
The Julia Language

V1.10.4

The Julia Project

June 5, 2024

Contents

Contents i

I Manual 1

1 Julia 1.10 Documentation 2

1.1 Important Links . 2

1.2 Introduction . 2

1.3 Julia Compared to Other Languages . 3

2 Getting Started 5

2.1 Resources . 6

3 Variables 7

3.1 Allowed Variable Names . 8

3.2 Assignment expressions and assignment versus mutation 9

3.3 Stylistic Conventions . 10

4 Integers and Floating-Point Numbers 12

4.1 Integers . 13

4.2 Floating-Point Numbers . 17

4.3 Arbitrary Precision Arithmetic . 22

4.4 Numeric Literal Coefficients . 23

4.5 Literal zero and one . 25

5 Mathematical Operations and Elementary Functions 26

5.1 Arithmetic Operators . 26

5.2 Boolean Operators . 27

5.3 Bitwise Operators . 27

5.4 Updating operators . 28

5.5 Vectorized "dot" operators . 29

5.6 Numeric Comparisons . 30

5.7 Operator Precedence and Associativity . 33

5.8 Numerical Conversions . 34

6 Complex and Rational Numbers 38

6.1 Complex Numbers . 38

6.2 Rational Numbers . 41

7 Strings 44

7.1 Characters . 45

7.2 String Basics . 47

7.3 Unicode and UTF-8 . 48

7.4 Concatenation . 52

7.5 Interpolation . 53

7.6 Triple-Quoted String Literals . 54

i

CONTENTS ii

7.7 Common Operations . 56

7.8 Non-Standard String Literals . 57

7.9 Regular Expressions . 57

7.10 Byte Array Literals . 62

7.11 Version Number Literals . 64

7.12 Raw String Literals . 64

8 Functions 66

8.1 Argument Passing Behavior . 67

8.2 Argument-type declarations . 68

8.3 The return Keyword . 69

8.4 Operators Are Functions . 70

8.5 Operators With Special Names . 71

8.6 Anonymous Functions . 71

8.7 Tuples . 73

8.8 Named Tuples . 73

8.9 Destructuring Assignment and Multiple Return Values 73

8.10 Property destructuring . 76

8.11 Argument destructuring . 77

8.12 Varargs Functions . 77

8.13 Optional Arguments . 80

8.14 Keyword Arguments . 80

8.15 Evaluation Scope of Default Values . 82

8.16 Do-Block Syntax for Function Arguments . 82

8.17 Function composition and piping . 83

8.18 Dot Syntax for Vectorizing Functions . 85

8.19 Further Reading . 87

9 Control Flow 88

9.1 Compound Expressions . 88

9.2 Conditional Evaluation . 89

9.3 Short-Circuit Evaluation . 92

9.4 Repeated Evaluation: Loops . 95

9.5 Exception Handling . 98

9.6 Tasks (aka Coroutines) . 103

10 Scope of Variables 104

10.1 Global Scope . 105

10.2 Local Scope . 105

10.3 Constants . 115

10.4 Typed Globals . 118

11 Types 119

11.1 Type Declarations . 120

11.2 Abstract Types . 122

11.3 Primitive Types . 123

11.4 Composite Types . 124

11.5 Mutable Composite Types . 126

11.6 Declared Types . 128

11.7 Type Unions . 128

11.8 Parametric Types . 129

11.9 UnionAll Types . 137

11.10 Singleton types . 138

CONTENTS iii

11.11 Types of functions . 139

11.12 Type{T} type selectors . 140

11.13 Type Aliases . 142

11.14 Operations on Types . 142

11.15 Custom pretty-printing . 143

11.16 "Value types" . 146

12 Methods 148

12.1 Defining Methods . 149

12.2 Method specializations . 152

12.3 Method Ambiguities . 153

12.4 Parametric Methods . 154

12.5 Redefining Methods . 157

12.6 Design Patterns with Parametric Methods . 159

12.7 Parametrically-constrained Varargs methods . 163

12.8 Note on Optional and keyword Arguments . 163

12.9 Function-like objects . 164

12.10 Empty generic functions . 165

12.11 Method design and the avoidance of ambiguities 165

12.12 Defining methods in local scope . 168

13 Constructors 170

13.1 Outer Constructor Methods . 171

13.2 Inner Constructor Methods . 171

13.3 Incomplete Initialization . 173

13.4 Parametric Constructors . 175

13.5 Case Study: Rational . 177

13.6 Outer-only constructors . 179

14 Conversion and Promotion 181

14.1 Conversion . 182

14.2 Promotion . 184

15 Interfaces 188

15.1 Iteration . 188

15.2 Indexing . 191

15.3 Abstract Arrays . 192

15.4 Strided Arrays . 194

15.5 Customizing broadcasting . 195

15.6 Instance Properties . 200

16 Modules 204

16.1 Namespace management . 205

16.2 Submodules and relative paths . 210

16.3 Module initialization and precompilation . 212

17 Documentation 216

17.1 Accessing Documentation . 216

17.2 Writing Documentation . 216

17.3 Functions & Methods . 220

17.4 Advanced Usage . 221

17.5 Syntax Guide . 222

18 Metaprogramming 227

18.1 Program representation . 227

18.2 Expressions and evaluation . 230

CONTENTS iv

18.3 Macros . 235

18.4 Code Generation . 243

18.5 Non-Standard String Literals . 244

18.6 Generated functions . 246

19 Single- and multi-dimensional Arrays 253

19.1 Basic Functions . 253

19.2 Construction and Initialization . 253

19.3 Array literals . 254

19.4 Comprehensions . 259

19.5 Generator Expressions . 260

19.6 Indexing . 261

19.7 Indexed Assignment . 263

19.8 Supported index types . 264

19.9 Iteration . 269

19.10 Array traits . 270

19.11 Array and Vectorized Operators and Functions . 270

19.12 Broadcasting . 271

19.13 Implementation . 272

20 Missing Values 275

20.1 Propagation of Missing Values . 275

20.2 Equality and Comparison Operators . 276

20.3 Logical operators . 277

20.4 Control Flow and Short-Circuiting Operators . 278

20.5 Arrays With Missing Values . 279

20.6 Skipping Missing Values . 280

20.7 Logical Operations on Arrays . 281

21 Networking and Streams 283

21.1 Basic Stream I/O . 283

21.2 Text I/O . 284

21.3 IO Output Contextual Properties . 285

21.4 Working with Files . 285

21.5 A simple TCP example . 286

21.6 Resolving IP Addresses . 288

21.7 Asynchronous I/O . 288

21.8 Multicast . 289

22 Parallel Computing 291

23 Asynchronous Programming 292

23.1 Basic Task operations . 292

23.2 Communicating with Channels . 293

23.3 More task operations . 297

23.4 Tasks and events . 297

24 Multi-Threading 299

24.1 Starting Julia with multiple threads . 299

24.2 Threadpools . 300

24.3 Communication and synchronization . 301

24.4 The @threads Macro . 302

24.5 Atomic Operations . 304

24.6 Per-field atomics . 305

24.7 Side effects and mutable function arguments . 306

CONTENTS v

24.8 @threadcall . 306

24.9 Caveats . 306

24.10 Task Migration . 307

24.11 Safe use of Finalizers . 307

25 Multi-processing and Distributed Computing 309

25.1 Code Availability and Loading Packages . 311

25.2 Starting and managing worker processes . 313

25.3 Data Movement . 314

25.4 Global variables . 314

25.5 Parallel Map and Loops . 316

25.6 Remote References and AbstractChannels . 318

25.7 Channels and RemoteChannels . 318

25.8 Local invocations . 320

25.9 Shared Arrays . 322

25.10 ClusterManagers . 325

25.11 Specifying Network Topology (Experimental) . 331

25.12 Noteworthy external packages . 332

26 Running External Programs 335

26.1 Interpolation . 336

26.2 Quoting . 338

26.3 Pipelines . 339

26.4 Cmd Objects . 341

27 Calling C and Fortran Code 343

27.1 Creating C-Compatible Julia Function Pointers . 345

27.2 Mapping C Types to Julia . 347

27.3 Mapping C Functions to Julia . 353

27.4 C Wrapper Examples . 355

27.5 Fortran Wrapper Example . 356

27.6 Garbage Collection Safety . 357

27.7 Non-constant Function Specifications . 357

27.8 Indirect Calls . 358

27.9 Closure cfunctions . 358

27.10 Closing a Library . 359

27.11 Variadic function calls . 359

27.12 ccall interface . 359

27.13 Calling Convention . 360

27.14 Accessing Global Variables . 360

27.15 Accessing Data through a Pointer . 361

27.16 Thread-safety . 361

27.17 More About Callbacks . 362

27.18 C++ . 362

28 Handling Operating System Variation 365

29 Environment Variables 366

29.1 File locations . 366

29.2 Pkg.jl . 369

29.3 Network transport . 370

29.4 External applications . 370

29.5 Parallelization . 371

29.6 REPL formatting . 372

CONTENTS vi

29.7 System and Package Image Building . 373

29.8 Debugging and profiling . 373

30 Embedding Julia 376

30.1 High-Level Embedding . 376

30.2 High-Level Embedding on Windows with Visual Studio 378

30.3 Converting Types . 379

30.4 Calling Julia Functions . 380

30.5 Memory Management . 380

30.6 Working with Arrays . 383

30.7 Exceptions . 385

31 Code Loading 388

31.1 Definitions . 388

31.2 Federation of packages . 389

31.3 Environments . 390

31.4 Conclusion . 400

32 Profiling 401

32.1 Basic usage . 401

32.2 Accumulation and clearing . 405

32.3 Options for controlling the display of profile results 405

32.4 Configuration . 406

32.5 Memory allocation analysis . 406

32.6 External Profiling . 408

33 Stack Traces 409

33.1 Viewing a stack trace . 409

33.2 Extracting useful information . 410

33.3 Error handling . 411

33.4 Exception stacks and current_exceptions . 412

33.5 Comparison with backtrace . 413

34 Performance Tips 415

34.1 Performance critical code should be inside a function 415

34.2 Avoid untyped global variables . 415

34.3 Measure performance with @time and pay attention to memory allocation 416

34.4 Tools . 418

34.5 Avoid containers with abstract type parameters . 418

34.6 Type declarations . 419

34.7 Break functions into multiple definitions . 425

34.8 Write "type-stable" functions . 426

34.9 Avoid changing the type of a variable . 426

34.10 Separate kernel functions (aka, function barriers) 427

34.11 Types with values-as-parameters . 428

34.12 The dangers of abusingmultiple dispatch (aka, more on types with values-as-parameters)429

34.13 Access arrays in memory order, along columns . 430

34.14 Pre-allocating outputs . 432

34.15 More dots: Fuse vectorized operations . 433

34.16 Consider using views for slices . 434

34.17 Copying data is not always bad . 434

34.18 Consider StaticArrays.jl for small fixed-size vector/matrix operations 435

34.19 Avoid string interpolation for I/O . 435

34.20 Optimize network I/O during parallel execution . 436

CONTENTS vii

34.21 Fix deprecation warnings . 436

34.22 Tweaks . 436

34.23 Performance Annotations . 437

34.24 Treat Subnormal Numbers as Zeros . 440

34.25 @code_warntype . 441

34.26 Performance of captured variable . 443

34.27 Multithreading and linear algebra . 444

34.28 Alternative linear algebra backends . 444

35 Workflow Tips 445

35.1 REPL-based workflow . 445

35.2 Browser-based workflow . 446

35.3 Revise-based workflows . 446

36 Style Guide 448

36.1 Indentation . 448

36.2 Write functions, not just scripts . 448

36.3 Avoid writing overly-specific types . 448

36.4 Handle excess argument diversity in the caller . 449

36.5 Append ! to names of functions that modify their arguments 449

36.6 Avoid strange type Unions . 450

36.7 Avoid elaborate container types . 450

36.8 Prefer exported methods over direct field access 450

36.9 Use naming conventions consistent with Julia base/ 451

36.10 Write functions with argument ordering similar to Julia Base 451

36.11 Don't overuse try-catch . 452

36.12 Don't parenthesize conditions . 452

36.13 Don't overuse ... 452

36.14 Don't use unnecessary static parameters . 452

36.15 Avoid confusion about whether something is an instance or a type 453

36.16 Don't overuse macros . 453

36.17 Don't expose unsafe operations at the interface level 453

36.18 Don't overload methods of base container types 454

36.19 Avoid type piracy . 454

36.20 Be careful with type equality . 454

36.21 Don't write a trivial anonymous function x->f(x) for a named function f 454

36.22 Avoid using floats for numeric literals in generic code when possible 455

37 Frequently Asked Questions 456

37.1 General . 456

37.2 Public API . 457

37.3 Sessions and the REPL . 457

37.4 Scripting . 458

37.5 Variables and Assignments . 459

37.6 Functions . 459

37.7 Types, type declarations, and constructors . 463

37.8 Troubleshooting "method not matched": parametric type invariance and MethodErrors470

37.9 Packages and Modules . 471

37.10 Nothingness and missing values . 471

37.11 Memory . 472

37.12 Asynchronous IO and concurrent synchronous writes 472

37.13 Arrays . 473

CONTENTS viii

37.14 Computing cluster . 475

37.15 Julia Releases . 475

38 Noteworthy Differences from other Languages 477

38.1 Noteworthy differences from MATLAB . 477

38.2 Noteworthy differences from R . 479

38.3 Noteworthy differences from Python . 482

38.4 Noteworthy differences from C/C++ . 484

38.5 Noteworthy differences from Common Lisp . 488

39 Unicode Input 491

40 Command-line Interface 492

40.1 Using arguments inside scripts . 492

40.2 Parallel mode . 492

40.3 Startup file . 493

40.4 Command-line switches for Julia . 493

II Base 495

41 Essentials 496

41.1 Introduction . 496

41.2 Getting Around . 496

41.3 Keywords . 501

41.4 Standard Modules . 520

41.5 Base Submodules . 521

41.6 All Objects . 522

41.7 Properties of Types . 538

41.8 Special Types . 554

41.9 Generic Functions . 565

41.10 Syntax . 573

41.11 Missing Values . 590

41.12 System . 593

41.13 Versioning . 607

41.14 Errors . 607

41.15 Events . 617

41.16 Reflection . 618

41.17 Code loading . 623

41.18 Internals . 625

41.19 Meta . 632

42 Collections and Data Structures 635

42.1 Iteration . 635

42.2 Constructors and Types . 637

42.3 General Collections . 639

42.4 Iterable Collections . 641

42.5 Indexable Collections . 687

42.6 Dictionaries . 689

42.7 Set-Like Collections . 702

42.8 Dequeues . 708

42.9 Utility Collections . 717

43 Mathematics 719

43.1 Mathematical Operators . 719

43.2 Mathematical Functions . 747

CONTENTS ix

43.3 Customizable binary operators . 788

44 Numbers 789

44.1 Standard Numeric Types . 789

44.2 Data Formats . 794

44.3 General Number Functions and Constants . 800

44.4 BigFloats and BigInts . 814

45 Strings 817

46 Arrays 860

46.1 Constructors and Types . 860

46.2 Basic functions . 874

46.3 Broadcast and vectorization . 880

46.4 Indexing and assignment . 885

46.5 Views (SubArrays and other view types) . 893

46.6 Concatenation and permutation . 901

46.7 Array functions . 920

46.8 Combinatorics . 933

47 Tasks 938

47.1 Scheduling . 942

47.2 Synchronization . 944

47.3 Channels . 950

47.4 Low-level synchronization using schedule and wait 955

48 Multi-Threading 958

48.1 Atomic operations . 963

48.2 ccall using a libuv threadpool (Experimental) . 971

48.3 Low-level synchronization primitives . 971

49 Constants 973

50 Filesystem 977

51 I/O and Network 997

51.1 General I/O . 997

51.2 Text I/O . 1018

51.3 Multimedia I/O . 1024

51.4 Network I/O . 1029

52 Punctuation 1031

53 Sorting and Related Functions 1033

53.1 Sorting Functions . 1035

53.2 Order-Related Functions . 1044

53.3 Sorting Algorithms . 1050

53.4 Alternate Orderings . 1050

54 Iteration utilities 1053

55 Reflection and introspection 1065

55.1 Module bindings . 1065

55.2 DataType fields . 1065

55.3 Subtypes . 1066

55.4 DataType layout . 1066

55.5 Function methods . 1066

55.6 Expansion and lowering . 1066

55.7 Intermediate and compiled representations . 1067

56 C Interface 1068

57 LLVM Interface 1082

CONTENTS x

58 C Standard Library 1083

59 StackTraces 1087

60 SIMD Support 1089

III Standard Library 1090

61 ArgTools 1091

61.1 Argument Handling . 1091

61.2 Function Testing . 1092

62 Artifacts 1095

63 Base64 1097

64 CRC32c 1100

65 Dates 1101

65.1 Constructors . 1101

65.2 Durations/Comparisons . 1104

65.3 Accessor Functions . 1105

65.4 Query Functions . 1106

65.5 TimeType-Period Arithmetic . 1107

65.6 Adjuster Functions . 1109

65.7 Period Types . 1110

65.8 Rounding . 1111

66 API reference 1114

66.1 Dates and Time Types . 1114

66.2 Dates Functions . 1115

67 Delimited Files 1139

68 Distributed Computing 1144

68.1 Cluster Manager Interface . 1160

69 Downloads 1164

70 File Events 1168

71 Pidfile 1170

71.1 Primary Functions . 1170

71.2 Helper Functions . 1171

72 Future 1172

73 Interactive Utilities 1173

74 Lazy Artifacts 1181

75 LibCURL 1182

76 LibGit2 1183

77 Dynamic Linker 1224

78 Linear Algebra 1227

78.1 Special matrices . 1230

78.2 Matrix factorizations . 1232

78.3 Orthogonal matrices (AbstractQ) . 1232

78.4 Standard functions . 1234

78.5 Low-level matrix operations . 1329

78.6 BLAS functions . 1335

78.7 LAPACK functions . 1345

79 Logging 1361

79.1 Log event structure . 1362

79.2 Processing log events . 1363

79.3 Testing log events . 1364

CONTENTS xi

79.4 Environment variables . 1364

79.5 Examples . 1365

79.6 Reference . 1366

80 Markdown 1372

80.1 Inline elements . 1372

80.2 Toplevel elements . 1374

80.3 Markdown Syntax Extensions . 1378

81 Memory-mapped I/O 1380

82 Network Options 1383

83 Pkg 1387

84 Printf 1391

85 Profiling 1393

85.1 CPU Profiling . 1393

85.2 Via @profile . 1393

85.3 Triggered During Execution . 1393

85.4 Reference . 1394

85.5 Memory profiling . 1397

85.6 Heap Snapshots . 1398

86 The Julia REPL 1400

86.1 The different prompt modes . 1400

86.2 Key bindings . 1404

86.3 Tab completion . 1405

86.4 Customizing Colors . 1408

86.5 Changing the contextual module which is active at the REPL 1409

86.6 Numbered prompt . 1410

86.7 TerminalMenus . 1411

86.8 References . 1414

87 Random Numbers 1420

87.1 Random numbers module . 1421

87.2 Random generation functions . 1421

87.3 Subsequences, permutations and shuffling . 1425

87.4 Generators (creation and seeding) . 1428

87.5 Hooking into the Random API . 1431

88 Reproducibility 1438

89 SHA 1439

89.1 SHA functions . 1439

89.2 Working with context . 1442

89.3 HMAC functions . 1445

90 Serialization 1449

91 Shared Arrays 1451

92 Sockets 1454

93 Sparse Arrays 1461

93.1 Compressed Sparse Column (CSC) Sparse Matrix Storage 1461

93.2 Sparse Vector Storage . 1462

93.3 Sparse Vector and Matrix Constructors . 1462

93.4 Sparse matrix operations . 1464

93.5 Correspondence of dense and sparse methods . 1464

94 SparseArrays API 1465

95 Noteworthy external packages 1480

CONTENTS xii

96 Statistics 1481

97 TOML 1491

97.1 Parsing TOML data . 1491

97.2 Exporting data to TOML file . 1492

97.3 References . 1493

98 Tar 1495

99 Unit Testing 1500

99.1 Testing Base Julia . 1500

99.2 Basic Unit Tests . 1500

99.3 Working with Test Sets . 1503

99.4 Testing Log Statements . 1507

99.5 Other Test Macros . 1510

99.6 Broken Tests . 1512

99.7 Test result types . 1513

99.8 Creating Custom AbstractTestSet Types . 1514

99.9 Test utilities . 1515

99.10 Workflow for Testing Packages . 1517

100 UUIDs 1520

101 Unicode 1522

IV Developer Documentation 1526

102 Documentation of Julia’s Internals 1527

102.1 Initialization of the Julia runtime . 1527

102.2 Julia ASTs . 1530

102.3 More about types . 1543

102.4 Memory layout of Julia Objects . 1552

102.5 Eval of Julia code . 1555

102.6 Calling Conventions . 1559

102.7 High-level Overview of the Native-Code Generation Process 1560

102.8 Julia Functions . 1562

102.9 Base.Cartesian . 1566

102.10 Talking to the compiler (the :meta mechanism) . 1571

102.11 SubArrays . 1572

102.12 isbits Union Optimizations . 1576

102.13 System Image Building . 1577

102.14 Package Images . 1579

102.15 Working with LLVM . 1581

102.16 printf() and stdio in the Julia runtime . 1588

102.17 Bounds checking . 1590

102.18 Proper maintenance and care of multi-threading locks 1592

102.19 Arrays with custom indices . 1596

102.20 Module loading . 1600

102.21 Inference . 1600

102.22 Julia SSA-form IR . 1602

102.23 EscapeAnalysis . 1606

102.24 Static analyzer annotations for GC correctness in C code 1618

102.25 Garbage Collection in Julia . 1624

102.26 Fixing precompilation hangs due to open tasks or IO 1626

CONTENTS xiii

103 Developing/debugging Julia’s C code 1630

103.1 Reporting and analyzing crashes (segfaults) . 1630

103.2 gdb debugging tips . 1633

103.3 Using Valgrind with Julia . 1637

103.4 External Profiler Support . 1638

103.5 Sanitizer support . 1641

103.6 Instrumenting Julia with DTrace, and bpftrace . 1643

104 Building Julia 1650

104.1 Building Julia (Detailed) . 1650

104.2 Linux . 1658

104.3 macOS . 1659

104.4 Windows . 1660

104.5 tools . 1662

104.6 For 64 bit Julia, install x86_64 . 1662

104.7 For 32 bit Julia, install i686 . 1662

104.8 FreeBSD . 1664

104.9 ARM (Linux) . 1665

104.10 Binary distributions . 1666

104.11 Point releasing 101 . 1668

105 Julia v1.10 Release Notes 1675

105.1 New language features . 1675

105.2 Language changes . 1675

105.3 Compiler/Runtime improvements . 1676

105.4 Command-line option changes . 1676

105.5 Build system changes . 1676

105.6 New library functions . 1676

105.7 New library features . 1676

105.8 Standard library changes . 1677

105.9 Deprecated or removed . 1678

Part I

Manual

1

Chapter 1

Julia 1.10 Documentation

Welcome to the documentation for Julia 1.10.

Please read the release notes to see what has changed since the last release.

Note

The documentation is also available in PDF format: julia-1.10.4.pdf.

1.1 Important Links

Below is a non-exhasutive list of links that will be useful as you learn and use the Julia programming

language.

• Julia Homepage

• Download Julia

• Discussion forum

• Julia YouTube

• Find Julia Packages

• Learning Resources

• Read and write blogs on Julia

1.2 Introduction

Scientific computing has traditionally required the highest performance, yet domain experts have largely

moved to slower dynamic languages for daily work. We believe there are many good reasons to prefer

dynamic languages for these applications, and we do not expect their use to diminish. Fortunately, modern

language design and compiler techniques make it possible to mostly eliminate the performance trade-off

and provide a single environment productive enough for prototyping and efficient enough for deploying

performance-intensive applications. The Julia programming language fills this role: it is a flexible dynamic

language, appropriate for scientific and numerical computing, with performance comparable to traditional

statically-typed languages.

2

NEWS.md
https://raw.githubusercontent.com/JuliaLang/docs.julialang.org/assets/julia-1.10.4.pdf
https://julialang.org
https://julialang.org/downloads/
https://discourse.julialang.org
https://www.youtube.com/user/JuliaLanguage
https://julialang.org/packages/
https://julialang.org/learning/
https://forem.julialang.org

CHAPTER 1. JULIA 1.10 DOCUMENTATION 3

Because Julia's compiler is different from the interpreters used for languages like Python or R, you may

find that Julia's performance is unintuitive at first. If you find that something is slow, we highly recommend

reading through the Performance Tips section before trying anything else. Once you understand how Julia

works, it is easy to write code that is nearly as fast as C.

1.3 Julia Compared to Other Languages

Julia features optional typing, multiple dispatch, and good performance, achieved using type inference

and just-in-time (JIT) compilation (and optional ahead-of-time compilation), implemented using LLVM. It

is multi-paradigm, combining features of imperative, functional, and object-oriented programming. Julia

provides ease and expressiveness for high-level numerical computing, in the same way as languages such

as R, MATLAB, and Python, but also supports general programming. To achieve this, Julia builds upon the

lineage of mathematical programming languages, but also borrows much from popular dynamic languages,

including Lisp, Perl, Python, Lua, and Ruby.

The most significant departures of Julia from typical dynamic languages are:

• The core language imposes very little; Julia Base and the standard library are written in Julia itself,

including primitive operations like integer arithmetic

• A rich language of types for constructing and describing objects, that can also optionally be used to

make type declarations

• The ability to define function behavior across many combinations of argument types via multiple

dispatch

• Automatic generation of efficient, specialized code for different argument types

• Good performance, approaching that of statically-compiled languages like C

Although one sometimes speaks of dynamic languages as being "typeless", they are definitely not. Every

object, whether primitive or user-defined, has a type. The lack of type declarations in most dynamic lan-

guages, however, means that one cannot instruct the compiler about the types of values, and often cannot

explicitly talk about types at all. In static languages, on the other hand, while one can – and usually must –

annotate types for the compiler, types exist only at compile time and cannot be manipulated or expressed

at run time. In Julia, types are themselves run-time objects, and can also be used to convey information to

the compiler.

What Makes Julia, Julia?

While the casual programmer need not explicitly use types or multiple dispatch, they are the core unifying

features of Julia: functions are defined on different combinations of argument types, and applied by dis-

patching to the most specific matching definition. This model is a good fit for mathematical programming,

where it is unnatural for the first argument to "own" an operation as in traditional object-oriented dispatch.

Operators are just functions with special notation – to extend addition to new user-defined data types, you

define new methods for the + function. Existing code then seamlessly applies to the new data types.

Partly because of run-time type inference (augmented by optional type annotations), and partly because

of a strong focus on performance from the inception of the project, Julia's computational efficiency exceeds

that of other dynamic languages, and even rivals that of statically-compiled languages. For large scale

numerical problems, speed always has been, continues to be, and probably always will be crucial: the

amount of data being processed has easily kept pace with Moore's Law over the past decades.

https://en.wikipedia.org/wiki/Just-in-time_compilation
https://github.com/JuliaLang/PackageCompiler.jl
https://en.wikipedia.org/wiki/Low_Level_Virtual_Machine
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Perl_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Lua_(programming_language)
https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://en.wikipedia.org/wiki/Multiple_dispatch
https://en.wikipedia.org/wiki/Multiple_dispatch

CHAPTER 1. JULIA 1.10 DOCUMENTATION 4

Advantages of Julia

Julia aims to create an unprecedented combination of ease-of-use, power, and efficiency in a single lan-

guage. In addition to the above, some advantages of Julia over comparable systems include:

• Free and open source (MIT licensed)

• User-defined types are as fast and compact as built-ins

• No need to vectorize code for performance; devectorized code is fast

• Designed for parallelism and distributed computation

• Lightweight "green" threading (coroutines)

• Unobtrusive yet powerful type system

• Elegant and extensible conversions and promotions for numeric and other types

• Efficient support for Unicode, including but not limited to UTF-8

• Call C functions directly (no wrappers or special APIs needed)

• Powerful shell-like capabilities for managing other processes

• Lisp-like macros and other metaprogramming facilities

https://github.com/JuliaLang/julia/blob/master/LICENSE.md
https://en.wikipedia.org/wiki/Coroutine
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/UTF-8

Chapter 2

Getting Started

Julia installation is straightforward, whether using precompiled binaries or compiling from source. Download

and install Julia by following the instructions at https://julialang.org/downloads/.

If you are coming to Julia from one of the following languages, then you should start by reading the section

on noteworthy differences from MATLAB, R, Python, C/C++ or Common Lisp. This will help you avoid some

common pitfalls since Julia differs from those languages in many subtle ways.

The easiest way to learn and experiment with Julia is by starting an interactive session (also known as a

read-eval-print loop or "REPL") by double-clicking the Julia executable or running julia from the command

line:

$ julia

_

_ _ _(_)_ | Documentation: https://docs.julialang.org

(_) | (_) (_) |

_ _ _| |_ __ _ | Type "?" for help, "]?" for Pkg help.

| | | | | | |/ _` | |

| | |_| | | | (_| | | Version 1.10.4 (2024-06-04)

_/ |__'_|_|_|__'_| | Official https://julialang.org/ release

|__/ |

julia> 1 + 2

3

julia> ans

3

To exit the interactive session, type CTRL-D (press the Control/^ key together with the d key), or type

exit(). When run in interactive mode, julia displays a banner and prompts the user for input. Once the

user has entered a complete expression, such as 1 + 2, and hits enter, the interactive session evaluates

the expression and shows its value. If an expression is entered into an interactive session with a trailing

semicolon, its value is not shown. The variable ans is bound to the value of the last evaluated expression

whether it is shown or not. The ans variable is only bound in interactive sessions, not when Julia code is

run in other ways.

To evaluate expressions written in a source file file.jl, write include("file.jl").

5

https://julialang.org/downloads/

CHAPTER 2. GETTING STARTED 6

To run code in a file non-interactively, you can give it as the first argument to the julia command:

$ julia script.jl

You can pass additional arguments to Julia, and to your program script.jl. A detailed list of all the

available options can be found under Command-line Interface.

2.1 Resources

A curated list of useful learning resources to help new users get started can be found on the learning page

of the main Julia website.

You can use the REPL as a learning resource by switching into the help mode. Switch to help mode by

pressing ? at an empty julia> prompt, before typing anything else. Typing a keyword in help mode will

fetch the documentation for it, along with examples. Similarly for most functions or other objects you might

encounter!

help?> begin

search: begin disable_sigint reenable_sigint

begin

begin...end denotes a block of code.

If you already know Julia a bit, you might want to peek ahead at Performance Tips and Workflow Tips.

https://julialang.org/learning/

Chapter 3

Variables

A variable, in Julia, is a name associated (or bound) to a value. It's useful when you want to store a value

(that you obtained after some math, for example) for later use. For example:

Assign the value 10 to the variable x

julia> x = 10

10

Doing math with x's value

julia> x + 1

11

Reassign x's value

julia> x = 1 + 1

2

You can assign values of other types, like strings of text

julia> x = "Hello World!"

"Hello World!"

Julia provides an extremely flexible system for naming variables. Variable names are case-sensitive, and

have no semantic meaning (that is, the language will not treat variables differently based on their names).

julia> x = 1.0

1.0

julia> y = -3

-3

julia> Z = "My string"

"My string"

julia> customary_phrase = "Hello world!"

"Hello world!"

julia> UniversalDeclarationOfHumanRightsStart = ""

""

7

CHAPTER 3. VARIABLES 8

Unicode names (in UTF-8 encoding) are allowed:

julia> δ = 0.00001

1.0e-5

julia> = "Hello"

"Hello"

In the Julia REPL and several other Julia editing environments, you can type many Unicode math symbols

by typing the backslashed LaTeX symbol name followed by tab. For example, the variable name δ can

be entered by typing \delta-tab, or even α⁽̂²⁾ by \alpha-tab-\hat- tab-\^(2)-tab. (If you find a symbol

somewhere, e.g. in someone else's code, that you don't know how to type, the REPL help will tell you: just

type ? and then paste the symbol.)

Julia will even let you redefine built-in constants and functions if needed (although this is not recommended

to avoid potential confusions):

julia> pi = 3

3

julia> pi

3

julia> sqrt = 4

4

However, if you try to redefine a built-in constant or function already in use, Julia will give you an error:

julia> pi

π = 3.1415926535897...

julia> pi = 3

ERROR: cannot assign a value to imported variable Base.pi from module Main

julia> sqrt(100)

10.0

julia> sqrt = 4

ERROR: cannot assign a value to imported variable Base.sqrt from module Main

3.1 Allowed Variable Names

Variable names must begin with a letter (A-Z or a-z), underscore, or a subset of Unicode code points greater

than 00A0; in particular, Unicode character categories Lu/Ll/Lt/Lm/Lo/Nl (letters), Sc/So (currency and other

symbols), and a few other letter-like characters (e.g. a subset of the Sm math symbols) are allowed.

Subsequent characters may also include ! and digits (0-9 and other characters in categories Nd/No), as

well as other Unicode code points: diacritics and other modifying marks (categories Mn/Mc/Me/Sk), some

punctuation connectors (category Pc), primes, and a few other characters.

Operators like + are also valid identifiers, but are parsed specially. In some contexts, operators can be

used just like variables; for example (+) refers to the addition function, and (+) = f will reassign it. Most

https://www.fileformat.info/info/unicode/category/index.htm

CHAPTER 3. VARIABLES 9

of the Unicode infix operators (in category Sm), such as ⊕, are parsed as infix operators and are available

for user-defined methods (e.g. you can use const ⊗ = kron to define ⊗ as an infix Kronecker product).

Operators can also be suffixed with modifying marks, primes, and sub/superscripts, e.g. +̂a″ is parsed as

an infix operator with the same precedence as +. A space is required between an operator that ends with

a subscript/superscript letter and a subsequent variable name. For example, if +ᵃ is an operator, then +ᵃx

must be written as +ᵃ x to distinguish it from + ᵃx where ᵃx is the variable name.

A particular class of variable names is one that contains only underscores. These identifiers can only be

assigned values, which are immediately discarded, and cannot therefore be used to assign values to other

variables (i.e., they cannot be used as rvalues) or use the last value assigned to them in any way.

julia> x, ___ = size([2 2; 1 1])

(2, 2)

julia> y = ___

ERROR: syntax: all-underscore identifier used as rvalue

julia> println(___)

ERROR: syntax: all-underscore identifier used as rvalue

The only explicitly disallowed names for variables are the names of the built-in Keywords:

julia> else = false

ERROR: syntax: unexpected "else"

julia> try = "No"

ERROR: syntax: unexpected "="

Some Unicode characters are considered to be equivalent in identifiers. Different ways of entering Unicode

combining characters (e.g., accents) are treated as equivalent (specifically, Julia identifiers are NFC. Julia

also includes a few non-standard equivalences for characters that are visually similar and are easily entered

by some input methods. The Unicode characters ɛ (U+025B: Latin small letter open e) and µ (U+00B5:

micro sign) are treated as equivalent to the corresponding Greek letters. The middle dot · (U+00B7) and

the Greek interpunct · (U+0387) are both treated as the mathematical dot operator ⋅ (U+22C5). The

minus sign − (U+2212) is treated as equivalent to the hyphen-minus sign - (U+002D).

3.2 Assignment expressions and assignment versus mutation

An assignment variable = value "binds" the name variable to the value computed on the right-hand

side, and the whole assignment is treated by Julia as an expression equal to the right-hand-side value. This

means that assignments can be chained (the same value assigned to multiple variables with variable1 =

variable2 = value) or used in other expressions, and is also why their result is shown in the REPL as the

value of the right-hand side. (In general, the REPL displays the value of whatever expression you evaluate.)

For example, here the value 4 of b = 2+2 is used in another arithmetic operation and assignment:

julia> a = (b = 2+2) + 3

7

julia> a

https://en.wikipedia.org/wiki/Value_(computer_science)#Assignment:_l-values_and_r-values
https://en.wikipedia.org/wiki/Unicode_equivalence
https://en.wikipedia.org/wiki/Interpunct

CHAPTER 3. VARIABLES 10

7

julia> b

4

A common confusion is the distinction between assignment (giving a new "name" to a value) and mutation

(changing a value). If you run a = 2 followed by a = 3, you have changed the "name" a to refer to a new

value 3 … you haven't changed the number 2, so 2+2 will still give 4 and not 6! This distinction becomes

more clear when dealing with mutable types like arrays, whose contents can be changed:

julia> a = [1,2,3] # an array of 3 integers

3-element Vector{Int64}:

1

2

3

julia> b = a # both b and a are names for the same array!

3-element Vector{Int64}:

1

2

3

Here, the line b = a does not make a copy of the array a, it simply binds the name b to the same array a:

both b and a "point" to one array [1,2,3] in memory. In contrast, an assignment a[i] = value changes

the contents of the array, and the modified array will be visible through both the names a and b:

julia> a[1] = 42 # change the first element

42

julia> a = 3.14159 # a is now the name of a different object

3.14159

julia> b # b refers to the original array object, which has been mutated

3-element Vector{Int64}:

42

2

3

That is, a[i] = value (an alias for setindex!) mutates an existing array object in memory, accessible via

either a or b. Subsequently setting a = 3.14159 does not change this array, it simply binds a to a different

object; the array is still accessible via b. The other common syntax to mutate an existing object is a.field

= value (an alias for setproperty!), which can be used to change a mutable struct.

When you call a function in Julia, it behaves as if you assigned the argument values to new variable names

corresponding to the function arguments, as discussed in Argument-Passing Behavior. (By convention,

functions that mutate one or more of their arguments have names ending with !.)

3.3 Stylistic Conventions

While Julia imposes few restrictions on valid names, it has become useful to adopt the following conventions:

CHAPTER 3. VARIABLES 11

• Names of variables are in lower case.

• Word separation can be indicated by underscores ('_'), but use of underscores is discouraged unless

the name would be hard to read otherwise.

• Names of Types and Modules begin with a capital letter and word separation is shown with upper

camel case instead of underscores.

• Names of functions and macros are in lower case, without underscores.

• Functions that write to their arguments have names that end in !. These are sometimes called

"mutating" or "in-place" functions because they are intended to produce changes in their arguments

after the function is called, not just return a value.

For more information about stylistic conventions, see the Style Guide.

Chapter 4

Integers and Floating-Point Numbers

Integers and floating-point values are the basic building blocks of arithmetic and computation. Built-in

representations of such values are called numeric primitives, while representations of integers and floating-

point numbers as immediate values in code are known as numeric literals. For example, 1 is an integer

literal, while 1.0 is a floating-point literal; their binary in-memory representations as objects are numeric

primitives.

Julia provides a broad range of primitive numeric types, and a full complement of arithmetic and bitwise

operators as well as standard mathematical functions are defined over them. These map directly onto

numeric types and operations that are natively supported on modern computers, thus allowing Julia to

take full advantage of computational resources. Additionally, Julia provides software support for Arbitrary

Precision Arithmetic, which can handle operations on numeric values that cannot be represented effectively

in native hardware representations, but at the cost of relatively slower performance.

The following are Julia's primitive numeric types:

• Integer types:

Type Signed? Number of bits Smallest value Largest value

Int8 ✓ 8 -2^7 2^7 - 1

UInt8 8 0 2^8 - 1

Int16 ✓ 16 -2^15 2^15 - 1

UInt16 16 0 2^16 - 1

Int32 ✓ 32 -2^31 2^31 - 1

UInt32 32 0 2^32 - 1

Int64 ✓ 64 -2^63 2^63 - 1

UInt64 64 0 2^64 - 1

Int128 ✓ 128 -2^127 2^127 - 1

UInt128 128 0 2^128 - 1

Bool N/A 8 false (0) true (1)

• Floating-point types:

Additionally, full support for Complex and Rational Numbers is built on top of these primitive numeric types.

All numeric types interoperate naturally without explicit casting, thanks to a flexible, user-extensible type

promotion system.

12

CHAPTER 4. INTEGERS AND FLOATING-POINT NUMBERS 13

Type Precision Number of bits

Float16 half 16

Float32 single 32

Float64 double 64

4.1 Integers

Literal integers are represented in the standard manner:

julia> 1

1

julia> 1234

1234

The default type for an integer literal depends on whether the target system has a 32-bit architecture or a

64-bit architecture:

32-bit system:

julia> typeof(1)

Int32

64-bit system:

julia> typeof(1)

Int64

The Julia internal variable Sys.WORD_SIZE indicates whether the target system is 32-bit or 64-bit:

32-bit system:

julia> Sys.WORD_SIZE

32

64-bit system:

julia> Sys.WORD_SIZE

64

Julia also defines the types Int and UInt, which are aliases for the system's signed and unsigned native

integer types respectively:

32-bit system:

julia> Int

Int32

julia> UInt

UInt32

64-bit system:

julia> Int

Int64

julia> UInt

UInt64

https://en.wikipedia.org/wiki/Half-precision_floating-point_format
https://en.wikipedia.org/wiki/Single_precision_floating-point_format
https://en.wikipedia.org/wiki/Double_precision_floating-point_format

CHAPTER 4. INTEGERS AND FLOATING-POINT NUMBERS 14

Larger integer literals that cannot be represented using only 32 bits but can be represented in 64 bits

always create 64-bit integers, regardless of the system type:

32-bit or 64-bit system:

julia> typeof(3000000000)

Int64

Unsigned integers are input and output using the 0x prefix and hexadecimal (base 16) digits 0-9a-f (the

capitalized digits A-F also work for input). The size of the unsigned value is determined by the number of

hex digits used:

julia> x = 0x1

0x01

julia> typeof(x)

UInt8

julia> x = 0x123

0x0123

julia> typeof(x)

UInt16

julia> x = 0x1234567

0x01234567

julia> typeof(x)

UInt32

julia> x = 0x123456789abcdef

0x0123456789abcdef

julia> typeof(x)

UInt64

julia> x = 0x11112222333344445555666677778888

0x11112222333344445555666677778888

julia> typeof(x)

UInt128

This behavior is based on the observation that when one uses unsigned hex literals for integer values, one

typically is using them to represent a fixed numeric byte sequence, rather than just an integer value.

Binary and octal literals are also supported:

julia> x = 0b10

0x02

julia> typeof(x)

UInt8

CHAPTER 4. INTEGERS AND FLOATING-POINT NUMBERS 15

julia> x = 0o010

0x08

julia> typeof(x)

UInt8

julia> x = 0x00000000000000001111222233334444

0x00000000000000001111222233334444

julia> typeof(x)

UInt128

As for hexadecimal literals, binary and octal literals produce unsigned integer types. The size of the binary

data item is the minimal needed size, if the leading digit of the literal is not 0. In the case of leading zeros,

the size is determined by the minimal needed size for a literal, which has the same length but leading digit

1. It means that:

• 0x1 and 0x12 are UInt8 literals,

• 0x123 and 0x1234 are UInt16 literals,

• 0x12345 and 0x12345678 are UInt32 literals,

• 0x123456789 and 0x1234567890adcdef are UInt64 literals, etc.

Even if there are leading zero digits which don’t contribute to the value, they count for determining storage

size of a literal. So 0x01 is a UInt8 while 0x0001 is a UInt16.

That allows the user to control the size.

Unsigned literals (starting with 0x) that encode integers too large to be represented as UInt128 values will

construct BigInt values instead. This is not an unsigned type but it is the only built-in type big enough to

represent such large integer values.

Binary, octal, and hexadecimal literals may be signed by a - immediately preceding the unsigned literal.

They produce an unsigned integer of the same size as the unsigned literal would do, with the two's com-

plement of the value:

julia> -0x2

0xfe

julia> -0x0002

0xfffe

The minimum and maximum representable values of primitive numeric types such as integers are given

by the typemin and typemax functions:

julia> (typemin(Int32), typemax(Int32))

(-2147483648, 2147483647)

CHAPTER 4. INTEGERS AND FLOATING-POINT NUMBERS 16

julia> for T in [Int8,Int16,Int32,Int64,Int128,UInt8,UInt16,UInt32,UInt64,UInt128]

println("$(lpad(T,7)): [$(typemin(T)),$(typemax(T))]")

end

Int8: [-128,127]

Int16: [-32768,32767]

Int32: [-2147483648,2147483647]

Int64: [-9223372036854775808,9223372036854775807]

Int128: [-170141183460469231731687303715884105728,170141183460469231731687303715884105727]

UInt8: [0,255]

UInt16: [0,65535]

UInt32: [0,4294967295]

UInt64: [0,18446744073709551615]

UInt128: [0,340282366920938463463374607431768211455]

The values returned by typemin and typemax are always of the given argument type. (The above expres-

sion uses several features that have yet to be introduced, including for loops, Strings, and Interpolation,

but should be easy enough to understand for users with some existing programming experience.)

Overflow behavior

In Julia, exceeding the maximum representable value of a given type results in a wraparound behavior:

julia> x = typemax(Int64)

9223372036854775807

julia> x + 1

-9223372036854775808

julia> x + 1 == typemin(Int64)

true

Thus, arithmetic with Julia integers is actually a form of modular arithmetic. This reflects the characteristics

of the underlying arithmetic of integers as implemented on modern computers. In applications where

overflow is possible, explicit checking for wraparound produced by overflow is essential; otherwise, the

BigInt type in Arbitrary Precision Arithmetic is recommended instead.

An example of overflow behavior and how to potentially resolve it is as follows:

julia> 10^19

-8446744073709551616

julia> big(10)^19

10000000000000000000

Division errors

Integer division (the div function) has two exceptional cases: dividing by zero, and dividing the lowest

negative number (typemin) by -1. Both of these cases throw a DivideError. The remainder and modulus

functions (rem and mod) throw a DivideError when their second argument is zero.

https://en.wikipedia.org/wiki/Modular_arithmetic

CHAPTER 4. INTEGERS AND FLOATING-POINT NUMBERS 17

4.2 Floating-Point Numbers

Literal floating-point numbers are represented in the standard formats, using E-notation when necessary:

julia> 1.0

1.0

julia> 1.

1.0

julia> 0.5

0.5

julia> .5

0.5

julia> -1.23

-1.23

julia> 1e10

1.0e10

julia> 2.5e-4

0.00025

The above results are all Float64 values. Literal Float32 values can be entered by writing an f in place

of e:

julia> x = 0.5f0

0.5f0

julia> typeof(x)

Float32

julia> 2.5f-4

0.00025f0

Values can be converted to Float32 easily:

julia> x = Float32(-1.5)

-1.5f0

julia> typeof(x)

Float32

Hexadecimal floating-point literals are also valid, but only as Float64 values, with p preceding the base-2

exponent:

julia> 0x1p0

1.0

https://en.wikipedia.org/wiki/Scientific_notation#E_notation

CHAPTER 4. INTEGERS AND FLOATING-POINT NUMBERS 18

julia> 0x1.8p3

12.0

julia> x = 0x.4p-1

0.125

julia> typeof(x)

Float64

Half-precision floating-point numbers are also supported (Float16), but they are implemented in software

and use Float32 for calculations.

julia> sizeof(Float16(4.))

2

julia> 2*Float16(4.)

