

e prevind(str, i, n=1) find the start of the nth character starting before index 1i.

7.8 Non-Standard String Literals

There are situations when you want to construct a string or use string semantics, but the behavior of the
standard string construct is not quite what is needed. For these kinds of situations, Julia provides non-
standard string literals. A non-standard string literal looks like a regular double-quoted string literal, but is
immediately prefixed by an identifier, and may behave differently from a normal string literal.

Regular expressions, byte array literals, and version number literals, as described below, are some exam-
ples of non-standard string literals. Users and packages may also define new non-standard string literals.
Further documentation is given in the Metaprogramming section.

7.9 Regular Expressions

Sometimes you are not looking for an exact string, but a particular pattern. For example, suppose you are
trying to extract a single date from a large text file. You don’t know what that date is (that’s why you are
searching for it), but you do know it will look something like YYYY-MM-DD. Regular expressions allow you to
specify these patterns and search for them.

Julia uses version 2 of Perl-compatible regular expressions (regexes), as provided by the PCRE library (see
the PCRE2 syntax description for more details). Regular expressions are related to strings in two ways:
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the obvious connection is that regular expressions are used to find regular patterns in strings; the other
connection is that regular expressions are themselves input as strings, which are parsed into a state ma-
chine that can be used to efficiently search for patterns in strings. In Julia, regular expressions are input
using non-standard string literals prefixed with various identifiers beginning with r. The most basic regular
expression literal without any options turned on justuses r"...":

julia> re = r""\s*(7:#|$)"
r~\s*(?:#|$)"

julia> typeof(re)
Regex

To check if a regex matches a string, use occursin:

julia> occursin(r"”\s*(?:#|$)", "not a comment")
false

julia> occursin(r"~\s*(?:#|$)", "# a comment")
true

As one can see here, occursin simply returns true or false, indicating whether a match for the given regex
occurs in the string. Commonly, however, one wants to know not just whether a string matched, but also
how it matched. To capture this information about a match, use the match function instead:

julia> match(r""\s*(7:#|$)", "not a comment")

julia> match(r"~\s*(?:#[$)", "# a comment")
RegexMatch ("#")

If the regular expression does not match the given string, match returns nothing - a special value that
does not print anything at the interactive prompt. Other than not printing, it is a completely normal value
and you can test for it programmatically:

m = match(r" \s*(7:#[$)", line)
if m === nothing

println("not a comment")
else

println("blank or comment")
end

If a regular expression does match, the value returned by match is a RegexMatch object. These objects
record how the expression matches, including the substring that the pattern matches and any captured
substrings, if there are any. This example only captures the portion of the substring that matches, but
perhaps we want to capture any non-blank text after the comment character. We could do the following:

julia> m = match(r" "\s*(?:#\s*(.*?)\s*$|$)", "# a comment ")
RegexMatch("# a comment ", 1="a comment")
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When calling match, you have the option to specify an index at which to start the search. For example:

julia> m = match(r"[0-9]","aaaalaaaa2aaaa3",1)
RegexMatch("1")

julia> m = match(r"[0-9]","aaaalaaaa2aaaa3",6)
RegexMatch("2")

julia> m = match(r"[0-9]","aaaalaaaa2aaaa3",11)
RegexMatch("3")

You can extract the following info from a RegexMatch object:

¢ the entire substring matched: m.match
* the captured substrings as an array of strings: m.captures
* the offset at which the whole match begins: m.offset

» the offsets of the captured substrings as a vector: m.offsets

For when a capture doesn't match, instead of a substring, m.captures contains nothing in that position,
and m.offsets has a zero offset (recall that indices in Julia are 1-based, so a zero offset into a string is
invalid). Here is a pair of somewhat contrived examples:

julia> m = match(r"(a|b)(c)?(d)", "acd")
RegexMatch("acd", 1="a", 2="c", 3="d")

julia> m.match
"acd"

julia> m.captures
3-element Vector{Union{Nothing, SubString{String}}}:

a

C
NE

julia> m.offset
1

julia> m.offsets
3-element Vector{Int64}:
1

2

3

julia> m = match(r"(a|b)(c)?(d)", "ad")
RegexMatch("ad", 1="a", 2=nothing, 3="d")

julia> m.match
nad"
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julia> m.captures

3-element Vector{Union{Nothing, SubString{String}}}:
ngn

nothing
g

julia> m.offset
1

julia> m.offsets
3-element Vector{Int64}:
1

0

2

It is convenient to have captures returned as an array so that one can use destructuring syntax to bind
them to local variables. As a convenience, the RegexMatch object implements iterator methods that pass
through to the captures field, so you can destructure the match object directly:

julia> first, second, third = m; first

a

Captures can also be accessed by indexing the RegexMatch object with the number or name of the capture
group:

julia> m=match(r" (?<hour>\d+): (?<minute>\d+)","12:45")
RegexMatch("12:45", hour="12", minute="45")

julia> m[:minute]
wg5

julia> m[2]
wg5

Captures can be referenced in a substitution string when using replace by using \n to refer to the nth
capture group and prefixing the substitution string with s. Capture group 0 refers to the entire match
object. Named capture groups can be referenced in the substitution with \g<groupname>. For example:

julia> replace("first second", r"(\w+) (?<agroup>\w+)" => s"\g<agroup> \1")
"second first"

Numbered capture groups can also be referenced as \g<n> for disambiguation, as in:

‘julia> replace("a", r"." => s"\g<0>1")
g1

You can modify the behavior of regular expressions by some combination of the flags i, m, s, and x after
the closing double quote mark. These flags have the same meaning as they do in Perl, as explained in this
excerpt from the perlre manpage:


https://perldoc.perl.org/perlre#Modifiers
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i Do case-insensitive pattern matching.

If locale matching rules are in effect, the case map is taken
from the current locale for code points less than 255, and
from Unicode rules for larger code points. However, matches
that would cross the Unicode rules/non-Unicode rules boundary
(ords 255/256) will not succeed.

m  Treat string as multiple lines. That is, change "~" and "$"
from matching the start or end of the string to matching the
start or end of any line anywhere within the string.

s Treat string as single line. That is, change "." to match any
character whatsoever, even a newline, which normally it would
not match.

Used together, as r""ms, they let the "." match any character

whatsoever, while still allowing "~" and "$" to match,
respectively, just after and just before newlines within the
string.

x  Tells the regular expression parser to ignore most whitespace
that is neither backslashed nor within a character class. You
can use this to break up your regular expression into
(slightly) more readable parts. The '#' character is also
treated as a metacharacter introducing a comment, just as in
ordinary code.

For example, the following regex has all three flags turned on:

julia> r"a+.*b+.*?2d$"ism
r'a+.*b+.*?2d$"ims

julia> match(r"a+.*b+.*?d$"ism, "Goodbye,\nOh, angry,\nBad world\n")
RegexMatch("angry,\nBad world")

The r"..." literal is constructed without interpolation and unescaping (except for quotation mark " which
still has to be escaped). Here is an example showing the difference from standard string literals:

julia> x = 10
10

julia> r"$x"
e

julia> "$x"
n1gn

julia> r"\x"
RN

julia> "\x"
ERROR: syntax: invalid escape sequence
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Triple-quoted regex strings, of the form r""" ... """, are also supported (and may be convenient for regular
expressions containing quotation marks or newlines).

The Regex () constructor may be used to create a valid regex string programmatically. This permits using
the contents of string variables and other string operations when constructing the regex string. Any of the
regex codes above can be used within the single string argument to Regex (). Here are some examples:

julia> using Dates

julia> d = Date(1962,7,10)
1962-07-10

julia> regex d = Regex("Day " * string(day(d)))
r'Day 10"

julia> match(regex d, "It happened on Day 10")
RegexMatch("Day 10")

julia> name = "Jon"
"Jon"
julia> regex name = Regex("[\"( ]\\Q$name\\E[\") 1") # interpolate value of name

r'[\"( 1\QJon\E[\") 1"

julia> match(regex name, " Jon ")
RegexMatch(" Jon ")

julia> match(regex name, "[Jon]") === nothing
true

Note the use of the \Q...\E escape sequence. All characters between the \Q and the \E are interpreted
as literal characters. This is convenient for matching characters that would otherwise be regex metachar-
acters. However, caution is needed when using this feature together with string interpolation, since the
interpolated string might itself contain the \E sequence, unexpectedly terminating literal matching. User
inputs need to be sanitized before inclusion in a regex.

7.10 Byte Array Literals

Another useful non-standard string literal is the byte-array string literal: b"...". This form lets you use
string notation to express read only literal byte arrays - i.e. arrays of UInt8 values. The type of those
objects is CodeUnits{UInt8, String}. The rules for byte array literals are the following:

¢ ASCII characters and ASCII escapes produce a single byte.

¢ \x and octal escape sequences produce the byte corresponding to the escape value.

* Unicode escape sequences produce a sequence of bytes encoding that code point in UTF-8.
There is some overlap between these rules since the behavior of \x and octal escapes less than 0x80 (128)
are covered by both of the first two rules, but here these rules agree. Together, these rules allow one to

easily use ASCII characters, arbitrary byte values, and UTF-8 sequences to produce arrays of bytes. Here
is an example using all three:
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julia> b"DATA\xff\u2200"

8-element Base.CodeUnits{UInt8, String}:
0x44

0x41

0x54

0x41

Oxff

Oxe2

0x88

0x80

The ASCII string "DATA" corresponds to the bytes 68, 65, 84, 65. \xff produces the single byte 255. The
Unicode escape \u2200 is encoded in UTF-8 as the three bytes 226, 136, 128. Note that the resulting byte
array does not correspond to a valid UTF-8 string:

julia> isvalid("DATA\xff\u2200")
false

As it was mentioned CodeUnits{UInt8, String} type behaves like read only array of UInt8 and if you
need a standard vector you can convert it using Vector{UInt8}:

julia> x = b"123"

3-element Base.CodeUnits{UInt8, String}:
0x31

0x32

0x33

julia> x[1]
0x31

julia> x[1] = 0x32
ERROR: CanonicalIndexError: setindex! not defined for Base.CodeUnits{UInt8, String}
[...]

julia> Vector{UInt8}(x)
3-element Vector{UInt8}:
0x31
0x32
0x33

Also observe the significant distinction between \xff and \uff: the former escape sequence encodes the
byte 255, whereas the latter escape sequence represents the code point 255, which is encoded as two
bytes in UTF-8:

julia> b"\xff"
1-element Base.CodeUnits{UInt8, String}:
Oxff

julia> b"\uff"

2-element Base.CodeUnits{UInt8, String}:
0xc3

Oxbf
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Character literals use the same behavior.

For code points less than \u80, it happens that the UTF-8 encoding of each code point is just the single
byte produced by the corresponding \x escape, so the distinction can safely be ignored. For the escapes
\x80 through \xff as compared to \u80 through \uff, however, there is a major difference: the former
escapes all encode single bytes, which - unless followed by very specific continuation bytes - do not form
valid UTF-8 data, whereas the latter escapes all represent Unicode code points with two-byte encodings.

If this is all extremely confusing, try reading "The Absolute Minimum Every Software Developer Absolutely,
Positively Must Know About Unicode and Character Sets". It's an excellent introduction to Unicode and
UTF-8, and may help alleviate some confusion regarding the matter.

7.11 Version Number Literals

Version numbers can easily be expressed with non-standard string literals of the form v"...". Version
number literals create VersionNumber objects which follow the specifications of semantic versioning, and
therefore are composed of major, minor and patch numeric values, followed by pre-release and build alpha-
numeric annotations. For example, v"0.2.1-rcl+win64" is broken into major version 0, minor version
2, patch version 1, pre-release rcl and build win64. When entering a version literal, everything except
the major version number is optional, therefore e.g. v"0.2" is equivalent to v"0.2.0" (with empty pre-
release/build annotations), v"2" is equivalentto v"2.0.0", and so on.

VersionNumber objects are mostly useful to easily and correctly compare two (or more) versions. For
example, the constant VERSION holds Julia version number as a VersionNumber object, and therefore one
can define some version-specific behavior using simple statements as:

if v"0.2" <= VERSION < v"0.3-"
# do something specific to 0.2 release series
end

Note that in the above example the non-standard version number v"0.3-" is used, with a trailing -: this
notation is a Julia extension of the standard, and it's used to indicate a version which is lower than any 0.3
release, including all of its pre-releases. So in the above example the code would only run with stable 0.2
versions, and exclude such versions as v"0.3.0-rcl". In order to also allow for unstable (i.e. pre-release)
0.2 versions, the lower bound check should be modified like this: v"0.2-" <= VERSION.

Another non-standard version specification extension allows one to use a trailing + to express an upper
limit on build versions, e.g. VERSION > v"0.2-rcl+" can be used to mean any version above 0.2-rcl and
any of its builds: it will return false for version v"0.2-rcl+win64" and true for v"'0.2-rc2".

It is good practice to use such special versions in comparisons (particularly, the trailing - should always
be used on upper bounds unless there's a good reason not to), but they must not be used as the actual
version number of anything, as they are invalid in the semantic versioning scheme.

Besides being used for the VERSION constant, VersionNumber objects are widely used in the Pkg module,
to specify packages versions and their dependencies.

7.12 Raw String Literals

Raw strings without interpolation or unescaping can be expressed with non-standard string literals of the
form raw"...". Raw string literals create ordinary String objects which contain the enclosed contents


https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://semver.org/
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exactly as entered with no interpolation or unescaping. This is useful for strings which contain code or
markup in other languages which use $ or \ as special characters.

The exception is that quotation marks still must be escaped, e.g. raw"\"" is equivalent to "\"". To make
it possible to express all strings, backslashes then also must be escaped, but only when appearing right
before a quote character:

julia> println(raw"\\ \\\"")
A

Notice that the first two backslashes appear verbatim in the output, since they do not precede a quote char-
acter. However, the next backslash character escapes the backslash that follows it, and the last backslash
escapes a quote, since these backslashes appear before a quote.



Chapter 8

Functions

In Julia, a function is an object that maps a tuple of argument values to a return value. Julia functions
are not pure mathematical functions, because they can alter and be affected by the global state of the
program. The basic syntax for defining functions in Julia is:

julia> function f(x,y)
X +y
end
f (generic function with 1 method)

This function accepts two arguments x and y and returns the value of the last expression evaluated, which
isXx + y.

There is a second, more terse syntax for defining a function in Julia. The traditional function declaration
syntax demonstrated above is equivalent to the following compact "assignment form":

julia> f(x,y) = x + vy
f (generic function with 1 method)

In the assignment form, the body of the function must be a single expression, although it can be a compound
expression (see Compound Expressions). Short, simple function definitions are common in Julia. The short
function syntax is accordingly quite idiomatic, considerably reducing both typing and visual noise.

A function is called using the traditional parenthesis syntax:

julia> f(2,3)
5

Without parentheses, the expression f refers to the function object, and can be passed around like any
other value:

julia> g = f;

julia> g(2,3)
5

66
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As with variables, Unicode can also be used for function names:

julia> y(x,y) = x +y
Y (generic function with 1 method)

julia> y(2, 3)
5

8.1 Argument Passing Behavior

Julia function arguments follow a convention sometimes called "pass-by-sharing", which means that values
are not copied when they are passed to functions. Function arguments themselves act as new variable bind-
ings (new "names" that can refer to values), much like assignments argument name = argument value,
so that the objects they refer to are identical to the passed values. Modifications to mutable values (such
as Arrays) made within a function will be visible to the caller. (This is the same behavior found in Scheme,
most Lisps, Python, Ruby and Perl, among other dynamic languages.)

For example, in the function

function f(x, y)
x[1] = 42 # mutates x
y=7+y # new binding for y, no mutation
return y

end

The statement x[1] = 42 mutates the object x, and hence this change will be visible in the array passed by
the caller for this argument. On the other hand, the assignmenty = 7 + y changes the binding ("name")
y to refer to a new value 7 + vy, rather than mutating the original object referred to by y, and hence does
not change the corresponding argument passed by the caller. This can be seen if we call f(x, y):

julia> a = [4,5,6]
3-element Vector{Int64}:
4

5

6

julia> b = 3
3

julia> f(a, b) # returns 7 + b == 10
10

julia> a # a[l] is changed to 42 by f
3-element Vector{Int64}:

42

5

6

julia> b # not changed
3
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As a common convention in Julia (not a syntactic requirement), such a function would typically be named
fl(x, y) rather than f(x, y), as a visual reminder at the call site that at least one of the arguments
(often the first one) is being mutated.

Shared memory between arguments

The behavior of a mutating function can be unexpected when a mutated argument shares
memory with another argument, a situation known as aliasing (e.g. when one is a view of the
other). Unless the function docstring explicitly indicates that aliasing produces the expected
result, it is the responsibility of the caller to ensure proper behavior on such inputs.

8.2 Argument-type declarations

You can declare the types of function arguments by appending : : TypeName to the argument name, as usual
for Type Declarations in Julia. For example, the following function computes Fibonacci numbers recursively:

‘fib(n::Integer) =n =<2 ? one(n) : fib(n-1) + fib(n-2)

and the ::Integer specification means that it will only be callable when n is a subtype of the abstract
Integer type.

Argument-type declarations normally have no impact on performance: regardless of what argument
types (if any) are declared, Julia compiles a specialized version of the function for the actual argument types
passed by the caller. For example, calling fib(1) will trigger the compilation of specialized version of fib
optimized specifically for Int arguments, which is then re-used if fib(7) or fib(15) are called. (There are
rare exceptions when an argument-type declaration can trigger additional compiler specializations; see:
Be aware of when Julia avoids specializing.) The most common reasons to declare argument types in Julia
are, instead:

* Dispatch: As explained in Methods, you can have different versions ("methods") of a function for
different argument types, in which case the argument types are used to determine which imple-
mentation is called for which arguments. For example, you might implement a completely different
algorithm fib(x: :Number) = ... thatworks forany Number type by using Binet's formula to extend
it to non-integer values.

* Correctness: Type declarations can be useful if your function only returns correct results for certain
argument types. For example, if we omitted argument types and wrote fib(n) = n = 2 ? one(n)
: fib(n-1) + fib(n-2), then fib(1.5) would silently give us the nonsensical answer 1.0.

» Clarity: Type declarations can serve as a form of documentation about the expected arguments.

However, it is a common mistake to overly restrict the argument types, which can unnecessarily
limit the applicability of the function and prevent it from being re-used in circumstances you did not antic-
ipate. For example, the fib(n::Integer) function above works equally well for Int arguments (machine
integers) and BigInt arbitrary-precision integers (see BigFloats and Bigints), which is especially useful be-
cause Fibonacci numbers grow exponentially rapidly and will quickly overflow any fixed-precision type like
Int (see Overflow behavior). If we had declared our function as fib(n::Int), however, the application
to BigInt would have been prevented for no reason. In general, you should use the most general appli-
cable abstract types for arguments, and when in doubt, omit the argument types. You can always
add argument-type specifications later if they become necessary, and you don't sacrifice performance or
functionality by omitting them.


https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Fibonacci_number#Binet%27s_formula
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8.3 The return Keyword

The value returned by a function is the value of the last expression evaluated, which, by default, is the last
expression in the body of the function definition. In the example function, f, from the previous section this
is the value of the expression x + y. As an alternative, as in many other languages, the return keyword
causes a function to return immediately, providing an expression whose value is returned:

function g(x,y)
return x * y
X +y

end

Since function definitions can be entered into interactive sessions, it is easy to compare these definitions:

julia> f(x,y) = x + vy
f (generic function with 1 method)

julia> function g(x,y)
return x * vy
X +y
end
g (generic function with 1 method)

julia> f(2,3)
5

julia> g(2,3)
6

Of course, in a purely linear function body like g, the usage of return is pointless since the expression
X + Yy is never evaluated and we could simply make x * y the last expression in the function and omit
the return. In conjunction with other control flow, however, return is of real use. Here, for example, is
a function that computes the hypotenuse length of a right triangle with sides of length x and y, avoiding
overflow:

julia> function hypot(x,y)

X = abs(x)
y = abs(y)
if x >y
r=y/x
return x*sqrt(l+r*r)
end
if y ==
return zero(x)
end
r=x/y

return y*sqrt(l+r*r)
end
hypot (generic function with 1 method)

julia> hypot(3, 4)
5.0
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There are three possible points of return from this function, returning the values of three different expres-
sions, depending on the values of x and y. The return on the last line could be omitted since it is the last
expression.

Return type

A return type can be specified in the function declaration using the :: operator. This converts the return
value to the specified type.

julia> function g(x, y)::Int8
return x * y
end;

julia> typeof(g(1l, 2))
Int8

This function will always return an Int8 regardless of the types of x and y. See Type Declarations for more
on return types.

Return type declarations are rarely used in Julia: in general, you should instead write "type-stable" func-
tions in which Julia's compiler can automatically infer the return type. For more information, see the Per-
formance Tips chapter.

Returning nothing

For functions that do not need to return a value (functions used only for some side effects), the Julia
convention is to return the value nothing:

function printx(x)
println("x = $x")
return nothing
end

This is a convention in the sense that nothing is not a Julia keyword but only a singleton object of type
Nothing. Also, you may notice that the printx function example above is contrived, because println
already returns nothing, so that the return line is redundant.

There are two possible shortened forms for the return nothing expression. On the one hand, the return
keyword implicitly returns nothing, so it can be used alone. On the other hand, since functions implicitly
return their last expression evaluated, nothing can be used alone when it's the last expression. The
preference for the expression return nothing as opposed to return or nothing alone is a matter of
coding style.

8.4 Operators Are Functions

In Julia, most operators are just functions with support for special syntax. (The exceptions are operators
with special evaluation semantics like & and | |. These operators cannot be functions since Short-Circuit
Evaluation requires that their operands are not evaluated before evaluation of the operator.) Accordingly,
you can also apply them using parenthesized argument lists, just as you would any other function:
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julia> 1 + 2 + 3
6

julia> +(1,2,3)
6

The infix form is exactly equivalent to the function application form - in fact the former is parsed to produce
the function call internally. This also means that you can assign and pass around operators such as + and
* just like you would with other function values:

julia> f = +;

julia> f(1,2,3)
6

Under the name f, the function does not support infix notation, however.

8.5 Operators With Special Names

A few special expressions correspond to calls to functions with non-obvious names. These are:

Expression Calls

[ABC...] hcat

[A; B; C; ...] vcat

[AB; CD; ...] hvcat

[A; B;; C; D;; ...] | hvncat

A' adjoint

Ali] getindex

A[i] = x setindex!

A.n getproperty

A.n = X setproperty!
Note that expressions similar to [A; B;; C; D;; ...] but with more than two consecutive ; also corre-

spond to hvncat calls.

8.6 Anonymous Functions

Functions in Julia are first-class objects: they can be assigned to variables, and called using the standard
function call syntax from the variable they have been assigned to. They can be used as arguments, and
they can be returned as values. They can also be created anonymously, without being given a name, using
either of these syntaxes:

julia> x -> x™2 + 2x - 1
#1 (generic function with 1 method)

julia> function (x)
X2 + 2x - 1
end
#3 (generic function with 1 method)



https://en.wikipedia.org/wiki/First-class_citizen
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This creates a function taking one argument x and returning the value of the polynomial x*2 + 2x - 1
at that value. Notice that the result is a generic function, but with a compiler-generated name based on
consecutive numbering.

The primary use for anonymous functions is passing them to functions which take other functions as ar-
guments. A classic example is map, which applies a function to each value of an array and returns a new
array containing the resulting values:

julia> map(round, [1.2, 3.5, 1.7])
3-element Vector{Float64}:

1.0

4.0

2.0

This is fine if a named function effecting the transform already exists to pass as the first argument to
map. Often, however, a ready-to-use, named function does not exist. In these situations, the anonymous
function construct allows easy creation of a single-use function object without needing a name:

julia> map(x -> x*2 + 2x - 1, [1, 3, -1])
3-element Vector{Int64}:

2

14

-2

An anonymous function accepting multiple arguments can be written using the syntax (x,y, z) ->2x+y-z.
A zero-argument anonymous function is written as () ->3. The idea of a function with no arguments may
seem strange, but is useful for "delaying" a computation. In this usage, a block of code is wrapped in a
zero-argument function, which is later invoked by calling it as f.

As an example, consider this call to get:

get(dict, key) do
# default value calculated here
time()

end

The code above is equivalent to calling get with an anonymous function containing the code enclosed
between do and end, like so:

get(()->time(), dict, key)

The call to time is delayed by wrapping it in a 0-argument anonymous function that is called only if the
requested key is absent from dict.
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8.7 Tuples

Julia has a built-in data structure called a tuple that is closely related to function arguments and return
values. Atupleis a fixed-length container that can hold any values, but cannot be modified (it is immutable).
Tuples are constructed with commas and parentheses, and can be accessed via indexing:

julia> (1, 1+1)
(1, 2)

julia> (1,)
(1,)

julia> x = (0.0, "hello", 6*7)
(0.0, "hello", 42)

julia> x[2]
"hello"

Notice that a length-1 tuple must be written with a comma, (1,), since (1) would just be a parenthesized
value. () represents the empty (length-0) tuple.

8.8 Named Tuples

The components of tuples can optionally be named, in which case a named tuple is constructed:

julia> x = (a=2, b=1+2)
(a =2, b=23)

julia> x[1]
2

julia> x.a
2

The fields of named tuples can be accessed by name using dot syntax (x.a) in addition to the regular
indexing syntax (x[1] or x[:al).

8.9 Destructuring Assignment and Multiple Return Values

A comma-separated list of variables (optionally wrapped in parentheses) can appear on the left side of an
assignment: the value on the right side is destructured by iterating over and assigning to each variable in
turn:

julia> (a,b,c) = 1:3
1:3

julia> b
2
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The value on the right should be an iterator (see Iteration interface) at least as long as the number of
variables on the left (any excess elements of the iterator are ignored).

This can be used to return multiple values from functions by returning a tuple or other iterable value. For
example, the following function returns two values:

julia> function foo(a,b)
a+b, a*b
end
foo (generic function with 1 method)

If you call it in an interactive session without assigning the return value anywhere, you will see the tuple
returned:

julia> foo(2,3)
(5, 6)

Destructuring assignment extracts each value into a variable:

julia> x, y = foo(2,3)
(5, 6)

julia> x
5

julia> y
6

Another common use is for swapping variables:

julia> y, x = X, y
(5, 6)

julia> x
6

julia> y
5

If only a subset of the elements of the iterator are required, a common convention is to assign ignored
elements to a variable consisting of only underscores (which is an otherwise invalid variable name, see
Allowed Variable Names):

julia> , , , d=1:10
1:10

julia> d
4
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Other valid left-hand side expressions can be used as elements of the assignment list, which will call

setindex! or setproperty!, or recursively destructure individual elements of the iterator:

julia> X = zeros(3);

julia> X[11, (a,b) = (1, (2, 3))
(1, (2, 3))

julia> X
3-element Vector{Float64}:
1.0

0.0

0.0

julia> a
2

julia> b
3

Julia 1.6

. with assignment requires Julia 1.6

If the last symbol in the assignment list is suffixed by ... (known as slurping), then it will be assigned a

collection or lazy iterator of the remaining elements of the right-hand side iterator:

julia> a, b... = "hello"
"hello"

julia> a
'h': ASCII/Unicode U+0068 (category Ll: Letter, lowercase)

julia> b
"ello"

julia> a, b... = Iterators.map(abs2, 1:4)
Base.Generator{UnitRange{Int64}, typeof(abs2)}(abs2, 1:4)

julia> a
1

julia> b
Base.Iterators.Rest{Base.Generator{UnitRange{Int64}, typeof(abs2)},
< Int64}(Base.Generator{UnitRange{Int64}, typeof(abs2)}(abs2, 1:4), 1)

See Base. rest for details on the precise handling and customization for specific iterators.

Julia 1.9

. in non-final position of an assignment requires Julia 1.9
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Slurping in assignments can also occur in any other position. As opposed to slurping the end of a collection

however, this will always be eager.

This is implemented in terms of the function Base.split rest.

julia> a, b..., ¢ = 1:5
1:5
julia> a
1
julia> b
3-element Vector{Int64}:
2
3
4
julia> c
5
julia> front..., tail = "Hi!'"
Wi
julia> front
WHin
julia> tail
"1': ASCII/Unicode U+0021 (category Po: Punctuation,

Note that for variadic function definitions, slurping is still only allowed in final position. This does not apply

to single argument destructuring though, as that does not affect method dispatch:

julia> f(x..., y) = x

ERROR: syntax: invalid "..." on non-final argument
Stacktrace:

[...]

julia> f((x..., y)) = X

f (generic function with 1 method)

julia> f((1, 2, 3))
(1, 2)

8.10 Property destructuring

Instead of destructuring based on iteration, the right side of assignments can also be destructured using
property names. This follows the syntax for NamedTuples, and works by assigning to each variable on the

left a property of the right side of the assignment with the same name using getproperty:

julia> (; b, a) = (a=1, b=2, c=3)
(a=1, b=2, c =23)
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julia> a
1

julia> b
2

8.11 Argument destructuring

The destructuring feature can also be used within a function argument. If a function argument name is
written as a tuple (e.g. (x, y)) instead of just a symbol, then an assignment (x, y) = argument will be
inserted for you:

julia> minmax(x, y) = (y < x) ? (y, x) : (x, y)
julia> gap((min, max)) = max - min

julia> gap(minmax(10, 2))
8

Notice the extra set of parentheses in the definition of gap. Without those, gap would be a two-argument
function, and this example would not work.

Similarly, property destructuring can also be used for function arguments:

julia> foo((; X, y)) = x +y
foo (generic function with 1 method)

julia> foo((x=1, y=2))
3

julia> struct A
X

y
end

julia> foo(A(3, 4))
7

For anonymous functions, destructuring a single argument requires an extra comma:

julia> map(((x,y),) -> x +vy, [(1,2), (3,4)])
2-element Array{Int64,1}:

3

7

8.12 Varargs Functions

It is often convenient to be able to write functions taking an arbitrary number of arguments. Such functions
are traditionally known as "varargs" functions, which is short for "variable number of arguments". You can
define a varargs function by following the last positional argument with an ellipsis:
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julia> bar(a,b,x...) = (a,b,x)
bar (generic function with 1 method)

The variables a and b are bound to the first two argument values as usual, and the variable x is bound to
an iterable collection of the zero or more values passed to bar after its first two arguments:

julia> bar(1,2)
(1, 2, ()

julia> bar(1,2,3)
(1, 2, (3,))

julia> bar(1l, 2, 3, 4)
(1, 2, (3, 4))

julia> bar(1,2,3,4,5,6)
(1, 2, (3, 4, 5, 6))

In all these cases, x is bound to a tuple of the trailing values passed to bar.

It is possible to constrain the number of values passed as a variable argument; this will be discussed later
in Parametrically-constrained Varargs methods.

On the flip side, it is often handy to "splat" the values contained in an iterable collection into a function call
as individual arguments. To do this, one also uses ... but in the function call instead:

julia> x = (3, 4)
(3, 4)

julia> bar(1,2,x...)
(1, 2, (3, 4))

In this case a tuple of values is spliced into a varargs call precisely where the variable number of arguments
go. This need not be the case, however:

julia> x = (2, 3, 4)
(2, 3, 4)

julia> bar(1l,x...)

(1, 2, (3, 4))
julia> x = (1, 2, 3, 4)
(1, 2, 3, 4)

julia> bar(x...)
(1, 2, (3, 4))

Furthermore, the iterable object splatted into a function call need not be a tuple:
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julia> x = [3,4]
2-element Vector{Int64}:
3

4

julia> bar(1,2,x...)
(1, 2, (3, 4))

julia> x = [1,2,3,4]
4-element Vector{Int64}:
1

2
3
4
julia> bar(x...)
(1, 2, (3, 4))
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Also, the function that arguments are splatted into need not be a varargs function (although it often is):

julia> baz(a,b) = a + b;

julia> args = [1,2]
2-element Vector{Int64}:
1

2

julia> baz(args...)
3

julia> args = [1,2,3]
3-element Vector{Int64}:
1

2

3

julia> baz(args...)
ERROR: MethodError: no method matching baz(::Int64, ::Int64,

Closest candidates are:
baz(::Any, ::Any)
@ Main none:1

Stacktrace:

[...]

::Int64)

As you can see, if the wrong number of elements are in the splatted container, then the function call will

fail, just as it would if too many arguments were given explicitly.
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8.13 Optional Arguments

It is often possible to provide sensible default values for function arguments. This can save users from
having to pass every argument on every call. For example, the function Date(y, [m, d]) from Dates
module constructs a Date type for a given year y, month m and day d. However, m and d arguments are
optional and their default value is 1. This behavior can be expressed concisely as:

julia> using Dates

julia> function date(y::Int64, m::Int64=1, d::Int64=1)
err = Dates.validargs(Date, y, m, d)
err === nothing || throw(err)
return Date(Dates.UTD(Dates.totaldays(y, m, d)))
end
date (generic function with 3 methods)

Observe, that this definition calls another method of the Date function that takes one argument of type
UTInstant{Day}.

With this definition, the function can be called with either one, two or three arguments, and 1 is automati-
cally passed when only one or two of the arguments are specified:

julia> date(2000, 12, 12)
2000-12-12

julia> date(2000, 12)
2000-12-01

julia> date(2000)
2000-01-01

Optional arguments are actually just a convenient syntax for writing multiple method definitions with dif-
ferent numbers of arguments (see Note on Optional and keyword Arguments). This can be checked for our
date function example by calling the methods function:

julia> methods(date)

# 3 methods for generic function "date":

[1] date(y::Int64) in Main at REPL[1]:1

[2] date(y::Int64, m::Int64) in Main at REPL[1]:1

[3] date(y::Int64, m::Int64, d::Int64) in Main at REPL[1]:1

8.14 Keyword Arguments

Some functions need a large number of arguments, or have a large number of behaviors. Remembering
how to call such functions can be difficult. Keyword arguments can make these complex interfaces easier
to use and extend by allowing arguments to be identified by name instead of only by position.

For example, consider a function plot that plots a line. This function might have many options, for con-
trolling line style, width, color, and so on. If it accepts keyword arguments, a possible call might look like
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plot(x, y, width=2), where we have chosen to specify only line width. Notice that this serves two pur-
poses. The call is easier to read, since we can label an argument with its meaning. It also becomes possible
to pass any subset of a large number of arguments, in any order.

Functions with keyword arguments are defined using a semicolon in the signature:

function plot(x, y; style="solid", width=1, color="black")
fizizi
end

When the function is called, the semicolon is optional: one can eithercall plot(x, y, width=2) orplot(x,
y; width=2), but the former style is more common. An explicit semicolon is required only for passing
varargs or computed keywords as described below.

Keyword argument default values are evaluated only when necessary (when a corresponding keyword
argument is not passed), and in left-to-right order. Therefore default expressions may refer to prior keyword
arguments.

The types of keyword arguments can be made explicit as follows:

function f(;x::Int=1)
#Hit#
end

Keyword arguments can also be used in varargs functions:

function plot(x...; style="solid")
H#HH#H#H
end
Extra keyword arguments can be collected using .. ., as in varargs functions:

function f(x; y=0, kwargs...)
HHH
end

Inside f, kwargs will be an immutable key-value iterator over a named tuple. Named tuples (as well as
dictionaries with keys of Symbol, and other iterators yielding two-value collections with symbol as first
values) can be passed as keyword arguments using a semicolon in a call, e.g. f(x, z=1; kwargs...).

If a keyword argument is not assigned a default value in the method definition, then it is required: an
UndefKeywordError exception will be thrown if the caller does not assign it a value:

function f(x; y)
#Hit#
end
f(3, y=5) # ok, y is assigned
f(3) # throws UndefKeywordError(:y)
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One can also pass key => value expressions after a semicolon. For example, plot(x, y; :width => 2)
is equivalent to plot(x, y, width=2). This is useful in situations where the keyword name is computed
at runtime.

When a bare identifier or dot expression occurs after a semicolon, the keyword argument name is implied by
the identifier or field name. For example plot(x, y; width) is equivalent to plot(x, y; width=width)
and plot(x, y; options.width) is equivalent to plot(x, y; width=options.width).

The nature of keyword arguments makes it possible to specify the same argument more than once. For
example, in the call plot(x, y; options..., width=2) it is possible that the options structure also
contains a value for width. In such a case the rightmost occurrence takes precedence; in this example,
width is certain to have the value 2. However, explicitly specifying the same keyword argument multiple
times, for example plot(x, y, width=2, width=3), is not allowed and results in a syntax error.

8.15 Evaluation Scope of Default Values

When optional and keyword argument default expressions are evaluated, only previous arguments are in
scope. For example, given this definition:

function f(x, a=b, b=1)
Fiziad
end

the b in a=b refers to a b in an outer scope, not the subsequent argument b.

8.16 Do-Block Syntax for Function Arguments

Passing functions as arguments to other functions is a powerful technique, but the syntax for it is not always
convenient. Such calls are especially awkward to write when the function argument requires multiple lines.
As an example, consider calling map on a function with several cases:

map (x->begin

if x < 0 & iseven(x)
return 0

elseif x ==
return 1

else
return x

end

end,
[A, B, C])

Julia provides a reserved word do for rewriting this code more clearly:

map([A, B, C]) do x
if x < 0 && iseven(x)
return 0
elseif x ==
return 1
else



CHAPTER 8. FUNCTIONS 83

return x
end
end

The do x syntax creates an anonymous function with argument x and passes it as the first argument to map.
Similarly, do a, b would create a two-argument anonymous function. Note that do (a,b) would create a
one-argument anonymous function, whose argument is a tuple to be deconstructed. A plain do would
declare that what follows is an anonymous function of the form () -> ....

How these arguments are initialized depends on the "outer" function; here, map will sequentially set x to A,
B, C, calling the anonymous function on each, just as would happen in the syntax map(func, [A, B, C]).

This syntax makes it easier to use functions to effectively extend the language, since calls look like normal
code blocks. There are many possible uses quite different from map, such as managing system state. For
example, there is a version of open that runs code ensuring that the opened file is eventually closed:

open("outfile", "w") do io
write(io, data)
end

This is accomplished by the following definition:

function open(f::Function, args...)
io = open(args...)
try
f(io)
finally
close(io)
end
end

Here, open first opens the file for writing and then passes the resulting output stream to the anonymous
function you defined in the do ... end block. After your function exits, open will make sure that the
stream is properly closed, regardless of whether your function exited normally or threw an exception. (The
try/finally construct will be described in Control Flow.)

With the do block syntax, it helps to check the documentation or implementation to know how the argu-
ments of the user function are initialized.

A do block, like any other inner function, can "capture" variables from its enclosing scope. For example,
the variable data in the above example of open. . .do is captured from the outer scope. Captured variables
can create performance challenges as discussed in performance tips.

8.17 Function composition and piping

Functions in Julia can be combined by composing or piping (chaining) them together.

Function composition is when you combine functions together and apply the resulting composition to ar-
guments. You use the function composition operator (o) to compose the functions, so (f o g)(args...)
is the same as f(g(args...)).

You can type the composition operator at the REPL and suitably-configured editors using \circ<tab>.

For example, the sqrt and + functions can be composed like this:
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julia> (sqrt o +)(3, 6)
3.0

This adds the numbers first, then finds the square root of the result.

The next example composes three functions and maps the result over an array of strings:

julia> map(first o reverse o uppercase, split("you can compose functions like this"))

6-element Vector{Char}:
'U': ASCII/Unicode U+0055
'N': ASCII/Unicode U+004E
'"E': ASCII/Unicode U+0045
'S': ASCII/Unicode U+0053
'"E': ASCII/Unicode U+0045
'S': ASCII/Unicode U+0053

category Lu: Letter, uppercase
category Lu: Letter, uppercase
category Lu: Letter, uppercase
category Lu: Letter, uppercase
category Lu: Letter, uppercase
category Lu: Letter, uppercase

)
)
)
)
)
)
Function chaining (sometimes called "piping" or "using a pipe" to send data to a subsequent function) is

when you apply a function to the previous function's output:

julia> 1:10 |> sum |> sqrt
7.416198487095663

Here, the total produced by sum is passed to the sqrt function. The equivalent composition would be:

julia> (sqrt o sum)(1:10)
7.416198487095663

The pipe operator can also be used with broadcasting, as .|>, to provide a useful combination of the
chaining/piping and dot vectorization syntax (described below).

julia> ["a", "list", "of", "strings"] .|> [uppercase, reverse, titlecase, length]
4-element Vector{Any}:

wpn

"tsil"

o
7

When combining pipes with anonymous functions, parentheses must be used if subsequent pipes are not
to be parsed as part of the anonymous function's body. Compare:

julia> 1:3 .|> (x -> x"2) |> sum |> sqrt
3.7416573867739413

julia> 1:3 .|> x -> x”2 |> sum |> sqrt
3-element Vector{Float64}:

1.0

2.0

3.0
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8.18 Dot Syntax for Vectorizing Functions

In technical-computing languages, it is common to have "vectorized" versions of functions, which simply
apply a given function f(x) to each element of an array A to yield a new array via f(A). This kind of
syntax is convenient for data processing, but in other languages vectorization is also often required for
performance: if loops are slow, the "vectorized" version of a function can call fast library code written in a
low-level language. In Julia, vectorized functions are not required for performance, and indeed it is often
beneficial to write your own loops (see Performance Tips), but they can still be convenient. Therefore, any
Julia function f can be applied elementwise to any array (or other collection) with the syntax f. (A). For
example, sin can be applied to all elements in the vector A like so:

julia> A = [1.0, 2.0, 3.0]
3-element Vector{Float64}:
1.0

2.0

3.0

julia> sin. (A)

3-element Vector{Float64}:
0.8414709848078965
0.9092974268256817
0.1411200080598672

Of course, you can omit the dot if you write a specialized "vector" method of f, e.g. via f(A: :AbstractArray)
= map(f, A), and this is just as efficient as f. (A). The advantage of the f. (A) syntax is that which func-
tions are vectorizable need not be decided upon in advance by the library writer.