Float16(8.0)

The underscore _ can be used as digit separator:

julia> 10_000, 0.000_000_005, 0xdead_beef, 0b1011_0010

(10000, 5.0e-9, 0xdeadbeef, 0xb2)

Floating-point zero

Floating-point numbers have two zeros, positive zero and negative zero. They are equal to each other but

have different binary representations, as can be seen using the bitstring function:

julia> 0.0 == -0.0

true

julia> bitstring(0.0)

"00"

julia> bitstring(-0.0)

"1000"

Special floating-point values

There are three specified standard floating-point values that do not correspond to any point on the real

number line:

For further discussion of how these non-finite floating-point values are ordered with respect to each other

and other floats, see Numeric Comparisons. By the IEEE 754 standard, these floating-point values are the

results of certain arithmetic operations:

julia> 1/Inf

0.0

https://en.wikipedia.org/wiki/Signed_zero
https://en.wikipedia.org/wiki/IEEE_754-2008

CHAPTER 4. INTEGERS AND FLOATING-POINT NUMBERS 19

Float16 Float32 Float64 Name Description

Inf16 Inf32 Inf positive

infinity

a value greater than all finite floating-point values

-Inf16 -Inf32 -Inf negative

infinity

a value less than all finite floating-point values

NaN16 NaN32 NaN not a number a value not == to any floating-point value (including

itself)

julia> 1/0

Inf

julia> -5/0

-Inf

julia> 0.000001/0

Inf

julia> 0/0

NaN

julia> 500 + Inf

Inf

julia> 500 - Inf

-Inf

julia> Inf + Inf

Inf

julia> Inf - Inf

NaN

julia> Inf * Inf

Inf

julia> Inf / Inf

NaN

julia> 0 * Inf

NaN

julia> NaN == NaN

false

julia> NaN != NaN

true

julia> NaN < NaN

false

julia> NaN > NaN

false

CHAPTER 4. INTEGERS AND FLOATING-POINT NUMBERS 20

The typemin and typemax functions also apply to floating-point types:

julia> (typemin(Float16),typemax(Float16))

(-Inf16, Inf16)

julia> (typemin(Float32),typemax(Float32))

(-Inf32, Inf32)

julia> (typemin(Float64),typemax(Float64))

(-Inf, Inf)

Machine epsilon

Most real numbers cannot be represented exactly with floating-point numbers, and so for many purposes

it is important to know the distance between two adjacent representable floating-point numbers, which is

often known as machine epsilon.

Julia provides eps, which gives the distance between 1.0 and the next larger representable floating-point

value:

julia> eps(Float32)

1.1920929f-7

julia> eps(Float64)

2.220446049250313e-16

julia> eps() # same as eps(Float64)

2.220446049250313e-16

These values are 2.0^-23 and 2.0^-52 as Float32 and Float64 values, respectively. The eps function

can also take a floating-point value as an argument, and gives the absolute difference between that value

and the next representable floating point value. That is, eps(x) yields a value of the same type as x such

that x + eps(x) is the next representable floating-point value larger than x:

julia> eps(1.0)

2.220446049250313e-16

julia> eps(1000.)

1.1368683772161603e-13

julia> eps(1e-27)

1.793662034335766e-43

julia> eps(0.0)

5.0e-324

The distance between two adjacent representable floating-point numbers is not constant, but is smaller for

smaller values and larger for larger values. In other words, the representable floating-point numbers are

densest in the real number line near zero, and grow sparser exponentially as one moves farther away from

zero. By definition, eps(1.0) is the same as eps(Float64) since 1.0 is a 64-bit floating-point value.

https://en.wikipedia.org/wiki/Machine_epsilon

CHAPTER 4. INTEGERS AND FLOATING-POINT NUMBERS 21

Julia also provides the nextfloat and prevfloat functions which return the next largest or smallest rep-

resentable floating-point number to the argument respectively:

julia> x = 1.25f0

1.25f0

julia> nextfloat(x)

1.2500001f0

julia> prevfloat(x)

1.2499999f0

julia> bitstring(prevfloat(x))

"00111111100111111111111111111111"

julia> bitstring(x)

"00111111101000000000000000000000"

julia> bitstring(nextfloat(x))

"00111111101000000000000000000001"

This example highlights the general principle that the adjacent representable floating-point numbers also

have adjacent binary integer representations.

Rounding modes

If a number doesn't have an exact floating-point representation, it must be rounded to an appropriate

representable value. However, the manner in which this rounding is done can be changed if required

according to the rounding modes presented in the IEEE 754 standard.

The default mode used is always RoundNearest, which rounds to the nearest representable value, with ties

rounded towards the nearest value with an even least significant bit.

Background and References

Floating-point arithmetic entails many subtleties which can be surprising to users who are unfamiliar with

the low-level implementation details. However, these subtleties are described in detail in most books on

scientific computation, and also in the following references:

• The definitive guide to floating point arithmetic is the IEEE 754-2008 Standard; however, it is not

available for free online.

• For a brief but lucid presentation of how floating-point numbers are represented, see John D. Cook's

article on the subject as well as his introduction to some of the issues arising from how this repre-

sentation differs in behavior from the idealized abstraction of real numbers.

• Also recommended is Bruce Dawson's series of blog posts on floating-point numbers.

• For an excellent, in-depth discussion of floating-point numbers and issues of numerical accuracy

encountered when computing with them, see David Goldberg's paper What Every Computer Scientist

Should Know About Floating-Point Arithmetic.

https://en.wikipedia.org/wiki/IEEE_754-2008
https://standards.ieee.org/standard/754-2008.html
https://www.johndcook.com/blog/2009/04/06/anatomy-of-a-floating-point-number/
https://www.johndcook.com/blog/2009/04/06/numbers-are-a-leaky-abstraction/
https://randomascii.wordpress.com/2012/05/20/thats-not-normalthe-performance-of-odd-floats/
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.6768&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.6768&rep=rep1&type=pdf

CHAPTER 4. INTEGERS AND FLOATING-POINT NUMBERS 22

• For even more extensive documentation of the history of, rationale for, and issues with floating-

point numbers, as well as discussion of many other topics in numerical computing, see the collected

writings of William Kahan, commonly known as the "Father of Floating-Point". Of particular interest

may be An Interview with the Old Man of Floating-Point.

4.3 Arbitrary Precision Arithmetic

To allow computations with arbitrary-precision integers and floating point numbers, Julia wraps the GNUMul-

tiple Precision Arithmetic Library (GMP) and the GNU MPFR Library, respectively. The BigInt and BigFloat

types are available in Julia for arbitrary precision integer and floating point numbers respectively.

Constructors exist to create these types from primitive numerical types, and the string literal @big_str or

parse can be used to construct them from AbstractStrings. BigInts can also be input as integer literals

when they are too big for other built-in integer types. Note that as there is no unsigned arbitrary-precision

integer type in Base (BigInt is sufficient in most cases), hexadecimal, octal and binary literals can be used

(in addition to decimal literals).

Once created, they participate in arithmetic with all other numeric types thanks to Julia's type promotion

and conversion mechanism:

julia> BigInt(typemax(Int64)) + 1

9223372036854775808

julia> big"123456789012345678901234567890" + 1

123456789012345678901234567891

julia> parse(BigInt, "123456789012345678901234567890") + 1

123456789012345678901234567891

julia> string(big"2"^200, base=16)

"100"

julia> 0x100000000000000000000000000000000-1 == typemax(UInt128)

true

julia> 0x000000000000000000000000000000000

0

julia> typeof(ans)

BigInt

julia> big"1.23456789012345678901"

1.234567890123456789010004

julia> parse(BigFloat, "1.23456789012345678901")

1.234567890123456789010004

julia> BigFloat(2.0^66) / 3

2.459565876494606882133344e+19

julia> factorial(BigInt(40))

815915283247897734345611269596115894272000000000

https://people.eecs.berkeley.edu/{~}wkahan/
https://people.eecs.berkeley.edu/{~}wkahan/
https://en.wikipedia.org/wiki/William_Kahan
https://people.eecs.berkeley.edu/{~}wkahan/ieee754status/754story.html
https://gmplib.org
https://gmplib.org
https://www.mpfr.org

CHAPTER 4. INTEGERS AND FLOATING-POINT NUMBERS 23

However, type promotion between the primitive types above and BigInt/BigFloat is not automatic and

must be explicitly stated.

julia> x = typemin(Int64)

-9223372036854775808

julia> x = x - 1

9223372036854775807

julia> typeof(x)

Int64

julia> y = BigInt(typemin(Int64))

-9223372036854775808

julia> y = y - 1

-9223372036854775809

julia> typeof(y)

BigInt

The default precision (in number of bits of the significand) and rounding mode of BigFloat operations can

be changed globally by calling setprecision and setrounding, and all further calculations will take these

changes in account. Alternatively, the precision or the rounding can be changed only within the execution

of a particular block of code by using the same functions with a do block:

julia> setrounding(BigFloat, RoundUp) do

BigFloat(1) + parse(BigFloat, "0.1")

end

1.1003

julia> setrounding(BigFloat, RoundDown) do

BigFloat(1) + parse(BigFloat, "0.1")

end

1.099986

julia> setprecision(40) do

BigFloat(1) + parse(BigFloat, "0.1")

end

1.1000000000004

4.4 Numeric Literal Coefficients

To make common numeric formulae and expressions clearer, Julia allows variables to be immediately

preceded by a numeric literal, implying multiplication. This makes writing polynomial expressions much

cleaner:

julia> x = 3

3

julia> 2x^2 - 3x + 1

CHAPTER 4. INTEGERS AND FLOATING-POINT NUMBERS 24

10

julia> 1.5x^2 - .5x + 1

13.0

It also makes writing exponential functions more elegant:

julia> 2^2x

64

The precedence of numeric literal coefficients is slightly lower than that of unary operators such as nega-

tion. So -2x is parsed as (-2) * x and √2x is parsed as (√2) * x. However, numeric literal coefficients

parse similarly to unary operators when combined with exponentiation. For example 2^3x is parsed as

2^(3x), and 2x^3 is parsed as 2*(x^3).

Numeric literals also work as coefficients to parenthesized expressions:

julia> 2(x-1)^2 - 3(x-1) + 1

3

Note

The precedence of numeric literal coefficients used for implicit multiplication is higher than

other binary operators such as multiplication (*), and division (/, \, and //). This means, for

example, that 1 / 2im equals -0.5im and 6 // 2(2 + 1) equals 1 // 1.

Additionally, parenthesized expressions can be used as coefficients to variables, implying multiplication of

the expression by the variable:

julia> (x-1)x

6

Neither juxtaposition of two parenthesized expressions, nor placing a variable before a parenthesized ex-

pression, however, can be used to imply multiplication:

julia> (x-1)(x+1)

ERROR: MethodError: objects of type Int64 are not callable

julia> x(x+1)

ERROR: MethodError: objects of type Int64 are not callable

Both expressions are interpreted as function application: any expression that is not a numeric literal, when

immediately followed by a parenthetical, is interpreted as a function applied to the values in parentheses

(see Functions for more about functions). Thus, in both of these cases, an error occurs since the left-hand

value is not a function.

The above syntactic enhancements significantly reduce the visual noise incurred when writing common

mathematical formulae. Note that no whitespace may come between a numeric literal coefficient and the

identifier or parenthesized expression which it multiplies.

CHAPTER 4. INTEGERS AND FLOATING-POINT NUMBERS 25

Syntax Conflicts

Juxtaposed literal coefficient syntax may conflict with some numeric literal syntaxes: hexadecimal, octal

and binary integer literals and engineering notation for floating-point literals. Here are some situations

where syntactic conflicts arise:

• The hexadecimal integer literal expression 0xff could be interpreted as the numeric literal 0 mul-

tiplied by the variable xff. Similar ambiguities arise with octal and binary literals like 0o777 or

0b01001010.

• The floating-point literal expression 1e10 could be interpreted as the numeric literal 1 multiplied by

the variable e10, and similarly with the equivalent E form.

• The 32-bit floating-point literal expression 1.5f22 could be interpreted as the numeric literal 1.5

multiplied by the variable f22.

In all cases the ambiguity is resolved in favor of interpretation as numeric literals:

• Expressions starting with 0x/0o/0b are always hexadecimal/octal/binary literals.

• Expressions starting with a numeric literal followed by e or E are always floating-point literals.

• Expressions starting with a numeric literal followed by f are always 32-bit floating-point literals.

Unlike E, which is equivalent to e in numeric literals for historical reasons, F is just another letter and does

not behave like f in numeric literals. Hence, expressions starting with a numeric literal followed by F are

interpreted as the numerical literal multiplied by a variable, which means that, for example, 1.5F22 is

equal to 1.5 * F22.

4.5 Literal zero and one

Julia provides functions which return literal 0 and 1 corresponding to a specified type or the type of a given

variable.

Function Description

zero(x) Literal zero of type x or type of variable x

one(x) Literal one of type x or type of variable x

These functions are useful in Numeric Comparisons to avoid overhead from unnecessary type conversion.

Examples:

julia> zero(Float32)

0.0f0

julia> zero(1.0)

0.0

julia> one(Int32)

1

julia> one(BigFloat)

1.0

Chapter 5

Mathematical Operations and Elementary

Functions

Julia provides a complete collection of basic arithmetic and bitwise operators across all of its numeric

primitive types, as well as providing portable, efficient implementations of a comprehensive collection of

standard mathematical functions.

5.1 Arithmetic Operators

The following arithmetic operators are supported on all primitive numeric types:

Expression Name Description

+x unary plus the identity operation

-x unary minus maps values to their additive inverses

x + y binary plus performs addition

x - y binary minus performs subtraction

x * y times performs multiplication

x / y divide performs division

x ÷ y integer divide x / y, truncated to an integer

x \ y inverse divide equivalent to y / x

x ^ y power raises x to the yth power

x % y remainder equivalent to rem(x,y)

A numeric literal placed directly before an identifier or parentheses, e.g. 2x or 2(x+y), is treated as a mul-

tiplication, except with higher precedence than other binary operations. See Numeric Literal Coefficients

for details.

Julia's promotion system makes arithmetic operations on mixtures of argument types "just work" naturally

and automatically. See Conversion and Promotion for details of the promotion system.

The ÷ sign can be conveniently typed by writing \div<tab> to the REPL or Julia IDE. See the manual section

on Unicode input for more information.

Here are some simple examples using arithmetic operators:

julia> 1 + 2 + 3

6

26

https://en.wikipedia.org/wiki/Arithmetic#Arithmetic_operations

CHAPTER 5. MATHEMATICAL OPERATIONS AND ELEMENTARY FUNCTIONS 27

julia> 1 - 2

-1

julia> 3*2/12

0.5

(By convention, we tend to space operators more tightly if they get applied before other nearby operators.

For instance, we would generally write -x + 2 to reflect that first x gets negated, and then 2 is added to

that result.)

When used in multiplication, false acts as a strong zero:

julia> NaN * false

0.0

julia> false * Inf

0.0

This is useful for preventing the propagation of NaN values in quantities that are known to be zero. See

Knuth (1992) for motivation.

5.2 Boolean Operators

The following Boolean operators are supported on Bool types:

Expression Name

!x negation

x && y short-circuiting and

x || y short-circuiting or

Negation changes true to false and vice versa. The short-circuiting operations are explained on the linked

page.

Note that Bool is an integer type and all the usual promotion rules and numeric operators are also defined

on it.

5.3 Bitwise Operators

The following bitwise operators are supported on all primitive integer types:

Here are some examples with bitwise operators:

julia> ~123

-124

julia> 123 & 234

106

julia> 123 | 234

https://arxiv.org/abs/math/9205211
https://en.wikipedia.org/wiki/Boolean_algebra#Operations
https://en.wikipedia.org/wiki/Bitwise_operation#Bitwise_operators

CHAPTER 5. MATHEMATICAL OPERATIONS AND ELEMENTARY FUNCTIONS 28

Expression Name

~x bitwise not

x & y bitwise and

x | y bitwise or

x ⊻ y bitwise xor (exclusive or)

x y bitwise nand (not and)

x y bitwise nor (not or)

x >>> y logical shift right

x >> y arithmetic shift right

x << y logical/arithmetic shift left

251

julia> 123 ⊻ 234

145

julia> xor(123, 234)

145

julia> nand(123, 123)

-124

julia> 123 123

-124

julia> nor(123, 124)

-128

julia> 123 124

-128

julia> ~UInt32(123)

0xffffff84

julia> ~UInt8(123)

0x84

5.4 Updating operators

Every binary arithmetic and bitwise operator also has an updating version that assigns the result of the

operation back into its left operand. The updating version of the binary operator is formed by placing a =

immediately after the operator. For example, writing x += 3 is equivalent to writing x = x + 3:

julia> x = 1

1

julia> x += 3

4

https://en.wikipedia.org/wiki/Logical_shift
https://en.wikipedia.org/wiki/Arithmetic_shift

CHAPTER 5. MATHEMATICAL OPERATIONS AND ELEMENTARY FUNCTIONS 29

julia> x

4

The updating versions of all the binary arithmetic and bitwise operators are:

+= -= *= /= \= ÷= %= ^= &= |= ⊻= >>>= >>= <<=

Note

An updating operator rebinds the variable on the left-hand side. As a result, the type of the

variable may change.

julia> x = 0x01; typeof(x)

UInt8

julia> x *= 2 # Same as x = x * 2

2

julia> typeof(x)

Int64

5.5 Vectorized "dot" operators

For every binary operation like ^, there is a corresponding "dot" operation .^ that is automatically defined

to perform ^ element-by-element on arrays. For example, [1,2,3] ^ 3 is not defined, since there is no

standard mathematical meaning to "cubing" a (non-square) array, but [1,2,3] .^ 3 is defined as com-

puting the elementwise (or "vectorized") result [1^3, 2^3, 3^3]. Similarly for unary operators like ! or

√, there is a corresponding .√ that applies the operator elementwise.

julia> [1,2,3] .^ 3

3-element Vector{Int64}:

1

8

27

More specifically, a .^ b is parsed as the "dot" call (^).(a,b), which performs a broadcast operation:

it can combine arrays and scalars, arrays of the same size (performing the operation elementwise), and

even arrays of different shapes (e.g. combining row and column vectors to produce a matrix). Moreover,

like all vectorized "dot calls," these "dot operators" are fusing. For example, if you compute 2 .* A.^2 .+

sin.(A) (or equivalently @. 2A^2 + sin(A), using the @. macro) for an array A, it performs a single loop

over A, computing 2a^2 + sin(a) for each element a of A. In particular, nested dot calls like f.(g.(x))

are fused, and "adjacent" binary operators like x .+ 3 .* x.^2 are equivalent to nested dot calls (+).(x,

(*).(3, (^).(x, 2))).

Furthermore, "dotted" updating operators like a .+= b (or @. a += b) are parsed as a .= a .+ b, where

.= is a fused in-place assignment operation (see the dot syntax documentation).

Note the dot syntax is also applicable to user-defined operators. For example, if you define ⊗(A,B) =

kron(A,B) to give a convenient infix syntax A ⊗ B for Kronecker products (kron), then [A,B] .⊗ [C,D]

will compute [A⊗C, B⊗D] with no additional coding.

CHAPTER 5. MATHEMATICAL OPERATIONS AND ELEMENTARY FUNCTIONS 30

Combining dot operators with numeric literals can be ambiguous. For example, it is not clear whether

1.+x means 1. + x or 1 .+ x. Therefore this syntax is disallowed, and spaces must be used around the

operator in such cases.

5.6 Numeric Comparisons

Standard comparison operations are defined for all the primitive numeric types:

Operator Name

== equality

!=, ≠ inequality

< less than

<=, ≤ less than or equal to

> greater than

>=, ≥ greater than or equal to

Here are some simple examples:

julia> 1 == 1

true

julia> 1 == 2

false

julia> 1 != 2

true

julia> 1 == 1.0

true

julia> 1 < 2

true

julia> 1.0 > 3

false

julia> 1 >= 1.0

true

julia> -1 <= 1

true

julia> -1 <= -1

true

julia> -1 <= -2

false

julia> 3 < -0.5

false

CHAPTER 5. MATHEMATICAL OPERATIONS AND ELEMENTARY FUNCTIONS 31

Integers are compared in the standard manner – by comparison of bits. Floating-point numbers are com-

pared according to the IEEE 754 standard:

• Finite numbers are ordered in the usual manner.

• Positive zero is equal but not greater than negative zero.

• Inf is equal to itself and greater than everything else except NaN.

• -Inf is equal to itself and less than everything else except NaN.

• NaN is not equal to, not less than, and not greater than anything, including itself.

The last point is potentially surprising and thus worth noting:

julia> NaN == NaN

false

julia> NaN != NaN

true

julia> NaN < NaN

false

julia> NaN > NaN

false

and can cause headaches when working with arrays:

julia> [1 NaN] == [1 NaN]

false

Julia provides additional functions to test numbers for special values, which can be useful in situations like

hash key comparisons:

Function Tests if

isequal(x, y) x and y are identical

isfinite(x) x is a finite number

isinf(x) x is infinite

isnan(x) x is not a number

isequal considers NaNs equal to each other:

julia> isequal(NaN, NaN)

true

julia> isequal([1 NaN], [1 NaN])

true

julia> isequal(NaN, NaN32)

true

https://en.wikipedia.org/wiki/IEEE_754-2008

CHAPTER 5. MATHEMATICAL OPERATIONS AND ELEMENTARY FUNCTIONS 32

isequal can also be used to distinguish signed zeros:

julia> -0.0 == 0.0

true

julia> isequal(-0.0, 0.0)

false

Mixed-type comparisons between signed integers, unsigned integers, and floats can be tricky. A great deal

of care has been taken to ensure that Julia does them correctly.

For other types, isequal defaults to calling ==, so if you want to define equality for your own types then

you only need to add a == method. If you define your own equality function, you should probably define a

corresponding hash method to ensure that isequal(x,y) implies hash(x) == hash(y).

Chaining comparisons

Unlike most languages, with the notable exception of Python, comparisons can be arbitrarily chained:

julia> 1 < 2 <= 2 < 3 == 3 > 2 >= 1 == 1 < 3 != 5

true

Chaining comparisons is often quite convenient in numerical code. Chained comparisons use the && opera-

tor for scalar comparisons, and the & operator for elementwise comparisons, which allows them to work on

arrays. For example, 0 .< A .< 1 gives a boolean array whose entries are true where the corresponding

elements of A are between 0 and 1.

Note the evaluation behavior of chained comparisons:

julia> v(x) = (println(x); x)

v (generic function with 1 method)

julia> v(1) < v(2) <= v(3)

2

1

3

true

julia> v(1) > v(2) <= v(3)

2

1

false

The middle expression is only evaluated once, rather than twice as it would be if the expression were

written as v(1) < v(2) && v(2) <= v(3). However, the order of evaluations in a chained comparison

is undefined. It is strongly recommended not to use expressions with side effects (such as printing) in

chained comparisons. If side effects are required, the short-circuit && operator should be used explicitly

(see Short-Circuit Evaluation).

https://en.wikipedia.org/wiki/Python_syntax_and_semantics#Comparison_operators

CHAPTER 5. MATHEMATICAL OPERATIONS AND ELEMENTARY FUNCTIONS 33

Elementary Functions

Julia provides a comprehensive collection of mathematical functions and operators. These mathematical

operations are defined over as broad a class of numerical values as permit sensible definitions, including

integers, floating-point numbers, rationals, and complex numbers, wherever such definitions make sense.

Moreover, these functions (like any Julia function) can be applied in "vectorized" fashion to arrays and other

collections with the dot syntax f.(A), e.g. sin.(A) will compute the sine of each element of an array A.

5.7 Operator Precedence and Associativity

Julia applies the following order and associativity of operations, from highest precedence to lowest:

Category Operators Associativity

Syntax . followed by :: Left

Exponentiation ^ Right

Unary + - √ Right1

Bitshifts << >> >>> Left

Fractions // Left

Multiplication * / % & \ ÷ Left2

Addition + - | ⊻ Left2

Syntax : .. Left

Syntax |> Left

Syntax <| Right

Comparisons > < >= <= == === != !== <: Non-associative

Control flow && followed by || followed by ? Right

Pair => Right

Assignments = += -= *= /= //= \= ^= ÷= %= |= &= ⊻= <<= >>= >>>= Right

For a complete list of every Julia operator's precedence, see the top of this file: src/julia-parser.scm.

Note that some of the operators there are not defined in the Base module but may be given definitions by

standard libraries, packages or user code.

You can also find the numerical precedence for any given operator via the built-in function Base.operator_precedence,

where higher numbers take precedence:

julia> Base.operator_precedence(:+), Base.operator_precedence(:*), Base.operator_precedence(:.)

(11, 12, 17)

julia> Base.operator_precedence(:sin), Base.operator_precedence(:+=),

Base.operator_precedence(:(=)) # (Note the necessary parens on `:(=)`)↪→

(0, 1, 1)

A symbol representing the operator associativity can also be found by calling the built-in function Base.operator_associativity:

1The unary operators + and - require explicit parentheses around their argument to disambiguate them from the operator ++,

etc. Other compositions of unary operators are parsed with right-associativity, e. g., √√-a as √(√(-a)).

2The operators +, ++ and * are non-associative. a + b + c is parsed as +(a, b, c) not +(+(a, b), c). However, the fallback

methods for +(a, b, c, d...) and *(a, b, c, d...) both default to left-associative evaluation.

https://github.com/JuliaLang/julia/blob/master/src/julia-parser.scm

CHAPTER 5. MATHEMATICAL OPERATIONS AND ELEMENTARY FUNCTIONS 34

julia> Base.operator_associativity(:-), Base.operator_associativity(:+),

Base.operator_associativity(:^)↪→

(:left, :none, :right)

julia> Base.operator_associativity(:⊗), Base.operator_associativity(:sin),

Base.operator_associativity(:→)↪→

(:left, :none, :right)

Note that symbols such as :sin return precedence 0. This value represents invalid operators and not

operators of lowest precedence. Similarly, such operators are assigned associativity :none.

Numeric literal coefficients, e.g. 2x, are treated as multiplications with higher precedence than any other

binary operation, with the exception of ^ where they have higher precedence only as the exponent.

julia> x = 3; 2x^2

18

julia> x = 3; 2^2x

64

Juxtaposition parses like a unary operator, which has the same natural asymmetry around exponents: -x^y

and 2x^y parse as -(x^y) and 2(x^y) whereas x^-y and x^2y parse as x^(-y) and x^(2y).

5.8 Numerical Conversions

Julia supports three forms of numerical conversion, which differ in their handling of inexact conversions.

• The notation T(x) or convert(T,x) converts x to a value of type T.

– If T is a floating-point type, the result is the nearest representable value, which could be positive

or negative infinity.

– If T is an integer type, an InexactError is raised if x is not representable by T.

• x % T converts an integer x to a value of integer type T congruent to x modulo 2^n, where n is the

number of bits in T. In other words, the binary representation is truncated to fit.

• The Rounding functions take a type T as an optional argument. For example, round(Int,x) is a

shorthand for Int(round(x)).

The following examples show the different forms.

julia> Int8(127)

127

julia> Int8(128)

ERROR: InexactError: trunc(Int8, 128)

Stacktrace:

[...]

CHAPTER 5. MATHEMATICAL OPERATIONS AND ELEMENTARY FUNCTIONS 35

julia> Int8(127.0)

127

julia> Int8(3.14)

ERROR: InexactError: Int8(3.14)

Stacktrace:

[...]

julia> Int8(128.0)

ERROR: InexactError: Int8(128.0)

Stacktrace:

[...]

julia> 127 % Int8

127

julia> 128 % Int8

-128

julia> round(Int8,127.4)

127

julia> round(Int8,127.6)

ERROR: InexactError: trunc(Int8, 128.0)

Stacktrace:

[...]

See Conversion and Promotion for how to define your own conversions and promotions.

Rounding functions

Function Description Return type

round(x) round x to the nearest integer typeof(x)

round(T, x) round x to the nearest integer T

floor(x) round x towards -Inf typeof(x)

floor(T, x) round x towards -Inf T

ceil(x) round x towards +Inf typeof(x)

ceil(T, x) round x towards +Inf T

trunc(x) round x towards zero typeof(x)

trunc(T, x) round x towards zero T

Division functions

Sign and absolute value functions

Powers, logs and roots

For an overview of why functions like hypot, expm1, and log1p are necessary and useful, see John D. Cook's

excellent pair of blog posts on the subject: expm1, log1p, erfc, and hypot.

https://www.johndcook.com/blog/2010/06/07/math-library-functions-that-seem-unnecessary/
https://www.johndcook.com/blog/2010/06/02/whats-so-hard-about-finding-a-hypotenuse/

CHAPTER 5. MATHEMATICAL OPERATIONS AND ELEMENTARY FUNCTIONS 36

Function Description

div(x,y),

x÷y

truncated division; quotient rounded towards zero

fld(x,y) floored division; quotient rounded towards -Inf

cld(x,y) ceiling division; quotient rounded towards +Inf

rem(x,y),

x%y

remainder; satisfies x == div(x,y)*y + rem(x,y); sign matches x

mod(x,y) modulus; satisfies x == fld(x,y)*y + mod(x,y); sign matches y

mod1(x,y) mod with offset 1; returns r∈(0,y] for y>0 or r∈[y,0) for y<0, where mod(r, y) ==

mod(x, y)

mod2pi(x) modulus with respect to 2pi; 0 <= mod2pi(x) < 2pi

divrem(x,y) returns (div(x,y),rem(x,y))

fldmod(x,y) returns (fld(x,y),mod(x,y))

gcd(x,y...) greatest positive common divisor of x, y,...

lcm(x,y...) least positive common multiple of x, y,...

Function Description

abs(x) a positive value with the magnitude of x

abs2(x) the squared magnitude of x

sign(x) indicates the sign of x, returning -1, 0, or +1

signbit(x) indicates whether the sign bit is on (true) or off (false)

copysign(x,y) a value with the magnitude of x and the sign of y

flipsign(x,y) a value with the magnitude of x and the sign of x*y

Function Description

sqrt(x), √x square root of x

cbrt(x), ∛x cube root of x

hypot(x,y) hypotenuse of right-angled triangle with other sides of length x and y

exp(x) natural exponential function at x

expm1(x) accurate exp(x)-1 for x near zero

ldexp(x,n) x*2^n computed efficiently for integer values of n

log(x) natural logarithm of x

log(b,x) base b logarithm of x

log2(x) base 2 logarithm of x

log10(x) base 10 logarithm of x

log1p(x) accurate log(1+x) for x near zero

exponent(x) binary exponent of x

significand(x) binary significand (a.k.a. mantissa) of a floating-point number x

Trigonometric and hyperbolic functions

All the standard trigonometric and hyperbolic functions are also defined:

sin cos tan cot sec csc

sinh cosh tanh coth sech csch

asin acos atan acot asec acsc

asinh acosh atanh acoth asech acsch

sinc cosc

CHAPTER 5. MATHEMATICAL OPERATIONS AND ELEMENTARY FUNCTIONS 37

These are all single-argument functions, with atan also accepting two arguments corresponding to a tra-

ditional atan2 function.

Additionally, sinpi(x) and cospi(x) are provided for more accurate computations of sin(pi*x) and

cos(pi*x) respectively.

In order to compute trigonometric functions with degrees instead of radians, suffix the function with d. For

example, sind(x) computes the sine of xwhere x is specified in degrees. The complete list of trigonometric

functions with degree variants is:

sind cosd tand cotd secd cscd

asind acosd atand acotd asecd acscd

Special functions

Many other special mathematical functions are provided by the package SpecialFunctions.jl.

https://en.wikipedia.org/wiki/Atan2
https://github.com/JuliaMath/SpecialFunctions.jl

Chapter 6

Complex and Rational Numbers

Julia includes predefined types for both complex and rational numbers, and supports all the standard Math-

ematical Operations and Elementary Functions on them. Conversion and Promotion are defined so that

operations on any combination of predefined numeric types, whether primitive or composite, behave as

expected.

6.1 Complex Numbers

The global constant im is bound to the complex number i, representing the principal square root of -1. (Using

mathematicians' i or engineers' j for this global constant was rejected since they are such popular index

variable names.) Since Julia allows numeric literals to be juxtaposed with identifiers as coefficients, this

binding suffices to provide convenient syntax for complex numbers, similar to the traditional mathematical

notation:

julia> 1+2im

1 + 2im

You can perform all the standard arithmetic operations with complex numbers:

julia> (1 + 2im)*(2 - 3im)

8 + 1im

julia> (1 + 2im)/(1 - 2im)

-0.6 + 0.8im

julia> (1 + 2im) + (1 - 2im)

2 + 0im

julia> (-3 + 2im) - (5 - 1im)

-8 + 3im

julia> (-1 + 2im)^2

-3 - 4im

julia> (-1 + 2im)^2.5

2.729624464784009 - 6.9606644595719im

38

CHAPTER 6. COMPLEX AND RATIONAL NUMBERS 39

julia> (-1 + 2im)^(1 + 1im)

-0.27910381075826657 + 0.08708053414102428im

julia> 3(2 - 5im)

6 - 15im

julia> 3(2 - 5im)^2

-63 - 60im

julia> 3(2 - 5im)^-1.0

0.20689655172413793 + 0.5172413793103449im

The promotion mechanism ensures that combinations of operands of different types just work:

julia> 2(1 - 1im)

2 - 2im

julia> (2 + 3im) - 1

1 + 3im

julia> (1 + 2im) + 0.5

1.5 + 2.0im

julia> (2 + 3im) - 0.5im

2.0 + 2.5im

julia> 0.75(1 + 2im)

0.75 + 1.5im

julia> (2 + 3im) / 2

1.0 + 1.5im

julia> (1 - 3im) / (2 + 2im)

-0.5 - 1.0im

julia> 2im^2

-2 + 0im

julia> 1 + 3/4im

1.0 - 0.75im

Note that 3/4im == 3/(4*im) == -(3/4*im), since a literal coefficient binds more tightly than division.

Standard functions to manipulate complex values are provided:

julia> z = 1 + 2im

1 + 2im

julia> real(1 + 2im) # real part of z

1

CHAPTER 6. COMPLEX AND RATIONAL NUMBERS 40

julia> imag(1 + 2im) # imaginary part of z

2

julia> conj(1 + 2im) # complex conjugate of z

1 - 2im

julia> abs(1 + 2im) # absolute value of z

2.23606797749979

julia> abs2(1 + 2im) # squared absolute value

5

julia> angle(1 + 2im) # phase angle in radians

1.1071487177940904

As usual, the absolute value (abs) of a complex number is its distance from zero. abs2 gives the square

of the absolute value, and is of particular use for complex numbers since it avoids taking a square root.

angle returns the phase angle in radians (also known as the argument or arg function). The full gamut of

other Elementary Functions is also defined for complex numbers:

julia> sqrt(1im)

0.7071067811865476 + 0.7071067811865475im

julia> sqrt(1 + 2im)

1.272019649514069 + 0.7861513777574233im

julia> cos(1 + 2im)

2.0327230070196656 - 3.0518977991517997im

julia> exp(1 + 2im)

-1.1312043837568135 + 2.4717266720048188im

julia> sinh(1 + 2im)

-0.4890562590412937 + 1.4031192506220405im

Note that mathematical functions typically return real values when applied to real numbers and complex

values when applied to complex numbers. For example, sqrt behaves differently when applied to -1 versus

-1 + 0im even though -1 == -1 + 0im:

julia> sqrt(-1)

ERROR: DomainError with -1.0:

sqrt was called with a negative real argument but will only return a complex result if called

with a complex argument. Try sqrt(Complex(x)).↪→

Stacktrace:

[...]

julia> sqrt(-1 + 0im)

0.0 + 1.0im

The literal numeric coefficient notation does not work when constructing a complex number from variables.

Instead, the multiplication must be explicitly written out:

CHAPTER 6. COMPLEX AND RATIONAL NUMBERS 41

julia> a = 1; b = 2; a + b*im

1 + 2im

However, this is not recommended. Instead, use themore efficient complex function to construct a complex

value directly from its real and imaginary parts:

julia> a = 1; b = 2; complex(a, b)

1 + 2im

This construction avoids the multiplication and addition operations.

Inf and NaN propagate through complex numbers in the real and imaginary parts of a complex number as

described in the Special floating-point values section:

julia> 1 + Inf*im

1.0 + Inf*im

julia> 1 + NaN*im

1.0 + NaN*im

6.2 Rational Numbers

Julia has a rational number type to represent exact ratios of integers. Rationals are constructed using the

// operator:

julia> 2//3

2//3

If the numerator and denominator of a rational have common factors, they are reduced to lowest terms

such that the denominator is non-negative:

julia> 6//9

2//3

julia> -4//8

-1//2

julia> 5//-15

-1//3

julia> -4//-12

1//3

This normalized form for a ratio of integers is unique, so equality of rational values can be tested by checking

for equality of the numerator and denominator. The standardized numerator and denominator of a rational

value can be extracted using the numerator and denominator functions:

CHAPTER 6. COMPLEX AND RATIONAL NUMBERS 42

julia> numerator(2//3)

2

julia> denominator(2//3)

3

Direct comparison of the numerator and denominator is generally not necessary, since the standard arith-

metic and comparison operations are defined for rational values:

julia> 2//3 == 6//9

true

julia> 2//3 == 9//27

false

julia> 3//7 < 1//2

true

julia> 3//4 > 2//3

true

julia> 2//4 + 1//6

2//3

julia> 5//12 - 1//4

1//6

julia> 5//8 * 3//12

5//32

julia> 6//5 / 10//7

21//25

Rationals can easily be converted to floating-point numbers:

julia> float(3//4)

0.75

Conversion from rational to floating-point respects the following identity for any integral values of a and b,

with the exception of the two cases b == 0 and a == 0 && b < 0:

julia> a = 1; b = 2;

julia> isequal(float(a//b), a/b)

true

Constructing infinite rational values is acceptable:

CHAPTER 6. COMPLEX AND RATIONAL NUMBERS 43

julia> 5//0

1//0

julia> x = -3//0

-1//0

julia> typeof(x)

Rational{Int64}

Trying to construct a NaN rational value, however, is invalid:

julia> 0//0

ERROR: ArgumentError: invalid rational: zero(Int64)//zero(Int64)

Stacktrace:

[...]

As usual, the promotion system makes interactions with other numeric types effortless:

julia> 3//5 + 1

8//5

julia> 3//5 - 0.5

0.09999999999999998

julia> 2//7 * (1 + 2im)

2//7 + 4//7*im

julia> 2//7 * (1.5 + 2im)

0.42857142857142855 + 0.5714285714285714im

julia> 3//2 / (1 + 2im)

3//10 - 3//5*im

julia> 1//2 + 2im

1//2 + 2//1*im

julia> 1 + 2//3im

1//1 - 2//3*im

julia> 0.5 == 1//2

true

julia> 0.33 == 1//3

false

julia> 0.33 < 1//3

true

julia> 1//3 - 0.33

0.0033333333333332993

Chapter 7

Strings

Strings are finite sequences of characters. Of course, the real trouble comes when one asks what a char-

acter is. The characters that English speakers are familiar with are the letters A, B, C, etc., together with

numerals and common punctuation symbols. These characters are standardized together with a mapping

to integer values between 0 and 127 by the ASCII standard. There are, of course, many other characters

used in non-English languages, including variants of the ASCII characters with accents and other modifi-

cations, related scripts such as Cyrillic and Greek, and scripts completely unrelated to ASCII and English,

including Arabic, Chinese, Hebrew, Hindi, Japanese, and Korean. The Unicode standard tackles the com-

plexities of what exactly a character is, and is generally accepted as the definitive standard addressing

this problem. Depending on your needs, you can either ignore these complexities entirely and just pretend

that only ASCII characters exist, or you can write code that can handle any of the characters or encodings

that one may encounter when handling non-ASCII text. Julia makes dealing with plain ASCII text simple and

efficient, and handling Unicode is as simple and efficient as possible. In particular, you can write C-style

string code to process ASCII strings, and they will work as expected, both in terms of performance and

semantics. If such code encounters non-ASCII text, it will gracefully fail with a clear error message, rather

than silently introducing corrupt results. When this happens, modifying the code to handle non-ASCII data

is straightforward.

There are a few noteworthy high-level features about Julia's strings:

• The built-in concrete type used for strings (and string literals) in Julia is String. This supports the full

range of Unicode characters via the UTF-8 encoding. (A transcode function is provided to convert

to/from other Unicode encodings.)

• All string types are subtypes of the abstract type AbstractString, and external packages define

additional AbstractString subtypes (e.g. for other encodings). If you define a function expecting a

string argument, you should declare the type as AbstractString in order to accept any string type.

• Like C and Java, but unlike most dynamic languages, Julia has a first-class type for representing

a single character, called AbstractChar. The built-in Char subtype of AbstractChar is a 32-bit

primitive type that can represent any Unicode character (and which is based on the UTF-8 encoding).

• As in Java, strings are immutable: the value of an AbstractString object cannot be changed. To

construct a different string value, you construct a new string from parts of other strings.

• Conceptually, a string is a partial function from indices to characters: for some index values, no

character value is returned, and instead an exception is thrown. This allows for efficient indexing

44

https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/UTF-8

CHAPTER 7. STRINGS 45

into strings by the byte index of an encoded representation rather than by a character index, which

cannot be implemented both efficiently and simply for variable-width encodings of Unicode strings.

7.1 Characters

A Char value represents a single character: it is just a 32-bit primitive type with a special literal represen-

tation and appropriate arithmetic behaviors, and which can be converted to a numeric value representing

a Unicode code point. (Julia packages may define other subtypes of AbstractChar, e.g. to optimize oper-

ations for other text encodings.) Here is how Char values are input and shown (note that character literals

are delimited with single quotes, not double quotes):

julia> c = 'x'

'x': ASCII/Unicode U+0078 (category Ll: Letter, lowercase)

julia> typeof(c)

Char

You can easily convert a Char to its integer value, i.e. code point:

julia> c = Int('x')

120

julia> typeof(c)

Int64

On 32-bit architectures, typeof(c) will be Int32. You can convert an integer value back to a Char just as

easily:

julia> Char(120)

'x': ASCII/Unicode U+0078 (category Ll: Letter, lowercase)

Not all integer values are valid Unicode code points, but for performance, the Char conversion does not

check that every character value is valid. If you want to check that each converted value is a valid code

point, use the isvalid function:

julia> Char(0x110000)

'\U110000': Unicode U+110000 (category In: Invalid, too high)

julia> isvalid(Char, 0x110000)

false

As of this writing, the valid Unicode code points are U+0000 through U+D7FF and U+E000 through U+10FFFF.

These have not all been assigned intelligible meanings yet, nor are they necessarily interpretable by ap-

plications, but all of these values are considered to be valid Unicode characters.

You can input any Unicode character in single quotes using \u followed by up to four hexadecimal digits or

\U followed by up to eight hexadecimal digits (the longest valid value only requires six):

https://en.wikipedia.org/wiki/Code_point
https://en.wikipedia.org/wiki/Character_encoding

CHAPTER 7. STRINGS 46

julia> '\u0'

'\0': ASCII/Unicode U+0000 (category Cc: Other, control)

julia> '\u78'

'x': ASCII/Unicode U+0078 (category Ll: Letter, lowercase)

julia> '\u2200'

'∀': Unicode U+2200 (category Sm: Symbol, math)

julia> '\U10ffff'

'\U10ffff': Unicode U+10FFFF (category Cn: Other, not assigned)

Julia uses your system's locale and language settings to determine which characters can be printed as-is

and which must be output using the generic, escaped \u or \U input forms. In addition to these Unicode

escape forms, all of C's traditional escaped input forms can also be used:

julia> Int('\0')

0

julia> Int('\t')

9

julia> Int('\n')

10

julia> Int('\e')

27

julia> Int('\x7f')

127

julia> Int('\177')

127

You can do comparisons and a limited amount of arithmetic with Char values:

julia> 'A' < 'a'

true

julia> 'A' <= 'a' <= 'Z'

false

julia> 'A' <= 'X' <= 'Z'

true

julia> 'x' - 'a'

23

julia> 'A' + 1

'B': ASCII/Unicode U+0042 (category Lu: Letter, uppercase)

https://en.wikipedia.org/wiki/C_syntax#Backslash_escapes

CHAPTER 7. STRINGS 47

7.2 String Basics

String literals are delimited by double quotes or triple double quotes (not single quotes):

julia> str = "Hello, world.\n"

"Hello, world.\n"

julia> """Contains "quote" characters"""

"Contains \"quote\" characters"

Long lines in strings can be broken up by preceding the newline with a backslash (\):

julia> "This is a long \

line"

"This is a long line"

If you want to extract a character from a string, you index into it:

julia> str[begin]

'H': ASCII/Unicode U+0048 (category Lu: Letter, uppercase)

julia> str[1]

'H': ASCII/Unicode U+0048 (category Lu: Letter, uppercase)

julia> str[6]

',': ASCII/Unicode U+002C (category Po: Punctuation, other)

julia> str[end]

'\n': ASCII/Unicode U+000A (category Cc: Other, control)

Many Julia objects, including strings, can be indexed with integers. The index of the first element (the first

character of a string) is returned by firstindex(str), and the index of the last element (character) with

lastindex(str). The keywords begin and end can be used inside an indexing operation as shorthand for

the first and last indices, respectively, along the given dimension. String indexing, like most indexing in

Julia, is 1-based: firstindex always returns 1 for any AbstractString. As we will see below, however,

lastindex(str) is not in general the same as length(str) for a string, because some Unicode characters

can occupy multiple "code units".

You can perform arithmetic and other operations with end, just like a normal value:

julia> str[end-1]

'.': ASCII/Unicode U+002E (category Po: Punctuation, other)

julia> str[end÷2]

' ': ASCII/Unicode U+0020 (category Zs: Separator, space)

Using an index less than begin (1) or greater than end raises an error:

CHAPTER 7. STRINGS 48

julia> str[begin-1]

ERROR: BoundsError: attempt to access 14-codeunit String at index [0]

[...]

julia> str[end+1]

ERROR: BoundsError: attempt to access 14-codeunit String at index [15]

[...]

You can also extract a substring using range indexing:

julia> str[4:9]

"lo, wo"

Notice that the expressions str[k] and str[k:k] do not give the same result:

julia> str[6]

',': ASCII/Unicode U+002C (category Po: Punctuation, other)

julia> str[6:6]

","

The former is a single character value of type Char, while the latter is a string value that happens to contain

only a single character. In Julia these are very different things.

Range indexing makes a copy of the selected part of the original string. Alternatively, it is possible to

create a view into a string using the type SubString. More simply, using the @views macro on a block of

code converts all string slices into substrings. For example:

julia> str = "long string"

"long string"

julia> substr = SubString(str, 1, 4)

"long"

julia> typeof(substr)

SubString{String}

julia> @views typeof(str[1:4]) # @views converts slices to SubStrings

SubString{String}

Several standard functions like chop, chomp or strip return a SubString.

7.3 Unicode and UTF-8

Julia fully supports Unicode characters and strings. As discussed above, in character literals, Unicode code

points can be represented using Unicode \u and \U escape sequences, as well as all the standard C escape

sequences. These can likewise be used to write string literals:

julia> s = "\u2200 x \u2203 y"

"∀ x ∃ y"

CHAPTER 7. STRINGS 49

Whether these Unicode characters are displayed as escapes or shown as special characters depends on

your terminal's locale settings and its support for Unicode. String literals are encoded using the UTF-8

encoding. UTF-8 is a variable-width encoding, meaning that not all characters are encoded in the same

number of bytes ("code units"). In UTF-8, ASCII characters — i.e. those with code points less than 0x80

(128) – are encoded as they are in ASCII, using a single byte, while code points 0x80 and above are encoded

using multiple bytes — up to four per character.

String indices in Julia refer to code units (= bytes for UTF-8), the fixed-width building blocks that are used

to encode arbitrary characters (code points). This means that not every index into a String is necessarily

a valid index for a character. If you index into a string at such an invalid byte index, an error is thrown:

julia> s[1]

'∀': Unicode U+2200 (category Sm: Symbol, math)

julia> s[2]

ERROR: StringIndexError: invalid index [2], valid nearby indices [1]=>'∀', [4]=>' '

Stacktrace:

[...]

julia> s[3]

ERROR: StringIndexError: invalid index [3], valid nearby indices [1]=>'∀', [4]=>' '

Stacktrace:

[...]

julia> s[4]

' ': ASCII/Unicode U+0020 (category Zs: Separator, space)

In this case, the character ∀ is a three-byte character, so the indices 2 and 3 are invalid and the next

character's index is 4; this next valid index can be computed by nextind(s,1), and the next index after

that by nextind(s,4) and so on.

Since end is always the last valid index into a collection, end-1 references an invalid byte index if the

second-to-last character is multibyte.

julia> s[end-1]

' ': ASCII/Unicode U+0020 (category Zs: Separator, space)

julia> s[end-2]

ERROR: StringIndexError: invalid index [9], valid nearby indices [7]=>'∃', [10]=>' '

Stacktrace:

[...]

julia> s[prevind(s, end, 2)]

'∃': Unicode U+2203 (category Sm: Symbol, math)

The first case works, because the last character y and the space are one-byte characters, whereas end-2

indexes into the middle of the ∃multibyte representation. The correct way for this case is using prevind(s,

lastindex(s), 2) or, if you're using that value to index into s you can write s[prevind(s, end, 2)] and

end expands to lastindex(s).

Extraction of a substring using range indexing also expects valid byte indices or an error is thrown:

CHAPTER 7. STRINGS 50

julia> s[1:1]

"∀"

julia> s[1:2]

ERROR: StringIndexError: invalid index [2], valid nearby indices [1]=>'∀', [4]=>' '

Stacktrace:

[...]

julia> s[1:4]

"∀ "

Because of variable-length encodings, the number of characters in a string (given by length(s)) is not

always the same as the last index. If you iterate through the indices 1 through lastindex(s) and index into

s, the sequence of characters returned when errors aren't thrown is the sequence of characters comprising

the string s. Thus length(s) <= lastindex(s), since each character in a string must have its own index.

The following is an inefficient and verbose way to iterate through the characters of s:

julia> for i = firstindex(s):lastindex(s)

try

println(s[i])

catch

ignore the index error

end

end

∀

x

∃

y

The blank lines actually have spaces on them. Fortunately, the above awkward idiom is unnecessary for

iterating through the characters in a string, since you can just use the string as an iterable object, no

exception handling required:

julia> for c in s

println(c)

end

∀

x

∃

y

If you need to obtain valid indices for a string, you can use the nextind and prevind functions to incre-

ment/decrement to the next/previous valid index, as mentioned above. You can also use the eachindex

function to iterate over the valid character indices:

CHAPTER 7. STRINGS 51

julia> collect(eachindex(s))

7-element Vector{Int64}:

1

4

5

6

7

10

11

To access the raw code units (bytes for UTF-8) of the encoding, you can use the codeunit(s,i) function,

where the index i runs consecutively from 1 to ncodeunits(s). The codeunits(s) function returns an

AbstractVector{UInt8} wrapper that lets you access these raw codeunits (bytes) as an array.

Strings in Julia can contain invalid UTF-8 code unit sequences. This convention allows to treat any byte

sequence as a String. In such situations a rule is that when parsing a sequence of code units from left to

right characters are formed by the longest sequence of 8-bit code units that matches the start of one of

the following bit patterns (each x can be 0 or 1):

• 0xxxxxxx;

• 110xxxxx 10xxxxxx;

• 1110xxxx 10xxxxxx 10xxxxxx;

• 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx;

• 10xxxxxx;

• 11111xxx.

In particular this means that overlong and too-high code unit sequences and prefixes thereof are treated

as a single invalid character rather than multiple invalid characters. This rule may be best explained with

an example:

julia> s = "\xc0\xa0\xe2\x88\xe2|"

"\xc0\xa0\xe2\x88\xe2|"

julia> foreach(display, s)

'\xc0\xa0': [overlong] ASCII/Unicode U+0020 (category Zs: Separator, space)

'\xe2\x88': Malformed UTF-8 (category Ma: Malformed, bad data)

'\xe2': Malformed UTF-8 (category Ma: Malformed, bad data)

'|': ASCII/Unicode U+007C (category Sm: Symbol, math)

julia> isvalid.(collect(s))

4-element BitArray{1}:

0

0

0

1

julia> s2 = "\xf7\xbf\xbf\xbf"

CHAPTER 7. STRINGS 52

"\U1fffff"

julia> foreach(display, s2)

'\U1fffff': Unicode U+1FFFFF (category In: Invalid, too high)

We can see that the first two code units in the string s form an overlong encoding of space character. It

is invalid, but is accepted in a string as a single character. The next two code units form a valid start of a

three-byte UTF-8 sequence. However, the fifth code unit \xe2 is not its valid continuation. Therefore code

units 3 and 4 are also interpreted as malformed characters in this string. Similarly code unit 5 forms a

malformed character because | is not a valid continuation to it. Finally the string s2 contains one too high

code point.

Julia uses the UTF-8 encoding by default, and support for new encodings can be added by packages. For

example, the LegacyStrings.jl package implements UTF16String and UTF32String types. Additional dis-

cussion of other encodings and how to implement support for them is beyond the scope of this document

for the time being. For further discussion of UTF-8 encoding issues, see the section below on byte array lit-

erals. The transcode function is provided to convert data between the various UTF-xx encodings, primarily

for working with external data and libraries.

7.4 Concatenation

One of the most common and useful string operations is concatenation:

julia> greet = "Hello"

"Hello"

julia> whom = "world"

"world"

julia> string(greet, ", ", whom, ".\n")

"Hello, world.\n"

It's important to be aware of potentially dangerous situations such as concatenation of invalid UTF-8 strings.

The resulting string may contain different characters than the input strings, and its number of characters

may be lower than sum of numbers of characters of the concatenated strings, e.g.:

julia> a, b = "\xe2\x88", "\x80"

("\xe2\x88", "\x80")

julia> c = string(a, b)

"∀"

julia> collect.([a, b, c])

3-element Vector{Vector{Char}}:

['\xe2\x88']

['\x80']

['∀']

julia> length.([a, b, c])

3-element Vector{Int64}:

https://github.com/JuliaStrings/LegacyStrings.jl

CHAPTER 7. STRINGS 53

1

1

1

This situation can happen only for invalid UTF-8 strings. For valid UTF-8 strings concatenation preserves

all characters in strings and additivity of string lengths.

Julia also provides * for string concatenation:

julia> greet * ", " * whom * ".\n"

"Hello, world.\n"

While * may seem like a surprising choice to users of languages that provide + for string concatenation,

this use of * has precedent in mathematics, particularly in abstract algebra.

In mathematics, + usually denotes a commutative operation, where the order of the operands does not

matter. An example of this is matrix addition, where A + B == B + A for any matrices A and B that have

the same shape. In contrast, * typically denotes a noncommutative operation, where the order of the

operands does matter. An example of this is matrix multiplication, where in general A * B != B * A.

As with matrix multiplication, string concatenation is noncommutative: greet * whom != whom * greet.

As such, * is a more natural choice for an infix string concatenation operator, consistent with common

mathematical use.

More precisely, the set of all finite-length strings S together with the string concatenation operator * forms

a free monoid (S, *). The identity element of this set is the empty string, "". Whenever a free monoid is

not commutative, the operation is typically represented as \cdot, *, or a similar symbol, rather than +,

which as stated usually implies commutativity.

7.5 Interpolation

Constructing strings using concatenation can become a bit cumbersome, however. To reduce the need for

these verbose calls to string or repeated multiplications, Julia allows interpolation into string literals using

$, as in Perl:

julia> greet = "Hello"; whom = "world";

julia> "$greet, $whom.\n"

"Hello, world.\n"

This is more readable and convenient and equivalent to the above string concatenation – the system

rewrites this apparent single string literal into the call string(greet, ", ", whom, ".\n").

The shortest complete expression after the $ is taken as the expression whose value is to be interpolated

into the string. Thus, you can interpolate any expression into a string using parentheses:

julia> "1 + 2 = $(1 + 2)"

"1 + 2 = 3"

https://en.wikipedia.org/wiki/Free_monoid

CHAPTER 7. STRINGS 54

Both concatenation and string interpolation call string to convert objects into string form. However,

string actually just returns the output of print, so new types should add methods to print or show

instead of string.

Most non-AbstractString objects are converted to strings closely corresponding to how they are entered

as literal expressions:

julia> v = [1,2,3]

3-element Vector{Int64}:

1

2

3

julia> "v: $v"

"v: [1, 2, 3]"

string is the identity for AbstractString and AbstractChar values, so these are interpolated into strings

as themselves, unquoted and unescaped:

julia> c = 'x'

'x': ASCII/Unicode U+0078 (category Ll: Letter, lowercase)

julia> "hi, $c"

"hi, x"

To include a literal $ in a string literal, escape it with a backslash:

julia> print("I have \$100 in my account.\n")

I have $100 in my account.

7.6 Triple-Quoted String Literals

When strings are created using triple-quotes ("""...""") they have some special behavior that can be

useful for creating longer blocks of text.

First, triple-quoted strings are also dedented to the level of the least-indented line. This is useful for defining

strings within code that is indented. For example:

julia> str = """

Hello,

world.

"""

" Hello,\n world.\n"

In this case the final (empty) line before the closing """ sets the indentation level.

The dedentation level is determined as the longest common starting sequence of spaces or tabs in all lines,

excluding the line following the opening """ and lines containing only spaces or tabs (the line containing

the closing """ is always included). Then for all lines, excluding the text following the opening """, the

common starting sequence is removed (including lines containing only spaces and tabs if they start with

this sequence), e.g.:

CHAPTER 7. STRINGS 55

julia> """ This

is

a test"""

" This\nis\n a test"

Next, if the opening """ is followed by a newline, the newline is stripped from the resulting string.

"""hello"""

is equivalent to

"""

hello"""

but

"""

hello"""

will contain a literal newline at the beginning.

Stripping of the newline is performed after the dedentation. For example:

julia> """

Hello,

world."""

"Hello,\nworld."

If the newline is removed using a backslash, dedentation will be respected as well:

julia> """

Averylong\

word"""

"Averylongword"

Trailing whitespace is left unaltered.

Triple-quoted string literals can contain " characters without escaping.

Note that line breaks in literal strings, whether single- or triple-quoted, result in a newline (LF) character

\n in the string, even if your editor uses a carriage return \r (CR) or CRLF combination to end lines. To

include a CR in a string, use an explicit escape \r; for example, you can enter the literal string "a CRLF

line ending\r\n".

CHAPTER 7. STRINGS 56

7.7 Common Operations

You can lexicographically compare strings using the standard comparison operators:

julia> "abracadabra" < "xylophone"

true

julia> "abracadabra" == "xylophone"

false

julia> "Hello, world." != "Goodbye, world."

true

julia> "1 + 2 = 3" == "1 + 2 = $(1 + 2)"

true

You can search for the index of a particular character using the findfirst and findlast functions:

julia> findfirst('o', "xylophone")

4

julia> findlast('o', "xylophone")

7

julia> findfirst('z', "xylophone")

You can start the search for a character at a given offset by using the functions findnext and findprev:

julia> findnext('o', "xylophone", 1)

4

julia> findnext('o', "xylophone", 5)

7

julia> findprev('o', "xylophone", 5)

4

julia> findnext('o', "xylophone", 8)

You can use the occursin function to check if a substring is found within a string:

julia> occursin("world", "Hello, world.")

true

julia> occursin("o", "Xylophon")

true

julia> occursin("a", "Xylophon")

false

julia> occursin('o', "Xylophon")

true

CHAPTER 7. STRINGS 57

The last example shows that occursin can also look for a character literal.

Two other handy string functions are repeat and join:

julia> repeat(".:Z:.", 10)

".:Z:..:Z:..:Z:..:Z:..:Z:..:Z:..:Z:..:Z:..:Z:..:Z:."

julia> join(["apples", "bananas", "pineapples"], ", ", " and ")

"apples, bananas and pineapples"

Some other useful functions include:

• firstindex(str) gives the minimal (byte) index that can be used to index into str (always 1 for

strings, not necessarily true for other containers).

• lastindex(str) gives the maximal (byte) index that can be used to index into str.

• length(str) the number of characters in str.

• length(str, i, j) the number of valid character indices in str from i to j.

• ncodeunits(str) number of code units in a string.

• codeunit(str, i) gives the code unit value in the string str at index i.

• thisind(str, i) given an arbitrary index into a string find the first index of the character into which

the index points.

• nextind(str, i, n=1) find the start of the nth character starting after index i.

• prevind(str, i, n=1) find the start of the nth character starting before index i.

7.8 Non-Standard String Literals

There are situations when you want to construct a string or use string semantics, but the behavior of the

standard string construct is not quite what is needed. For these kinds of situations, Julia provides non-

standard string literals. A non-standard string literal looks like a regular double-quoted string literal, but is

immediately prefixed by an identifier, and may behave differently from a normal string literal.

Regular expressions, byte array literals, and version number literals, as described below, are some exam-

ples of non-standard string literals. Users and packages may also define new non-standard string literals.

Further documentation is given in the Metaprogramming section.

7.9 Regular Expressions

Sometimes you are not looking for an exact string, but a particular pattern. For example, suppose you are

trying to extract a single date from a large text file. You don’t know what that date is (that’s why you are

searching for it), but you do know it will look something like YYYY-MM-DD. Regular expressions allow you to

specify these patterns and search for them.

Julia uses version 2 of Perl-compatible regular expressions (regexes), as provided by the PCRE library (see

the PCRE2 syntax description for more details). Regular expressions are related to strings in two ways:

https://en.wikipedia.org/wiki/Character_encoding#Terminology
https://www.pcre.org/
https://www.pcre.org/current/doc/html/pcre2syntax.html

CHAPTER 7. STRINGS 58

the obvious connection is that regular expressions are used to find regular patterns in strings; the other

connection is that regular expressions are themselves input as strings, which are parsed into a state ma-

chine that can be used to efficiently search for patterns in strings. In Julia, regular expressions are input

using non-standard string literals prefixed with various identifiers beginning with r. The most basic regular

expression literal without any options turned on just uses r"...":

julia> re = r"^\s*(?:#|$)"

r"^\s*(?:#|$)"

julia> typeof(re)

Regex

To check if a regex matches a string, use occursin:

julia> occursin(r"^\s*(?:#|$)", "not a comment")

false

julia> occursin(r"^\s*(?:#|$)", "# a comment")

true

As one can see here, occursin simply returns true or false, indicating whether a match for the given regex

occurs in the string. Commonly, however, one wants to know not just whether a string matched, but also

how it matched. To capture this information about a match, use the match function instead:

julia> match(r"^\s*(?:#|$)", "not a comment")

julia> match(r"^\s*(?:#|$)", "# a comment")

RegexMatch("#")

If the regular expression does not match the given string, match returns nothing – a special value that

does not print anything at the interactive prompt. Other than not printing, it is a completely normal value

and you can test for it programmatically:

m = match(r"^\s*(?:#|$)", line)

if m === nothing

println("not a comment")

else

println("blank or comment")

end

If a regular expression does match, the value returned by match is a RegexMatch object. These objects

record how the expression matches, including the substring that the pattern matches and any captured

substrings, if there are any. This example only captures the portion of the substring that matches, but

perhaps we want to capture any non-blank text after the comment character. We could do the following:

julia> m = match(r"^\s*(?:#\s*(.*?)\s*$|$)", "# a comment ")

RegexMatch("# a comment ", 1="a comment")

CHAPTER 7. STRINGS 59

When calling match, you have the option to specify an index at which to start the search. For example:

julia> m = match(r"[0-9]","aaaa1aaaa2aaaa3",1)

RegexMatch("1")

julia> m = match(r"[0-9]","aaaa1aaaa2aaaa3",6)

RegexMatch("2")

julia> m = match(r"[0-9]","aaaa1aaaa2aaaa3",11)

RegexMatch("3")

You can extract the following info from a RegexMatch object:

• the entire substring matched: m.match

• the captured substrings as an array of strings: m.captures

• the offset at which the whole match begins: m.offset

• the offsets of the captured substrings as a vector: m.offsets

For when a capture doesn't match, instead of a substring, m.captures contains nothing in that position,

and m.offsets has a zero offset (recall that indices in Julia are 1-based, so a zero offset into a string is

invalid). Here is a pair of somewhat contrived examples:

julia> m = match(r"(a|b)(c)?(d)", "acd")

RegexMatch("acd", 1="a", 2="c", 3="d")

julia> m.match

"acd"

julia> m.captures

3-element Vector{Union{Nothing, SubString{String}}}:

"a"

"c"

"d"

julia> m.offset

1

julia> m.offsets

3-element Vector{Int64}:

1

2

3

julia> m = match(r"(a|b)(c)?(d)", "ad")

RegexMatch("ad", 1="a", 2=nothing, 3="d")

julia> m.match

"ad"

CHAPTER 7. STRINGS 60

julia> m.captures

3-element Vector{Union{Nothing, SubString{String}}}:

"a"

nothing

"d"

julia> m.offset

1

julia> m.offsets

3-element Vector{Int64}:

1

0

2

It is convenient to have captures returned as an array so that one can use destructuring syntax to bind

them to local variables. As a convenience, the RegexMatch object implements iterator methods that pass

through to the captures field, so you can destructure the match object directly:

julia> first, second, third = m; first

"a"

Captures can also be accessed by indexing the RegexMatch object with the number or name of the capture

group:

julia> m=match(r"(?<hour>\d+):(?<minute>\d+)","12:45")

RegexMatch("12:45", hour="12", minute="45")

julia> m[:minute]

"45"

julia> m[2]

"45"

Captures can be referenced in a substitution string when using replace by using \n to refer to the nth

capture group and prefixing the substitution string with s. Capture group 0 refers to the entire match

object. Named capture groups can be referenced in the substitution with \g<groupname>. For example:

julia> replace("first second", r"(\w+) (?<agroup>\w+)" => s"\g<agroup> \1")

"second first"

Numbered capture groups can also be referenced as \g<n> for disambiguation, as in:

julia> replace("a", r"." => s"\g<0>1")

"a1"

You can modify the behavior of regular expressions by some combination of the flags i, m, s, and x after

the closing double quote mark. These flags have the same meaning as they do in Perl, as explained in this

excerpt from the perlre manpage:

https://perldoc.perl.org/perlre#Modifiers

CHAPTER 7. STRINGS 61

i Do case-insensitive pattern matching.

If locale matching rules are in effect, the case map is taken

from the current locale for code points less than 255, and

from Unicode rules for larger code points. However, matches

that would cross the Unicode rules/non-Unicode rules boundary

(ords 255/256) will not succeed.

m Treat string as multiple lines. That is, change "^" and "$"

from matching the start or end of the string to matching the

start or end of any line anywhere within the string.

s Treat string as single line. That is, change "." to match any

character whatsoever, even a newline, which normally it would

not match.

Used together, as r""ms, they let the "." match any character

whatsoever, while still allowing "^" and "$" to match,

respectively, just after and just before newlines within the

string.

x Tells the regular expression parser to ignore most whitespace

that is neither backslashed nor within a character class. You

can use this to break up your regular expression into

(slightly) more readable parts. The '#' character is also

treated as a metacharacter introducing a comment, just as in

ordinary code.

For example, the following regex has all three flags turned on:

julia> r"a+.*b+.*?d$"ism

r"a+.*b+.*?d$"ims

julia> match(r"a+.*b+.*?d$"ism, "Goodbye,\nOh, angry,\nBad world\n")

RegexMatch("angry,\nBad world")

The r"..." literal is constructed without interpolation and unescaping (except for quotation mark " which

still has to be escaped). Here is an example showing the difference from standard string literals:

julia> x = 10

10

julia> r"$x"

r"$x"

julia> "$x"

"10"

julia> r"\x"

r"\x"

julia> "\x"

ERROR: syntax: invalid escape sequence

CHAPTER 7. STRINGS 62

Triple-quoted regex strings, of the form r"""...""", are also supported (and may be convenient for regular

expressions containing quotation marks or newlines).

The Regex() constructor may be used to create a valid regex string programmatically. This permits using

the contents of string variables and other string operations when constructing the regex string. Any of the

regex codes above can be used within the single string argument to Regex(). Here are some examples:

julia> using Dates

julia> d = Date(1962,7,10)

1962-07-10

julia> regex_d = Regex("Day " * string(day(d)))

r"Day 10"

julia> match(regex_d, "It happened on Day 10")

RegexMatch("Day 10")

julia> name = "Jon"

"Jon"

julia> regex_name = Regex("[\"(]\\Q$name\\E[\")]") # interpolate value of name

r"[\"(]\QJon\E[\")]"

julia> match(regex_name, " Jon ")

RegexMatch(" Jon ")

julia> match(regex_name, "[Jon]") === nothing

true

Note the use of the \Q...\E escape sequence. All characters between the \Q and the \E are interpreted

as literal characters. This is convenient for matching characters that would otherwise be regex metachar-

acters. However, caution is needed when using this feature together with string interpolation, since the

interpolated string might itself contain the \E sequence, unexpectedly terminating literal matching. User

inputs need to be sanitized before inclusion in a regex.

7.10 Byte Array Literals

Another useful non-standard string literal is the byte-array string literal: b"...". This form lets you use

string notation to express read only literal byte arrays – i.e. arrays of UInt8 values. The type of those

objects is CodeUnits{UInt8, String}. The rules for byte array literals are the following:

• ASCII characters and ASCII escapes produce a single byte.

• \x and octal escape sequences produce the byte corresponding to the escape value.

• Unicode escape sequences produce a sequence of bytes encoding that code point in UTF-8.

There is some overlap between these rules since the behavior of \x and octal escapes less than 0x80 (128)

are covered by both of the first two rules, but here these rules agree. Together, these rules allow one to

easily use ASCII characters, arbitrary byte values, and UTF-8 sequences to produce arrays of bytes. Here

is an example using all three:

CHAPTER 7. STRINGS 63

julia> b"DATA\xff\u2200"

8-element Base.CodeUnits{UInt8, String}:

0x44

0x41

0x54

0x41

0xff

0xe2

0x88

0x80

The ASCII string "DATA" corresponds to the bytes 68, 65, 84, 65. \xff produces the single byte 255. The

Unicode escape \u2200 is encoded in UTF-8 as the three bytes 226, 136, 128. Note that the resulting byte

array does not correspond to a valid UTF-8 string:

julia> isvalid("DATA\xff\u2200")

false

As it was mentioned CodeUnits{UInt8, String} type behaves like read only array of UInt8 and if you

need a standard vector you can convert it using Vector{UInt8}:

julia> x = b"123"

3-element Base.CodeUnits{UInt8, String}:

0x31

0x32

0x33

julia> x[1]

0x31

julia> x[1] = 0x32

ERROR: CanonicalIndexError: setindex! not defined for Base.CodeUnits{UInt8, String}

[...]

julia> Vector{UInt8}(x)

3-element Vector{UInt8}:

0x31

0x32

0x33

Also observe the significant distinction between \xff and \uff: the former escape sequence encodes the

byte 255, whereas the latter escape sequence represents the code point 255, which is encoded as two

bytes in UTF-8:

julia> b"\xff"

1-element Base.CodeUnits{UInt8, String}:

0xff

julia> b"\uff"

2-element Base.CodeUnits{UInt8, String}:

0xc3

0xbf

CHAPTER 7. STRINGS 64

Character literals use the same behavior.

For code points less than \u80, it happens that the UTF-8 encoding of each code point is just the single

byte produced by the corresponding \x escape, so the distinction can safely be ignored. For the escapes

\x80 through \xff as compared to \u80 through \uff, however, there is a major difference: the former

escapes all encode single bytes, which – unless followed by very specific continuation bytes – do not form

valid UTF-8 data, whereas the latter escapes all represent Unicode code points with two-byte encodings.

If this is all extremely confusing, try reading "The Absolute Minimum Every Software Developer Absolutely,

Positively Must Know About Unicode and Character Sets". It's an excellent introduction to Unicode and

UTF-8, and may help alleviate some confusion regarding the matter.

7.11 Version Number Literals

Version numbers can easily be expressed with non-standard string literals of the form v"...". Version

number literals create VersionNumber objects which follow the specifications of semantic versioning, and

therefore are composed of major, minor and patch numeric values, followed by pre-release and build alpha-

numeric annotations. For example, v"0.2.1-rc1+win64" is broken into major version 0, minor version

2, patch version 1, pre-release rc1 and build win64. When entering a version literal, everything except

the major version number is optional, therefore e.g. v"0.2" is equivalent to v"0.2.0" (with empty pre-

release/build annotations), v"2" is equivalent to v"2.0.0", and so on.

VersionNumber objects are mostly useful to easily and correctly compare two (or more) versions. For

example, the constant VERSION holds Julia version number as a VersionNumber object, and therefore one

can define some version-specific behavior using simple statements as:

if v"0.2" <= VERSION < v"0.3-"

do something specific to 0.2 release series

end

Note that in the above example the non-standard version number v"0.3-" is used, with a trailing -: this

notation is a Julia extension of the standard, and it's used to indicate a version which is lower than any 0.3

release, including all of its pre-releases. So in the above example the code would only run with stable 0.2

versions, and exclude such versions as v"0.3.0-rc1". In order to also allow for unstable (i.e. pre-release)

0.2 versions, the lower bound check should be modified like this: v"0.2-" <= VERSION.

Another non-standard version specification extension allows one to use a trailing + to express an upper

limit on build versions, e.g. VERSION > v"0.2-rc1+" can be used to mean any version above 0.2-rc1 and

any of its builds: it will return false for version v"0.2-rc1+win64" and true for v"0.2-rc2".

It is good practice to use such special versions in comparisons (particularly, the trailing - should always

be used on upper bounds unless there's a good reason not to), but they must not be used as the actual

version number of anything, as they are invalid in the semantic versioning scheme.

Besides being used for the VERSION constant, VersionNumber objects are widely used in the Pkg module,

to specify packages versions and their dependencies.

7.12 Raw String Literals

Raw strings without interpolation or unescaping can be expressed with non-standard string literals of the

form raw"...". Raw string literals create ordinary String objects which contain the enclosed contents

https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://semver.org/

CHAPTER 7. STRINGS 65

exactly as entered with no interpolation or unescaping. This is useful for strings which contain code or

markup in other languages which use $ or \ as special characters.

The exception is that quotation marks still must be escaped, e.g. raw"\"" is equivalent to "\"". To make

it possible to express all strings, backslashes then also must be escaped, but only when appearing right

before a quote character:

julia> println(raw"\\ \\\"")

\\ \"

Notice that the first two backslashes appear verbatim in the output, since they do not precede a quote char-

acter. However, the next backslash character escapes the backslash that follows it, and the last backslash

escapes a quote, since these backslashes appear before a quote.

Chapter 8

Functions

In Julia, a function is an object that maps a tuple of argument values to a return value. Julia functions

are not pure mathematical functions, because they can alter and be affected by the global state of the

program. The basic syntax for defining functions in Julia is:

julia> function f(x,y)

x + y

end

f (generic function with 1 method)

This function accepts two arguments x and y and returns the value of the last expression evaluated, which

is x + y.

There is a second, more terse syntax for defining a function in Julia. The traditional function declaration

syntax demonstrated above is equivalent to the following compact "assignment form":

julia> f(x,y) = x + y

f (generic function with 1 method)

In the assignment form, the body of the functionmust be a single expression, although it can be a compound

expression (see Compound Expressions). Short, simple function definitions are common in Julia. The short

function syntax is accordingly quite idiomatic, considerably reducing both typing and visual noise.

A function is called using the traditional parenthesis syntax:

julia> f(2,3)

5

Without parentheses, the expression f refers to the function object, and can be passed around like any

other value:

julia> g = f;

julia> g(2,3)

5

66

CHAPTER 8. FUNCTIONS 67

As with variables, Unicode can also be used for function names:

julia> ∑(x,y) = x + y

∑ (generic function with 1 method)

julia> ∑(2, 3)

5

8.1 Argument Passing Behavior

Julia function arguments follow a convention sometimes called "pass-by-sharing", which means that values

are not copied when they are passed to functions. Function arguments themselves act as new variable bind-

ings (new "names" that can refer to values), much like assignments argument_name = argument_value,

so that the objects they refer to are identical to the passed values. Modifications to mutable values (such

as Arrays) made within a function will be visible to the caller. (This is the same behavior found in Scheme,

most Lisps, Python, Ruby and Perl, among other dynamic languages.)

For example, in the function

function f(x, y)

x[1] = 42 # mutates x

y = 7 + y # new binding for y, no mutation

return y

end

The statement x[1] = 42mutates the object x, and hence this change will be visible in the array passed by

the caller for this argument. On the other hand, the assignment y = 7 + y changes the binding ("name")

y to refer to a new value 7 + y, rather than mutating the original object referred to by y, and hence does

not change the corresponding argument passed by the caller. This can be seen if we call f(x, y):

julia> a = [4,5,6]

3-element Vector{Int64}:

4

5

6

julia> b = 3

3

julia> f(a, b) # returns 7 + b == 10

10

julia> a # a[1] is changed to 42 by f

3-element Vector{Int64}:

42

5

6

julia> b # not changed

3

CHAPTER 8. FUNCTIONS 68

As a common convention in Julia (not a syntactic requirement), such a function would typically be named

f!(x, y) rather than f(x, y), as a visual reminder at the call site that at least one of the arguments

(often the first one) is being mutated.

Shared memory between arguments

The behavior of a mutating function can be unexpected when a mutated argument shares

memory with another argument, a situation known as aliasing (e.g. when one is a view of the

other). Unless the function docstring explicitly indicates that aliasing produces the expected

result, it is the responsibility of the caller to ensure proper behavior on such inputs.

8.2 Argument-type declarations

You can declare the types of function arguments by appending ::TypeName to the argument name, as usual

for Type Declarations in Julia. For example, the following function computes Fibonacci numbers recursively:

fib(n::Integer) = n ≤ 2 ? one(n) : fib(n-1) + fib(n-2)

and the ::Integer specification means that it will only be callable when n is a subtype of the abstract

Integer type.

Argument-type declarations normally have no impact on performance: regardless of what argument

types (if any) are declared, Julia compiles a specialized version of the function for the actual argument types

passed by the caller. For example, calling fib(1) will trigger the compilation of specialized version of fib

optimized specifically for Int arguments, which is then re-used if fib(7) or fib(15) are called. (There are

rare exceptions when an argument-type declaration can trigger additional compiler specializations; see:

Be aware of when Julia avoids specializing.) The most common reasons to declare argument types in Julia

are, instead:

• Dispatch: As explained in Methods, you can have different versions ("methods") of a function for

different argument types, in which case the argument types are used to determine which imple-

mentation is called for which arguments. For example, you might implement a completely different

algorithm fib(x::Number) = ... that works for any Number type by using Binet's formula to extend

it to non-integer values.

• Correctness: Type declarations can be useful if your function only returns correct results for certain

argument types. For example, if we omitted argument types and wrote fib(n) = n ≤ 2 ? one(n)

: fib(n-1) + fib(n-2), then fib(1.5) would silently give us the nonsensical answer 1.0.

• Clarity: Type declarations can serve as a form of documentation about the expected arguments.

However, it is a common mistake to overly restrict the argument types, which can unnecessarily

limit the applicability of the function and prevent it from being re-used in circumstances you did not antic-

ipate. For example, the fib(n::Integer) function above works equally well for Int arguments (machine

integers) and BigInt arbitrary-precision integers (see BigFloats and BigInts), which is especially useful be-

cause Fibonacci numbers grow exponentially rapidly and will quickly overflow any fixed-precision type like

Int (see Overflow behavior). If we had declared our function as fib(n::Int), however, the application

to BigInt would have been prevented for no reason. In general, you should use the most general appli-

cable abstract types for arguments, and when in doubt, omit the argument types. You can always

add argument-type specifications later if they become necessary, and you don't sacrifice performance or

functionality by omitting them.

https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Fibonacci_number#Binet%27s_formula

CHAPTER 8. FUNCTIONS 69

8.3 The return Keyword

The value returned by a function is the value of the last expression evaluated, which, by default, is the last

expression in the body of the function definition. In the example function, f, from the previous section this

is the value of the expression x + y. As an alternative, as in many other languages, the return keyword

causes a function to return immediately, providing an expression whose value is returned:

function g(x,y)

return x * y

x + y

end

Since function definitions can be entered into interactive sessions, it is easy to compare these definitions:

julia> f(x,y) = x + y

f (generic function with 1 method)

julia> function g(x,y)

return x * y

x + y

end

g (generic function with 1 method)

julia> f(2,3)

5

julia> g(2,3)

6

Of course, in a purely linear function body like g, the usage of return is pointless since the expression

x + y is never evaluated and we could simply make x * y the last expression in the function and omit

the return. In conjunction with other control flow, however, return is of real use. Here, for example, is

a function that computes the hypotenuse length of a right triangle with sides of length x and y, avoiding

overflow:

julia> function hypot(x,y)

x = abs(x)

y = abs(y)

if x > y

r = y/x

return x*sqrt(1+r*r)

end

if y == 0

return zero(x)

end

r = x/y

return y*sqrt(1+r*r)

end

hypot (generic function with 1 method)

julia> hypot(3, 4)

5.0

CHAPTER 8. FUNCTIONS 70

There are three possible points of return from this function, returning the values of three different expres-

sions, depending on the values of x and y. The return on the last line could be omitted since it is the last

expression.

Return type

A return type can be specified in the function declaration using the :: operator. This converts the return

value to the specified type.

julia> function g(x, y)::Int8

return x * y

end;

julia> typeof(g(1, 2))

Int8

This function will always return an Int8 regardless of the types of x and y. See Type Declarations for more

on return types.

Return type declarations are rarely used in Julia: in general, you should instead write "type-stable" func-

tions in which Julia's compiler can automatically infer the return type. For more information, see the Per-

formance Tips chapter.

Returning nothing

For functions that do not need to return a value (functions used only for some side effects), the Julia

convention is to return the value nothing:

function printx(x)

println("x = $x")

return nothing

end

This is a convention in the sense that nothing is not a Julia keyword but only a singleton object of type

Nothing. Also, you may notice that the printx function example above is contrived, because println

already returns nothing, so that the return line is redundant.

There are two possible shortened forms for the return nothing expression. On the one hand, the return

keyword implicitly returns nothing, so it can be used alone. On the other hand, since functions implicitly

return their last expression evaluated, nothing can be used alone when it's the last expression. The

preference for the expression return nothing as opposed to return or nothing alone is a matter of

coding style.

8.4 Operators Are Functions

In Julia, most operators are just functions with support for special syntax. (The exceptions are operators

with special evaluation semantics like && and ||. These operators cannot be functions since Short-Circuit

Evaluation requires that their operands are not evaluated before evaluation of the operator.) Accordingly,

you can also apply them using parenthesized argument lists, just as you would any other function:

CHAPTER 8. FUNCTIONS 71

julia> 1 + 2 + 3

6

julia> +(1,2,3)

6

The infix form is exactly equivalent to the function application form – in fact the former is parsed to produce

the function call internally. This also means that you can assign and pass around operators such as + and

* just like you would with other function values:

julia> f = +;

julia> f(1,2,3)

6

Under the name f, the function does not support infix notation, however.

8.5 Operators With Special Names

A few special expressions correspond to calls to functions with non-obvious names. These are:

Expression Calls

[A B C ...] hcat

[A; B; C; ...] vcat

[A B; C D; ...] hvcat

[A; B;; C; D;; ...] hvncat

A' adjoint

A[i] getindex

A[i] = x setindex!

A.n getproperty

A.n = x setproperty!

Note that expressions similar to [A; B;; C; D;; ...] but with more than two consecutive ; also corre-

spond to hvncat calls.

8.6 Anonymous Functions

Functions in Julia are first-class objects: they can be assigned to variables, and called using the standard

function call syntax from the variable they have been assigned to. They can be used as arguments, and

they can be returned as values. They can also be created anonymously, without being given a name, using

either of these syntaxes:

julia> x -> x^2 + 2x - 1

#1 (generic function with 1 method)

julia> function (x)

x^2 + 2x - 1

end

#3 (generic function with 1 method)

https://en.wikipedia.org/wiki/First-class_citizen

CHAPTER 8. FUNCTIONS 72

This creates a function taking one argument x and returning the value of the polynomial x^2 + 2x - 1

at that value. Notice that the result is a generic function, but with a compiler-generated name based on

consecutive numbering.

The primary use for anonymous functions is passing them to functions which take other functions as ar-

guments. A classic example is map, which applies a function to each value of an array and returns a new

array containing the resulting values:

julia> map(round, [1.2, 3.5, 1.7])

3-element Vector{Float64}:

1.0

4.0

2.0

This is fine if a named function effecting the transform already exists to pass as the first argument to

map. Often, however, a ready-to-use, named function does not exist. In these situations, the anonymous

function construct allows easy creation of a single-use function object without needing a name:

julia> map(x -> x^2 + 2x - 1, [1, 3, -1])

3-element Vector{Int64}:

2

14

-2

An anonymous function accepting multiple arguments can be written using the syntax (x,y,z)->2x+y-z.

A zero-argument anonymous function is written as ()->3. The idea of a function with no arguments may

seem strange, but is useful for "delaying" a computation. In this usage, a block of code is wrapped in a

zero-argument function, which is later invoked by calling it as f.

As an example, consider this call to get:

get(dict, key) do

default value calculated here

time()

end

The code above is equivalent to calling get with an anonymous function containing the code enclosed

between do and end, like so:

get(()->time(), dict, key)

The call to time is delayed by wrapping it in a 0-argument anonymous function that is called only if the

requested key is absent from dict.

CHAPTER 8. FUNCTIONS 73

8.7 Tuples

Julia has a built-in data structure called a tuple that is closely related to function arguments and return

values. A tuple is a fixed-length container that can hold any values, but cannot bemodified (it is immutable).

Tuples are constructed with commas and parentheses, and can be accessed via indexing:

julia> (1, 1+1)

(1, 2)

julia> (1,)

(1,)

julia> x = (0.0, "hello", 6*7)

(0.0, "hello", 42)

julia> x[2]

"hello"

Notice that a length-1 tuple must be written with a comma, (1,), since (1) would just be a parenthesized

value. () represents the empty (length-0) tuple.

8.8 Named Tuples

The components of tuples can optionally be named, in which case a named tuple is constructed:

julia> x = (a=2, b=1+2)

(a = 2, b = 3)

julia> x[1]

2

julia> x.a

2

The fields of named tuples can be accessed by name using dot syntax (x.a) in addition to the regular

indexing syntax (x[1] or x[:a]).

8.9 Destructuring Assignment and Multiple Return Values

A comma-separated list of variables (optionally wrapped in parentheses) can appear on the left side of an

assignment: the value on the right side is destructured by iterating over and assigning to each variable in

turn:

julia> (a,b,c) = 1:3

1:3

julia> b

2

CHAPTER 8. FUNCTIONS 74

The value on the right should be an iterator (see Iteration interface) at least as long as the number of

variables on the left (any excess elements of the iterator are ignored).

This can be used to return multiple values from functions by returning a tuple or other iterable value. For

example, the following function returns two values:

julia> function foo(a,b)

a+b, a*b

end

foo (generic function with 1 method)

If you call it in an interactive session without assigning the return value anywhere, you will see the tuple

returned:

julia> foo(2,3)

(5, 6)

Destructuring assignment extracts each value into a variable:

julia> x, y = foo(2,3)

(5, 6)

julia> x

5

julia> y

6

Another common use is for swapping variables:

julia> y, x = x, y

(5, 6)

julia> x

6

julia> y

5

If only a subset of the elements of the iterator are required, a common convention is to assign ignored

elements to a variable consisting of only underscores _ (which is an otherwise invalid variable name, see

Allowed Variable Names):

julia> _, _, _, d = 1:10

1:10

julia> d

4

CHAPTER 8. FUNCTIONS 75

Other valid left-hand side expressions can be used as elements of the assignment list, which will call

setindex! or setproperty!, or recursively destructure individual elements of the iterator:

julia> X = zeros(3);

julia> X[1], (a,b) = (1, (2, 3))

(1, (2, 3))

julia> X

3-element Vector{Float64}:

1.0

0.0

0.0

julia> a

2

julia> b

3

Julia 1.6

... with assignment requires Julia 1.6

If the last symbol in the assignment list is suffixed by ... (known as slurping), then it will be assigned a

collection or lazy iterator of the remaining elements of the right-hand side iterator:

julia> a, b... = "hello"

"hello"

julia> a

'h': ASCII/Unicode U+0068 (category Ll: Letter, lowercase)

julia> b

"ello"

julia> a, b... = Iterators.map(abs2, 1:4)

Base.Generator{UnitRange{Int64}, typeof(abs2)}(abs2, 1:4)

julia> a

1

julia> b

Base.Iterators.Rest{Base.Generator{UnitRange{Int64}, typeof(abs2)},

Int64}(Base.Generator{UnitRange{Int64}, typeof(abs2)}(abs2, 1:4), 1)↪→

See Base.rest for details on the precise handling and customization for specific iterators.

Julia 1.9

... in non-final position of an assignment requires Julia 1.9

CHAPTER 8. FUNCTIONS 76

Slurping in assignments can also occur in any other position. As opposed to slurping the end of a collection

however, this will always be eager.

julia> a, b..., c = 1:5

1:5

julia> a

1

julia> b

3-element Vector{Int64}:

2

3

4

julia> c

5

julia> front..., tail = "Hi!"

"Hi!"

julia> front

"Hi"

julia> tail

'!': ASCII/Unicode U+0021 (category Po: Punctuation, other)

This is implemented in terms of the function Base.split_rest.

Note that for variadic function definitions, slurping is still only allowed in final position. This does not apply

to single argument destructuring though, as that does not affect method dispatch:

julia> f(x..., y) = x

ERROR: syntax: invalid "..." on non-final argument

Stacktrace:

[...]

julia> f((x..., y)) = x

f (generic function with 1 method)

julia> f((1, 2, 3))

(1, 2)

8.10 Property destructuring

Instead of destructuring based on iteration, the right side of assignments can also be destructured using

property names. This follows the syntax for NamedTuples, and works by assigning to each variable on the

left a property of the right side of the assignment with the same name using getproperty:

julia> (; b, a) = (a=1, b=2, c=3)

(a = 1, b = 2, c = 3)

CHAPTER 8. FUNCTIONS 77

julia> a

1

julia> b

2

8.11 Argument destructuring

The destructuring feature can also be used within a function argument. If a function argument name is

written as a tuple (e.g. (x, y)) instead of just a symbol, then an assignment (x, y) = argument will be

inserted for you:

julia> minmax(x, y) = (y < x) ? (y, x) : (x, y)

julia> gap((min, max)) = max - min

julia> gap(minmax(10, 2))

8

Notice the extra set of parentheses in the definition of gap. Without those, gap would be a two-argument

function, and this example would not work.

Similarly, property destructuring can also be used for function arguments:

julia> foo((; x, y)) = x + y

foo (generic function with 1 method)

julia> foo((x=1, y=2))

3

julia> struct A

x

y

end

julia> foo(A(3, 4))

7

For anonymous functions, destructuring a single argument requires an extra comma:

julia> map(((x,y),) -> x + y, [(1,2), (3,4)])

2-element Array{Int64,1}:

3

7

8.12 Varargs Functions

It is often convenient to be able to write functions taking an arbitrary number of arguments. Such functions

are traditionally known as "varargs" functions, which is short for "variable number of arguments". You can

define a varargs function by following the last positional argument with an ellipsis:

CHAPTER 8. FUNCTIONS 78

julia> bar(a,b,x...) = (a,b,x)

bar (generic function with 1 method)

The variables a and b are bound to the first two argument values as usual, and the variable x is bound to

an iterable collection of the zero or more values passed to bar after its first two arguments:

julia> bar(1,2)

(1, 2, ())

julia> bar(1,2,3)

(1, 2, (3,))

julia> bar(1, 2, 3, 4)

(1, 2, (3, 4))

julia> bar(1,2,3,4,5,6)

(1, 2, (3, 4, 5, 6))

In all these cases, x is bound to a tuple of the trailing values passed to bar.

It is possible to constrain the number of values passed as a variable argument; this will be discussed later

in Parametrically-constrained Varargs methods.

On the flip side, it is often handy to "splat" the values contained in an iterable collection into a function call

as individual arguments. To do this, one also uses ... but in the function call instead:

julia> x = (3, 4)

(3, 4)

julia> bar(1,2,x...)

(1, 2, (3, 4))

In this case a tuple of values is spliced into a varargs call precisely where the variable number of arguments

go. This need not be the case, however:

julia> x = (2, 3, 4)

(2, 3, 4)

julia> bar(1,x...)

(1, 2, (3, 4))

julia> x = (1, 2, 3, 4)

(1, 2, 3, 4)

julia> bar(x...)

(1, 2, (3, 4))

Furthermore, the iterable object splatted into a function call need not be a tuple:

CHAPTER 8. FUNCTIONS 79

julia> x = [3,4]

2-element Vector{Int64}:

3

4

julia> bar(1,2,x...)

(1, 2, (3, 4))

julia> x = [1,2,3,4]

4-element Vector{Int64}:

1

2

3

4

julia> bar(x...)

(1, 2, (3, 4))

Also, the function that arguments are splatted into need not be a varargs function (although it often is):

julia> baz(a,b) = a + b;

julia> args = [1,2]

2-element Vector{Int64}:

1

2

julia> baz(args...)

3

julia> args = [1,2,3]

3-element Vector{Int64}:

1

2

3

julia> baz(args...)

ERROR: MethodError: no method matching baz(::Int64, ::Int64, ::Int64)

Closest candidates are:

baz(::Any, ::Any)

@ Main none:1

Stacktrace:

[...]

As you can see, if the wrong number of elements are in the splatted container, then the function call will

fail, just as it would if too many arguments were given explicitly.

CHAPTER 8. FUNCTIONS 80

8.13 Optional Arguments

It is often possible to provide sensible default values for function arguments. This can save users from

having to pass every argument on every call. For example, the function Date(y, [m, d]) from Dates

module constructs a Date type for a given year y, month m and day d. However, m and d arguments are

optional and their default value is 1. This behavior can be expressed concisely as:

julia> using Dates

julia> function date(y::Int64, m::Int64=1, d::Int64=1)

err = Dates.validargs(Date, y, m, d)

err === nothing || throw(err)

return Date(Dates.UTD(Dates.totaldays(y, m, d)))

end

date (generic function with 3 methods)

Observe, that this definition calls another method of the Date function that takes one argument of type

UTInstant{Day}.