More generally, f.(args...) is actually equivalent to broadcast(f, args...), which allows you to op-
erate on multiple arrays (even of different shapes), or a mix of arrays and scalars (see Broadcasting). For
example, if you have f(x,y) = 3x + 4y, then f. (pi,A) will return a new array consisting of f(pi,a) for
eachainA, and f. (vectorl,vector2) will return a new vector consisting of f(vectorl[i],vector2[i])
for each index i (throwing an exception if the vectors have different length).

julia> f(x,y) = 3x + 4y;
julia> A = [1.0, 2.0, 3.0];
julia> B = [4.0, 5.0, 6.0];

julia> f.(pi, A)
3-element Vector{Float64}:
13.42477796076938
17.42477796076938
21.42477796076938

julia> f. (A, B)
3-element Vector{Float64}:
19.0

26.0

33.0
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Keyword arguments are not broadcasted over, but are simply passed through to each call of the function.
For example, round. (x, digits=3) is equivalent to broadcast(x -> round(x, digits=3), x).

Moreover, nested f. (args...) calls are fused into a single broadcast loop. For example, sin. (cos. (X))
is equivalent to broadcast(x -> sin(cos(x)), X), similarto [sin(cos(x)) for x in X]: there is only
asingle loop over X, and a single array is allocated for the result. [In contrast, sin(cos (X)) in atypical "vec-
torized" language would first allocate one temporary array for tmp=cos (X), and then compute sin(tmp) in
a separate loop, allocating a second array.] This loop fusion is not a compiler optimization that may or may
not occur, it is a syntactic guarantee whenever nested f. (args...) calls are encountered. Technically,
the fusion stops as soon as a "non-dot" function call is encountered; for example, in sin. (sort(cos. (X)))
the sin and cos loops cannot be merged because of the intervening sort function.

Finally, the maximum efficiency is typically achieved when the output array of a vectorized operation is
pre-allocated, so that repeated calls do not allocate new arrays over and over again for the results (see Pre-
allocating outputs). A convenient syntax forthisisX .= ..., whichisequivalenttobroadcast! (identity,
X, ...) except that, as above, the broadcast! loop is fused with any nested "dot" calls. For example, X
.= sin. (Y) is equivalentto broadcast! (sin, X, Y), overwriting X with sin. (Y) in-place. If the left-hand
side is an array-indexing expression, e.g. X[begin+l:end] .= sin.(Y), then it translates to broadcast!
on a view, e.g. broadcast!(sin, view(X, firstindex(X)+1l:lastindex(X)), Y), so that the left-hand
side is updated in-place.

Since adding dots to many operations and function calls in an expression can be tedious and lead to code
that is difficult to read, the macro @. is provided to convert every function call, operation, and assignment
in an expression into the "dotted" version.

julia> Y = [1.0, 2.0, 3.0, 4.0];
julia> X = similar(Y); # pre-allocate output array

julia> @ X = sin(cos(Y)) # equivalent to X .= sin.(cos.(Y))
4-element Vector{Float64}:
0.5143952585235492
-0.4042391538522658
-0.8360218615377305
-0.6080830096407656

Binary (or unary) operators like .+ are handled with the same mechanism: they are equivalent to broadcast
calls and are fused with other nested "dot" calls. X .+= Y etceterais equivalenttoX .= X .+ Y and results
in a fused in-place assignment; see also dot operators.

You can also combine dot operations with function chaining using |>, as in this example:

julia> 1:5 .|> [x->x"2, inv, x->2*x, -, isodd]
5-element Vector{Real}:

1

0.5

6

-4
true
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8.19 Further Reading

We should mention here that this is far from a complete picture of defining functions. Julia has a sophis-
ticated type system and allows multiple dispatch on argument types. None of the examples given here
provide any type annotations on their arguments, meaning that they are applicable to all types of argu-
ments. The type system is described in Types and defining a function in terms of methods chosen by
multiple dispatch on run-time argument types is described in Methods.
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Control Flow

Julia provides a variety of control flow constructs:

e Compound Expressions: begin and ;.

* Conditional Evaluation: if-elseif-else and ?: (ternary operator).

» Short-Circuit Evaluation: logical operators && (“and”) and | | (“or”), and also chained comparisons.

* Repeated Evaluation: Loops: while and for.

e Exception Handling: try-catch, error and throw.

¢ Tasks (aka Coroutines): yieldto.
The first five control flow mechanisms are standard to high-level programming languages. Tasks are not so
standard: they provide non-local control flow, making it possible to switch between temporarily-suspended
computations. This is a powerful construct: both exception handling and cooperative multitasking are

implemented in Julia using tasks. Everyday programming requires no direct usage of tasks, but certain
problems can be solved much more easily by using tasks.

9.1 Compound Expressions

Sometimes it is convenient to have a single expression which evaluates several subexpressions in order,
returning the value of the last subexpression as its value. There are two Julia constructs that accomplish
this: begin blocks and ; chains. The value of both compound expression constructs is that of the last
subexpression. Here's an example of a begin block:

julia> z = begin

X =1
y =2
X +y

end

Since these are fairly small, simple expressions, they could easily be placed onto a single line, which is
where the ; chain syntax comes in handy:

88
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julia> z = (x = 1; y = 2; x +Y)
3

This syntax is particularly useful with the terse single-line function definition form introduced in Functions.
Although it is typical, there is no requirement that begin blocks be multiline or that ; chains be single-line:

julia> begin x = 1; y = 2; x + y end
3

julia> (x 1;
y =2
X +Y)

9.2 Conditional Evaluation

Conditional evaluation allows portions of code to be evaluated or not evaluated depending on the value of
a boolean expression. Here is the anatomy of the if-elseif-else conditional syntax:

if x <y

println("x is less than y")
elseif x >y

println("x is greater than y")
else

println("x is equal to y")
end

If the condition expression x < vy is true, then the corresponding block is evaluated; otherwise the con-
dition expression x > y is evaluated, and if it is true, the corresponding block is evaluated; if neither
expression is true, the else block is evaluated. Here it is in action:

julia> function test(x, y)
if x <y
println("x is less than y")
elseif x >y
println("x is greater than y")
else
println("x is equal to y")
end
end
test (generic function with 1 method)

julia> test(1l, 2)
x is less than y

julia> test(2, 1)
X 1s greater than y

julia> test(1l, 1)
x is equal to y
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The elseif and else blocks are optional, and as many elseif blocks as desired can be used. The condition
expressions in the if-elseif-else construct are evaluated until the first one evaluates to true, after which
the associated block is evaluated, and no further condition expressions or blocks are evaluated.

if blocks are "leaky", i.e. they do not introduce a local scope. This means that new variables defined
inside the if clauses can be used after the if block, even if they weren't defined before. So, we could
have defined the test function above as

julia> function test(x,y)
if x <y
relation = "less than"
elseif x ==y
relation = "equal to"
else
relation = "greater than"
end
println("x is ", relation, " y.")
end
test (generic function with 1 method)
julia> test(2, 1)
X 1s greater than vy.

The variable relation is declared inside the if block, but used outside. However, when depending on this
behavior, make sure all possible code paths define a value for the variable. The following change to the
above function results in a runtime error

julia> function test(x,y)

if x <y
relation = "less than"
elseif x ==y
relation = "equal to"
end
println("x is ", relation, " y.")
end

test (generic function with 1 method)

julia> test(1,2)
x is less than y.

julia> test(2,1)
ERROR: UndefVarError: “relation’ not defined
Stacktrace:

[1] test(::Int64, ::Int64) at ./none:7

if blocks also return a value, which may seem unintuitive to users coming from many other languages.
This value is simply the return value of the last executed statement in the branch that was chosen, so

julia> x = 3
3
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julia> if x > 0

"positive!"
else
"negative..."
end
"positive!"

Note that very short conditional statements (one-liners) are frequently expressed using Short-Circuit Eval-
uation in Julia, as outlined in the next section.

Unlike C, MATLAB, Perl, Python, and Ruby - but like Java, and a few other stricter, typed languages - it is
an error if the value of a conditional expression is anything but true or false:

julia> if 1
println("true")
end
ERROR: TypeError: non-boolean (Int64) used in boolean context

This error indicates that the conditional was of the wrong type: Int64 rather than the required Bool.

The so-called "ternary operator", ?:, is closely related to the if-elseif-else syntax, but is used where
a conditional choice between single expression values is required, as opposed to conditional execution
of longer blocks of code. It gets its name from being the only operator in most languages taking three
operands:

a’?b:c

The expression a, before the ?, is a condition expression, and the ternary operation evaluates the expression
b, before the :, if the condition a is true or the expression c, after the :, if it is false. Note that the spaces
around ? and : are mandatory: an expression like a?b: c is not a valid ternary expression (but a newline is
acceptable after both the ? and the :).

The easiest way to understand this behavior is to see an example. In the previous example, the println
call is shared by all three branches: the only real choice is which literal string to print. This could be written
more concisely using the ternary operator. For the sake of clarity, let's try a two-way version first:

julia> x = 1; y = 2;

julia> println(x <y ? "less than" : "not less than")
less than

julia> x = 1; y = 0;

julia> println(x <y ? "less than" : "not less than")
not less than

If the expression x < vy is true, the entire ternary operator expression evaluates to the string "less than"
and otherwise it evaluates to the string "not less than". The original three-way example requires chain-
ing multiple uses of the ternary operator together:
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julia> test(x, y) = println(x <y ? "x is less than y"
X >y ? "x is greater than y" : "x is equal to y")
test (generic function with 1 method)

julia> test(1l, 2)
x is less than y

julia> test(2, 1)
x is greater than y

julia> test(1, 1)
x is equal to y

To facilitate chaining, the operator associates from right to left.

It is significant that like if-elseif-else, the expressions before and after the : are only evaluated if the
condition expression evaluates to true or false, respectively:

julia> v(x) = (println(x); x)
v (generic function with 1 method)

julia> 1 < 2 ? v("yes") : v("no")
yes

yes

julia> 1 > 2 ? v("yes") : v("no")
no

no

9.3 Short-Circuit Evaluation

The && and || operators in Julia correspond to logical “and” and “or” operations, respectively, and are
typically used for this purpose. However, they have an additional property of short-circuit evaluation: they
don't necessarily evaluate their second argument, as explained below. (There are also bitwise & and |
operators that can be used as logical “and” and “or” without short-circuit behavior, but beware that & and
| have higher precedence than && and | | for evaluation order.)

Short-circuit evaluation is quite similar to conditional evaluation. The behavior is found in most imperative
programming languages having the && and | | boolean operators: in a series of boolean expressions con-
nected by these operators, only the minimum number of expressions are evaluated as are necessary to
determine the final boolean value of the entire chain. Some languages (like Python) refer to them as and
(&&) and or (| |). Explicitly, this means that:

* In the expression a && b, the subexpression b is only evaluated if a evaluates to true.
* In the expression a || b, the subexpression b is only evaluated if a evaluates to false.
The reasoning is that a && b must be false if a is false, regardless of the value of b, and likewise, the

value of a || b must be true if a is true, regardless of the value of b. Both && and || associate to the
right, but && has higher precedence than | | does. It's easy to experiment with this behavior:
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julia> t(x) = (println(x); true)
t (generic function with 1 method)

julia> f(x) = (println(x); false)
f (generic function with 1 method)

julia> t(1) && t(2)
1

2

true

julia> t(1) && f(2)
1

2

false

julia> (1) & t(2)
1
false

julia> f(1) && f(2)
1
false

julia> t(1) || t(2)
1
true

julia> t(1) || f(2)
1
true

julia> f(1) || t(2)
1

2

true

julia> f(1) || f(2)
1

2

false

You can easily experiment in the same way with the associativity and precedence of various combinations
of & and | | operators.

This behavior is frequently used in Julia to form an alternative to very short if statements. Instead of
if <cond> <statement> end, one can write <cond> && <statement> (which could be read as: <cond>
and then <statement>). Similarly, instead of if ! <cond> <statement> end, one can write <cond> | |
<statement> (which could be read as: <cond> or else <statement>).

For example, a recursive factorial routine could be defined like this:

julia> function fact(n::Int)
n>=0 || error("n must be non-negative")
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n==0 & return 1
n * fact(n-1)
end
fact (generic function with 1 method)

julia> fact(5)
120

julia> fact(0)
1

julia> fact(-1)
ERROR: n must be non-negative
Stacktrace:
[1] error at ./error.jl:33 [inlined]
[2] fact(::Int64) at ./none:2
[3] top-level scope

Boolean operations without short-circuit evaluation can be done with the bitwise boolean operators intro-
duced in Mathematical Operations and Elementary Functions: & and |. These are normal functions, which
happen to support infix operator syntax, but always evaluate their arguments:

julia> f(1) & t(2)
1

2

false

julia> t(1) | t(2)
1

2

true

Just like condition expressions used in if, elseif or the ternary operator, the operands of && or | | must
be boolean values (true or false). Using a non-boolean value anywhere except for the last entry in a
conditional chain is an error:

julia> 1 && true
ERROR: TypeError: non-boolean (Int64) used in boolean context

On the other hand, any type of expression can be used at the end of a conditional chain. It will be evaluated
and returned depending on the preceding conditionals:

julia> true && (x = (1, 2, 3))
(1, 2, 3)

julia> false && (x = (1, 2, 3))
false
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9.4 Repeated Evaluation: Loops

There are two constructs for repeated evaluation of expressions: the while loop and the for loop. Here is
an example of a while loop:

julia> i = 1;

julia> while i <= 3
println(i)
global i += 1
end

The while loop evaluates the condition expression (i <= 5 in this case), and as long it remains true, keeps
also evaluating the body of the while loop. If the condition expression is false when the while loop is
first reached, the body is never evaluated.

The for loop makes common repeated evaluation idioms easier to write. Since counting up and down like
the above while loop does is so common, it can be expressed more concisely with a for loop:

julia> for i = 1:3
println(i)
end

Here the 1: 3 is a range object, representing the sequence of numbers 1, 2, 3. The for loop iterates through
these values, assigning each one in turn to the variable i. One rather important distinction between the
previous while loop form and the for loop form is the scope during which the variable is visible. A for loop
always introduces a new iteration variable in its body, regardless of whether a variable of the same name
exists in the enclosing scope. This implies that on the one hand i need not be declared before the loop.
On the other hand it will not be visible outside the loop, nor will an outside variable of the same name be
affected. You'll either need a new interactive session instance or a different variable name to test this:

julia> for j = 1:3

println(j)
end
1
2
3
julia> j

ERROR: UndefVarError: “j° not defined

julia> j = 0;

julia> for j = 1:3
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println(j)
end
1
2
3
julia> j
0

Use for outer to modify the latter behavior and reuse an existing local variable.
See Scope of Variables for a detailed explanation of variable scope, outer, and how it works in Julia.

In general, the for loop construct can iterate over any container. In these cases, the alternative (but fully
equivalent) keyword in or € is typically used instead of =, since it makes the code read more clearly:

julia> for i in [1,4,0]
println(i)
end

julia> for s € ["foo","bar","baz"]
println(s)
end
foo
bar
baz

Various types of iterable containers will be introduced and discussed in later sections of the manual (see,
e.g., Multi-dimensional Arrays).

It is sometimes convenient to terminate the repetition of a while before the test condition is falsified or
stop iterating in a for loop before the end of the iterable object is reached. This can be accomplished with
the break keyword:

julia> i = 1;

julia> while true

println(i)
if i >= 3
break
end
global i += 1
end
1
2
3

julia> for j = 1:1000
println(j)
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if j >=3
break
end
end

Without the break keyword, the above while loop would never terminate on its own, and the for loop
would iterate up to 1000. These loops are both exited early by using break.

In other circumstances, it is handy to be able to stop an iteration and move on to the next one immediately.
The continue keyword accomplishes this:

julia> for i = 1:10
if i 53 =0
continue
end
println(i)
end

This is a somewhat contrived example since we could produce the same behavior more clearly by negating
the condition and placing the println call inside the if block. In realistic usage there is more code to be
evaluated after the continue, and often there are multiple points from which one calls continue.

Multiple nested for loops can be combined into a single outer loop, forming the cartesian product of its
iterables:

julia> for i = 1:2, j = 3:4
println((i, j))
end

A W b W

With this syntax, iterables may still refer to outer loop variables; e.g. for i = 1:n, j = 1:1i is valid.
However a break statement inside such a loop exits the entire nest of loops, not just the inner one. Both
variables (i and j) are set to their current iteration values each time the inner loop runs. Therefore,
assignments to i will not be visible to subsequent iterations:

julia> for i = 1:2, j = 3:4
println((i, j))
i=0

end

NN = =
A W b w
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If this example were rewritten to use a for keyword for each variable, then the output would be different:
the second and fourth values would contain 0.

Multiple containers can be iterated over at the same time in a single for loop using zip:
julia> for (j, k) in zip([1 2 3], [4 56 7])

println((j,k))
end

Using zip will create an iterator that is a tuple containing the subiterators for the containers passed to it.
The zip iterator will iterate over all subiterators in order, choosing the ith element of each subiterator in
the ith iteration of the for loop. Once any of the subiterators run out, the for loop will stop.

9.5 Exception Handling

When an unexpected condition occurs, a function may be unable to return a reasonable value to its caller.
In such cases, it may be best for the exceptional condition to either terminate the program while printing
a diagnostic error message, or if the programmer has provided code to handle such exceptional circum-
stances then allow that code to take the appropriate action.

Built-in Exceptions

Exceptions are thrown when an unexpected condition has occurred. The built-in Exceptions listed below
all interrupt the normal flow of control.

For example, the sqrt function throws a DomainError if applied to a negative real value:

julia> sqrt(-1)

ERROR: DomainError with -1.0:

sqrt was called with a negative real argument but will only return a complex result if called
— with a complex argument. Try sqrt(Complex(x)).

Stacktrace:

[...]
You may define your own exceptions in the following way:
‘julia> struct MyCustomException <: Exception end

The throw function

Exceptions can be created explicitly with throw. For example, a function defined only for nonnegative
numbers could be written to throw a DomainError if the argument is negative:

julia> f(x) = x>=0 ? exp(-x) : throw(DomainError(x, "argument must be nonnegative"))
f (generic function with 1 method)

julia> f(1)
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Exception
ArgumentError
BoundsError
CompositeException
DimensionMismatch
DivideError
DomainError
EOFError
ErrorException
InexactError
InitError
InterruptException
InvalidStateException
KeyError

LoadError
OutOfMemoryError
ReadOnlyMemoryError
RemoteException
MethodError
OverflowError
Meta.ParseError
SystemError
TypeError
UndefRefError
UndefVarError
StringIndexError

0.36787944117144233

julia> f(-1)
ERROR: DomainError with -1:
argument must be nonnegative
Stacktrace:

[1] f(::Int64) at ./none:l

Note that DomainError without parentheses is not an exception, but a type of exception. It needs to be
called to obtain an Exception object:

julia> typeof(DomainError(nothing)) <: Exception
true

julia> typeof(DomainError) <: Exception
false

Additionally, some exception types take one or more arguments that are used for error reporting:

julia> throw(UndefVarError(:x))
ERROR: UndefVarError: “x° not defined
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This mechanism can be implemented easily by custom exception types following the way UndefVarError
is written:

julia> struct MyUndefVarError <: Exception

var: :Symbol
end
julia> Base.showerror(io::I0, e::MyUndefVarError) = print(io, e.var, " not defined")
Note

When writing an error message, it is preferred to make the first word lowercase. For example,
size(A) == size(B) || throw(DimensionMismatch("size of A not equal to size of B"))
is preferred over

size(A) == size(B) || throw(DimensionMismatch("Size of A not equal to size of B")).

However, sometimes it makes sense to keep the uppercase first letter, for instance if an argu-
ment to a function is a capital letter:

size(A,1) == size(B,2) || throw(DimensionMismatch("A has first dimension...")).

Errors
The error function is used to produce an ErrorException that interrupts the normal flow of control.

Suppose we want to stop execution immediately if the square root of a negative number is taken. To do
this, we can define a fussy version of the sqrt function that raises an error if its argument is negative:

julia> fussy sqrt(x) = x >= 0 ? sqrt(x) : error("negative x not allowed")
fussy sqrt (generic function with 1 method)

julia> fussy sqrt(2)
1.4142135623730951

julia> fussy sqrt(-1)

ERROR: negative x not allowed

Stacktrace:
[1] error at ./error.jl:33 [inlined]
[2] fussy sqrt(::Int64) at ./none:l
[3] top-level scope

If fussy sqrt is called with a negative value from another function, instead of trying to continue execution
of the calling function, it returns immediately, displaying the error message in the interactive session:

julia> function verbose fussy sqrt(x)
println("before fussy sqrt")
r = fussy sqrt(x)
println("after fussy sqrt")
return r
end
verbose fussy sqrt (generic function with 1 method)
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julia> verbose fussy sqrt(2)
before fussy sqrt

after fussy sqrt
1.4142135623730951

julia> verbose fussy sqrt(-1)
before fussy sqrt
ERROR: negative x not allowed
Stacktrace:
[1] error at ./error.jl:33 [inlined]
[2] fussy sqrt at ./none:1 [inlined]
[3] verbose fussy sqrt(::Int64) at ./none:3
[4] top-level scope

The try/catch statement

The try/catch statement allows for Exceptions to be tested for, and for the graceful handling of things that
may ordinarily break your application. For example, in the below code the function for square root would
normally throw an exception. By placing a try/catch block around it we can mitigate that here. You may
choose how you wish to handle this exception, whether logging it, return a placeholder value or as in the
case below where we just printed out a statement. One thing to think about when deciding how to handle
unexpected situations is that using a try/catch block is much slower than using conditional branching to
handle those situations. Below there are more examples of handling exceptions with a try/catch block:

julia> try
sqrt("ten")
catch e
println("You should have entered a numeric value")
end

You should have entered a numeric value

try/catch statements also allow the Exception to be saved in a variable. The following contrived example
calculates the square root of the second element of x if x is indexable, otherwise assumes x is a real number
and returns its square root:

julia> sqrt_second(x) = try
sqrt(x[2])
catch y
if isa(y, DomainError)
sqrt(complex(x[2], 0))
elseif isa(y, BoundsError)
sqrt(x)
end
end
sqrt second (generic function with 1 method)

julia> sqrt second([1 4])
2.0

julia> sqrt second([1 -4])
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0.0 + 2.0im

julia> sqrt second(9)
3.0

julia> sqrt second(-9)

ERROR: DomainError with -9.0:

sqrt was called with a negative real argument but will only return a complex result if called
< with a complex argument. Try sqrt(Complex(x)).

Stacktrace:

[...]

Note that the symbol following catch will always be interpreted as a name for the exception, so care is
needed when writing try/catch expressions on a single line. The following code will not work to return
the value of x in case of an error:

try bad() catch x end

Instead, use a semicolon or insert a line break after catch:

try bad() catch; x end

try bad()
catch

X
end

The power of the try/catch construct lies in the ability to unwind a deeply nested computation immediately
to a much higher level in the stack of calling functions. There are situations where no error has occurred,
but the ability to unwind the stack and pass a value to a higher level is desirable. Julia provides the rethrow,
backtrace, catch backtrace and current exceptions functions for more advanced error handling.

else Clauses

Julia 1.8

This functionality requires at least Julia 1.8.

In some cases, one may not only want to appropriately handle the error case, but also want to run some
code only if the try block succeeds. For this, an else clause can be specified after the catch block that
is run whenever no error was thrown previously. The advantage over including this code in the try block
instead is that any further errors don't get silently caught by the catch clause.

local x
try

x = read("file", String)
catch

# handle read errors
else

# do something with x
end
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Note

The try, catch, else, and finally clauses each introduce their own scope blocks, so if a
variable is only defined in the try block, it can not be accessed by the else or finally clause:

julia> try
foo =1
catch
else
foo
end
ERROR: UndefVarError: “foo' not defined

Use the local keyword outside the try block to make the variable accessible from anywhere
within the outer scope.

finally Clauses

In code that performs state changes or uses resources like files, there is typically clean-up work (such as
closing files) that needs to be done when the code is finished. Exceptions potentially complicate this task,
since they can cause a block of code to exit before reaching its normal end. The finally keyword provides
a way to run some code when a given block of code exits, regardless of how it exits.

For example, here is how we can guarantee that an opened file is closed:

f = open("file")
try
# operate on file f
finally
close(f)
end

When control leaves the try block (for example due to a return, or just finishing normally), close(f) will
be executed. If the try block exits due to an exception, the exception will continue propagating. A catch
block may be combined with try and finally as well. In this case the finally block will run after catch
has handled the error.

9.6 Tasks (aka Coroutines)

Tasks are a control flow feature that allows computations to be suspended and resumed in a flexible manner.
We mention them here only for completeness; for a full discussion see Asynchronous Programming.
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Scope of Variables

The scope of a variable is the region of code within which a variable is accessible. Variable scoping helps
avoid variable naming conflicts. The concept is intuitive: two functions can both have arguments called
x without the two x's referring to the same thing. Similarly, there are many other cases where different
blocks of code can use the same name without referring to the same thing. The rules for when the same
variable name does or doesn't refer to the same thing are called scope rules; this section spells them out
in detail.

Certain constructs in the language introduce scope blocks, which are regions of code that are eligible to
be the scope of some set of variables. The scope of a variable cannot be an arbitrary set of source lines;
instead, it will always line up with one of these blocks. There are two main types of scopes in Julia, global
scope and local scope. The latter can be nested. There is also a distinction in Julia between constructs which
introduce a "hard scope" and those which only introduce a "soft scope", which affects whether shadowing
a global variable by the same name is allowed or not.

Scope constructs

The constructs introducing scope blocks are:

Construct Scope type | Allowed within
module, baremodule global global

struct local (soft) global

for, while, try local (soft) global, local
macro local (hard) | global
functions, do blocks, let blocks, comprehensions, generators | local (hard) | global, local

Notably missing from this table are begin blocks and if blocks which do not introduce new scopes. The
three types of scopes follow somewhat different rules which will be explained below.

Julia uses lexical scoping, meaning that a function's scope does not inherit from its caller's scope, but from
the scope in which the function was defined. For example, in the following code the x inside foo refers to
the x in the global scope of its module Bar:

julia> module Bar
X =1
foo() = x
end;
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and not a x in the scope where foo is used:

julia> import .Bar
julia> x = -1;

julia> Bar.foo()
1

Thus lexical scope means that what a variable in a particular piece of code refers to can be deduced from
the code in which it appears alone and does not depend on how the program executes. A scope nested
inside another scope can "see" variables in all the outer scopes in which it is contained. Outer scopes, on
the other hand, cannot see variables in inner scopes.

10.1 Global Scope

Each module introduces a new global scope, separate from the global scope of all other modules—there
is no all-encompassing global scope. Modules can introduce variables of other modules into their scope
through the using or import statements or through qualified access using the dot-notation, i.e. each module
is a so-called namespace as well as a first-class data structure associating names with values.

If a top-level expression contains a variable declaration with keyword local, then that variable is not
accessible outside that expression. The variable inside the expression does not affect global variables of
the same name. An example is to declare local x in a begin or if block at the top-level:

julia> x =1
begin
local x = 0
@show x
end
@show x;

Note that the interactive prompt (aka REPL) is in the global scope of the module Main.

10.2 Local Scope

A new local scope is introduced by most code blocks (see above table for a complete list). If such a block
is syntactically nested inside of another local scope, the scope it creates is nested inside of all the local
scopes that it appears within, which are all ultimately nested inside of the global scope of the module in
which the code is evaluated. Variables in outer scopes are visible from any scope they contain — meaning
that they can be read and written in inner scopes — unless there is a local variable with the same name
that "shadows" the outer variable of the same name. This is true even if the outer local is declared after
(in the sense of textually below) an inner block. When we say that a variable "exists" in a given scope, this
means that a variable by that name exists in any of the scopes that the current scope is nested inside of,
including the current one.

Some programming languages require explicitly declaring new variables before using them. Explicit dec-
laration works in Julia too: in any local scope, writing local x declares a new local variable in that scope,
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regardless of whether there is already a variable named x in an outer scope or not. Declaring each new
variable like this is somewhat verbose and tedious, however, so Julia, like many other languages, considers
assignment to a variable name that doesn't already exist to implicitly declare that variable. If the current
scope is global, the new variable is global; if the current scope is local, the new variable is local to the
innermost local scope and will be visible inside of that scope but not outside of it. If you assign to an exist-
ing local, it always updates that existing local: you can only shadow a local by explicitly declaring a new
local in a nested scope with the local keyword. In particular, this applies to variables assigned in inner
functions, which may surprise users coming from Python where assignment in an inner function creates a
new local unless the variable is explicitly declared to be non-local.

Mostly this is pretty intuitive, but as with many things that behave intuitively, the details are more subtle
than one might naively imagine.

When x = <value> occurs in a local scope, Julia applies the following rules to decide what the expression
means based on where the assignment expression occurs and what x already refers to at that location:

1. Existing local: If x is already a local variable, then the existing local x is assigned;

2. Hard scope: If x is not already a local variable and assignment occurs inside of any hard scope
construct (i.e. within a let block, function or macro body, comprehension, or generator), a new
local named x is created in the scope of the assignment;

3. Soft scope: If x is not already a local variable and all of the scope constructs containing the assign-
ment are soft scopes (loops, try/catch blocks, or struct blocks), the behavior depends on whether
the global variable x is defined:

- if global x is undefined, a new local named x is created in the scope of the assignment;
- if global x is defined, the assignment is considered ambiguous:

* in non-interactive contexts (files, eval), an ambiguity warning is printed and a new local is
created;

* in interactive contexts (REPL, notebooks), the global variable x is assigned.

You may note that in non-interactive contexts the hard and soft scope behaviors are identical except that
a warning is printed when an implicitly local variable (i.e. not declared with local x) shadows a global. In
interactive contexts, the rules follow a more complex heuristic for the sake of convenience. This is covered
in depth in examples that follow.

Now that you know the rules, let's look at some examples. Each example is assumed to be evaluated in a
fresh REPL session so that the only globals in each snippet are the ones that are assigned in that block of
code.

We'll begin with a nice and clear-cut situation—assignment inside of a hard scope, in this case a function
body, when no local variable by that name already exists:

julia> function greet()
x = "hello" # new local
println(x)
end
greet (generic function with 1 method)

julia> greet()
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hello

julia> x # global
ERROR: UndefVarError: “x° not defined

Inside of the greet function, the assignment x = "hello" causes x to be a new local variable in the
function's scope. There are two relevant facts: the assignment occurs in local scope and there is no
existing local x variable. Since x is local, it doesn't matter if there is a global named x or not. Here for
example we define x = 123 before defining and calling greet:

julia> x = 123 # global
123

julia> function greet()
x = "hello" # new local
println(x)
end
greet (generic function with 1 method)

julia> greet()
hello

julia> x # global
123

Since the x in greet is local, the value (or lack thereof) of the global x is unaffected by calling greet. The
hard scope rule doesn't care whether a global named x exists or not: assignment to x in a hard scope is
local (unless x is declared global).

The next clear cut situation we'll consider is when there is already a local variable named x, in which case x
= <value> always assigns to this existing local x. This is true whether the assignment occurs in the same
local scope, an inner local scope in the same function body, or in the body of a function nested inside of
another function, also known as a closure.

We'll use the sum_to function, which computes the sum of integers from one up to n, as an example:

function sum_to(n)
s = 0 # new local
for i = 1:n
s = s + 1 # assign existing local
end
return s # same local

end

As in the previous example, the first assignment to s at the top of sum_to causes s to be a new local
variable in the body of the function. The for loop has its own inner local scope within the function scope.
At the point wheres = s + 1 occurs, s is already a local variable, so the assignment updates the existing
s instead of creating a new local. We can test this out by calling sum_to in the REPL:

julia> function sum_to(n)
s = 0 # new local


https://en.wikipedia.org/wiki/Closure_(computer_programming)

CHAPTER 10. SCOPE OF VARIABLES 108

for i = 1:n

s = s + 1 # assign existing local
end
return s # same local

end
sum_to (generic function with 1 method)

julia> sum to(10)
55

julia> s # global
ERROR: UndefVarError: ‘s’ not defined

Since s is local to the function sum to, calling the function has no effect on the global variable s. We
can also see that the update s = s + i in the for loop must have updated the same s created by the
initialization s = 0 since we get the correct sum of 55 for the integers 1 through 10.

Let's dig into the fact that the for loop body has its own scope for a second by writing a slightly more
verbose variation which we'll call sum_to def, in which we save the sum s + i in a variable t before
updating s:

julia> function sum to def(n)
s = 0 # new local
for i = 1:n
t=s+1# new local 't’
s = t # assign existing local “s°
end
return s, @isdefined(t)
end
sum_to def (generic function with 1 method)

julia> sum to def(10)
(55, false)

This version returns s as before but it also uses the @isdefined macro to return a boolean indicating
whether there is a local variable named t defined in the function's outermost local scope. As you can see,
there is no t defined outside of the for loop body. This is because of the hard scope rule again: since
the assignment to t occurs inside of a function, which introduces a hard scope, the assignment causes t
to become a new local variable in the local scope where it appears, i.e. inside of the loop body. Even if
there were a global named t, it would make no difference—the hard scope rule isn't affected by anything
in global scope.

Note that the local scope of a for loop body is no different from the local scope of an inner function. This
means that we could rewrite this example so that the loop body is implemented as a call to an inner helper
function and it behaves the same way:

julia> function sum to def closure(n)
function loop body(i)
t=s+1# new local 't’
s = t # assign same local ‘s’ as below
end
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s = 0 # new local
for i = 1:n
loop_body (i)
end
return s, @isdefined(t)
end
sum to def closure (generic function with 1 method)

julia> sum_to def closure(10)
(55, false)

This example illustrates a couple of key points:

1. Inner function scopes are just like any other nested local scope. In particular, if a variable is already
a local outside of an inner function and you assign to it in the inner function, the outer local variable
is updated.

2. It doesn't matter if the definition of an outer local happens below where it is updated, the rule
remains the same. The entire enclosing local scope is parsed and its locals determined before inner
local meanings are resolved.

This design means that you can generally move code in or out of an inner function without changing its
meaning, which facilitates a number of common idioms in the language using closures (see do blocks).

Let's move onto some more ambiguous cases covered by the soft scope rule. We'll explore this by extracting
the bodies of the greet and sum_to_def functions into soft scope contexts. First, let's put the body of greet
in a for loop—which is soft, rather than hard—and evaluate it in the REPL:

julia> for i = 1:3

x = "hello" # new local
println(x)
end
hello
hello
hello
julia> x

ERROR: UndefVarError: “x° not defined

Since the global x is not defined when the for loop is evaluated, the first clause of the soft scope rule
applies and x is created as local to the for loop and therefore global x remains undefined after the loop
executes. Next, let's consider the body of sum to def extracted into global scope, fixing its argument to
n =10

s =0

for i = 1:10
t=s+1
s =t

end

s
@isdefined(t)
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What does this code do? Hint: it's a trick question. The answer is "it depends." If this code is entered
interactively, it behaves the same way it does in a function body. But if the code appears in a file, it prints
an ambiguity warning and throws an undefined variable error. Let's see it working in the REPL first:

julia> s = 0 # global
0

1:10
s + i # new local "t°
t # assign global °s°

julia> for i
t
s

end

julia> s # global
55

julia> @isdefined(t) # global
false

The REPL approximates being in the body of a function by deciding whether assignment inside the loop
assigns to a global or creates new local based on whether a global variable by that name is defined or not.
If a global by the name exists, then the assignment updates it. If no global exists, then the assignment
creates a new local variable. In this example we see both cases in action:

* Thereis no global named t,sot = s + i creates a new t that is local to the for loop;

e There is a global named s, so s = t assigns to it.

The second fact is why execution of the loop changes the global value of s and the first fact is why t is
still undefined after the loop executes. Now, let's try evaluating this same code as though it were in a file
instead:

julia> code = """
s = 0 # global
for i = 1:10
t=s+ i# new local "t°
s =t # new local “s° with warning
end
s, # global
@isdefined(t) # global

wun,
’

julia> include string(Main, code)

r Warning: Assignment to s’ in soft scope is ambiguous because a global variable by the same

< name exists: s’ will be treated as a new local. Disambiguate by using “local s’ to suppress
— this warning or “global s° to assign to the existing global variable.

L @ string:4

ERROR: LoadError: UndefVarError: s not defined

Here we use include string, to evaluate code as though it were the contents of a file. We could also
save code to a file and then call include on that file—the result would be the same. As you can see, this
behaves quite different from evaluating the same code in the REPL. Let's break down what's happening
here:
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¢ global s is defined with the value 0 before the loop is evaluated

¢ the assignment s = t occurs in a soft scope—a for loop outside of any function body or other hard
scope construct

» therefore the second clause of the soft scope rule applies, and the assignment is ambiguous so a
warning is emitted

* execution continues, making s local to the for loop body
* since s is local to the for loop, it is undefined when t = s + i is evaluated, causing an error

* evaluation stops there, but if it got to s and @isdefined(t), it would return 0 and false.

This demonstrates some important aspects of scope: in a scope, each variable can only have one meaning,
and that meaning is determined regardless of the order of expressions. The presence of the expression s
= t in the loop causes s to be local to the loop, which means that it is also local when it appears on the
right hand side of t = s + i, even though that expression appears first and is evaluated first. One might
imagine that the s on the first line of the loop could be global while the s on the second line of the loop
is local, but that's not possible since the two lines are in the same scope block and each variable can only
mean one thing in a given scope.

On Soft Scope

We have now covered all the local scope rules, but before wrapping up this section, perhaps a few words
should be said about why the ambiguous soft scope case is handled differently in interactive and non-
interactive contexts. There are two obvious questions one could ask:

1. Why doesn't it just work like the REPL everywhere?

2. Why doesn't it just work like in files everywhere? And maybe skip the warning?

In Julia = 0.6, all global scopes did work like the current REPL: when x = <value> occurred in a loop (or
try/catch, or struct body) but outside of a function body (or let block or comprehension), it was decided
based on whether a global named x was defined or not whether x should be local to the loop. This behavior
has the advantage of being intuitive and convenient since it approximates the behavior inside of a function
body as closely as possible. In particular, it makes it easy to move code back and forth between a function
body and the REPL when trying to debug the behavior of a function. However, it has some downsides.
First, it's quite a complex behavior: many people over the years were confused about this behavior and
complained that it was complicated and hard both to explain and understand. Fair point. Second, and
arguably worse, is that it's bad for programming "at scale." When you see a small piece of code in one
place like this, it's quite clear what's going on:

s =0

for i = 1:10
s += 1

end

Obviously the intention is to modify the existing global variable s. What else could it mean? However, not
all real world code is so short or so clear. We found that code like the following often occurs in the wild:
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x = 123

# much later
# maybe in a different file

for i = 1:10
x = "hello"
println(x)
end

# much later
# maybe in yet another file
# or maybe back in the first one where “x = 123°

y = X + 234

It's far less clear what should happen here. Since x + "hello" is a method error, it seems probable that the
intention is for x to be local to the for loop. But runtime values and what methods happen to exist cannot
be used to determine the scopes of variables. With the Julia = 0.6 behavior, it's especially concerning that
someone might have written the for loop first, had it working just fine, but later when someone else adds
a new global far away—possibly in a different file—the code suddenly changes meaning and either breaks
noisily or, worse still, silently does the wrong thing. This kind of "spooky action at a distance" is something
that good programming language designs should prevent.

So in Julia 1.0, we simplified the rules for scope: in any local scope, assignment to a name that wasn't
already a local variable created a new local variable. This eliminated the notion of soft scope entirely as
well as removing the potential for spooky action. We uncovered and fixed a significant number of bugs due
to the removal of soft scope, vindicating the choice to get rid of it. And there was much rejoicing! Well, no,
not really. Because some people were angry that they now had to write:

s =0

for i = 1:10
global s += i

end

Do you see that global annotation in there? Hideous. Obviously this situation could not be tolerated. But
seriously, there are two main issues with requiring global for this kind of top-level code:

1. It's no longer convenient to copy and paste the code from inside a function body into the REPL to
debug it—you have to add global annotations and then remove them again to go back;

2. Beginners will write this kind of code without the global and have no idea why their code doesn't
work—the error that they get is that s is undefined, which does not seem to enlighten anyone who
happens to make this mistake.

As of Julia 1.5, this code works without the global annotation in interactive contexts like the REPL or
Jupyter notebooks (just like Julia 0.6) and in files and other non-interactive contexts, it prints this very
direct warning:


https://en.wikipedia.org/wiki/Action_at_a_distance_(computer_programming)
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Assignment to s in soft scope is ambiguous because a global variable by the same name exists:
s will be treated as a new local. Disambiguate by using local s to suppress this warning or
global s to assign to the existing global variable.

This addresses both issues while preserving the "programming at scale" benefits of the 1.0 behavior: global
variables have no spooky effect on the meaning of code that may be far away; in the REPL copy-and-
paste debugging works and beginners don't have any issues; any time someone either forgets a global
annotation or accidentally shadows an existing global with a local in a soft scope, which would be confusing
anyway, they get a nice clear warning.