With this definition, the function can be called with either one, two or three arguments, and 1 is automati-

cally passed when only one or two of the arguments are specified:

julia> date(2000, 12, 12)

2000-12-12

julia> date(2000, 12)

2000-12-01

julia> date(2000)

2000-01-01

Optional arguments are actually just a convenient syntax for writing multiple method definitions with dif-

ferent numbers of arguments (see Note on Optional and keyword Arguments). This can be checked for our

date function example by calling the methods function:

julia> methods(date)

3 methods for generic function "date":

[1] date(y::Int64) in Main at REPL[1]:1

[2] date(y::Int64, m::Int64) in Main at REPL[1]:1

[3] date(y::Int64, m::Int64, d::Int64) in Main at REPL[1]:1

8.14 Keyword Arguments

Some functions need a large number of arguments, or have a large number of behaviors. Remembering

how to call such functions can be difficult. Keyword arguments can make these complex interfaces easier

to use and extend by allowing arguments to be identified by name instead of only by position.

For example, consider a function plot that plots a line. This function might have many options, for con-

trolling line style, width, color, and so on. If it accepts keyword arguments, a possible call might look like

CHAPTER 8. FUNCTIONS 81

plot(x, y, width=2), where we have chosen to specify only line width. Notice that this serves two pur-

poses. The call is easier to read, since we can label an argument with its meaning. It also becomes possible

to pass any subset of a large number of arguments, in any order.

Functions with keyword arguments are defined using a semicolon in the signature:

function plot(x, y; style="solid", width=1, color="black")

###

end

When the function is called, the semicolon is optional: one can either call plot(x, y, width=2) or plot(x,

y; width=2), but the former style is more common. An explicit semicolon is required only for passing

varargs or computed keywords as described below.

Keyword argument default values are evaluated only when necessary (when a corresponding keyword

argument is not passed), and in left-to-right order. Therefore default expressions may refer to prior keyword

arguments.

The types of keyword arguments can be made explicit as follows:

function f(;x::Int=1)

###

end

Keyword arguments can also be used in varargs functions:

function plot(x...; style="solid")

###

end

Extra keyword arguments can be collected using ..., as in varargs functions:

function f(x; y=0, kwargs...)

###

end

Inside f, kwargs will be an immutable key-value iterator over a named tuple. Named tuples (as well as

dictionaries with keys of Symbol, and other iterators yielding two-value collections with symbol as first

values) can be passed as keyword arguments using a semicolon in a call, e.g. f(x, z=1; kwargs...).

If a keyword argument is not assigned a default value in the method definition, then it is required: an

UndefKeywordError exception will be thrown if the caller does not assign it a value:

function f(x; y)

###

end

f(3, y=5) # ok, y is assigned

f(3) # throws UndefKeywordError(:y)

CHAPTER 8. FUNCTIONS 82

One can also pass key => value expressions after a semicolon. For example, plot(x, y; :width => 2)

is equivalent to plot(x, y, width=2). This is useful in situations where the keyword name is computed

at runtime.

When a bare identifier or dot expression occurs after a semicolon, the keyword argument name is implied by

the identifier or field name. For example plot(x, y; width) is equivalent to plot(x, y; width=width)

and plot(x, y; options.width) is equivalent to plot(x, y; width=options.width).

The nature of keyword arguments makes it possible to specify the same argument more than once. For

example, in the call plot(x, y; options..., width=2) it is possible that the options structure also

contains a value for width. In such a case the rightmost occurrence takes precedence; in this example,

width is certain to have the value 2. However, explicitly specifying the same keyword argument multiple

times, for example plot(x, y, width=2, width=3), is not allowed and results in a syntax error.

8.15 Evaluation Scope of Default Values

When optional and keyword argument default expressions are evaluated, only previous arguments are in

scope. For example, given this definition:

function f(x, a=b, b=1)

###

end

the b in a=b refers to a b in an outer scope, not the subsequent argument b.

8.16 Do-Block Syntax for Function Arguments

Passing functions as arguments to other functions is a powerful technique, but the syntax for it is not always

convenient. Such calls are especially awkward to write when the function argument requires multiple lines.

As an example, consider calling map on a function with several cases:

map(x->begin

if x < 0 && iseven(x)

return 0

elseif x == 0

return 1

else

return x

end

end,

[A, B, C])

Julia provides a reserved word do for rewriting this code more clearly:

map([A, B, C]) do x

if x < 0 && iseven(x)

return 0

elseif x == 0

return 1

else

CHAPTER 8. FUNCTIONS 83

return x

end

end

The do x syntax creates an anonymous function with argument x and passes it as the first argument to map.

Similarly, do a,b would create a two-argument anonymous function. Note that do (a,b) would create a

one-argument anonymous function, whose argument is a tuple to be deconstructed. A plain do would

declare that what follows is an anonymous function of the form () ->

How these arguments are initialized depends on the "outer" function; here, map will sequentially set x to A,

B, C, calling the anonymous function on each, just as would happen in the syntax map(func, [A, B, C]).

This syntax makes it easier to use functions to effectively extend the language, since calls look like normal

code blocks. There are many possible uses quite different from map, such as managing system state. For

example, there is a version of open that runs code ensuring that the opened file is eventually closed:

open("outfile", "w") do io

write(io, data)

end

This is accomplished by the following definition:

function open(f::Function, args...)

io = open(args...)

try

f(io)

finally

close(io)

end

end

Here, open first opens the file for writing and then passes the resulting output stream to the anonymous

function you defined in the do ... end block. After your function exits, open will make sure that the

stream is properly closed, regardless of whether your function exited normally or threw an exception. (The

try/finally construct will be described in Control Flow.)

With the do block syntax, it helps to check the documentation or implementation to know how the argu-

ments of the user function are initialized.

A do block, like any other inner function, can "capture" variables from its enclosing scope. For example,

the variable data in the above example of open...do is captured from the outer scope. Captured variables

can create performance challenges as discussed in performance tips.

8.17 Function composition and piping

Functions in Julia can be combined by composing or piping (chaining) them together.

Function composition is when you combine functions together and apply the resulting composition to ar-

guments. You use the function composition operator (∘) to compose the functions, so (f ∘ g)(args...)

is the same as f(g(args...)).

You can type the composition operator at the REPL and suitably-configured editors using \circ<tab>.

For example, the sqrt and + functions can be composed like this:

CHAPTER 8. FUNCTIONS 84

julia> (sqrt ∘ +)(3, 6)

3.0

This adds the numbers first, then finds the square root of the result.

The next example composes three functions and maps the result over an array of strings:

julia> map(first ∘ reverse ∘ uppercase, split("you can compose functions like this"))

6-element Vector{Char}:

'U': ASCII/Unicode U+0055 (category Lu: Letter, uppercase)

'N': ASCII/Unicode U+004E (category Lu: Letter, uppercase)

'E': ASCII/Unicode U+0045 (category Lu: Letter, uppercase)

'S': ASCII/Unicode U+0053 (category Lu: Letter, uppercase)

'E': ASCII/Unicode U+0045 (category Lu: Letter, uppercase)

'S': ASCII/Unicode U+0053 (category Lu: Letter, uppercase)

Function chaining (sometimes called "piping" or "using a pipe" to send data to a subsequent function) is

when you apply a function to the previous function's output:

julia> 1:10 |> sum |> sqrt

7.416198487095663

Here, the total produced by sum is passed to the sqrt function. The equivalent composition would be:

julia> (sqrt ∘ sum)(1:10)

7.416198487095663

The pipe operator can also be used with broadcasting, as .|>, to provide a useful combination of the

chaining/piping and dot vectorization syntax (described below).

julia> ["a", "list", "of", "strings"] .|> [uppercase, reverse, titlecase, length]

4-element Vector{Any}:

"A"

"tsil"

"Of"

7

When combining pipes with anonymous functions, parentheses must be used if subsequent pipes are not

to be parsed as part of the anonymous function's body. Compare:

julia> 1:3 .|> (x -> x^2) |> sum |> sqrt

3.7416573867739413

julia> 1:3 .|> x -> x^2 |> sum |> sqrt

3-element Vector{Float64}:

1.0

2.0

3.0

CHAPTER 8. FUNCTIONS 85

8.18 Dot Syntax for Vectorizing Functions

In technical-computing languages, it is common to have "vectorized" versions of functions, which simply

apply a given function f(x) to each element of an array A to yield a new array via f(A). This kind of

syntax is convenient for data processing, but in other languages vectorization is also often required for

performance: if loops are slow, the "vectorized" version of a function can call fast library code written in a

low-level language. In Julia, vectorized functions are not required for performance, and indeed it is often

beneficial to write your own loops (see Performance Tips), but they can still be convenient. Therefore, any

Julia function f can be applied elementwise to any array (or other collection) with the syntax f.(A). For

example, sin can be applied to all elements in the vector A like so:

julia> A = [1.0, 2.0, 3.0]

3-element Vector{Float64}:

1.0

2.0

3.0

julia> sin.(A)

3-element Vector{Float64}:

0.8414709848078965

0.9092974268256817

0.1411200080598672

Of course, you can omit the dot if you write a specialized "vector"method of f, e.g. via f(A::AbstractArray)

= map(f, A), and this is just as efficient as f.(A). The advantage of the f.(A) syntax is that which func-

tions are vectorizable need not be decided upon in advance by the library writer.

More generally, f.(args...) is actually equivalent to broadcast(f, args...), which allows you to op-

erate on multiple arrays (even of different shapes), or a mix of arrays and scalars (see Broadcasting). For

example, if you have f(x,y) = 3x + 4y, then f.(pi,A) will return a new array consisting of f(pi,a) for

each a in A, and f.(vector1,vector2) will return a new vector consisting of f(vector1[i],vector2[i])

for each index i (throwing an exception if the vectors have different length).

julia> f(x,y) = 3x + 4y;

julia> A = [1.0, 2.0, 3.0];

julia> B = [4.0, 5.0, 6.0];

julia> f.(pi, A)

3-element Vector{Float64}:

13.42477796076938

17.42477796076938

21.42477796076938

julia> f.(A, B)

3-element Vector{Float64}:

19.0

26.0

33.0

CHAPTER 8. FUNCTIONS 86

Keyword arguments are not broadcasted over, but are simply passed through to each call of the function.

For example, round.(x, digits=3) is equivalent to broadcast(x -> round(x, digits=3), x).

Moreover, nested f.(args...) calls are fused into a single broadcast loop. For example, sin.(cos.(X))

is equivalent to broadcast(x -> sin(cos(x)), X), similar to [sin(cos(x)) for x in X]: there is only

a single loop over X, and a single array is allocated for the result. [In contrast, sin(cos(X)) in a typical "vec-

torized" language would first allocate one temporary array for tmp=cos(X), and then compute sin(tmp) in

a separate loop, allocating a second array.] This loop fusion is not a compiler optimization that may or may

not occur, it is a syntactic guarantee whenever nested f.(args...) calls are encountered. Technically,

the fusion stops as soon as a "non-dot" function call is encountered; for example, in sin.(sort(cos.(X)))

the sin and cos loops cannot be merged because of the intervening sort function.

Finally, the maximum efficiency is typically achieved when the output array of a vectorized operation is

pre-allocated, so that repeated calls do not allocate new arrays over and over again for the results (see Pre-

allocating outputs). A convenient syntax for this is X .= ..., which is equivalent to broadcast!(identity,

X, ...) except that, as above, the broadcast! loop is fused with any nested "dot" calls. For example, X

.= sin.(Y) is equivalent to broadcast!(sin, X, Y), overwriting X with sin.(Y) in-place. If the left-hand

side is an array-indexing expression, e.g. X[begin+1:end] .= sin.(Y), then it translates to broadcast!

on a view, e.g. broadcast!(sin, view(X, firstindex(X)+1:lastindex(X)), Y), so that the left-hand

side is updated in-place.

Since adding dots to many operations and function calls in an expression can be tedious and lead to code

that is difficult to read, the macro @. is provided to convert every function call, operation, and assignment

in an expression into the "dotted" version.

julia> Y = [1.0, 2.0, 3.0, 4.0];

julia> X = similar(Y); # pre-allocate output array

julia> @. X = sin(cos(Y)) # equivalent to X .= sin.(cos.(Y))

4-element Vector{Float64}:

0.5143952585235492

-0.4042391538522658

-0.8360218615377305

-0.6080830096407656

Binary (or unary) operators like .+ are handled with the samemechanism: they are equivalent to broadcast

calls and are fused with other nested "dot" calls. X .+= Y etcetera is equivalent to X .= X .+ Y and results

in a fused in-place assignment; see also dot operators.

You can also combine dot operations with function chaining using |>, as in this example:

julia> 1:5 .|> [x->x^2, inv, x->2*x, -, isodd]

5-element Vector{Real}:

1

0.5

6

-4

true

CHAPTER 8. FUNCTIONS 87

8.19 Further Reading

We should mention here that this is far from a complete picture of defining functions. Julia has a sophis-

ticated type system and allows multiple dispatch on argument types. None of the examples given here

provide any type annotations on their arguments, meaning that they are applicable to all types of argu-

ments. The type system is described in Types and defining a function in terms of methods chosen by

multiple dispatch on run-time argument types is described in Methods.

Chapter 9

Control Flow

Julia provides a variety of control flow constructs:

• Compound Expressions: begin and ;.

• Conditional Evaluation: if-elseif-else and ?: (ternary operator).

• Short-Circuit Evaluation: logical operators && (“and”) and || (“or”), and also chained comparisons.

• Repeated Evaluation: Loops: while and for.

• Exception Handling: try-catch, error and throw.

• Tasks (aka Coroutines): yieldto.

The first five control flow mechanisms are standard to high-level programming languages. Tasks are not so

standard: they provide non-local control flow, making it possible to switch between temporarily-suspended

computations. This is a powerful construct: both exception handling and cooperative multitasking are

implemented in Julia using tasks. Everyday programming requires no direct usage of tasks, but certain

problems can be solved much more easily by using tasks.

9.1 Compound Expressions

Sometimes it is convenient to have a single expression which evaluates several subexpressions in order,

returning the value of the last subexpression as its value. There are two Julia constructs that accomplish

this: begin blocks and ; chains. The value of both compound expression constructs is that of the last

subexpression. Here's an example of a begin block:

julia> z = begin

x = 1

y = 2

x + y

end

3

Since these are fairly small, simple expressions, they could easily be placed onto a single line, which is

where the ; chain syntax comes in handy:

88

CHAPTER 9. CONTROL FLOW 89

julia> z = (x = 1; y = 2; x + y)

3

This syntax is particularly useful with the terse single-line function definition form introduced in Functions.

Although it is typical, there is no requirement that begin blocks be multiline or that ; chains be single-line:

julia> begin x = 1; y = 2; x + y end

3

julia> (x = 1;

y = 2;

x + y)

3

9.2 Conditional Evaluation

Conditional evaluation allows portions of code to be evaluated or not evaluated depending on the value of

a boolean expression. Here is the anatomy of the if-elseif-else conditional syntax:

if x < y

println("x is less than y")

elseif x > y

println("x is greater than y")

else

println("x is equal to y")

end

If the condition expression x < y is true, then the corresponding block is evaluated; otherwise the con-

dition expression x > y is evaluated, and if it is true, the corresponding block is evaluated; if neither

expression is true, the else block is evaluated. Here it is in action:

julia> function test(x, y)

if x < y

println("x is less than y")

elseif x > y

println("x is greater than y")

else

println("x is equal to y")

end

end

test (generic function with 1 method)

julia> test(1, 2)

x is less than y

julia> test(2, 1)

x is greater than y

julia> test(1, 1)

x is equal to y

CHAPTER 9. CONTROL FLOW 90

The elseif and else blocks are optional, and as many elseif blocks as desired can be used. The condition

expressions in the if-elseif-else construct are evaluated until the first one evaluates to true, after which

the associated block is evaluated, and no further condition expressions or blocks are evaluated.

if blocks are "leaky", i.e. they do not introduce a local scope. This means that new variables defined

inside the if clauses can be used after the if block, even if they weren't defined before. So, we could

have defined the test function above as

julia> function test(x,y)

if x < y

relation = "less than"

elseif x == y

relation = "equal to"

else

relation = "greater than"

end

println("x is ", relation, " y.")

end

test (generic function with 1 method)

julia> test(2, 1)

x is greater than y.

The variable relation is declared inside the if block, but used outside. However, when depending on this

behavior, make sure all possible code paths define a value for the variable. The following change to the

above function results in a runtime error

julia> function test(x,y)

if x < y

relation = "less than"

elseif x == y

relation = "equal to"

end

println("x is ", relation, " y.")

end

test (generic function with 1 method)

julia> test(1,2)

x is less than y.

julia> test(2,1)

ERROR: UndefVarError: `relation` not defined

Stacktrace:

[1] test(::Int64, ::Int64) at ./none:7

if blocks also return a value, which may seem unintuitive to users coming from many other languages.

This value is simply the return value of the last executed statement in the branch that was chosen, so

julia> x = 3

3

CHAPTER 9. CONTROL FLOW 91

julia> if x > 0

"positive!"

else

"negative..."

end

"positive!"

Note that very short conditional statements (one-liners) are frequently expressed using Short-Circuit Eval-

uation in Julia, as outlined in the next section.

Unlike C, MATLAB, Perl, Python, and Ruby – but like Java, and a few other stricter, typed languages – it is

an error if the value of a conditional expression is anything but true or false:

julia> if 1

println("true")

end

ERROR: TypeError: non-boolean (Int64) used in boolean context

This error indicates that the conditional was of the wrong type: Int64 rather than the required Bool.

The so-called "ternary operator", ?:, is closely related to the if-elseif-else syntax, but is used where

a conditional choice between single expression values is required, as opposed to conditional execution

of longer blocks of code. It gets its name from being the only operator in most languages taking three

operands:

a ? b : c

The expression a, before the ?, is a condition expression, and the ternary operation evaluates the expression

b, before the :, if the condition a is true or the expression c, after the :, if it is false. Note that the spaces

around ? and : are mandatory: an expression like a?b:c is not a valid ternary expression (but a newline is

acceptable after both the ? and the :).

The easiest way to understand this behavior is to see an example. In the previous example, the println

call is shared by all three branches: the only real choice is which literal string to print. This could be written

more concisely using the ternary operator. For the sake of clarity, let's try a two-way version first:

julia> x = 1; y = 2;

julia> println(x < y ? "less than" : "not less than")

less than

julia> x = 1; y = 0;

julia> println(x < y ? "less than" : "not less than")

not less than

If the expression x < y is true, the entire ternary operator expression evaluates to the string "less than"

and otherwise it evaluates to the string "not less than". The original three-way example requires chain-

ing multiple uses of the ternary operator together:

CHAPTER 9. CONTROL FLOW 92

julia> test(x, y) = println(x < y ? "x is less than y" :

x > y ? "x is greater than y" : "x is equal to y")

test (generic function with 1 method)

julia> test(1, 2)

x is less than y

julia> test(2, 1)

x is greater than y

julia> test(1, 1)

x is equal to y

To facilitate chaining, the operator associates from right to left.

It is significant that like if-elseif-else, the expressions before and after the : are only evaluated if the

condition expression evaluates to true or false, respectively:

julia> v(x) = (println(x); x)

v (generic function with 1 method)

julia> 1 < 2 ? v("yes") : v("no")

yes

"yes"

julia> 1 > 2 ? v("yes") : v("no")

no

"no"

9.3 Short-Circuit Evaluation

The && and || operators in Julia correspond to logical “and” and “or” operations, respectively, and are

typically used for this purpose. However, they have an additional property of short-circuit evaluation: they

don't necessarily evaluate their second argument, as explained below. (There are also bitwise & and |

operators that can be used as logical “and” and “or” without short-circuit behavior, but beware that & and

| have higher precedence than && and || for evaluation order.)

Short-circuit evaluation is quite similar to conditional evaluation. The behavior is found in most imperative

programming languages having the && and || boolean operators: in a series of boolean expressions con-

nected by these operators, only the minimum number of expressions are evaluated as are necessary to

determine the final boolean value of the entire chain. Some languages (like Python) refer to them as and

(&&) and or (||). Explicitly, this means that:

• In the expression a && b, the subexpression b is only evaluated if a evaluates to true.

• In the expression a || b, the subexpression b is only evaluated if a evaluates to false.

The reasoning is that a && b must be false if a is false, regardless of the value of b, and likewise, the

value of a || b must be true if a is true, regardless of the value of b. Both && and || associate to the

right, but && has higher precedence than || does. It's easy to experiment with this behavior:

CHAPTER 9. CONTROL FLOW 93

julia> t(x) = (println(x); true)

t (generic function with 1 method)

julia> f(x) = (println(x); false)

f (generic function with 1 method)

julia> t(1) && t(2)

1

2

true

julia> t(1) && f(2)

1

2

false

julia> f(1) && t(2)

1

false

julia> f(1) && f(2)

1

false

julia> t(1) || t(2)

1

true

julia> t(1) || f(2)

1

true

julia> f(1) || t(2)

1

2

true

julia> f(1) || f(2)

1

2

false

You can easily experiment in the same way with the associativity and precedence of various combinations

of && and || operators.

This behavior is frequently used in Julia to form an alternative to very short if statements. Instead of

if <cond> <statement> end, one can write <cond> && <statement> (which could be read as: <cond>

and then <statement>). Similarly, instead of if ! <cond> <statement> end, one can write <cond> ||

<statement> (which could be read as: <cond> or else <statement>).

For example, a recursive factorial routine could be defined like this:

julia> function fact(n::Int)

n >= 0 || error("n must be non-negative")

CHAPTER 9. CONTROL FLOW 94

n == 0 && return 1

n * fact(n-1)

end

fact (generic function with 1 method)

julia> fact(5)

120

julia> fact(0)

1

julia> fact(-1)

ERROR: n must be non-negative

Stacktrace:

[1] error at ./error.jl:33 [inlined]

[2] fact(::Int64) at ./none:2

[3] top-level scope

Boolean operations without short-circuit evaluation can be done with the bitwise boolean operators intro-

duced in Mathematical Operations and Elementary Functions: & and |. These are normal functions, which

happen to support infix operator syntax, but always evaluate their arguments:

julia> f(1) & t(2)

1

2

false

julia> t(1) | t(2)

1

2

true

Just like condition expressions used in if, elseif or the ternary operator, the operands of && or || must

be boolean values (true or false). Using a non-boolean value anywhere except for the last entry in a

conditional chain is an error:

julia> 1 && true

ERROR: TypeError: non-boolean (Int64) used in boolean context

On the other hand, any type of expression can be used at the end of a conditional chain. It will be evaluated

and returned depending on the preceding conditionals:

julia> true && (x = (1, 2, 3))

(1, 2, 3)

julia> false && (x = (1, 2, 3))

false

CHAPTER 9. CONTROL FLOW 95

9.4 Repeated Evaluation: Loops

There are two constructs for repeated evaluation of expressions: the while loop and the for loop. Here is

an example of a while loop:

julia> i = 1;

julia> while i <= 3

println(i)

global i += 1

end

1

2

3

The while loop evaluates the condition expression (i <= 5 in this case), and as long it remains true, keeps

also evaluating the body of the while loop. If the condition expression is false when the while loop is

first reached, the body is never evaluated.

The for loop makes common repeated evaluation idioms easier to write. Since counting up and down like

the above while loop does is so common, it can be expressed more concisely with a for loop:

julia> for i = 1:3

println(i)

end

1

2

3

Here the 1:3 is a range object, representing the sequence of numbers 1, 2, 3. The for loop iterates through

these values, assigning each one in turn to the variable i. One rather important distinction between the

previous while loop form and the for loop form is the scope during which the variable is visible. A for loop

always introduces a new iteration variable in its body, regardless of whether a variable of the same name

exists in the enclosing scope. This implies that on the one hand i need not be declared before the loop.

On the other hand it will not be visible outside the loop, nor will an outside variable of the same name be

affected. You'll either need a new interactive session instance or a different variable name to test this:

julia> for j = 1:3

println(j)

end

1

2

3

julia> j

ERROR: UndefVarError: `j` not defined

julia> j = 0;

julia> for j = 1:3

CHAPTER 9. CONTROL FLOW 96

println(j)

end

1

2

3

julia> j

0

Use for outer to modify the latter behavior and reuse an existing local variable.

See Scope of Variables for a detailed explanation of variable scope, outer, and how it works in Julia.

In general, the for loop construct can iterate over any container. In these cases, the alternative (but fully

equivalent) keyword in or ∈ is typically used instead of =, since it makes the code read more clearly:

julia> for i in [1,4,0]

println(i)

end

1

4

0

julia> for s ∈ ["foo","bar","baz"]

println(s)

end

foo

bar

baz

Various types of iterable containers will be introduced and discussed in later sections of the manual (see,

e.g., Multi-dimensional Arrays).

It is sometimes convenient to terminate the repetition of a while before the test condition is falsified or

stop iterating in a for loop before the end of the iterable object is reached. This can be accomplished with

the break keyword:

julia> i = 1;

julia> while true

println(i)

if i >= 3

break

end

global i += 1

end

1

2

3

julia> for j = 1:1000

println(j)

CHAPTER 9. CONTROL FLOW 97

if j >= 3

break

end

end

1

2

3

Without the break keyword, the above while loop would never terminate on its own, and the for loop

would iterate up to 1000. These loops are both exited early by using break.

In other circumstances, it is handy to be able to stop an iteration and move on to the next one immediately.

The continue keyword accomplishes this:

julia> for i = 1:10

if i % 3 != 0

continue

end

println(i)

end

3

6

9

This is a somewhat contrived example since we could produce the same behavior more clearly by negating

the condition and placing the println call inside the if block. In realistic usage there is more code to be

evaluated after the continue, and often there are multiple points from which one calls continue.

Multiple nested for loops can be combined into a single outer loop, forming the cartesian product of its

iterables:

julia> for i = 1:2, j = 3:4

println((i, j))

end

(1, 3)

(1, 4)

(2, 3)

(2, 4)

With this syntax, iterables may still refer to outer loop variables; e.g. for i = 1:n, j = 1:i is valid.

However a break statement inside such a loop exits the entire nest of loops, not just the inner one. Both

variables (i and j) are set to their current iteration values each time the inner loop runs. Therefore,

assignments to i will not be visible to subsequent iterations:

julia> for i = 1:2, j = 3:4

println((i, j))

i = 0

end

(1, 3)

(1, 4)

(2, 3)

(2, 4)

CHAPTER 9. CONTROL FLOW 98

If this example were rewritten to use a for keyword for each variable, then the output would be different:

the second and fourth values would contain 0.

Multiple containers can be iterated over at the same time in a single for loop using zip:

julia> for (j, k) in zip([1 2 3], [4 5 6 7])

println((j,k))

end

(1, 4)

(2, 5)

(3, 6)

Using zip will create an iterator that is a tuple containing the subiterators for the containers passed to it.

The zip iterator will iterate over all subiterators in order, choosing the ith element of each subiterator in
the ith iteration of the for loop. Once any of the subiterators run out, the for loop will stop.

9.5 Exception Handling

When an unexpected condition occurs, a function may be unable to return a reasonable value to its caller.

In such cases, it may be best for the exceptional condition to either terminate the program while printing

a diagnostic error message, or if the programmer has provided code to handle such exceptional circum-

stances then allow that code to take the appropriate action.

Built-in Exceptions

Exceptions are thrown when an unexpected condition has occurred. The built-in Exceptions listed below

all interrupt the normal flow of control.

For example, the sqrt function throws a DomainError if applied to a negative real value:

julia> sqrt(-1)

ERROR: DomainError with -1.0:

sqrt was called with a negative real argument but will only return a complex result if called

with a complex argument. Try sqrt(Complex(x)).↪→

Stacktrace:

[...]

You may define your own exceptions in the following way:

julia> struct MyCustomException <: Exception end

The throw function

Exceptions can be created explicitly with throw. For example, a function defined only for nonnegative

numbers could be written to throw a DomainError if the argument is negative:

julia> f(x) = x>=0 ? exp(-x) : throw(DomainError(x, "argument must be nonnegative"))

f (generic function with 1 method)

julia> f(1)

CHAPTER 9. CONTROL FLOW 99

Exception

ArgumentError

BoundsError

CompositeException

DimensionMismatch

DivideError

DomainError

EOFError

ErrorException

InexactError

InitError

InterruptException

InvalidStateException

KeyError

LoadError

OutOfMemoryError

ReadOnlyMemoryError

RemoteException

MethodError

OverflowError

Meta.ParseError

SystemError

TypeError

UndefRefError

UndefVarError

StringIndexError

0.36787944117144233

julia> f(-1)

ERROR: DomainError with -1:

argument must be nonnegative

Stacktrace:

[1] f(::Int64) at ./none:1

Note that DomainError without parentheses is not an exception, but a type of exception. It needs to be

called to obtain an Exception object:

julia> typeof(DomainError(nothing)) <: Exception

true

julia> typeof(DomainError) <: Exception

false

Additionally, some exception types take one or more arguments that are used for error reporting:

julia> throw(UndefVarError(:x))

ERROR: UndefVarError: `x` not defined

CHAPTER 9. CONTROL FLOW 100

This mechanism can be implemented easily by custom exception types following the way UndefVarError

is written:

julia> struct MyUndefVarError <: Exception

var::Symbol

end

julia> Base.showerror(io::IO, e::MyUndefVarError) = print(io, e.var, " not defined")

Note

When writing an error message, it is preferred to make the first word lowercase. For example,

size(A) == size(B) || throw(DimensionMismatch("size of A not equal to size of B"))

is preferred over

size(A) == size(B) || throw(DimensionMismatch("Size of A not equal to size of B")).

However, sometimes it makes sense to keep the uppercase first letter, for instance if an argu-

ment to a function is a capital letter:

size(A,1) == size(B,2) || throw(DimensionMismatch("A has first dimension...")).

Errors

The error function is used to produce an ErrorException that interrupts the normal flow of control.

Suppose we want to stop execution immediately if the square root of a negative number is taken. To do

this, we can define a fussy version of the sqrt function that raises an error if its argument is negative:

julia> fussy_sqrt(x) = x >= 0 ? sqrt(x) : error("negative x not allowed")

fussy_sqrt (generic function with 1 method)

julia> fussy_sqrt(2)

1.4142135623730951

julia> fussy_sqrt(-1)

ERROR: negative x not allowed

Stacktrace:

[1] error at ./error.jl:33 [inlined]

[2] fussy_sqrt(::Int64) at ./none:1

[3] top-level scope

If fussy_sqrt is called with a negative value from another function, instead of trying to continue execution

of the calling function, it returns immediately, displaying the error message in the interactive session:

julia> function verbose_fussy_sqrt(x)

println("before fussy_sqrt")

r = fussy_sqrt(x)

println("after fussy_sqrt")

return r

end

verbose_fussy_sqrt (generic function with 1 method)

CHAPTER 9. CONTROL FLOW 101

julia> verbose_fussy_sqrt(2)

before fussy_sqrt

after fussy_sqrt

1.4142135623730951

julia> verbose_fussy_sqrt(-1)

before fussy_sqrt

ERROR: negative x not allowed

Stacktrace:

[1] error at ./error.jl:33 [inlined]

[2] fussy_sqrt at ./none:1 [inlined]

[3] verbose_fussy_sqrt(::Int64) at ./none:3

[4] top-level scope

The try/catch statement

The try/catch statement allows for Exceptions to be tested for, and for the graceful handling of things that

may ordinarily break your application. For example, in the below code the function for square root would

normally throw an exception. By placing a try/catch block around it we can mitigate that here. You may

choose how you wish to handle this exception, whether logging it, return a placeholder value or as in the

case below where we just printed out a statement. One thing to think about when deciding how to handle

unexpected situations is that using a try/catch block is much slower than using conditional branching to

handle those situations. Below there are more examples of handling exceptions with a try/catch block:

julia> try

sqrt("ten")

catch e

println("You should have entered a numeric value")

end

You should have entered a numeric value

try/catch statements also allow the Exception to be saved in a variable. The following contrived example

calculates the square root of the second element of x if x is indexable, otherwise assumes x is a real number

and returns its square root:

julia> sqrt_second(x) = try

sqrt(x[2])

catch y

if isa(y, DomainError)

sqrt(complex(x[2], 0))

elseif isa(y, BoundsError)

sqrt(x)

end

end

sqrt_second (generic function with 1 method)

julia> sqrt_second([1 4])

2.0

julia> sqrt_second([1 -4])

CHAPTER 9. CONTROL FLOW 102

0.0 + 2.0im

julia> sqrt_second(9)

3.0

julia> sqrt_second(-9)

ERROR: DomainError with -9.0:

sqrt was called with a negative real argument but will only return a complex result if called

with a complex argument. Try sqrt(Complex(x)).↪→

Stacktrace:

[...]

Note that the symbol following catch will always be interpreted as a name for the exception, so care is

needed when writing try/catch expressions on a single line. The following code will not work to return

the value of x in case of an error:

try bad() catch x end

Instead, use a semicolon or insert a line break after catch:

try bad() catch; x end

try bad()

catch

x

end

The power of the try/catch construct lies in the ability to unwind a deeply nested computation immediately

to a much higher level in the stack of calling functions. There are situations where no error has occurred,

but the ability to unwind the stack and pass a value to a higher level is desirable. Julia provides the rethrow,

backtrace, catch_backtrace and current_exceptions functions for more advanced error handling.

else Clauses

Julia 1.8

This functionality requires at least Julia 1.8.

In some cases, one may not only want to appropriately handle the error case, but also want to run some

code only if the try block succeeds. For this, an else clause can be specified after the catch block that

is run whenever no error was thrown previously. The advantage over including this code in the try block

instead is that any further errors don't get silently caught by the catch clause.

local x

try

x = read("file", String)

catch

handle read errors

else

do something with x

end

CHAPTER 9. CONTROL FLOW 103

Note

The try, catch, else, and finally clauses each introduce their own scope blocks, so if a

variable is only defined in the try block, it can not be accessed by the else or finally clause:

julia> try

foo = 1

catch

else

foo

end

ERROR: UndefVarError: `foo` not defined

Use the local keyword outside the try block to make the variable accessible from anywhere

within the outer scope.

finally Clauses

In code that performs state changes or uses resources like files, there is typically clean-up work (such as

closing files) that needs to be done when the code is finished. Exceptions potentially complicate this task,

since they can cause a block of code to exit before reaching its normal end. The finally keyword provides

a way to run some code when a given block of code exits, regardless of how it exits.

For example, here is how we can guarantee that an opened file is closed:

f = open("file")

try

operate on file f

finally

close(f)

end

When control leaves the try block (for example due to a return, or just finishing normally), close(f) will

be executed. If the try block exits due to an exception, the exception will continue propagating. A catch

block may be combined with try and finally as well. In this case the finally block will run after catch

has handled the error.

9.6 Tasks (aka Coroutines)

Tasks are a control flow feature that allows computations to be suspended and resumed in a flexible manner.

We mention them here only for completeness; for a full discussion see Asynchronous Programming.

Chapter 10

Scope of Variables

The scope of a variable is the region of code within which a variable is accessible. Variable scoping helps

avoid variable naming conflicts. The concept is intuitive: two functions can both have arguments called

x without the two x's referring to the same thing. Similarly, there are many other cases where different

blocks of code can use the same name without referring to the same thing. The rules for when the same

variable name does or doesn't refer to the same thing are called scope rules; this section spells them out

in detail.

Certain constructs in the language introduce scope blocks, which are regions of code that are eligible to

be the scope of some set of variables. The scope of a variable cannot be an arbitrary set of source lines;

instead, it will always line up with one of these blocks. There are two main types of scopes in Julia, global

scope and local scope. The latter can be nested. There is also a distinction in Julia between constructs which

introduce a "hard scope" and those which only introduce a "soft scope", which affects whether shadowing

a global variable by the same name is allowed or not.

Scope constructs

The constructs introducing scope blocks are:

Construct Scope type Allowed within

module, baremodule global global

struct local (soft) global

for, while, try local (soft) global, local

macro local (hard) global

functions, do blocks, let blocks, comprehensions, generators local (hard) global, local

Notably missing from this table are begin blocks and if blocks which do not introduce new scopes. The

three types of scopes follow somewhat different rules which will be explained below.

Julia uses lexical scoping, meaning that a function's scope does not inherit from its caller's scope, but from

the scope in which the function was defined. For example, in the following code the x inside foo refers to

the x in the global scope of its module Bar:

julia> module Bar

x = 1

foo() = x

end;

104

https://en.wikipedia.org/wiki/Variable_shadowing
https://en.wikipedia.org/wiki/Scope_(computer_science)#Lexical_scope_vs._dynamic_scope

CHAPTER 10. SCOPE OF VARIABLES 105

and not a x in the scope where foo is used:

julia> import .Bar

julia> x = -1;

julia> Bar.foo()

1

Thus lexical scope means that what a variable in a particular piece of code refers to can be deduced from

the code in which it appears alone and does not depend on how the program executes. A scope nested

inside another scope can "see" variables in all the outer scopes in which it is contained. Outer scopes, on

the other hand, cannot see variables in inner scopes.

10.1 Global Scope

Each module introduces a new global scope, separate from the global scope of all other modules—there

is no all-encompassing global scope. Modules can introduce variables of other modules into their scope

through the using or import statements or through qualified access using the dot-notation, i.e. eachmodule

is a so-called namespace as well as a first-class data structure associating names with values.

If a top-level expression contains a variable declaration with keyword local, then that variable is not

accessible outside that expression. The variable inside the expression does not affect global variables of

the same name. An example is to declare local x in a begin or if block at the top-level:

julia> x = 1

begin

local x = 0

@show x

end

@show x;

x = 0

x = 1

Note that the interactive prompt (aka REPL) is in the global scope of the module Main.

10.2 Local Scope

A new local scope is introduced by most code blocks (see above table for a complete list). If such a block

is syntactically nested inside of another local scope, the scope it creates is nested inside of all the local

scopes that it appears within, which are all ultimately nested inside of the global scope of the module in

which the code is evaluated. Variables in outer scopes are visible from any scope they contain — meaning

that they can be read and written in inner scopes — unless there is a local variable with the same name

that "shadows" the outer variable of the same name. This is true even if the outer local is declared after

(in the sense of textually below) an inner block. When we say that a variable "exists" in a given scope, this

means that a variable by that name exists in any of the scopes that the current scope is nested inside of,

including the current one.

Some programming languages require explicitly declaring new variables before using them. Explicit dec-

laration works in Julia too: in any local scope, writing local x declares a new local variable in that scope,

CHAPTER 10. SCOPE OF VARIABLES 106

regardless of whether there is already a variable named x in an outer scope or not. Declaring each new

variable like this is somewhat verbose and tedious, however, so Julia, like many other languages, considers

assignment to a variable name that doesn't already exist to implicitly declare that variable. If the current

scope is global, the new variable is global; if the current scope is local, the new variable is local to the

innermost local scope and will be visible inside of that scope but not outside of it. If you assign to an exist-

ing local, it always updates that existing local: you can only shadow a local by explicitly declaring a new

local in a nested scope with the local keyword. In particular, this applies to variables assigned in inner

functions, which may surprise users coming from Python where assignment in an inner function creates a

new local unless the variable is explicitly declared to be non-local.

Mostly this is pretty intuitive, but as with many things that behave intuitively, the details are more subtle

than one might naïvely imagine.

When x = <value> occurs in a local scope, Julia applies the following rules to decide what the expression

means based on where the assignment expression occurs and what x already refers to at that location:

1. Existing local: If x is already a local variable, then the existing local x is assigned;

2. Hard scope: If x is not already a local variable and assignment occurs inside of any hard scope

construct (i.e. within a let block, function or macro body, comprehension, or generator), a new

local named x is created in the scope of the assignment;

3. Soft scope: If x is not already a local variable and all of the scope constructs containing the assign-

ment are soft scopes (loops, try/catch blocks, or struct blocks), the behavior depends on whether

the global variable x is defined:

– if global x is undefined, a new local named x is created in the scope of the assignment;

– if global x is defined, the assignment is considered ambiguous:

∗ in non-interactive contexts (files, eval), an ambiguity warning is printed and a new local is

created;

∗ in interactive contexts (REPL, notebooks), the global variable x is assigned.

You may note that in non-interactive contexts the hard and soft scope behaviors are identical except that

a warning is printed when an implicitly local variable (i.e. not declared with local x) shadows a global. In

interactive contexts, the rules follow a more complex heuristic for the sake of convenience. This is covered

in depth in examples that follow.

Now that you know the rules, let's look at some examples. Each example is assumed to be evaluated in a

fresh REPL session so that the only globals in each snippet are the ones that are assigned in that block of

code.

We'll begin with a nice and clear-cut situation—assignment inside of a hard scope, in this case a function

body, when no local variable by that name already exists:

julia> function greet()

x = "hello" # new local

println(x)

end

greet (generic function with 1 method)

julia> greet()

CHAPTER 10. SCOPE OF VARIABLES 107

hello

julia> x # global

ERROR: UndefVarError: `x` not defined

Inside of the greet function, the assignment x = "hello" causes x to be a new local variable in the

function's scope. There are two relevant facts: the assignment occurs in local scope and there is no

existing local x variable. Since x is local, it doesn't matter if there is a global named x or not. Here for

example we define x = 123 before defining and calling greet:

julia> x = 123 # global

123

julia> function greet()

x = "hello" # new local

println(x)

end

greet (generic function with 1 method)

julia> greet()

hello

julia> x # global

123

Since the x in greet is local, the value (or lack thereof) of the global x is unaffected by calling greet. The

hard scope rule doesn't care whether a global named x exists or not: assignment to x in a hard scope is

local (unless x is declared global).

The next clear cut situation we'll consider is when there is already a local variable named x, in which case x

= <value> always assigns to this existing local x. This is true whether the assignment occurs in the same

local scope, an inner local scope in the same function body, or in the body of a function nested inside of

another function, also known as a closure.

We'll use the sum_to function, which computes the sum of integers from one up to n, as an example:

function sum_to(n)

s = 0 # new local

for i = 1:n

s = s + i # assign existing local

end

return s # same local

end

As in the previous example, the first assignment to s at the top of sum_to causes s to be a new local

variable in the body of the function. The for loop has its own inner local scope within the function scope.

At the point where s = s + i occurs, s is already a local variable, so the assignment updates the existing

s instead of creating a new local. We can test this out by calling sum_to in the REPL:

julia> function sum_to(n)

s = 0 # new local

https://en.wikipedia.org/wiki/Closure_(computer_programming)

CHAPTER 10. SCOPE OF VARIABLES 108

for i = 1:n

s = s + i # assign existing local

end

return s # same local

end

sum_to (generic function with 1 method)

julia> sum_to(10)

55

julia> s # global

ERROR: UndefVarError: `s` not defined

Since s is local to the function sum_to, calling the function has no effect on the global variable s. We

can also see that the update s = s + i in the for loop must have updated the same s created by the

initialization s = 0 since we get the correct sum of 55 for the integers 1 through 10.

Let's dig into the fact that the for loop body has its own scope for a second by writing a slightly more

verbose variation which we'll call sum_to_def, in which we save the sum s + i in a variable t before

updating s:

julia> function sum_to_def(n)

s = 0 # new local

for i = 1:n

t = s + i # new local `t`

s = t # assign existing local `s`

end

return s, @isdefined(t)

end

sum_to_def (generic function with 1 method)

julia> sum_to_def(10)

(55, false)

This version returns s as before but it also uses the @isdefined macro to return a boolean indicating

whether there is a local variable named t defined in the function's outermost local scope. As you can see,

there is no t defined outside of the for loop body. This is because of the hard scope rule again: since

the assignment to t occurs inside of a function, which introduces a hard scope, the assignment causes t

to become a new local variable in the local scope where it appears, i.e. inside of the loop body. Even if

there were a global named t, it would make no difference—the hard scope rule isn't affected by anything

in global scope.

Note that the local scope of a for loop body is no different from the local scope of an inner function. This

means that we could rewrite this example so that the loop body is implemented as a call to an inner helper

function and it behaves the same way:

julia> function sum_to_def_closure(n)

function loop_body(i)

t = s + i # new local `t`

s = t # assign same local `s` as below

end

CHAPTER 10. SCOPE OF VARIABLES 109

s = 0 # new local

for i = 1:n

loop_body(i)

end

return s, @isdefined(t)

end

sum_to_def_closure (generic function with 1 method)

julia> sum_to_def_closure(10)

(55, false)

This example illustrates a couple of key points:

1. Inner function scopes are just like any other nested local scope. In particular, if a variable is already

a local outside of an inner function and you assign to it in the inner function, the outer local variable

is updated.

2. It doesn't matter if the definition of an outer local happens below where it is updated, the rule

remains the same. The entire enclosing local scope is parsed and its locals determined before inner

local meanings are resolved.

This design means that you can generally move code in or out of an inner function without changing its

meaning, which facilitates a number of common idioms in the language using closures (see do blocks).

Let's move onto somemore ambiguous cases covered by the soft scope rule. We'll explore this by extracting

the bodies of the greet and sum_to_def functions into soft scope contexts. First, let's put the body of greet

in a for loop—which is soft, rather than hard—and evaluate it in the REPL:

julia> for i = 1:3

x = "hello" # new local

println(x)

end

hello

hello

hello

julia> x

ERROR: UndefVarError: `x` not defined

Since the global x is not defined when the for loop is evaluated, the first clause of the soft scope rule

applies and x is created as local to the for loop and therefore global x remains undefined after the loop

executes. Next, let's consider the body of sum_to_def extracted into global scope, fixing its argument to

n = 10

s = 0

for i = 1:10

t = s + i

s = t

end

s

@isdefined(t)

CHAPTER 10. SCOPE OF VARIABLES 110

What does this code do? Hint: it's a trick question. The answer is "it depends." If this code is entered

interactively, it behaves the same way it does in a function body. But if the code appears in a file, it prints

an ambiguity warning and throws an undefined variable error. Let's see it working in the REPL first:

julia> s = 0 # global

0

julia> for i = 1:10

t = s + i # new local `t`

s = t # assign global `s`

end

julia> s # global

55

julia> @isdefined(t) # global

false

The REPL approximates being in the body of a function by deciding whether assignment inside the loop

assigns to a global or creates new local based on whether a global variable by that name is defined or not.

If a global by the name exists, then the assignment updates it. If no global exists, then the assignment

creates a new local variable. In this example we see both cases in action:

• There is no global named t, so t = s + i creates a new t that is local to the for loop;

• There is a global named s, so s = t assigns to it.

The second fact is why execution of the loop changes the global value of s and the first fact is why t is

still undefined after the loop executes. Now, let's try evaluating this same code as though it were in a file

instead:

julia> code = """

s = 0 # global

for i = 1:10

t = s + i # new local `t`

s = t # new local `s` with warning

end

s, # global

@isdefined(t) # global

""";

julia> include_string(Main, code)

┌ Warning: Assignment to `s` in soft scope is ambiguous because a global variable by the same

name exists: `s` will be treated as a new local. Disambiguate by using `local s` to suppress

this warning or `global s` to assign to the existing global variable.

↪→

↪→

└ @ string:4

ERROR: LoadError: UndefVarError: `s` not defined

Here we use include_string, to evaluate code as though it were the contents of a file. We could also

save code to a file and then call include on that file—the result would be the same. As you can see, this

behaves quite different from evaluating the same code in the REPL. Let's break down what's happening

here:

CHAPTER 10. SCOPE OF VARIABLES 111

• global s is defined with the value 0 before the loop is evaluated

• the assignment s = t occurs in a soft scope—a for loop outside of any function body or other hard

scope construct

• therefore the second clause of the soft scope rule applies, and the assignment is ambiguous so a

warning is emitted

• execution continues, making s local to the for loop body

• since s is local to the for loop, it is undefined when t = s + i is evaluated, causing an error

• evaluation stops there, but if it got to s and @isdefined(t), it would return 0 and false.