An important property of this design is that any code that executes in a file without a warning will behave
the same way in a fresh REPL. And on the flip side, if you take a REPL session and save it to file, if it behaves
differently than it did in the REPL, then you will get a warning.

Let Blocks

let statements create a new hard scope block (see above) and introduce new variable bindings each time
they run. The variable need not be immediately assigned:

julia> varl = let x
for i in 1:5
(i == 4) & (x = i; break)
end
X
end

Whereas assignments might reassign a new value to an existing value location, let always creates a new
location. This difference is usually not important, and is only detectable in the case of variables that outlive
their scope via closures. The let syntax accepts a comma-separated series of assignments and variable
names:

julia> x, y, z = -1, -1, -1;

julia> let x = 1, z
println("x: $x, y: $y") # x is local variable, y the global
println("z: $z") # errors as z has not been assigned yet but is local
end
x: 1, y: -1
ERROR: UndefVarError: “z° not defined

The assignments are evaluated in order, with each right-hand side evaluated in the scope before the new
variable on the left-hand side has been introduced. Therefore it makes sense to write something like let
X = X since the two x variables are distinct and have separate storage. Here is an example where the
behavior of let is needed:

julia> Fs = Vector{Any}(undef, 2); i = 1;

julia> while i <= 2
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Fs[i] = ()->1
global i += 1
end

julia> Fs[1]()
3

julia> Fs[2]()
3

Here we create and store two closures that return variable i. However, it is always the same variable i, so
the two closures behave identically. We can use let to create a new binding for i:

julia> Fs = Vector{Any}(undef, 2); i = 1;

julia> while i <= 2
let i =1
Fs[i] = ()->1
end
global i += 1
end

julia> Fs[1]()
1

julia> Fs[2]()
2

Since the begin construct does not introduce a new scope, it can be useful to use a zero-argument let to
just introduce a new scope block without creating any new bindings immediately:

julia> let
local x =1
let
local x = 2
end
X
end
1

Since let introduces a new scope block, the inner local x is a different variable than the outer local x. This
particular example is equivalent to:

julia> let x = 1
let x = 2
end
X
end
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Loops and Comprehensions

In loops and comprehensions, new variables introduced in their body scopes are freshly allocated for each
loop iteration, as if the loop body were surrounded by a let block, as demonstrated by this example:

julia> Fs = Vector{Any}(undef, 2);

julia> for j = 1:2
Fs[jl = ()->]
end

julia> Fs[1]()
1

julia> Fs[2]()
2

A for loop or comprehension iteration variable is always a new variable:

julia> function f()

i=0
for i = 1:3
# empty
end
return i
end;
julia> f()

0

However, it is occasionally useful to reuse an existing local variable as the iteration variable. This can be
done conveniently by adding the keyword outer:

julia> function f()

i=0
for outer i = 1:3
# empty
end
return i
end;
julia> f()

3

10.3 Constants

A common use of variables is giving names to specific, unchanging values. Such variables are only assigned
once. This intent can be conveyed to the compiler using the const keyword:

julia> const e = 2.71828182845904523536;

julia> const pi = 3.14159265358979323846;
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Multiple variables can be declared in a single const statement:

julia> const a, b =1, 2
(1, 2)

The const declaration should only be used in global scope on globals. It is difficult for the compiler to
optimize code involving global variables, since their values (or even their types) might change at almost
any time. If a global variable will not change, adding a const declaration solves this performance problem.

Local constants are quite different. The compiler is able to determine automatically when a local variable
is constant, so local constant declarations are not necessary, and in fact are currently not supported.

Special top-level assignments, such as those performed by the function and struct keywords, are con-
stant by default.

Note that const only affects the variable binding; the variable may be bound to a mutable object (such as
an array), and that object may still be modified. Additionally when one tries to assign a value to a variable
that is declared constant the following scenarios are possible:

« if a new value has a different type than the type of the constant then an error is thrown:

julia> const x = 1.0
1.0

julia> x =1
ERROR: invalid redefinition of constant x

« if a new value has the same type as the constant then a warning is printed:

julia> const y = 1.0
1.0

julia> y = 2.0

WARNING: redefinition of constant y. This may fail, cause incorrect answers, or produce other
< errors.

2.0

¢ if an assignment would not result in the change of variable value no message is given:

julia> const z = 100
100

julia> z = 100
100

The last rule applies to immutable objects even if the variable binding would change, e.g.:
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julia> const sl = "1"
Wy

julia> s2 = "1"

Wy

julia> pointer.([sl, s2], 1)
2-element Array{Ptr{UInt8},1}:
Ptr{UInt8} @O0x00000000132c9638
Ptr{UInt8} @0x0000000013dd3d18

julia> sl = s2
wpn

julia> pointer.([sl, s2], 1)
2-element Array{Ptr{UInt8},1}:
Ptr{UInt8} @0x0000000013dd3d18
Ptr{UInt8} @0x0000000013dd3d18

However, for mutable objects the warning is printed as expected:

julia> const a = [1]
1l-element Vector{Int64}:
1

julia> a = [1]
WARNING: redefinition of constant a. This may fail, cause incorrect answers, or produce other
< errors.
1-element Vector{Int64}:
1

Note that although sometimes possible, changing the value of a const variable is strongly discouraged, and
is intended only for convenience during interactive use. Changing constants can cause various problems
or unexpected behaviors. For instance, if a method references a constant and is already compiled before
the constant is changed, then it might keep using the old value:

julia> const x = 1
1

julia> f() = x
f (generic function with 1 method)

julia> f()
1

julia> x = 2

WARNING: redefinition of constant x. This may fail, cause incorrect answers, or produce other
< errors.

2

julia> f()
1
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10.4 Typed Globals

Julia 1.8
Support for typed globals was added in Julia 1.8

Similar to being declared as constants, global bindings can also be declared to always be of a constant
type. This can either be done without assigning an actual value using the syntax global x::T or upon
assignment as x::T = 123.

julia> x::Float64 = 2.718
2.718

julia> f() = x
f (generic function with 1 method)

julia> Base.return types(f)
l-element Vector{Any}:
Float64

For any assignment to a global, Julia will first try to convert it to the appropriate type using convert:

julia> global y::Int

julia> y = 1.0
1.0

julia> y
1

julia> y = 3.14

ERROR: InexactError: Int64(3.14)
Stacktrace:

[...]

The type does not need to be concrete, but annotations with abstract types typically have little performance
benefit.

Once a global has either been assigned to or its type has been set, the binding type is not allowed to
change:

julia> x =1
1

julia> global x::Int

ERROR: cannot set type for global x. It already has a value or is already set to a different
— type.

Stacktrace:

[...]
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Types

Type systems have traditionally fallen into two quite different camps: static type systems, where every
program expression must have a type computable before the execution of the program, and dynamic type
systems, where nothing is known about types until run time, when the actual values manipulated by the
program are available. Object orientation allows some flexibility in statically typed languages by letting
code be written without the precise types of values being known at compile time. The ability to write code
that can operate on different types is called polymorphism. All code in classic dynamically typed languages
is polymorphic: only by explicitly checking types, or when objects fail to support operations at run-time,
are the types of any values ever restricted.

Julia's type system is dynamic, but gains some of the advantages of static type systems by making it
possible to indicate that certain values are of specific types. This can be of great assistance in generating
efficient code, but even more significantly, it allows method dispatch on the types of function arguments
to be deeply integrated with the language. Method dispatch is explored in detail in Methods, but is rooted
in the type system presented here.

The default behavior in Julia when types are omitted is to allow values to be of any type. Thus, one can
write many useful Julia functions without ever explicitly using types. When additional expressiveness is
needed, however, it is easy to gradually introduce explicit type annotations into previously "untyped" code.
Adding annotations serves three primary purposes: to take advantage of Julia's powerful multiple-dispatch
mechanism, to improve human readability, and to catch programmer errors.

Describing Julia in the lingo of type systems, it is: dynamic, nominative and parametric. Generic types
can be parameterized, and the hierarchical relationships between types are explicitly declared, rather
than implied by compatible structure. One particularly distinctive feature of Julia's type system is that
concrete types may not subtype each other: all concrete types are final and may only have abstract types
as their supertypes. While this might at first seem unduly restrictive, it has many beneficial consequences
with surprisingly few drawbacks. It turns out that being able to inherit behavior is much more important
than being able to inherit structure, and inheriting both causes significant difficulties in traditional object-
oriented languages. Other high-level aspects of Julia's type system that should be mentioned up front
are:

* There is no division between object and non-object values: all values in Julia are true objects having
a type that belongs to a single, fully connected type graph, all nodes of which are equally first-class
as types.
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* There is no meaningful concept of a "compile-time type": the only type a value has is its actual type
when the program is running. This is called a "run-time type" in object-oriented languages where
the combination of static compilation with polymorphism makes this distinction significant.

¢ Only values, not variables, have types - variables are simply names bound to values, although for
simplicity we may say "type of a variable" as shorthand for "type of the value to which a variable
refers".

* Both abstract and concrete types can be parameterized by other types. They can also be param-
eterized by symbols, by values of any type for which isbits returns true (essentially, things like
numbers and bools that are stored like C types or structs with no pointers to other objects), and
also by tuples thereof. Type parameters may be omitted when they do not need to be referenced or
restricted.

Julia's type system is designed to be powerful and expressive, yet clear, intuitive and unobtrusive. Many
Julia programmers may never feel the need to write code that explicitly uses types. Some kinds of pro-
gramming, however, become clearer, simpler, faster and more robust with declared types.

11.1 Type Declarations

The :: operator can be used to attach type annotations to expressions and variables in programs. There
are two primary reasons to do this:

1. As an assertion to help confirm that your program works the way you expect, and

2. To provide extra type information to the compiler, which can then improve performance in some
cases.

When appended to an expression computing a value, the : : operatoris read as "is an instance of". It can be
used anywhere to assert that the value of the expression on the left is an instance of the type on the right.
When the type on the right is concrete, the value on the left must have that type as its implementation -
recall that all concrete types are final, so no implementation is a subtype of any other. When the type is
abstract, it suffices for the value to be implemented by a concrete type that is a subtype of the abstract
type. If the type assertion is not true, an exception is thrown, otherwise, the left-hand value is returned:

julia> (1+2)::AbstractFloat
ERROR: TypeError: in typeassert, expected AbstractFloat, got a value of type Int64

julia> (1+2)::Int
3

This allows a type assertion to be attached to any expression in-place.

When appended to a variable on the left-hand side of an assignment, or as part of a local declaration, the
1 operator means something a bit different: it declares the variable to always have the specified type,
like a type declaration in a statically-typed language such as C. Every value assigned to the variable will
be converted to the declared type using convert:
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julia> function foo()
x::Int8 = 100
X
end
foo (generic function with 1 method)

julia> x = foo()
100

julia> typeof(x)
Int8

This feature is useful for avoiding performance "gotchas" that could occur if one of the assignments to a
variable changed its type unexpectedly.

This "declaration" behavior only occurs in specific contexts:

local x::Int8 # in a local declaration
x::Int8 = 10 # as the left-hand side of an assignment

and applies to the whole current scope, even before the declaration.

As of Julia 1.8, type declarations can now be used in global scope i.e. type annotations can be added to
global variables to make accessing them type stable.

julia> x::Int = 10
10

julia> x = 3.5
ERROR: InexactError: Int64(3.5)

julia> function foo(y)
global x = 15.8 # throws an error when foo is called
return x +y
end
foo (generic function with 1 method)

julia> foo(10)
ERROR: InexactError: Int64(15.8)

Declarations can also be attached to function definitions:

function sinc(x)::Float64
if x ==
return 1
end
return sin(pi*x)/(pi*x)
end

Returning from this function behaves just like an assignment to a variable with a declared type: the value
is always converted to Float64.
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11.2 Abstract Types

Abstract types cannot be instantiated, and serve only as nodes in the type graph, thereby describing sets
of related concrete types: those concrete types which are their descendants. We begin with abstract types
even though they have no instantiation because they are the backbone of the type system: they form the
conceptual hierarchy which makes Julia's type system more than just a collection of object implementations.

Recall that in Integers and Floating-Point Numbers, we introduced a variety of concrete types of numeric
values: Int8, UInt8, Intl6, UIntl6, Int32, UInt32, Int64, UInt64, Int128, UInt128, Floatl6, Float32,
and Float64. Although they have different representation sizes, Int8, Intl16, Int32, Int64 and Int128
all have in common that they are signed integer types. Likewise UInt8, UInt16, UInt32, UInt64 and
UInt128 are all unsigned integer types, while Float16, Float32 and Float64 are distinct in being floating-
point types rather than integers. It is common for a piece of code to make sense, for example, only if its
arguments are some kind of integer, but not really depend on what particular kind of integer. For example,
the greatest common denominator algorithm works for all kinds of integers, but will not work for floating-
point numbers. Abstract types allow the construction of a hierarchy of types, providing a context into
which concrete types can fit. This allows you, for example, to easily program to any type that is an integer,
without restricting an algorithm to a specific type of integer.

Abstract types are declared using the abstract type keyword. The general syntaxes for declaring an
abstract type are:

abstract type «name» end
abstract type «name» <: «supertype» end

The abstract type keyword introduces a new abstract type, whose name is given by «name». This name
can be optionally followed by <: and an already-existing type, indicating that the newly declared abstract
type is a subtype of this "parent" type.

When no supertype is given, the default supertype is Any - a predefined abstract type that all objects are
instances of and all types are subtypes of. In type theory, Any is commonly called "top" because it is at the
apex of the type graph. Julia also has a predefined abstract "bottom" type, at the nadir of the type graph,
which is written as Union{}. It is the exact opposite of Any: no object is an instance of Union{} and all
types are supertypes of Union{}.

Let's consider some of the abstract types that make up Julia's numerical hierarchy:

abstract type Number end

abstract type Real Number end
abstract type AbstractFloat Real end
abstract type Integer Real end

abstract type Signed
abstract type Unsigned

Integer end
Integer end

AN NN A

The Number type is a direct child type of Any, and Real is its child. In turn, Real has two children (it has
more, but only two are shown here; we'll get to the others later): Integer and AbstractFloat, separating
the world into representations of integers and representations of real numbers. Representations of real
numbers include floating-point types, but also include other types, such as rationals. AbstractFloat in-
cludes only floating-point representations of real numbers. Integers are further subdivided into Signed and
Unsigned varieties.

The <: operator in general means "is a subtype of", and, used in declarations like those above, declares the
right-hand type to be an immediate supertype of the newly declared type. It can also be used in expressions
as a subtype operator which returns true when its left operand is a subtype of its right operand:
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julia> Integer <: Number
true

julia> Integer <: AbstractFloat
false

An important use of abstract types is to provide default implementations for concrete types. To give a
simple example, consider:

function myplus(x,y)
X+y
end

The first thing to note is that the above argument declarations are equivalent to x: :Any and y: : Any. When
this function is invoked, say as myplus(2,5), the dispatcher chooses the most specific method named
myplus that matches the given arguments. (See Methods for more information on multiple dispatch.)

Assuming no method more specific than the above is found, Julia next internally defines and compiles a
method called myplus specifically for two Int arguments based on the generic function given above, i.e.,
it implicitly defines and compiles:

function myplus(x::Int,y::Int)
X+y
end

and finally, it invokes this specific method.

Thus, abstract types allow programmers to write generic functions that can later be used as the default
method by many combinations of concrete types. Thanks to multiple dispatch, the programmer has full
control over whether the default or more specific method is used.

An important point to note is that there is no loss in performance if the programmer relies on a function
whose arguments are abstract types, because it is recompiled for each tuple of concrete argument types
with which it is invoked. (There may be a performance issue, however, in the case of function arguments
that are containers of abstract types; see Performance Tips.)

11.3 Primitive Types

Warning

It is almost always preferable to wrap an existing primitive type in a new composite type than
to define your own primitive type.

This functionality exists to allow Julia to bootstrap the standard primitive types that LLVM
supports. Once they are defined, there is very little reason to define more.

A primitive type is a concrete type whose data consists of plain old bits. Classic examples of primitive types
are integers and floating-point values. Unlike most languages, Julia lets you declare your own primitive
types, rather than providing only a fixed set of built-in ones. In fact, the standard primitive types are all
defined in the language itself:
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primitive type Floatlé <: AbstractFloat 16 end
primitive type Float32 <: AbstractFloat 32 end
primitive type Float64 <: AbstractFloat 64 end

primitive type Bool <: Integer 8 end
primitive type Char <: AbstractChar 32 end

: Signed 8 end
: Unsigned 8 end

primitive type Int8 <
primitive type UInt8 <

primitive type Intl6é <: Signed 16 end
primitive type UIntl6é <: Unsigned 16 end
primitive type Int32 <: Signed 32 end
primitive type UInt32 <: Unsigned 32 end
primitive type Int64 <: Signed 64 end
primitive type UInt64 <: Unsigned 64 end
primitive type Intl128 <: Signed 128 end
primitive type UIntl28 <: Unsigned 128 end

The general syntaxes for declaring a primitive type are:

primitive type «name» «bits» end
primitive type «name» <: «supertype» «bits» end

The number of bits indicates how much storage the type requires and the name gives the new type a
name. A primitive type can optionally be declared to be a subtype of some supertype. If a supertype is
omitted, then the type defaults to having Any as its immediate supertype. The declaration of Bool above
therefore means that a boolean value takes eight bits to store, and has Integer as its immediate supertype.
Currently, only sizes that are multiples of 8 bits are supported and you are likely to experience LLVM bugs
with sizes other than those used above. Therefore, boolean values, although they really need just a single
bit, cannot be declared to be any smaller than eight bits.

The types Bool, Int8 and UInt8 all have identical representations: they are eight-bit chunks of memory.
Since Julia's type system is nominative, however, they are not interchangeable despite having identical
structure. A fundamental difference between them is that they have different supertypes: Bool's direct
supertypeis Integer, Int8'sis Signed, and UInt8'sis Unsigned. All other differences between Bool, Int8,
and UInt8 are matters of behavior - the way functions are defined to act when given objects of these types
as arguments. This is why a nominative type system is necessary: if structure determined type, which in
turn dictates behavior, then it would be impossible to make Bool behave any differently than Int8 or UInt8.

11.4 Composite Types

Composite types are called records, structs, or objects in various languages. A composite type is a collection
of named fields, an instance of which can be treated as a single value. In many languages, composite types
are the only kind of user-definable type, and they are by far the most commonly used user-defined type in
Julia as well.

In mainstream object oriented languages, such as C++, Java, Python and Ruby, composite types also have
named functions associated with them, and the combination is called an "object". In purer object-oriented
languages, such as Ruby or Smalltalk, all values are objects whether they are composites or not. In less
pure object oriented languages, including C++ and Java, some values, such as integers and floating-point
values, are not objects, while instances of user-defined composite types are true objects with associated
methods. In Julia, all values are objects, but functions are not bundled with the objects they operate on.
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This is necessary since Julia chooses which method of a function to use by multiple dispatch, meaning that
the types of all of a function's arguments are considered when selecting a method, rather than just the
first one (see Methods for more information on methods and dispatch). Thus, it would be inappropriate
for functions to "belong" to only their first argument. Organizing methods into function objects rather
than having named bags of methods "inside" each object ends up being a highly beneficial aspect of the
language design.

Composite types are introduced with the struct keyword followed by a block of field names, optionally
annotated with types using the :: operator:

julia> struct Foo
bar
baz::Int
qux: :Float64
end

Fields with no type annotation default to Any, and can accordingly hold any type of value.

New objects of type Foo are created by applying the Foo type object like a function to values for its fields:

julia> foo = Foo("Hello, world.", 23, 1.5)
Foo("Hello, world.", 23, 1.5)

julia> typeof(foo)
Foo

When a type is applied like a function it is called a constructor. Two constructors are generated automat-
ically (these are called default constructors). One accepts any arguments and calls convert to convert
them to the types of the fields, and the other accepts arguments that match the field types exactly. The
reason both of these are generated is that this makes it easier to add new definitions without inadvertently
replacing a default constructor.

Since the bar field is unconstrained in type, any value will do. However, the value for baz must be con-
vertible to Int:

julia> Foo((), 23.5, 1)
ERROR: InexactError: Int64(23.5)
Stacktrace:

[...]

You may find a list of field names using the fieldnames function.

julia> fieldnames(Foo)
(:bar, :baz, :qux)

You can access the field values of a composite object using the traditional foo.bar notation:
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julia> foo.bar
"Hello, world."

julia> foo.baz
23

julia> foo.qux
1.5

Composite objects declared with struct are immutable; they cannot be modified after construction. This
may seem odd at first, but it has several advantages:

* It can be more efficient. Some structs can be packed efficiently into arrays, and in some cases the
compiler is able to avoid allocating immutable objects entirely.

¢ Itis not possible to violate the invariants provided by the type's constructors.

* Code using immutable objects can be easier to reason about.

An immutable object might contain mutable objects, such as arrays, as fields. Those contained objects
will remain mutable; only the fields of the immutable object itself cannot be changed to point to different
objects.

Where required, mutable composite objects can be declared with the keyword mutable struct, to be
discussed in the next section.

If all the fields of an immutable structure are indistinguishable (===) then two immutable values containing
those fields are also indistinguishable:

julia> struct X
a::Int
b::Float64

end

julia> X(1, 2) === X(1, 2)
true

There is much more to say about how instances of composite types are created, but that discussion depends

on both Parametric Types and on Methods, and is sufficiently important to be addressed in its own section:
Constructors.

For many user-defined types X, you may want to define a method Base.broadcastable(x::X) = Ref(x)
so that instances of that type act as 0-dimensional "scalars" for broadcasting.

11.5 Mutable Composite Types

If a composite type is declared with mutable structinstead of struct, then instances of it can be modified:

julia> mutable struct Bar
baz
qux: :Float64
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end

julia> bar = Bar("Hello", 1.5);

julia> bar.qux = 2.0
2.0
julia> bar.baz = 1//2

1//72

An extra interface between the fields and the user can be provided through Instance Properties. This grants
more control on what can be accessed and modified using the bar.baz notation.

In order to support mutation, such objects are generally allocated on the heap, and have stable memory
addresses. A mutable object is like a little container that might hold different values over time, and so can
only be reliably identified with its address. In contrast, an instance of an immutable type is associated with
specific field values -- the field values alone tell you everything about the object. In deciding whether to
make a type mutable, ask whether two instances with the same field values would be considered identical,
or if they might need to change independently over time. If they would be considered identical, the type
should probably be immutable.

To recap, two essential properties define immutability in Julia:

* It is not permitted to modify the value of an immutable type.

- For bits types this means that the bit pattern of a value once set will never change and that
value is the identity of a bits type.

- For composite types, this means that the identity of the values of its fields will never change.
When the fields are bits types, that means their bits will never change, for fields whose values
are mutable types like arrays, that means the fields will always refer to the same mutable value
even though that mutable value's content may itself be modified.

* An object with an immutable type may be copied freely by the compiler since its immutability makes
it impossible to programmatically distinguish between the original object and a copy.

- In particular, this means that small enough immutable values like integers and floats are typi-
cally passed to functions in registers (or stack allocated).

- Mutable values, on the other hand are heap-allocated and passed to functions as pointers to
heap-allocated values except in cases where the compiler is sure that there's no way to tell
that this is not what is happening.

In cases where one or more fields of an otherwise mutable struct is known to be immutable, one can declare
these fields as such using const as shown below. This enables some, but not all of the optimizations of
immutable structs, and can be used to enforce invariants on the particular fields marked as const.

Julia 1.8

const annotating fields of mutable structs requires at least Julia 1.8.
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julia> mutable struct Baz
a::Int
const b::Float64
end

julia> baz = Baz(1l, 1.5);

julia> baz.a = 2
2

julia> baz.b = 2.0
ERROR: setfield!: const field .b of type Baz cannot be changed
[...]

11.6 Declared Types
The three kinds of types (abstract, primitive, composite) discussed in the previous sections are actually all
closely related. They share the same key properties:

* They are explicitly declared.

* They have names.

* They have explicitly declared supertypes.

¢ They may have parameters.

Because of these shared properties, these types are internally represented as instances of the same con-
cept, DataType, which is the type of any of these types:

julia> typeof(Real)
DataType

julia> typeof(Int)
DataType

A DataType may be abstract or concrete. If it is concrete, it has a specified size, storage layout, and
(optionally) field names. Thus a primitive type is a DataType with nonzero size, but no field names. A
composite type is a DataType that has field names or is empty (zero size).

Every concrete value in the system is an instance of some DataType.

11.7 Type Unions

A type union is a special abstract type which includes as objects all instances of any of its argument types,
constructed using the special Union keyword:

julia> IntOrString = Union{Int,AbstractString}
Union{Int64, AbstractString}
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julia> 1 :: IntOrString
1

julia> "Hello!" :: IntOrString
"Hello!"

julia> 1.0 :: IntOrString
ERROR: TypeError: in typeassert, expected Union{Int64, AbstractString}, got a value of type
— Float64

The compilers for many languages have an internal union construct for reasoning about types; Julia simply
exposes it to the programmer. The Julia compiler is able to generate efficient code in the presence of
Union types with a small number of types !, by generating specialized code in separate branches for each
possible type.

A particularly useful case of a Union type is Union{T, Nothing}, where T can be any type and Nothing
is the singleton type whose only instance is the object nothing. This pattern is the Julia equivalent of
Nullable, Option or Maybe types in other languages. Declaring a function argument or a field as Union{T,
Nothing} allows setting it either to a value of type T, or to nothing to indicate that there is no value. See
this FAQ entry for more information.

11.8 Parametric Types

An important and powerful feature of Julia's type system is that it is parametric: types can take parameters,
so that type declarations actually introduce a whole family of new types - one for each possible combina-
tion of parameter values. There are many languages that support some version of generic programming,
wherein data structures and algorithms to manipulate them may be specified without specifying the ex-
act types involved. For example, some form of generic programming exists in ML, Haskell, Ada, Eiffel,
C++, Java, C#, F#, and Scala, just to name a few. Some of these languages support true parametric
polymorphism (e.g. ML, Haskell, Scala), while others support ad-hoc, template-based styles of generic
programming (e.g. C++, Java). With so many different varieties of generic programming and parametric
types in various languages, we won't even attempt to compare Julia's parametric types to other languages,
but will instead focus on explaining Julia's system in its own right. We will note, however, that because
Julia is a dynamically typed language and doesn't need to make all type decisions at compile time, many
traditional difficulties encountered in static parametric type systems can be relatively easily handled.

All declared types (the DataType variety) can be parameterized, with the same syntax in each case. We
will discuss them in the following order: first, parametric composite types, then parametric abstract types,
and finally parametric primitive types.

Parametric Composite Types

Type parameters are introduced immediately after the type name, surrounded by curly braces:

julia> struct Point{T}
x::T
y::T
end

This declaration defines a new parametric type, Point{T}, holding two "coordinates" of type T. What, one
may ask, is T? Well, that's precisely the point of parametric types: it can be any type at all (or a value
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of any bits type, actually, although here it's clearly used as a type). Point{Float64} is a concrete type
equivalent to the type defined by replacing T in the definition of Point with Float64. Thus, this single
declaration actually declares an unlimited number of types: Point{Float64}, Point{AbstractString},
Point{Int64}, etc. Each of these is now a usable concrete type:

julia> Point{Float64}
Point{Float64}

julia> Point{AbstractString}
Point{AbstractString}

The type Point{Float64} is a point whose coordinates are 64-bit floating-point values, while the type
Point{AbstractString} is a "point" whose "coordinates" are string objects (see Strings).

Point itself is also a valid type object, containing all instances Point{Float64}, Point{AbstractString},
etc. as subtypes:

julia> Point{Float64} <: Point
true

julia> Point{AbstractString} <: Point
true

Other types, of course, are not subtypes of it:

julia> Float64 <: Point
false

julia> AbstractString <: Point
false

Concrete Point types with different values of T are never subtypes of each other:

julia> Point{Float64} <: Point{Int64}
false

julia> Point{Float64} <: Point{Real}
false

Warning

This last pointis very important: even though Float64 <: Real we DO NOT have Point{Float64}
<: Point{Real}.

In other words, in the parlance of type theory, Julia's type parameters are invariant, rather than being
covariant (or even contravariant). This is for practical reasons: while any instance of Point{Float64} may
conceptually be like an instance of Point{Real} as well, the two types have different representations in
memory:
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e Aninstance of Point{Float64} can be represented compactly and efficiently as an immediate pair
of 64-bit values;

e An instance of Point{Real} must be able to hold any pair of instances of Real. Since objects that
are instances of Real can be of arbitrary size and structure, in practice an instance of Point{Real}
must be represented as a pair of pointers to individually allocated Real objects.

The efficiency gained by being able to store Point{Float64} objects with immediate values is magnified
enormously in the case of arrays: an Array{Float64} can be stored as a contiguous memory block of
64-bit floating-point values, whereas an Array{Real} must be an array of pointers to individually allocated
Real objects - which may well be boxed 64-bit floating-point values, but also might be arbitrarily large,
complex objects, which are declared to be implementations of the Real abstract type.

Since Point{Float64} is not a subtype of Point{Real}, the following method can't be applied to argu-
ments of type Point{Float64}:

function norm(p::Point{Real})
sqrt(p.x"2 + p.y"2)
end

A correct way to define a method that accepts all arguments of type Point{T} where T is a subtype of Real
is:

function norm(p::Point{<:Real})
sqrt(p.x"2 + p.y~2)
end

(Equivalently, one could define function norm(p::Point{T} where T<:Real) or function norm(p::Point{T})
where T<:Real; see UnionAll Types.)

More examples will be discussed later in Methods.

How does one construct a Point object? It is possible to define custom constructors for composite types,
which will be discussed in detail in Constructors, but in the absence of any special constructor declara-
tions, there are two default ways of creating new composite objects, one in which the type parameters are
explicitly given and the other in which they are implied by the arguments to the object constructor.

Since the type Point{Float64} is a concrete type equivalent to Point declared with Float64 in place of
T, it can be applied as a constructor accordingly:

julia> p = Point{Float64}(1.0, 2.0)
Point{Float64} (1.0, 2.0)

julia> typeof(p)
Point{Float64}

For the default constructor, exactly one argument must be supplied for each field:
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julia> Point{Float64}(1.0)
ERROR: MethodError: no method matching Point{Float64}(::Float64)
[...]

julia> Point{Float64}(1.0,2.0,3.0)
ERROR: MethodError: no method matching Point{Float64}(::Float64, ::Float64, ::Float64)
[...]

Only one default constructor is generated for parametric types, since overriding it is not possible. This
constructor accepts any arguments and converts them to the field types.

In many cases, it is redundant to provide the type of Point object one wants to construct, since the types of
arguments to the constructor call already implicitly provide type information. For that reason, you can also
apply Point itself as a constructor, provided that the implied value of the parameter type T is unambiguous:

julia> pl = Point(1.0,2.0)
Point{Float64} (1.0, 2.0)

julia> typeof(pl)
Point{Float64}

julia> p2 = Point(1,2)
Point{Int64}(1, 2)

julia> typeof(p2)
Point{Int64}

In the case of Point, the type of T is unambiguously implied if and only if the two arguments to Point have
the same type. When this isn't the case, the constructor will fail with a MethodError:

julia> Point(1,2.5)
ERROR: MethodError: no method matching Point(::Int64, ::Float64)

Closest candidates are:
Point(::T, !'Matched::T) where T
@ Main none:2

Stacktrace:
[...]

Constructor methods to appropriately handle such mixed cases can be defined, but that will not be dis-
cussed until later on in Constructors.

Parametric Abstract Types

Parametric abstract type declarations declare a collection of abstract types, in much the same way:

julia> abstract type Pointy{T} end

With this declaration, Pointy{T} is a distinct abstract type for each type or integer value of T. As with
parametric composite types, each such instance is a subtype of Pointy:
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julia> Pointy{Int64} <: Pointy
true

julia> Pointy{1} <: Pointy
true

Parametric abstract types are invariant, much as parametric composite types are:

julia> Pointy{Float64} <: Pointy{Real}
false

julia> Pointy{Real} <: Pointy{Float64}
false

The notation Pointy{<:Real} can be used to express the Julia analogue of a covariant type, while Pointy{>:Int}
the analogue of a contravariant type, but technically these represent sets of types (see UnionAll Types).

julia> Pointy{Float64} <: Pointy{<:Real}
true

julia> Pointy{Real} <: Pointy{>:Int}
true

Much as plain old abstract types serve to create a useful hierarchy of types over concrete types, parametric
abstract types serve the same purpose with respect to parametric composite types. We could, for example,
have declared Point{T} to be a subtype of Pointy{T} as follows:

julia> struct Point{T} <: Pointy{T}
x::T
y:o:T
end

Given such a declaration, for each choice of T, we have Point{T} as a subtype of Pointy{T}:

julia> Point{Float64} <: Pointy{Float64}
true

julia> Point{Real} <: Pointy{Real}
true

julia> Point{AbstractString} <: Pointy{AbstractString}
true

This relationship is also invariant:

julia> Point{Float64} <: Pointy{Real}
false

julia> Point{Float64} <: Pointy{<:Real}
true
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What purpose do parametric abstract types like Pointy serve? Consider if we create a point-like imple-
mentation that only requires a single coordinate because the point is on the diagonal line x = y:

julia> struct DiagPoint{T} <: Pointy{T}
x::T
end

Now both Point{Float64} and DiagPoint{Float64} are implementations of the Pointy{Float64} ab-
straction, and similarly for every other possible choice of type T. This allows programming to a common
interface shared by all Pointy objects, implemented for both Point and DiagPoint. This cannot be fully
demonstrated, however, until we have introduced methods and dispatch in the next section, Methods.

There are situations where it may not make sense for type parameters to range freely over all possible
types. In such situations, one can constrain the range of T like so:

julia> abstract type Pointy{T<:Real} end

With such a declaration, it is acceptable to use any type that is a subtype of Real in place of T, but not
types that are not subtypes of Real:

julia> Pointy{Float64}
Pointy{Float64}

julia> Pointy{Real}
Pointy{Real}

julia> Pointy{AbstractString}
ERROR: TypeError: in Pointy, in T, expected T<:Real, got Type{AbstractString}

julia> Pointy{1}
ERROR: TypeError: in Pointy, in T, expected T<:Real, got a value of type Int64

Type parameters for parametric composite types can be restricted in the same manner:

struct Point{T<:Real} <: Pointy{T}
x::T
y::T

end

To give a real-world example of how all this parametric type machinery can be useful, here is the actual
definition of Julia's Rational immutable type (except that we omit the constructor here for simplicity),
representing an exact ratio of integers:

struct Rational{T<:Integer} <: Real
num::T
den::T

end

It only makes sense to take ratios of integer values, so the parameter type T is restricted to being a
subtype of Integer, and a ratio of integers represents a value on the real number line, so any Rational is
an instance of the Real abstraction.
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Tuple Types

Tuples are an abstraction of the arguments of a function - without the function itself. The salient aspects of
a function's arguments are their order and their types. Therefore a tuple type is similar to a parameterized
immutable type where each parameter is the type of one field. For example, a 2-element tuple type
resembles the following immutable type:

struct Tuple2{A,B}
a::A
b::B

end

However, there are three key differences:

* Tuple types may have any number of parameters.

* Tuple types are covariant in their parameters: Tuple{Int} is a subtype of Tuple{Any}. Therefore
Tuple{Any} is considered an abstract type, and tuple types are only concrete if their parameters
are.

* Tuples do not have field names; fields are only accessed by index.

Tuple values are written with parentheses and commas. When a tuple is constructed, an appropriate tuple
type is generated on demand:

julia> typeof((1,"foo",2.5))
Tuple{Int64, String, Float64}

Note the implications of covariance:

julia> Tuple{Int,AbstractString} <: Tuple{Real,Any}
true

julia> Tuple{Int,AbstractString} <: Tuple{Real,Real}
false

julia> Tuple{Int,AbstractString} <: Tuple{Real,}
false

Intuitively, this corresponds to the type of a function's arguments being a subtype of the function's signature
(when the signature matches).

Vararg Tuple Types

The last parameter of a tuple type can be the special value Vararg, which denotes any number of trailing
elements:
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julia> mytupletype = Tuple{AbstractString,Vararg{Int}}
Tuple{AbstractString, Vararg{Int64}}

julia> isa(("1",), mytupletype)
true

julia> isa(("1",1), mytupletype)
true

julia> isa(("1",1,2), mytupletype)
true

julia> isa(("1",1,2,3.0), mytupletype)
false

Moreover Vararg{T} corresponds to zero or more elements of type T. Vararg tuple types are used to rep-
resent the arguments accepted by varargs methods (see Varargs Functions).

The special value Vararg{T,N} (when used as the last parameter of a tuple type) corresponds to exactly N
elements of type T. NTuple{N, T} is a convenient alias for Tuple{Vararg{T,N}}, i.e. a tuple type containing
exactly N elements of type T.

Named Tuple Types

Named tuples are instances of the NamedTuple type, which has two parameters: a tuple of symbols giving
the field names, and a tuple type giving the field types. For convenience, NamedTuple types are printed
using the @NamedTuple macro which provides a convenient struct-like syntax for declaring these types
via key: : Type declarations, where an omitted : : Type corresponds to : :Any.

julia> typeof((a=1,b="hello")) # prints in macro form
@NamedTuple{a::Int64, b::String}

julia> NamedTuple{(:a, :b), Tuple{Int64, String}} # long form of the type
@NamedTuple{a::Int64, b::String}

The begin ... endform of the @NamedTuple macro allows the declarations to be split across multiple lines
(similar to a struct declaration), but is otherwise equivalent:

julia> @NamedTuple begin
a::Int
b::String
end
@NamedTuple{a::Int64, b::String}

A NamedTuple type can be used as a constructor, accepting a single tuple argument. The constructed
NamedTuple type can be either a concrete type, with both parameters specified, or a type that specifies
only field names:

julia> @NamedTuple{a::Float32,b::String}((1, ""))
(a =1.0f0, b ="")
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julia> NamedTuple{(:a, :b)}((1, ""))
(a=1,b=""

If field types are specified, the arguments are converted. Otherwise the types of the arguments are used
directly.

Parametric Primitive Types

Primitive types can also be declared parametrically. For example, pointers are represented as primitive
types which would be declared in Julia like this:

# 32-bit system:
primitive type Ptr{T} 32 end

# 64-bit system:
primitive type Ptr{T} 64 end

The slightly odd feature of these declarations as compared to typical parametric composite types, is that
the type parameter T is not used in the definition of the type itself - it is just an abstract tag, essentially
defining an entire family of types with identical structure, differentiated only by their type parameter. Thus,
Ptr{Float64} and Ptr{Int64} are distinct types, even though they have identical representations. And
of course, all specific pointer types are subtypes of the umbrella Ptr type:

julia> Ptr{Float64} <: Ptr
true

julia> Ptr{Int64} <: Ptr
true

11.9 UnionAll Types

We have said that a parametric type like Ptr acts as a supertype of all its instances (Ptr{Int64} etc.). How
does this work? Ptr itself cannot be a normal data type, since without knowing the type of the referenced
data the type clearly cannot be used for memory operations. The answer is that Ptr (or other parametric
types like Array) is a different kind of type called a UnionAll type. Such a type expresses the iterated
union of types for all values of some parameter.

UnionAll types are usually written using the keyword where. For example Ptr could be more accurately
written as Ptr{T} where T, meaning all values whose type is Ptr{T} for some value of T. In this context,
the parameter T is also often called a "type variable" since it is like a variable that ranges over types. Each
where introduces a single type variable, so these expressions are nested for types with multiple parameters,
for example Array{T,N} where N where T.

The type application syntax A{B, C} requires A to be a UnionAll type, and first substitutes B for the outer-
most type variable in A. The result is expected to be another UnionAll type, into which C is then substituted.
So A{B,C} is equivalent to A{B}{C}. This explains why it is possible to partially instantiate a type, as in
Array{Float64}: the first parameter value has been fixed, but the second still ranges over all possible
values. Using explicit where syntax, any subset of parameters can be fixed. For example, the type of all
1-dimensional arrays can be written as Array{T,1} where T.
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Type variables can be restricted with subtype relations. Array{T} where T<:Integer refers to all arrays
whose element type is some kind of Integer. The syntax Array{<:Integer} is a convenient shorthand for
Array{T} where T<:Integer. Type variables can have both lower and upper bounds. Array{T} where
Int<:T<:Number refers to all arrays of Numbers that are able to contain Ints (since T must be at least as
big as Int). The syntax where T>:Int also works to specify only the lower bound of a type variable, and
Array{>:Int} is equivalent to Array{T} where T>:Int.

Since where expressions nest, type variable bounds can refer to outer type variables. For example Tuple{T,Array{S}}
where S<:AbstractArray{T} where T<:Real refers to 2-tuples whose first element is some Real, and

whose second element is an Array of any kind of array whose element type contains the type of the first

tuple element.

The where keyword itself can be nested inside a more complex declaration. For example, consider the two
types created by the following declarations:

julia> const T1 = Array{Array{T, 1} where T, 1}
Vector{Vector} (alias for Array{Array{T, 1} where T, 1})

julia> const T2 = Array{Array{T, 1}, 1} where T
Array{Vector{T}, 1} where T

Type T1 defines a 1-dimensional array of 1-dimensional arrays; each of the inner arrays consists of objects
of the same type, but this type may vary from one inner array to the next. On the other hand, type T2
defines a 1-dimensional array of 1-dimensional arrays all of whose inner arrays must have the same type.
Note that T2 is an abstract type, e.g., Array{Array{Int,1},1} <: T2, whereas T1 is a concrete type. As
a consequence, T1 can be constructed with a zero-argument constructor a=T1() but T2 cannot.