This demonstrates some important aspects of scope: in a scope, each variable can only have one meaning,

and that meaning is determined regardless of the order of expressions. The presence of the expression s

= t in the loop causes s to be local to the loop, which means that it is also local when it appears on the

right hand side of t = s + i, even though that expression appears first and is evaluated first. One might

imagine that the s on the first line of the loop could be global while the s on the second line of the loop

is local, but that's not possible since the two lines are in the same scope block and each variable can only

mean one thing in a given scope.

On Soft Scope

We have now covered all the local scope rules, but before wrapping up this section, perhaps a few words

should be said about why the ambiguous soft scope case is handled differently in interactive and non-

interactive contexts. There are two obvious questions one could ask:

1. Why doesn't it just work like the REPL everywhere?

2. Why doesn't it just work like in files everywhere? And maybe skip the warning?

In Julia ≤ 0.6, all global scopes did work like the current REPL: when x = <value> occurred in a loop (or

try/catch, or struct body) but outside of a function body (or let block or comprehension), it was decided

based on whether a global named x was defined or not whether x should be local to the loop. This behavior

has the advantage of being intuitive and convenient since it approximates the behavior inside of a function

body as closely as possible. In particular, it makes it easy to move code back and forth between a function

body and the REPL when trying to debug the behavior of a function. However, it has some downsides.

First, it's quite a complex behavior: many people over the years were confused about this behavior and

complained that it was complicated and hard both to explain and understand. Fair point. Second, and

arguably worse, is that it's bad for programming "at scale." When you see a small piece of code in one

place like this, it's quite clear what's going on:

s = 0

for i = 1:10

s += i

end

Obviously the intention is to modify the existing global variable s. What else could it mean? However, not

all real world code is so short or so clear. We found that code like the following often occurs in the wild:

CHAPTER 10. SCOPE OF VARIABLES 112

x = 123

much later

maybe in a different file

for i = 1:10

x = "hello"

println(x)

end

much later

maybe in yet another file

or maybe back in the first one where `x = 123`

y = x + 234

It's far less clear what should happen here. Since x + "hello" is a method error, it seems probable that the

intention is for x to be local to the for loop. But runtime values and what methods happen to exist cannot

be used to determine the scopes of variables. With the Julia ≤ 0.6 behavior, it's especially concerning that

someone might have written the for loop first, had it working just fine, but later when someone else adds

a new global far away—possibly in a different file—the code suddenly changes meaning and either breaks

noisily or, worse still, silently does the wrong thing. This kind of "spooky action at a distance" is something

that good programming language designs should prevent.

So in Julia 1.0, we simplified the rules for scope: in any local scope, assignment to a name that wasn't

already a local variable created a new local variable. This eliminated the notion of soft scope entirely as

well as removing the potential for spooky action. We uncovered and fixed a significant number of bugs due

to the removal of soft scope, vindicating the choice to get rid of it. And there was much rejoicing! Well, no,

not really. Because some people were angry that they now had to write:

s = 0

for i = 1:10

global s += i

end

Do you see that global annotation in there? Hideous. Obviously this situation could not be tolerated. But

seriously, there are two main issues with requiring global for this kind of top-level code:

1. It's no longer convenient to copy and paste the code from inside a function body into the REPL to

debug it—you have to add global annotations and then remove them again to go back;

2. Beginners will write this kind of code without the global and have no idea why their code doesn't

work—the error that they get is that s is undefined, which does not seem to enlighten anyone who

happens to make this mistake.

As of Julia 1.5, this code works without the global annotation in interactive contexts like the REPL or

Jupyter notebooks (just like Julia 0.6) and in files and other non-interactive contexts, it prints this very

direct warning:

https://en.wikipedia.org/wiki/Action_at_a_distance_(computer_programming)

CHAPTER 10. SCOPE OF VARIABLES 113

Assignment to s in soft scope is ambiguous because a global variable by the same name exists:

s will be treated as a new local. Disambiguate by using local s to suppress this warning or

global s to assign to the existing global variable.

This addresses both issues while preserving the "programming at scale" benefits of the 1.0 behavior: global

variables have no spooky effect on the meaning of code that may be far away; in the REPL copy-and-

paste debugging works and beginners don't have any issues; any time someone either forgets a global

annotation or accidentally shadows an existing global with a local in a soft scope, which would be confusing

anyway, they get a nice clear warning.

An important property of this design is that any code that executes in a file without a warning will behave

the same way in a fresh REPL. And on the flip side, if you take a REPL session and save it to file, if it behaves

differently than it did in the REPL, then you will get a warning.

Let Blocks

let statements create a new hard scope block (see above) and introduce new variable bindings each time

they run. The variable need not be immediately assigned:

julia> var1 = let x

for i in 1:5

(i == 4) && (x = i; break)

end

x

end

4

Whereas assignments might reassign a new value to an existing value location, let always creates a new

location. This difference is usually not important, and is only detectable in the case of variables that outlive

their scope via closures. The let syntax accepts a comma-separated series of assignments and variable

names:

julia> x, y, z = -1, -1, -1;

julia> let x = 1, z

println("x: $x, y: $y") # x is local variable, y the global

println("z: $z") # errors as z has not been assigned yet but is local

end

x: 1, y: -1

ERROR: UndefVarError: `z` not defined

The assignments are evaluated in order, with each right-hand side evaluated in the scope before the new

variable on the left-hand side has been introduced. Therefore it makes sense to write something like let

x = x since the two x variables are distinct and have separate storage. Here is an example where the

behavior of let is needed:

julia> Fs = Vector{Any}(undef, 2); i = 1;

julia> while i <= 2

CHAPTER 10. SCOPE OF VARIABLES 114

Fs[i] = ()->i

global i += 1

end

julia> Fs[1]()

3

julia> Fs[2]()

3

Here we create and store two closures that return variable i. However, it is always the same variable i, so

the two closures behave identically. We can use let to create a new binding for i:

julia> Fs = Vector{Any}(undef, 2); i = 1;

julia> while i <= 2

let i = i

Fs[i] = ()->i

end

global i += 1

end

julia> Fs[1]()

1

julia> Fs[2]()

2

Since the begin construct does not introduce a new scope, it can be useful to use a zero-argument let to

just introduce a new scope block without creating any new bindings immediately:

julia> let

local x = 1

let

local x = 2

end

x

end

1

Since let introduces a new scope block, the inner local x is a different variable than the outer local x. This

particular example is equivalent to:

julia> let x = 1

let x = 2

end

x

end

1

CHAPTER 10. SCOPE OF VARIABLES 115

Loops and Comprehensions

In loops and comprehensions, new variables introduced in their body scopes are freshly allocated for each

loop iteration, as if the loop body were surrounded by a let block, as demonstrated by this example:

julia> Fs = Vector{Any}(undef, 2);

julia> for j = 1:2

Fs[j] = ()->j

end

julia> Fs[1]()

1

julia> Fs[2]()

2

A for loop or comprehension iteration variable is always a new variable:

julia> function f()

i = 0

for i = 1:3

empty

end

return i

end;

julia> f()

0

However, it is occasionally useful to reuse an existing local variable as the iteration variable. This can be

done conveniently by adding the keyword outer:

julia> function f()

i = 0

for outer i = 1:3

empty

end

return i

end;

julia> f()

3

10.3 Constants

A common use of variables is giving names to specific, unchanging values. Such variables are only assigned

once. This intent can be conveyed to the compiler using the const keyword:

julia> const e = 2.71828182845904523536;

julia> const pi = 3.14159265358979323846;

CHAPTER 10. SCOPE OF VARIABLES 116

Multiple variables can be declared in a single const statement:

julia> const a, b = 1, 2

(1, 2)

The const declaration should only be used in global scope on globals. It is difficult for the compiler to

optimize code involving global variables, since their values (or even their types) might change at almost

any time. If a global variable will not change, adding a const declaration solves this performance problem.

Local constants are quite different. The compiler is able to determine automatically when a local variable

is constant, so local constant declarations are not necessary, and in fact are currently not supported.

Special top-level assignments, such as those performed by the function and struct keywords, are con-

stant by default.

Note that const only affects the variable binding; the variable may be bound to a mutable object (such as

an array), and that object may still be modified. Additionally when one tries to assign a value to a variable

that is declared constant the following scenarios are possible:

• if a new value has a different type than the type of the constant then an error is thrown:

julia> const x = 1.0

1.0

julia> x = 1

ERROR: invalid redefinition of constant x

• if a new value has the same type as the constant then a warning is printed:

julia> const y = 1.0

1.0

julia> y = 2.0

WARNING: redefinition of constant y. This may fail, cause incorrect answers, or produce other

errors.↪→

2.0

• if an assignment would not result in the change of variable value no message is given:

julia> const z = 100

100

julia> z = 100

100

The last rule applies to immutable objects even if the variable binding would change, e.g.:

CHAPTER 10. SCOPE OF VARIABLES 117

julia> const s1 = "1"

"1"

julia> s2 = "1"

"1"

julia> pointer.([s1, s2], 1)

2-element Array{Ptr{UInt8},1}:

Ptr{UInt8} @0x00000000132c9638

Ptr{UInt8} @0x0000000013dd3d18

julia> s1 = s2

"1"

julia> pointer.([s1, s2], 1)

2-element Array{Ptr{UInt8},1}:

Ptr{UInt8} @0x0000000013dd3d18

Ptr{UInt8} @0x0000000013dd3d18

However, for mutable objects the warning is printed as expected:

julia> const a = [1]

1-element Vector{Int64}:

1

julia> a = [1]

WARNING: redefinition of constant a. This may fail, cause incorrect answers, or produce other

errors.↪→

1-element Vector{Int64}:

1

Note that although sometimes possible, changing the value of a const variable is strongly discouraged, and

is intended only for convenience during interactive use. Changing constants can cause various problems

or unexpected behaviors. For instance, if a method references a constant and is already compiled before

the constant is changed, then it might keep using the old value:

julia> const x = 1

1

julia> f() = x

f (generic function with 1 method)

julia> f()

1

julia> x = 2

WARNING: redefinition of constant x. This may fail, cause incorrect answers, or produce other

errors.↪→

2

julia> f()

1

CHAPTER 10. SCOPE OF VARIABLES 118

10.4 Typed Globals

Julia 1.8

Support for typed globals was added in Julia 1.8

Similar to being declared as constants, global bindings can also be declared to always be of a constant

type. This can either be done without assigning an actual value using the syntax global x::T or upon

assignment as x::T = 123.

julia> x::Float64 = 2.718

2.718

julia> f() = x

f (generic function with 1 method)

julia> Base.return_types(f)

1-element Vector{Any}:

Float64

For any assignment to a global, Julia will first try to convert it to the appropriate type using convert:

julia> global y::Int

julia> y = 1.0

1.0

julia> y

1

julia> y = 3.14

ERROR: InexactError: Int64(3.14)

Stacktrace:

[...]

The type does not need to be concrete, but annotations with abstract types typically have little performance

benefit.

Once a global has either been assigned to or its type has been set, the binding type is not allowed to

change:

julia> x = 1

1

julia> global x::Int

ERROR: cannot set type for global x. It already has a value or is already set to a different

type.↪→

Stacktrace:

[...]

Chapter 11

Types

Type systems have traditionally fallen into two quite different camps: static type systems, where every

program expression must have a type computable before the execution of the program, and dynamic type

systems, where nothing is known about types until run time, when the actual values manipulated by the

program are available. Object orientation allows some flexibility in statically typed languages by letting

code be written without the precise types of values being known at compile time. The ability to write code

that can operate on different types is called polymorphism. All code in classic dynamically typed languages

is polymorphic: only by explicitly checking types, or when objects fail to support operations at run-time,

are the types of any values ever restricted.

Julia's type system is dynamic, but gains some of the advantages of static type systems by making it

possible to indicate that certain values are of specific types. This can be of great assistance in generating

efficient code, but even more significantly, it allows method dispatch on the types of function arguments

to be deeply integrated with the language. Method dispatch is explored in detail in Methods, but is rooted

in the type system presented here.

The default behavior in Julia when types are omitted is to allow values to be of any type. Thus, one can

write many useful Julia functions without ever explicitly using types. When additional expressiveness is

needed, however, it is easy to gradually introduce explicit type annotations into previously "untyped" code.

Adding annotations serves three primary purposes: to take advantage of Julia's powerful multiple-dispatch

mechanism, to improve human readability, and to catch programmer errors.

Describing Julia in the lingo of type systems, it is: dynamic, nominative and parametric. Generic types

can be parameterized, and the hierarchical relationships between types are explicitly declared, rather

than implied by compatible structure. One particularly distinctive feature of Julia's type system is that

concrete types may not subtype each other: all concrete types are final and may only have abstract types

as their supertypes. While this might at first seem unduly restrictive, it has many beneficial consequences

with surprisingly few drawbacks. It turns out that being able to inherit behavior is much more important

than being able to inherit structure, and inheriting both causes significant difficulties in traditional object-

oriented languages. Other high-level aspects of Julia's type system that should be mentioned up front

are:

• There is no division between object and non-object values: all values in Julia are true objects having

a type that belongs to a single, fully connected type graph, all nodes of which are equally first-class

as types.

119

https://en.wikipedia.org/wiki/Type_system
https://en.wikipedia.org/wiki/Nominal_type_system
https://en.wikipedia.org/wiki/Structural_type_system

CHAPTER 11. TYPES 120

• There is no meaningful concept of a "compile-time type": the only type a value has is its actual type

when the program is running. This is called a "run-time type" in object-oriented languages where

the combination of static compilation with polymorphism makes this distinction significant.

• Only values, not variables, have types – variables are simply names bound to values, although for

simplicity we may say "type of a variable" as shorthand for "type of the value to which a variable

refers".

• Both abstract and concrete types can be parameterized by other types. They can also be param-

eterized by symbols, by values of any type for which isbits returns true (essentially, things like

numbers and bools that are stored like C types or structs with no pointers to other objects), and

also by tuples thereof. Type parameters may be omitted when they do not need to be referenced or

restricted.

Julia's type system is designed to be powerful and expressive, yet clear, intuitive and unobtrusive. Many

Julia programmers may never feel the need to write code that explicitly uses types. Some kinds of pro-

gramming, however, become clearer, simpler, faster and more robust with declared types.

11.1 Type Declarations

The :: operator can be used to attach type annotations to expressions and variables in programs. There

are two primary reasons to do this:

1. As an assertion to help confirm that your program works the way you expect, and

2. To provide extra type information to the compiler, which can then improve performance in some

cases.

When appended to an expression computing a value, the :: operator is read as "is an instance of". It can be

used anywhere to assert that the value of the expression on the left is an instance of the type on the right.

When the type on the right is concrete, the value on the left must have that type as its implementation –

recall that all concrete types are final, so no implementation is a subtype of any other. When the type is

abstract, it suffices for the value to be implemented by a concrete type that is a subtype of the abstract

type. If the type assertion is not true, an exception is thrown, otherwise, the left-hand value is returned:

julia> (1+2)::AbstractFloat

ERROR: TypeError: in typeassert, expected AbstractFloat, got a value of type Int64

julia> (1+2)::Int

3

This allows a type assertion to be attached to any expression in-place.

When appended to a variable on the left-hand side of an assignment, or as part of a local declaration, the

:: operator means something a bit different: it declares the variable to always have the specified type,

like a type declaration in a statically-typed language such as C. Every value assigned to the variable will

be converted to the declared type using convert:

CHAPTER 11. TYPES 121

julia> function foo()

x::Int8 = 100

x

end

foo (generic function with 1 method)

julia> x = foo()

100

julia> typeof(x)

Int8

This feature is useful for avoiding performance "gotchas" that could occur if one of the assignments to a

variable changed its type unexpectedly.

This "declaration" behavior only occurs in specific contexts:

local x::Int8 # in a local declaration

x::Int8 = 10 # as the left-hand side of an assignment

and applies to the whole current scope, even before the declaration.

As of Julia 1.8, type declarations can now be used in global scope i.e. type annotations can be added to

global variables to make accessing them type stable.

julia> x::Int = 10

10

julia> x = 3.5

ERROR: InexactError: Int64(3.5)

julia> function foo(y)

global x = 15.8 # throws an error when foo is called

return x + y

end

foo (generic function with 1 method)

julia> foo(10)

ERROR: InexactError: Int64(15.8)

Declarations can also be attached to function definitions:

function sinc(x)::Float64

if x == 0

return 1

end

return sin(pi*x)/(pi*x)

end

Returning from this function behaves just like an assignment to a variable with a declared type: the value

is always converted to Float64.

CHAPTER 11. TYPES 122

11.2 Abstract Types

Abstract types cannot be instantiated, and serve only as nodes in the type graph, thereby describing sets

of related concrete types: those concrete types which are their descendants. We begin with abstract types

even though they have no instantiation because they are the backbone of the type system: they form the

conceptual hierarchy whichmakes Julia's type systemmore than just a collection of object implementations.

Recall that in Integers and Floating-Point Numbers, we introduced a variety of concrete types of numeric

values: Int8, UInt8, Int16, UInt16, Int32, UInt32, Int64, UInt64, Int128, UInt128, Float16, Float32,

and Float64. Although they have different representation sizes, Int8, Int16, Int32, Int64 and Int128

all have in common that they are signed integer types. Likewise UInt8, UInt16, UInt32, UInt64 and

UInt128 are all unsigned integer types, while Float16, Float32 and Float64 are distinct in being floating-

point types rather than integers. It is common for a piece of code to make sense, for example, only if its

arguments are some kind of integer, but not really depend on what particular kind of integer. For example,

the greatest common denominator algorithm works for all kinds of integers, but will not work for floating-

point numbers. Abstract types allow the construction of a hierarchy of types, providing a context into

which concrete types can fit. This allows you, for example, to easily program to any type that is an integer,

without restricting an algorithm to a specific type of integer.

Abstract types are declared using the abstract type keyword. The general syntaxes for declaring an

abstract type are:

abstract type «name» end

abstract type «name» <: «supertype» end

The abstract type keyword introduces a new abstract type, whose name is given by «name». This name

can be optionally followed by <: and an already-existing type, indicating that the newly declared abstract

type is a subtype of this "parent" type.

When no supertype is given, the default supertype is Any – a predefined abstract type that all objects are

instances of and all types are subtypes of. In type theory, Any is commonly called "top" because it is at the

apex of the type graph. Julia also has a predefined abstract "bottom" type, at the nadir of the type graph,

which is written as Union{}. It is the exact opposite of Any: no object is an instance of Union{} and all

types are supertypes of Union{}.

Let's consider some of the abstract types that make up Julia's numerical hierarchy:

abstract type Number end

abstract type Real <: Number end

abstract type AbstractFloat <: Real end

abstract type Integer <: Real end

abstract type Signed <: Integer end

abstract type Unsigned <: Integer end

The Number type is a direct child type of Any, and Real is its child. In turn, Real has two children (it has

more, but only two are shown here; we'll get to the others later): Integer and AbstractFloat, separating

the world into representations of integers and representations of real numbers. Representations of real

numbers include floating-point types, but also include other types, such as rationals. AbstractFloat in-

cludes only floating-point representations of real numbers. Integers are further subdivided into Signed and

Unsigned varieties.

The <: operator in general means "is a subtype of", and, used in declarations like those above, declares the

right-hand type to be an immediate supertype of the newly declared type. It can also be used in expressions

as a subtype operator which returns true when its left operand is a subtype of its right operand:

CHAPTER 11. TYPES 123

julia> Integer <: Number

true

julia> Integer <: AbstractFloat

false

An important use of abstract types is to provide default implementations for concrete types. To give a

simple example, consider:

function myplus(x,y)

x+y

end

The first thing to note is that the above argument declarations are equivalent to x::Any and y::Any. When

this function is invoked, say as myplus(2,5), the dispatcher chooses the most specific method named

myplus that matches the given arguments. (See Methods for more information on multiple dispatch.)

Assuming no method more specific than the above is found, Julia next internally defines and compiles a

method called myplus specifically for two Int arguments based on the generic function given above, i.e.,

it implicitly defines and compiles:

function myplus(x::Int,y::Int)

x+y

end

and finally, it invokes this specific method.

Thus, abstract types allow programmers to write generic functions that can later be used as the default

method by many combinations of concrete types. Thanks to multiple dispatch, the programmer has full

control over whether the default or more specific method is used.

An important point to note is that there is no loss in performance if the programmer relies on a function

whose arguments are abstract types, because it is recompiled for each tuple of concrete argument types

with which it is invoked. (There may be a performance issue, however, in the case of function arguments

that are containers of abstract types; see Performance Tips.)

11.3 Primitive Types

Warning

It is almost always preferable to wrap an existing primitive type in a new composite type than

to define your own primitive type.

This functionality exists to allow Julia to bootstrap the standard primitive types that LLVM

supports. Once they are defined, there is very little reason to define more.

A primitive type is a concrete type whose data consists of plain old bits. Classic examples of primitive types

are integers and floating-point values. Unlike most languages, Julia lets you declare your own primitive

types, rather than providing only a fixed set of built-in ones. In fact, the standard primitive types are all

defined in the language itself:

CHAPTER 11. TYPES 124

primitive type Float16 <: AbstractFloat 16 end

primitive type Float32 <: AbstractFloat 32 end

primitive type Float64 <: AbstractFloat 64 end

primitive type Bool <: Integer 8 end

primitive type Char <: AbstractChar 32 end

primitive type Int8 <: Signed 8 end

primitive type UInt8 <: Unsigned 8 end

primitive type Int16 <: Signed 16 end

primitive type UInt16 <: Unsigned 16 end

primitive type Int32 <: Signed 32 end

primitive type UInt32 <: Unsigned 32 end

primitive type Int64 <: Signed 64 end

primitive type UInt64 <: Unsigned 64 end

primitive type Int128 <: Signed 128 end

primitive type UInt128 <: Unsigned 128 end

The general syntaxes for declaring a primitive type are:

primitive type «name» «bits» end

primitive type «name» <: «supertype» «bits» end

The number of bits indicates how much storage the type requires and the name gives the new type a

name. A primitive type can optionally be declared to be a subtype of some supertype. If a supertype is

omitted, then the type defaults to having Any as its immediate supertype. The declaration of Bool above

thereforemeans that a boolean value takes eight bits to store, and has Integer as its immediate supertype.

Currently, only sizes that are multiples of 8 bits are supported and you are likely to experience LLVM bugs

with sizes other than those used above. Therefore, boolean values, although they really need just a single

bit, cannot be declared to be any smaller than eight bits.

The types Bool, Int8 and UInt8 all have identical representations: they are eight-bit chunks of memory.

Since Julia's type system is nominative, however, they are not interchangeable despite having identical

structure. A fundamental difference between them is that they have different supertypes: Bool's direct

supertype is Integer, Int8's is Signed, and UInt8's is Unsigned. All other differences between Bool, Int8,

and UInt8 are matters of behavior – the way functions are defined to act when given objects of these types

as arguments. This is why a nominative type system is necessary: if structure determined type, which in

turn dictates behavior, then it would be impossible to make Bool behave any differently than Int8 or UInt8.

11.4 Composite Types

Composite types are called records, structs, or objects in various languages. A composite type is a collection

of named fields, an instance of which can be treated as a single value. In many languages, composite types

are the only kind of user-definable type, and they are by far the most commonly used user-defined type in

Julia as well.

In mainstream object oriented languages, such as C++, Java, Python and Ruby, composite types also have

named functions associated with them, and the combination is called an "object". In purer object-oriented

languages, such as Ruby or Smalltalk, all values are objects whether they are composites or not. In less

pure object oriented languages, including C++ and Java, some values, such as integers and floating-point

values, are not objects, while instances of user-defined composite types are true objects with associated

methods. In Julia, all values are objects, but functions are not bundled with the objects they operate on.

https://en.wikipedia.org/wiki/Composite_data_type

CHAPTER 11. TYPES 125

This is necessary since Julia chooses which method of a function to use by multiple dispatch, meaning that

the types of all of a function's arguments are considered when selecting a method, rather than just the

first one (see Methods for more information on methods and dispatch). Thus, it would be inappropriate

for functions to "belong" to only their first argument. Organizing methods into function objects rather

than having named bags of methods "inside" each object ends up being a highly beneficial aspect of the

language design.

Composite types are introduced with the struct keyword followed by a block of field names, optionally

annotated with types using the :: operator:

julia> struct Foo

bar

baz::Int

qux::Float64

end

Fields with no type annotation default to Any, and can accordingly hold any type of value.

New objects of type Foo are created by applying the Foo type object like a function to values for its fields:

julia> foo = Foo("Hello, world.", 23, 1.5)

Foo("Hello, world.", 23, 1.5)

julia> typeof(foo)

Foo

When a type is applied like a function it is called a constructor. Two constructors are generated automat-

ically (these are called default constructors). One accepts any arguments and calls convert to convert

them to the types of the fields, and the other accepts arguments that match the field types exactly. The

reason both of these are generated is that this makes it easier to add new definitions without inadvertently

replacing a default constructor.

Since the bar field is unconstrained in type, any value will do. However, the value for baz must be con-

vertible to Int:

julia> Foo((), 23.5, 1)

ERROR: InexactError: Int64(23.5)

Stacktrace:

[...]

You may find a list of field names using the fieldnames function.

julia> fieldnames(Foo)

(:bar, :baz, :qux)

You can access the field values of a composite object using the traditional foo.bar notation:

CHAPTER 11. TYPES 126

julia> foo.bar

"Hello, world."

julia> foo.baz

23

julia> foo.qux

1.5

Composite objects declared with struct are immutable; they cannot be modified after construction. This

may seem odd at first, but it has several advantages:

• It can be more efficient. Some structs can be packed efficiently into arrays, and in some cases the

compiler is able to avoid allocating immutable objects entirely.

• It is not possible to violate the invariants provided by the type's constructors.

• Code using immutable objects can be easier to reason about.

An immutable object might contain mutable objects, such as arrays, as fields. Those contained objects

will remain mutable; only the fields of the immutable object itself cannot be changed to point to different

objects.

Where required, mutable composite objects can be declared with the keyword mutable struct, to be

discussed in the next section.

If all the fields of an immutable structure are indistinguishable (===) then two immutable values containing

those fields are also indistinguishable:

julia> struct X

a::Int

b::Float64

end

julia> X(1, 2) === X(1, 2)

true

There is muchmore to say about how instances of composite types are created, but that discussion depends

on both Parametric Types and on Methods, and is sufficiently important to be addressed in its own section:

Constructors.

For many user-defined types X, you may want to define a method Base.broadcastable(x::X) = Ref(x)

so that instances of that type act as 0-dimensional "scalars" for broadcasting.

11.5 Mutable Composite Types

If a composite type is declared with mutable struct instead of struct, then instances of it can bemodified:

julia> mutable struct Bar

baz

qux::Float64

CHAPTER 11. TYPES 127

end

julia> bar = Bar("Hello", 1.5);

julia> bar.qux = 2.0

2.0

julia> bar.baz = 1//2

1//2

An extra interface between the fields and the user can be provided through Instance Properties. This grants

more control on what can be accessed and modified using the bar.baz notation.

In order to support mutation, such objects are generally allocated on the heap, and have stable memory

addresses. A mutable object is like a little container that might hold different values over time, and so can

only be reliably identified with its address. In contrast, an instance of an immutable type is associated with

specific field values –- the field values alone tell you everything about the object. In deciding whether to

make a type mutable, ask whether two instances with the same field values would be considered identical,

or if they might need to change independently over time. If they would be considered identical, the type

should probably be immutable.

To recap, two essential properties define immutability in Julia:

• It is not permitted to modify the value of an immutable type.

– For bits types this means that the bit pattern of a value once set will never change and that

value is the identity of a bits type.

– For composite types, this means that the identity of the values of its fields will never change.

When the fields are bits types, that means their bits will never change, for fields whose values

are mutable types like arrays, that means the fields will always refer to the samemutable value

even though that mutable value's content may itself be modified.

• An object with an immutable type may be copied freely by the compiler since its immutability makes

it impossible to programmatically distinguish between the original object and a copy.

– In particular, this means that small enough immutable values like integers and floats are typi-

cally passed to functions in registers (or stack allocated).

– Mutable values, on the other hand are heap-allocated and passed to functions as pointers to

heap-allocated values except in cases where the compiler is sure that there's no way to tell

that this is not what is happening.

In cases where one or more fields of an otherwise mutable struct is known to be immutable, one can declare

these fields as such using const as shown below. This enables some, but not all of the optimizations of

immutable structs, and can be used to enforce invariants on the particular fields marked as const.

Julia 1.8

const annotating fields of mutable structs requires at least Julia 1.8.

CHAPTER 11. TYPES 128

julia> mutable struct Baz

a::Int

const b::Float64

end

julia> baz = Baz(1, 1.5);

julia> baz.a = 2

2

julia> baz.b = 2.0

ERROR: setfield!: const field .b of type Baz cannot be changed

[...]

11.6 Declared Types

The three kinds of types (abstract, primitive, composite) discussed in the previous sections are actually all

closely related. They share the same key properties:

• They are explicitly declared.

• They have names.

• They have explicitly declared supertypes.

• They may have parameters.

Because of these shared properties, these types are internally represented as instances of the same con-

cept, DataType, which is the type of any of these types:

julia> typeof(Real)

DataType

julia> typeof(Int)

DataType

A DataType may be abstract or concrete. If it is concrete, it has a specified size, storage layout, and

(optionally) field names. Thus a primitive type is a DataType with nonzero size, but no field names. A

composite type is a DataType that has field names or is empty (zero size).

Every concrete value in the system is an instance of some DataType.

11.7 Type Unions

A type union is a special abstract type which includes as objects all instances of any of its argument types,

constructed using the special Union keyword:

julia> IntOrString = Union{Int,AbstractString}

Union{Int64, AbstractString}

CHAPTER 11. TYPES 129

julia> 1 :: IntOrString

1

julia> "Hello!" :: IntOrString

"Hello!"

julia> 1.0 :: IntOrString

ERROR: TypeError: in typeassert, expected Union{Int64, AbstractString}, got a value of type

Float64↪→

The compilers for many languages have an internal union construct for reasoning about types; Julia simply

exposes it to the programmer. The Julia compiler is able to generate efficient code in the presence of

Union types with a small number of types 1, by generating specialized code in separate branches for each

possible type.

A particularly useful case of a Union type is Union{T, Nothing}, where T can be any type and Nothing

is the singleton type whose only instance is the object nothing. This pattern is the Julia equivalent of

Nullable, Option or Maybe types in other languages. Declaring a function argument or a field as Union{T,

Nothing} allows setting it either to a value of type T, or to nothing to indicate that there is no value. See

this FAQ entry for more information.

11.8 Parametric Types

An important and powerful feature of Julia's type system is that it is parametric: types can take parameters,

so that type declarations actually introduce a whole family of new types – one for each possible combina-

tion of parameter values. There are many languages that support some version of generic programming,

wherein data structures and algorithms to manipulate them may be specified without specifying the ex-

act types involved. For example, some form of generic programming exists in ML, Haskell, Ada, Eiffel,

C++, Java, C#, F#, and Scala, just to name a few. Some of these languages support true parametric

polymorphism (e.g. ML, Haskell, Scala), while others support ad-hoc, template-based styles of generic

programming (e.g. C++, Java). With so many different varieties of generic programming and parametric

types in various languages, we won't even attempt to compare Julia's parametric types to other languages,

but will instead focus on explaining Julia's system in its own right. We will note, however, that because

Julia is a dynamically typed language and doesn't need to make all type decisions at compile time, many

traditional difficulties encountered in static parametric type systems can be relatively easily handled.

All declared types (the DataType variety) can be parameterized, with the same syntax in each case. We

will discuss them in the following order: first, parametric composite types, then parametric abstract types,

and finally parametric primitive types.

Parametric Composite Types

Type parameters are introduced immediately after the type name, surrounded by curly braces:

julia> struct Point{T}

x::T

y::T

end

This declaration defines a new parametric type, Point{T}, holding two "coordinates" of type T. What, one

may ask, is T? Well, that's precisely the point of parametric types: it can be any type at all (or a value

https://en.wikipedia.org/wiki/Nullable_type
https://en.wikipedia.org/wiki/Generic_programming

CHAPTER 11. TYPES 130

of any bits type, actually, although here it's clearly used as a type). Point{Float64} is a concrete type

equivalent to the type defined by replacing T in the definition of Point with Float64. Thus, this single

declaration actually declares an unlimited number of types: Point{Float64}, Point{AbstractString},

Point{Int64}, etc. Each of these is now a usable concrete type:

julia> Point{Float64}

Point{Float64}

julia> Point{AbstractString}

Point{AbstractString}

The type Point{Float64} is a point whose coordinates are 64-bit floating-point values, while the type

Point{AbstractString} is a "point" whose "coordinates" are string objects (see Strings).

Point itself is also a valid type object, containing all instances Point{Float64}, Point{AbstractString},

etc. as subtypes:

julia> Point{Float64} <: Point

true

julia> Point{AbstractString} <: Point

true

Other types, of course, are not subtypes of it:

julia> Float64 <: Point

false

julia> AbstractString <: Point

false

Concrete Point types with different values of T are never subtypes of each other:

julia> Point{Float64} <: Point{Int64}

false

julia> Point{Float64} <: Point{Real}

false

Warning

This last point is very important: even though Float64 <: RealweDONOT have Point{Float64}

<: Point{Real}.

In other words, in the parlance of type theory, Julia's type parameters are invariant, rather than being

covariant (or even contravariant). This is for practical reasons: while any instance of Point{Float64}may

conceptually be like an instance of Point{Real} as well, the two types have different representations in

memory:

https://en.wikipedia.org/wiki/Covariance_and_contravariance_%28computer_science%29

CHAPTER 11. TYPES 131

• An instance of Point{Float64} can be represented compactly and efficiently as an immediate pair

of 64-bit values;

• An instance of Point{Real} must be able to hold any pair of instances of Real. Since objects that

are instances of Real can be of arbitrary size and structure, in practice an instance of Point{Real}

must be represented as a pair of pointers to individually allocated Real objects.

The efficiency gained by being able to store Point{Float64} objects with immediate values is magnified

enormously in the case of arrays: an Array{Float64} can be stored as a contiguous memory block of

64-bit floating-point values, whereas an Array{Real}must be an array of pointers to individually allocated

Real objects – which may well be boxed 64-bit floating-point values, but also might be arbitrarily large,

complex objects, which are declared to be implementations of the Real abstract type.

Since Point{Float64} is not a subtype of Point{Real}, the following method can't be applied to argu-

ments of type Point{Float64}:

function norm(p::Point{Real})

sqrt(p.x^2 + p.y^2)

end

A correct way to define a method that accepts all arguments of type Point{T} where T is a subtype of Real

is:

function norm(p::Point{<:Real})

sqrt(p.x^2 + p.y^2)

end

(Equivalently, one could define function norm(p::Point{T} where T<:Real) or function norm(p::Point{T})

where T<:Real; see UnionAll Types.)

More examples will be discussed later in Methods.

How does one construct a Point object? It is possible to define custom constructors for composite types,

which will be discussed in detail in Constructors, but in the absence of any special constructor declara-

tions, there are two default ways of creating new composite objects, one in which the type parameters are

explicitly given and the other in which they are implied by the arguments to the object constructor.

Since the type Point{Float64} is a concrete type equivalent to Point declared with Float64 in place of

T, it can be applied as a constructor accordingly:

julia> p = Point{Float64}(1.0, 2.0)

Point{Float64}(1.0, 2.0)

julia> typeof(p)

Point{Float64}

For the default constructor, exactly one argument must be supplied for each field:

https://en.wikipedia.org/wiki/Object_type_%28object-oriented_programming%29#Boxing

CHAPTER 11. TYPES 132

julia> Point{Float64}(1.0)

ERROR: MethodError: no method matching Point{Float64}(::Float64)

[...]

julia> Point{Float64}(1.0,2.0,3.0)

ERROR: MethodError: no method matching Point{Float64}(::Float64, ::Float64, ::Float64)

[...]

Only one default constructor is generated for parametric types, since overriding it is not possible. This

constructor accepts any arguments and converts them to the field types.

In many cases, it is redundant to provide the type of Point object one wants to construct, since the types of

arguments to the constructor call already implicitly provide type information. For that reason, you can also

apply Point itself as a constructor, provided that the implied value of the parameter type T is unambiguous:

julia> p1 = Point(1.0,2.0)

Point{Float64}(1.0, 2.0)

julia> typeof(p1)

Point{Float64}

julia> p2 = Point(1,2)

Point{Int64}(1, 2)

julia> typeof(p2)

Point{Int64}

In the case of Point, the type of T is unambiguously implied if and only if the two arguments to Point have

the same type. When this isn't the case, the constructor will fail with a MethodError:

julia> Point(1,2.5)

ERROR: MethodError: no method matching Point(::Int64, ::Float64)

Closest candidates are:

Point(::T, !Matched::T) where T

@ Main none:2

Stacktrace:

[...]

Constructor methods to appropriately handle such mixed cases can be defined, but that will not be dis-

cussed until later on in Constructors.

Parametric Abstract Types

Parametric abstract type declarations declare a collection of abstract types, in much the same way:

julia> abstract type Pointy{T} end

With this declaration, Pointy{T} is a distinct abstract type for each type or integer value of T. As with

parametric composite types, each such instance is a subtype of Pointy:

CHAPTER 11. TYPES 133

julia> Pointy{Int64} <: Pointy

true

julia> Pointy{1} <: Pointy

true

Parametric abstract types are invariant, much as parametric composite types are:

julia> Pointy{Float64} <: Pointy{Real}

false

julia> Pointy{Real} <: Pointy{Float64}

false

The notation Pointy{<:Real} can be used to express the Julia analogue of a covariant type, while Pointy{>:Int}

the analogue of a contravariant type, but technically these represent sets of types (see UnionAll Types).

julia> Pointy{Float64} <: Pointy{<:Real}

true

julia> Pointy{Real} <: Pointy{>:Int}

true

Much as plain old abstract types serve to create a useful hierarchy of types over concrete types, parametric

abstract types serve the same purpose with respect to parametric composite types. We could, for example,

have declared Point{T} to be a subtype of Pointy{T} as follows:

julia> struct Point{T} <: Pointy{T}

x::T

y::T

end

Given such a declaration, for each choice of T, we have Point{T} as a subtype of Pointy{T}:

julia> Point{Float64} <: Pointy{Float64}

true

julia> Point{Real} <: Pointy{Real}

true

julia> Point{AbstractString} <: Pointy{AbstractString}

true

This relationship is also invariant:

julia> Point{Float64} <: Pointy{Real}

false

julia> Point{Float64} <: Pointy{<:Real}

true

CHAPTER 11. TYPES 134

What purpose do parametric abstract types like Pointy serve? Consider if we create a point-like imple-

mentation that only requires a single coordinate because the point is on the diagonal line x = y:

julia> struct DiagPoint{T} <: Pointy{T}

x::T

end

Now both Point{Float64} and DiagPoint{Float64} are implementations of the Pointy{Float64} ab-

straction, and similarly for every other possible choice of type T. This allows programming to a common

interface shared by all Pointy objects, implemented for both Point and DiagPoint. This cannot be fully

demonstrated, however, until we have introduced methods and dispatch in the next section, Methods.

There are situations where it may not make sense for type parameters to range freely over all possible

types. In such situations, one can constrain the range of T like so:

julia> abstract type Pointy{T<:Real} end

With such a declaration, it is acceptable to use any type that is a subtype of Real in place of T, but not

types that are not subtypes of Real:

julia> Pointy{Float64}

Pointy{Float64}

julia> Pointy{Real}

Pointy{Real}

julia> Pointy{AbstractString}

ERROR: TypeError: in Pointy, in T, expected T<:Real, got Type{AbstractString}

julia> Pointy{1}

ERROR: TypeError: in Pointy, in T, expected T<:Real, got a value of type Int64

Type parameters for parametric composite types can be restricted in the same manner:

struct Point{T<:Real} <: Pointy{T}

x::T

y::T

end

To give a real-world example of how all this parametric type machinery can be useful, here is the actual

definition of Julia's Rational immutable type (except that we omit the constructor here for simplicity),

representing an exact ratio of integers:

struct Rational{T<:Integer} <: Real

num::T

den::T

end

It only makes sense to take ratios of integer values, so the parameter type T is restricted to being a

subtype of Integer, and a ratio of integers represents a value on the real number line, so any Rational is

an instance of the Real abstraction.

CHAPTER 11. TYPES 135

Tuple Types

Tuples are an abstraction of the arguments of a function – without the function itself. The salient aspects of

a function's arguments are their order and their types. Therefore a tuple type is similar to a parameterized

immutable type where each parameter is the type of one field. For example, a 2-element tuple type

resembles the following immutable type:

struct Tuple2{A,B}

a::A

b::B

end

However, there are three key differences:

• Tuple types may have any number of parameters.

• Tuple types are covariant in their parameters: Tuple{Int} is a subtype of Tuple{Any}. Therefore

Tuple{Any} is considered an abstract type, and tuple types are only concrete if their parameters

are.

• Tuples do not have field names; fields are only accessed by index.

Tuple values are written with parentheses and commas. When a tuple is constructed, an appropriate tuple

type is generated on demand:

julia> typeof((1,"foo",2.5))

Tuple{Int64, String, Float64}

Note the implications of covariance:

julia> Tuple{Int,AbstractString} <: Tuple{Real,Any}

true

julia> Tuple{Int,AbstractString} <: Tuple{Real,Real}

false

julia> Tuple{Int,AbstractString} <: Tuple{Real,}

false

Intuitively, this corresponds to the type of a function's arguments being a subtype of the function's signature

(when the signature matches).

Vararg Tuple Types

The last parameter of a tuple type can be the special value Vararg, which denotes any number of trailing

elements:

CHAPTER 11. TYPES 136

julia> mytupletype = Tuple{AbstractString,Vararg{Int}}

Tuple{AbstractString, Vararg{Int64}}

julia> isa(("1",), mytupletype)

true

julia> isa(("1",1), mytupletype)

true

julia> isa(("1",1,2), mytupletype)

true

julia> isa(("1",1,2,3.0), mytupletype)

false

Moreover Vararg{T} corresponds to zero or more elements of type T. Vararg tuple types are used to rep-

resent the arguments accepted by varargs methods (see Varargs Functions).

The special value Vararg{T,N} (when used as the last parameter of a tuple type) corresponds to exactly N

elements of type T. NTuple{N,T} is a convenient alias for Tuple{Vararg{T,N}}, i.e. a tuple type containing

exactly N elements of type T.

Named Tuple Types

Named tuples are instances of the NamedTuple type, which has two parameters: a tuple of symbols giving

the field names, and a tuple type giving the field types. For convenience, NamedTuple types are printed

using the @NamedTuple macro which provides a convenient struct-like syntax for declaring these types

via key::Type declarations, where an omitted ::Type corresponds to ::Any.

julia> typeof((a=1,b="hello")) # prints in macro form

@NamedTuple{a::Int64, b::String}

julia> NamedTuple{(:a, :b), Tuple{Int64, String}} # long form of the type

@NamedTuple{a::Int64, b::String}

The begin ... end form of the @NamedTuplemacro allows the declarations to be split across multiple lines

(similar to a struct declaration), but is otherwise equivalent:

julia> @NamedTuple begin

a::Int

b::String

end

@NamedTuple{a::Int64, b::String}

A NamedTuple type can be used as a constructor, accepting a single tuple argument. The constructed

NamedTuple type can be either a concrete type, with both parameters specified, or a type that specifies

only field names:

julia> @NamedTuple{a::Float32,b::String}((1, ""))

(a = 1.0f0, b = "")

CHAPTER 11. TYPES 137

julia> NamedTuple{(:a, :b)}((1, ""))

(a = 1, b = "")

If field types are specified, the arguments are converted. Otherwise the types of the arguments are used

directly.

Parametric Primitive Types

Primitive types can also be declared parametrically. For example, pointers are represented as primitive

types which would be declared in Julia like this:

32-bit system:

primitive type Ptr{T} 32 end

64-bit system:

primitive type Ptr{T} 64 end

The slightly odd feature of these declarations as compared to typical parametric composite types, is that

the type parameter T is not used in the definition of the type itself – it is just an abstract tag, essentially

defining an entire family of types with identical structure, differentiated only by their type parameter. Thus,

Ptr{Float64} and Ptr{Int64} are distinct types, even though they have identical representations. And

of course, all specific pointer types are subtypes of the umbrella Ptr type:

julia> Ptr{Float64} <: Ptr

true

julia> Ptr{Int64} <: Ptr

true

11.9 UnionAll Types

We have said that a parametric type like Ptr acts as a supertype of all its instances (Ptr{Int64} etc.). How

does this work? Ptr itself cannot be a normal data type, since without knowing the type of the referenced

data the type clearly cannot be used for memory operations. The answer is that Ptr (or other parametric

types like Array) is a different kind of type called a UnionAll type. Such a type expresses the iterated

union of types for all values of some parameter.

UnionAll types are usually written using the keyword where. For example Ptr could be more accurately

written as Ptr{T} where T, meaning all values whose type is Ptr{T} for some value of T. In this context,

the parameter T is also often called a "type variable" since it is like a variable that ranges over types. Each

where introduces a single type variable, so these expressions are nested for types withmultiple parameters,

for example Array{T,N} where N where T.

The type application syntax A{B,C} requires A to be a UnionAll type, and first substitutes B for the outer-

most type variable in A. The result is expected to be another UnionAll type, into which C is then substituted.

So A{B,C} is equivalent to A{B}{C}. This explains why it is possible to partially instantiate a type, as in

Array{Float64}: the first parameter value has been fixed, but the second still ranges over all possible

values. Using explicit where syntax, any subset of parameters can be fixed. For example, the type of all

1-dimensional arrays can be written as Array{T,1} where T.

CHAPTER 11. TYPES 138

Type variables can be restricted with subtype relations. Array{T} where T<:Integer refers to all arrays

whose element type is some kind of Integer. The syntax Array{<:Integer} is a convenient shorthand for

Array{T} where T<:Integer. Type variables can have both lower and upper bounds. Array{T} where

Int<:T<:Number refers to all arrays of Numbers that are able to contain Ints (since T must be at least as

big as Int). The syntax where T>:Int also works to specify only the lower bound of a type variable, and

Array{>:Int} is equivalent to Array{T} where T>:Int.

Since where expressions nest, type variable bounds can refer to outer type variables. For example Tuple{T,Array{S}}

where S<:AbstractArray{T} where T<:Real refers to 2-tuples whose first element is some Real, and

whose second element is an Array of any kind of array whose element type contains the type of the first

tuple element.

The where keyword itself can be nested inside a more complex declaration. For example, consider the two

types created by the following declarations:

julia> const T1 = Array{Array{T, 1} where T, 1}

Vector{Vector} (alias for Array{Array{T, 1} where T, 1})

julia> const T2 = Array{Array{T, 1}, 1} where T

Array{Vector{T}, 1} where T

Type T1 defines a 1-dimensional array of 1-dimensional arrays; each of the inner arrays consists of objects

of the same type, but this type may vary from one inner array to the next. On the other hand, type T2

defines a 1-dimensional array of 1-dimensional arrays all of whose inner arrays must have the same type.

Note that T2 is an abstract type, e.g., Array{Array{Int,1},1} <: T2, whereas T1 is a concrete type. As

a consequence, T1 can be constructed with a zero-argument constructor a=T1() but T2 cannot.

There is a convenient syntax for naming such types, similar to the short form of function definition syntax:

Vector{T} = Array{T, 1}

This is equivalent to const Vector = Array{T,1} where T. Writing Vector{Float64} is equivalent to

writing Array{Float64,1}, and the umbrella type Vector has as instances all Array objects where the

second parameter – the number of array dimensions – is 1, regardless of what the element type is. In

languages where parametric types must always be specified in full, this is not especially helpful, but in

Julia, this allows one to write just Vector for the abstract type including all one-dimensional dense arrays

of any element type.

11.10 Singleton types

Immutable composite types with no fields are called singletons. Formally, if

1. T is an immutable composite type (i.e. defined with struct),

2. a isa T && b isa T implies a === b,

then T is a singleton type.2 Base.issingletontype can be used to check if a type is a singleton type.

Abstract types cannot be singleton types by construction.

From the definition, it follows that there can be only one instance of such types:

CHAPTER 11. TYPES 139

julia> struct NoFields

end

julia> NoFields() === NoFields()

true

julia> Base.issingletontype(NoFields)

true

The === function confirms that the constructed instances of NoFields are actually one and the same.

Parametric types can be singleton types when the above condition holds. For example,

julia> struct NoFieldsParam{T}

end

julia> Base.issingletontype(NoFieldsParam) # Can't be a singleton type ...

false

julia> NoFieldsParam{Int}() isa NoFieldsParam # ... because it has ...

true

julia> NoFieldsParam{Bool}() isa NoFieldsParam # ... multiple instances.

true

julia> Base.issingletontype(NoFieldsParam{Int}) # Parametrized, it is a singleton.

true

julia> NoFieldsParam{Int}() === NoFieldsParam{Int}()

true

11.11 Types of functions

Each function has its own type, which is a subtype of Function.

julia> foo41(x) = x + 1

foo41 (generic function with 1 method)

julia> typeof(foo41)

typeof(foo41) (singleton type of function foo41, subtype of Function)

Note how typeof(foo41) prints as itself. This is merely a convention for printing, as it is a first-class object

that can be used like any other value:

julia> T = typeof(foo41)

typeof(foo41) (singleton type of function foo41, subtype of Function)

julia> T <: Function

true

CHAPTER 11. TYPES 140

Types of functions defined at top-level are singletons. When necessary, you can compare them with ===.

Closures also have their own type, which is usually printed with names that end in #<number>. Names and

types for functions defined at different locations are distinct, but not guaranteed to be printed the same

way across sessions.

julia> typeof(x -> x + 1)

var"#9#10"

Types of closures are not necessarily singletons.

julia> addy(y) = x -> x + y

addy (generic function with 1 method)

julia> typeof(addy(1)) === typeof(addy(2))

true

julia> addy(1) === addy(2)

false

julia> Base.issingletontype(typeof(addy(1)))

false

11.12 Type{T} type selectors

For each type T, Type{T} is an abstract parametric type whose only instance is the object T. Until we discuss

Parametric Methods and conversions, it is difficult to explain the utility of this construct, but in short, it

allows one to specialize function behavior on specific types as values. This is useful for writing methods

(especially parametric ones) whose behavior depends on a type that is given as an explicit argument rather

than implied by the type of one of its arguments.

Since the definition is a little difficult to parse, let's look at some examples:

julia> isa(Float64, Type{Float64})

true

julia> isa(Real, Type{Float64})

false

julia> isa(Real, Type{Real})

true

julia> isa(Float64, Type{Real})

false

In other words, isa(A, Type{B}) is true if and only if A and B are the same object and that object is a type.

In particular, since parametric types are invariant, we have

julia> struct TypeParamExample{T}

x::T

CHAPTER 11. TYPES 141

end

julia> TypeParamExample isa Type{TypeParamExample}

true

julia> TypeParamExample{Int} isa Type{TypeParamExample}

false

julia> TypeParamExample{Int} isa Type{TypeParamExample{Int}}

true

Without the parameter, Type is simply an abstract type which has all type objects as its instances:

julia> isa(Type{Float64}, Type)

true

julia> isa(Float64, Type)

true

julia> isa(Real, Type)

true

Any object that is not a type is not an instance of Type:

julia> isa(1, Type)

false

julia> isa("foo", Type)

false

While Type is part of Julia's type hierarchy like any other abstract parametric type, it is not commonly

used outside method signatures except in some special cases. Another important use case for Type is

sharpening field types which would otherwise be captured less precisely, e.g. as DataType in the example

below where the default constructor could lead to performance problems in code relying on the precise

wrapped type (similarly to abstract type parameters).

julia> struct WrapType{T}

value::T

end

julia> WrapType(Float64) # default constructor, note DataType

WrapType{DataType}(Float64)

julia> WrapType(::Type{T}) where T = WrapType{Type{T}}(T)

WrapType

julia> WrapType(Float64) # sharpened constructor, note more precise Type{Float64}

WrapType{Type{Float64}}(Float64)

CHAPTER 11. TYPES 142

11.13 Type Aliases

Sometimes it is convenient to introduce a new name for an already expressible type. This can be done with

a simple assignment statement. For example, UInt is aliased to either UInt32 or UInt64 as is appropriate

for the size of pointers on the system:

32-bit system:

julia> UInt

UInt32

64-bit system:

julia> UInt

UInt64

This is accomplished via the following code in base/boot.jl:

if Int === Int64

const UInt = UInt64

else

const UInt = UInt32

end

Of course, this depends on what Int is aliased to – but that is predefined to be the correct type – either

Int32 or Int64.

(Note that unlike Int, Float does not exist as a type alias for a specific sized AbstractFloat. Unlike with

integer registers, where the size of Int reflects the size of a native pointer on that machine, the floating

point register sizes are specified by the IEEE-754 standard.)

11.14 Operations on Types

Since types in Julia are themselves objects, ordinary functions can operate on them. Some functions that

are particularly useful for working with or exploring types have already been introduced, such as the <:

operator, which indicates whether its left hand operand is a subtype of its right hand operand.

The isa function tests if an object is of a given type and returns true or false:

julia> isa(1, Int)

true

julia> isa(1, AbstractFloat)

false

The typeof function, already used throughout the manual in examples, returns the type of its argument.

Since, as noted above, types are objects, they also have types, and we can ask what their types are:

julia> typeof(Rational{Int})

DataType

julia> typeof(Union{Real,String})

Union

CHAPTER 11. TYPES 143

What if we repeat the process? What is the type of a type of a type? As it happens, types are all composite

values and thus all have a type of DataType:

julia> typeof(DataType)

DataType

julia> typeof(Union)

DataType

DataType is its own type.

Another operation that applies to some types is supertype, which reveals a type's supertype. Only declared

types (DataType) have unambiguous supertypes:

julia> supertype(Float64)

AbstractFloat

julia> supertype(Number)

Any

julia> supertype(AbstractString)

Any

julia> supertype(Any)

Any

If you apply supertype to other type objects (or non-type objects), a MethodError is raised:

julia> supertype(Union{Float64,Int64})

ERROR: MethodError: no method matching supertype(::Type{Union{Float64, Int64}})

Closest candidates are:

[...]

11.15 Custom pretty-printing

Often, one wants to customize how instances of a type are displayed. This is accomplished by overloading

the show function. For example, suppose we define a type to represent complex numbers in polar form:

julia> struct Polar{T<:Real} <: Number

r::T

Θ::T

end

julia> Polar(r::Real,Θ::Real) = Polar(promote(r,Θ)...)

Polar

Here, we've added a custom constructor function so that it can take arguments of different Real types and

promote them to a common type (see Constructors and Conversion and Promotion). (Of course, we would

have to define lots of other methods, too, to make it act like a Number, e.g. +, *, one, zero, promotion rules

CHAPTER 11. TYPES 144

and so on.) By default, instances of this type display rather simply, with information about the type name

and the field values, as e.g. Polar{Float64}(3.0,4.0).

If we want it to display instead as 3.0 * exp(4.0im), we would define the following method to print the

object to a given output object io (representing a file, terminal, buffer, etcetera; see Networking and

Streams):

julia> Base.show(io::IO, z::Polar) = print(io, z.r, " * exp(", z.Θ, "im)")

More fine-grained control over display of Polar objects is possible. In particular, sometimes one wants both

a verbose multi-line printing format, used for displaying a single object in the REPL and other interactive

environments, and also amore compact single-line format used for print or for displaying the object as part

of another object (e.g. in an array). Although by default the show(io, z) function is called in both cases,

you can define a different multi-line format for displaying an object by overloading a three-argument form

of show that takes the text/plain MIME type as its second argument (see Multimedia I/O), for example:

julia> Base.show(io::IO, ::MIME"text/plain", z::Polar{T}) where{T} =

print(io, "Polar{$T} complex number:\n ", z)

(Note that print(..., z) here will call the 2-argument show(io, z) method.) This results in:

julia> Polar(3, 4.0)

Polar{Float64} complex number:

3.0 * exp(4.0im)

julia> [Polar(3, 4.0), Polar(4.0,5.3)]

2-element Vector{Polar{Float64}}:

3.0 * exp(4.0im)

4.0 * exp(5.3im)

where the single-line show(io, z) form is still used for an array of Polar values. Technically, the REPL calls

display(z) to display the result of executing a line, which defaults to show(stdout, MIME("text/plain"),

z), which in turn defaults to show(stdout, z), but you should not define new display methods unless

you are defining a new multimedia display handler (see Multimedia I/O).

Moreover, you can also define show methods for other MIME types in order to enable richer display (HTML,

images, etcetera) of objects in environments that support this (e.g. IJulia). For example, we can define

formatted HTML display of Polar objects, with superscripts and italics, via:

julia> Base.show(io::IO, ::MIME"text/html", z::Polar{T}) where {T} =

println(io, "<code>Polar{$T}</code> complex number: ",

z.r, " <i>e</i>^{", z.Θ, " <i>i</i>}")

A Polar object will then display automatically using HTML in an environment that supports HTML display,

but you can call show manually to get HTML output if you want:

julia> show(stdout, "text/html", Polar(3.0,4.0))

<code>Polar{Float64}</code> complex number: 3.0 <i>e</i>^{4.0 <i>i</i>}

CHAPTER 11. TYPES 145

As a rule of thumb, the single-line showmethod should print a valid Julia expression for creating the shown

object. When this showmethod contains infix operators, such as themultiplication operator (*) in our single-

line show method for Polar above, it may not parse correctly when printed as part of another object. To

see this, consider the expression object (see Program representation) which takes the square of a specific

instance of our Polar type:

julia> a = Polar(3, 4.0)

Polar{Float64} complex number:

3.0 * exp(4.0im)

julia> print(:($a^2))

3.0 * exp(4.0im) ^ 2

Because the operator ^ has higher precedence than * (see Operator Precedence and Associativity), this

output does not faithfully represent the expression a ^ 2 which should be equal to (3.0 * exp(4.0im))

^ 2. To solve this issue, we must make a custom method for Base.show_unquoted(io::IO, z::Polar,

indent::Int, precedence::Int), which is called internally by the expression object when printing:

julia> function Base.show_unquoted(io::IO, z::Polar, ::Int, precedence::Int)

if Base.operator_precedence(:*) <= precedence

print(io, "(")

show(io, z)

print(io, ")")

else

show(io, z)

end

end

julia> :($a^2)

:((3.0 * exp(4.0im)) ^ 2)

The method defined above adds parentheses around the call to show when the precedence of the calling

operator is higher than or equal to the precedence of multiplication. This check allows expressions which

parse correctly without the parentheses (such as :($a + 2) and :($a == 2)) to omit them when printing:

julia> :($a + 2)

:(3.0 * exp(4.0im) + 2)

julia> :($a == 2)

:(3.0 * exp(4.0im) == 2)

In some cases, it is useful to adjust the behavior of show methods depending on the context. This can

be achieved via the IOContext type, which allows passing contextual properties together with a wrapped

IO stream. For example, we can build a shorter representation in our show method when the :compact

property is set to true, falling back to the long representation if the property is false or absent:

julia> function Base.show(io::IO, z::Polar)

if get(io, :compact, false)::Bool

print(io, z.r, "", z.Θ, "im")

CHAPTER 11. TYPES 146

else

print(io, z.r, " * exp(", z.Θ, "im)")

end

end

This new compact representation will be used when the passed IO stream is an IOContext object with the

:compact property set. In particular, this is the case when printing arrays with multiple columns (where

horizontal space is limited):

julia> show(IOContext(stdout, :compact=>true), Polar(3, 4.0))

3.04.0im

julia> [Polar(3, 4.0) Polar(4.0,5.3)]

1×2 Matrix{Polar{Float64}}:

3.04.0im 4.05.3im

See the IOContext documentation for a list of common properties which can be used to adjust printing.

11.16 "Value types"

In Julia, you can't dispatch on a value such as true or false. However, you can dispatch on parametric

types, and Julia allows you to include "plain bits" values (Types, Symbols, Integers, floating-point numbers,

tuples, etc.) as type parameters. A common example is the dimensionality parameter in Array{T,N},

where T is a type (e.g., Float64) but N is just an Int.

You can create your own custom types that take values as parameters, and use them to control dispatch

of custom types. By way of illustration of this idea, let's introduce the parametric type Val{x}, and its

constructor Val(x) = Val{x}(), which serves as a customary way to exploit this technique for cases

where you don't need a more elaborate hierarchy.

Val is defined as:

julia> struct Val{x}

end

julia> Val(x) = Val{x}()

Val

There is no more to the implementation of Val than this. Some functions in Julia's standard library accept

Val instances as arguments, and you can also use it to write your own functions. For example:

julia> firstlast(::Val{true}) = "First"

firstlast (generic function with 1 method)

julia> firstlast(::Val{false}) = "Last"

firstlast (generic function with 2 methods)

julia> firstlast(Val(true))

"First"

julia> firstlast(Val(false))

"Last"

CHAPTER 11. TYPES 147

For consistency across Julia, the call site should always pass a Val instance rather than using a type, i.e.,

use foo(Val(:bar)) rather than foo(Val{:bar}).

It's worth noting that it's extremely easy to mis-use parametric "value" types, including Val; in unfavorable

cases, you can easily end up making the performance of your code much worse. In particular, you would

never want to write actual code as illustrated above. For more information about the proper (and improper)

uses of Val, please read the more extensive discussion in the performance tips.

1"Small" is defined by the max_union_splitting configuration, which currently defaults to 4.

2A few popular languages have singleton types, including Haskell, Scala and Ruby.

Chapter 12

Methods

Recall from Functions that a function is an object that maps a tuple of arguments to a return value, or throws

an exception if no appropriate value can be returned. It is common for the same conceptual function or

operation to be implemented quite differently for different types of arguments: adding two integers is very

different from adding two floating-point numbers, both of which are distinct from adding an integer to a

floating-point number. Despite their implementation differences, these operations all fall under the general

concept of "addition". Accordingly, in Julia, these behaviors all belong to a single object: the + function.

To facilitate using many different implementations of the same concept smoothly, functions need not be

defined all at once, but can rather be defined piecewise by providing specific behaviors for certain com-

binations of argument types and counts. A definition of one possible behavior for a function is called a

method. Thus far, we have presented only examples of functions defined with a single method, applicable

to all types of arguments. However, the signatures of method definitions can be annotated to indicate the

types of arguments in addition to their number, and more than a single method definition may be provided.

When a function is applied to a particular tuple of arguments, the most specific method applicable to those

arguments is applied. Thus, the overall behavior of a function is a patchwork of the behaviors of its various

method definitions. If the patchwork is well designed, even though the implementations of the methods

may be quite different, the outward behavior of the function will appear seamless and consistent.

The choice of which method to execute when a function is applied is called dispatch. Julia allows the dis-

patch process to choose which of a function's methods to call based on the number of arguments given, and

on the types of all of the function's arguments. This is different than traditional object-oriented languages,

where dispatch occurs based only on the first argument, which often has a special argument syntax, and is

sometimes implied rather than explicitly written as an argument. 1 Using all of a function's arguments to

choose which method should be invoked, rather than just the first, is known as multiple dispatch. Multiple

dispatch is particularly useful for mathematical code, where it makes little sense to artificially deem the

operations to "belong" to one argument more than any of the others: does the addition operation in x + y

belong to x any more than it does to y? The implementation of a mathematical operator generally depends

on the types of all of its arguments. Even beyond mathematical operations, however, multiple dispatch

ends up being a powerful and convenient paradigm for structuring and organizing programs.

Note

1In C++ or Java, for example, in a method call like obj.meth(arg1,arg2), the object obj "receives" the method call and is

implicitly passed to the method via the this keyword, rather than as an explicit method argument. When the current this object is

the receiver of a method call, it can be omitted altogether, writing just meth(arg1,arg2), with this implied as the receiving object.

148

https://en.wikipedia.org/wiki/Multiple_dispatch

CHAPTER 12. METHODS 149

All the examples in this chapter assume that you are defining methods for a function in the

samemodule. If you want to addmethods to a function in another module, you have to import

it or use the name qualified with module names. See the section on namespace management.

12.1 Defining Methods

Until now, we have, in our examples, defined only functions with a single method having unconstrained

argument types. Such functions behave just like they would in traditional dynamically typed languages.

Nevertheless, we have used multiple dispatch and methods almost continually without being aware of it:

all of Julia's standard functions and operators, like the aforementioned + function, have many methods

defining their behavior over various possible combinations of argument type and count.

When defining a function, one can optionally constrain the types of parameters it is applicable to, using

the :: type-assertion operator, introduced in the section on Composite Types:

julia> f(x::Float64, y::Float64) = 2x + y

f (generic function with 1 method)

This function definition applies only to calls where x and y are both values of type Float64:

julia> f(2.0, 3.0)

7.0

Applying it to any other types of arguments will result in a MethodError:

julia> f(2.0, 3)

ERROR: MethodError: no method matching f(::Float64, ::Int64)

Closest candidates are:

f(::Float64, !Matched::Float64)

@ Main none:1

Stacktrace:

[...]

julia> f(Float32(2.0), 3.0)

ERROR: MethodError: no method matching f(::Float32, ::Float64)

Closest candidates are:

f(!Matched::Float64, ::Float64)

@ Main none:1

Stacktrace:

[...]

julia> f(2.0, "3.0")

ERROR: MethodError: no method matching f(::Float64, ::String)

Closest candidates are:

f(::Float64, !Matched::Float64)

CHAPTER 12. METHODS 150

@ Main none:1

Stacktrace:

[...]

julia> f("2.0", "3.0")

ERROR: MethodError: no method matching f(::String, ::String)

As you can see, the arguments must be precisely of type Float64. Other numeric types, such as integers or

32-bit floating-point values, are not automatically converted to 64-bit floating-point, nor are strings parsed

as numbers. Because Float64 is a concrete type and concrete types cannot be subclassed in Julia, such

a definition can only be applied to arguments that are exactly of type Float64. It may often be useful,

however, to write more general methods where the declared parameter types are abstract:

julia> f(x::Number, y::Number) = 2x - y

f (generic function with 2 methods)

julia> f(2.0, 3)

1.0

This method definition applies to any pair of arguments that are instances of Number. They need not be of

the same type, so long as they are each numeric values. The problem of handling disparate numeric types

is delegated to the arithmetic operations in the expression 2x - y.

To define a function with multiple methods, one simply defines the function multiple times, with different

numbers and types of arguments. The first method definition for a function creates the function object,

and subsequent method definitions add new methods to the existing function object. The most specific

method definition matching the number and types of the arguments will be executed when the function is

applied. Thus, the two method definitions above, taken together, define the behavior for f over all pairs

of instances of the abstract type Number – but with a different behavior specific to pairs of Float64 values.

If one of the arguments is a 64-bit float but the other one is not, then the f(Float64,Float64) method

cannot be called and the more general f(Number,Number) method must be used:

julia> f(2.0, 3.0)

7.0

julia> f(2, 3.0)

1.0

julia> f(2.0, 3)

1.0

julia> f(2, 3)

1

The 2x + y definition is only used in the first case, while the 2x - y definition is used in the others. No

automatic casting or conversion of function arguments is ever performed: all conversion in Julia is non-

magical and completely explicit. Conversion and Promotion, however, shows how clever application of

sufficiently advanced technology can be indistinguishable from magic. 2

For non-numeric values, and for fewer or more than two arguments, the function f remains undefined, and

applying it will still result in a MethodError:

CHAPTER 12. METHODS 151

julia> f("foo", 3)

ERROR: MethodError: no method matching f(::String, ::Int64)

Closest candidates are:

f(!Matched::Number, ::Number)

@ Main none:1

Stacktrace:

[...]

julia> f()

ERROR: MethodError: no method matching f()

Closest candidates are:

f(!Matched::Float64, !Matched::Float64)

@ Main none:1

f(!Matched::Number, !Matched::Number)

@ Main none:1

Stacktrace:

[...]

You can easily see which methods exist for a function by entering the function object itself in an interactive

session:

julia> f

f (generic function with 2 methods)

This output tells us that f is a function object with two methods. To find out what the signatures of those

methods are, use the methods function:

julia> methods(f)

2 methods for generic function "f" from Main:

[1] f(x::Float64, y::Float64)

@ none:1

[2] f(x::Number, y::Number)

@ none:1

which shows that f has two methods, one taking two Float64 arguments and one taking arguments of

type Number. It also indicates the file and line number where the methods were defined: because these

methods were defined at the REPL, we get the apparent line number none:1.

In the absence of a type declaration with ::, the type of a method parameter is Any by default, meaning

that it is unconstrained since all values in Julia are instances of the abstract type Any. Thus, we can define

a catch-all method for f like so:

julia> f(x,y) = println("Whoa there, Nelly.")

f (generic function with 3 methods)

julia> methods(f)

CHAPTER 12. METHODS 152

3 methods for generic function "f" from Main:

[1] f(x::Float64, y::Float64)

@ none:1

[2] f(x::Number, y::Number)

@ none:1

[3] f(x, y)

@ none:1

julia> f("foo", 1)

Whoa there, Nelly.

This catch-all is less specific than any other possible method definition for a pair of parameter values, so it

will only be called on pairs of arguments to which no other method definition applies.

Note that in the signature of the third method, there is no type specified for the arguments x and y. This

is a shortened way of expressing f(x::Any, y::Any).

Although it seems a simple concept, multiple dispatch on the types of values is perhaps the single most

powerful and central feature of the Julia language. Core operations typically have dozens of methods:

julia> methods(+)

180 methods for generic function "+":

[1] +(x::Bool, z::Complex{Bool}) in Base at complex.jl:227

[2] +(x::Bool, y::Bool) in Base at bool.jl:89

[3] +(x::Bool) in Base at bool.jl:86

[4] +(x::Bool, y::T) where T<:AbstractFloat in Base at bool.jl:96

[5] +(x::Bool, z::Complex) in Base at complex.jl:234

[6] +(a::Float16, b::Float16) in Base at float.jl:373

[7] +(x::Float32, y::Float32) in Base at float.jl:375

[8] +(x::Float64, y::Float64) in Base at float.jl:376

[9] +(z::Complex{Bool}, x::Bool) in Base at complex.jl:228

[10] +(z::Complex{Bool}, x::Real) in Base at complex.jl:242

[11] +(x::Char, y::Integer) in Base at char.jl:40

[12] +(c::BigInt, x::BigFloat) in Base.MPFR at mpfr.jl:307

[13] +(a::BigInt, b::BigInt, c::BigInt, d::BigInt, e::BigInt) in Base.GMP at gmp.jl:392

[14] +(a::BigInt, b::BigInt, c::BigInt, d::BigInt) in Base.GMP at gmp.jl:391

[15] +(a::BigInt, b::BigInt, c::BigInt) in Base.GMP at gmp.jl:390

[16] +(x::BigInt, y::BigInt) in Base.GMP at gmp.jl:361

[17] +(x::BigInt, c::Union{UInt16, UInt32, UInt64, UInt8}) in Base.GMP at gmp.jl:398

...

[180] +(a, b, c, xs...) in Base at operators.jl:424

Multiple dispatch together with the flexible parametric type system give Julia its ability to abstractly express

high-level algorithms decoupled from implementation details.

12.2 Method specializations

When you create multiple methods of the same function, this is sometimes called "specialization." In this

case, you're specializing the function by adding additional methods to it: each new method is a new

specialization of the function. As shown above, these specializations are returned by methods.

There's another kind of specialization that occurs without programmer intervention: Julia's compiler can

automatically specialize the method for the specific argument types used. Such specializations are not

CHAPTER 12. METHODS 153

listed by methods, as this doesn't create new Methods, but tools like @code_typed allow you to inspect

such specializations.

For example, if you create a method

mysum(x::Real, y::Real) = x + y

you've given the function mysum one new method (possibly its only method), and that method takes any

pair of Real number inputs. But if you then execute

julia> mysum(1, 2)

3

julia> mysum(1.0, 2.0)

3.0

Julia will compile mysum twice, once for x::Int, y::Int and again for x::Float64, y::Float64. The point

of compiling twice is performance: the methods that get called for + (which mysum uses) vary depending on

the specific types of x and y, and by compiling different specializations Julia can do all the method lookup

ahead of time. This allows the program to run much more quickly, since it does not have to bother with

method lookup while it is running. Julia's automatic specialization allows you to write generic algorithms

and expect that the compiler will generate efficient, specialized code to handle each case you need.

In cases where the number of potential specializations might be effectively unlimited, Julia may avoid this

default specialization. See Be aware of when Julia avoids specializing for more information.

12.3 Method Ambiguities

It is possible to define a set of functionmethods such that there is no uniquemost specificmethod applicable

to some combinations of arguments:

julia> g(x::Float64, y) = 2x + y

g (generic function with 1 method)

julia> g(x, y::Float64) = x + 2y

g (generic function with 2 methods)

julia> g(2.0, 3)

7.0

julia> g(2, 3.0)

8.0

julia> g(2.0, 3.0)

ERROR: MethodError: g(::Float64, ::Float64) is ambiguous.

Candidates:

g(x, y::Float64)

@ Main none:1

g(x::Float64, y)

@ Main none:1

CHAPTER 12. METHODS 154

Possible fix, define

g(::Float64, ::Float64)

Stacktrace:

[...]

Here the call g(2.0, 3.0) could be handled by either the g(Float64, Any) or the g(Any, Float64)

method, and neither is more specific than the other. In such cases, Julia raises a MethodError rather than

arbitrarily picking a method. You can avoid method ambiguities by specifying an appropriate method for

the intersection case:

julia> g(x::Float64, y::Float64) = 2x + 2y

g (generic function with 3 methods)

julia> g(2.0, 3)

7.0

julia> g(2, 3.0)

8.0

julia> g(2.0, 3.0)

10.0

It is recommended that the disambiguating method be defined first, since otherwise the ambiguity exists,

if transiently, until the more specific method is defined.

In more complex cases, resolving method ambiguities involves a certain element of design; this topic is

explored further below.

12.4 Parametric Methods

Method definitions can optionally have type parameters qualifying the signature:

julia> same_type(x::T, y::T) where {T} = true

same_type (generic function with 1 method)

julia> same_type(x,y) = false

same_type (generic function with 2 methods)

The first method applies whenever both arguments are of the same concrete type, regardless of what type

that is, while the second method acts as a catch-all, covering all other cases. Thus, overall, this defines a

boolean function that checks whether its two arguments are of the same type:

julia> same_type(1, 2)

true

julia> same_type(1, 2.0)

false

julia> same_type(1.0, 2.0)

CHAPTER 12. METHODS 155

true

julia> same_type("foo", 2.0)

false

julia> same_type("foo", "bar")

true

julia> same_type(Int32(1), Int64(2))

false

Such definitions correspond to methods whose type signatures are UnionAll types (see UnionAll Types).

This kind of definition of function behavior by dispatch is quite common – idiomatic, even – in Julia. Method

type parameters are not restricted to being used as the types of arguments: they can be used anywhere

a value would be in the signature of the function or body of the function. Here's an example where the

method type parameter T is used as the type parameter to the parametric type Vector{T} in the method

signature:

julia> myappend(v::Vector{T}, x::T) where {T} = [v..., x]

myappend (generic function with 1 method)

julia> myappend([1,2,3],4)

4-element Vector{Int64}:

1

2

3

4

julia> myappend([1,2,3],2.5)

ERROR: MethodError: no method matching myappend(::Vector{Int64}, ::Float64)

Closest candidates are:

myappend(::Vector{T}, !Matched::T) where T

@ Main none:1

Stacktrace:

[...]

julia> myappend([1.0,2.0,3.0],4.0)

4-element Vector{Float64}:

1.0

2.0

3.0

4.0

julia> myappend([1.0,2.0,3.0],4)

ERROR: MethodError: no method matching myappend(::Vector{Float64}, ::Int64)

Closest candidates are:

myappend(::Vector{T}, !Matched::T) where T

@ Main none:1

CHAPTER 12. METHODS 156

Stacktrace:

[...]

As you can see, the type of the appended element must match the element type of the vector it is appended

to, or else a MethodError is raised. In the following example, the method type parameter T is used as the

return value:

julia> mytypeof(x::T) where {T} = T

mytypeof (generic function with 1 method)

julia> mytypeof(1)

Int64

julia> mytypeof(1.0)

Float64

Just as you can put subtype constraints on type parameters in type declarations (see Parametric Types),

you can also constrain type parameters of methods:

julia> same_type_numeric(x::T, y::T) where {T<:Number} = true

same_type_numeric (generic function with 1 method)

julia> same_type_numeric(x::Number, y::Number) = false

same_type_numeric (generic function with 2 methods)

julia> same_type_numeric(1, 2)

true

julia> same_type_numeric(1, 2.0)

false

julia> same_type_numeric(1.0, 2.0)

true

julia> same_type_numeric("foo", 2.0)

ERROR: MethodError: no method matching same_type_numeric(::String, ::Float64)

Closest candidates are:

same_type_numeric(!Matched::T, ::T) where T<:Number

@ Main none:1

same_type_numeric(!Matched::Number, ::Number)

@ Main none:1

Stacktrace:

[...]

julia> same_type_numeric("foo", "bar")

ERROR: MethodError: no method matching same_type_numeric(::String, ::String)

julia> same_type_numeric(Int32(1), Int64(2))

false

CHAPTER 12. METHODS 157

The same_type_numeric function behaves much like the same_type function defined above, but is only

defined for pairs of numbers.

Parametric methods allow the same syntax as where expressions used to write types (see UnionAll Types).

If there is only a single parameter, the enclosing curly braces (in where {T}) can be omitted, but are often

preferred for clarity. Multiple parameters can be separated with commas, e.g. where {T, S<:Real}, or

written using nested where, e.g. where S<:Real where T.

12.5 Redefining Methods

When redefining a method or adding new methods, it is important to realize that these changes don't take

effect immediately. This is key to Julia's ability to statically infer and compile code to run fast, without the

usual JIT tricks and overhead. Indeed, any new method definition won't be visible to the current runtime

environment, including Tasks and Threads (and any previously defined @generated functions). Let's start

with an example to see what this means:

julia> function tryeval()

@eval newfun() = 1

newfun()

end

tryeval (generic function with 1 method)

julia> tryeval()

ERROR: MethodError: no method matching newfun()

The applicable method may be too new: running in world age xxxx1, while current world is xxxx2.

Closest candidates are:

newfun() at none:1 (method too new to be called from this world context.)

in tryeval() at none:1

...

julia> newfun()

1

In this example, observe that the new definition for newfun has been created, but can't be immediately

called. The new global is immediately visible to the tryeval function, so you could write return newfun

(without parentheses). But neither you, nor any of your callers, nor the functions they call, or etc. can call

this new method definition!

But there's an exception: future calls to newfun from the REPL work as expected, being able to both see

and call the new definition of newfun.

However, future calls to tryeval will continue to see the definition of newfun as it was at the previous

statement at the REPL, and thus before that call to tryeval.

You may want to try this for yourself to see how it works.

The implementation of this behavior is a "world age counter". This monotonically increasing value tracks

each method definition operation. This allows describing "the set of method definitions visible to a given

runtime environment" as a single number, or "world age". It also allows comparing the methods available

in two worlds just by comparing their ordinal value. In the example above, we see that the "current world"

(in which the method newfun exists), is one greater than the task-local "runtime world" that was fixed when

the execution of tryeval started.

CHAPTER 12. METHODS 158

Sometimes it is necessary to get around this (for example, if you are implementing the above REPL).

Fortunately, there is an easy solution: call the function using Base.invokelatest:

julia> function tryeval2()

@eval newfun2() = 2

Base.invokelatest(newfun2)

end

tryeval2 (generic function with 1 method)

julia> tryeval2()

2

Finally, let's take a look at some more complex examples where this rule comes into play. Define a function

f(x), which initially has one method:

julia> f(x) = "original definition"

f (generic function with 1 method)

Start some other operations that use f(x):

julia> g(x) = f(x)

g (generic function with 1 method)

julia> t = @async f(wait()); yield();

Now we add some new methods to f(x):

julia> f(x::Int) = "definition for Int"

f (generic function with 2 methods)

julia> f(x::Type{Int}) = "definition for Type{Int}"

f (generic function with 3 methods)

Compare how these results differ:

julia> f(1)

"definition for Int"

julia> g(1)

"definition for Int"

julia> fetch(schedule(t, 1))

"original definition"

julia> t = @async f(wait()); yield();

julia> fetch(schedule(t, 1))

"definition for Int"

CHAPTER 12. METHODS 159

12.6 Design Patterns with Parametric Methods

While complex dispatch logic is not required for performance or usability, sometimes it can be the best

way to express some algorithm. Here are a few common design patterns that come up sometimes when

using dispatch in this way.

Extracting the type parameter from a super-type

Here is a correct code template for returning the element-type T of any arbitrary subtype of AbstractArray

that has well-defined element type:

abstract type AbstractArray{T, N} end

eltype(::Type{<:AbstractArray{T}}) where {T} = T

using so-called triangular dispatch. Note that UnionAll types, for example eltype(AbstractArray{T}

where T <: Integer), do not match the above method. The implementation of eltype in Base adds a

fallback method to Any for such cases.

One common mistake is to try and get the element-type by using introspection:

eltype_wrong(::Type{A}) where {A<:AbstractArray} = A.parameters[1]

However, it is not hard to construct cases where this will fail:

struct BitVector <: AbstractArray{Bool, 1}; end

Here we have created a type BitVector which has no parameters, but where the element-type is still fully

specified, with T equal to Bool!

Another mistake is to try to walk up the type hierarchy using supertype:

eltype_wrong(::Type{AbstractArray{T}}) where {T} = T

eltype_wrong(::Type{AbstractArray{T, N}}) where {T, N} = T

eltype_wrong(::Type{A}) where {A<:AbstractArray} = eltype_wrong(supertype(A))

While this works for declared types, it fails for types without supertypes:

julia> eltype_wrong(Union{AbstractArray{Int}, AbstractArray{Float64}})

ERROR: MethodError: no method matching supertype(::Type{Union{AbstractArray{Float64,N} where N,

AbstractArray{Int64,N} where N}})↪→

Closest candidates are:

supertype(::DataType) at operators.jl:43

supertype(::UnionAll) at operators.jl:48

CHAPTER 12. METHODS 160

Building a similar type with a different type parameter

When building generic code, there is often a need for constructing a similar object with some change made

to the layout of the type, also necessitating a change of the type parameters. For instance, you might have

some sort of abstract array with an arbitrary element type and want to write your computation on it with a

specific element type. We must implement a method for each AbstractArray{T} subtype that describes

how to compute this type transform. There is no general transform of one subtype into another subtype

with a different parameter.

The subtypes of AbstractArray typically implement two methods to achieve this: A method to convert

the input array to a subtype of a specific AbstractArray{T, N} abstract type; and a method to make a

new uninitialized array with a specific element type. Sample implementations of these can be found in Julia

Base. Here is a basic example usage of them, guaranteeing that input and output are of the same type:

input = convert(AbstractArray{Eltype}, input)

output = similar(input, Eltype)

As an extension of this, in cases where the algorithm needs a copy of the input array, convert is insufficient

as the return valuemay alias the original input. Combining similar (to make the output array) and copyto!

(to fill it with the input data) is a generic way to express the requirement for a mutable copy of the input

argument:

copy_with_eltype(input, Eltype) = copyto!(similar(input, Eltype), input)

Iterated dispatch

In order to dispatch a multi-level parametric argument list, often it is best to separate each level of dispatch

into distinct functions. This may sound similar in approach to single-dispatch, but as we shall see below, it

is still more flexible.

For example, trying to dispatch on the element-type of an array will often run into ambiguous situations.

Instead, commonly code will dispatch first on the container type, then recurse down to a more specific

method based on eltype. In most cases, the algorithms lend themselves conveniently to this hierarchical

approach, while in other cases, this rigor must be resolved manually. This dispatching branching can be

observed, for example, in the logic to sum two matrices:

First dispatch selects the map algorithm for element-wise summation.

+(a::Matrix, b::Matrix) = map(+, a, b)

Then dispatch handles each element and selects the appropriate

common element type for the computation.

+(a, b) = +(promote(a, b)...)

Once the elements have the same type, they can be added.

For example, via primitive operations exposed by the processor.

+(a::Float64, b::Float64) = Core.add(a, b)

Trait-based dispatch

A natural extension to the iterated dispatch above is to add a layer to method selection that allows to

dispatch on sets of types which are independent from the sets defined by the type hierarchy. We could

construct such a set by writing out a Union of the types in question, but then this set would not be extensible

CHAPTER 12. METHODS 161

as Union-types cannot be altered after creation. However, such an extensible set can be programmed with

a design pattern often referred to as a "Holy-trait".

This pattern is implemented by defining a generic function which computes a different singleton value (or

type) for each trait-set to which the function arguments may belong to. If this function is pure there is no

impact on performance compared to normal dispatch.

The example in the previous section glossed over the implementation details of map and promote, which

both operate in terms of these traits. When iterating over a matrix, such as in the implementation of

map, one important question is what order to use to traverse the data. When AbstractArray subtypes

implement the Base.IndexStyle trait, other functions such as map can dispatch on this information to

pick the best algorithm (see Abstract Array Interface). This means that each subtype does not need to

implement a custom version of map, since the generic definitions + trait classes will enable the system to

select the fastest version. Here is a toy implementation of map illustrating the trait-based dispatch:

map(f, a::AbstractArray, b::AbstractArray) = map(Base.IndexStyle(a, b), f, a, b)

generic implementation:

map(::Base.IndexCartesian, f, a::AbstractArray, b::AbstractArray) = ...

linear-indexing implementation (faster)

map(::Base.IndexLinear, f, a::AbstractArray, b::AbstractArray) = ...

This trait-based approach is also present in the promote mechanism employed by the scalar +. It uses

promote_type, which returns the optimal common type to compute the operation given the two types of

the operands. This makes it possible to reduce the problem of implementing every function for every pair

of possible type arguments, to the much smaller problem of implementing a conversion operation from

each type to a common type, plus a table of preferred pair-wise promotion rules.

Output-type computation

The discussion of trait-based promotion provides a transition into our next design pattern: computing the

output element type for a matrix operation.

For implementing primitive operations, such as addition, we use the promote_type function to compute

the desired output type. (As before, we saw this at work in the promote call in the call to +).

For more complex functions on matrices, it may be necessary to compute the expected return type for a

more complex sequence of operations. This is often performed by the following steps:

1. Write a small function op that expresses the set of operations performed by the kernel of the algo-

rithm.

2. Compute the element type R of the result matrix as promote_op(op, argument_types...), where

argument_types is computed from eltype applied to each input array.

3. Build the output matrix as similar(R, dims), where dims are the desired dimensions of the output

array.

For a more specific example, a generic square-matrix multiply pseudo-code might look like:

function matmul(a::AbstractMatrix, b::AbstractMatrix)

op = (ai, bi) -> ai * bi + ai * bi

https://github.com/JuliaLang/julia/issues/2345#issuecomment-54537633

CHAPTER 12. METHODS 162

this is insufficient because it assumes `one(eltype(a))` is constructable:

R = typeof(op(one(eltype(a)), one(eltype(b))))

this fails because it assumes `a[1]` exists and is representative of all elements of the

array↪→

R = typeof(op(a[1], b[1]))

this is incorrect because it assumes that `+` calls `promote_type`

but this is not true for some types, such as Bool:

R = promote_type(ai, bi)

this is wrong, since depending on the return value

of type-inference is very brittle (as well as not being optimizable):

R = Base.return_types(op, (eltype(a), eltype(b)))

but, finally, this works:

R = promote_op(op, eltype(a), eltype(b))

although sometimes it may give a larger type than desired

it will always give a correct type

output = similar(b, R, (size(a, 1), size(b, 2)))

if size(a, 2) > 0

for j in 1:size(b, 2)

for i in 1:size(a, 1)

here we don't use `ab = zero(R)`,

since `R` might be `Any` and `zero(Any)` is not defined

we also must declare `ab::R` to make the type of `ab` constant in the loop,

since it is possible that typeof(a * b) != typeof(a * b + a * b) == R

ab::R = a[i, 1] * b[1, j]

for k in 2:size(a, 2)

ab += a[i, k] * b[k, j]

end

output[i, j] = ab

end

end

end

return output

end

Separate convert and kernel logic

One way to significantly cut down on compile-times and testing complexity is to isolate the logic for con-

verting to the desired type and the computation. This lets the compiler specialize and inline the conversion

logic independent from the rest of the body of the larger kernel.

This is a common pattern seen when converting from a larger class of types to the one specific argument

type that is actually supported by the algorithm:

complexfunction(arg::Int) = ...

complexfunction(arg::Any) = complexfunction(convert(Int, arg))

CHAPTER 12. METHODS 163

matmul(a::T, b::T) = ...

matmul(a, b) = matmul(promote(a, b)...)

12.7 Parametrically-constrained Varargs methods

Function parameters can also be used to constrain the number of arguments that may be supplied to a

"varargs" function (Varargs Functions). The notation Vararg{T,N} is used to indicate such a constraint.

For example:

julia> bar(a,b,x::Vararg{Any,2}) = (a,b,x)

bar (generic function with 1 method)

julia> bar(1,2,3)

ERROR: MethodError: no method matching bar(::Int64, ::Int64, ::Int64)

Closest candidates are:

bar(::Any, ::Any, ::Any, !Matched::Any)

@ Main none:1

Stacktrace:

[...]

julia> bar(1,2,3,4)

(1, 2, (3, 4))

julia> bar(1,2,3,4,5)

ERROR: MethodError: no method matching bar(::Int64, ::Int64, ::Int64, ::Int64, ::Int64)

Closest candidates are:

bar(::Any, ::Any, ::Any, ::Any)

@ Main none:1

Stacktrace:

[...]

More usefully, it is possible to constrain varargs methods by a parameter. For example:

function getindex(A::AbstractArray{T,N}, indices::Vararg{Number,N}) where {T,N}

would be called only when the number of indices matches the dimensionality of the array.

When only the type of supplied arguments needs to be constrained Vararg{T} can be equivalently written

as T.... For instance f(x::Int...) = x is a shorthand for f(x::Vararg{Int}) = x.

12.8 Note on Optional and keyword Arguments

As mentioned briefly in Functions, optional arguments are implemented as syntax for multiple method

definitions. For example, this definition:

f(a=1,b=2) = a+2b

CHAPTER 12. METHODS 164

translates to the following three methods:

f(a,b) = a+2b

f(a) = f(a,2)

f() = f(1,2)

This means that calling f() is equivalent to calling f(1,2). In this case the result is 5, because f(1,2)

invokes the first method of f above. However, this need not always be the case. If you define a fourth

method that is more specialized for integers:

f(a::Int,b::Int) = a-2b

then the result of both f() and f(1,2) is -3. In other words, optional arguments are tied to a function, not

to any specific method of that function. It depends on the types of the optional arguments which method

is invoked. When optional arguments are defined in terms of a global variable, the type of the optional

argument may even change at run-time.

Keyword arguments behave quite differently from ordinary positional arguments. In particular, they do not

participate in method dispatch. Methods are dispatched based only on positional arguments, with keyword

arguments processed after the matching method is identified.

12.9 Function-like objects

Methods are associated with types, so it is possible to make any arbitrary Julia object "callable" by adding

methods to its type. (Such "callable" objects are sometimes called "functors.")

For example, you can define a type that stores the coefficients of a polynomial, but behaves like a function

evaluating the polynomial:

julia> struct Polynomial{R}

coeffs::Vector{R}

end

julia> function (p::Polynomial)(x)

v = p.coeffs[end]

for i = (length(p.coeffs)-1):-1:1

v = v*x + p.coeffs[i]

end

return v

end

julia> (p::Polynomial)() = p(5)

Notice that the function is specified by type instead of by name. As with normal functions there is a terse

syntax form. In the function body, p will refer to the object that was called. A Polynomial can be used as

follows:

julia> p = Polynomial([1,10,100])

Polynomial{Int64}([1, 10, 100])

CHAPTER 12. METHODS 165

julia> p(3)

931

julia> p()

2551

This mechanism is also the key to how type constructors and closures (inner functions that refer to their

surrounding environment) work in Julia.

12.10 Empty generic functions

Occasionally it is useful to introduce a generic function without yet adding methods. This can be used to

separate interface definitions from implementations. It might also be done for the purpose of documenta-

tion or code readability. The syntax for this is an empty function block without a tuple of arguments:

function emptyfunc end

12.11 Method design and the avoidance of ambiguities

Julia's method polymorphism is one of its most powerful features, yet exploiting this power can pose design

challenges. In particular, in more complex method hierarchies it is not uncommon for ambiguities to arise.

Above, it was pointed out that one can resolve ambiguities like

f(x, y::Int) = 1

f(x::Int, y) = 2

by defining a method

f(x::Int, y::Int) = 3

This is often the right strategy; however, there are circumstances where following this advice mindlessly

can be counterproductive. In particular, the more methods a generic function has, the more possibilities

there are for ambiguities. When your method hierarchies get more complicated than this simple example,

it can be worth your while to think carefully about alternative strategies.

Below we discuss particular challenges and some alternative ways to resolve such issues.

Tuple and NTuple arguments

Tuple (and NTuple) arguments present special challenges. For example,

f(x::NTuple{N,Int}) where {N} = 1

f(x::NTuple{N,Float64}) where {N} = 2

are ambiguous because of the possibility that N == 0: there are no elements to determine whether the

Int or Float64 variant should be called. To resolve the ambiguity, one approach is define a method for

the empty tuple:

CHAPTER 12. METHODS 166

f(x::Tuple{}) = 3

Alternatively, for all methods but one you can insist that there is at least one element in the tuple:

f(x::NTuple{N,Int}) where {N} = 1 # this is the fallback

f(x::Tuple{Float64, Vararg{Float64}}) = 2 # this requires at least one Float64

Orthogonalize your design

When you might be tempted to dispatch on two or more arguments, consider whether a "wrapper" function

might make for a simpler design. For example, instead of writing multiple variants:

f(x::A, y::A) = ...

f(x::A, y::B) = ...

f(x::B, y::A) = ...

f(x::B, y::B) = ...

you might consider defining

f(x::A, y::A) = ...

f(x, y) = f(g(x), g(y))

where g converts the argument to type A. This is a very specific example of the more general principle of

orthogonal design, in which separate concepts are assigned to separate methods. Here, g will most likely

need a fallback definition

g(x::A) = x

A related strategy exploits promote to bring x and y to a common type:

f(x::T, y::T) where {T} = ...

f(x, y) = f(promote(x, y)...)