There is a convenient syntax for naming such types, similar to the short form of function definition syntax:
| vector{T} = Array{T, 1}

This is equivalent to const Vector = Array{T,1} where T. Writing Vector{Float64} is equivalent to
writing Array{Float64,1}, and the umbrella type Vector has as instances all Array objects where the
second parameter - the number of array dimensions - is 1, regardless of what the element type is. In
languages where parametric types must always be specified in full, this is not especially helpful, but in
Julia, this allows one to write just Vector for the abstract type including all one-dimensional dense arrays
of any element type.

11.10 Singleton types

Immutable composite types with no fields are called singletons. Formally, if

1. Tis an immutable composite type (i.e. defined with struct),
2. aisa T & b isa Timpliesa === b,

then T is a singleton type.? Base.issingletontype can be used to check if a type is a singleton type.
Abstract types cannot be singleton types by construction.

From the definition, it follows that there can be only one instance of such types:
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julia> struct NoFields
end

julia> NoFields() === NoFields()
true

julia> Base.issingletontype(NoFields)
true

The === function confirms that the constructed instances of NoFields are actually one and the same.

Parametric types can be singleton types when the above condition holds. For example,

julia> struct NoFieldsParam{T}
end

julia> Base.issingletontype(NoFieldsParam) # Can't be a singleton type ...

false

julia> NoFieldsParam{Int}() isa NoFieldsParam # ... because it has ...
true

julia> NoFieldsParam{Bool}() isa NoFieldsParam # ... multiple instances.
true

julia> Base.issingletontype(NoFieldsParam{Int}) # Parametrized, it is a singleton.
true

julia> NoFieldsParam{Int}() === NoFieldsParam{Int}()
true

11.11 Types of functions

Each function has its own type, which is a subtype of Function.

julia> foo4l(x) = x + 1
foo4l (generic function with 1 method)

julia> typeof(foo4l)
typeof(food4l) (singleton type of function foo4l, subtype of Function)

Note how typeof (foo41l) prints as itself. This is merely a convention for printing, as it is a first-class object
that can be used like any other value:

julia> T = typeof(foo4l)
typeof(food4l) (singleton type of function foo4l, subtype of Function)

julia> T <: Function
true
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Types of functions defined at top-level are singletons. When necessary, you can compare them with ===,

Closures also have their own type, which is usually printed with names that end in #<number>. Names and
types for functions defined at different locations are distinct, but not guaranteed to be printed the same
way across sessions.

julia> typeof(x -> x + 1)
var"#9#10"

Types of closures are not necessarily singletons.

julia> addy(y) = x -> x +y
addy (generic function with 1 method)

julia> typeof(addy(l)) === typeof(addy(2))
true

julia> addy(1) === addy(2)

false

julia> Base.issingletontype(typeof(addy(1)))
false

11.12 Type{T} type selectors

Foreach type T, Type{T} is an abstract parametric type whose only instance is the object T. Until we discuss
Parametric Methods and conversions, it is difficult to explain the utility of this construct, but in short, it
allows one to specialize function behavior on specific types as values. This is useful for writing methods
(especially parametric ones) whose behavior depends on a type that is given as an explicit argument rather
than implied by the type of one of its arguments.

Since the definition is a little difficult to parse, let's look at some examples:

julia> isa(Float64, Type{Float64})
true

julia> isa(Real, Type{Float64})
false

julia> isa(Real, Type{Real})
true

julia> isa(Float64, Type{Real})
false

In other words, isa(A, Type{B}) is trueif and only if A and B are the same object and that object is a type.

In particular, since parametric types are invariant, we have

julia> struct TypeParamExample{T}
x::T
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end

julia> TypeParamExample isa Type{TypeParamExample}
true

julia> TypeParamExample{Int} isa Type{TypeParamExample}
false

julia> TypeParamExample{Int} isa Type{TypeParamExample{Int}}
true

Without the parameter, Type is simply an abstract type which has all type objects as its instances:

julia> isa(Type{Float64}, Type)
true

julia> isa(Float64, Type)
true

julia> isa(Real, Type)

true

Any object that is not a type is not an instance of Type:

julia> isa(l, Type)
false

julia> isa("foo", Type)
false

While Type is part of Julia's type hierarchy like any other abstract parametric type, it is not commonly
used outside method signatures except in some special cases. Another important use case for Type is
sharpening field types which would otherwise be captured less precisely, e.g. as DataType in the example
below where the default constructor could lead to performance problems in code relying on the precise
wrapped type (similarly to abstract type parameters).

julia> struct WrapType{T}
value::T
end

julia> WrapType(Float64) # default constructor, note DataType
WrapType{DataType} (Float64)

julia> WrapType(::Type{T}) where T = WrapType{Type{T}}(T)
WrapType

julia> WrapType(Float64) # sharpened constructor, note more precise Type{Float64}
WrapType{Type{Float64}}(Float64)
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11.13 Type Aliases

Sometimes it is convenient to introduce a new name for an already expressible type. This can be done with
a simple assignment statement. For example, UInt is aliased to either UInt32 or UInt64 as is appropriate
for the size of pointers on the system:

# 32-bit system:
julia> UInt
UInt32

# 64-bit system:
julia> UInt
UInt64

This is accomplished via the following code in base/boot.jl:

if Int === Int64

const UInt = UInt64
else

const UInt = UInt32
end

Of course, this depends on what Int is aliased to - but that is predefined to be the correct type - either
Int32 or Int64.

(Note that unlike Int, Float does not exist as a type alias for a specific sized AbstractFloat. Unlike with
integer registers, where the size of Int reflects the size of a native pointer on that machine, the floating
point register sizes are specified by the IEEE-754 standard.)

11.14 Operations on Types

Since types in Julia are themselves objects, ordinary functions can operate on them. Some functions that
are particularly useful for working with or exploring types have already been introduced, such as the <:
operator, which indicates whether its left hand operand is a subtype of its right hand operand.

The isa function tests if an object is of a given type and returns true or false:

julia> isa(l, Int)
true

julia> isa(l, AbstractFloat)
false

The typeof function, already used throughout the manual in examples, returns the type of its argument.
Since, as noted above, types are objects, they also have types, and we can ask what their types are:

julia> typeof(Rational{Int})
DataType

julia> typeof(Union{Real,String})
Union
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What if we repeat the process? What is the type of a type of a type? As it happens, types are all composite
values and thus all have a type of DataType:

julia> typeof(DataType)
DataType

julia> typeof(Union)
DataType

DataType is its own type.

Another operation that applies to some types is supertype, which reveals a type's supertype. Only declared
types (DataType) have unambiguous supertypes:

julia> supertype(Float64)
AbstractFloat

julia> supertype(Number)
Any

julia> supertype(AbstractString)
Any

julia> supertype(Any)
Any

If you apply supertype to other type objects (or non-type objects), a MethodError is raised:

julia> supertype(Union{Float64,Int64})

ERROR: MethodError: no method matching supertype(::Type{Union{Float64, Int64}})
Closest candidates are:

[...]

11.15 Custom pretty-printing

Often, one wants to customize how instances of a type are displayed. This is accomplished by overloading
the show function. For example, suppose we define a type to represent complex numbers in polar form:

julia> struct Polar{T<:Real} <: Number
ro:T
0::T
end
julia> Polar(r::Real,0::Real) = Polar(promote(r,0)...)
Polar

Here, we've added a custom constructor function so that it can take arguments of different Real types and
promote them to a common type (see Constructors and Conversion and Promotion). (Of course, we would
have to define lots of other methods, too, to make it act like a Number, e.g. +, *, one, zero, promotion rules
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and so on.) By default, instances of this type display rather simply, with information about the type name
and the field values, as e.g. Polar{Float64}(3.0,4.0).

If we want it to display instead as 3.0 * exp(4.0im), we would define the following method to print the
object to a given output object io (representing a file, terminal, buffer, etcetera; see Networking and
Streams):

‘julia> Base.show(io::I0, z::Polar) = print(io, z.r, " * exp(", z.0, "im)")

More fine-grained control over display of Polar objects is possible. In particular, sometimes one wants both
a verbose multi-line printing format, used for displaying a single object in the REPL and other interactive
environments, and also a more compact single-line format used for print or for displaying the object as part
of another object (e.g. in an array). Although by default the show(io, z) function is called in both cases,
you can define a different multi-line format for displaying an object by overloading a three-argument form
of show that takes the text/plain MIME type as its second argument (see Multimedia I/O), for example:

julia> Base.show(io::I0, ::MIME"text/plain", z::Polar{T}) where{T} =
print(io, "Polar{$T} complex number:\n ", z)

(Note that print(..., z) here will call the 2-argument show(io, z) method.) This results in:

julia> Polar(3, 4.0)
Polar{Float64} complex number:
3.0 * exp(4.0im)

julia> [Polar(3, 4.0), Polar(4.0,5.3)]
2-element Vector{Polar{Float64}}:

3.0 * exp(4.0im)

4.0 * exp(5.3im)

where the single-line show(io, z) formis still used for an array of Polar values. Technically, the REPL calls
display(z) todisplay the result of executing a line, which defaults to show(stdout, MIME("text/plain"),
z), which in turn defaults to show(stdout, z), but you should not define new display methods unless
you are defining a new multimedia display handler (see Multimedia 1/0).

Moreover, you can also define show methods for other MIME types in order to enable richer display (HTML,
images, etcetera) of objects in environments that support this (e.g. ljulia). For example, we can define
formatted HTML display of Polar objects, with superscripts and italics, via:

julia> Base.show(io::I0, ::MIME"text/html", z::Polar{T}) where {T} =
println(io, "<code>Polar{$T}</code> complex number: ",
z.r, "

<i»e</i><sup>", z.0, <i>i</i></sup>")

A Polar object will then display automatically using HTML in an environment that supports HTML display,
but you can call show manually to get HTML output if you want:

julia> show(stdout, "text/html", Polar(3.0,4.0))
<code>Polar{Float64}</code> complex number: 3.0 <i>e</i><sup>4.0 <i>i</i></sup>
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As a rule of thumb, the single-line show method should print a valid Julia expression for creating the shown
object. When this show method contains infix operators, such as the multiplication operator (*) in our single-
line show method for Polar above, it may not parse correctly when printed as part of another object. To
see this, consider the expression object (see Program representation) which takes the square of a specific
instance of our Polar type:

julia> a = Polar(3, 4.0)
Polar{Float64} complex number:
3.0 * exp(4.0im)

julia> print(:(%a”2))
3.0 * exp(4.0im) ~ 2

Because the operator " has higher precedence than * (see Operator Precedence and Associativity), this
output does not faithfully represent the expression a ~ 2 which should be equal to (3.0 * exp(4.0im))
~ 2. To solve this issue, we must make a custom method for Base.show unquoted(io::I0, z::Polar,
indent::Int, precedence::Int), which is called internally by the expression object when printing:

julia> function Base.show unquoted(io::I0, z::Polar, ::Int, precedence::Int)

if Base.operator_precedence(:*) <= precedence
print(io, "(")
show(io, z)
print(io, ")")

else
show(io, z)

end

end

julia> :(%a™2)
:((3.0 * exp(4.0im)) ~ 2)

The method defined above adds parentheses around the call to show when the precedence of the calling
operator is higher than or equal to the precedence of multiplication. This check allows expressions which
parse correctly without the parentheses (such as : ($a + 2) and : ($a == 2)) to omit them when printing:

julia> :($a + 2)
1(3.0 * exp(4.0im) + 2)

julia> :(%a == 2)
1(3.0 * exp(4.0im) == 2)

In some cases, it is useful to adjust the behavior of show methods depending on the context. This can
be achieved via the I0Context type, which allows passing contextual properties together with a wrapped
10 stream. For example, we can build a shorter representation in our show method when the :compact
property is set to true, falling back to the long representation if the property is false or absent:

julia> function Base.show(io::I0, z::Polar)
if get(io, :compact, false)::Bool
print(io, z.r, "", z.0, "im")
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else
print(io, z.r, " * exp(", z.0, "im)")
end
end

This new compact representation will be used when the passed 10 stream is an I0Context object with the
:compact property set. In particular, this is the case when printing arrays with multiple columns (where
horizontal space is limited):

julia> show(IOContext(stdout, :compact=>true), Polar(3, 4.0))
3.04.0im

julia> [Polar(3, 4.0) Polar(4.0,5.3)]
1x2 Matrix{Polar{Float64}}:
3.04.0im 4.05.3im

See the I0Context documentation for a list of common properties which can be used to adjust printing.

11.16 "Value types"

In Julia, you can't dispatch on a value such as true or false. However, you can dispatch on parametric
types, and Julia allows you to include "plain bits" values (Types, Symbols, Integers, floating-point numbers,
tuples, etc.) as type parameters. A common example is the dimensionality parameter in Array{T,N},
where T is a type (e.g., Float64) but N is just an Int.

You can create your own custom types that take values as parameters, and use them to control dispatch
of custom types. By way of illustration of this idea, let's introduce the parametric type Val{x}, and its
constructor Val(x) = Val{x}(), which serves as a customary way to exploit this technique for cases
where you don't need a more elaborate hierarchy.

Val is defined as:

julia> struct val{x}
end

julia> Val(x) = Val{x}()
Val

There is no more to the implementation of Val than this. Some functions in Julia's standard library accept
Val instances as arguments, and you can also use it to write your own functions. For example:

julia> firstlast(::Val{true}) = "First"
firstlast (generic function with 1 method)

julia> firstlast(::Val{false}) = "Last"
firstlast (generic function with 2 methods)

julia> firstlast(Val(true))
"First"

julia> firstlast(val(false))
"Last"
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For consistency across Julia, the call site should always pass a Val instance rather than using a type, i.e.,
use foo(Val(:bar)) rather than foo(Val{:bar}).

It's worth noting that it's extremely easy to mis-use parametric "value" types, including Val; in unfavorable
cases, you can easily end up making the performance of your code much worse. In particular, you would
never want to write actual code as illustrated above. For more information about the proper (and improper)
uses of Val, please read the more extensive discussion in the performance tips.

1Small" is defined by the max_union_splitting configuration, which currently defaults to 4.

2A few popular languages have singleton types, including Haskell, Scala and Ruby.
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Methods

Recall from Functions that a function is an object that maps a tuple of arguments to a return value, or throws
an exception if no appropriate value can be returned. It is common for the same conceptual function or
operation to be implemented quite differently for different types of arguments: adding two integers is very
different from adding two floating-point numbers, both of which are distinct from adding an integer to a
floating-point number. Despite their implementation differences, these operations all fall under the general
concept of "addition". Accordingly, in Julia, these behaviors all belong to a single object: the + function.

To facilitate using many different implementations of the same concept smoothly, functions need not be
defined all at once, but can rather be defined piecewise by providing specific behaviors for certain com-
binations of argument types and counts. A definition of one possible behavior for a function is called a
method. Thus far, we have presented only examples of functions defined with a single method, applicable
to all types of arguments. However, the signatures of method definitions can be annotated to indicate the
types of arguments in addition to their number, and more than a single method definition may be provided.
When a function is applied to a particular tuple of arguments, the most specific method applicable to those
arguments is applied. Thus, the overall behavior of a function is a patchwork of the behaviors of its various
method definitions. If the patchwork is well designed, even though the implementations of the methods
may be quite different, the outward behavior of the function will appear seamless and consistent.

The choice of which method to execute when a function is applied is called dispatch. Julia allows the dis-
patch process to choose which of a function's methods to call based on the number of arguments given, and
on the types of all of the function's arguments. This is different than traditional object-oriented languages,
where dispatch occurs based only on the first argument, which often has a special argument syntax, and is
sometimes implied rather than explicitly written as an argument. * Using all of a function's arguments to
choose which method should be invoked, rather than just the first, is known as multiple dispatch. Multiple
dispatch is particularly useful for mathematical code, where it makes little sense to artificially deem the
operations to "belong" to one argument more than any of the others: does the addition operationin x + y
belong to x any more than it does to y? The implementation of a mathematical operator generally depends
on the types of all of its arguments. Even beyond mathematical operations, however, multiple dispatch
ends up being a powerful and convenient paradigm for structuring and organizing programs.

Note

lIn C++ or Java, for example, in a method call like obj.meth(argl,arg2), the object obj "receives" the method call and is
implicitly passed to the method via the this keyword, rather than as an explicit method argument. When the current this object is
the receiver of a method call, it can be omitted altogether, writing just meth(argl,arg2), with this implied as the receiving object.
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All the examples in this chapter assume that you are defining methods for a function in the
same module. If you want to add methods to a function in another module, you have to import
it or use the name qualified with module names. See the section on namespace management.

12.1 Defining Methods

Until now, we have, in our examples, defined only functions with a single method having unconstrained
argument types. Such functions behave just like they would in traditional dynamically typed languages.
Nevertheless, we have used multiple dispatch and methods almost continually without being aware of it:
all of Julia's standard functions and operators, like the aforementioned + function, have many methods
defining their behavior over various possible combinations of argument type and count.

When defining a function, one can optionally constrain the types of parameters it is applicable to, using
the :: type-assertion operator, introduced in the section on Composite Types:

julia> f(x::Float64, y::Float64) = 2x + y
f (generic function with 1 method)

This function definition applies only to calls where x and y are both values of type Float64:

julia> f(2.0, 3.0)
7.0

Applying it to any other types of arguments will result in a MethodError:

julia> (2.0, 3)
ERROR: MethodError: no method matching f(::Float64, ::Int64)

Closest candidates are:
f(::Float64, !'Matched::Float64)
@ Main none:1

Stacktrace:
[...]

julia> f(Float32(2.0), 3.0)
ERROR: MethodError: no method matching f(::Float32, ::Float64)

Closest candidates are:
f(!Matched::Float64, ::Float64)
@ Main none:1

Stacktrace:
[...]

julia> (2.0, "3.0")
ERROR: MethodError: no method matching f(::Float64, ::String)

Closest candidates are:
f(::Float64, !'Matched::Float64)
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@ Main none:1

Stacktrace:
[...]

julia> f("2.0", "3.0")
ERROR: MethodError: no method matching f(::String, ::String)

As you can see, the arguments must be precisely of type Float64. Other numeric types, such as integers or
32-bit floating-point values, are not automatically converted to 64-bit floating-point, nor are strings parsed
as numbers. Because Float64 is a concrete type and concrete types cannot be subclassed in Julia, such
a definition can only be applied to arguments that are exactly of type Float64. It may often be useful,
however, to write more general methods where the declared parameter types are abstract:

julia> f(x::Number, y::Number) = 2x - vy
f (generic function with 2 methods)

julia> (2.0, 3)
1.0

This method definition applies to any pair of arguments that are instances of Number. They need not be of
the same type, so long as they are each numeric values. The problem of handling disparate numeric types
is delegated to the arithmetic operations in the expression 2x - y.

To define a function with multiple methods, one simply defines the function multiple times, with different
numbers and types of arguments. The first method definition for a function creates the function object,
and subsequent method definitions add new methods to the existing function object. The most specific
method definition matching the number and types of the arguments will be executed when the function is
applied. Thus, the two method definitions above, taken together, define the behavior for f over all pairs
of instances of the abstract type Number - but with a different behavior specific to pairs of Float64 values.
If one of the arguments is a 64-bit float but the other one is not, then the f(Float64,Float64) method
cannot be called and the more general f(Number,Number) method must be used:

julia> (2.0, 3.0)
7.0

julia> f(2, 3.0)
1.0

julia> (2.0, 3)
1.0

julia> f(2, 3)
1

The 2x + y definition is only used in the first case, while the 2x - y definition is used in the others. No
automatic casting or conversion of function arguments is ever performed: all conversion in Julia is non-
magical and completely explicit. Conversion and Promotion, however, shows how clever application of
sufficiently advanced technology can be indistinguishable from magic. 2

For non-numeric values, and for fewer or more than two arguments, the function f remains undefined, and
applying it will still result in a MethodError:
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julia> f("foo", 3)
ERROR: MethodError: no method matching f(::String,

Closest candidates are:
f(!'Matched: :Number, ::Number)
@ Main none:1

Stacktrace:

[...1]

julia> f()
ERROR: MethodError: no method matching f()

Closest candidates are:
f(!'Matched::Float64, !'Matched::Float64)
@ Main none:1
f(!Matched: :Number, !'Matched: :Number)
@ Main none:1

Stacktrace:

[...]

::Int64)
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You can easily see which methods exist for a function by entering the function object itself in an interactive

session:

julia> f
f (generic function with 2 methods)

This output tells us that f is a function object with two methods. To find out what the signatures of those

methods are, use the methods function:

julia> methods(f)
# 2 methods for generic function "f" from Main:
[1] f(x::Float64, y::Float64)
@ none:1l
[2] f(x::Number, y::Number)
@ none:1l

which shows that f has two methods, one taking two Float64 arguments and one taking arguments of
type Number. It also indicates the file and line number where the methods were defined: because these

methods were defined at the REPL, we get the apparent line number none: 1.

In the absence of a type declaration with : :, the type of a method parameter is Any by default, meaning
that it is unconstrained since all values in Julia are instances of the abstract type Any. Thus, we can define

a catch-all method for f like so:

julia> f(x,y) = println("Whoa there, Nelly.")
f (generic function with 3 methods)

julia> methods(f)
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# 3 methods for generic function "f" from Main:
[1] f(x::Float64, y::Float64)
@ none:1
[2] f(x::Number, y::Number)
@ none:1l
[3]1 f(x, V)
@ none:1

julia> f("foo", 1)
Whoa there, Nelly.

This catch-all is less specific than any other possible method definition for a pair of parameter values, so it
will only be called on pairs of arguments to which no other method definition applies.

Note that in the signature of the third method, there is no type specified for the arguments x and y. This
is a shortened way of expressing f(x::Any, y::Any).

Although it seems a simple concept, multiple dispatch on the types of values is perhaps the single most

powerful and central feature of the Julia language. Core operations typically have dozens of methods:

julia> methods(+)
# 180 methods for generic function "+":

[1] +(x::Bool, z::Complex{Bool}) in Base at complex.jl:227

[2] +(x::Bool, y::Bool) in Base at bool.jl:89

[3] +(x::Bool) in Base at bool.jl:86

[4] +(x::Bool, y::T) where T<:AbstractFloat in Base at bool.jl1:96

[5] +(x::Bool, z::Complex) in Base at complex.jl:234

[6] +(a::Floatl6, b::Floatl6) in Base at float.jl:373

[7] +(x::Float32, y::Float32) in Base at float.jl:375

[8] +(x::Float64, y::Float64) in Base at float.jl:376

[9] +(z::Complex{Bool}, x::Bool) in Base at complex.jl:228

[10] +(z::Complex{Bool}, x::Real) in Base at complex.jl:242

[11] +(x::Char, y::Integer) in Base at char.jl1:40

[12] +(c::BigInt, x::BigFloat) in Base.MPFR at mpfr.jl1:307

[13] +(a::BigInt, b::BigInt, c::BigInt, d::BigInt, e::BigInt) in Base.GMP at gmp.jl1:392
[14] +(a::BigInt, b::BigInt, c::BigInt, d::BigInt) in Base.GMP at gmp.jl:391

[15] +(a::BigInt, b::BigInt, c::BigInt) in Base.GMP at gmp.jl:390

[16] +(x::BigInt, y::BigInt) in Base.GMP at gmp.jl:361

[17] +(x::BigInt, c::Union{UIntl6, UInt32, UInt64, UInt8}) in Base.GMP at gmp.j1:398
[180] +(a, b, c, xs...) in Base at operators.jl:424

Multiple dispatch together with the flexible parametric type system give Julia its ability to abstractly express
high-level algorithms decoupled from implementation details.

12.2 Method specializations

When you create multiple methods of the same function, this is sometimes called "specialization." In this
case, you're specializing the function by adding additional methods to it: each new method is a new
specialization of the function. As shown above, these specializations are returned by methods.

There's another kind of specialization that occurs without programmer intervention: Julia's compiler can
automatically specialize the method for the specific argument types used. Such specializations are not
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listed by methods, as this doesn't create new Methods, but tools like @code typed allow you to inspect
such specializations.

For example, if you create a method

mysum(x::Real, y::Real) = x + y

you've given the function mysum one new method (possibly its only method), and that method takes any
pair of Real number inputs. But if you then execute

julia> mysum(1, 2)
3

julia> mysum(1.0, 2.0)
3.0

Julia will compile mysum twice, once for x: :Int, y::Intandagainforx::Float64, y::Float64. The point
of compiling twice is performance: the methods that get called for + (which mysum uses) vary depending on
the specific types of x and y, and by compiling different specializations Julia can do all the method lookup
ahead of time. This allows the program to run much more quickly, since it does not have to bother with
method lookup while it is running. Julia's automatic specialization allows you to write generic algorithms
and expect that the compiler will generate efficient, specialized code to handle each case you need.

In cases where the number of potential specializations might be effectively unlimited, Julia may avoid this
default specialization. See Be aware of when Julia avoids specializing for more information.

12.3 Method Ambiguities

Itis possible to define a set of function methods such that there is no unique most specific method applicable
to some combinations of arguments:

julia> g(x::Float64, y) = 2x + y
g (generic function with 1 method)

julia> g(x, y::Float64) = x + 2y
g (generic function with 2 methods)

julia> g(2.0, 3)
7.0

julia> g(2, 3.0)
8.0

julia> g(2.0, 3.0)
ERROR: MethodError: g(::Float64, ::Float64) is ambiguous.

Candidates:
g(x, y::Float64)
@ Main none:1l
g(x::Float64, y)
@ Main none:1
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Possible fix, define
g(::Float64, ::Float64)

Stacktrace:
[...]

Here the call g(2.0, 3.0) could be handled by either the g(Float64, Any) or the g(Any, Float64)
method, and neither is more specific than the other. In such cases, Julia raises a MethodError rather than
arbitrarily picking a method. You can avoid method ambiguities by specifying an appropriate method for
the intersection case:

julia> g(x::Float64, y::Float64) = 2x + 2y
g (generic function with 3 methods)

julia> g(2.0, 3)
7.0

julia> g(2, 3.0)
8.0

julia> ¢g(2.0, 3.0)
10.0

It is recommended that the disambiguating method be defined first, since otherwise the ambiguity exists,
if transiently, until the more specific method is defined.

In more complex cases, resolving method ambiguities involves a certain element of design; this topic is
explored further below.

12.4 Parametric Methods

Method definitions can optionally have type parameters qualifying the signature:

julia> same type(x::T, y::T) where {T} = true
same type (generic function with 1 method)

julia> same type(x,y) = false
same type (generic function with 2 methods)

The first method applies whenever both arguments are of the same concrete type, regardless of what type
that is, while the second method acts as a catch-all, covering all other cases. Thus, overall, this defines a
boolean function that checks whether its two arguments are of the same type:

julia> same type(l, 2)
true

julia> same type(1l, 2.0)
false

julia> same type(1.0, 2.0)
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true

julia> same type("foo", 2.0)
false

julia> same type("foo", "bar")
true

julia> same type(Int32(1), Int64(2))
false
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Such definitions correspond to methods whose type signatures are UnionAll types (see UnionAll Types).

This kind of definition of function behavior by dispatch is quite common - idiomatic, even - in Julia. Method
type parameters are not restricted to being used as the types of arguments: they can be used anywhere
a value would be in the signature of the function or body of the function. Here's an example where the
method type parameter T is used as the type parameter to the parametric type Vector{T} in the method

signature:

julia> myappend(v::Vector{T}, x::T) where {T} = [v..., x]
myappend (generic function with 1 method)

julia> myappend([1,2,31,4)
4-element Vector{Int64}:
1

2
3
4

julia> myappend([1,2,3],2.5)
ERROR: MethodError: no method matching myappend(::Vector{Int64},

Closest candidates are:
myappend(::Vector{T}, !Matched::T) where T
@ Main none:1

Stacktrace:
[...]

julia> myappend([1.0,2.0,3.0],4.0)
4-element Vector{Float64}:

1.0

2.0

3.0

4.0

julia> myappend([1.0,2.0,3.0],4)

::Float64)

ERROR: MethodError: no method matching myappend(::Vector{Float64}, ::Int64)

Closest candidates are:
myappend(::Vector{T}, !Matched::T) where T
@ Main none:1
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Stacktrace:
[...]

As you can see, the type of the appended element must match the element type of the vector it is appended
to, or else a MethodError is raised. In the following example, the method type parameter T is used as the
return value:

julia> mytypeof(x::T) where {T} =T
mytypeof (generic function with 1 method)

julia> mytypeof(1)
Into4

julia> mytypeof(1.0)
Float64

Just as you can put subtype constraints on type parameters in type declarations (see Parametric Types),
you can also constrain type parameters of methods:

julia> same type numeric(x::T, y::T) where {T<:Number} = true
same_type numeric (generic function with 1 method)

julia> same type numeric(x::Number, y::Number) = false
same_type numeric (generic function with 2 methods)

julia> same type numeric(l, 2)
true

julia> same type numeric(l, 2.0)
false

julia> same type numeric(1.0, 2.0)
true

julia> same type numeric("foo", 2.0)
ERROR: MethodError: no method matching same type numeric(::String, ::Float64)

Closest candidates are:

same_type numeric(!Matched::T, ::T) where T<:Number
@ Main none:1
same_type numeric(!Matched::Number, ::Number)

@ Main none:1

Stacktrace:
[...]

julia> same type numeric("foo", "bar")
ERROR: MethodError: no method matching same type numeric(::String, ::String)

julia> same_type numeric(Int32(1), Int64(2))
false
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The same_type numeric function behaves much like the same type function defined above, but is only
defined for pairs of numbers.

Parametric methods allow the same syntax as where expressions used to write types (see UnionAll Types).
If there is only a single parameter, the enclosing curly braces (in where {T}) can be omitted, but are often
preferred for clarity. Multiple parameters can be separated with commas, e.g. where {T, S<:Real}, or
written using nested where, e.g. where S<:Real where T.

12.5 Redefining Methods

When redefining a method or adding new methods, it is important to realize that these changes don't take
effect immediately. This is key to Julia's ability to statically infer and compile code to run fast, without the
usual JIT tricks and overhead. Indeed, any new method definition won't be visible to the current runtime
environment, including Tasks and Threads (and any previously defined @generated functions). Let's start
with an example to see what this means:

julia> function tryeval()
@eval newfun() =1
newfun()
end
tryeval (generic function with 1 method)

julia> tryeval()
ERROR: MethodError: no method matching newfun()
The applicable method may be too new: running in world age xxxx1l, while current world is xxxx2.
Closest candidates are:
newfun() at none:1 (method too new to be called from this world context.)
in tryeval() at none:1l

julia> newfun()
1

In this example, observe that the new definition for newfun has been created, but can't be immediately
called. The new global is immediately visible to the tryeval function, so you could write return newfun
(without parentheses). But neither you, nor any of your callers, nor the functions they call, or etc. can call
this new method definition!

But there's an exception: future calls to newfun from the REPL work as expected, being able to both see
and call the new definition of newfun.

However, future calls to tryeval will continue to see the definition of newfun as it was at the previous
statement at the REPL, and thus before that call to tryeval.

You may want to try this for yourself to see how it works.

The implementation of this behavior is a "world age counter". This monotonically increasing value tracks
each method definition operation. This allows describing "the set of method definitions visible to a given
runtime environment" as a single number, or "world age". It also allows comparing the methods available
in two worlds just by comparing their ordinal value. In the example above, we see that the "current world"
(in which the method newfun exists), is one greater than the task-local "runtime world" that was fixed when
the execution of tryeval started.
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Sometimes it is necessary to get around this (for example, if you are implementing the above REPL).
Fortunately, there is an easy solution: call the function using Base.invokelatest:

julia> function tryeval2()
@eval newfun2() = 2
Base.invokelatest (newfun2)
end
tryeval2 (generic function with 1 method)

julia> tryeval2()
2

Finally, let's take a look at some more complex examples where this rule comes into play. Define a function
f(x), which initially has one method:

julia> f(x) = "original definition"
f (generic function with 1 method)

Start some other operations that use f(x):

julia> g(x) = f(x)
g (generic function with 1 method)

julia> t = @async f(wait()); yield();

Now we add some new methods to f(x):

julia> f(x::Int) = "definition for Int"
f (generic function with 2 methods)

julia> f(x::Type{Int}) = "definition for Type{Int}"
f (generic function with 3 methods)

Compare how these results differ:

julia> f(1)
"definition for Int"

julia> g(1)
"definition for Int"

julia> fetch(schedule(t, 1))
"original definition"

julia> t = @async f(wait()); yield();

julia> fetch(schedule(t, 1))
"definition for Int"
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12.6 Design Patterns with Parametric Methods

While complex dispatch logic is not required for performance or usability, sometimes it can be the best
way to express some algorithm. Here are a few common design patterns that come up sometimes when
using dispatch in this way.

Extracting the type parameter from a super-type

Here is a correct code template for returning the element-type T of any arbitrary subtype of AbstractArray
that has well-defined element type:

abstract type AbstractArray{T, N} end
eltype(::Type{<:AbstractArray{T}}) where {T} =T

using so-called triangular dispatch. Note that UnionAll types, for example eltype(AbstractArray{T}
where T <: Integer), do not match the above method. The implementation of eltype in Base adds a
fallback method to Any for such cases.

One common mistake is to try and get the element-type by using introspection:
eltype wrong(::Type{A}) where {A<:AbstractArray} = A.parameters[1]
However, it is not hard to construct cases where this will fail:

struct BitVector <: AbstractArray{Bool, 1}; end

Here we have created a type BitVector which has no parameters, but where the element-type is still fully
specified, with T equal to Bool!

Another mistake is to try to walk up the type hierarchy using supertype:

eltype wrong(::Type{AbstractArray{T}}) where {T} =T
eltype wrong(::Type{AbstractArray{T, N}}) where {T, N} =T
eltype wrong(::Type{A}) where {A<:AbstractArray} = eltype wrong(supertype(A))

While this works for declared types, it fails for types without supertypes:

julia> eltype wrong(Union{AbstractArray{Int}, AbstractArray{Float64}})
ERROR: MethodError: no method matching supertype(::Type{Union{AbstractArray{Float64,N} where N,
— AbstractArray{Int64,N} where N}})
Closest candidates are:
supertype(::DataType) at operators.jl:43
supertype(::UnionAll) at operators.jl:48
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Building a similar type with a different type parameter

When building generic code, there is often a need for constructing a similar object with some change made
to the layout of the type, also necessitating a change of the type parameters. For instance, you might have
some sort of abstract array with an arbitrary element type and want to write your computation on it with a
specific element type. We must implement a method for each AbstractArray{T} subtype that describes
how to compute this type transform. There is no general transform of one subtype into another subtype
with a different parameter.

The subtypes of AbstractArray typically implement two methods to achieve this: A method to convert
the input array to a subtype of a specific AbstractArray{T, N} abstract type; and a method to make a
new uninitialized array with a specific element type. Sample implementations of these can be found in Julia
Base. Here is a basic example usage of them, guaranteeing that input and output are of the same type:

input = convert(AbstractArray{Eltype}, input)
output = similar(input, Eltype)

As an extension of this, in cases where the algorithm needs a copy of the input array, convert is insufficient
as the return value may alias the original input. Combining similar (to make the output array) and copyto!
(to fill it with the input data) is a generic way to express the requirement for a mutable copy of the input
argument:

‘copyiwithieltype(input, Eltype) = copyto!(similar(input, Eltype), input)

Iterated dispatch

In order to dispatch a multi-level parametric argument list, often it is best to separate each level of dispatch
into distinct functions. This may sound similar in approach to single-dispatch, but as we shall see below, it
is still more flexible.

For example, trying to dispatch on the element-type of an array will often run into ambiguous situations.
Instead, commonly code will dispatch first on the container type, then recurse down to a more specific
method based on eltype. In most cases, the algorithms lend themselves conveniently to this hierarchical
approach, while in other cases, this rigor must be resolved manually. This dispatching branching can be
observed, for example, in the logic to sum two matrices:

# First dispatch selects the map algorithm for element-wise summation.
+(a::Matrix, b::Matrix) = map(+, a, b)

# Then dispatch handles each element and selects the appropriate

# common element type for the computation.

+(a, b) = +(promote(a, b)...)

# Once the elements have the same type, they can be added.

# For example, via primitive operations exposed by the processor.
+(a::Float64, b::Float64) = Core.add(a, b)

Trait-based dispatch

A natural extension to the iterated dispatch above is to add a layer to method selection that allows to
dispatch on sets of types which are independent from the sets defined by the type hierarchy. We could
construct such a set by writing out a Union of the types in question, but then this set would not be extensible
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as Union-types cannot be altered after creation. However, such an extensible set can be programmed with
a design pattern often referred to as a "Holy-trait".

This pattern is implemented by defining a generic function which computes a different singleton value (or
type) for each trait-set to which the function arguments may belong to. If this function is pure there is no
impact on performance compared to normal dispatch.

The example in the previous section glossed over the implementation details of map and promote, which
both operate in terms of these traits. When iterating over a matrix, such as in the implementation of
map, one important question is what order to use to traverse the data. When AbstractArray subtypes
implement the Base.IndexStyle trait, other functions such as map can dispatch on this information to
pick the best algorithm (see Abstract Array Interface). This means that each subtype does not need to
implement a custom version of map, since the generic definitions + trait classes will enable the system to
select the fastest version. Here is a toy implementation of map illustrating the trait-based dispatch:

map(f, a::AbstractArray, b::AbstractArray) = map(Base.IndexStyle(a, b), f, a, b)
# generic implementation:

map(::Base.IndexCartesian, f, a::AbstractArray, b::AbstractArray) = ...

# linear-indexing implementation (faster)

map(::Base.IndexLinear, f, a::AbstractArray, b::AbstractArray) = ...

This trait-based approach is also present in the promote mechanism employed by the scalar +. It uses
promote type, which returns the optimal common type to compute the operation given the two types of
the operands. This makes it possible to reduce the problem of implementing every function for every pair
of possible type arguments, to the much smaller problem of implementing a conversion operation from
each type to a common type, plus a table of preferred pair-wise promotion rules.

Output-type computation

The discussion of trait-based promotion provides a transition into our next design pattern: computing the
output element type for a matrix operation.

For implementing primitive operations, such as addition, we use the promote type function to compute
the desired output type. (As before, we saw this at work in the promote call in the call to +).

For more complex functions on matrices, it may be necessary to compute the expected return type for a
more complex sequence of operations. This is often performed by the following steps:

1. Write a small function op that expresses the set of operations performed by the kernel of the algo-
rithm.

2. Compute the element type R of the result matrix as promote _op(op, argument types...), where
argument types is computed from eltype applied to each input array.

3. Build the output matrix as similar (R, dims), where dims are the desired dimensions of the output
array.

For a more specific example, a generic square-matrix multiply pseudo-code might look like:

function matmul(a::AbstractMatrix, b::AbstractMatrix)
op = (ai, bi) -> ai * bi + ai * bi


https://github.com/JuliaLang/julia/issues/2345#issuecomment-54537633
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## this is insufficient because it assumes “one(eltype(a))’ is constructable:
# R = typeof(op(one(eltype(a)), one(eltype(b))))

## this fails because it assumes "a[l]  exists and is representative of all elements of the
< array
# R = typeof(op(al[l]l, b[1]))

## this is incorrect because it assumes that "+  calls “promote type"
## but this is not true for some types, such as Bool:
# R = promote type(ai, bi)

# this is wrong, since depending on the return value
# of type-inference is very brittle (as well as not being optimizable):
# R = Base.return types(op, (eltype(a), eltype(b)))

## but, finally, this works:

R = promote op(op, eltype(a), eltype(b))

## although sometimes it may give a larger type than desired
## it will always give a correct type

output = similar(b, R, (size(a, 1), size(b, 2)))
if size(a, 2) > 0
for j in 1l:size(b, 2)
for i in 1:size(a, 1)
## here we don't use “ab = zero(R)",
## since "R’ might be “Any’ and “zero(Any)' is not defined
## we also must declare “ab::R° to make the type of “ab’ constant in the loop,
## since it is possible that typeof(a * b) != typeof(a * b + a * b) == R
ab::R = a[i, 11 * b[1, jl
for k in 2:size(a, 2)
ab += a[i, k] * b[k, jl
end
output[i, j] = ab
end
end
end
return output

end

Separate convert and kernel logic

One way to significantly cut down on compile-times and testing complexity is to isolate the logic for con-
verting to the desired type and the computation. This lets the compiler specialize and inline the conversion
logic independent from the rest of the body of the larger kernel.

This is a common pattern seen when converting from a larger class of types to the one specific argument
type that is actually supported by the algorithm:

complexfunction(arg::Int)

complexfunction(arg: :Any) complexfunction(convert(Int, arg))
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matmul(a::T, b::T) = ...
matmul(a, b) = matmul(promote(a, b)...)

12.7 Parametrically-constrained Varargs methods

Function parameters can also be used to constrain the number of arguments that may be supplied to a
"varargs" function (Varargs Functions). The notation Vararg{T,N} is used to indicate such a constraint.
For example:

julia> bar(a,b,x::Vararg{Any,2}) = (a,b,x)
bar (generic function with 1 method)

julia> bar(1,2,3)
ERROR: MethodError: no method matching bar(::Int64, ::Int64, ::Int64)

Closest candidates are:
bar(::Any, ::Any, ::Any, !Matched::Any)
@ Main none:1

Stacktrace:
[...]

julia> bar(1,2,3,4)
(1, 2, (3, 4))

julia> bar(1,2,3,4,5)
ERROR: MethodError: no method matching bar(::Int64, ::Int64, ::Int64, ::Int64, ::Int64)

Closest candidates are:
bar(::Any, ::Any, ::Any, ::Any)
@ Main none:1

Stacktrace:
[...]

More usefully, it is possible to constrain varargs methods by a parameter. For example:
function getindex(A::AbstractArray{T,N}, indices::Vararg{Number,N}) where {T,N}

would be called only when the number of indices matches the dimensionality of the array.

When only the type of supplied arguments needs to be constrained Vararg{T} can be equivalently written
as T.... Forinstance f(x::Int...) = xis a shorthand for f(x::Vararg{Int}) = x.

12.8 Note on Optional and keyword Arguments

As mentioned briefly in Functions, optional arguments are implemented as syntax for multiple method
definitions. For example, this definition:

f(a=1,b=2) = a+2b
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translates to the following three methods:

f(a,b) = a+2b
f(a) = f(a,2)
f() = f(1,2)

This means that calling f() is equivalent to calling f(1,2). In this case the result is 5, because f(1,2)
invokes the first method of f above. However, this need not always be the case. If you define a fourth
method that is more specialized for integers:

| f(a::Int,b::Int) = a-2b

then the result of both f() and f(1,2) is -3. In other words, optional arguments are tied to a function, not
to any specific method of that function. It depends on the types of the optional arguments which method
is invoked. When optional arguments are defined in terms of a global variable, the type of the optional
argument may even change at run-time.

Keyword arguments behave quite differently from ordinary positional arguments. In particular, they do not
participate in method dispatch. Methods are dispatched based only on positional arguments, with keyword
arguments processed after the matching method is identified.

12.9 Function-like objects

Methods are associated with types, so it is possible to make any arbitrary Julia object "callable" by adding
methods to its type. (Such "callable" objects are sometimes called "functors.")

For example, you can define a type that stores the coefficients of a polynomial, but behaves like a function
evaluating the polynomial:

julia> struct Polynomial{R}
coeffs::Vector{R}
end

julia> function (p::Polynomial) (x)
v = p.coeffs[end]
for i = (length(p.coeffs)-1):-1:1
v = viX + p.coeffs[i]
end
return v
end

julia> (p::Polynomial) () = p(5)

Notice that the function is specified by type instead of by name. As with normal functions there is a terse
syntax form. In the function body, p will refer to the object that was called. A Polynomial can be used as
follows:

julia> p = Polynomial([1,10,100])
Polynomial{Int64}([1, 10, 100])
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julia> p(3)
931

julia> p()
2551

This mechanism is also the key to how type constructors and closures (inner functions that refer to their
surrounding environment) work in Julia.

12.10 Empty generic functions

Occasionally it is useful to introduce a generic function without yet adding methods. This can be used to
separate interface definitions from implementations. It might also be done for the purpose of documenta-
tion or code readability. The syntax for this is an empty function block without a tuple of arguments:

‘function emptyfunc end

12.11 Method design and the avoidance of ambiguities

Julia's method polymorphism is one of its most powerful features, yet exploiting this power can pose design
challenges. In particular, in more complex method hierarchies it is not uncommon for ambiguities to arise.

Above, it was pointed out that one can resolve ambiguities like

f(x, y::Int)
f(x::Int, y)

nou
N =

by defining a method
‘f(x::Int, y::Int) = 3

This is often the right strategy; however, there are circumstances where following this advice mindlessly
can be counterproductive. In particular, the more methods a generic function has, the more possibilities
there are for ambiguities. When your method hierarchies get more complicated than this simple example,
it can be worth your while to think carefully about alternative strategies.

Below we discuss particular challenges and some alternative ways to resolve such issues.

Tuple and NTuple arguments
Tuple (and NTuple) arguments present special challenges. For example,

f(x::NTuple{N,Int}) where {N} =1
f(x::NTuple{N,Float64}) where {N} = 2

are ambiguous because of the possibility that N == 0: there are no elements to determine whether the
Int or Float64 variant should be called. To resolve the ambiguity, one approach is define a method for
the empty tuple:
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f(x::Tuple{}) = 3
Alternatively, for all methods but one you can insist that there is at least one element in the tuple:

f(x::NTuple{N,Int}) where {N} =1 # this is the fallback
f(x::Tuple{Float64, Vararg{Float64}}) = 2 # this requires at least one Float64
Orthogonalize your design

When you might be tempted to dispatch on two or more arguments, consider whether a "wrapper" function
might make for a simpler design. For example, instead of writing multiple variants:

f(x::A, y::A) = ...
f(x::A, y::B) = ...
f(x::B, y::A) = ...
f(x::B, y::B) = ...

you might consider defining

f(x::A, y::A) = ...
f(x, y) = f(g(x), g(y))

where g converts the argument to type A. This is a very specific example of the more general principle of
orthogonal design, in which separate concepts are assigned to separate methods. Here, g will most likely
need a fallback definition

g(x::A) = x
A related strategy exploits promote to bring x and y to a common type:

f(x::T, y::T) where {T} = ...
f(x, y) = f(promote(x, y)...)

One risk with this design is the possibility that if there is no suitable promotion method converting x and y
to the same type, the second method will recurse on itself infinitely and trigger a stack overflow.

Dispatch on one argument at a time

If you need to dispatch on multiple arguments, and there are many fallbacks with too many combinations
to make it practical to define all possible variants, then consider introducing a "name cascade" where (for
example) you dispatch on the first argument and then call an internal method:

f(x::A, y) _fA(x, vy)
f(x::B, y) = fB(x, y)

Then the internal methods fA and fB can dispatch on y without concern about ambiguities with each
other with respect to x.

Be aware that this strategy has at least one major disadvantage: in many cases, it is not possible for
users to further customize the behavior of f by defining further specializations of your exported function
f. Instead, they have to define specializations for your internal methods fA and fB, and this blurs the
lines between exported and internal methods.


https://en.wikipedia.org/wiki/Orthogonality_(programming)
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Abstract containers and element types
Where possible, try to avoid defining methods that dispatch on specific element types of abstract contain-
ers. For example,
-(A::AbstractArray{T}, b::Date) where {T<:Date}
generates ambiguities for anyone who defines a method

‘—(A::MyArrayType{T}, b::T) where {T}

The best approach is to avoid defining either of these methods: instead, rely on a generic method - (A: :AbstractArray,
b) and make sure this method is implemented with generic calls (like similar and -) that do the right thing

for each container type and element type separately. This is just a more complex variant of the advice to
orthogonalize your methods.

When this approach is not possible, it may be worth starting a discussion with other developers about
resolving the ambiguity; just because one method was defined first does not necessarily mean that it can't
be modified or eliminated. As a last resort, one developer can define the "band-aid" method

-(A::MyArrayType{T}, b::Date) where {T<:Date} = ...
that resolves the ambiguity by brute force.

Complex method "cascades" with default arguments

If you are defining a method "cascade" that supplies defaults, be careful about dropping any arguments
that correspond to potential defaults. For example, suppose you're writing a digital filtering algorithm and
you have a method that handles the edges of the signal by applying padding:

function myfilter(A, kernel, ::Replicate)

Apadded = replicate edges(A, size(kernel))

myfilter(Apadded, kernel) # now perform the "real" computation
end

This will run afoul of a method that supplies default padding:
myfilter(A, kernel) = myfilter(A, kernel, Replicate()) # replicate the edge by default

Together, these two methods generate an infinite recursion with A constantly growing bigger.
The better design would be to define your call hierarchy like this:
struct NoPad end # indicate that no padding is desired, or that it's already applied
myfilter(A, kernel) = myfilter(A, kernel, Replicate()) # default boundary conditions

function myfilter(A, kernel, ::Replicate)
Apadded = replicate edges(A, size(kernel))
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myfilter(Apadded, kernel, NoPad()) # indicate the new boundary conditions
end

# other padding methods go here
function myfilter(A, kernel, ::NoPad)

# Here's the "real" implementation of the core computation
end

NoPad is supplied in the same argument position as any other kind of padding, so it keeps the dispatch
hierarchy well organized and with reduced likelihood of ambiguities. Moreover, it extends the "public"
myfilter interface: a user who wants to control the padding explicitly can call the NoPad variant directly.

12.12 Defining methods in local scope

You can define methods within a local scope, for example

julia> function f(x)
g(y::Int) =y + x
gly) =y - x
g
end
f (generic function with 1 method)

julia> h = f(3);

julia> h(4)
7

julia> h(4.0)
1.0

However, you should not define local methods conditionally or subject to control flow, as in

function f2(inc)

if inc
g(x) = x + 1
else
g(x) = x -1
end
end

function f3()
function g end
return g
g() =0

end

as it is not clear what function will end up getting defined. In the future, it might be an error to define local
methods in this manner.

For cases like this use anonymous functions instead:
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function f2(inc)
g = if inc
X ->x + 1
else
X ->x -1
end

end

2Arthur C. Clarke, Profiles of the Future (1961): Clarke's Third Law.



Chapter 13

Constructors

Constructors ! are functions that create new objects - specifically, instances of Composite Types. In Julia,
type objects also serve as constructor functions: they create new instances of themselves when applied
to an argument tuple as a function. This much was already mentioned briefly when composite types were
introduced. For example:

julia> struct Foo
bar
baz
end

julia> foo = Foo(1l, 2)
Foo(1l, 2)

julia> foo.bar
1

julia> foo.baz
2

For many types, forming new objects by binding their field values together is all that is ever needed to
create instances. However, in some cases more functionality is required when creating composite objects.
Sometimes invariants must be enforced, either by checking arguments or by transforming them. Recursive
data structures, especially those that may be self-referential, often cannot be constructed cleanly without
first being created in an incomplete state and then altered programmatically to be made whole, as a sep-
arate step from object creation. Sometimes, it's just convenient to be able to construct objects with fewer
or different types of parameters than they have fields. Julia's system for object construction addresses all
of these cases and more.

INomenclature: while the term "constructor" generally refers to the entire function which constructs objects of a type, it is
common to abuse terminology slightly and refer to specific constructor methods as "constructors". In such situations, it is generally
clear from the context that the term is used to mean "constructor method" rather than "constructor function", especially as it is often
used in the sense of singling out a particular method of the constructor from all of the others.
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13.1 Outer Constructor Methods

A constructor is just like any other function in Julia in that its overall behavior is defined by the combined
behavior of its methods. Accordingly, you can add functionality to a constructor by simply defining new
methods. For example, let's say you want to add a constructor method for Foo objects that takes only one
argument and uses the given value for both the bar and baz fields. This is simple:

julia> Foo(x) = Foo(x,x)
Foo

julia> Foo(1)
Foo(1l, 1)

You could also add a zero-argument Foo constructor method that supplies default values for both of the
bar and baz fields:

julia> Foo() = Foo(0)
Foo

julia> Foo()
Foo(0, 0)

Here the zero-argument constructor method calls the single-argument constructor method, which in turn
calls the automatically provided two-argument constructor method. For reasons that will become clear very
shortly, additional constructor methods declared as normal methods like this are called outer constructor
methods. Outer constructor methods can only ever create a new instance by calling another constructor
method, such as the automatically provided default ones.

13.2 Inner Constructor Methods

While outer constructor methods succeed in addressing the problem of providing additional convenience
methods for constructing objects, they fail to address the other two use cases mentioned in the introduc-
tion of this chapter: enforcing invariants, and allowing construction of self-referential objects. For these
problems, one needs inner constructor methods. An inner constructor method is like an outer constructor
method, except for two differences:

1. Itis declared inside the block of a type declaration, rather than outside of it like normal methods.

2. It has access to a special locally existent function called new that creates objects of the block's type.

For example, suppose one wants to declare a type that holds a pair of real numbers, subject to the constraint
that the first number is not greater than the second one. One could declare it like this:

julia> struct OrderedPair
x: :Real
y::Real
OrderedPair(x,y) = x >y ? error("out of order") : new(x,y)
end
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Now OrderedPair objects can only be constructed such that x <= y:

julia> OrderedPair(1l, 2)
OrderedPair(1, 2)

julia> OrderedPair(2,1)

ERROR: out of order

Stacktrace:
[1] error at ./error.jl:33 [inlined]
[2] OrderedPair(::Int64, ::Int64) at ./none:4
[3] top-level scope

If the type were declared mutable, you could reach in and directly change the field values to violate this
invariant. Of course, messing around with an object's internals uninvited is bad practice. You (or someone
else) can also provide additional outer constructor methods at any later point, but once a type is declared,
there is no way to add more inner constructor methods. Since outer constructor methods can only create
objects by calling other constructor methods, ultimately, some inner constructor must be called to create
an object. This guarantees that all objects of the declared type must come into existence by a call to one
of the inner constructor methods provided with the type, thereby giving some degree of enforcement of a
type's invariants.

If any inner constructor method is defined, no default constructor method is provided: it is presumed that
you have supplied yourself with all the inner constructors you need. The default constructor is equivalent to
writing your own inner constructor method that takes all of the object's fields as parameters (constrained
to be of the correct type, if the corresponding field has a type), and passes them to new, returning the
resulting object:

julia> struct Foo
bar
baz
Foo(bar,baz) = new(bar,baz)
end

This declaration has the same effect as the earlier definition of the Foo type without an explicit inner
constructor method. The following two types are equivalent - one with a default constructor, the other
with an explicit constructor:

julia> struct T1
x::Int64
end

julia> struct T2
x::Int64
T2(x) = new(x)
end

julia> T1(1)
T1(1)

julia> T2(1)
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T2(1)

julia> T1(1.0)
T1(1)

julia> T2(1.0)
T2(1)

It is good practice to provide as few inner constructor methods as possible: only those taking all arguments
explicitly and enforcing essential error checking and transformation. Additional convenience constructor
methods, supplying default values or auxiliary transformations, should be provided as outer constructors
that call the inner constructors to do the heavy lifting. This separation is typically quite natural.

13.3 Incomplete Initialization

The final problem which has still not been addressed is construction of self-referential objects, or more
generally, recursive data structures. Since the fundamental difficulty may not be immediately obvious, let
us briefly explain it. Consider the following recursive type declaration:

julia> mutable struct SelfReferential
obj::SelfReferential
end

This type may appear innocuous enough, until one considers how to construct an instance of it. If a is an
instance of SelfReferential, then a second instance can be created by the call:

julia> b = SelfReferential(a)

But how does one construct the first instance when no instance exists to provide as a valid value for its obj
field? The only solution is to allow creating an incompletely initialized instance of SelfReferential with
an unassigned obj field, and using that incomplete instance as a valid value for the obj field of another
instance, such as, for example, itself.

To allow for the creation of incompletely initialized objects, Julia allows the new function to be called with
fewer than the number of fields that the type has, returning an object with the unspecified fields uninitial-
ized. The inner constructor method can then use the incomplete object, finishing its initialization before
returning it. Here, for example, is another attempt at defining the SelfReferential type, this time using
a zero-argument inner constructor returning instances having obj fields pointing to themselves:

julia> mutable struct SelfReferential
obj::SelfReferential
SelfReferential() = (x = new(); x.obj = x)
end

We can verify that this constructor works and constructs objects that are, in fact, self-referential:
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julia> x = SelfReferential();
julia> x === x

true

julia> x === x.obj

true

julia> x === x.obj.obj

true

Although it is generally a good idea to return a fully initialized object from an inner constructor, it is possible
to return incompletely initialized objects:

julia> mutable struct Incomplete
data
Incomplete() = new()
end

julia> z = Incomplete();

While you are allowed to create objects with uninitialized fields, any access to an uninitialized reference is
an immediate error:

julia> z.data
ERROR: UndefRefError: access to undefined reference

This avoids the need to continually check for null values. However, not all object fields are references. Julia
considers some types to be "plain data", meaning all of their data is self-contained and does not reference
other objects. The plain data types consist of primitive types (e.g. Int) and immutable structs of other
plain data types (see also: isbits, isbitstype). The initial contents of a plain data type is undefined:

julia> struct HasPlain
n::Int
HasPlain() = new()
end

julia> HasPlain()
HasPlain(438103441441)

Arrays of plain data types exhibit the same behavior.

You can pass incomplete objects to other functions from inner constructors to delegate their completion:

julia> mutable struct Lazy
data
Lazy(v) = complete me(new(), v)
end

As with incomplete objects returned from constructors, if complete me or any of its callees try to access
the data field of the Lazy object before it has been initialized, an error will be thrown immediately.
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13.4 Parametric Constructors

Parametric types add a few wrinkles to the constructor story. Recall from Parametric Types that, by default,
instances of parametric composite types can be constructed either with explicitly given type parameters
or with type parameters implied by the types of the arguments given to the constructor. Here are some
examples:

julia> struct Point{T<:Real}
x::T
y:o:T
end

julia> Point(1,2) ## implicit T ##
Point{Int64}(1, 2)

julia> Point(1.0,2.5) ## implicit T ##
Point{Float64}(1.0, 2.5)

julia> Point(1,2.5) ## implicit T ##
ERROR: MethodError: no method matching Point(::Int64, ::Float64)
Closest candidates are:

Point(::T, ::T) where T<:Real at none:2

julia> Point{Int64} (1, 2) ## explicit T ##
Point{Int64}(1, 2)

julia> Point{Int64}(1.0,2.5) ## explicit T ##
ERROR: InexactError: Int64(2.5)

Stacktrace:

[...]

julia> Point{Float64} (1.0, 2.5) ## explicit T ##
Point{Float64}(1.0, 2.5)

julia> Point{Float64}(1,2) ## explicit T ##
Point{Float64}(1.0, 2.0)

As you can see, for constructor calls with explicit type parameters, the arguments are converted to the
implied field types: Point{Int64}(1,2) works, but Point{Int64}(1.0,2.5) raises an InexactError
when converting 2.5 to Int64. When the type is implied by the arguments to the constructor call, as
in Point(1,2), then the types of the arguments must agree - otherwise the T cannot be determined - but
any pair of real arguments with matching type may be given to the generic Point constructor.

What's really going on here is that Point, Point{Float64} and Point{Int64} are all different constructor
functions. Infact, Point{T} is a distinct constructor function for each type T. Without any explicitly provided
inner constructors, the declaration of the composite type Point{T<:Real} automatically provides an inner
constructor, Point{T}, for each possible type T<:Real, that behaves just like non-parametric default inner
constructors do. It also provides a single general outer Point constructor that takes pairs of real arguments,
which must be of the same type. This automatic provision of constructors is equivalent to the following
explicit declaration:
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julia> struct Point{T<:Real}
x::T
y::T
Point{T}(x,y) where {T<:Real} = new(x,y)
end

julia> Point(x::T, y::T) where {T<:Real} = Point{T}(x,y);

Notice that each definition looks like the form of constructor call that it handles. The call Point{Int64}(1,2)
will invoke the definition Point{T} (x,y) inside the struct block. The outer constructor declaration, on the
other hand, defines a method for the general Point constructor which only applies to pairs of values of the
same real type. This declaration makes constructor calls without explicit type parameters, like Point(1,2)
and Point(1.0,2.5), work. Since the method declaration restricts the arguments to being of the same
type, calls like Point(1,2.5), with arguments of different types, result in "no method" errors.

Suppose we wanted to make the constructor call Point(1,2.5) work by "promoting" the integer value 1
to the floating-point value 1.0. The simplest way to achieve this is to define the following additional outer
constructor method:

julia> Point(x::Int64, y::Float64) = Point(convert(Float64,x),y);

This method uses the convert function to explicitly convert x to Float64 and then delegates construction
to the general constructor for the case where both arguments are Float64. With this method definition
what was previously a MethodError now successfully creates a point of type Point{Float64}:

julia> p = Point(1,2.5)
Point{Float64}(1.0, 2.5)

julia> typeof(p)
Point{Float64}

However, other similar calls still don't work:

julia> Point(1.5,2)
ERROR: MethodError: no method matching Point(::Float64, ::Int64)

Closest candidates are:
Point(::T, !'Matched::T) where T<:Real
@ Main none:1

Stacktrace:
[...]

For a more general way to make all such calls work sensibly, see Conversion and Promotion. At the risk of
spoiling the suspense, we can reveal here that all it takes is the following outer method definition to make
all calls to the general Point constructor work as one would expect:

julia> Point(x::Real, y::Real) = Point(promote(x,y)...);
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The promote function converts all its arguments to a common type - in this case Float64. With this method
definition, the Point constructor promotes its arguments the same way that numeric operators like + do,
and works for all kinds of real numbers:

julia> Point(1.5,2)
Point{Float64} (1.5, 2.0)

julia> Point(1,1//2)
Point{Rational{Int64}}(1//1, 1//2)

julia> Point(1.0,1//2)
Point{Float64}(1.0, 0.5)

Thus, while the implicit type parameter constructors provided by default in Julia are fairly strict, it is possible
to make them behave in a more relaxed but sensible manner quite easily. Moreover, since constructors
can leverage all of the power of the type system, methods, and multiple dispatch, defining sophisticated
behavior is typically quite simple.

13.5 Case Study: Rational

Perhaps the best way to tie all these pieces together is to present a real world example of a parametric
composite type and its constructor methods. To that end, we implement our own rational number type
OurRational, similar to Julia's built-in Rational type, defined in rational.jl:

julia> struct OurRational{T<:Integer} <: Real
num: :T
den::T
function OurRational{T}(num::T, den::T) where T<:Integer
if num == 0 && den ==
error("invalid rational: 0//0")

end
num = flipsign(num, den)
den = flipsign(den, den)

g = gcd(num, den)
num = div(num, g)
den = div(den, g)
new(num, den)
end
end

julia> OurRational(n::T, d::T) where {T<:Integer} = OurRational{T}(n,d)
OurRational

julia> OurRational(n::Integer, d::Integer) = OurRational(promote(n,d)...)
OurRational

julia> OurRational(n::Integer) = OurRational(n,one(n))
OurRational

julia> o(n::Integer, d::Integer) = OurRational(n,d)
@ (generic function with 1 method)
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julia> o(x::0urRational, y::Integer) = x.num @ (x.den*y)
@ (generic function with 2 methods)

julia> o(x::Integer, y::0OurRational) = (x*y.den) @ y.num
@ (generic function with 3 methods)

julia> o(x::Complex, y::Real) = complex(real(x) e y, imag(x) o y)
@ (generic function with 4 methods)

julia> o(x::Real, y::Complex) = (x*y') o real(y*y')
@ (generic function with 5 methods)

julia> function e(x::Complex, y::Complex)
Xy = x*y'
yy = real(y*y')
complex(real(xy) e yy, imag(xy) o yy)
end
@ (generic function with 6 methods)

The first line - struct OurRational{T<:Integer} <: Real - declares that OurRational takes one type
parameter of an integer type, and is itself a real type. The field declarations num: :T and den: :T indicate
that the data held in a QurRational{T} object are a pair of integers of type T, one representing the rational
value's numerator and the other representing its denominator.

Now things get interesting. OurRational has a single inner constructor method which checks that num
and den aren't both zero and ensures that every rational is constructed in "lowest terms" with a non-
negative denominator. This is accomplished by first flipping the signs of numerator and denominator if the
denominator is negative. Then, both are divided by their greatest common divisor (gcd always returns a
non-negative number, regardless of the sign of its arguments). Because this is the only inner constructor
for OurRational, we can be certain that OurRational objects are always constructed in this normalized
form.

OurRational also provides several outer constructor methods for convenience. The first is the "standard"
general constructor that infers the type parameter T from the type of the numerator and denominator
when they have the same type. The second applies when the given numerator and denominator values
have different types: it promotes them to a common type and then delegates construction to the outer
constructor for arguments of matching type. The third outer constructor turns integer values into rationals
by supplying a value of 1 as the denominator.

Following the outer constructor definitions, we defined a number of methods for the @ operator, which
provides a syntax for writing rationals (e.g. 1 @ 2). Julia's Rational type uses the // operator for this
purpose. Before these definitions, @ is a completely undefined operator with only syntax and no mean-
ing. Afterwards, it behaves just as described in Rational Numbers - its entire behavior is defined in these
few lines. The first and most basic definition just makes a @ b construct a OurRational by applying the
OurRational constructor to a and b when they are integers. When one of the operands of e is already
a rational number, we construct a new rational for the resulting ratio slightly differently; this behavior is
actually identical to division of a rational with an integer. Finally, applying @ to complex integral values
creates an instance of Complex{<:0urRational} - a complex number whose real and imaginary parts are
rationals:

julia> z = (1 + 2im) e (1 - 2im);
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julia> typeof(z)
Complex{OurRational{Int64}}

julia> typeof(z) <: Complex{<:OurRational}
true

Thus, although the @ operator usually returns an instance of OurRational, if either of its arguments are
complex integers, it will return an instance of Complex{<:0urRational} instead. The interested reader
should consider perusing the rest of rational.jl: it is short, self-contained, and implements an entire
basic Julia type.

13.6 Outer-only constructors

As we have seen, a typical parametric type has inner constructors that are called when type parameters are
known; e.g. they apply to Point{Int} but not to Point. Optionally, outer constructors that determine type
parameters automatically can be added, for example constructing a Point{Int} from the call Point(1,2).
Outer constructors call inner constructors to actually make instances. However, in some cases one would
rather not provide inner constructors, so that specific type parameters cannot be requested manually.

For example, say we define a type that stores a vector along with an accurate representation of its sum:

julia> struct SummedArray{T<:Number,S<:Number}
data::Vector{T}
sum: :S
end

julia> SummedArray(Int32[1; 2; 31, Int32(6))
SummedArray{Int32, Int32}(Int32[1, 2, 3], 6)

The problem is that we want S to be a larger type than T, so that we can sum many elements with less
information loss. For example, when Tis Int32, we would like S to be Int64. Therefore we want to avoid an
interface that allows the user to construct instances of the type SummedArray{Int32,Int32}. One way to
do this is to provide a constructor only for SummedArray, but inside the struct definition block to suppress
generation of default constructors:

julia> struct SummedArray{T<:Number,S<:Number}
data: :Vector{T}

sum: :S

function SummedArray(a::Vector{T}) where T
S = widen(T)
new{T,S}(a, sum(S, a))

end

end

julia> SummedArray(Int32[1; 2; 3], Int32(6))
ERROR: MethodError: no method matching SummedArray(::Vector{Int32}, ::Int32)

Closest candidates are:
SummedArray(::Vector{T}) where T
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@ Main none:4

Stacktrace:
[...]

This constructor will be invoked by the syntax SummedArray(a). The syntax new{T,S} allows specifying
parameters for the type to be constructed, i.e. this call will return a SummedArray{T,S}. new{T,S} can be
used in any constructor definition, but for convenience the parameters to new{} are automatically derived
from the type being constructed when possible.
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Conversion and Promotion

Julia has a system for promoting arguments of mathematical operators to a common type, which has been
mentioned in various other sections, including Integers and Floating-Point Numbers, Mathematical Opera-
tions and Elementary Functions, Types, and Methods. In this section, we explain how this promotion system
works, as well as how to extend it to new types and apply it to functions besides built-in mathematical op-
erators. Traditionally, programming languages fall into two camps with respect to promotion of arithmetic
arguments:

* Automatic promotion for built-in arithmetic types and operators. In most languages, built-in
numeric types, when used as operands to arithmetic operators with infix syntax, such as +, -, *, and
/, are automatically promoted to a common type to produce the expected results. C, Java, Perl, and
Python, to name a few, all correctly compute the sum 1 + 1.5 as the floating-point value 2.5, even
though one of the operands to + is an integer. These systems are convenient and designed care-
fully enough that they are generally all-but-invisible to the programmer: hardly anyone consciously
thinks of this promotion taking place when writing such an expression, but compilers and interpreters
must perform conversion before addition since integers and floating-point values cannot be added
as-is. Complex rules for such automatic conversions are thus inevitably part of specifications and
implementations for such languages.

* No automatic promotion. This camp includes Ada and ML - very "strict" statically typed languages.
In these languages, every conversion must be explicitly specified by the programmer. Thus, the ex-
ample expression 1 + 1.5 would be a compilation error in both Ada and ML. Instead one must write
real(1l) + 1.5, explicitly converting the integer 1 to a floating-point value before performing addi-
tion. Explicit conversion everywhere is so inconvenient, however, that even Ada has some degree
of automatic conversion: integer literals are promoted to the expected integer type automatically,
and floating-point literals are similarly promoted to appropriate floating-point types.

In a sense, Julia falls into the "no automatic promotion" category: mathematical operators are just functions
with special syntax, and the arguments of functions are never automatically converted. However, one
may observe that applying mathematical operations to a wide variety of mixed argument types is just an
extreme case of polymorphic multiple dispatch - something which Julia's dispatch and type systems are
particularly well-suited to handle. "Automatic" promotion of mathematical operands simply emerges as
a special application: Julia comes with pre-defined catch-all dispatch rules for mathematical operators,
invoked when no specific implementation exists for some combination of operand types. These catch-all
rules first promote all operands to a common type using user-definable promotion rules, and then invoke
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a specialized implementation of the operator in question for the resulting values, now of the same type.
User-defined types can easily participate in this promotion system by defining methods for conversion to
and from other types, and providing a handful of promotion rules defining what types they should promote
to when mixed with other types.

14.1 Conversion

The standard way to obtain a value of a certain type T is to call the type's constructor, T(x). However,
there are cases where it's convenient to convert a value from one type to another without the programmer
asking for it explicitly. One example is assigning a value into an array: if A is a Vector{Float64}, the
expression A[1] = 2 should work by automatically converting the 2 from Int to Float64, and storing the
result in the array. This is done via the convert function.

The convert function generally takes two arguments: the first is a type object and the second is a value to
convert to that type. The returned value is the value converted to an instance of given type. The simplest
way to understand this function is to see it in action:

julia> x = 12
12

julia> typeof(x)
Int64

julia> xu = convert(UInt8, x)
0x0c

julia> typeof(xu)
UInt8

julia> xf = convert(AbstractFloat, x)
12.0

julia> typeof (xf)
Float64

julia> a = Any[1l 2 3; 4 5 6]
2x3 Matrix{Any}:

1 2 3

4 5 6

julia> convert(Array{Float64}, a)
2x3 Matrix{Float64}:

1.0 2.0 3.0

4.0 5.0 6.0

Conversion isn't always possible, in which case a MethodError is thrown indicating that convert doesn't
know how to perform the requested conversion:

julia> convert(AbstractFloat, "foo")
ERROR: MethodError: Cannot “convert® an object of type String to an object of type AbstractFloat
[...]
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Some languages consider parsing strings as numbers or formatting numbers as strings to be conversions
(many dynamic languages will even perform conversion for you automatically). This is not the case in
Julia. Even though some strings can be parsed as numbers, most strings are not valid representations of
numbers, and only a very limited subset of them are. Therefore in Julia the dedicated parse function must
be used to perform this operation, making it more explicit.

When is convert called?

The following language constructs call convert:

* Assigning to an array converts to the array's element type.

* Assigning to a field of an object converts to the declared type of the field.

* Constructing an object with new converts to the object's declared field types.

* Assigning to a variable with a declared type (e.g. local x::T) converts to that type.
« A function with a declared return type converts its return value to that type.

* Passing a value to ccall converts it to the corresponding argument type.

Conversion vs. Construction

Note that the behavior of convert (T, x) appears to be nearly identical to T(x). Indeed, it usually is. How-
ever, there is a key semantic difference: since convert can be called implicitly, its methods are restricted
to cases that are considered "safe" or "unsurprising". convert will only convert between types that repre-
sent the same basic kind of thing (e.g. different representations of numbers, or different string encodings).
It is also usually lossless; converting a value to a different type and back again should result in the exact
same value.

There are four general kinds of cases where constructors differ from convert:

Constructors for types unrelated to their arguments

Some constructors don'timplement the concept of "conversion". Forexample, Timer(2) creates a 2-second
timer, which is not really a "conversion" from an integer to a timer.

Mutable collections

convert (T, x) is expected to return the original x if x is already of type T. In contrast, if T is a mutable
collection type then T(x) should always make a new collection (copying elements from x).

Wrapper types

For some types which "wrap" other values, the constructor may wrap its argument inside a new object
even if it is already of the requested type. For example Some(x) wraps x to indicate that a value is present
(in a context where the result might be a Some or nothing). However, x itself might be the object Some(y),
in which case the result is Some(Some(y) ), with two levels of wrapping. convert(Some, x), on the other
hand, would just return x since it is already a Some.
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Constructors that don't return instances of their own type

In very rare cases it might make sense for the constructor T(x) to return an object not of type T. This
could happen if a wrapper type is its own inverse (e.g. Flip(Flip(x)) === x), or to support an old calling
syntax for backwards compatibility when a library is restructured. But convert (T, x) should always return
a value of type T.

Defining New Conversions

When defining a new type, initially all ways of creating it should be defined as constructors. If it becomes
clear that implicit conversion would be useful, and that some constructors meet the above "safety" criteria,
then convert methods can be added. These methods are typically quite simple, as they only need to call
the appropriate constructor. Such a definition might look like this:

convert(::Type{MyType}, x) = MyType(x)

The type of the first argument of this method is Type{MyType}, the only instance of which is MyType. Thus,
this method is only invoked when the first argument is the type value MyType. Notice the syntax used for
the first argument: the argument name is omitted prior to the :: symbol, and only the type is given. This
is the syntax in Julia for a function argument whose type is specified but whose value does not need to be
referenced by name.

All instances of some abstract types are by default considered "sufficiently similar" that a universal convert
definition is provided in Julia Base. For example, this definition states that it's valid to convert any Number
type to any other by calling a 1-argument constructor:

convert(::Type{T}, x::Number) where {T<:Number} = T(x)::T

This means that new Number types only need to define constructors, since this definition will handle convert
for them. An identity conversion is also provided to handle the case where the argument is already of the
requested type:

convert(::Type{T}, x::T) where {T<:Number} = x

Similar definitions exist for AbstractString, AbstractArray, and AbstractDict.

14.2 Promotion

Promotion refers to converting values of mixed types to a single common type. Although it is not strictly
necessary, it is generally implied that the common type to which the values are converted can faithfully
represent all of the original values. In this sense, the term "promotion" is appropriate since the values are
converted to a "greater" type - i.e. one which can represent all of the input values in a single common
type. It is important, however, not to confuse this with object-oriented (structural) super-typing, or Julia's
notion of abstract super-types: promotion has nothing to do with the type hierarchy, and everything to do
with converting between alternate representations. For instance, although every Int32 value can also be
represented as a Float64 value, Int32 is not a subtype of Float64.

Promotion to a common "greater" type is performed in Julia by the promote function, which takes any
number of arguments, and returns a tuple of the same number of values, converted to a common type, or
throws an exception if promotion is not possible. The most common use case for promotion is to convert
numeric arguments to a common type:
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julia> promote(l, 2.5)
(1.0, 2.5)

julia> promote(l, 2.5, 3)
(1.0, 2.5, 3.0)

julia> promote(2, 3//4)
(2//1, 3//4)

julia> promote(l, 2.5, 3, 3//4)
(1.0, 2.5, 3.0, 0.75)

julia> promote(1.5, im)
(1.5 + 0.0im, 0.0 + 1.0im)

julia> promote(1l + 2im, 3//4)
(1//1 + 2//1*im, 3//4 + 0//1*im)

Floating-point values are promoted to the largest of the floating-point argument types. Integer values
are promoted to the largest of the integer argument types. If the types are the same size but differ in
signedness, the unsigned type is chosen. Mixtures of integers and floating-point values are promoted to
a floating-point type big enough to hold all the values. Integers mixed with rationals are promoted to
rationals. Rationals mixed with floats are promoted to floats. Complex values mixed with real values are
promoted to the appropriate kind of complex value.

That is really all there is to using promotions. The rest is just a matter of clever application, the most typical
"clever" application being the definition of catch-all methods for numeric operations like the arithmetic
operators +, -, * and /. Here are some of the catch-all method definitions given in promotion.jL:

+(x: :Number,
-(x: :Number,
*(x: :Number,
/(x: :Number,

:Number) = +(promote(x,y)...
:Number) = -(promote(x,y)...
::Number) = *(promote(x,y)...
: :Number) = /(promote(x,y)...

< K <K <

These method definitions say that in the absence of more specific rules for adding, subtracting, multiplying
and dividing pairs of numeric values, promote the values to a common type and then try again. That's all
there is to it: nowhere else does one ever need to worry about promotion to a common numeric type for
arithmetic operations - it just happens automatically. There are definitions of catch-all promotion methods
for a number of other arithmetic and mathematical functions in promotion.j1, but beyond that, there are
hardly any calls to promote required in Julia Base. The most common usages of promote occur in outer
constructors methods, provided for convenience, to allow constructor calls with mixed types to delegate to
an inner type with fields promoted to an appropriate common type. For example, recall that rational.jl
provides the following outer constructor method:

Rational(n::Integer, d::Integer) = Rational(promote(n,d)...)

This allows calls like the following to work:

julia> x = Rational(Int8(15),Int32(-5))
-3//1


https://github.com/JuliaLang/julia/blob/master/base/promotion.jl
https://github.com/JuliaLang/julia/blob/master/base/promotion.jl
https://github.com/JuliaLang/julia/blob/master/base/rational.jl
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julia> typeof(x)
Rational{Int32}

For most user-defined types, it is better practice to require programmers to supply the expected types to
constructor functions explicitly, but sometimes, especially for numeric problems, it can be convenient to
do promotion automatically.

Defining Promotion Rules

Although one could, in principle, define methods for the promote function directly, this would require many
redundant definitions for all possible permutations of argument types. Instead, the behavior of promote
is defined in terms of an auxiliary function called promote rule, which one can provide methods for. The
promote_ rule function takes a pair of type objects and returns another type object, such that instances of
the argument types will be promoted to the returned type. Thus, by defining the rule:

promote rule(::Type{Float64}, ::Type{Float32}) = Float64

one declares that when 64-bit and 32-bit floating-point values are promoted together, they should be
promoted to 64-bit floating-point. The promotion type does not need to be one of the argument types. For
example, the following promotion rules both occur in Julia Base:

promote rule(::Type{BigInt}, ::Type{Float64}) = BigFloat
promote rule(::Type{BigInt}, ::Type{Int8}) = BigInt

In the latter case, the result type is BigInt since BigInt is the only type large enough to hold integers for
arbitrary-precision integer arithmetic. Also note that one does not need to define both promote rule(::Type{A},
::Type{B}) and promote rule(::Type{B}, ::Type{A}) -thesymmetryisimplied by the way promote rule

is used in the promotion process.

The promote rule function is used as a building block to define a second function called promote type,
which, given any number of type objects, returns the common type to which those values, as arguments
to promote should be promoted. Thus, if one wants to know, in absence of actual values, what type a
collection of values of certain types would promote to, one can use promote type:

julia> promote type(Int8, Int64)
Int64

Note that we do not overload promote type directly: we overload promote rule instead. promote type
uses promote rule, and adds the symmetry. Overloading it directly can cause ambiguity errors. We
overload promote rule to define how things should be promoted, and we use promote type to query
that.

Internally, promote type is used inside of promote to determine what type argument values should be
converted to for promotion. The curious reader can read the code in promotion.jl, which defines the
complete promotion mechanism in about 35 lines.


https://github.com/JuliaLang/julia/blob/master/base/promotion.jl
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Case Study: Rational Promotions

Finally, we finish off our ongoing case study of Julia's rational number type, which makes relatively sophis-
ticated use of the promotion mechanism with the following promotion rules:

promote rule(::Type{Rational{T}}, ::Type{S}) where {T<:Integer,S<:Integer} =

— Rational{promote type(T,S)}

promote rule(::Type{Rational{T}}, ::Type{Rational{S}}) where {T<:Integer,S<:Integer} =
— Rational{promote type(T,S)}

promote rule(::Type{Rational{T}}, ::Type{S}) where {T<:Integer,S<:AbstractFloat} =

— promote type(T,S)

The first rule says that promoting a rational number with any other integer type promotes to a rational
type whose numerator/denominator type is the result of promotion of its numerator/denominator type
with the other integer type. The second rule applies the same logic to two different types of rational
numbers, resulting in a rational of the promotion of their respective numerator/denominator types. The
third and final rule dictates that promoting a rational with a float results in the same type as promoting the
numerator/denominator type with the float.

This small handful of promotion rules, together with the type's constructors and the default convert method
for numbers, are sufficient to make rational numbers interoperate completely naturally with all of Julia's
other numeric types - integers, floating-point numbers, and complex numbers. By providing appropriate
conversion methods and promotion rules in the same manner, any user-defined numeric type can interop-
erate just as naturally with Julia's predefined numerics.



Chapter 15

Interfaces

Alot of the power and extensibility in Julia comes from a collection of informal interfaces. By extending a few
specific methods to work for a custom type, objects of that type not only receive those functionalities, but
they are also able to be used in other methods that are written to generically build upon those behaviors.