One risk with this design is the possibility that if there is no suitable promotion method converting x and y

to the same type, the second method will recurse on itself infinitely and trigger a stack overflow.

Dispatch on one argument at a time

If you need to dispatch on multiple arguments, and there are many fallbacks with too many combinations

to make it practical to define all possible variants, then consider introducing a "name cascade" where (for

example) you dispatch on the first argument and then call an internal method:

f(x::A, y) = _fA(x, y)

f(x::B, y) = _fB(x, y)

Then the internal methods _fA and _fB can dispatch on y without concern about ambiguities with each

other with respect to x.

Be aware that this strategy has at least one major disadvantage: in many cases, it is not possible for

users to further customize the behavior of f by defining further specializations of your exported function

f. Instead, they have to define specializations for your internal methods _fA and _fB, and this blurs the

lines between exported and internal methods.

https://en.wikipedia.org/wiki/Orthogonality_(programming)

CHAPTER 12. METHODS 167

Abstract containers and element types

Where possible, try to avoid defining methods that dispatch on specific element types of abstract contain-

ers. For example,

-(A::AbstractArray{T}, b::Date) where {T<:Date}

generates ambiguities for anyone who defines a method

-(A::MyArrayType{T}, b::T) where {T}

The best approach is to avoid defining either of thesemethods: instead, rely on a genericmethod -(A::AbstractArray,

b) and make sure this method is implemented with generic calls (like similar and -) that do the right thing

for each container type and element type separately. This is just a more complex variant of the advice to

orthogonalize your methods.

When this approach is not possible, it may be worth starting a discussion with other developers about

resolving the ambiguity; just because one method was defined first does not necessarily mean that it can't

be modified or eliminated. As a last resort, one developer can define the "band-aid" method

-(A::MyArrayType{T}, b::Date) where {T<:Date} = ...

that resolves the ambiguity by brute force.

Complex method "cascades" with default arguments

If you are defining a method "cascade" that supplies defaults, be careful about dropping any arguments

that correspond to potential defaults. For example, suppose you're writing a digital filtering algorithm and

you have a method that handles the edges of the signal by applying padding:

function myfilter(A, kernel, ::Replicate)

Apadded = replicate_edges(A, size(kernel))

myfilter(Apadded, kernel) # now perform the "real" computation

end

This will run afoul of a method that supplies default padding:

myfilter(A, kernel) = myfilter(A, kernel, Replicate()) # replicate the edge by default

Together, these two methods generate an infinite recursion with A constantly growing bigger.

The better design would be to define your call hierarchy like this:

struct NoPad end # indicate that no padding is desired, or that it's already applied

myfilter(A, kernel) = myfilter(A, kernel, Replicate()) # default boundary conditions

function myfilter(A, kernel, ::Replicate)

Apadded = replicate_edges(A, size(kernel))

CHAPTER 12. METHODS 168

myfilter(Apadded, kernel, NoPad()) # indicate the new boundary conditions

end

other padding methods go here

function myfilter(A, kernel, ::NoPad)

Here's the "real" implementation of the core computation

end

NoPad is supplied in the same argument position as any other kind of padding, so it keeps the dispatch

hierarchy well organized and with reduced likelihood of ambiguities. Moreover, it extends the "public"

myfilter interface: a user who wants to control the padding explicitly can call the NoPad variant directly.

12.12 Defining methods in local scope

You can define methods within a local scope, for example

julia> function f(x)

g(y::Int) = y + x

g(y) = y - x

g

end

f (generic function with 1 method)

julia> h = f(3);

julia> h(4)

7

julia> h(4.0)

1.0

However, you should not define local methods conditionally or subject to control flow, as in

function f2(inc)

if inc

g(x) = x + 1

else

g(x) = x - 1

end

end

function f3()

function g end

return g

g() = 0

end

as it is not clear what function will end up getting defined. In the future, it might be an error to define local

methods in this manner.

For cases like this use anonymous functions instead:

CHAPTER 12. METHODS 169

function f2(inc)

g = if inc

x -> x + 1

else

x -> x - 1

end

end

2Arthur C. Clarke, Profiles of the Future (1961): Clarke's Third Law.

Chapter 13

Constructors

Constructors 1 are functions that create new objects – specifically, instances of Composite Types. In Julia,

type objects also serve as constructor functions: they create new instances of themselves when applied

to an argument tuple as a function. This much was already mentioned briefly when composite types were

introduced. For example:

julia> struct Foo

bar

baz

end

julia> foo = Foo(1, 2)

Foo(1, 2)

julia> foo.bar

1

julia> foo.baz

2

For many types, forming new objects by binding their field values together is all that is ever needed to

create instances. However, in some cases more functionality is required when creating composite objects.

Sometimes invariants must be enforced, either by checking arguments or by transforming them. Recursive

data structures, especially those that may be self-referential, often cannot be constructed cleanly without

first being created in an incomplete state and then altered programmatically to be made whole, as a sep-

arate step from object creation. Sometimes, it's just convenient to be able to construct objects with fewer

or different types of parameters than they have fields. Julia's system for object construction addresses all

of these cases and more.

1Nomenclature: while the term "constructor" generally refers to the entire function which constructs objects of a type, it is

common to abuse terminology slightly and refer to specific constructor methods as "constructors". In such situations, it is generally

clear from the context that the term is used to mean "constructor method" rather than "constructor function", especially as it is often

used in the sense of singling out a particular method of the constructor from all of the others.

170

https://en.wikipedia.org/wiki/Recursion_%28computer_science%29#Recursive_data_structures_.28structural_recursion.29
https://en.wikipedia.org/wiki/Recursion_%28computer_science%29#Recursive_data_structures_.28structural_recursion.29

CHAPTER 13. CONSTRUCTORS 171

13.1 Outer Constructor Methods

A constructor is just like any other function in Julia in that its overall behavior is defined by the combined

behavior of its methods. Accordingly, you can add functionality to a constructor by simply defining new

methods. For example, let's say you want to add a constructor method for Foo objects that takes only one

argument and uses the given value for both the bar and baz fields. This is simple:

julia> Foo(x) = Foo(x,x)

Foo

julia> Foo(1)

Foo(1, 1)

You could also add a zero-argument Foo constructor method that supplies default values for both of the

bar and baz fields:

julia> Foo() = Foo(0)

Foo

julia> Foo()

Foo(0, 0)

Here the zero-argument constructor method calls the single-argument constructor method, which in turn

calls the automatically provided two-argument constructor method. For reasons that will become clear very

shortly, additional constructor methods declared as normal methods like this are called outer constructor

methods. Outer constructor methods can only ever create a new instance by calling another constructor

method, such as the automatically provided default ones.

13.2 Inner Constructor Methods

While outer constructor methods succeed in addressing the problem of providing additional convenience

methods for constructing objects, they fail to address the other two use cases mentioned in the introduc-

tion of this chapter: enforcing invariants, and allowing construction of self-referential objects. For these

problems, one needs inner constructor methods. An inner constructor method is like an outer constructor

method, except for two differences:

1. It is declared inside the block of a type declaration, rather than outside of it like normal methods.

2. It has access to a special locally existent function called new that creates objects of the block's type.

For example, suppose one wants to declare a type that holds a pair of real numbers, subject to the constraint

that the first number is not greater than the second one. One could declare it like this:

julia> struct OrderedPair

x::Real

y::Real

OrderedPair(x,y) = x > y ? error("out of order") : new(x,y)

end

CHAPTER 13. CONSTRUCTORS 172

Now OrderedPair objects can only be constructed such that x <= y:

julia> OrderedPair(1, 2)

OrderedPair(1, 2)

julia> OrderedPair(2,1)

ERROR: out of order

Stacktrace:

[1] error at ./error.jl:33 [inlined]

[2] OrderedPair(::Int64, ::Int64) at ./none:4

[3] top-level scope

If the type were declared mutable, you could reach in and directly change the field values to violate this

invariant. Of course, messing around with an object's internals uninvited is bad practice. You (or someone

else) can also provide additional outer constructor methods at any later point, but once a type is declared,

there is no way to add more inner constructor methods. Since outer constructor methods can only create

objects by calling other constructor methods, ultimately, some inner constructor must be called to create

an object. This guarantees that all objects of the declared type must come into existence by a call to one

of the inner constructor methods provided with the type, thereby giving some degree of enforcement of a

type's invariants.

If any inner constructor method is defined, no default constructor method is provided: it is presumed that

you have supplied yourself with all the inner constructors you need. The default constructor is equivalent to

writing your own inner constructor method that takes all of the object's fields as parameters (constrained

to be of the correct type, if the corresponding field has a type), and passes them to new, returning the

resulting object:

julia> struct Foo

bar

baz

Foo(bar,baz) = new(bar,baz)

end

This declaration has the same effect as the earlier definition of the Foo type without an explicit inner

constructor method. The following two types are equivalent – one with a default constructor, the other

with an explicit constructor:

julia> struct T1

x::Int64

end

julia> struct T2

x::Int64

T2(x) = new(x)

end

julia> T1(1)

T1(1)

julia> T2(1)

CHAPTER 13. CONSTRUCTORS 173

T2(1)

julia> T1(1.0)

T1(1)

julia> T2(1.0)

T2(1)

It is good practice to provide as few inner constructor methods as possible: only those taking all arguments

explicitly and enforcing essential error checking and transformation. Additional convenience constructor

methods, supplying default values or auxiliary transformations, should be provided as outer constructors

that call the inner constructors to do the heavy lifting. This separation is typically quite natural.

13.3 Incomplete Initialization

The final problem which has still not been addressed is construction of self-referential objects, or more

generally, recursive data structures. Since the fundamental difficulty may not be immediately obvious, let

us briefly explain it. Consider the following recursive type declaration:

julia> mutable struct SelfReferential

obj::SelfReferential

end

This type may appear innocuous enough, until one considers how to construct an instance of it. If a is an

instance of SelfReferential, then a second instance can be created by the call:

julia> b = SelfReferential(a)

But how does one construct the first instance when no instance exists to provide as a valid value for its obj

field? The only solution is to allow creating an incompletely initialized instance of SelfReferential with

an unassigned obj field, and using that incomplete instance as a valid value for the obj field of another

instance, such as, for example, itself.

To allow for the creation of incompletely initialized objects, Julia allows the new function to be called with

fewer than the number of fields that the type has, returning an object with the unspecified fields uninitial-

ized. The inner constructor method can then use the incomplete object, finishing its initialization before

returning it. Here, for example, is another attempt at defining the SelfReferential type, this time using

a zero-argument inner constructor returning instances having obj fields pointing to themselves:

julia> mutable struct SelfReferential

obj::SelfReferential

SelfReferential() = (x = new(); x.obj = x)

end

We can verify that this constructor works and constructs objects that are, in fact, self-referential:

CHAPTER 13. CONSTRUCTORS 174

julia> x = SelfReferential();

julia> x === x

true

julia> x === x.obj

true

julia> x === x.obj.obj

true

Although it is generally a good idea to return a fully initialized object from an inner constructor, it is possible

to return incompletely initialized objects:

julia> mutable struct Incomplete

data

Incomplete() = new()

end

julia> z = Incomplete();

While you are allowed to create objects with uninitialized fields, any access to an uninitialized reference is

an immediate error:

julia> z.data

ERROR: UndefRefError: access to undefined reference

This avoids the need to continually check for null values. However, not all object fields are references. Julia

considers some types to be "plain data", meaning all of their data is self-contained and does not reference

other objects. The plain data types consist of primitive types (e.g. Int) and immutable structs of other

plain data types (see also: isbits, isbitstype). The initial contents of a plain data type is undefined:

julia> struct HasPlain

n::Int

HasPlain() = new()

end

julia> HasPlain()

HasPlain(438103441441)

Arrays of plain data types exhibit the same behavior.

You can pass incomplete objects to other functions from inner constructors to delegate their completion:

julia> mutable struct Lazy

data

Lazy(v) = complete_me(new(), v)

end

As with incomplete objects returned from constructors, if complete_me or any of its callees try to access

the data field of the Lazy object before it has been initialized, an error will be thrown immediately.

CHAPTER 13. CONSTRUCTORS 175

13.4 Parametric Constructors

Parametric types add a few wrinkles to the constructor story. Recall from Parametric Types that, by default,

instances of parametric composite types can be constructed either with explicitly given type parameters

or with type parameters implied by the types of the arguments given to the constructor. Here are some

examples:

julia> struct Point{T<:Real}

x::T

y::T

end

julia> Point(1,2) ## implicit T ##

Point{Int64}(1, 2)

julia> Point(1.0,2.5) ## implicit T ##

Point{Float64}(1.0, 2.5)

julia> Point(1,2.5) ## implicit T ##

ERROR: MethodError: no method matching Point(::Int64, ::Float64)

Closest candidates are:

Point(::T, ::T) where T<:Real at none:2

julia> Point{Int64}(1, 2) ## explicit T ##

Point{Int64}(1, 2)

julia> Point{Int64}(1.0,2.5) ## explicit T ##

ERROR: InexactError: Int64(2.5)

Stacktrace:

[...]

julia> Point{Float64}(1.0, 2.5) ## explicit T ##

Point{Float64}(1.0, 2.5)

julia> Point{Float64}(1,2) ## explicit T ##

Point{Float64}(1.0, 2.0)

As you can see, for constructor calls with explicit type parameters, the arguments are converted to the

implied field types: Point{Int64}(1,2) works, but Point{Int64}(1.0,2.5) raises an InexactError

when converting 2.5 to Int64. When the type is implied by the arguments to the constructor call, as

in Point(1,2), then the types of the arguments must agree – otherwise the T cannot be determined – but

any pair of real arguments with matching type may be given to the generic Point constructor.

What's really going on here is that Point, Point{Float64} and Point{Int64} are all different constructor

functions. In fact, Point{T} is a distinct constructor function for each type T. Without any explicitly provided

inner constructors, the declaration of the composite type Point{T<:Real} automatically provides an inner

constructor, Point{T}, for each possible type T<:Real, that behaves just like non-parametric default inner

constructors do. It also provides a single general outer Point constructor that takes pairs of real arguments,

which must be of the same type. This automatic provision of constructors is equivalent to the following

explicit declaration:

CHAPTER 13. CONSTRUCTORS 176

julia> struct Point{T<:Real}

x::T

y::T

Point{T}(x,y) where {T<:Real} = new(x,y)

end

julia> Point(x::T, y::T) where {T<:Real} = Point{T}(x,y);

Notice that each definition looks like the form of constructor call that it handles. The call Point{Int64}(1,2)

will invoke the definition Point{T}(x,y) inside the struct block. The outer constructor declaration, on the

other hand, defines a method for the general Point constructor which only applies to pairs of values of the

same real type. This declaration makes constructor calls without explicit type parameters, like Point(1,2)

and Point(1.0,2.5), work. Since the method declaration restricts the arguments to being of the same

type, calls like Point(1,2.5), with arguments of different types, result in "no method" errors.

Suppose we wanted to make the constructor call Point(1,2.5) work by "promoting" the integer value 1

to the floating-point value 1.0. The simplest way to achieve this is to define the following additional outer

constructor method:

julia> Point(x::Int64, y::Float64) = Point(convert(Float64,x),y);

This method uses the convert function to explicitly convert x to Float64 and then delegates construction

to the general constructor for the case where both arguments are Float64. With this method definition

what was previously a MethodError now successfully creates a point of type Point{Float64}:

julia> p = Point(1,2.5)

Point{Float64}(1.0, 2.5)

julia> typeof(p)

Point{Float64}

However, other similar calls still don't work:

julia> Point(1.5,2)

ERROR: MethodError: no method matching Point(::Float64, ::Int64)

Closest candidates are:

Point(::T, !Matched::T) where T<:Real

@ Main none:1

Stacktrace:

[...]

For a more general way to make all such calls work sensibly, see Conversion and Promotion. At the risk of

spoiling the suspense, we can reveal here that all it takes is the following outer method definition to make

all calls to the general Point constructor work as one would expect:

julia> Point(x::Real, y::Real) = Point(promote(x,y)...);

CHAPTER 13. CONSTRUCTORS 177

The promote function converts all its arguments to a common type – in this case Float64. With this method

definition, the Point constructor promotes its arguments the same way that numeric operators like + do,

and works for all kinds of real numbers:

julia> Point(1.5,2)

Point{Float64}(1.5, 2.0)

julia> Point(1,1//2)

Point{Rational{Int64}}(1//1, 1//2)

julia> Point(1.0,1//2)

Point{Float64}(1.0, 0.5)

Thus, while the implicit type parameter constructors provided by default in Julia are fairly strict, it is possible

to make them behave in a more relaxed but sensible manner quite easily. Moreover, since constructors

can leverage all of the power of the type system, methods, and multiple dispatch, defining sophisticated

behavior is typically quite simple.

13.5 Case Study: Rational

Perhaps the best way to tie all these pieces together is to present a real world example of a parametric

composite type and its constructor methods. To that end, we implement our own rational number type

OurRational, similar to Julia's built-in Rational type, defined in rational.jl:

julia> struct OurRational{T<:Integer} <: Real

num::T

den::T

function OurRational{T}(num::T, den::T) where T<:Integer

if num == 0 && den == 0

error("invalid rational: 0//0")

end

num = flipsign(num, den)

den = flipsign(den, den)

g = gcd(num, den)

num = div(num, g)

den = div(den, g)

new(num, den)

end

end

julia> OurRational(n::T, d::T) where {T<:Integer} = OurRational{T}(n,d)

OurRational

julia> OurRational(n::Integer, d::Integer) = OurRational(promote(n,d)...)

OurRational

julia> OurRational(n::Integer) = OurRational(n,one(n))

OurRational

julia> ⊘(n::Integer, d::Integer) = OurRational(n,d)

⊘ (generic function with 1 method)

https://github.com/JuliaLang/julia/blob/master/base/rational.jl

CHAPTER 13. CONSTRUCTORS 178

julia> ⊘(x::OurRational, y::Integer) = x.num ⊘ (x.den*y)

⊘ (generic function with 2 methods)

julia> ⊘(x::Integer, y::OurRational) = (x*y.den) ⊘ y.num

⊘ (generic function with 3 methods)

julia> ⊘(x::Complex, y::Real) = complex(real(x) ⊘ y, imag(x) ⊘ y)

⊘ (generic function with 4 methods)

julia> ⊘(x::Real, y::Complex) = (x*y') ⊘ real(y*y')

⊘ (generic function with 5 methods)

julia> function ⊘(x::Complex, y::Complex)

xy = x*y'

yy = real(y*y')

complex(real(xy) ⊘ yy, imag(xy) ⊘ yy)

end

⊘ (generic function with 6 methods)

The first line – struct OurRational{T<:Integer} <: Real – declares that OurRational takes one type

parameter of an integer type, and is itself a real type. The field declarations num::T and den::T indicate

that the data held in a OurRational{T} object are a pair of integers of type T, one representing the rational

value's numerator and the other representing its denominator.

Now things get interesting. OurRational has a single inner constructor method which checks that num

and den aren't both zero and ensures that every rational is constructed in "lowest terms" with a non-

negative denominator. This is accomplished by first flipping the signs of numerator and denominator if the

denominator is negative. Then, both are divided by their greatest common divisor (gcd always returns a

non-negative number, regardless of the sign of its arguments). Because this is the only inner constructor

for OurRational, we can be certain that OurRational objects are always constructed in this normalized

form.

OurRational also provides several outer constructor methods for convenience. The first is the "standard"

general constructor that infers the type parameter T from the type of the numerator and denominator

when they have the same type. The second applies when the given numerator and denominator values

have different types: it promotes them to a common type and then delegates construction to the outer

constructor for arguments of matching type. The third outer constructor turns integer values into rationals

by supplying a value of 1 as the denominator.

Following the outer constructor definitions, we defined a number of methods for the ⊘ operator, which

provides a syntax for writing rationals (e.g. 1 ⊘ 2). Julia's Rational type uses the // operator for this

purpose. Before these definitions, ⊘ is a completely undefined operator with only syntax and no mean-

ing. Afterwards, it behaves just as described in Rational Numbers – its entire behavior is defined in these

few lines. The first and most basic definition just makes a ⊘ b construct a OurRational by applying the

OurRational constructor to a and b when they are integers. When one of the operands of ⊘ is already

a rational number, we construct a new rational for the resulting ratio slightly differently; this behavior is

actually identical to division of a rational with an integer. Finally, applying ⊘ to complex integral values

creates an instance of Complex{<:OurRational} – a complex number whose real and imaginary parts are

rationals:

julia> z = (1 + 2im) ⊘ (1 - 2im);

CHAPTER 13. CONSTRUCTORS 179

julia> typeof(z)

Complex{OurRational{Int64}}

julia> typeof(z) <: Complex{<:OurRational}

true

Thus, although the ⊘ operator usually returns an instance of OurRational, if either of its arguments are

complex integers, it will return an instance of Complex{<:OurRational} instead. The interested reader

should consider perusing the rest of rational.jl: it is short, self-contained, and implements an entire

basic Julia type.

13.6 Outer-only constructors

As we have seen, a typical parametric type has inner constructors that are called when type parameters are

known; e.g. they apply to Point{Int} but not to Point. Optionally, outer constructors that determine type

parameters automatically can be added, for example constructing a Point{Int} from the call Point(1,2).

Outer constructors call inner constructors to actually make instances. However, in some cases one would

rather not provide inner constructors, so that specific type parameters cannot be requested manually.

For example, say we define a type that stores a vector along with an accurate representation of its sum:

julia> struct SummedArray{T<:Number,S<:Number}

data::Vector{T}

sum::S

end

julia> SummedArray(Int32[1; 2; 3], Int32(6))

SummedArray{Int32, Int32}(Int32[1, 2, 3], 6)

The problem is that we want S to be a larger type than T, so that we can sum many elements with less

information loss. For example, when T is Int32, we would like S to be Int64. Therefore we want to avoid an

interface that allows the user to construct instances of the type SummedArray{Int32,Int32}. One way to

do this is to provide a constructor only for SummedArray, but inside the struct definition block to suppress

generation of default constructors:

julia> struct SummedArray{T<:Number,S<:Number}

data::Vector{T}

sum::S

function SummedArray(a::Vector{T}) where T

S = widen(T)

new{T,S}(a, sum(S, a))

end

end

julia> SummedArray(Int32[1; 2; 3], Int32(6))

ERROR: MethodError: no method matching SummedArray(::Vector{Int32}, ::Int32)

Closest candidates are:

SummedArray(::Vector{T}) where T

https://github.com/JuliaLang/julia/blob/master/base/rational.jl

CHAPTER 13. CONSTRUCTORS 180

@ Main none:4

Stacktrace:

[...]

This constructor will be invoked by the syntax SummedArray(a). The syntax new{T,S} allows specifying

parameters for the type to be constructed, i.e. this call will return a SummedArray{T,S}. new{T,S} can be

used in any constructor definition, but for convenience the parameters to new{} are automatically derived

from the type being constructed when possible.

Chapter 14

Conversion and Promotion

Julia has a system for promoting arguments of mathematical operators to a common type, which has been

mentioned in various other sections, including Integers and Floating-Point Numbers, Mathematical Opera-

tions and Elementary Functions, Types, and Methods. In this section, we explain how this promotion system

works, as well as how to extend it to new types and apply it to functions besides built-in mathematical op-

erators. Traditionally, programming languages fall into two camps with respect to promotion of arithmetic

arguments:

• Automatic promotion for built-in arithmetic types and operators. In most languages, built-in

numeric types, when used as operands to arithmetic operators with infix syntax, such as +, -, *, and

/, are automatically promoted to a common type to produce the expected results. C, Java, Perl, and

Python, to name a few, all correctly compute the sum 1 + 1.5 as the floating-point value 2.5, even

though one of the operands to + is an integer. These systems are convenient and designed care-

fully enough that they are generally all-but-invisible to the programmer: hardly anyone consciously

thinks of this promotion taking place when writing such an expression, but compilers and interpreters

must perform conversion before addition since integers and floating-point values cannot be added

as-is. Complex rules for such automatic conversions are thus inevitably part of specifications and

implementations for such languages.

• No automatic promotion. This camp includes Ada andML – very "strict" statically typed languages.

In these languages, every conversion must be explicitly specified by the programmer. Thus, the ex-

ample expression 1 + 1.5 would be a compilation error in both Ada and ML. Instead one must write

real(1) + 1.5, explicitly converting the integer 1 to a floating-point value before performing addi-

tion. Explicit conversion everywhere is so inconvenient, however, that even Ada has some degree

of automatic conversion: integer literals are promoted to the expected integer type automatically,

and floating-point literals are similarly promoted to appropriate floating-point types.

In a sense, Julia falls into the "no automatic promotion" category: mathematical operators are just functions

with special syntax, and the arguments of functions are never automatically converted. However, one

may observe that applying mathematical operations to a wide variety of mixed argument types is just an

extreme case of polymorphic multiple dispatch – something which Julia's dispatch and type systems are

particularly well-suited to handle. "Automatic" promotion of mathematical operands simply emerges as

a special application: Julia comes with pre-defined catch-all dispatch rules for mathematical operators,

invoked when no specific implementation exists for some combination of operand types. These catch-all

rules first promote all operands to a common type using user-definable promotion rules, and then invoke

181

CHAPTER 14. CONVERSION AND PROMOTION 182

a specialized implementation of the operator in question for the resulting values, now of the same type.

User-defined types can easily participate in this promotion system by defining methods for conversion to

and from other types, and providing a handful of promotion rules defining what types they should promote

to when mixed with other types.

14.1 Conversion

The standard way to obtain a value of a certain type T is to call the type's constructor, T(x). However,

there are cases where it's convenient to convert a value from one type to another without the programmer

asking for it explicitly. One example is assigning a value into an array: if A is a Vector{Float64}, the

expression A[1] = 2 should work by automatically converting the 2 from Int to Float64, and storing the

result in the array. This is done via the convert function.

The convert function generally takes two arguments: the first is a type object and the second is a value to

convert to that type. The returned value is the value converted to an instance of given type. The simplest

way to understand this function is to see it in action:

julia> x = 12

12

julia> typeof(x)

Int64

julia> xu = convert(UInt8, x)

0x0c

julia> typeof(xu)

UInt8

julia> xf = convert(AbstractFloat, x)

12.0

julia> typeof(xf)

Float64

julia> a = Any[1 2 3; 4 5 6]

2×3 Matrix{Any}:

1 2 3

4 5 6

julia> convert(Array{Float64}, a)

2×3 Matrix{Float64}:

1.0 2.0 3.0

4.0 5.0 6.0

Conversion isn't always possible, in which case a MethodError is thrown indicating that convert doesn't

know how to perform the requested conversion:

julia> convert(AbstractFloat, "foo")

ERROR: MethodError: Cannot `convert` an object of type String to an object of type AbstractFloat

[...]

CHAPTER 14. CONVERSION AND PROMOTION 183

Some languages consider parsing strings as numbers or formatting numbers as strings to be conversions

(many dynamic languages will even perform conversion for you automatically). This is not the case in

Julia. Even though some strings can be parsed as numbers, most strings are not valid representations of

numbers, and only a very limited subset of them are. Therefore in Julia the dedicated parse function must

be used to perform this operation, making it more explicit.

When is convert called?

The following language constructs call convert:

• Assigning to an array converts to the array's element type.

• Assigning to a field of an object converts to the declared type of the field.

• Constructing an object with new converts to the object's declared field types.

• Assigning to a variable with a declared type (e.g. local x::T) converts to that type.

• A function with a declared return type converts its return value to that type.

• Passing a value to ccall converts it to the corresponding argument type.

Conversion vs. Construction

Note that the behavior of convert(T, x) appears to be nearly identical to T(x). Indeed, it usually is. How-

ever, there is a key semantic difference: since convert can be called implicitly, its methods are restricted

to cases that are considered "safe" or "unsurprising". convert will only convert between types that repre-

sent the same basic kind of thing (e.g. different representations of numbers, or different string encodings).

It is also usually lossless; converting a value to a different type and back again should result in the exact

same value.

There are four general kinds of cases where constructors differ from convert:

Constructors for types unrelated to their arguments

Some constructors don't implement the concept of "conversion". For example, Timer(2) creates a 2-second

timer, which is not really a "conversion" from an integer to a timer.

Mutable collections

convert(T, x) is expected to return the original x if x is already of type T. In contrast, if T is a mutable

collection type then T(x) should always make a new collection (copying elements from x).

Wrapper types

For some types which "wrap" other values, the constructor may wrap its argument inside a new object

even if it is already of the requested type. For example Some(x) wraps x to indicate that a value is present

(in a context where the result might be a Some or nothing). However, x itself might be the object Some(y),

in which case the result is Some(Some(y)), with two levels of wrapping. convert(Some, x), on the other

hand, would just return x since it is already a Some.

CHAPTER 14. CONVERSION AND PROMOTION 184

Constructors that don't return instances of their own type

In very rare cases it might make sense for the constructor T(x) to return an object not of type T. This

could happen if a wrapper type is its own inverse (e.g. Flip(Flip(x)) === x), or to support an old calling

syntax for backwards compatibility when a library is restructured. But convert(T, x) should always return

a value of type T.

Defining New Conversions

When defining a new type, initially all ways of creating it should be defined as constructors. If it becomes

clear that implicit conversion would be useful, and that some constructors meet the above "safety" criteria,

then convert methods can be added. These methods are typically quite simple, as they only need to call

the appropriate constructor. Such a definition might look like this:

convert(::Type{MyType}, x) = MyType(x)

The type of the first argument of this method is Type{MyType}, the only instance of which is MyType. Thus,

this method is only invoked when the first argument is the type value MyType. Notice the syntax used for

the first argument: the argument name is omitted prior to the :: symbol, and only the type is given. This

is the syntax in Julia for a function argument whose type is specified but whose value does not need to be

referenced by name.

All instances of some abstract types are by default considered "sufficiently similar" that a universal convert

definition is provided in Julia Base. For example, this definition states that it's valid to convert any Number

type to any other by calling a 1-argument constructor:

convert(::Type{T}, x::Number) where {T<:Number} = T(x)::T

Thismeans that new Number types only need to define constructors, since this definition will handle convert

for them. An identity conversion is also provided to handle the case where the argument is already of the

requested type:

convert(::Type{T}, x::T) where {T<:Number} = x

Similar definitions exist for AbstractString, AbstractArray, and AbstractDict.

14.2 Promotion

Promotion refers to converting values of mixed types to a single common type. Although it is not strictly

necessary, it is generally implied that the common type to which the values are converted can faithfully

represent all of the original values. In this sense, the term "promotion" is appropriate since the values are

converted to a "greater" type – i.e. one which can represent all of the input values in a single common

type. It is important, however, not to confuse this with object-oriented (structural) super-typing, or Julia's

notion of abstract super-types: promotion has nothing to do with the type hierarchy, and everything to do

with converting between alternate representations. For instance, although every Int32 value can also be

represented as a Float64 value, Int32 is not a subtype of Float64.

Promotion to a common "greater" type is performed in Julia by the promote function, which takes any

number of arguments, and returns a tuple of the same number of values, converted to a common type, or

throws an exception if promotion is not possible. The most common use case for promotion is to convert

numeric arguments to a common type:

CHAPTER 14. CONVERSION AND PROMOTION 185

julia> promote(1, 2.5)

(1.0, 2.5)

julia> promote(1, 2.5, 3)

(1.0, 2.5, 3.0)

julia> promote(2, 3//4)

(2//1, 3//4)

julia> promote(1, 2.5, 3, 3//4)

(1.0, 2.5, 3.0, 0.75)

julia> promote(1.5, im)

(1.5 + 0.0im, 0.0 + 1.0im)

julia> promote(1 + 2im, 3//4)

(1//1 + 2//1*im, 3//4 + 0//1*im)

Floating-point values are promoted to the largest of the floating-point argument types. Integer values

are promoted to the largest of the integer argument types. If the types are the same size but differ in

signedness, the unsigned type is chosen. Mixtures of integers and floating-point values are promoted to

a floating-point type big enough to hold all the values. Integers mixed with rationals are promoted to

rationals. Rationals mixed with floats are promoted to floats. Complex values mixed with real values are

promoted to the appropriate kind of complex value.

That is really all there is to using promotions. The rest is just a matter of clever application, the most typical

"clever" application being the definition of catch-all methods for numeric operations like the arithmetic

operators +, -, * and /. Here are some of the catch-all method definitions given in promotion.jl:

+(x::Number, y::Number) = +(promote(x,y)...)

-(x::Number, y::Number) = -(promote(x,y)...)

*(x::Number, y::Number) = *(promote(x,y)...)

/(x::Number, y::Number) = /(promote(x,y)...)

These method definitions say that in the absence of more specific rules for adding, subtracting, multiplying

and dividing pairs of numeric values, promote the values to a common type and then try again. That's all

there is to it: nowhere else does one ever need to worry about promotion to a common numeric type for

arithmetic operations – it just happens automatically. There are definitions of catch-all promotion methods

for a number of other arithmetic and mathematical functions in promotion.jl, but beyond that, there are

hardly any calls to promote required in Julia Base. The most common usages of promote occur in outer

constructors methods, provided for convenience, to allow constructor calls with mixed types to delegate to

an inner type with fields promoted to an appropriate common type. For example, recall that rational.jl

provides the following outer constructor method:

Rational(n::Integer, d::Integer) = Rational(promote(n,d)...)

This allows calls like the following to work:

julia> x = Rational(Int8(15),Int32(-5))

-3//1

https://github.com/JuliaLang/julia/blob/master/base/promotion.jl
https://github.com/JuliaLang/julia/blob/master/base/promotion.jl
https://github.com/JuliaLang/julia/blob/master/base/rational.jl

CHAPTER 14. CONVERSION AND PROMOTION 186

julia> typeof(x)

Rational{Int32}

For most user-defined types, it is better practice to require programmers to supply the expected types to

constructor functions explicitly, but sometimes, especially for numeric problems, it can be convenient to

do promotion automatically.

Defining Promotion Rules

Although one could, in principle, define methods for the promote function directly, this would require many

redundant definitions for all possible permutations of argument types. Instead, the behavior of promote

is defined in terms of an auxiliary function called promote_rule, which one can provide methods for. The

promote_rule function takes a pair of type objects and returns another type object, such that instances of

the argument types will be promoted to the returned type. Thus, by defining the rule:

promote_rule(::Type{Float64}, ::Type{Float32}) = Float64

one declares that when 64-bit and 32-bit floating-point values are promoted together, they should be

promoted to 64-bit floating-point. The promotion type does not need to be one of the argument types. For

example, the following promotion rules both occur in Julia Base:

promote_rule(::Type{BigInt}, ::Type{Float64}) = BigFloat

promote_rule(::Type{BigInt}, ::Type{Int8}) = BigInt

In the latter case, the result type is BigInt since BigInt is the only type large enough to hold integers for

arbitrary-precision integer arithmetic. Also note that one does not need to define both promote_rule(::Type{A},

::Type{B}) and promote_rule(::Type{B}, ::Type{A}) – the symmetry is implied by the way promote_rule

is used in the promotion process.

The promote_rule function is used as a building block to define a second function called promote_type,

which, given any number of type objects, returns the common type to which those values, as arguments

to promote should be promoted. Thus, if one wants to know, in absence of actual values, what type a

collection of values of certain types would promote to, one can use promote_type:

julia> promote_type(Int8, Int64)

Int64

Note that we do not overload promote_type directly: we overload promote_rule instead. promote_type

uses promote_rule, and adds the symmetry. Overloading it directly can cause ambiguity errors. We

overload promote_rule to define how things should be promoted, and we use promote_type to query

that.

Internally, promote_type is used inside of promote to determine what type argument values should be

converted to for promotion. The curious reader can read the code in promotion.jl, which defines the

complete promotion mechanism in about 35 lines.

https://github.com/JuliaLang/julia/blob/master/base/promotion.jl

CHAPTER 14. CONVERSION AND PROMOTION 187

Case Study: Rational Promotions

Finally, we finish off our ongoing case study of Julia's rational number type, which makes relatively sophis-

ticated use of the promotion mechanism with the following promotion rules:

promote_rule(::Type{Rational{T}}, ::Type{S}) where {T<:Integer,S<:Integer} =

Rational{promote_type(T,S)}↪→

promote_rule(::Type{Rational{T}}, ::Type{Rational{S}}) where {T<:Integer,S<:Integer} =

Rational{promote_type(T,S)}↪→

promote_rule(::Type{Rational{T}}, ::Type{S}) where {T<:Integer,S<:AbstractFloat} =

promote_type(T,S)↪→

The first rule says that promoting a rational number with any other integer type promotes to a rational

type whose numerator/denominator type is the result of promotion of its numerator/denominator type

with the other integer type. The second rule applies the same logic to two different types of rational

numbers, resulting in a rational of the promotion of their respective numerator/denominator types. The

third and final rule dictates that promoting a rational with a float results in the same type as promoting the

numerator/denominator type with the float.

This small handful of promotion rules, together with the type's constructors and the default convertmethod

for numbers, are sufficient to make rational numbers interoperate completely naturally with all of Julia's

other numeric types – integers, floating-point numbers, and complex numbers. By providing appropriate

conversion methods and promotion rules in the same manner, any user-defined numeric type can interop-

erate just as naturally with Julia's predefined numerics.

Chapter 15

Interfaces

A lot of the power and extensibility in Julia comes from a collection of informal interfaces. By extending a few

specific methods to work for a custom type, objects of that type not only receive those functionalities, but

they are also able to be used in other methods that are written to generically build upon those behaviors.

15.1 Iteration

Required

methods

Brief description

iterate(iter) Returns either a tuple of the first item and initial state or nothing if

empty

iterate(iter,

state)

Returns either a tuple of the next item and next state or nothing if no

items remain

Important

optional

methods

Default

defini-

tion

Brief description

Base.IteratorSize(IterType)Base.HasLength()One of Base.HasLength(), Base.HasShape{N}(), Base.IsInfinite(),

or Base.SizeUnknown() as appropriate

Base.IteratorEltype(IterType)Base.HasEltype()Either Base.EltypeUnknown() or Base.HasEltype() as appropriate

eltype(IterType)Any The type of the first entry of the tuple returned by iterate()

length(iter) (undefined)The number of items, if known

size(iter,

[dim])

(undefined)The number of items in each dimension, if known

Base.isdone(iter[,

state])

missing Fast-path hint for iterator completion. Should be defined for stateful

iterators, or else isempty(iter) may call iterate(iter[, state])

and mutate the iterator.

Value returned by IteratorSize(IterType) Required Methods

Base.HasLength() length(iter)

Base.HasShape{N}() length(iter) and size(iter, [dim])

Base.IsInfinite() (none)

Base.SizeUnknown() (none)

188

CHAPTER 15. INTERFACES 189

Value returned by IteratorEltype(IterType) Required Methods

Base.HasEltype() eltype(IterType)

Base.EltypeUnknown() (none)

Sequential iteration is implemented by the iterate function. Instead of mutating objects as they are

iterated over, Julia iterators may keep track of the iteration state externally from the object. The return

value from iterate is always either a tuple of a value and a state, or nothing if no elements remain. The

state object will be passed back to the iterate function on the next iteration and is generally considered an

implementation detail private to the iterable object.

Any object that defines this function is iterable and can be used in the many functions that rely upon

iteration. It can also be used directly in a for loop since the syntax:

for item in iter # or "for item = iter"

body

end

is translated into:

next = iterate(iter)

while next !== nothing

(item, state) = next

body

next = iterate(iter, state)

end

A simple example is an iterable sequence of square numbers with a defined length:

julia> struct Squares

count::Int

end

julia> Base.iterate(S::Squares, state=1) = state > S.count ? nothing : (state*state, state+1)

With only iterate definition, the Squares type is already pretty powerful. We can iterate over all the

elements:

julia> for item in Squares(7)

println(item)

end

1

4

9

16

25

36

49

We can use many of the builtin methods that work with iterables, like in or sum:

CHAPTER 15. INTERFACES 190

julia> 25 in Squares(10)

true

julia> sum(Squares(100))

338350

There are a few more methods we can extend to give Julia more information about this iterable collection.

We know that the elements in a Squares sequence will always be Int. By extending the eltype method,

we can give that information to Julia and help it make more specialized code in the more complicated

methods. We also know the number of elements in our sequence, so we can extend length, too:

julia> Base.eltype(::Type{Squares}) = Int # Note that this is defined for the type

julia> Base.length(S::Squares) = S.count

Now, when we ask Julia to collect all the elements into an array it can preallocate a Vector{Int} of the

right size instead of naively push!ing each element into a Vector{Any}:

julia> collect(Squares(4))

4-element Vector{Int64}:

1

4

9

16

While we can rely upon generic implementations, we can also extend specific methods where we know

there is a simpler algorithm. For example, there's a formula to compute the sum of squares, so we can

override the generic iterative version with a more performant solution:

julia> Base.sum(S::Squares) = (n = S.count; return n*(n+1)*(2n+1)÷6)

julia> sum(Squares(1803))

1955361914

This is a very common pattern throughout Julia Base: a small set of required methods define an informal

interface that enable many fancier behaviors. In some cases, types will want to additionally specialize

those extra behaviors when they know a more efficient algorithm can be used in their specific case.

It is also often useful to allow iteration over a collection in reverse order by iterating over Iterators.reverse(iterator).

To actually support reverse-order iteration, however, an iterator type T needs to implement iterate for

Iterators.Reverse{T}. (Given r::Iterators.Reverse{T}, the underling iterator of type T is r.itr.) In

our Squares example, we would implement Iterators.Reverse{Squares} methods:

julia> Base.iterate(rS::Iterators.Reverse{Squares}, state=rS.itr.count) = state < 1 ? nothing :

(state*state, state-1)↪→

julia> collect(Iterators.reverse(Squares(4)))

4-element Vector{Int64}:

16

9

4

1

CHAPTER 15. INTERFACES 191

15.2 Indexing

Methods to implement Brief description

getindex(X, i) X[i], indexed element access

setindex!(X, v, i) X[i] = v, indexed assignment

firstindex(X) The first index, used in X[begin]

lastindex(X) The last index, used in X[end]

For the Squares iterable above, we can easily compute the ith element of the sequence by squaring it. We

can expose this as an indexing expression S[i]. To opt into this behavior, Squares simply needs to define

getindex:

julia> function Base.getindex(S::Squares, i::Int)

1 <= i <= S.count || throw(BoundsError(S, i))

return i*i

end

julia> Squares(100)[23]

529

Additionally, to support the syntax S[begin] and S[end], we must define firstindex and lastindex to

specify the first and last valid indices, respectively:

julia> Base.firstindex(S::Squares) = 1

julia> Base.lastindex(S::Squares) = length(S)

julia> Squares(23)[end]

529

Formulti-dimensional begin/end indexing as in a[3, begin, 7], for example, you should define firstindex(a,

dim) and lastindex(a, dim) (which default to calling first and last on axes(a, dim), respectively).

Note, though, that the above only defines getindex with one integer index. Indexing with anything other

than an Int will throw a MethodError saying that there was no matching method. In order to support

indexing with ranges or vectors of Ints, separate methods must be written:

julia> Base.getindex(S::Squares, i::Number) = S[convert(Int, i)]

julia> Base.getindex(S::Squares, I) = [S[i] for i in I]

julia> Squares(10)[[3,4.,5]]

3-element Vector{Int64}:

9

16

25

While this is starting to support more of the indexing operations supported by some of the builtin types,

there's still quite a number of behaviors missing. This Squares sequence is starting to look more and more

like a vector as we've added behaviors to it. Instead of defining all these behaviors ourselves, we can

officially define it as a subtype of an AbstractArray.

CHAPTER 15. INTERFACES 192

15.3 Abstract Arrays

If a type is defined as a subtype of AbstractArray, it inherits a very large set of rich behaviors including

iteration and multidimensional indexing built on top of single-element access. See the arrays manual page

and the Julia Base section for more supported methods.

A key part in defining an AbstractArray subtype is IndexStyle. Since indexing is such an important part

of an array and often occurs in hot loops, it's important to make both indexing and indexed assignment as

efficient as possible. Array data structures are typically defined in one of two ways: either it most efficiently

accesses its elements using just one index (linear indexing) or it intrinsically accesses the elements with

indices specified for every dimension. These two modalities are identified by Julia as IndexLinear() and

IndexCartesian(). Converting a linear index to multiple indexing subscripts is typically very expensive,

so this provides a traits-based mechanism to enable efficient generic code for all array types.

This distinction determines which scalar indexing methods the type must define. IndexLinear() arrays

are simple: just define getindex(A::ArrayType, i::Int). When the array is subsequently indexed with

a multidimensional set of indices, the fallback getindex(A::AbstractArray, I...) efficiently converts

the indices into one linear index and then calls the above method. IndexCartesian() arrays, on the other

hand, require methods to be defined for each supported dimensionality with ndims(A) Int indices. For ex-

ample, SparseMatrixCSC from the SparseArrays standard library module, only supports two dimensions,

so it just defines getindex(A::SparseMatrixCSC, i::Int, j::Int). The same holds for setindex!.

Returning to the sequence of squares from above, we could instead define it as a subtype of an AbstractArray{Int,

1}:

julia> struct SquaresVector <: AbstractArray{Int, 1}

count::Int

end

julia> Base.size(S::SquaresVector) = (S.count,)

julia> Base.IndexStyle(::Type{<:SquaresVector}) = IndexLinear()

julia> Base.getindex(S::SquaresVector, i::Int) = i*i

Note that it's very important to specify the two parameters of the AbstractArray; the first defines the

eltype, and the second defines the ndims. That supertype and those three methods are all it takes for

SquaresVector to be an iterable, indexable, and completely functional array:

julia> s = SquaresVector(4)

4-element SquaresVector:

1

4

9

16

julia> s[s .> 8]

2-element Vector{Int64}:

9

16

julia> s + s

CHAPTER 15. INTERFACES 193

4-element Vector{Int64}:

2

8

18

32

julia> sin.(s)

4-element Vector{Float64}:

0.8414709848078965

-0.7568024953079282

0.4121184852417566

-0.2879033166650653

As a more complicated example, let's define our own toy N-dimensional sparse-like array type built on top

of Dict:

julia> struct SparseArray{T,N} <: AbstractArray{T,N}

data::Dict{NTuple{N,Int}, T}

dims::NTuple{N,Int}

end

julia> SparseArray(::Type{T}, dims::Int...) where {T} = SparseArray(T, dims);

julia> SparseArray(::Type{T}, dims::NTuple{N,Int}) where {T,N} =

SparseArray{T,N}(Dict{NTuple{N,Int}, T}(), dims);↪→

julia> Base.size(A::SparseArray) = A.dims

julia> Base.similar(A::SparseArray, ::Type{T}, dims::Dims) where {T} = SparseArray(T, dims)

julia> Base.getindex(A::SparseArray{T,N}, I::Vararg{Int,N}) where {T,N} = get(A.data, I, zero(T))

julia> Base.setindex!(A::SparseArray{T,N}, v, I::Vararg{Int,N}) where {T,N} = (A.data[I] = v)

Notice that this is an IndexCartesian array, so we must manually define getindex and setindex! at the

dimensionality of the array. Unlike the SquaresVector, we are able to define setindex!, and so we can

mutate the array:

julia> A = SparseArray(Float64, 3, 3)

3×3 SparseArray{Float64, 2}:

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

julia> fill!(A, 2)

3×3 SparseArray{Float64, 2}:

2.0 2.0 2.0

2.0 2.0 2.0

2.0 2.0 2.0

julia> A[:] = 1:length(A); A

CHAPTER 15. INTERFACES 194

3×3 SparseArray{Float64, 2}:

1.0 4.0 7.0

2.0 5.0 8.0

3.0 6.0 9.0

The result of indexing an AbstractArray can itself be an array (for instance when indexing by an AbstractRange).