15.1 Iteration

Required Brief description

methods

iterate(iter) Returns either a tuple of the first item and initial state or nothing if
empty

iterate(iter, Returns either a tuple of the next item and next state or nothing if no

state) items remain

Important Default | Brief description

optional defini-

methods tion

Base.IteratorS}iBadeHasipstgehdf) Base .HasLength(), Base.HasShape{N} (), Base.IsInfinite(),
or Base.SizeUnknown () as appropriate
Base.IteratorE[l Base( Hastyfiglet Base.EltypeUnknown () or Base.HasEltype() as appropriate

eltype(IterType)Any The type of the first entry of the tuple returned by iterate()
length(iter) (undefined) The number of items, if known

size(iter, (undefined) The number of items in each dimension, if known

[dim])

Base.isdone(itemiissing | Fast-path hint for iterator completion. Should be defined for stateful
statel]) iterators, or else isempty(iter) may call iterate(iter[, statel])

and mutate the iterator.

Value returned by IteratorSize(IterType) | Required Methods

Base.HasLength() length(iter)

Base.HasShape{N} () length(iter) and size(iter, [dim])
Base.IsInfinite() (none)

Base.SizeUnknown () (none)

188
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Value returned by IteratorEltype(IterType) Required Methods
Base.HasEltype() eltype(IterType)
Base.EltypeUnknown () (none)

Sequential iteration is implemented by the iterate function. Instead of mutating objects as they are
iterated over, Julia iterators may keep track of the iteration state externally from the object. The return
value from iterate is always either a tuple of a value and a state, or nothing if no elements remain. The
state object will be passed back to the iterate function on the next iteration and is generally considered an
implementation detail private to the iterable object.

Any object that defines this function is iterable and can be used in the many functions that rely upon
iteration. It can also be used directly in a for loop since the syntax:

for item in iter # or “for item = iter"
# body
end

is translated into:

next = iterate(iter)
while next !== nothing

(item, state) = next

# body

next = iterate(iter, state)
end

A simple example is an iterable sequence of square numbers with a defined length:

julia> struct Squares
count: :Int
end

julia> Base.iterate(S::Squares, state=1) = state > S.count ? nothing : (state*state, state+l)

With only iterate definition, the Squares type is already pretty powerful. We can iterate over all the
elements:

julia> for item in Squares(7)
println(item)
end

16
25
36
49

We can use many of the builtin methods that work with iterables, like in or sum:
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julia> 25 in Squares(10)
true

julia> sum(Squares(100))
338350

There are a few more methods we can extend to give Julia more information about this iterable collection.
We know that the elements in a Squares sequence will always be Int. By extending the eltype method,
we can give that information to Julia and help it make more specialized code in the more complicated
methods. We also know the number of elements in our sequence, so we can extend length, too:

julia> Base.eltype(::Type{Squares}) = Int # Note that this is defined for the type

julia> Base.length(S::Squares) = S.count

Now, when we ask Julia to collect all the elements into an array it can preallocate a Vector{Int} of the
right size instead of naively push!ing each element into a Vector{Any}:

julia> collect(Squares(4))
4-element Vector{Int64}:

1

4

9

16

While we can rely upon generic implementations, we can also extend specific methods where we know
there is a simpler algorithm. For example, there's a formula to compute the sum of squares, so we can
override the generic iterative version with a more performant solution:

julia> Base.sum(S::Squares) = (n = S.count; return n*(n+1)*(2n+1)+6)

julia> sum(Squares(1803))
1955361914

This is a very common pattern throughout Julia Base: a small set of required methods define an informal
interface that enable many fancier behaviors. In some cases, types will want to additionally specialize
those extra behaviors when they know a more efficient algorithm can be used in their specific case.

Itis also often useful to allow iteration over a collection in reverse order by iterating over Iterators.reverse(iterator).
To actually support reverse-order iteration, however, an iterator type T needs to implement iterate for
Iterators.Reverse{T}. (Given r::Iterators.Reverse{T}, the underling iterator of type Tis r.itr.) In

our Squares example, we would implement Iterators.Reverse{Squares} methods:

julia> Base.iterate(rS::Iterators.Reverse{Squares}, state=rS.itr.count) = state < 1 ? nothing :
< (state*state, state-1)

julia> collect(Iterators.reverse(Squares(4)))
4-element Vector{Int64}:
16
9
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15.2 Indexing

Methods to implement | Brief description

getindex(X, 1) X[1], indexed element access
setindex! (X, v, 1) X[1i] = v, indexed assignment
firstindex(X) The first index, used in X[begin]
lastindex(X) The last index, used in X[end]

For the Squares iterable above, we can easily compute the ith element of the sequence by squaring it. We
can expose this as an indexing expression S[i]. To opt into this behavior, Squares simply needs to define
getindex:

julia> function Base.getindex(S::Squares, i::Int)
1 <= i <= S.count || throw(BoundsError(S, i))
return i*i
end

julia> Squares(100)[23]
529

Additionally, to support the syntax S[begin] and S[end], we must define firstindex and lastindex to
specify the first and last valid indices, respectively:

julia> Base.firstindex(S::Squares) = 1
julia> Base.lastindex(S::Squares) = length(S)

julia> Squares(23)[end]
529

For multi-dimensional begin/end indexingasina[3, begin, 7], forexample, youshould define firstindex(a,
dim) and lastindex(a, dim) (which default to calling first and last on axes(a, dim), respectively).

Note, though, that the above only defines getindex with one integer index. Indexing with anything other
than an Int will throw a MethodError saying that there was no matching method. In order to support
indexing with ranges or vectors of Ints, separate methods must be written:

julia> Base.getindex(S::Squares, i::Number) = S[convert(Int, i)]
julia> Base.getindex(S::Squares, I) = [S[i] for i in I]

julia> Squares(10)[[3,4.,5]]
3-element Vector{Int64}:

9

16

25

While this is starting to support more of the indexing operations supported by some of the builtin types,
there's still quite a number of behaviors missing. This Squares sequence is starting to look more and more
like a vector as we've added behaviors to it. Instead of defining all these behaviors ourselves, we can
officially define it as a subtype of an AbstractArray.
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15.3 Abstract Arrays

If a type is defined as a subtype of AbstractArray, it inherits a very large set of rich behaviors including
iteration and multidimensional indexing built on top of single-element access. See the arrays manual page
and the Julia Base section for more supported methods.

A key part in defining an AbstractArray subtype is IndexStyle. Since indexing is such an important part
of an array and often occurs in hot loops, it's important to make both indexing and indexed assignment as
efficient as possible. Array data structures are typically defined in one of two ways: either it most efficiently
accesses its elements using just one index (linear indexing) or it intrinsically accesses the elements with
indices specified for every dimension. These two modalities are identified by Julia as IndexLinear() and
IndexCartesian(). Converting a linear index to multiple indexing subscripts is typically very expensive,
so this provides a traits-based mechanism to enable efficient generic code for all array types.

This distinction determines which scalar indexing methods the type must define. IndexLinear() arrays
are simple: just define getindex(A::ArrayType, i::Int). When the array is subsequently indexed with
a multidimensional set of indices, the fallback getindex(A::AbstractArray, I...) efficiently converts
the indices into one linear index and then calls the above method. IndexCartesian() arrays, on the other
hand, require methods to be defined for each supported dimensionality with ndims (A) Int indices. For ex-
ample, SparseMatrixCSC from the SparseArrays standard library module, only supports two dimensions,
so it just defines getindex(A::SparseMatrixCSC, i::Int, j::Int). The same holds for setindex!.

Returning to the sequence of squares from above, we could instead define it as a subtype of an AbstractArray{Int,
1}:

julia> struct SquaresVector <: AbstractArray{Int, 1}
count: :Int
end

julia> Base.size(S::SquaresVector) = (S.count,)

julia> Base.IndexStyle(::Type{<:SquaresVector}) = IndexLinear()

julia> Base.getindex(S::SquaresVector, i::Int) = i*i

Note that it's very important to specify the two parameters of the AbstractArray; the first defines the
eltype, and the second defines the ndims. That supertype and those three methods are all it takes for
SquaresVector to be an iterable, indexable, and completely functional array:

julia> s = SquaresVector(4)
4-element SquaresVector:

1

4

9

16

julia> s[s .> 8]

2-element Vector{Int64}:
9

16

julia> s + s
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4-element Vector{Int64}:
2
8

18

32

julia> sin.(s)

4-element Vector{Float64}:
0.8414709848078965
-0.7568024953079282
0.4121184852417566
-0.2879033166650653

As a more complicated example, let's define our own toy N-dimensional sparse-like array type built on top
of Dict:

julia> struct SparseArray{T,N} <: AbstractArray{T,N}
data::Dict{NTuple{N,Int}, T}
dims: :NTuple{N,Int}
end

julia> SparseArray(::Type{T}, dims::Int...) where {T} = SparseArray(T, dims);

julia> SparseArray(::Type{T}, dims::NTuple{N,Int}) where {T,N} =
— SparseArray{T,N} (Dict{NTuple{N,Int}, T}(), dims);

julia> Base.size(A::SparseArray) = A.dims
julia> Base.similar(A::SparseArray, ::Type{T}, dims::Dims) where {T} = SparseArray(T, dims)

julia> Base.getindex(A::SparseArray{T,N}, I::Vararg{Int,N}) where {T,N} = get(A.data, I, zero(T))

julia> Base.setindex! (A::SparseArray{T,N}, v, I::Vararg{Int,N}) where {T,N} = (A.data[I] = v)

Notice that this is an IndexCartesian array, so we must manually define getindex and setindex! atthe
dimensionality of the array. Unlike the SquaresVector, we are able to define setindex!, and so we can
mutate the array:

julia> A = SparseArray(Float64, 3, 3)
3x3 SparseArray{Float64, 2}:

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

julia> fill! (A, 2)

3x3 SparseArray{Float64, 2}:
2.0 2.0 2.0

2.0 2.0 2.0

2.0 2.0 2.0

julia> A[:] = 1l:length(A); A
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3x3 SparseArray{Float64, 2}:
1.0 4.0 7.0

2.0 5.0 8.0

3.0 6.0 9.0

The result of indexing an AbstractArray can itself be an array (for instance when indexing by an AbstractRange).
The AbstractArray fallback methods use similar to allocate an Array of the appropriate size and element
type, which is filled in using the basic indexing method described above. However, when implementing an
array wrapper you often want the result to be wrapped as well:

julia> A[1:2,:]
2x3 SparseArray{Float64, 2}:
1.0 4.0 7.0

2.0 5.0 8.0

In this example it is accomplished by defining Base.similar(A: :SparseArray, ::Type{T}, dims::Dims)
where T to create the appropriate wrapped array. (Note that while similar supports 1- and 2-argument
forms, in most case you only need to specialize the 3-argument form.) For this to work it's important
that SparseArray is mutable (supports setindex!). Defining similar, getindex and setindex! for
SparseArray also makes it possible to copy the array:

julia> copy(A)
3x3 SparseArray{Float64, 2}:
1.0 4.0 7.0

2.0 5.0 8.0

3.0 6.0 9.0

In addition to all the iterable and indexable methods from above, these types can also interact with each
other and use most of the methods defined in Julia Base for AbstractArrays:

julia> A[SquaresVector(3)]
3-element SparseArray{Float64, 1}:
1.0
4.0
9.0

julia> sum(A)
45.0

If you are defining an array type that allows non-traditional indexing (indices that start at something other
than 1), you should specialize axes. You should also specialize similar so that the dims argument (or-
dinarily a Dims size-tuple) can accept AbstractUnitRange objects, perhaps range-types Ind of your own
design. For more information, see Arrays with custom indices.

15.4 Strided Arrays

A strided array is a subtype of AbstractArray whose entries are stored in memory with fixed strides.
Provided the element type of the array is compatible with BLAS, a strided array can utilize BLAS and LAPACK
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routines for more efficient linear algebra routines. A typical example of a user-defined strided array is one
that wraps a standard Array with additional structure.

Warning: do not implement these methods if the underlying storage is not actually strided, as it may lead
to incorrect results or segmentation faults.

Here are some examples to demonstrate which type of arrays are strided and which are not:

1:5 # not strided (there is no storage associated with this array.)

Vector(1l:5) # is strided with strides (1,)

A=1[15; 26; 37; 48] # is strided with strides (1,4)

= view(A, 1:2, :) # is strided with strides (1,4)

view(A, 1:2:3, 1:2) # is strided with strides (2,4)

view(A, [1,2,4]1, @) # is not strided, as the spacing between rows is not fixed.

v
v
\Y

15.5 Customizing broadcasting

Broadcasting is triggered by an explicit call to broadcast or broadcast!, or implicitly by "dot" operations
like A .+ borf.(x, y). Any object that has axes and supports indexing can participate as an argument
in broadcasting, and by default the result is stored in an Array. This basic framework is extensible in three
major ways:

* Ensuring that all arguments support broadcast
* Selecting an appropriate output array for the given set of arguments

* Selecting an efficient implementation for the given set of arguments

Not all types support axes and indexing, but many are convenient to allow in broadcast. The Base.broadcastable
function is called on each argument to broadcast, allowing it to return something different that supports

axes and indexing. By default, this is the identity function for all AbstractArrays and Numbers — they
already support axes and indexing.

If a type is intended to act like a "O-dimensional scalar" (a single object) rather than as a container for
broadcasting, then the following method should be defined:

Base.broadcastable(o: :MyType) = Ref(0)

that returns the argument wrapped in a O-dimensional Ref container. For example, such a wrapper method
is defined for types themselves, functions, special singletons like missing and nothing, and dates.

Custom array-like types can specialize Base.broadcastable to define their shape, but they should follow

the convention that collect (Base.broadcastable(x)) == collect(x). Anotable exceptionisAbstractString;
strings are special-cased to behave as scalars for the purposes of broadcast even though they are iterable
collections of their characters (see Strings for more).

The next two steps (selecting the output array and implementation) are dependent upon determining a
single answer for a given set of arguments. Broadcast must take all the varied types of its arguments and
collapse them down to just one output array and one implementation. Broadcast calls this single answer a
"style". Every broadcastable object each has its own preferred style, and a promotion-like system is used
to combine these styles into a single answer — the "destination style".
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Broadcast Styles

Base.BroadcastStyle is the abstract type from which all broadcast styles are derived. When used as a
function it has two possible forms, unary (single-argument) and binary. The unary variant states that you
intend to implement specific broadcasting behavior and/or output type, and do not wish to rely on the
default fallback Broadcast.DefaultArrayStyle.

To override these defaults, you can define a custom BroadcastStyle for your object:

struct MyStyle <: Broadcast.BroadcastStyle end
Base.BroadcastStyle(::Type{<:MyType}) = MyStyle()

In some cases it might be convenient not to have to define MyStyle, in which case you can leverage one
of the general broadcast wrappers:

e Base.BroadcastStyle(::Type{<:MyType}) = Broadcast.Style{MyType} () can be used for arbi-
trary types.

e Base.BroadcastStyle(::Type{<:MyType})
is an AbstractArray.

Broadcast.ArrayStyle{MyType} () is preferred if MyType

* ForAbstractArrays that only support a certain dimensionality, create a subtype of Broadcast.AbstractArrayStyle{N}
(see below).

When your broadcast operation involves several arguments, individual argument styles get combined to
determine a single DestStyle that controls the type of the output container. For more details, see below.

Selecting an appropriate output array

The broadcast style is computed for every broadcasting operation to allow for dispatch and specialization.
The actual allocation of the result array is handled by similar, using the Broadcasted object as its first
argument.

Base.similar(bc::Broadcasted{DestStyle}, ::Type{ElType})

The fallback definition is

similar(bc::Broadcasted{DefaultArrayStyle{N}}, ::Type{ElType}) where {N,ElType} =
similar(Array{ElType}, axes(bc))

However, if needed you can specialize on any or all of these arguments. The final argument bc is a lazy
representation of a (potentially fused) broadcast operation, a Broadcasted object. For these purposes, the
most important fields of the wrapper are f and args, describing the function and argument list, respectively.
Note that the argument list can — and often does — include other nested Broadcasted wrappers.

For a complete example, let's say you have created a type, ArrayAndChar, that stores an array and a single
character:
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struct ArrayAndChar{T,N} <: AbstractArray{T,N}
data: :Array{T,N}
char: :Char
end
Base.size(A::ArrayAndChar) = size(A.data)
Base.getindex(A::ArrayAndChar{T,N}, inds::Vararg{Int,N}) where {T,N} = A.data[inds...]

— val
Base.showarg(io::I0, A::ArrayAndChar, toplevel) = print(io, typeof(A), " with char '", A.char,
ooy

You might want broadcasting to preserve the char "metadata". First we define

Base.BroadcastStyle(::Type{<:ArrayAndChar}) = Broadcast.ArrayStyle{ArrayAndChar}()

This means we must also define a corresponding similar method:

function Base.similar(bc::Broadcast.Broadcasted{Broadcast.ArrayStyle{ArrayAndChar}},
— ::Type{ElType}) where ElType
# Scan the inputs for the ArrayAndChar:
A = find_aac(bc)
# Use the char field of A to create the output
ArrayAndChar(similar(Array{ElType}, axes(bc)), A.char)
end

"*A = find aac(As)’ returns the first ArrayAndChar among the arguments."
find_aac(bc::Base.Broadcast.Broadcasted) = find_aac(bc.args)

find aac(args::Tuple) = find aac(find aac(args[1]), Base.tail(args))
find aac(x) = x

find_aac(::Tuple{}) = nothing

find aac(a::ArrayAndChar, rest) = a

find aac(::Any, rest) = find aac(rest)

From these definitions, one obtains the following behavior:

julia> a = ArrayAndChar([1 2; 3 4], 'x")
2x2 ArrayAndChar{Int64, 2} with char 'x':
1 2

3 4

julia> a .+ 1

2x2 ArrayAndChar{Int64, 2} with char 'x':
2 3

4 5

julia> a .+ [5,10]

2x2 ArrayAndChar{Int64, 2} with char 'x':
6 7
13 14
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Base.setindex! (A::ArrayAndChar{T,N}, val, inds::Vararg{Int,N}) where {T,N} = A.data[inds...] =
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Extending broadcast with custom implementations

In general, a broadcast operation is represented by a lazy Broadcasted container that holds onto the func-
tion to be applied alongside its arguments. Those arguments may themselves be more nested Broadcasted
containers, forming a large expression tree to be evaluated. A nested tree of Broadcasted containers is
directly constructed by the implicit dot syntax; 5 .+ 2.*x is transiently represented by Broadcasted(+,
5, Broadcasted(*, 2, x)), for example. This is invisible to users as it is immediately realized through a
call to copy, but it is this container that provides the basis for broadcast's extensibility for authors of cus-
tom types. The built-in broadcast machinery will then determine the result type and size based upon the
arguments, allocate it, and then finally copy the realization of the Broadcasted object into it with a default
copyto! (::AbstractArray, ::Broadcasted) method. The built-in fallback broadcast and broadcast!
methods similarly construct a transient Broadcasted representation of the operation so they can follow the
same codepath. This allows custom array implementations to provide their own copyto! specialization to
customize and optimize broadcasting. This is again determined by the computed broadcast style. This is
such an important part of the operation that it is stored as the first type parameter of the Broadcasted
type, allowing for dispatch and specialization.

For some types, the machinery to "fuse" operations across nested levels of broadcasting is not available
or could be done more efficiently incrementally. In such cases, you may need or want to evaluate x .*
(x .+ 1) as if it had been written broadcast(*, x, broadcast(+, x, 1)), where the inner operation
is evaluated before tackling the outer operation. This sort of eager operation is directly supported by a
bit of indirection; instead of directly constructing Broadcasted objects, Julia lowers the fused expression x
.¥ (x .+ 1) to Broadcast.broadcasted(*, x, Broadcast.broadcasted(+, x, 1)). Now, by default,
broadcasted just calls the Broadcasted constructor to create the lazy representation of the fused expres-
sion tree, but you can choose to override it for a particular combination of function and arguments.

As an example, the builtin AbstractRange objects use this machinery to optimize pieces of broadcasted
expressions that can be eagerly evaluated purely in terms of the start, step, and length (or stop) instead
of computing every single element. Just like all the other machinery, broadcasted also computes and
exposes the combined broadcast style of its arguments, so instead of specializing on broadcasted(f,
args...), you can specialize on broadcasted(::DestStyle, f, args...) for any combination of style,
function, and arguments.

For example, the following definition supports the negation of ranges:
broadcasted(::DefaultArrayStyle{l}, ::typeof(-), r::0rdinalRange) = range(-first(r),
— step=-step(r), length=length(r))

Extending in-place broadcasting

In-place broadcasting can be supported by defining the appropriate copyto! (dest, bc::Broadcasted)
method. Because you might want to specialize either on dest or the specific subtype of bc, to avoid
ambiguities between packages we recommend the following convention.

If you wish to specialize on a particular style DestStyle, define a method for

copyto! (dest, bc::Broadcasted{DestStyle})

Optionally, with this form you can also specialize on the type of dest.

If instead you want to specialize on the destination type DestType without specializing on DestStyle, then
you should define a method with the following signature:
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copyto! (dest::DestType, bc::Broadcasted{Nothing})

This leverages a fallback implementation of copyto! that converts the wrapperinto a Broadcasted{Nothing}.
Consequently, specializing on DestType has lower precedence than methods that specialize on DestStyle.

Similarly, you can completely override out-of-place broadcasting with a copy(: :Broadcasted) method.

Working with Broadcasted objects

In order to implement such a copy or copyto!, method, of course, you must work with the Broadcasted
wrapper to compute each element. There are two main ways of doing so:

* Broadcast.flatten recomputes the potentially nested operation into a single function and flat list
of arguments. You are responsible for implementing the broadcasting shape rules yourself, but this
may be helpful in limited situations.

 |terating over the CartesianIndices of the axes(::Broadcasted) and using indexing with the re-
sulting CartesianIndex object to compute the result.

Writing binary broadcasting rules

The precedence rules are defined by binary BroadcastStyle calls:
‘ Base.BroadcastStyle(::Stylel, ::Style2) = Stylel2()

where Stylel2 is the BroadcastStyle you want to choose for outputs involving arguments of Stylel and
Style2. For example,

Base.BroadcastStyle(::Broadcast.Style{Tuple}, ::Broadcast.AbstractArrayStyle{0}) =
— Broadcast.Style{Tuple}()

indicates that Tuple "wins" over zero-dimensional arrays (the output container will be a tuple). It is worth
noting that you do not need to (and should not) define both argument orders of this call; defining one is
sufficient no matter what order the user supplies the arguments in.

For AbstractArray types, defining a BroadcastStyle supersedes the fallback choice, Broadcast.DefaultArrayStyle.
DefaultArrayStyle and the abstract supertype, AbstractArrayStyle, store the dimensionality as a type
parameter to support specialized array types that have fixed dimensionality requirements.

DefaultArrayStyle "loses" to any other AbstractArrayStyle that has been defined because of the fol-
lowing methods:

BroadcastStyle(a: :AbstractArrayStyle{Any}, ::DefaultArrayStyle) = a

BroadcastStyle(a: :AbstractArrayStyle{N}, ::DefaultArrayStyle{N}) where N = a

BroadcastStyle(a: :AbstractArrayStyle{M}, ::DefaultArrayStyle{N}) where {M,N} =
typeof(a) (Val(max(M, N)))

You do not need to write binary BroadcastStyle rules unless you want to establish precedence for two or
more non-DefaultArrayStyle types.

If your array type does have fixed dimensionality requirements, then you should subtype AbstractArrayStyle.
For example, the sparse array code has the following definitions:
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struct SparseVecStyle <: Broadcast.AbstractArrayStyle{1} end
struct SparseMatStyle <: Broadcast.AbstractArrayStyle{2} end
Base.BroadcastStyle(::Type{<:SparseVector}) = SparseVecStyle()
Base.BroadcastStyle(::Type{<:SparseMatrixCSC}) = SparseMatStyle()

Whenever you subtype AbstractArrayStyle, you also need to define rules for combining dimensionalities,
by creating a constructor for your style that takes a Val(N) argument. For example:

SparseVecStyle(::Val{0}) SparseVecStyle()
SparseVecStyle(::Val{l}) = SparseVecStyle()
SparseVecStyle(::Val{2}) = SparseMatStyle()
SparseVecStyle(::Val{N}) where N = Broadcast.DefaultArrayStyle{N}()

These rules indicate that the combination of a SparseVecStyle with 0- or 1-dimensional arrays yields
another SparseVecStyle, that its combination with a 2-dimensional array yields a SparseMatStyle, and
anything of higher dimensionality falls back to the dense arbitrary-dimensional framework. These rules
allow broadcasting to keep the sparse representation for operations that result in one or two dimensional
outputs, but produce an Array for any other dimensionality.

15.6 Instance Properties

Sometimes, it is desirable to change how the end-user interacts with the fields of an object. Instead of
granting direct access to type fields, an extra layer of abstraction between the user and the code can be
provided by overloading object.field. Properties are what the user sees of the object, fields what the
object actually is.

By default, properties and fields are the same. However, this behavior can be changed. For example, take
this representation of a point in a plane in polar coordinates:

julia> mutable struct Point
r::Float64
¢::Float64
end

julia> p = Point (7.0, pi/4)
Point (7.0, 0.7853981633974483)

As described in the table above dot access p.r is the same as getproperty(p, :r) which is by default
the same as getfield(p, :r):

julia> propertynames(p)
(:r, :9)

julia> getproperty(p, :r), getproperty(p, :¢)
(7.0, 0.7853981633974483)

julia> p.r, p.¢
(7.0, 0.7853981633974483)

julia> getfield(p, :r), getproperty(p, :¢)
(7.0, 0.7853981633974483)



https://en.wikipedia.org/wiki/Polar_coordinate_system

CHAPTER 15. INTERFACES 201

However, we may want users to be unaware that Point stores the coordinates as r and ¢ (fields), and
instead interact with x and y (properties). The methods in the first column can be defined to add new
functionality.

julia> Base.propertynames(::Point, private::Bool=false) = private ? (:x, :y, :r, :¢) : (:x, :y)

julia> function Base.getproperty(p::Point, s::Symbol)

if s === :x

return getfield(p, :r) * cos(getfield(p, :¢))
elseif s === :y

return getfield(p, :r) * sin(getfield(p, :¢))
else

# This allows accessing fields with p.r and p.¢
return getfield(p, s)
end
end

julia> function Base.setproperty!(p::Point, s::Symbol, f)
if s === :x
y =p.y
setfield!(p, :r, sqrt(f"2 + y”2))
setfield!(p, :¢, atan(y, f))
return f
elseif s === :y
X = p.X
setfield!(p, :r, sqrt(x"2 + 72))
setfield! (p, :¢, atan(f, x))
return f
else
# This allow modifying fields with p.r and p.¢
return setfield!(p, s, f)
end

end

It is important that getfield and setfield are used inside getproperty and setproperty! instead of
the dot syntax, since the dot syntax would make the functions recursive which can lead to type inference
issues. We can now try out the new functionality:

julia> propertynames(p)
(:x, ty)

julia> p.x
4.949747468305833

julia> p.y = 4.0
4.0

julia> p.r
6.363961030678928

Finally, it is worth noting that adding instance properties like this is quite rarely done in Julia and should in
general only be done if there is a good reason for doing so.
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Methods to Brief description

implement

size(A) Returns a tuple containing the dimensions of A
getindex(A, (if IndexLinear) Linear scalar indexing

i::Int)

getindex(A, (if IndexCartesian, where N = ndims(A)) N-dimensional

I::Vararg{Int,
N})

scalar indexing

Optional Default Brief description
methods definition
IndexStyle(::TypendexCartesian( )Returns either IndexLinear() or IndexCartesian(). See the
description below.
setindex! (A, (if IndexLinear) Scalar indexed assignment
v, i::Int)
setindex! (A, (if IndexCartesian, where N = ndims(A)) N-dimensional
v, scalar indexed assignment
I::Vararg{Int,
N})
getindex(A, defined in Multidimensional and nonscalar indexing
I...) terms of scalar
getindex
setindex! (A, defined in Multidimensional and nonscalar indexed assignment
X, I...) terms of scalar
setindex!
iterate defined in Iteration
terms of scalar
getindex
length(A) prod(size(A)) | Number of elements
similar(A) similar(A, Return a mutable array with the same shape and element type
eltype(A),
size(A))
similar(A, similar(A, S, | Return a mutable array with the same shape and the specified
::Type{S}) size(A)) element type
similar(A, similar(A, Return a mutable array with the same element type and size
dims::Dims) eltype(A), dims
dims)
similar(A, Array{S} (undef| Return a mutable array with the specified element type and
1 Type{S}, dims) size
dims::Dims)
Non-traditional Default Brief description
indices definition
axes(A) map (OneTo, Return a tuple of AbstractUnitRange{<:Integer} of valid
size(A)) indices. The axes should be their own axes, that is
axes. (axes(A),1l) == axes(A) should be satisfied.
similar(A, similar(A, S, | Return a mutable array with the specified indices inds (see
1 :Type{S}, Base.to shape (1indslpw)
inds)

similar(T::Union

inds)

{ Ty Ba sleurtot sdvapge (Redsh)an array similar to T with the specified indices inds

(see below)
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Methods to Brief description
implement
strides(A) Return the distance in memory (in number of elements) between

adjacent elements in each dimension as a tuple. If Ais an
AbstractArray{T, 0}, this should return an empty tuple.

A)

Base.unsafe convert(::Type

{ Rat{ifh}the native address of an array.

Base.elsize(::Type{<:A})

Return the stride between consecutive elements in the array.

Optional De- Brief description
methods fault
defini-
tion
stride(A, strides (JARetlirn the distance in memory (in number of elements) between
i::Int) adjacent elements in dimension k.

Methods to implement

Brief description

Base.BroadcastStyle(::Type{SrcType}) = Broadcasting behavior of SrcType
SrcStyle()

Base.similar(bc: :Broadcasted{DestStyle}, Allocation of output container

1 :Type{ElType})

Optional methods

Stylel2()

Base.BroadcastStyle(::Stylel,

1:Style2) = Precedence rules for mixing styles

Base.axes(x)

Declaration of the indices of x, as per axes(x).

Base.broadcastable(x)

Convert x to an object that has axes and
supports indexing

Bypassing default machinery

Base.copy(bc::Broadcasted{DestStyle}) Custom implementation of broadcast

Base.copyto! (dest,

Custom implementation of broadcast!,

bc::Broadcasted{DestStyle}) specializing on DestStyle

Base.copyto! (dest::DestType, Custom implementation of broadcast!,
bc::Broadcasted{Nothing}) specializing on DestType
Base.Broadcast.broadcasted(f, args...) Override the default lazy behavior within a fused

expression

Base.Broadcast.instantiate(bc: :Broadcasted{D&Stigleefhe computation of the lazy broadcast's

axes

Methods to implement Default Brief description
definition
propertynames(x::0bjTypé&jieldnames (tRpon(a kuple of the properties (x.property) of an object x.
private::Bool=false) If private=true, also return property names intended to be
kept as private
getproperty(x::0bjType,getfield(x,| Return property s of x. x.s calls getproperty(x, :s).
s::Symbol) s)

setproperty! (x::0bjTyp
s::Symbol, v)

esetfield! (
S, V)

,Set property s of x to v. x.s = v calls setproperty! (x,
:s, V). Should return v.
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Modules

Modules in Julia help organize code into coherent units. They are delimited syntactically inside module
NameOfModule ... end, and have the following features:

1. Modules are separate namespaces, each introducing a new global scope. This is useful, because it
allows the same name to be used for different functions or global variables without conflict, as long
as they are in separate modules.

2. Modules have facilities for detailed namespace management: each defines a set of names it exports,
and can import names from other modules with using and import (we explain these below).

3. Modules can be precompiled for faster loading, and may contain code for runtime initialization.
Typically, in larger Julia packages you will see module code organized into files, eg

module SomeModule
# export, using, import statements are usually here; we discuss these below

include("filel.jl")
include("file2.j1")

end

Files and file names are mostly unrelated to modules; modules are associated only with module expressions.
One can have multiple files per module, and multiple modules per file. include behaves as if the contents
of the source file were evaluated in the global scope of the including module. In this chapter, we use short
and simplified examples, so we won't use include.

The recommended style is not to indent the body of the module, since that would typically lead to whole
files being indented. Also, it is common to use UpperCamelCase for module names (just like types), and
use the plural form if applicable, especially if the module contains a similarly named identifier, to avoid
name clashes. For example,

module FastThings

204
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struct FastThing
end

end

16.1 Namespace management

Namespace management refers to the facilities the language offers for making names in a module available
in other modules. We discuss the related concepts and functionality below in detail.

Qualified names

Names for functions, variables and types in the global scope like sin, ARGS, and UnitRange always belong
to a module, called the parent module, which can be found interactively with parentmodule, for example

julia> parentmodule(UnitRange)
Base

One can also refer to these names outside their parent module by prefixing them with their module, eg
Base.UnitRange. This is called a qualified name. The parent module may be accessible using a chain of
submodules like Base.Math.sin, where Base.Math is called the module path. Due to syntactic ambiguities,
qualifying a name that contains only symbols, such as an operator, requires inserting a colon, e.g. Base. : +.
A small number of operators additionally require parentheses, e.g. Base. : (==).

If a name is qualified, then it is always accessible, and in case of a function, it can also have methods added
to it by using the qualified name as the function name.

Within a module, a variable name can be “reserved” without assigning to it by declaring it as global x.
This prevents name conflicts for globals initialized after load time. The syntax M.x = y does not work to
assign a global in another module; global assignment is always module-local.

Export lists

Names (referring to functions, types, global variables, and constants) can be added to the export list of a
module with export: these are the symbols that are imported when using the module. Typically, they are
at or near the top of the module definition so that readers of the source code can find them easily, as in

julia> module NiceStuff
export nice, DOG

struct Dog end # singleton type, not exported
const DOG = Dog() # named instance, exported
nice(x) = "nice $x" # function, exported

end;

but this is just a style suggestion — a module can have multiple export statements in arbitrary locations.

It is common to export names which form part of the API (application programming interface). In the above
code, the export list suggests that users should use nice and DOG. However, since qualified names always
make identifiers accessible, this is just an option for organizing APIs: unlike other languages, Julia has no
facilities for truly hiding module internals.
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Also, some modules don't export names at all. This is usually done if they use common words, such as
derivative, in their API, which could easily clash with the export lists of other modules. We will see how
to manage name clashes below.

Standalone using and import

Possibly the most common way of loading a module is using ModuleName. This loads the code associated
with ModuleName, and brings

1. the module name

2. and the elements of the export list into the surrounding global namespace.

Technically, the statement using ModuleName means that a module called ModuleName will be available
for resolving names as needed. When a global variable is encountered that has no definition in the current
module, the system will search for it among variables exported by ModuleName and use it if it is found
there. This means that all uses of that global within the current module will resolve to the definition of that
variable in ModuleName.

To load a module from a package, the statement using ModuleName can be used. To load a module from
a locally defined module, a dot needs to be added before the module name like using .ModuleName.

To continue with our example,

julia> using .NiceStuff

would load the above code, making NiceStuff (the module name), DOG and nice available. Dog is not on
the export list, but it can be accessed if the name is qualified with the module path (which here is just the
module name) as NiceStuff.Dog.

Importantly, using ModuleName is the only form for which export lists matter at all.

In contrast,

julia> import .NiceStuff

brings only the module name into scope. Users would need to use NiceStuff.DOG, NiceStuff.Dog, and
NiceStuff.nice to access its contents. Usually, import ModuleName is used in contexts when the user
wants to keep the namespace clean. As we will see in the next section import .NiceStuff is equivalent
tousing .NiceStuff: NiceStuff.

You can combine multiple using and import statements of the same kind in a comma-separated expres-
sion, e.g.

julia> using LinearAlgebra, Statistics
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using and import with specific identifiers, and adding methods

When using ModuleName: or import ModuleName: is followed by a comma-separated list of names, the
module is loaded, but only those specific names are brought into the namespace by the statement. For
example,

julia> using .NiceStuff: nice, DOG

will import the names nice and DOG.

Importantly, the module name NiceStuff will not be in the namespace. If you want to make it accessible,
you have to list it explicitly, as

‘julia> using .NiceStuff: nice, DOG, NiceStuff

Julia has two forms for seemingly the same thing because only import ModuleName: f allows adding
methods to f without a module path. That is to say, the following example will give an error:

julia> using .NiceStuff: nice
julia> struct Cat end

julia> nice(::Cat) = "nice "
ERROR: invalid method definition in Main: function NiceStuff.nice must be explicitly imported to
< be extended
Stacktrace:
[1] top-level scope
@ none:0
[2] top-level scope
@ none:l

This error prevents accidentally adding methods to functions in other modules that you only intended to
use.

There are two ways to deal with this. You can always qualify function names with a module path:
julia> using .NiceStuff
julia> struct Cat end

julia> NiceStuff.nice(::Cat) = "nice "

Alternatively, you can import the specific function name:

julia> import .NiceStuff: nice
julia> struct Cat end

julia> nice(::Cat) = "nice "
nice (generic function with 2 methods)
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Which one you choose is a matter of style. The first form makes it clear that you are adding a method to
a function in another module (remember, that the imports and the method definition may be in separate
files), while the second one is shorter, which is especially convenient if you are defining multiple methods.

Once a variable is made visible via using or import, a module may not create its own variable with the
same name. Imported variables are read-only; assigning to a global variable always affects a variable
owned by the current module, or else raises an error.

Renaming with as

An identifier brought into scope by import or using can be renamed with the keyword as. This is useful for
working around name conflicts as well as for shortening names. For example, Base exports the function
name read, but the CSV.jl package also provides CSV.read. If we are going to invoke CSV reading many
times, it would be convenient to drop the CSV. qualifier. But then it is ambiguous whether we are referring
to Base.read or CSV.read:

julia> read;

julia> import CSV: read
WARNING: ignoring conflicting import of CSV.read into Main

Renaming provides a solution:

julia> import CSV: read as rd

Imported packages themselves can also be renamed:

import BenchmarkTools as BT

as works with using only when a single identifier is brought into scope. For example using CSV: read as
rd works, but using CSV as C does not, since it operates on all of the exported names in CSV.

Mixing multiple using and import statements

When multiple using or import statements of any of the forms above are used, their effect is combined in
the order they appear. For example,

julia> using .NiceStuff # exported names and the module name

julia> import .NiceStuff: nice # allows adding methods to unqualified functions

would bring all the exported names of NiceStuff and the module name itself into scope, and also allow
adding methods to nice without prefixing it with a module name.
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Handling name conflicts

Consider the situation where two (or more) packages export the same name, as in

julia> module A
export f
f() =1
end

A

julia> module B
export f
f() =2
end

B

The statement using .A, .B works, but when you try to call f, you get a warning

julia> using .A, .B

julia> f
WARNING: both B and A export "f"; uses of it in module Main must be qualified
ERROR: UndefVarError: “f° not defined

Here, Julia cannot decide which f you are referring to, so you have to make a choice. The following solutions
are commonly used:

1. Simply proceed with qualified names like A.f and B.f. This makes the context clear to the reader
of your code, especially if f just happens to coincide but has different meaning in various packages.
For example, degree has various uses in mathematics, the natural sciences, and in everyday life,
and these meanings should be kept separate.

2. Use the as keyword above to rename one or both identifiers, eg
julia> using .A: f as f
julia> using .B: f as g

would make B. f available as g. Here, we are assuming that you did not use using A before, which
would have brought f into the namespace.

3. When the names in question do share a meaning, it is common for one module to import it from
another, or have a lightweight “base” package with the sole function of defining an interface like
this, which can be used by other packages. It is conventional to have such package names end in
.. .Base (which has nothing to do with Julia's Base module).

Default top-level definitions and bare modules

Modules automatically contain using Core, using Base, and definitions of the eval and include func-
tions, which evaluate expressions/files within the global scope of that module.

If these default definitions are not wanted, modules can be defined using the keyword baremodule instead
(note: Core is still imported). In terms of baremodule, a standard module looks like this:
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baremodule Mod

using Base

eval(x) = Core.eval(Mod, x)
include(p) = Base.include(Mod, p)

end

If even Core is not wanted, a module that imports nothing and defines no names at all can be defined with
Module(:YourNameHere, false, false) and code can be evaluated into it with @eval or Core.eval:

julia> arithmetic = Module(:arithmetic, false, false)
Main.arithmetic

julia> @eval arithmetic add(x, y) = $(+)(x, y)
add (generic function with 1 method)

julia> arithmetic.add(12, 13)
25

Standard modules

There are three important standard modules:

e Core contains all functionality "built into" the language.
* Base contains basic functionality that is useful in almost all cases.

* Main is the top-level module and the current module, when Julia is started.

Standard library modules

By default Julia ships with some standard library modules. These behave like regular Julia
packages except that you don't need to install them explicitly. For example, if you wanted to
perform some unit testing, you could load the Test standard library as follows:

‘using Test

16.2 Submodules and relative paths

Modules can contain submodules, nesting the same syntaxmodule ... end. They can be used to introduce
separate namespaces, which can be helpful for organizing complex codebases. Note that each module
introduces its own scope, so submodules do not automatically “inherit” names from their parent.

It is recommended that submodules refer to other modules within the enclosing parent module (including
the latter) using relative module qualifiers in using and import statements. A relative module qualifier
starts with a period (.), which corresponds to the current module, and each successive . leads to the
parent of the current module. This should be followed by modules if necessary, and eventually the actual
name to access, all separated by .s.
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Consider the following example, where the submodule SubA defines a function, which is then extended in

its “sibling” module:

julia> module ParentModule
module SubA
export add D # exported interface
const D = 3
add D(x) = x + D
end
using .SubA # brings ‘add D' into the namespace
export add D # export it from ParentModule too
module SubB
import ..SubA: add D # relative path for a “sibling” module
struct Infinity end
add D(x::Infinity) = x
end
end;

You may see code in packages, which, in a similar situation, uses

julia> import .ParentModule.SubA: add D

However, this operates through code loading, and thus only works if ParentModule is in a package. It is

better to use relative paths.

Note that the order of definitions also matters if you are evaluating values. Consider

module TestPackage

export x, y

module Sub

using ..TestPackage

z = y # ERROR: UndefVarError: 'y  not defined
end

end

where Sub is trying to use TestPackage.y before it was defined, so it does not have a value.

For similar reasons, you cannot use a cyclic ordering:
module A
module B

using ..C # ERROR: UndefVarError: 'C' not defined
end
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module C
using ..B
end

end

16.3 Module initialization and precompilation

Large modules can take several seconds to load because executing all of the statements in a module often
involves compiling a large amount of code. Julia creates precompiled caches of the module to reduce this
time.

Precompiled module files (sometimes called "cache files") are created and used automatically when import
or using loads a module. If the cache file(s) do not yet exist, the module will be compiled and saved for
future reuse. You can also manually call Base.compilecache(Base.identify package("modulename"))
to create these files without loading the module. The resulting cache files will be stored in the compiled
subfolder of DEPOT_PATH[1]. If nothing about your system changes, such cache files will be used when
you load the module with import or using.

Precompilation cache files store definitions of modules, types, methods, and constants. They may also store
method specializations and the code generated for them, but this typically requires that the developer add
explicit precompile directives or execute workloads that force compilation during the package build.

However, if you update the module's dependencies or change its source code, the module is automatically
recompiled upon using or import. Dependencies are modules it imports, the Julia build, files it includes,
or explicit dependencies declared by include dependency(path) in the module file(s).

For file dependencies, a change is determined by examining whether the modification time (mtime) of
each file loaded by include or added explicitly by include dependency is unchanged, or equal to the
modification time truncated to the nearest second (to accommodate systems that can't copy mtime with
sub-second accuracy). It also takes into account whether the path to the file chosen by the search logic
in require matches the path that had created the precompile file. It also takes into account the set of
dependencies already loaded into the current process and won't recompile those modules, even if their
files change or disappear, in order to avoid creating incompatibilities between the running system and the
precompile cache. Finally, it takes account of changes in any compile-time preferences.

If you know that a module is not safe to precompile (for example, for one of the reasons described below),
you should put  precompile (false) in the module file (typically placed at the top). This will cause
Base.compilecache to throw an error, and will cause using / import to load it directly into the current
process and skip the precompile and caching. This also thereby prevents the module from being imported
by any other precompiled module.

You may need to be aware of certain behaviors inherent in the creation of incremental shared libraries
which may require care when writing your module. For example, external state is not preserved. To ac-
commodate this, explicitly separate any initialization steps that must occur at runtime from steps that can
occur at compile time. For this purpose, Julia allows you to definean _init () function in your module
that executes any initialization steps that must occur at runtime. This function will not be called during
compilation (--output-*). Effectively, you can assume it will be run exactly once in the lifetime of the
code. You may, of course, call it manually if necessary, but the default is to assume this function deals with
computing state for the local machine, which does not need to be - or even should not be - captured in the
compiled image. It will be called after the module is loaded into a process, including if it is being loaded into
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an incremental compile (--output-incremental=yes), but not if it is being loaded into a full-compilation
process.

In particular, if you define a function _ init () inamodule, thenjuliawillcall _init () immediately
after the module is loaded (e.g., by import, using, or require) at runtime for the firsttime (i.e., init is
only called once, and only after all statements in the module have been executed). Because it is called after
the module is fully imported, any submodules or other imported modules have their __init  functions
called before the _init  of the enclosing module.

Two typicalusesof init are calling runtime initialization functions of external C libraries and initializing
global constants that involve pointers returned by external libraries. For example, suppose that we are call-
ing a C library libfoo that requires us to call a foo_init() initialization function at runtime. Suppose that
we also want to define a global constant foo _data ptr that holds the return value of a void *foo data()
function defined by libfoo - this constant must be initialized at runtime (not at compile time) because the
pointer address will change from run to run. You could accomplish this by defining the following init
function in your module:

const foo data ptr = Ref{Ptr{Cvoid}}(0)
function init ()

ccall((:foo_init, :libfoo), Cvoid, ())
foo_data ptr[] = ccall((:foo_data, :libfoo), Ptr{Cvoid}, ())
nothing

end

Notice that it is perfectly possible to define a global inside a function like init ; this is one of the
advantages of using a dynamic language. But by making it a constant at global scope, we can ensure that
the type is known to the compiler and allow it to generate better optimized code. Obviously, any other
globals in your module that depends on foo _data ptr would also have to be initialized in __init .

Constants involving most Julia objects that are not produced by ccall do not need to be placedin __init :
their definitions can be precompiled and loaded from the cached module image. This includes complicated
heap-allocated objects like arrays. However, any routine that returns a raw pointer value must be called
at runtime for precompilation to work (Ptr objects will turn into null pointers unless they are hidden inside
an isbits object). This includes the return values of the Julia functions @cfunction and pointer.

Dictionary and set types, or in general anything that depends on the output of a hash(key) method, are
a trickier case. In the common case where the keys are numbers, strings, symbols, ranges, Expr, or
compositions of these types (via arrays, tuples, sets, pairs, etc.) they are safe to precompile. However, for
a few other key types, such as Function or DataType and generic user-defined types where you haven't
defined a hash method, the fallback hash method depends on the memory address of the object (via its
objectid) and hence may change from run to run. If you have one of these key types, or if you aren't sure,
to be safe you can initialize this dictionary from within your init  function. Alternatively, you can use
the IdDict dictionary type, which is specially handled by precompilation so that it is safe to initialize at
compile-time.

When using precompilation, it is important to keep a clear sense of the distinction between the compilation
phase and the execution phase. In this mode, it will often be much more clearly apparent that Julia is a
compiler which allows execution of arbitrary Julia code, not a standalone interpreter that also generates
compiled code.

Other known potential failure scenarios include:
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1. Global counters (for example, for attempting to uniquely identify objects). Consider the following
code snippet:

mutable struct UniquedById

myid::Int
let counter =0

UniquedById() = new(counter += 1)
end

end

while the intent of this code was to give every instance a unique id, the counter value is recorded at
the end of compilation. All subsequent usages of this incrementally compiled module will start from
that same counter value.

Note that objectid (which works by hashing the memory pointer) has similar issues (see notes on
Dict usage below).

One alternative is to use a macro to capture@ MODULE and store it alone with the current counter
value, however, it may be better to redesign the code to not depend on this global state.

2. Associative collections (such as Dict and Set) need to be re-hashed in __init . (In the future, a
mechanism may be provided to register an initializer function.)

3. Depending on compile-time side-effects persisting through load-time. Example include: modifying
arrays or other variables in other Julia modules; maintaining handles to open files or devices; storing
pointers to other system resources (including memory);

4. Creating accidental "copies" of global state from another module, by referencing it directly instead
of via its lookup path. For example, (in global scope):

#mystdout = Base.stdout #= will not work correctly, since this will copy Base.stdout into
— this module =#

# instead use accessor functions:

getstdout() = Base.stdout #= best option =#

# or move the assignment into the runtime:

__init () = global mystdout = Base.stdout #= also works =#

Several additional restrictions are placed on the operations that can be done while precompiling code to
help the user avoid other wrong-behavior situations:

1. Calling eval to cause a side-effect in another module. This will also cause a warning to be emitted
when the incremental precompile flag is set.

2. global const statements from local scope after _init () has been started (see issue #12010
for plans to add an error for this)

3. Replacing a module is a runtime error while doing an incremental precompile.

A few other points to be aware of:

1. No code reload / cache invalidation is performed after changes are made to the source files them-
selves, (including by Pkg.update), and no cleanup is done after Pkg.rm
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2. The memory sharing behavior of a reshaped array is disregarded by precompilation (each view gets
its own copy)

3. Expecting the filesystem to be unchanged between compile-time and runtimee.g. @ FILE /source path()
to find resources at runtime, or the BinDeps @checked lib macro. Sometimes this is unavoidable.
However, when possible, it can be good practice to copy resources into the module at compile-time
so they won't need to be found at runtime.

4. WeakRef objects and finalizers are not currently handled properly by the serializer (this will be fixed
in an upcoming release).

5. It is usually best to avoid capturing references to instances of internal metadata objects such as
Method, MethodInstance, MethodTable, TypeMapLevel, TypeMapEntry and fields of those objects,
as this can confuse the serializer and may not lead to the outcome you desire. It is not necessarily
an error to do this, but you simply need to be prepared that the system will try to copy some of these
and to create a single unique instance of others.

It is sometimes helpful during module development to turn off incremental precompilation. The command
line flag --compiled-modules={yes|no} enables you to toggle module precompilation on and off. When
Julia is started with - -compiled-modules=no the serialized modules in the compile cache are ignored when
loading modules and module dependencies. More fine-grained control is available with --pkgimages=no,
which suppresses only native-code storage during precompilation. Base.compilecache can still be called
manually. The state of this command line flag is passed to Pkg.build to disable automatic precompilation
triggering when installing, updating, and explicitly building packages.

You can also debug some precompilation failures with environment variables. Setting JULIA VERBOSE LINKING=true
may help resolve failures in linking shared libraries of compiled native code. See the Developer Docu-
mentation part of the Julia manual, where you will find further details in the section documenting Julia's
internals under "Package Images".
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Documentation

17.1 Accessing Documentation

Documentation can be accessed at the REPL or in ljulia by typing ? followed by the name of a function or
macro, and pressing Enter. For example,

7cos
?@time
2pnn

will show documentation for the relevant function, macro or string macro respectively. Most Julia environ-
ments provide a way to access documentation directly:

* VS Code shows documentation when you hover over a function name. You can also use the Julia
panel in the sidebar to search for documentation.

* In Pluto, open the "Live Docs" panel on the bottom right.

* InJuno using Ctrl-J, Ctrl-D will show the documentation for the object under the cursor.

17.2 Writing Documentation

Julia enables package developers and users to document functions, types and other objects easily via a
built-in documentation system.

The basic syntax is simple: any string appearing just before an object (function, macro, type or instance)
will be interpreted as documenting it (these are called docstrings). Note that no blank lines or comments
may intervene between a docstring and the documented object. Here is a basic example:

"Tell whether there are too foo items in the array."
foo(xs::Array) = ...

Documentation is interpreted as Markdown, so you can use indentation and code fences to delimit code
examples from text. Technically, any object can be associated with any other as metadata; Markdown
happens to be the default, but one can construct other string macros and pass them to the @doc macro
just as well.
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Note

Markdown support is implemented in the Markdown standard library and for a full list of sup-
ported syntax see the documentation.

Here is a more complex example, still using Markdown:

bar(x[, yI)
Compute the Bar index between “x* and “y .

If “y' is unspecified, compute the Bar index between all pairs of columns of “x'.

# Examples
“Tjulia-repl
julia> bar([1, 2], [1, 2])

1

function bar(x, y)

As in the example above, we recommend following some simple conventions when writing documentation:

1. Always show the signature of a function at the top of the documentation, with a four-space indent
so that it is printed as Julia code.

This can be identical to the signature present in the Julia code (like mean(x: :AbstractArray)), or a
simplified form. Optional arguments should be represented with their default values (i.e. f(x, y=1))
when possible, following the actual Julia syntax. Optional arguments which do not have a default
value should be put in brackets (i.e. f(x[, yl) and f(x[, y[, zl1)). An alternative solution is
to use several lines: one without optional arguments, the other(s) with them. This solution can
also be used to document several related methods of a given function. When a function accepts
many keyword arguments, only include a <keyword arguments> placeholder in the signature (i.e.
f(x; <keyword arguments>)), and give the complete list under an # Arguments section (see point
4 below).

2. Include a single one-line sentence describing what the function does or what the object represents
after the simplified signature block. If needed, provide more details in a second paragraph, after a
blank line.

The one-line sentence should use the imperative form ("Do this", "Return that") instead of the third
person (do not write "Returns the length...") when documenting functions. It should end with a period.
If the meaning of a function cannot be summarized easily, splitting it into separate composable
parts could be beneficial (this should not be taken as an absolute requirement for every single case
though).

3. Do not repeat yourself.

Since the function name is given by the signature, there is no need to start the documentation with
"The function bar...": go straight to the point. Similarly, if the signature specifies the types of the
arguments, mentioning them in the description is redundant.
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4. Only provide an argument list when really necessary.

For simple functions, it is often clearer to mention the role of the arguments directly in the de-
scription of the function's purpose. An argument list would only repeat information already provided
elsewhere. However, providing an argument list can be a good idea for complex functions with many
arguments (in particular keyword arguments). In that case, insert it after the general description of
the function, under an # Arguments header, with one - bullet for each argument. The list should
mention the types and default values (if any) of the arguments:

# Arguments
- "n::Integer’: the number of elements to compute.
- "dim::Integer=1": the dimensions along which to perform the computation.

5. Provide hints to related functions.

Sometimes there are functions of related functionality. To increase discoverability please provide a
short list of these in a See also paragraph.

See also ['bar! ](@ref), ["baz ](@ref), [ baaz ]1(@ref).

6. Include any code examples in an # Examples section.

Examples should, whenever possible, be written as doctests. A doctest is a fenced code block (see
Code blocks) starting with * * * jldoctest and contains any number of julia> prompts together with
inputs and expected outputs that mimic the Julia REPL.

Note

Doctests are enabled by Documenter.jl. For more detailed documentation see Docu-
menter's manual.

For example in the following docstring a variable a is defined and the expected result, as printed in
a Julia REPL, appears afterwards:

Some nice documentation here.

# Examples

" jldoctest

julia> a = [1 2; 3 4]
2x2 Array{Int64,2}:

1 2

3 4

Warning

Calling rand and other RNG-related functions should be avoided in doctests since they
will not produce consistent outputs during different Julia sessions. If you would like to
show some random number generation related functionality, one option is to explicitly
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construct and seed your own RNG object (see Random) and pass it to the functions you
are doctesting.

Operating system word size (Int32 or Int64) as well as path separator differences (/ or
\) will also affect the reproducibility of some doctests.

Note that whitespace in your doctest is significant! The doctest will fail if you misalign
the output of pretty-printing an array, for example.

You can then run make -C doc doctest=true to run all the doctests in the Julia Manual and API
documentation, which will ensure that your example works.

To indicate that the output result is truncated, you may write [...] atthe line where checking should
stop. This is useful to hide a stacktrace (which contains non-permanent references to lines of julia
code) when the doctest shows that an exception is thrown, for example:

"*jldoctest
julia> div(1l, 0)
ERROR: DivideError: integer division error

[...]

Examples that are untestable should be written within fenced code blocks starting with ** " julia so
that they are highlighted correctly in the generated documentation.

Tip
Wherever possible examples should be self-contained and runnable so that readers
are able to try them out without having to include any dependencies.

7. Use backticks to identify code and equations.

Julia identifiers and code excerpts should always appear between backticks * to enable highlighting.
Equations in the LaTeX syntax can be inserted between double backticks * . Use Unicode characters
rather than their LaTeX escape sequence, i.e. “~“a = 1" rather than "~ “\\alpha = 1°°

8. Place the starting and ending """ characters on lines by themselves.

That is, write:

f(x, y) = ...

rather than:

f(x, y) = ...

This makes it clearer where docstrings start and end.
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9. Respect the line length limit used in the surrounding code.

Docstrings are edited using the same tools as code. Therefore, the same conventions should apply.
It is recommended that lines are at most 92 characters wide.

10. Provide information allowing custom types to implement the function in an # Implementation sec-
tion. These implementation details are intended for developers rather than users, explaining e.g.
which functions should be overridden and which functions automatically use appropriate fallbacks.
Such details are best kept separate from the main description of the function's behavior.

11. For long docstrings, consider splitting the documentation with an # Extended help header. The
typical help-mode will show only the material above the header; you can access the full help by
adding a '?' at the beginning of the expression (i.e., "??foo" rather than "?foo").

17.3 Functions & Methods

Functions in Julia may have multiple implementations, known as methods. While it's good practice for
generic functions to have a single purpose, Julia allows methods to be documented individually if necessary.
In general, only the most generic method should be documented, or even the function itself (i.e. the object
created without any methods by function bar end). Specific methods should only be documented if their
behaviour differs from the more generic ones. In any case, they should not repeat the information provided
elsewhere. For example:

(X, Yy, zo.y)

Multiplication operator. *x * y * z *,. " calls this function with multiple
arguments, i.e. “*(x, y, z...)"

function *(x, y, z...)
# ... [implementation sold separately]
end

*(x::AbstractString, y::AbstractString, z::AbstractString...)

When applied to strings, concatenates them.

function *(x::AbstractString, y::AbstractString, z::AbstractString...)
# ... [insert secret sauce here]
end

help?> *
search: * .*

(X, Y, Z..)

Multiplication operator. x * y * z *... calls this function with multiple
arguments, i.e. *(x,y,z...).

*(x::AbstractString, y::AbstractString, z::AbstractString...)

When applied to strings, concatenates them.
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When retrieving documentation for a generic function, the metadata for each method is concatenated with
the catdoc function, which can of course be overridden for custom types.

17.4 Advanced Usage

The @doc macro associates its first argument with its second in a per-module dictionary called META.

To make it easier to write documentation, the parser treats the macro name @doc specially: if a call to @doc
has one argument, but another expression appears after a single line break, then that additional expression
is added as an argument to the macro. Therefore the following syntax is parsed as a 2-argument call to
@doc:

@doc raw

f(x) = x

This makes it possible to use expressions other than normal string literals (such as the raw"" string macro)
as a docstring.

When used for retrieving documentation, the @doc macro (or equally, the doc function) will search all META
dictionaries for metadata relevant to the given object and return it. The returned object (some Markdown
content, for example) will by default display itself intelligently. This design also makes it easy to use the
doc system in a programmatic way; for example, to re-use documentation between different versions of a
function:

@doc "..." foo!
@doc (@doc foo!) foo

Or for use with Julia's metaprogramming functionality:

for (f, op) in ((:add, :+), (:subtract, :-), (:multiply, :*), (:divide, :/))
@eval begin
$f(a,b) = $op(a,b)
end
end
@doc "“add(a,b)” adds “a’ and “b" together" add
@doc "‘subtract(a,b)’ subtracts “b® from ‘a'" subtract

Documentation in non-toplevel blocks, such as begin, if, for, and let, should be added to the documen-
tation system via @doc as well. For example:

if condition()
@doc "..."
f(x) = x
end
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will add documentation to f(x) when condition() is true. Note that even if f(x) goes out of scope at
the end of a block, its documentation will remain.

It is possible to make use of metaprogramming to assist in the creation of documentation. When using
string-interpolation within the docstring you will need to use an extra $ as shown with $($name):

for func in (:day, :dayofmonth)
name = string(func)
@eval begin
@doc """
$($name) (dt::TimeType) -> Int64

The day of month of a “Date’ or ‘“DateTime’ as an “Int64'.
""" ¢func(dt::Dates.TimeType)
end
end

Dynamic documentation

Sometimes the appropriate documentation for an instance of a type depends on the field values of that
instance, rather than just on the type itself. In these cases, you can add a method to Docs.getdoc for your
custom type that returns the documentation on a per-instance basis. For instance,

struct MyType
value: :Int
end

Docs.getdoc(t::MyType) = "Documentation for MyType with value $(t.value)"

X = MyType(1)
MyType(2)

?x will display "Documentation for MyType with value 1" while ?y will display "Documentation for MyType

with value 2".

17.5 Syntax Guide

This guide provides a comprehensive overview of how to attach documentation to all Julia syntax constructs

for which providing documentation is possible.

In the following examples "..." is used to illustrate an arbitrary docstring.

$ and \ characters

The $ and \ characters are still parsed as string interpolation or start of an escape sequence in docstrings
too. The raw"" string macro together with the @doc macro can be used to avoid having to escape them.
This is handy when the docstrings include LaTeX or Julia source code examples containing interpolation:

@doc raw
““math
\LaTeX
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function f end
Functions and Methods

function f end

Adds docstring "..." to the function f. The first version is the preferred syntax, however both are equiv-
alent.
f(x) = x

function f(x)
X
end

f(x)

Adds docstring "..." to the method f(::Any).

f(x, y=1) =x +y
Adds docstring "..." to two Methods, namely f(::Any) and f(::Any, ::Any).

Macros

macro m(x) end
Adds docstring "..." to the @m(: :Any) macro definition.
‘ :(@m)

Adds docstring "..." to the macro named @m.
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Types

abstract type T1 end

mutable struct T2

end

struct T3

end

struct T
nyn
X

y

y
end

Adds the docstring "..." to types T1, T2, and T3.

224

Adds docstring "..." to type T, "x" to field T.x and "y" to field T.y. Also applicable to mutable struct

types.
Modules
module M end

module M

end

Adds docstring "..." to the Module M. Adding the docstring above the Module is the preferred syntax,

however both are equivalent.

baremodule M
# ...
end

baremodule M

import Base: @doc
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f(x) = x

end

Documenting a baremodule by placing a docstring above the expression automatically imports @doc into
the module. These imports must be done manually when the module expression is not documented.

Global Variables

const a =1

global c = 3
Adds docstring "..." to the Bindings a, b, and c.

Bindings are used to store a reference to a particular Symbol in a Module without storing the referenced
value itself.

Note

When a const definition is only used to define an alias of another definition, such as is the case
with the function div and its alias + in Base, do not document the alias and instead document
the actual function.

If the alias is documented and not the real definition then the docsystem (? mode) will not
return the docstring attached to the alias when the real definition is searched for.

For example you should write
f(x) =x+ 1
const alias = f

rather than

f(x) =x+1

const alias = f

Adds docstring "..." to the value associated with sym. Howeuver, it is preferred that sym is documented
where it is defined.
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Multiple Objects

Adds docstring "..." to a and b each of which should be a documentable expression. This syntax is
equivalent to

Any number of expressions many be documented together in this way. This syntax can be useful when two
functions are related, such as non-mutating and mutating versions f and f!.

Macro-generated code

@m expression

Adds docstring "..." to the expression generated by expanding @m expression. This allows for expres-
sions decorated with @inline, @noinline, @generated, or any other macro to be documented in the same
way as undecorated expressions.

Macro authors should take note that only macros that generate a single expression will automatically sup-
port docstrings. If a macro returns a block containing multiple subexpressions then the subexpression that
should be documented must be marked using the @ doc  macro.

The @enum macro makes use of @ doc__ to allow for documenting Enums. Examining its definition should
serve as an example of how touse @ doc__ correctly.

Core.@ doc__ - Macro.

‘@77d0c77(ex)

Low-level macro used to mark expressions returned by a macro that should be documented. If more
than one expression is marked then the same docstring is applied to each expression.

macro example(f)
quote
$(f)() =0
@ doc__ $(f)(x) =1
$(f)(x, y) =2
end |> esc

end

@ doc__ has no effect when a macro that uses it is not documented.

source


https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/Docs.jl#L457-L472

Chapter 18

Metaprogramming

The strongest legacy of Lisp in the Julia language is its metaprogramming support. Like Lisp, Julia repre-
sents its own code as a data structure of the language itself. Since code is represented by objects that
can be created and manipulated from within the language, it is possible for a program to transform and
generate its own code. This allows sophisticated code generation without extra build steps, and also allows
true Lisp-style macros operating at the level of abstract syntax trees. In contrast, preprocessor "macro"
systems, like that of C and C++, perform textual manipulation and substitution before any actual parsing
or interpretation occurs. Because all data types and code in Julia are represented by Julia data structures,
powerful reflection capabilities are available to explore the internals of a program and its types just like
any other data.

Warning

Metaprogramming is a powerful tool, but it introduces complexity that can make code more
difficult to understand. For example, it can be surprisingly hard to get scope rules correct.
Metaprogramming should typically be used only when other approaches such as higher order
functions and closures cannot be applied.

eval and defining new macros should be typically used as a last resort. It is almost never a
good idea to use Meta.parse or convert an arbitrary string into Julia code. For manipulating
Julia code, use the Expr data structure directly to avoid the complexity of how Julia syntax is
parsed.

The best uses of metaprogramming often implement most of their functionality in runtime
helper functions, striving to minimize the amount of code they generate.

18.1 Program representation

Every Julia program starts life as a string:

julia> prog = "1 + 1"
"1+ 1"

What happens next?

The next step is to parse each string into an object called an expression, represented by the Julia type Expr:
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julia> exl = Meta.parse(prog)
(1 + 1)

julia> typeof(exl)
Expr

Expr objects contain two parts:

* aSymbol identifying the kind of expression. A symbol is an interned string identifier (more discussion
below).

julia> exl.head
:call

* the expression arguments, which may be symbols, other expressions, or literal values:

julia> exl.args
3-element Vector{Any}:
i+

Expressions may also be constructed directly in prefix notation:

julia> ex2 = Expr(:call, :+, 1, 1)
(1 + 1)

The two expressions constructed above - by parsing and by direct construction - are equivalent:

julia> exl == ex2

true

The key point here is that Julia code is internally represented as a data structure that is acces-
sible from the language itself.

The dump function provides indented and annotated display of Expr objects:

julia> dump(ex2)

Expr
head: Symbol call
args: Array{Any}((3,))

1: Symbol +
2: Int64 1
3: Int64 1

Expr objects may also be nested:
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julia> ex3 = Meta.parse("(4 + 4) / 2")
(4 +4) / 2)

Another way to view expressions is with Meta.show sexpr, which displays the S-expression form of a given
Expr, which may look very familiar to users of Lisp. Here's an example illustrating the display on a nested
Expr:

julia> Meta.show_sexpr(ex3)
(:call, :/, (:call, :+, 4, 4), 2)

Symbols

The : character has two syntactic purposes in Julia. The first form creates a Symbol, an interned string
used as one building-block of expressions, from valid identifiers:

julia> s = :foo
:foo

julia> typeof(s)
Symbol

The Symbol constructor takes any number of arguments and creates a new symbol by concatenating their
string representations together:

julia> :foo === Symbol("foo")
true

julia> Symbol("1foo") # ":1foo’ would not work, as “1foo' is not a valid identifier
Symbol("1foo")

julia> Symbol("func",10)
:funclo

julia> Symbol(:var,' ',"sym")

jvar_sym

In the context of an expression, symbols are used to indicate access to variables; when an expression is
evaluated, a symbol is replaced with the value bound to that symbol in the appropriate scope.

Sometimes extra parentheses around the argument to : are needed to avoid ambiguity in parsing:

julia> :(:)
()

julia> :(::)
()
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18.2 Expressions and evaluation

Quoting

The second syntactic purpose of the : character is to create expression objects without using the explicit
Expr constructor. This is referred to as quoting. The : character, followed by paired parentheses around a
single statement of Julia code, produces an Expr object based on the enclosed code. Here is an example
of the short form used to quote an arithmetic expression:

julia> ex = :(a+b*c+l)
(a+b*c+1)

julia> typeof(ex)
Expr

(to view the structure of this expression, try ex.head and ex.args, or use dump as above or Meta.@dump)

Note that equivalent expressions may be constructed using Meta.parse or the direct Expr form:

julia> :(a + b*c + 1) ==

Meta.parse("a + b*c + 1") ==

Expr(:call, :+, :a, Expr(:call, :*, :b, :c), 1)
true

Expressions provided by the parser generally only have symbols, other expressions, and literal values as
their args, whereas expressions constructed by Julia code can have arbitrary run-time values without literal
forms as args. In this specific example, + and a are symbols, *(b, c) is a subexpression, and 1 is a literal
64-bit signed integer.

There is a second syntactic form of quoting for multiple expressions: blocks of code enclosed in quote ...
end.

julia> ex = quote
X =1
y =2
X +y
end
quote
#= none:2 =#
x =1
#= none:3 =#
y =2
#= none:4 =#
X +y
end
julia> typeof(ex)
Expr
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Interpolation

Direct construction of Expr objects with value arguments is powerful, but Expr constructors can be tedious
compared to "normal" Julia syntax. As an alternative, Julia allows interpolation of literals or expressions
into quoted expressions. Interpolation is indicated by a prefix $.

In this example, the value of variable a is interpolated:

julia> a = 1;

julia> ex = :(%a + b)
(1 + b)

Interpolating into an unquoted expression is not supported and will cause a compile-time error:

julia> $a + b
ERROR: syntax: "$" expression outside quote

In this example, the tuple (1,2, 3) is interpolated as an expression into a conditional test:

julia> ex = :(a in $:((1,2,3)) )
:(a in (1, 2, 3))

The use of $ for expression interpolation is intentionally reminiscent of string interpolation and command
interpolation. Expression interpolation allows convenient, readable programmatic construction of complex
Julia expressions.

Splatting interpolation

Notice that the $ interpolation syntax allows inserting only a single expression into an enclosing expression.
Occasionally, you have an array of expressions and need them all to become arguments of the surrounding
expression. This can be done with the syntax $(xs...). For example, the following code generates a
function call where the number of arguments is determined programmatically:

julia> args = [:x, :y, :z];
julia> :(f(1, $(args...)))

H(F(L, x, y, 2))

Nested quote

Naturally, it is possible for quote expressions to contain other quote expressions. Understanding how
interpolation works in these cases can be a bit tricky. Consider this example:

julia> x (1 + 2);
julia> e = quote quote $x end end
quote

#= none:1 =#



CHAPTER 18. METAPROGRAMMING 232

$(Expr(:quote, quote
#= none:1 =#
$(Expr(:$, :x))
end))
end

Notice that the result contains $x, which means that x has not been evaluated yet. In other words, the $
expression "belongs to" the inner quote expression, and so its argument is only evaluated when the inner
quote expression is:

julia> eval(e)

quote
#= none:1 =#
1+2

end

However, the outer quote expression is able to interpolate values inside the $ in the inner quote. This is
done with multiple $s:

julia> e = quote quote $$x end end
quote
#= none:1 =#
$(Expr(:quote, quote
#= none:1 =#
$(Expr(:$, : (1 + 2)))
end))
end

Notice that (1 + 2) now appears in the result instead of the symbol x. Evaluating this expression yields
an interpolated 3:

julia> eval(e)
quote
#= none:1 =#
3
end

The intuition behind this behavior is that x is evaluated once for each $: one $ works similarly to eval(:x),
giving x's value, while two $s do the equivalent of eval(eval(:x)).

QuoteNode

The usual representation of a quote form in an AST is an Expr with head :quote:

julia> dump(Meta.parse(":(1+2)"))
Expr
head: Symbol quote
args: Array{Any}((1,))
1: Expr
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head: Symbol call
args: Array{Any}((3,))

1: Symbol +
2: Int64 1
3: Int64 2
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As we have seen, such expressions support interpolation with $. However, in some situations it is necessary
to quote code without performing interpolation. This kind of quoting does not yet have syntax, but is

represented internally as an object of type QuoteNode:

julia> eval(Meta.quot(Expr(:$, :(1+2))))
3

julia> eval(QuoteNode(Expr(:$, :(1+2))))
($(Expr(:$, :(1 + 2))))

The parser yields QuoteNodes for simple quoted items like symbols:

julia> dump(Meta.parse(":x"))
QuoteNode
value: Symbol x

QuoteNode can also be used for certain advanced metaprogramming tasks.

Evaluating expressions

Given an expression object, one can cause Julia to evaluate (execute) it at global scope using eval:

julia> exl = : (1 + 2)
(1 + 2)

julia> eval(exl)
3

julia> ex = :(a + b)
:(a + b)

julia> eval(ex)
ERROR: UndefVarError: ‘b" not defined
[...]

julia> a = 1; b = 2;

julia> eval(ex)
3

Every module has its own eval function that evaluates expressions in its global scope. Expressions passed
to eval are not limited to returning values - they can also have side-effects that alter the state of the

enclosing module's environment:
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julia> ex = :(x = 1)
(x = 1)

julia> x
ERROR: UndefVarError: “x° not defined

julia> eval(ex)
1

julia> x
1

Here, the evaluation of an expression object causes a value to be assigned to the global variable x.
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Since expressions are just Expr objects which can be constructed programmatically and then evaluated,
it is possible to dynamically generate arbitrary code which can then be run using eval. Here is a simple

example:

julia> a = 1;

julia> ex = Expr(:call, :+, a, :b)
(1 + b)

julia> a = 0; b = 2;

julia> eval(ex)
3

The value of a is used to construct the expression ex which applies the + function to the value 1 and the

variable b. Note the important distinction between the way a and b are used:

* The value of the variable a at expression construction time is used as an immediate value in the
expression. Thus, the value of a when the expression is evaluated no longer matters: the value in

the expression is already 1, independent of whatever the value of a might be.

¢ On the other hand, the symbol : b is used in the expression construction, so the value of the variable
b at that time is irrelevant - :b is just a symbol and the variable b need not even be defined. At
expression evaluation time, however, the value of the symbol :b is resolved by looking up the value

of the variable b.

Functions on Expressions

As hinted above, one extremely useful feature of Julia is the capability to generate and manipulate Julia code
within Julia itself. We have already seen one example of a function returning Expr objects: the Meta.parse
function, which takes a string of Julia code and returns the corresponding Expr. A function can also take
one or more Expr objects as arguments, and return another Expr. Here is a simple, motivating example:

julia> function math_expr(op, opl, op2)

expr = Expr(:call, op, opl, op2)

return expr
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end
math expr (generic function with 1 method)

julia> ex = math expr(:+, 1, Expr(:call, :*, 4, 5))
(1 + 4 *5)

julia> eval(ex)
21

As another example, here is a function that doubles any numeric argument, but leaves expressions alone:

julia> function make expr2(op, oprl, opr2)
oprlf, opr2f = map(x -> isa(x, Number) ? 2*x : x, (oprl, opr2))
retexpr = Expr(:call, op, oprlf, opr2f)
return retexpr
end
make expr2 (generic function with 1 method)

julia> make expr2(:+, 1, 2)
(2 + 4)

julia> ex = make expr2(:+, 1, Expr(:call, :*, 5, 8))
(2 +5 % 8)

julia> eval(ex)
42

18.3 Macros

Macros provide a mechanism to include generated code in the final body of a program. A macro maps a
tuple of arguments to a returned expression, and the resulting expression is compiled directly rather than
requiring a runtime eval call. Macro arguments may include expressions, literal values, and symbols.

Basics
Here is an extraordinarily simple macro:
julia> macro sayhello()
return :( println("Hello, world!") )

end
@sayhello (macro with 1 method)

Macros have a dedicated character in Julia's syntax: the @ (at-sign), followed by the unique name declared
inamacro NAME ... end block. In this example, the compiler will replace all instances of @sayhello with:

‘:( println("Hello, world!") )

When @sayhello is entered in the REPL, the expression executes immediately, thus we only see the eval-
uation result:
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julia> @sayhello()
Hello, world!

Now, consider a slightly more complex macro:

julia> macro sayhello(name)
return :( println("Hello, ", $name) )
end
@sayhello (macro with 1 method)

This macro takes one argument: name. When @sayhello is encountered, the quoted expression is expanded
to interpolate the value of the argument into the final expression:

julia> @sayhello("human")
Hello, human

We can view the quoted return expression using the function macroexpand (important note: this is an
extremely useful tool for debugging macros):

julia> ex = macroexpand(Main, :(@sayhello("human")) )
:(Main.println("Hello, ", "human"))

julia> typeof(ex)
Expr

We can see that the "human" literal has been interpolated into the expression.

There also exists a macro @macroexpand that is perhaps a bit more convenient than the macroexpand
function:

julia> @macroexpand @sayhello "human"
:(println("Hello, ", "human"))

Hold up: why macros?

We have already seen a function f(::Expr...) -> Expr in a previous section. In fact, macroexpand is
also such a function. So, why do macros exist?

Macros are necessary because they execute when code is parsed, therefore, macros allow the programmer
to generate and include fragments of customized code before the full program is run. To illustrate the
difference, consider the following example:

julia> macro twostep(arg)
println("I execute at parse time. The argument is: ", arg)
return :(println("I execute at runtime. The argument is: ", $arg))
end
@twostep (macro with 1 method)

julia> ex = macroexpand(Main, :(@twostep :(1, 2, 3)) );
I execute at parse time. The argument is: :((1, 2, 3))
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The first call to println is executed when macroexpand is called. The resulting expression contains only
the second println:

julia> typeof(ex)
Expr

julia> ex
:(println("I execute at runtime. The argument is: ", $(Expr(:copyast, :($(QuoteNode(:((1, 2,
= 3)))))))))

julia> eval(ex)
I execute at runtime. The argument is: (1, 2, 3)

Macro invocation

Macros are invoked with the following general syntax:

@name exprl expr2 ...
@name(exprl, expr2, ...)

Note the distinguishing @ before the macro name and the lack of commas between the argument expres-
sions in the first form, and the lack of whitespace after @name in the second form. The two styles should
not be mixed. For example, the following syntax is different from the examples above; it passes the tuple
(exprl, expr2, ...) asone argument to the macro:

‘@name (exprl, expr2, ...)

An alternative way to invoke a macro over an array literal (or comprehension) is to juxtapose both without
using parentheses. In this case, the array will be the only expression fed to the macro. The following syntax
is equivalent (and different from @name [a b] * v):

@name[a b] * v
@name([a b]) * v

It is important to emphasize that macros receive their arguments as expressions, literals, or symbols. One
way to explore macro arguments is to call the show function within the macro body:

julia> macro showarg(x)
show(x)
# ... remainder of macro, returning an expression
end
@showarg (macro with 1 method)

julia> @showarg(a)
:a

julia> @showarg(1l+1)
(1 + 1)

julia> @showarg(println("Yo!"))
:(println("Yo!"))
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In addition to the given argument list, every macro is passed extra arguments named _ source  and
__module .

The argument __source__ provides information (in the form of a LineNumberNode object) about the parser
location of the @ sign from the macro invocation. This allows macros to include better error diagnostic
information, and is commonly used by logging, string-parser macros, and docs, for example, as well as to
implementthe@ LINE ,@ FILE ,and@ DIR macros.

The location information can be accessed by referencing _ source_ .line and _ source_ .file:

julia> macro _ LOCATION (); return QuoteNode( source ); end
@ LOCATION (macro with 1 method)

julia> dump(
@ LOCATION (
))
LineNumberNode
line: Int64 2
file: Symbol none

The argument _ module  provides information (in the form of a Module object) about the expansion
context of the macro invocation. This allows macros to look up contextual information, such as existing
bindings, or to insert the value as an extra argument to a runtime function call doing self-reflection in the
current module.

Building an advanced macro

Here is a simplified definition of Julia's @assert macro:

julia> macro assert(ex)

return :( $ex ? nothing : throw(AssertionError($(string(ex)))) )
end
@assert (macro with 1 method)

This macro can be used like this:

julia> @assert 1 == 1.0

julia> @assert 1 ==
ERROR: AssertionError: 1 ==

In place of the written syntax, the macro call is expanded at parse time to its returned result. This is
equivalent to writing:

1 == 1.0 ? nothing : throw(AssertionError("1l == 1.0"))
1 == 0 ? nothing : throw(AssertionError("l == 0"))

That s, in the first call, the expression : (1 == 1.0) is spliced into the test condition slot, while the value of
string(:(1 == 1.0)) is spliced into the assertion message slot. The entire expression, thus constructed,
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is placed into the syntax tree where the @assert macro call occurs. Then at execution time, if the test
expression evaluates to true, then nothing is returned, whereas if the test is false, an error is raised
indicating the asserted expression that was false. Notice that it would not be possible to write this as
a function, since only the value of the condition is available and it would be impossible to display the
expression that computed it in the error message.

The actual definition of @assert in Julia Base is more complicated. It allows the user to optionally specify
their own error message, instead of just printing the failed expression. Just like in functions with a variable
number of arguments (Varargs Functions), this is specified with an ellipses following the last argument:

julia> macro assert(ex, msgs...)
msg_body = isempty(msgs) ? ex : msgs[1]
msg = string(msg body)
return :($ex ? nothing : throw(AssertionError($msg)))
end
@assert (macro with 1 method)

Now @assert has two modes of operation, depending upon the number of arguments it receives! If there's
only one argument, the tuple of expressions captured by msgs will be empty and it will behave the same as
the simpler definition above. But now if the user specifies a second argument, it is printed in the message
body instead of the failing expression. You can inspect the result of a macro expansion with the aptly
named @macroexpand macro:

julia> @macroexpand @assert a ==
:(if Main.a == Main.b
Main.nothing
else
Main.throw(Main.AssertionError("a == b"))
end)

julia> @macroexpand @assert a==b "a should equal b!"
:(if Main.a == Main.b
Main.nothing
else
Main.throw(Main.AssertionError("a should equal b!"))

end)

There is yet another case that the actual @assert macro handles: what if, in addition to printing "a should
equal b," we wanted to print their values? One might naively try to use string interpolation in the custom
message, e.g., @assert a==b "a ($a) should equal b ($b)!", but this won't work as expected with
the above macro. Can you see why? Recall from string interpolation that an interpolated string is rewritten
to a call to string. Compare:

julia> typeof(:("a should equal b"))
String

julia> typeof(:("a ($a) should equal b ($b)!"))
Expr

julia> dump(:("a (%$a) should equal b ($b)!"))
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Expr

head: Symbol string

args: Array{Any}((5,))

1: String "a ("

Symbol a
String ") should equal b ("
Symbol b
String ")!"

U A W N

So now instead of getting a plain string in msg_body, the macro is receiving a full expression that will need
to be evaluated in order to display as expected. This can be spliced directly into the returned expression
as an argument to the string call; see error. j1 for the complete implementation.

The @assert macro makes great use of splicing into quoted expressions to simplify the manipulation of
expressions inside the macro body.

Hygiene

An issue that arises in more complex macros is that of hygiene. In short, macros must ensure that the
variables they introduce in their returned expressions do not accidentally clash with existing variables
in the surrounding code they expand into. Conversely, the expressions that are passed into a macro as
arguments are often expected to evaluate in the context of the surrounding code, interacting with and
modifying the existing variables. Another concern arises from the fact that a macro may be called in a
different module from where it was defined. In this case we need to ensure that all global variables are
resolved to the correct module. Julia already has a major advantage over languages with textual macro
expansion (like C) in that it only needs to consider the returned expression. All the other variables (such
as msg in @assert above) follow the normal scoping block behavior.

To demonstrate these issues, let us consider writing a @time macro that takes an expression as its argument,
records the time, evaluates the expression, records the time again, prints the difference between the before
and after times, and then has the value of the expression as its final value. The macro might look like this:

macro time(ex)
return quote
local t0@ = time ns()
local val = $ex
local tl1 = time ns()
println("elapsed time: ", (tl-t0)/1e9, " seconds")
val
end
end

Here, we want t0, t1, and val to be private temporary variables, and we want time ns to refer to the
time ns function in Julia Base, not to any time ns variable the user might have (the same applies to
println). Imagine the problems that could occur if the user expression ex also contained assignments to
a variable called t0, or defined its own time ns variable. We might get errors, or mysteriously incorrect
behavior.

Julia's macro expander solves these problems in the following way. First, variables within a macro result are
classified as either local or global. A variable is considered local if it is assigned to (and not declared global),
declared local, or used as a function argument name. Otherwise, it is considered global. Local variables
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are then renamed to be unique (using the gensym function, which generates new symbols), and global
variables are resolved within the macro definition environment. Therefore both of the above concerns are
handled; the macro's locals will not conflict with any user variables, and time ns and println will refer to
the Julia Base definitions.

One problem remains however. Consider the following use of this macro:

module MyModule
import Base.@time

time ns() = ... # compute something

@time time ns()
end

Here the user expression ex is a call to time ns, but not the same time ns function that the macro uses.
It clearly refers to MyModule.time ns. Therefore we must arrange for the code in ex to be resolved in the
macro call environment. This is done by "escaping" the expression with esc:

macro time(ex)
local val = $(esc(ex))

end

An expression wrapped in this manner is left alone by the macro expander and simply pasted into the
output verbatim. Therefore it will be resolved in the macro call environment.

This escaping mechanism can be used to "violate" hygiene when necessary, in order to introduce or ma-
nipulate user variables. For example, the following macro sets x to zero in the call environment:

julia> macro zerox()
return esc(:(x = 0))
end
@zerox (macro with 1 method)

julia> function foo()
X =1
@zerox
return x # is zero
end
foo (generic function with 1 method)

julia> foo()
0

This kind of manipulation of variables should be used judiciously, but is occasionally quite handy.

Getting the hygiene rules correct can be a formidable challenge. Before using a macro, you might want
to consider whether a function closure would be sufficient. Another useful strategy is to defer as much
work as possible to runtime. For example, many macros simply wrap their arguments in a QuoteNode or
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other similar Expr. Some examples of this include @task body which simply returns schedule(Task( ()
-> $body) ), and @eval expr, which simply returns eval (QuoteNode (expr)).

To demonstrate, we might rewrite the @time example above as:

macro time(expr)
return :(timeit(() -> $(esc(expr))))
end
function timeit(f)
t0 = time ns()
val = f()
tl = time ns()
println("elapsed time: ", (tl-t0)/1e9, " seconds")
return val
end

However, we don't do this for a good reason: wrapping the expr in a new scope block (the anonymous
function) also slightly changes the meaning of the expression (the scope of any variables in it), while we
want @time to be usable with minimum impact on the wrapped code.

Macros and dispatch

Macros, just like Julia functions, are generic. This means they can also have multiple method definitions,
thanks to multiple dispatch:

julia> macro m end
@m (macro with 0 methods)

julia> macro m(args...)
println("$(length(args)) arguments")
end
@m (macro with 1 method)

julia> macro m(x,y)
println("Two arguments")
end
@m (macro with 2 methods)

julia> @m "asd"
1 arguments

julia> @m 1 2
Two arguments

However one should keep in mind, that macro dispatch is based on the types of AST that are handed to
the macro, not the types that the AST evaluates to at runtime:

julia> macro m(::Int)
println("An Integer")
end
@m (macro with 3 methods)
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julia> @m 2
An Integer

julia> x = 2
2

julia> @m x
1 arguments

18.4 Code Generation

When a significant amount of repetitive boilerplate code is required, it is common to generate it program-
matically to avoid redundancy. In most languages, this requires an extra build step, and a separate program
to generate the repetitive code. In Julia, expression interpolation and eval allow such code generation to
take place in the normal course of program execution. For example, consider the following custom type

struct MyNumber
x: :Float64

end

# output

for which we want to add a number of methods to. We can do this programmatically in the following loop:

for op = (:sin, :cos, :tan, :log, :exp)
eval(quote
Base.$op(a: :MyNumber) = MyNumber($op(a.x))
end)
end
# output

and we can now use those functions with our custom type:

julia> x = MyNumber(m)
MyNumber(3.141592653589793)

julia> sin(x)
MyNumber(1.2246467991473532e-16)

julia> cos(x)
MyNumber(-1.0)

In this manner, Julia acts as its own preprocessor, and allows code generation from inside the language.
The above code could be written slightly more tersely using the : prefix quoting form:

for op = (:sin, :cos, :tan, :log, :exp)
eval(: (Base.$op(a: :MyNumber) = MyNumber($op(a.x))))
end
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This sort of in-language code generation, however, using the eval(quote(...)) pattern, is common
enough that Julia comes with a macro to abbreviate this pattern:

for op = (:sin, :cos, :tan, :log, :exp)
@eval Base.$op(a::MyNumber) = MyNumber($op(a.x))
end

The @eval macro rewrites this call to be precisely equivalent to the above longer versions. For longer
blocks of generated code, the expression argument given to @eval can be a block:

@eval begin
# multiple lines
end

18.5 Non-Standard String Literals

Recall from Strings that string literals prefixed by an identifier are called non-standard string literals, and
can have different semantics than un-prefixed string literals. For example:

e r"™\s*(?:#|$)" produces a regular expression object rather than a string

* b"DATA\xff\u2200" is a byte array literal for [68,65,84,65,255,226,136,128].

Perhaps surprisingly, these behaviors are not hard-coded into the Julia parser or compiler. Instead, they
are custom behaviors provided by a general mechanism that anyone can use: prefixed string literals are
parsed as calls to specially-named macros. For example, the regular expression macro is just the following:

macro r_str(p)
Regex(p)
end

That's all. This macro says that the literal contents of the string literal r"~\s*(?:#|$)" should be passed
to the @r_str macro and the result of that expansion should be placed in the syntax tree where the string
literal occurs. In other words, the expression r"~\s*(?:#|$)" is equivalent to placing the following object
directly into the syntax tree:

Regex (" \\s*(?:#|\$)")

Not only is the string literal form shorter and far more convenient, but it is also more efficient: since
the regular expression is compiled and the Regex object is actually created when the code is compiled,
the compilation occurs only once, rather than every time the code is executed. Consider if the regular
expression occurs in a loop:

for line = lines
m = match(r" \s*(7:#[$)", line)
if m === nothing
# non-comment
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else
# comment
end
end

Since the regular expression r"~\s*(?:#|$)" is compiled and inserted into the syntax tree when this code
is parsed, the expression is only compiled once instead of each time the loop is executed. In order to
accomplish this without macros, one would have to write this loop like this:

re = Regex(""\\s*(?:#|\$)")
for line = lines
m = match(re, line)
if m === nothing
# non-comment
else
# comment
end
end

Moreover, if the compiler could not determine that the regex object was constant over all loops, certain
optimizations might not be possible, making this version still less efficient than the more convenient literal
form above. Of course, there are still situations where the non-literal form is more convenient: if one needs
to interpolate a variable into the regular expression, one must take this more verbose approach; in cases
where the regular expression pattern itself is dynamic, potentially changing upon each loop iteration, a
new regular expression object must be constructed on each iteration. In the vast majority of use cases,
however, regular expressions are not constructed based on run-time data. In this majority of cases, the
ability to write regular expressions as compile-time values is invaluable.

The mechanism for user-defined string literals is deeply, profoundly powerful. Not only are Julia's non-
standard literals implemented using it, but the command literal syntax (*echo "Hello, $person"’) is
also implemented using the following innocuous-looking macro:

macro cmd(str)
:(cmd_gen($(shell parse(str)[1])))
end

Of course, a large amount of complexity is hidden in the functions used in this macro definition, but they
are just functions, written entirely in Julia. You can read their source and see precisely what they do - and
all they do is construct expression objects to be inserted into your program's syntax tree.

Like string literals, command literals can also be prefixed by an identifier to form what are called non-
standard command literals. These command literals are parsed as calls to specially-named macros. For
example, the syntax custom™ literal’ is parsed as @custom cmd "literal". Julia itself does not contain
any non-standard command literals, but packages can make use of this syntax. Aside from the different
syntax and the cmd suffix instead of the str suffix, non-standard command literals behave exactly like
non-standard string literals.

In the event that two modules provide non-standard string or command literals with the same name, it
is possible to qualify the string or command literal with a module name. For instance, if both Foo and
Bar provide non-standard string literal @x_str, then one can write Foo.x"literal" orBar.x"literal" to
disambiguate between the two.
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Another way to define a macro would be like this:

macro foo str(str, flag)
# do stuff
end

This macro can then be called with the following syntax:

foo"str"flag

The type of flag in the above mentioned syntax would be a String with contents of whatever trails after
the string literal.

18.6 Generated functions

A very special macro is @generated, which allows you to define so-called generated functions. These have
the capability to generate specialized code depending on the types of their arguments with more flexibility
and/or less code than what can be achieved with multiple dispatch. While macros work with expressions
at parse time and cannot access the types of their inputs, a generated function gets expanded at a time
when the types of the arguments are known, but the function is not yet compiled.

Instead of performing some calculation or action, a generated function declaration returns a quoted ex-
pression which then forms the body for the method corresponding to the types of the arguments. When a
generated function is called, the expression it returns is compiled and then run. To make this efficient, the
result is usually cached. And to make this inferable, only a limited subset of the language is usable. Thus,
generated functions provide a flexible way to move work from run time to compile time, at the expense of
greater restrictions on allowed constructs.

When defining generated functions, there are five main differences to ordinary functions:

1. You annotate the function declaration with the @generated macro. This adds some information to
the AST that lets the compiler know that this is a generated function.

2. Inthe body of the generated function you only have access to the types of the arguments - not their
values.

3. Instead of calculating something or performing some action, you return a quoted expression which,
when evaluated, does what you want.

4. Generated functions are only permitted to call functions that were defined before the definition of the
generated function. (Failure to follow this may result in getting MethodErrors referring to functions
from a future world-age.)

5. Generated functions must not mutate or observe any non-constant global state (including, for ex-
ample, 10, locks, non-local dictionaries, or using hasmethod). This means they can only read global
constants, and cannot have any side effects. In other words, they must be completely pure. Due to
an implementation limitation, this also means that they currently cannot define a closure or gener-
ator.

It's easiest to illustrate this with an example. We can declare a generated function foo as
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julia> @generated function foo(x)
Core.println(x)
return :(x * X)
end
foo (generic function with 1 method)

Note that the body returns a quoted expression, namely : (x * x), rather than just the value of x * x.

From the caller's perspective, this is identical to a regular function; in fact, you don't have to know whether
you're calling a regular or generated function. Let's see how foo behaves:

julia> x = foo(2); # note: output is from println() statement in the body
Inte4

julia> x # now we print x
4

julia> y = foo("bar");
String

julia> y
"barbar"

So, we see that in the body of the generated function, x is the type of the passed argument, and the value
returned by the generated function, is the result of evaluating the quoted expression we returned from the
definition, now with the value of x.

What happens if we evaluate foo again with a type that we have already used?

julia> foo(4)
16

Note that there is no printout of Int64. We can see that the body of the generated function was only
executed once here, for the specific set of argument types, and the result was cached. After that, for
this example, the expression returned from the generated function on the first invocation was re-used
as the method body. However, the actual caching behavior is an implementation-defined performance
optimization, so it is invalid to depend too closely on this behavior.

The number of times a generated function is generated might be only once, but it might also be more often,
or appear to not happen at all. As a consequence, you should never write a generated function with side
effects - when, and how often, the side effects occur is undefined. (This is true for macros too - and just like
for macros, the use of eval in a generated function is a sign that you're doing something the wrong way.)
However, unlike macros, the runtime system cannot correctly handle a call to eval, so it is disallowed.

It is also important to see how @generated functions interact with method redefinition. Following the
principle that a correct @generated function must not observe any mutable state or cause any mutation of
global state, we see the following behavior. Observe that the generated function cannot call any method
that was not defined prior to the definition of the generated function itself.

Initially f(x) has one definition

julia> f(x) = "original definition";
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Define other operations that use f(x):

julia> g(x) = f(x);
julia> @generated genl(x) = f(x);

julia> @generated gen2(x) = :(f(x));

We now add some new definitions for f(x):

julia> f(x::Int) = "definition for Int";

julia> f(x::Type{Int}) = "definition for Type{Int}";

and compare how these results differ:

julia> f(1)
"definition for Int"

julia> g(1)
"definition for Int"

julia> genl(1l)
"original definition"

julia> gen2(1)
"definition for Int"

Each method of a generated function has its own view of defined functions:

julia> @generated genl(x::Real) = f(x);

julia> genl(1l)
"definition for Type{Int}"

The example generated function foo above did not do anything a normal function foo(x) = x * x could
not do (except printing the type on the first invocation, and incurring higher overhead). However, the
power of a generated function lies in its ability to compute different quoted expressions depending on the
types passed to it:

julia> @generated function bar(x)
if x <: Integer
return :(x ~ 2)
else
return :(x)
end
end
bar (generic function with 1 method)
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julia> bar(4)
16

julia> bar("baz")
"baz"

(although of course this contrived example would be more easily implemented using multiple dispatch...)

Abusing this will corrupt the runtime system and cause undefined behavior:

julia> @generated function baz(x)
if rand() < .9
return :(x"2)
else
return :("boo!")
end
end

baz (generic function with 1 method)

Since the body of the generated function is non-deterministic, its behavior, and the behavior of all subse-
quent code is undefined.

Don't copy these examples!

These examples are hopefully helpful to illustrate how generated functions work, both in the definition end
and at the call site; however, don't copy them, for the following reasons:

* the foo function has side-effects (the call to Core.println), and it is undefined exactly when, how
often or how many times these side-effects will occur

* the bar function solves a problem that is better solved with multiple dispatch - defining bar(x) = x
and bar(x::Integer) = x ~ 2 will do the same thing, but it is both simpler and faster.

¢ the baz function is pathological
Note that the set of operations that should not be attempted in a generated function is unbounded, and
the runtime system can currently only detect a subset of the invalid operations. There are many other
operations that will simply corrupt the runtime system without notification, usually in subtle ways not

obviously connected to the bad definition. Because the function generator is run during inference, it must
respect all of the limitations of that code.

Some operations that should not be attempted include:

1. Caching of native pointers.
2. Interacting with the contents or methods of Core.Compiler in any way.

3. Observing any mutable state.

- Inference on the generated function may be run at any time, including while your code is
attempting to observe or mutate this state.
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4. Taking any locks: C code you call out to may use locks internally, (for example, it is not problematic
to call malloc, even though most implementations require locks internally) but don't attempt to hold
or acquire any while executing Julia code.

5. Calling any function that is defined after the body of the generated function. This condition is relaxed
for incrementally-loaded precompiled modules to allow calling any function in the module.

Alright, now that we have a better understanding of how generated functions work, let's use them to build
some more advanced (and valid) functionality...

An advanced example

Julia's base library has an internal sub2ind function to calculate a linear index into an n-dimensional array,
based on a set of n multilinear indices - in other words, to calculate the index i that can be used to index
into an array A using A[i], instead of A[x,y,z,...]. One possible implementation is the following:

julia> function sub2ind loop(dims::NTuple{N}, I::Integer...) where N
ind = I[N] - 1
for i = N-1:-1:1
ind = I[i]-1 + dims[i]*ind
end
return ind + 1
end
sub2ind loop (generic function with 1 method)

julia> sub2ind loop((3, 5), 1, 2)
4

The same thing can be done using recursion:

julia> sub2ind_rec(dims::Tuple{}) = 1;

julia> sub2ind rec(dims::Tuple{}, il::Integer, I::Integer...) =
il == 1 ? sub2ind rec(dims, I...) : throw(BoundsError());

julia> sub2ind rec(dims::Tuple{Integer, Vararg{Integer}}, il::Integer) = il;

julia> sub2ind rec(dims::Tuple{Integer, Vararg{Integer}}, il::Integer, I::Integer...) =
il + dims[1] * (sub2ind rec(Base.tail(dims), I...) - 1);

julia> sub2ind rec((3, 5), 1, 2)
4

Both these implementations, although different, do essentially the same thing: a runtime loop over the
dimensions of the array, collecting the offset in each dimension into the final index.

However, all the information we need for the loop is embedded in the type information of the arguments.
This allows the compiler to move the iteration to compile time and eliminate the runtime loops altogether.
We can utilize generated functions to achieve a similar effect; in compiler parlance, we use generated
functions to manually unroll the loop. The body becomes almost identical, but instead of calculating the
linear index, we build up an expression that calculates the index:
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julia> @generated function sub2ind gen(dims::NTuple{N}, I::Integer...) where N
ex = :(I[$N] - 1)
for i = (N - 1):-1:1
ex = :(I[$i] - 1 + dims[$i] * $ex)
end
return :($ex + 1)
end
sub2ind gen (generic function with 1 method)

julia> sub2ind gen((3, 5), 1, 2)
4

What code will this generate?

An easy way to find out is to extract the body into another (regular) function:

julia> @generated function sub2ind gen(dims::NTuple{N}, I::Integer...) where N
return sub2ind_gen_impl(dims, I...)
end
sub2ind gen (generic function with 1 method)

julia> function sub2ind gen impl(dims::Type{T}, I...) where T <: NTuple{N,Any} where N
length(I) == N || return :(error("partial indexing is unsupported"))
ex = :(I[$N] - 1)
for i = (N - 1):-1:1
ex = :(I[$i] - 1 + dims[$i] * $ex)
end
return :($ex + 1)
end
sub2ind gen impl (generic function with 1 method)

We can now execute sub2ind gen impl and examine the expression it returns:

julia> sub2ind gen impl(Tuple{Int,Int}, Int, Int)
(((If1] - 1) + dims[1] * (I[2] - 1)) + 1)

So, the method body that will be used here doesn't include a loop at all - just indexing into the two tuples,
multiplication and addition/subtraction. All the looping is performed compile-time, and we avoid looping
during execution entirely. Thus, we only loop once per type, in this case once per N (except in edge cases
where the function is generated more than once - see disclaimer above).

Optionally-generated functions

Generated functions can achieve high efficiency at run time, but come with a compile time cost: a new
function body must be generated for every combination of concrete argument types. Typically, Julia is able
to compile "generic" versions of functions that will work for any arguments, but with generated functions
this is impossible. This means that programs making heavy use of generated functions might be impossible
to statically compile.

To solve this problem, the language provides syntax for writing normal, non-generated alternative imple-
mentations of generated functions. Applied to the sub2ind example above, it would look like this:
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function sub2ind gen(dims: :NTuple{N}, I::Integer...) where N
if N !'= length(I)
throw(ArgumentError("Number of dimensions must match number of indices."))
end
if @generated
ex = :(I[$N] - 1)
for i = (N - 1):-1:1
ex = :(I[%$1] - 1 + dims[$i] * $ex)
end
return :($ex + 1)
else
ind = I[N] - 1
for i = (N - 1):-1:1
ind = I[i] - 1 + dims[i]*ind
end
return ind + 1
end
end

Internally, this code creates two implementations of the function: a generated one where the first block
in if @generated is used, and a normal one where the else block is used. Inside the then part of the if
@generated block, code has the same semantics as other generated functions: argument names refer to
types, and the code should return an expression. Multiple if @generated blocks may occur, in which case
the generated implementation uses all of the then blocks and the alternate implementation uses all of the
else blocks.

Notice that we added an error check to the top of the function. This code will be common to both versions,
and is run-time code in both versions (it will be quoted and returned as an expression from the generated
version). That means that the values and types of local variables are not available at code generation time
-- the code-generation code can only see the types of arguments.

In this style of definition, the code generation feature is essentially an optional optimization. The compiler
will use it if convenient, but otherwise may choose to use the normal implementation instead. This style
is preferred, since it allows the compiler to make more decisions and compile programs in more ways,
and since normal code is more readable than code-generating code. However, which implementation is
used depends on compiler implementation details, so it is essential for the two implementations to behave
identically.



Chapter 19

Single- and multi-dimensional Arrays

Julia, like most technical computing languages, provides a first-class array implementation. Most technical
computing languages pay a lot of attention to their array implementation at the expense of other contain-
ers. Julia does not treat arrays in any special way. The array library is implemented almost completely in
Julia itself, and derives its performance from the compiler, just like any other code written in Julia. As such,
it's also possible to define custom array types by inheriting from AbstractArray. See the manual section
on the AbstractArray interface for more details on implementing a custom array type.

An array is a collection of objects stored in a multi-dimensional grid. Zero-dimensional arrays are allowed,
see this FAQ entry. In the most general case, an array may contain objects of type Any. For most compu-
tational purposes, arrays should contain objects of a more specific type, such as Float64 or Int32.

In general, unlike many other technical computing languages, Julia does not expect programs to be written
in a vectorized style for performance. Julia's compiler uses type inference and generates optimized code
for scalar array indexing, allowing programs to be written in a style that is convenient and readable, without
sacrificing performance, and using less memory at times.

In Julia, all arguments to functions are passed by sharing (i.e. by pointers). Some technical computing
languages pass arrays by value, and while this prevents accidental modification by callees of a value in
the caller, it makes avoiding unwanted copying of arrays difficult. By convention, a function name ending
with a ! indicates that it will mutate or destroy the value of one or more of its arguments (compare, for
example, sort and sort!). Callees must make explicit copies to ensure that they don't modify inputs that
they don't intend to change. Many non-mutating functions are implemented by calling a function of the
same name with an added ! at the end on an explicit copy of the input, and returning that copy.

19.1 Basic Functions

19.2 Construction and Initialization

Many functions for constructing and initializing arrays are provided. In the following list of such functions,
calls with a dims. .. argument can either take a single tuple of dimension sizes or a series of dimension
sizes passed as a variable number of arguments. Most of these functions also accept a first input T, which
is the element type of the array. If the type T is omitted it will default to Float64.

To see the various ways we can pass dimensions to these functions, consider the following examples:

Liid, independently and identically distributed.
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Function Description

eltype(A) the type of the elements contained in A

length(A) the number of elements in A

ndims (A) the number of dimensions of A

size(A) a tuple containing the dimensions of A

size(A,n) the size of A along dimension n

axes(A) a tuple containing the valid indices of A

axes(A,n) a range expressing the valid indices along dimension n
eachindex(A) | an efficient iterator for visiting each position in A
stride(A, k) the stride (linear index distance between adjacent elements) along dimension k
strides(A) a tuple of the strides in each dimension

julia> zeros(Int8, 2, 3)
2x3 Matrix{Int8}:

0 0 0

0 0 0

julia> zeros(Int8, (2, 3))
2x3 Matrix{Int8}:

0 0 0

0 0 0

julia> zeros((2, 3))
2x3 Matrix{Float64}:
0.0 0.0 0.0
0.0 0.0 0.0

Here, (2, 3) is a Tuple and the first argument — the element type — is optional, defaulting to Float64.

19.3 Array literals

Arrays can also be directly constructed with square braces; the syntax [A, B, C, ...] creates a one-
dimensional array (i.e., a vector) containing the comma-separated arguments as its elements. The element
type (eltype) of the resulting array is automatically determined by the types of the arguments inside the
braces. If all the arguments are the same type, then that is its eltype. If they all have a common promotion
type then they get converted to that type using convert and that type is the array's eltype. Otherwise,
a heterogeneous array that can hold anything — a Vector{Any} — is constructed; this includes the literal
[1 where no arguments are given. Array literal can be typed with the syntax T[A, B, C, ...] whereTis
a type.

julia> [1, 2, 3] # An array of 'Int's
3-element Vector{Int64}:

julia> promote(l, 2.3, 4//5) # This combination of Int, Float64 and Rational promotes to Float64
(1.0, 2.3, 0.8)
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Function Description

Array{T} (undef,an uninitialized dense Array
dims...)

zeros(T, an Array of all zeros
dims...)

ones(T, an Array of all ones
dims...)

trues(dims...

a BitArray with all values true

falses(dims..

)a BitArray with all values false

reshape(A, an array containing the same data as A, but with different dimensions

dims...)

copy (A) copy A

deepcopy(A) copy A, recursively copying its elements

similar(A, an uninitialized array of the same type as A (dense, sparse, etc.), but with the

T, dims...) specified element type and dimensions. The second and third arguments are both

optional, defaulting to the element type and dimensions of A if omitted.

reinterpret(T
A)

an array with the same binary data as A, but with element type T

rand (T, an Array with random, iid * and uniformly distributed values. For floating point types
dims...) T, the values lie in the half-open interval [0, 1).

randn(T, an Array with random, iid and standard normally distributed values

dims...)

Matrix{T} (I, | m-by-n identity matrix. Requires using LinearAlgebra for I.

m, n)

range(start, | arange of nlinearly spaced elements from start to stop

stop, n)

fill! (A, x) fill the array A with the value x

fill(x, an Array filled with the value x. In particular, fill(x) constructs a zero-dimensional
dims...) Array containing x.

1.0
2.3
0.8

1.0
2.3
0.8

julia> []
Any[]

Concatenation

julia> [1, 2.3, 4//5] # Thus that's the element type of this Array
3-element Vector{Float64}:

julia> Float32[1, 2.3, 4//5] # Specify element type manually
3-element Vector{Float32}:

If the arguments inside the square brackets are separated by single semicolons (;) or newlines instead of
commas, then their contents are vertically concatenated together instead of the arguments being used as




CHAPTER 19. SINGLE- AND MULTI-DIMENSIONAL ARRAYS 256

elements themselves.

julia> [1:2, 4:5] # Has a comma, so no concatenation occurs. The ranges are themselves the
— elements
2-element Vector{UnitRange{Int64}}:

1:2

4:5

julia> [1:2; 4:5]
4-element Vector{Int64}:
1

2
4
5

julia> [1:2
4:5
6]
5-element Vector{Int64}:
1

[o) BN O2 B S S ]

Similarly, if the arguments are separated by tabs or spaces or double semicolons, then their contents are
horizontally concatenated together.

julia> [1:2 4:5 7:8]
2x3 Matrix{Int64}:

1 4 7

2 5 8

julia> [[1,2] [4,51 1[7,8]]
2x3 Matrix{Int64}:

1 4 7

2 5 8

julia> [1 2 3] # Numbers can also be horizontally concatenated
1x3 Matrix{Int64}:
1 2 3

julia> [1;; 255 3;; 4]
1x4 Matrix{Int64}:
1 2 3 4

Single semicolons (or newlines) and spaces (or tabs) can be combined to concatenate both horizontally
and vertically at the same time.

julia> [1 2
3 4]
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2x2 Matrix{Int64}:
1 2
3 4

julia> [zeros(Int, 2, 2) [1; 2]
[3 4] 5]

3x3 Matrix{Int64}:

0 0 1

0 0 2

3 4 5

julia> [[1 1]; 2 3; [4 4]]
3x2 Matrix{Int64}:

1 1

2 3

4 4

Spaces (and tabs) have a higher precedence than semicolons, performing any horizontal concatenations
first and then concatenating the result. Using double semicolons for the horizontal concatenation, on the
other hand, performs any vertical concatenations before horizontally concatenating the result.

julia> [zeros(Int, 2, 2) ; [3 41 ;; [1; 21 ; 51
3x3 Matrix{Int64}:

0 0 1
0 0 2
3 4 5

julia> [1:2; 4;; 1; 3:4]
3x2 Matrix{Int64}:

1 1

2 3

4 4

Just as ; and ;; concatenate in the first and second dimension, using more semicolons extends this same
general scheme. The number of semicolons in the separator specifies the particular dimension, so ;;;
concatenates in the third dimension, ;;;; in the 4th, and so on. Fewer semicolons take precedence, so
the lower dimensions are generally concatenated first.

julia> [1; 2;; 3; 4;; 5; 6553
7; 8;; 9; 10;; 11; 12]

2x3x2 Array{Int64, 3}:

[:) ¢, 1] =

1 3 5

2 4 6
[:, 1, 2] =
7 9 11
8 10 12

Like before, spaces (and tabs) for horizontal concatenation have a higher precedence than any number of
semicolons. Thus, higher-dimensional arrays can also be written by specifying their rows first, with their
elements textually arranged in a manner similar to their layout:
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julia> [1 3 5

246;;;

79 11

8 10 12]
2x3x2 Array{Int64, 3}:
[:, :, 1] =

8 10 12

julia> [1 2;;; 3 4;;;; 5 6;;; 7 8]
1x2x2x2 Array{Int64, 4}:
[:, :, 1, 1] =

julia> [[1 2;;; 3 415555 [5 61555 [7
1x2x2x2 Array{Int64, 4}:
[+, +, 1, 1] =

811

258

Although they both mean concatenation in the second dimension, spaces (or tabs) and ; ; cannot appearin
the same array expression unless the double semicolon is simply serving as a "line continuation" character.
This allows a single horizontal concatenation to span multiple lines (without the line break being interpreted

as a vertical concatenation).

julia> [1 2 ;;

3 4]
1x4 Matrix{Int64}:
1 2 3 4

Terminating semicolons may also be used to add trailing length 1 dimensions.
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julia> [1;;]
1x1 Matrix{Int64}:
1

julia> [2; 3;;;]
2x1x1 Array{Int64, 3}:
[:, :, 1] =

2

3

More generally, concatenation can be accomplished through the cat function. These syntaxes are short-
hands for function calls that themselves are convenience functions:

Syntax Func- | Description
tion
cat concatenate input arrays along dimension(s) k
[A; B; C; vcat shorthand for cat(A...; dims=1)
-
[ABC...] hcat shorthand for cat(A...; dims=2)
[A B; CD; hvcat | simultaneous vertical and horizontal concatenation
-1
[A; C;; B; hvncat| simultaneous n-dimensional concatenation, where number of semicolons
D;;; ...] indicate the dimension to concatenate

Typed array literals

An array with a specific element type can be constructed using the syntax T[A, B, C, ...]. This will
construct a 1-d array with element type T, initialized to contain elements A, B, C, etc. For example, Any[Xx,
y, z] constructs a heterogeneous array that can contain any values.

Concatenation syntax can similarly be prefixed with a type to specify the element type of the result.

julia> [[1 2] [3 41]
1x4 Matrix{Int64}:
1 2 3 4

julia> Int8[[1 2] [3 4]]
1x4 Matrix{Int8}:
1 2 3 4

19.4 Comprehensions

Comprehensions provide a general and powerful way to construct arrays. Comprehension syntax is similar
to set construction notation in mathematics:

A=1[F(x, vy, ...) for x=rx, y=ry, ... 1]

The meaning of this form is that F(x,y, ...) is evaluated with the variables x, y, etc. taking on each value

in their given list of values. Values can be specified as any iterable object, but will commonly be ranges
like 1:n or 2:(n-1), or explicit arrays of values like [1.2, 3.4, 5.7]. The result is an N-d dense array
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with dimensions that are the concatenation of the dimensions of the variable ranges rx, ry, etc. and each
F(x,y,...) evaluation returns a scalar.

The following example computes a weighted average of the current element and its left and right neighbor
along a 1-d grid. :

julia> x = rand(8)
8-element Array{Float64,1}:
0.843025

.869052

.365105

.699456

.977653

.994953

.41084

.809411

el ol ool oM oMol

julia> [ 0.25%x[i-1] + 0.5%x[i] + 0.25*x[i+1] for i=2:1length(x)-1 ]
6-element Array{Float64,1}:

0.736559

.57468

.685417

.912429

.8446

.656511

[l ol oo O]

The resulting array type depends on the types of the computed elements just like array literals do. In order
to control the type explicitly, a type can be prepended to the comprehension. For example, we could have
requested the result in single precision by writing:

‘Float32[ 0.25*%x[1-1] + 0.5*x[1] + 0.25*x[i+1] for i=2:1length(x)-1 ]

19.5 Generator Expressions

Comprehensions can also be written without the enclosing square brackets, producing an object known
as a generator. This object can be iterated to produce values on demand, instead of allocating an array
and storing them in advance (see Iteration). For example, the following expression sums a series without
allocating memory:

julia> sum(1/n"2 for n=1:1000)
1.6439345666815615

When writing a generator expression with multiple dimensions inside an argument list, parentheses are
needed to separate the generator from subsequent arguments:

julia> map(tuple, 1/(i+j) for i=1:2, j=1:2, [1:4;])
ERROR: syntax: invalid iteration specification

All comma-separated expressions after for are interpreted as ranges. Adding parentheses lets us add a
third argument to map:
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julia> map(tuple, (1/(i+j) for i=1:2, j=1:2), [1 3; 2 4])
2x2 Matrix{Tuple{Float64, Int64}}:

(0.5, 1) (0.333333, 3)

(0.333333, 2) (0.25, 4)

Generators are implemented via inner functions. Just like inner functions used elsewhere in the language,
variables from the enclosing scope can be "captured" in the inner function. For example, sum(p[i] -
q[i] for i=1:n) captures the three variables p, g and n from the enclosing scope. Captured variables
can present performance challenges; see performance tips.

Ranges in generators and comprehensions can depend on previous ranges by writing multiple for key-
words:

julia> [(i, j) for i=1:3 for j=1:i]
6-element Vector{Tuple{Int64, Int64}}:
(1, 1)

(2, 1)

(2, 2)

(3, 1)

(3, 2)

(3, 3)

In such cases, the result is always 1-d.

Generated values can be filtered using the if keyword:
julia> [(i, j) for i=1:3 for j=1:i if i+j == 4]
2-element Vector{Tuple{Int64, Int64}}:

(2, 2)
(3, 1)

19.6 Indexing

The general syntax for indexing into an n-dimensional array A is:

|X = A1, 12, ..., In]

where each I_k may be a scalar integer, an array of integers, or any other supported index. This includes
Colon (:) to select all indices within the entire dimension, ranges of the form a:c or a:b:c to select
contiguous or strided subsections, and arrays of booleans to select elements at their true indices.

If all the indices are scalars, then the result X is a single element from the array A. Otherwise, X is an array
with the same number of dimensions as the sum of the dimensionalities of all the indices.

If all indices I k are vectors, for example, then the shape of X would be (length(I 1), length(I 2),
., length(I n)),withlocationi 1, i 2, ..., i nofXcontainingthevalueA[I 1[i 1], I 2[i 2],
., I n[i n]].

Example:

julia> A = reshape(collect(1:16), (2, 2, 2, 2))
2x2x2x2 Array{Int64, 4}:
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julia> A[1, 2, 1, 1] # all scalar indices
3

julia> A[[1, 21, [11, [1, 21, [11] # all vector indices
2x1x2x1 Array{Int64, 4}:

[:, :, 1, 1] =
1
2
[, :, 2, 1] =
5
6

julia> A[[1, 21, [11, [1, 21, 11 # a mix of index types
2x1x2 Array{Int64, 3}:
[+ ¢, 1] =

Note how the size of the resulting array is different in the last two cases.

IfI_1is changed to a two-dimensional matrix, then Xbecomes an n+1-dimensional array of shape (size(I 1,
1), size(I 1, 2), length(I 2), ..., length(I_n)). The matrix adds a dimension.

Example:

julia> A = reshape(collect(1:16), (2, 2, 2, 2));

julia> A[[1 2; 1 2]1]
2x2 Matrix{Int64}:
1 2
1 2
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julia> A[[1 2; 1 2], 1, 2, 1]
2x2 Matrix{Int64}:

5 6

5 6

The locationi 1, i 2, i 3, ..., i {n+1} contains the value at A[T 1[i 1, i 2], I 2[i 3], ...,
I n[i {n+1}]1]. All dimensions indexed with scalars are dropped. For example, if J is an array of indices,
then the result of A[2, J, 3] is an array with size size(J). Its jth element is populated by A[2, J[j],
3].

As a special part of this syntax, the end keyword may be used to represent the last index of each dimension
within the indexing brackets, as determined by the size of the innermost array being indexed. Indexing
syntax without the end keyword is equivalent to a call to getindex:

X = getindex(A, I.1, I 2, ..., I n)

Example:

julia> x = reshape(1l:16, 4, 4)
4x4 reshape(::UnitRange{Int64}, 4, 4) with eltype Int64:

1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

julia> x[2:3, 2:end-1]
2x2 Matrix{Int64}:

6 10

7 11

julia> x[1, [2 3; 4 1]1]
2x2 Matrix{Int64}:

5 9

13 1

19.7 Indexed Assignment

The general syntax for assigning values in an n-dimensional array A is:

|AlI1, 12, ..., In]=X

where each I _k may be a scalar integer, an array of integers, or any other supported index. This includes
Colon (:) to select all indices within the entire dimension, ranges of the form a:c or a:b:c to select
contiguous or strided subsections, and arrays of booleans to select elements at their true indices.

If all indices I_k are integers, then the value in locationI 1, I 2, ..., I n of Ais overwritten with the
value of X, converting to the eltype of A if necessary.

If any index I k is itself an array, then the right hand side X must also be an array with the same shape
as the result of indexing A[I 1, I 2, ..., I n] or a vector with the same number of elements. The
value in location I 1[i 1], I 2[i 2], ..., I n[i n] of Ais overwritten with the value X[I 1, I 2,

., I n], converting if necessary. The element-wise assignment operator .= may be used to broadcast
X across the selected locations:
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|AlT.1, 1.2, ..., In] .=X

Just as in Indexing, the end keyword may be used to represent the last index of each dimension within the
indexing brackets, as determined by the size of the array being assigned into. Indexed assignment syntax
without the end keyword is equivalent to a call to setindex!:

| setindex!(A, X, 1.1, 1.2, ..., In)
Example:
julia> x = collect(reshape(1:9, 3, 3))
3x3 Matrix{Int64}:
1 4 7
2 5 8
3 6 9
julia> x[3, 3] = -9;
julia> x[1:2, 1:2] = [-1 -4; -2 -51;
julia> x
3x3 Matrix{Int64}:
-1 -4 7
-2 -5 8
3 6 -9

19.8 Supported index types

In the expression A[I 1, I 2, ..., I n],eachI k may be a scalarindex, an array of scalar indices, or
an object that represents an array of scalar indices and can be converted to such by to indices:

1. Ascalarindex. By default this includes:

- Non-boolean integers

- CartesianIndex{N}s, which behave like an N-tuple of integers spanning multiple dimensions
(see below for more details)

2. An array of scalar indices. This includes:

- Vectors and multidimensional arrays of integers

- Empty arrays like [], which select no elements e.g. A[[]] (not to be confused with A[ 1)

Ranges like a:c ora:b:c, which select contiguous or strided subsections from a to c (inclusive)
- Any custom array of scalar indices that is a subtype of AbstractArray

- Arrays of CartesianIndex{N} (see below for more details)

3. An object that represents an array of scalar indices and can be converted to such by to indices.
By default this includes:

- Colon() (:), which represents all indices within an entire dimension or across the entire array
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- Arrays of booleans, which select elements at their true indices (see below for more details)

Some examples:

julia> A = reshape(collect(1:2:18), (3, 3))
3x3 Matrix{Int64}:

1 7 13
3 9 15
5 11 17

julia> A[4]
7

julia> A[[2, 5, 8]1]
3-element Vector{Int64}:
3
9
15

julia> A[[1 4; 3 8]1
2x2 Matrix{Int64}:

1 7

5 15

julia> A[[]]
Int64[]

julia> A[1:2:5]
3-element Vector{Int64}:
1
5
9

julia> A[2, :]

3-element Vector{Int64}:
3
9
15

julia> A[:, 3]

3-element Vector{Int64}:
13
15
17

julia> A[:, 3:3]
3x1 Matrix{Int64}:
13
15
17




CHAPTER 19. SINGLE- AND MULTI-DIMENSIONAL ARRAYS 266

Cartesian indices

The special CartesianIndex{N} object represents a scalar index that behaves like an N-tuple of integers
spanning multiple dimensions. For example:

julia> A = reshape(1:32, 4, 4, 2);

julia> A[3, 2, 1]
7

julia> A[CartesianIndex(3, 2, 1)] == A[3, 2, 1] ==
true

Considered alone, this may seem relatively trivial; CartesianIndex simply gathers multiple integers to-
gether into one object that represents a single multidimensional index. When combined with other index-
ing forms and iterators that yield CartesianIndexes, however, this can produce very elegant and efficient
code. See Iteration below, and for some more advanced examples, see this blog post on multidimensional
algorithms and iteration.

Arrays of CartesianIndex{N} are also supported. They represent a collection of scalar indices that each
span N dimensions, enabling a form of indexing that is sometimes referred to as pointwise indexing. Fo