The AbstractArray fallback methods use similar to allocate an Array of the appropriate size and element

type, which is filled in using the basic indexing method described above. However, when implementing an

array wrapper you often want the result to be wrapped as well:

julia> A[1:2,:]

2×3 SparseArray{Float64, 2}:

1.0 4.0 7.0

2.0 5.0 8.0

In this example it is accomplished by defining Base.similar(A::SparseArray, ::Type{T}, dims::Dims)

where T to create the appropriate wrapped array. (Note that while similar supports 1- and 2-argument

forms, in most case you only need to specialize the 3-argument form.) For this to work it's important

that SparseArray is mutable (supports setindex!). Defining similar, getindex and setindex! for

SparseArray also makes it possible to copy the array:

julia> copy(A)

3×3 SparseArray{Float64, 2}:

1.0 4.0 7.0

2.0 5.0 8.0

3.0 6.0 9.0

In addition to all the iterable and indexable methods from above, these types can also interact with each

other and use most of the methods defined in Julia Base for AbstractArrays:

julia> A[SquaresVector(3)]

3-element SparseArray{Float64, 1}:

1.0

4.0

9.0

julia> sum(A)

45.0

If you are defining an array type that allows non-traditional indexing (indices that start at something other

than 1), you should specialize axes. You should also specialize similar so that the dims argument (or-

dinarily a Dims size-tuple) can accept AbstractUnitRange objects, perhaps range-types Ind of your own

design. For more information, see Arrays with custom indices.

15.4 Strided Arrays

A strided array is a subtype of AbstractArray whose entries are stored in memory with fixed strides.

Provided the element type of the array is compatible with BLAS, a strided array can utilize BLAS and LAPACK

CHAPTER 15. INTERFACES 195

routines for more efficient linear algebra routines. A typical example of a user-defined strided array is one

that wraps a standard Array with additional structure.

Warning: do not implement these methods if the underlying storage is not actually strided, as it may lead

to incorrect results or segmentation faults.

Here are some examples to demonstrate which type of arrays are strided and which are not:

1:5 # not strided (there is no storage associated with this array.)

Vector(1:5) # is strided with strides (1,)

A = [1 5; 2 6; 3 7; 4 8] # is strided with strides (1,4)

V = view(A, 1:2, :) # is strided with strides (1,4)

V = view(A, 1:2:3, 1:2) # is strided with strides (2,4)

V = view(A, [1,2,4], :) # is not strided, as the spacing between rows is not fixed.

15.5 Customizing broadcasting

Broadcasting is triggered by an explicit call to broadcast or broadcast!, or implicitly by "dot" operations

like A .+ b or f.(x, y). Any object that has axes and supports indexing can participate as an argument

in broadcasting, and by default the result is stored in an Array. This basic framework is extensible in three

major ways:

• Ensuring that all arguments support broadcast

• Selecting an appropriate output array for the given set of arguments

• Selecting an efficient implementation for the given set of arguments

Not all types support axes and indexing, butmany are convenient to allow in broadcast. The Base.broadcastable

function is called on each argument to broadcast, allowing it to return something different that supports

axes and indexing. By default, this is the identity function for all AbstractArrays and Numbers — they

already support axes and indexing.

If a type is intended to act like a "0-dimensional scalar" (a single object) rather than as a container for

broadcasting, then the following method should be defined:

Base.broadcastable(o::MyType) = Ref(o)

that returns the argument wrapped in a 0-dimensional Ref container. For example, such a wrapper method

is defined for types themselves, functions, special singletons like missing and nothing, and dates.

Custom array-like types can specialize Base.broadcastable to define their shape, but they should follow

the convention that collect(Base.broadcastable(x)) == collect(x). A notable exception is AbstractString;

strings are special-cased to behave as scalars for the purposes of broadcast even though they are iterable

collections of their characters (see Strings for more).

The next two steps (selecting the output array and implementation) are dependent upon determining a

single answer for a given set of arguments. Broadcast must take all the varied types of its arguments and

collapse them down to just one output array and one implementation. Broadcast calls this single answer a

"style". Every broadcastable object each has its own preferred style, and a promotion-like system is used

to combine these styles into a single answer — the "destination style".

CHAPTER 15. INTERFACES 196

Broadcast Styles

Base.BroadcastStyle is the abstract type from which all broadcast styles are derived. When used as a

function it has two possible forms, unary (single-argument) and binary. The unary variant states that you

intend to implement specific broadcasting behavior and/or output type, and do not wish to rely on the

default fallback Broadcast.DefaultArrayStyle.

To override these defaults, you can define a custom BroadcastStyle for your object:

struct MyStyle <: Broadcast.BroadcastStyle end

Base.BroadcastStyle(::Type{<:MyType}) = MyStyle()

In some cases it might be convenient not to have to define MyStyle, in which case you can leverage one

of the general broadcast wrappers:

• Base.BroadcastStyle(::Type{<:MyType}) = Broadcast.Style{MyType}() can be used for arbi-

trary types.

• Base.BroadcastStyle(::Type{<:MyType}) = Broadcast.ArrayStyle{MyType}() is preferred if MyType

is an AbstractArray.

• For AbstractArrays that only support a certain dimensionality, create a subtype of Broadcast.AbstractArrayStyle{N}

(see below).

When your broadcast operation involves several arguments, individual argument styles get combined to

determine a single DestStyle that controls the type of the output container. For more details, see below.

Selecting an appropriate output array

The broadcast style is computed for every broadcasting operation to allow for dispatch and specialization.

The actual allocation of the result array is handled by similar, using the Broadcasted object as its first

argument.

Base.similar(bc::Broadcasted{DestStyle}, ::Type{ElType})

The fallback definition is

similar(bc::Broadcasted{DefaultArrayStyle{N}}, ::Type{ElType}) where {N,ElType} =

similar(Array{ElType}, axes(bc))

However, if needed you can specialize on any or all of these arguments. The final argument bc is a lazy

representation of a (potentially fused) broadcast operation, a Broadcasted object. For these purposes, the

most important fields of the wrapper are f and args, describing the function and argument list, respectively.

Note that the argument list can — and often does — include other nested Broadcasted wrappers.

For a complete example, let's say you have created a type, ArrayAndChar, that stores an array and a single

character:

CHAPTER 15. INTERFACES 197

struct ArrayAndChar{T,N} <: AbstractArray{T,N}

data::Array{T,N}

char::Char

end

Base.size(A::ArrayAndChar) = size(A.data)

Base.getindex(A::ArrayAndChar{T,N}, inds::Vararg{Int,N}) where {T,N} = A.data[inds...]

Base.setindex!(A::ArrayAndChar{T,N}, val, inds::Vararg{Int,N}) where {T,N} = A.data[inds...] =

val↪→

Base.showarg(io::IO, A::ArrayAndChar, toplevel) = print(io, typeof(A), " with char '", A.char,

"'")↪→

You might want broadcasting to preserve the char "metadata". First we define

Base.BroadcastStyle(::Type{<:ArrayAndChar}) = Broadcast.ArrayStyle{ArrayAndChar}()

This means we must also define a corresponding similar method:

function Base.similar(bc::Broadcast.Broadcasted{Broadcast.ArrayStyle{ArrayAndChar}},

::Type{ElType}) where ElType↪→

Scan the inputs for the ArrayAndChar:

A = find_aac(bc)

Use the char field of A to create the output

ArrayAndChar(similar(Array{ElType}, axes(bc)), A.char)

end

"`A = find_aac(As)` returns the first ArrayAndChar among the arguments."

find_aac(bc::Base.Broadcast.Broadcasted) = find_aac(bc.args)

find_aac(args::Tuple) = find_aac(find_aac(args[1]), Base.tail(args))

find_aac(x) = x

find_aac(::Tuple{}) = nothing

find_aac(a::ArrayAndChar, rest) = a

find_aac(::Any, rest) = find_aac(rest)

From these definitions, one obtains the following behavior:

julia> a = ArrayAndChar([1 2; 3 4], 'x')

2×2 ArrayAndChar{Int64, 2} with char 'x':

1 2

3 4

julia> a .+ 1

2×2 ArrayAndChar{Int64, 2} with char 'x':

2 3

4 5

julia> a .+ [5,10]

2×2 ArrayAndChar{Int64, 2} with char 'x':

6 7

13 14

CHAPTER 15. INTERFACES 198

Extending broadcast with custom implementations

In general, a broadcast operation is represented by a lazy Broadcasted container that holds onto the func-

tion to be applied alongside its arguments. Those argumentsmay themselves bemore nested Broadcasted

containers, forming a large expression tree to be evaluated. A nested tree of Broadcasted containers is

directly constructed by the implicit dot syntax; 5 .+ 2.*x is transiently represented by Broadcasted(+,

5, Broadcasted(*, 2, x)), for example. This is invisible to users as it is immediately realized through a

call to copy, but it is this container that provides the basis for broadcast's extensibility for authors of cus-

tom types. The built-in broadcast machinery will then determine the result type and size based upon the

arguments, allocate it, and then finally copy the realization of the Broadcasted object into it with a default

copyto!(::AbstractArray, ::Broadcasted) method. The built-in fallback broadcast and broadcast!

methods similarly construct a transient Broadcasted representation of the operation so they can follow the

same codepath. This allows custom array implementations to provide their own copyto! specialization to

customize and optimize broadcasting. This is again determined by the computed broadcast style. This is

such an important part of the operation that it is stored as the first type parameter of the Broadcasted

type, allowing for dispatch and specialization.

For some types, the machinery to "fuse" operations across nested levels of broadcasting is not available

or could be done more efficiently incrementally. In such cases, you may need or want to evaluate x .*

(x .+ 1) as if it had been written broadcast(*, x, broadcast(+, x, 1)), where the inner operation

is evaluated before tackling the outer operation. This sort of eager operation is directly supported by a

bit of indirection; instead of directly constructing Broadcasted objects, Julia lowers the fused expression x

.* (x .+ 1) to Broadcast.broadcasted(*, x, Broadcast.broadcasted(+, x, 1)). Now, by default,

broadcasted just calls the Broadcasted constructor to create the lazy representation of the fused expres-

sion tree, but you can choose to override it for a particular combination of function and arguments.

As an example, the builtin AbstractRange objects use this machinery to optimize pieces of broadcasted

expressions that can be eagerly evaluated purely in terms of the start, step, and length (or stop) instead

of computing every single element. Just like all the other machinery, broadcasted also computes and

exposes the combined broadcast style of its arguments, so instead of specializing on broadcasted(f,

args...), you can specialize on broadcasted(::DestStyle, f, args...) for any combination of style,

function, and arguments.

For example, the following definition supports the negation of ranges:

broadcasted(::DefaultArrayStyle{1}, ::typeof(-), r::OrdinalRange) = range(-first(r),

step=-step(r), length=length(r))↪→

Extending in-place broadcasting

In-place broadcasting can be supported by defining the appropriate copyto!(dest, bc::Broadcasted)

method. Because you might want to specialize either on dest or the specific subtype of bc, to avoid

ambiguities between packages we recommend the following convention.

If you wish to specialize on a particular style DestStyle, define a method for

copyto!(dest, bc::Broadcasted{DestStyle})

Optionally, with this form you can also specialize on the type of dest.

If instead you want to specialize on the destination type DestType without specializing on DestStyle, then

you should define a method with the following signature:

CHAPTER 15. INTERFACES 199

copyto!(dest::DestType, bc::Broadcasted{Nothing})

This leverages a fallback implementation of copyto! that converts the wrapper into a Broadcasted{Nothing}.

Consequently, specializing on DestType has lower precedence than methods that specialize on DestStyle.

Similarly, you can completely override out-of-place broadcasting with a copy(::Broadcasted) method.

Working with Broadcasted objects

In order to implement such a copy or copyto!, method, of course, you must work with the Broadcasted

wrapper to compute each element. There are two main ways of doing so:

• Broadcast.flatten recomputes the potentially nested operation into a single function and flat list

of arguments. You are responsible for implementing the broadcasting shape rules yourself, but this

may be helpful in limited situations.

• Iterating over the CartesianIndices of the axes(::Broadcasted) and using indexing with the re-

sulting CartesianIndex object to compute the result.

Writing binary broadcasting rules

The precedence rules are defined by binary BroadcastStyle calls:

Base.BroadcastStyle(::Style1, ::Style2) = Style12()

where Style12 is the BroadcastStyle you want to choose for outputs involving arguments of Style1 and

Style2. For example,

Base.BroadcastStyle(::Broadcast.Style{Tuple}, ::Broadcast.AbstractArrayStyle{0}) =

Broadcast.Style{Tuple}()↪→

indicates that Tuple "wins" over zero-dimensional arrays (the output container will be a tuple). It is worth

noting that you do not need to (and should not) define both argument orders of this call; defining one is

sufficient no matter what order the user supplies the arguments in.

For AbstractArray types, defining a BroadcastStyle supersedes the fallback choice, Broadcast.DefaultArrayStyle.

DefaultArrayStyle and the abstract supertype, AbstractArrayStyle, store the dimensionality as a type

parameter to support specialized array types that have fixed dimensionality requirements.

DefaultArrayStyle "loses" to any other AbstractArrayStyle that has been defined because of the fol-

lowing methods:

BroadcastStyle(a::AbstractArrayStyle{Any}, ::DefaultArrayStyle) = a

BroadcastStyle(a::AbstractArrayStyle{N}, ::DefaultArrayStyle{N}) where N = a

BroadcastStyle(a::AbstractArrayStyle{M}, ::DefaultArrayStyle{N}) where {M,N} =

typeof(a)(Val(max(M, N)))

You do not need to write binary BroadcastStyle rules unless you want to establish precedence for two or

more non-DefaultArrayStyle types.

If your array type does have fixed dimensionality requirements, then you should subtype AbstractArrayStyle.

For example, the sparse array code has the following definitions:

CHAPTER 15. INTERFACES 200

struct SparseVecStyle <: Broadcast.AbstractArrayStyle{1} end

struct SparseMatStyle <: Broadcast.AbstractArrayStyle{2} end

Base.BroadcastStyle(::Type{<:SparseVector}) = SparseVecStyle()

Base.BroadcastStyle(::Type{<:SparseMatrixCSC}) = SparseMatStyle()

Whenever you subtype AbstractArrayStyle, you also need to define rules for combining dimensionalities,

by creating a constructor for your style that takes a Val(N) argument. For example:

SparseVecStyle(::Val{0}) = SparseVecStyle()

SparseVecStyle(::Val{1}) = SparseVecStyle()

SparseVecStyle(::Val{2}) = SparseMatStyle()

SparseVecStyle(::Val{N}) where N = Broadcast.DefaultArrayStyle{N}()

These rules indicate that the combination of a SparseVecStyle with 0- or 1-dimensional arrays yields

another SparseVecStyle, that its combination with a 2-dimensional array yields a SparseMatStyle, and

anything of higher dimensionality falls back to the dense arbitrary-dimensional framework. These rules

allow broadcasting to keep the sparse representation for operations that result in one or two dimensional

outputs, but produce an Array for any other dimensionality.

15.6 Instance Properties

Sometimes, it is desirable to change how the end-user interacts with the fields of an object. Instead of

granting direct access to type fields, an extra layer of abstraction between the user and the code can be

provided by overloading object.field. Properties are what the user sees of the object, fields what the

object actually is.

By default, properties and fields are the same. However, this behavior can be changed. For example, take

this representation of a point in a plane in polar coordinates:

julia> mutable struct Point

r::Float64

ϕ::Float64

end

julia> p = Point(7.0, pi/4)

Point(7.0, 0.7853981633974483)

As described in the table above dot access p.r is the same as getproperty(p, :r) which is by default

the same as getfield(p, :r):

julia> propertynames(p)

(:r, :ϕ)

julia> getproperty(p, :r), getproperty(p, :ϕ)

(7.0, 0.7853981633974483)

julia> p.r, p.ϕ

(7.0, 0.7853981633974483)

julia> getfield(p, :r), getproperty(p, :ϕ)

(7.0, 0.7853981633974483)

https://en.wikipedia.org/wiki/Polar_coordinate_system

CHAPTER 15. INTERFACES 201

However, we may want users to be unaware that Point stores the coordinates as r and ϕ (fields), and

instead interact with x and y (properties). The methods in the first column can be defined to add new

functionality:

julia> Base.propertynames(::Point, private::Bool=false) = private ? (:x, :y, :r, :ϕ) : (:x, :y)

julia> function Base.getproperty(p::Point, s::Symbol)

if s === :x

return getfield(p, :r) * cos(getfield(p, :ϕ))

elseif s === :y

return getfield(p, :r) * sin(getfield(p, :ϕ))

else

This allows accessing fields with p.r and p.ϕ

return getfield(p, s)

end

end

julia> function Base.setproperty!(p::Point, s::Symbol, f)

if s === :x

y = p.y

setfield!(p, :r, sqrt(f^2 + y^2))

setfield!(p, :ϕ, atan(y, f))

return f

elseif s === :y

x = p.x

setfield!(p, :r, sqrt(x^2 + f^2))

setfield!(p, :ϕ, atan(f, x))

return f

else

This allow modifying fields with p.r and p.ϕ

return setfield!(p, s, f)

end

end

It is important that getfield and setfield are used inside getproperty and setproperty! instead of

the dot syntax, since the dot syntax would make the functions recursive which can lead to type inference

issues. We can now try out the new functionality:

julia> propertynames(p)

(:x, :y)

julia> p.x

4.949747468305833

julia> p.y = 4.0

4.0

julia> p.r

6.363961030678928

Finally, it is worth noting that adding instance properties like this is quite rarely done in Julia and should in

general only be done if there is a good reason for doing so.

CHAPTER 15. INTERFACES 202

Methods to

implement

Brief description

size(A) Returns a tuple containing the dimensions of A

getindex(A,

i::Int)

(if IndexLinear) Linear scalar indexing

getindex(A,

I::Vararg{Int,

N})

(if IndexCartesian, where N = ndims(A)) N-dimensional

scalar indexing

Optional

methods

Default

definition

Brief description

IndexStyle(::Type)IndexCartesian()Returns either IndexLinear() or IndexCartesian(). See the

description below.

setindex!(A,

v, i::Int)

(if IndexLinear) Scalar indexed assignment

setindex!(A,

v,

I::Vararg{Int,

N})

(if IndexCartesian, where N = ndims(A)) N-dimensional

scalar indexed assignment

getindex(A,

I...)

defined in

terms of scalar

getindex

Multidimensional and nonscalar indexing

setindex!(A,

X, I...)

defined in

terms of scalar

setindex!

Multidimensional and nonscalar indexed assignment

iterate defined in

terms of scalar

getindex

Iteration

length(A) prod(size(A)) Number of elements

similar(A) similar(A,

eltype(A),

size(A))

Return a mutable array with the same shape and element type

similar(A,

::Type{S})

similar(A, S,

size(A))

Return a mutable array with the same shape and the specified

element type

similar(A,

dims::Dims)

similar(A,

eltype(A),

dims)

Return a mutable array with the same element type and size

dims

similar(A,

::Type{S},

dims::Dims)

Array{S}(undef,

dims)

Return a mutable array with the specified element type and

size

Non-traditional

indices

Default

definition

Brief description

axes(A) map(OneTo,

size(A))

Return a tuple of AbstractUnitRange{<:Integer} of valid

indices. The axes should be their own axes, that is

axes.(axes(A),1) == axes(A) should be satisfied.

similar(A,

::Type{S},

inds)

similar(A, S,

Base.to_shape(inds))

Return a mutable array with the specified indices inds (see

below)

similar(T::Union{Type,Function},

inds)

T(Base.to_shape(inds))Return an array similar to T with the specified indices inds

(see below)

CHAPTER 15. INTERFACES 203

Methods to

implement

Brief description

strides(A) Return the distance in memory (in number of elements) between

adjacent elements in each dimension as a tuple. If A is an

AbstractArray{T,0}, this should return an empty tuple.

Base.unsafe_convert(::Type{Ptr{T}},

A)

Return the native address of an array.

Base.elsize(::Type{<:A}) Return the stride between consecutive elements in the array.

Optional

methods

De-

fault

defini-

tion

Brief description

stride(A,

i::Int)

strides(A)[i]Return the distance in memory (in number of elements) between

adjacent elements in dimension k.

Methods to implement Brief description

Base.BroadcastStyle(::Type{SrcType}) =

SrcStyle()

Broadcasting behavior of SrcType

Base.similar(bc::Broadcasted{DestStyle},

::Type{ElType})

Allocation of output container

Optional methods

Base.BroadcastStyle(::Style1, ::Style2) =

Style12()

Precedence rules for mixing styles

Base.axes(x) Declaration of the indices of x, as per axes(x).

Base.broadcastable(x) Convert x to an object that has axes and

supports indexing

Bypassing default machinery

Base.copy(bc::Broadcasted{DestStyle}) Custom implementation of broadcast

Base.copyto!(dest,

bc::Broadcasted{DestStyle})

Custom implementation of broadcast!,

specializing on DestStyle

Base.copyto!(dest::DestType,

bc::Broadcasted{Nothing})

Custom implementation of broadcast!,

specializing on DestType

Base.Broadcast.broadcasted(f, args...) Override the default lazy behavior within a fused

expression

Base.Broadcast.instantiate(bc::Broadcasted{DestStyle})Override the computation of the lazy broadcast's

axes

Methods to implement Default

definition

Brief description

propertynames(x::ObjType,

private::Bool=false)

fieldnames(typeof(x))Return a tuple of the properties (x.property) of an object x.

If private=true, also return property names intended to be

kept as private

getproperty(x::ObjType,

s::Symbol)

getfield(x,

s)

Return property s of x. x.s calls getproperty(x, :s).

setproperty!(x::ObjType,

s::Symbol, v)

setfield!(x,

s, v)

Set property s of x to v. x.s = v calls setproperty!(x,

:s, v). Should return v.

Chapter 16

Modules

Modules in Julia help organize code into coherent units. They are delimited syntactically inside module

NameOfModule ... end, and have the following features:

1. Modules are separate namespaces, each introducing a new global scope. This is useful, because it

allows the same name to be used for different functions or global variables without conflict, as long

as they are in separate modules.

2. Modules have facilities for detailed namespacemanagement: each defines a set of names it exports,

and can import names from other modules with using and import (we explain these below).

3. Modules can be precompiled for faster loading, and may contain code for runtime initialization.

Typically, in larger Julia packages you will see module code organized into files, eg

module SomeModule

export, using, import statements are usually here; we discuss these below

include("file1.jl")

include("file2.jl")

end

Files and file names aremostly unrelated tomodules; modules are associated only withmodule expressions.

One can have multiple files per module, and multiple modules per file. include behaves as if the contents

of the source file were evaluated in the global scope of the including module. In this chapter, we use short

and simplified examples, so we won't use include.

The recommended style is not to indent the body of the module, since that would typically lead to whole

files being indented. Also, it is common to use UpperCamelCase for module names (just like types), and

use the plural form if applicable, especially if the module contains a similarly named identifier, to avoid

name clashes. For example,

module FastThings

204

CHAPTER 16. MODULES 205

struct FastThing

...

end

end

16.1 Namespace management

Namespacemanagement refers to the facilities the language offers for making names in amodule available

in other modules. We discuss the related concepts and functionality below in detail.

Qualified names

Names for functions, variables and types in the global scope like sin, ARGS, and UnitRange always belong

to a module, called the parent module, which can be found interactively with parentmodule, for example

julia> parentmodule(UnitRange)

Base

One can also refer to these names outside their parent module by prefixing them with their module, eg

Base.UnitRange. This is called a qualified name. The parent module may be accessible using a chain of

submodules like Base.Math.sin, where Base.Math is called themodule path. Due to syntactic ambiguities,

qualifying a name that contains only symbols, such as an operator, requires inserting a colon, e.g. Base.:+.

A small number of operators additionally require parentheses, e.g. Base.:(==).

If a name is qualified, then it is always accessible, and in case of a function, it can also have methods added

to it by using the qualified name as the function name.

Within a module, a variable name can be “reserved” without assigning to it by declaring it as global x.

This prevents name conflicts for globals initialized after load time. The syntax M.x = y does not work to

assign a global in another module; global assignment is always module-local.

Export lists

Names (referring to functions, types, global variables, and constants) can be added to the export list of a

module with export: these are the symbols that are imported when using the module. Typically, they are

at or near the top of the module definition so that readers of the source code can find them easily, as in

julia> module NiceStuff

export nice, DOG

struct Dog end # singleton type, not exported

const DOG = Dog() # named instance, exported

nice(x) = "nice $x" # function, exported

end;

but this is just a style suggestion — a module can have multiple export statements in arbitrary locations.

It is common to export names which form part of the API (application programming interface). In the above

code, the export list suggests that users should use nice and DOG. However, since qualified names always

make identifiers accessible, this is just an option for organizing APIs: unlike other languages, Julia has no

facilities for truly hiding module internals.

CHAPTER 16. MODULES 206

Also, some modules don't export names at all. This is usually done if they use common words, such as

derivative, in their API, which could easily clash with the export lists of other modules. We will see how

to manage name clashes below.

Standalone using and import

Possibly the most common way of loading a module is using ModuleName. This loads the code associated

with ModuleName, and brings

1. the module name

2. and the elements of the export list into the surrounding global namespace.

Technically, the statement using ModuleName means that a module called ModuleName will be available

for resolving names as needed. When a global variable is encountered that has no definition in the current

module, the system will search for it among variables exported by ModuleName and use it if it is found

there. This means that all uses of that global within the current module will resolve to the definition of that

variable in ModuleName.

To load a module from a package, the statement using ModuleName can be used. To load a module from

a locally defined module, a dot needs to be added before the module name like using .ModuleName.

To continue with our example,

julia> using .NiceStuff

would load the above code, making NiceStuff (the module name), DOG and nice available. Dog is not on

the export list, but it can be accessed if the name is qualified with the module path (which here is just the

module name) as NiceStuff.Dog.

Importantly, using ModuleName is the only form for which export lists matter at all.

In contrast,

julia> import .NiceStuff

brings only the module name into scope. Users would need to use NiceStuff.DOG, NiceStuff.Dog, and

NiceStuff.nice to access its contents. Usually, import ModuleName is used in contexts when the user

wants to keep the namespace clean. As we will see in the next section import .NiceStuff is equivalent

to using .NiceStuff: NiceStuff.

You can combine multiple using and import statements of the same kind in a comma-separated expres-

sion, e.g.

julia> using LinearAlgebra, Statistics

CHAPTER 16. MODULES 207

using and import with specific identifiers, and adding methods

When using ModuleName: or import ModuleName: is followed by a comma-separated list of names, the

module is loaded, but only those specific names are brought into the namespace by the statement. For

example,

julia> using .NiceStuff: nice, DOG

will import the names nice and DOG.

Importantly, the module name NiceStuff will not be in the namespace. If you want to make it accessible,

you have to list it explicitly, as

julia> using .NiceStuff: nice, DOG, NiceStuff

Julia has two forms for seemingly the same thing because only import ModuleName: f allows adding

methods to f without a module path. That is to say, the following example will give an error:

julia> using .NiceStuff: nice

julia> struct Cat end

julia> nice(::Cat) = "nice "

ERROR: invalid method definition in Main: function NiceStuff.nice must be explicitly imported to

be extended↪→

Stacktrace:

[1] top-level scope

@ none:0

[2] top-level scope

@ none:1

This error prevents accidentally adding methods to functions in other modules that you only intended to

use.

There are two ways to deal with this. You can always qualify function names with a module path:

julia> using .NiceStuff

julia> struct Cat end

julia> NiceStuff.nice(::Cat) = "nice "

Alternatively, you can import the specific function name:

julia> import .NiceStuff: nice

julia> struct Cat end

julia> nice(::Cat) = "nice "

nice (generic function with 2 methods)

CHAPTER 16. MODULES 208

Which one you choose is a matter of style. The first form makes it clear that you are adding a method to

a function in another module (remember, that the imports and the method definition may be in separate

files), while the second one is shorter, which is especially convenient if you are defining multiple methods.

Once a variable is made visible via using or import, a module may not create its own variable with the

same name. Imported variables are read-only; assigning to a global variable always affects a variable

owned by the current module, or else raises an error.

Renaming with as

An identifier brought into scope by import or using can be renamed with the keyword as. This is useful for

working around name conflicts as well as for shortening names. For example, Base exports the function

name read, but the CSV.jl package also provides CSV.read. If we are going to invoke CSV reading many

times, it would be convenient to drop the CSV. qualifier. But then it is ambiguous whether we are referring

to Base.read or CSV.read:

julia> read;

julia> import CSV: read

WARNING: ignoring conflicting import of CSV.read into Main

Renaming provides a solution:

julia> import CSV: read as rd

Imported packages themselves can also be renamed:

import BenchmarkTools as BT

as works with using only when a single identifier is brought into scope. For example using CSV: read as

rd works, but using CSV as C does not, since it operates on all of the exported names in CSV.

Mixing multiple using and import statements

When multiple using or import statements of any of the forms above are used, their effect is combined in

the order they appear. For example,

julia> using .NiceStuff # exported names and the module name

julia> import .NiceStuff: nice # allows adding methods to unqualified functions

would bring all the exported names of NiceStuff and the module name itself into scope, and also allow

adding methods to nice without prefixing it with a module name.

CHAPTER 16. MODULES 209

Handling name conflicts

Consider the situation where two (or more) packages export the same name, as in

julia> module A

export f

f() = 1

end

A

julia> module B

export f

f() = 2

end

B

The statement using .A, .B works, but when you try to call f, you get a warning

julia> using .A, .B

julia> f

WARNING: both B and A export "f"; uses of it in module Main must be qualified

ERROR: UndefVarError: `f` not defined

Here, Julia cannot decide which f you are referring to, so you have to make a choice. The following solutions

are commonly used:

1. Simply proceed with qualified names like A.f and B.f. This makes the context clear to the reader

of your code, especially if f just happens to coincide but has different meaning in various packages.

For example, degree has various uses in mathematics, the natural sciences, and in everyday life,

and these meanings should be kept separate.

2. Use the as keyword above to rename one or both identifiers, eg

julia> using .A: f as f

julia> using .B: f as g

would make B.f available as g. Here, we are assuming that you did not use using A before, which

would have brought f into the namespace.

3. When the names in question do share a meaning, it is common for one module to import it from

another, or have a lightweight “base” package with the sole function of defining an interface like

this, which can be used by other packages. It is conventional to have such package names end in

...Base (which has nothing to do with Julia's Base module).

Default top-level definitions and bare modules

Modules automatically contain using Core, using Base, and definitions of the eval and include func-

tions, which evaluate expressions/files within the global scope of that module.

If these default definitions are not wanted, modules can be defined using the keyword baremodule instead

(note: Core is still imported). In terms of baremodule, a standard module looks like this:

CHAPTER 16. MODULES 210

baremodule Mod

using Base

eval(x) = Core.eval(Mod, x)

include(p) = Base.include(Mod, p)

...

end

If even Core is not wanted, a module that imports nothing and defines no names at all can be defined with

Module(:YourNameHere, false, false) and code can be evaluated into it with @eval or Core.eval:

julia> arithmetic = Module(:arithmetic, false, false)

Main.arithmetic

julia> @eval arithmetic add(x, y) = $(+)(x, y)

add (generic function with 1 method)

julia> arithmetic.add(12, 13)

25

Standard modules

There are three important standard modules:

• Core contains all functionality "built into" the language.

• Base contains basic functionality that is useful in almost all cases.

• Main is the top-level module and the current module, when Julia is started.

Standard library modules

By default Julia ships with some standard library modules. These behave like regular Julia

packages except that you don't need to install them explicitly. For example, if you wanted to

perform some unit testing, you could load the Test standard library as follows:

using Test

16.2 Submodules and relative paths

Modules can contain submodules, nesting the same syntax module ... end. They can be used to introduce

separate namespaces, which can be helpful for organizing complex codebases. Note that each module

introduces its own scope, so submodules do not automatically “inherit” names from their parent.

It is recommended that submodules refer to other modules within the enclosing parent module (including

the latter) using relative module qualifiers in using and import statements. A relative module qualifier

starts with a period (.), which corresponds to the current module, and each successive . leads to the

parent of the current module. This should be followed by modules if necessary, and eventually the actual

name to access, all separated by .s.

CHAPTER 16. MODULES 211

Consider the following example, where the submodule SubA defines a function, which is then extended in

its “sibling” module:

julia> module ParentModule

module SubA

export add_D # exported interface

const D = 3

add_D(x) = x + D

end

using .SubA # brings `add_D` into the namespace

export add_D # export it from ParentModule too

module SubB

import ..SubA: add_D # relative path for a “sibling” module

struct Infinity end

add_D(x::Infinity) = x

end

end;

You may see code in packages, which, in a similar situation, uses

julia> import .ParentModule.SubA: add_D

However, this operates through code loading, and thus only works if ParentModule is in a package. It is

better to use relative paths.

Note that the order of definitions also matters if you are evaluating values. Consider

module TestPackage

export x, y

x = 0

module Sub

using ..TestPackage

z = y # ERROR: UndefVarError: `y` not defined

end

y = 1

end

where Sub is trying to use TestPackage.y before it was defined, so it does not have a value.

For similar reasons, you cannot use a cyclic ordering:

module A

module B

using ..C # ERROR: UndefVarError: `C` not defined

end

CHAPTER 16. MODULES 212

module C

using ..B

end

end

16.3 Module initialization and precompilation

Large modules can take several seconds to load because executing all of the statements in a module often

involves compiling a large amount of code. Julia creates precompiled caches of the module to reduce this

time.

Precompiled module files (sometimes called "cache files") are created and used automatically when import

or using loads a module. If the cache file(s) do not yet exist, the module will be compiled and saved for

future reuse. You can also manually call Base.compilecache(Base.identify_package("modulename"))

to create these files without loading the module. The resulting cache files will be stored in the compiled

subfolder of DEPOT_PATH[1]. If nothing about your system changes, such cache files will be used when

you load the module with import or using.

Precompilation cache files store definitions of modules, types, methods, and constants. Theymay also store

method specializations and the code generated for them, but this typically requires that the developer add

explicit precompile directives or execute workloads that force compilation during the package build.

However, if you update the module's dependencies or change its source code, the module is automatically

recompiled upon using or import. Dependencies are modules it imports, the Julia build, files it includes,

or explicit dependencies declared by include_dependency(path) in the module file(s).

For file dependencies, a change is determined by examining whether the modification time (mtime) of

each file loaded by include or added explicitly by include_dependency is unchanged, or equal to the

modification time truncated to the nearest second (to accommodate systems that can't copy mtime with

sub-second accuracy). It also takes into account whether the path to the file chosen by the search logic

in require matches the path that had created the precompile file. It also takes into account the set of

dependencies already loaded into the current process and won't recompile those modules, even if their

files change or disappear, in order to avoid creating incompatibilities between the running system and the

precompile cache. Finally, it takes account of changes in any compile-time preferences.

If you know that a module is not safe to precompile (for example, for one of the reasons described below),

you should put __precompile__(false) in the module file (typically placed at the top). This will cause

Base.compilecache to throw an error, and will cause using / import to load it directly into the current

process and skip the precompile and caching. This also thereby prevents the module from being imported

by any other precompiled module.

You may need to be aware of certain behaviors inherent in the creation of incremental shared libraries

which may require care when writing your module. For example, external state is not preserved. To ac-

commodate this, explicitly separate any initialization steps that must occur at runtime from steps that can

occur at compile time. For this purpose, Julia allows you to define an __init__() function in your module

that executes any initialization steps that must occur at runtime. This function will not be called during

compilation (--output-*). Effectively, you can assume it will be run exactly once in the lifetime of the

code. You may, of course, call it manually if necessary, but the default is to assume this function deals with

computing state for the local machine, which does not need to be – or even should not be – captured in the

compiled image. It will be called after the module is loaded into a process, including if it is being loaded into

CHAPTER 16. MODULES 213

an incremental compile (--output-incremental=yes), but not if it is being loaded into a full-compilation

process.

In particular, if you define a function __init__() in a module, then Julia will call __init__() immediately

after themodule is loaded (e.g., by import, using, or require) at runtime for the first time (i.e., __init__ is

only called once, and only after all statements in the module have been executed). Because it is called after

the module is fully imported, any submodules or other imported modules have their __init__ functions

called before the __init__ of the enclosing module.

Two typical uses of __init__ are calling runtime initialization functions of external C libraries and initializing

global constants that involve pointers returned by external libraries. For example, suppose that we are call-

ing a C library libfoo that requires us to call a foo_init() initialization function at runtime. Suppose that

we also want to define a global constant foo_data_ptr that holds the return value of a void *foo_data()

function defined by libfoo – this constant must be initialized at runtime (not at compile time) because the

pointer address will change from run to run. You could accomplish this by defining the following __init__

function in your module:

const foo_data_ptr = Ref{Ptr{Cvoid}}(0)

function __init__()

ccall((:foo_init, :libfoo), Cvoid, ())

foo_data_ptr[] = ccall((:foo_data, :libfoo), Ptr{Cvoid}, ())

nothing

end

Notice that it is perfectly possible to define a global inside a function like __init__; this is one of the

advantages of using a dynamic language. But by making it a constant at global scope, we can ensure that

the type is known to the compiler and allow it to generate better optimized code. Obviously, any other

globals in your module that depends on foo_data_ptr would also have to be initialized in __init__.

Constants involvingmost Julia objects that are not produced by ccall do not need to be placed in __init__:

their definitions can be precompiled and loaded from the cached module image. This includes complicated

heap-allocated objects like arrays. However, any routine that returns a raw pointer value must be called

at runtime for precompilation to work (Ptr objects will turn into null pointers unless they are hidden inside

an isbits object). This includes the return values of the Julia functions @cfunction and pointer.

Dictionary and set types, or in general anything that depends on the output of a hash(key) method, are

a trickier case. In the common case where the keys are numbers, strings, symbols, ranges, Expr, or

compositions of these types (via arrays, tuples, sets, pairs, etc.) they are safe to precompile. However, for

a few other key types, such as Function or DataType and generic user-defined types where you haven't

defined a hash method, the fallback hash method depends on the memory address of the object (via its

objectid) and hence may change from run to run. If you have one of these key types, or if you aren't sure,

to be safe you can initialize this dictionary from within your __init__ function. Alternatively, you can use

the IdDict dictionary type, which is specially handled by precompilation so that it is safe to initialize at

compile-time.

When using precompilation, it is important to keep a clear sense of the distinction between the compilation

phase and the execution phase. In this mode, it will often be much more clearly apparent that Julia is a

compiler which allows execution of arbitrary Julia code, not a standalone interpreter that also generates

compiled code.

Other known potential failure scenarios include:

CHAPTER 16. MODULES 214

1. Global counters (for example, for attempting to uniquely identify objects). Consider the following

code snippet:

mutable struct UniquedById

myid::Int

let counter = 0

UniquedById() = new(counter += 1)

end

end

while the intent of this code was to give every instance a unique id, the counter value is recorded at

the end of compilation. All subsequent usages of this incrementally compiled module will start from

that same counter value.

Note that objectid (which works by hashing the memory pointer) has similar issues (see notes on

Dict usage below).

One alternative is to use a macro to capture @__MODULE__ and store it alone with the current counter

value, however, it may be better to redesign the code to not depend on this global state.

2. Associative collections (such as Dict and Set) need to be re-hashed in __init__. (In the future, a

mechanism may be provided to register an initializer function.)

3. Depending on compile-time side-effects persisting through load-time. Example include: modifying

arrays or other variables in other Julia modules; maintaining handles to open files or devices; storing

pointers to other system resources (including memory);

4. Creating accidental "copies" of global state from another module, by referencing it directly instead

of via its lookup path. For example, (in global scope):

#mystdout = Base.stdout #= will not work correctly, since this will copy Base.stdout into

this module =#↪→

instead use accessor functions:

getstdout() = Base.stdout #= best option =#

or move the assignment into the runtime:

__init__() = global mystdout = Base.stdout #= also works =#

Several additional restrictions are placed on the operations that can be done while precompiling code to

help the user avoid other wrong-behavior situations:

1. Calling eval to cause a side-effect in another module. This will also cause a warning to be emitted

when the incremental precompile flag is set.

2. global const statements from local scope after __init__() has been started (see issue #12010

for plans to add an error for this)

3. Replacing a module is a runtime error while doing an incremental precompile.

A few other points to be aware of:

1. No code reload / cache invalidation is performed after changes are made to the source files them-

selves, (including by Pkg.update), and no cleanup is done after Pkg.rm

CHAPTER 16. MODULES 215

2. The memory sharing behavior of a reshaped array is disregarded by precompilation (each view gets

its own copy)

3. Expecting the filesystem to be unchanged between compile-time and runtime e.g. @__FILE__/source_path()

to find resources at runtime, or the BinDeps @checked_lib macro. Sometimes this is unavoidable.

However, when possible, it can be good practice to copy resources into the module at compile-time

so they won't need to be found at runtime.

4. WeakRef objects and finalizers are not currently handled properly by the serializer (this will be fixed

in an upcoming release).

5. It is usually best to avoid capturing references to instances of internal metadata objects such as

Method, MethodInstance, MethodTable, TypeMapLevel, TypeMapEntry and fields of those objects,

as this can confuse the serializer and may not lead to the outcome you desire. It is not necessarily

an error to do this, but you simply need to be prepared that the system will try to copy some of these

and to create a single unique instance of others.

It is sometimes helpful during module development to turn off incremental precompilation. The command

line flag --compiled-modules={yes|no} enables you to toggle module precompilation on and off. When

Julia is started with --compiled-modules=no the serialized modules in the compile cache are ignored when

loading modules and module dependencies. More fine-grained control is available with --pkgimages=no,

which suppresses only native-code storage during precompilation. Base.compilecache can still be called

manually. The state of this command line flag is passed to Pkg.build to disable automatic precompilation

triggering when installing, updating, and explicitly building packages.

You can also debug some precompilation failures with environment variables. Setting JULIA_VERBOSE_LINKING=true

may help resolve failures in linking shared libraries of compiled native code. See the Developer Docu-

mentation part of the Julia manual, where you will find further details in the section documenting Julia's

internals under "Package Images".

Chapter 17

Documentation

17.1 Accessing Documentation

Documentation can be accessed at the REPL or in IJulia by typing ? followed by the name of a function or

macro, and pressing Enter. For example,

?cos

?@time

?r""

will show documentation for the relevant function, macro or string macro respectively. Most Julia environ-

ments provide a way to access documentation directly:

• VS Code shows documentation when you hover over a function name. You can also use the Julia

panel in the sidebar to search for documentation.

• In Pluto, open the "Live Docs" panel on the bottom right.

• In Juno using Ctrl-J, Ctrl-D will show the documentation for the object under the cursor.

17.2 Writing Documentation

Julia enables package developers and users to document functions, types and other objects easily via a

built-in documentation system.

The basic syntax is simple: any string appearing just before an object (function, macro, type or instance)

will be interpreted as documenting it (these are called docstrings). Note that no blank lines or comments

may intervene between a docstring and the documented object. Here is a basic example:

"Tell whether there are too foo items in the array."

foo(xs::Array) = ...

Documentation is interpreted as Markdown, so you can use indentation and code fences to delimit code

examples from text. Technically, any object can be associated with any other as metadata; Markdown

happens to be the default, but one can construct other string macros and pass them to the @doc macro

just as well.

216

https://github.com/JuliaLang/IJulia.jl
https://www.julia-vscode.org/
https://github.com/fonsp/Pluto.jl
https://junolab.org
https://en.wikipedia.org/wiki/Markdown

CHAPTER 17. DOCUMENTATION 217

Note

Markdown support is implemented in the Markdown standard library and for a full list of sup-

ported syntax see the documentation.

Here is a more complex example, still using Markdown:

"""

bar(x[, y])

Compute the Bar index between `x` and `y`.

If `y` is unspecified, compute the Bar index between all pairs of columns of `x`.

Examples

```julia-repl

julia> bar([1, 2], [1, 2])

1

```

"""

function bar(x, y) ...

As in the example above, we recommend following some simple conventions when writing documentation:

1. Always show the signature of a function at the top of the documentation, with a four-space indent

so that it is printed as Julia code.

This can be identical to the signature present in the Julia code (like mean(x::AbstractArray)), or a

simplified form. Optional arguments should be represented with their default values (i.e. f(x, y=1))

when possible, following the actual Julia syntax. Optional arguments which do not have a default

value should be put in brackets (i.e. f(x[, y]) and f(x[, y[, z]])). An alternative solution is

to use several lines: one without optional arguments, the other(s) with them. This solution can

also be used to document several related methods of a given function. When a function accepts

many keyword arguments, only include a <keyword arguments> placeholder in the signature (i.e.

f(x; <keyword arguments>)), and give the complete list under an # Arguments section (see point

4 below).

2. Include a single one-line sentence describing what the function does or what the object represents

after the simplified signature block. If needed, provide more details in a second paragraph, after a

blank line.

The one-line sentence should use the imperative form ("Do this", "Return that") instead of the third

person (do not write "Returns the length...") when documenting functions. It should end with a period.

If the meaning of a function cannot be summarized easily, splitting it into separate composable

parts could be beneficial (this should not be taken as an absolute requirement for every single case

though).

3. Do not repeat yourself.

Since the function name is given by the signature, there is no need to start the documentation with

"The function bar...": go straight to the point. Similarly, if the signature specifies the types of the

arguments, mentioning them in the description is redundant.

CHAPTER 17. DOCUMENTATION 218

4. Only provide an argument list when really necessary.

For simple functions, it is often clearer to mention the role of the arguments directly in the de-

scription of the function's purpose. An argument list would only repeat information already provided

elsewhere. However, providing an argument list can be a good idea for complex functions with many

arguments (in particular keyword arguments). In that case, insert it after the general description of

the function, under an # Arguments header, with one - bullet for each argument. The list should

mention the types and default values (if any) of the arguments:

"""

...

Arguments

- `n::Integer`: the number of elements to compute.

- `dim::Integer=1`: the dimensions along which to perform the computation.

...

"""

5. Provide hints to related functions.

Sometimes there are functions of related functionality. To increase discoverability please provide a

short list of these in a See also paragraph.

See also [`bar!`](@ref), [`baz`](@ref), [`baaz`](@ref).

6. Include any code examples in an # Examples section.

Examples should, whenever possible, be written as doctests. A doctest is a fenced code block (see

Code blocks) starting with ```jldoctest and contains any number of julia> prompts together with

inputs and expected outputs that mimic the Julia REPL.

Note

Doctests are enabled by Documenter.jl. For more detailed documentation see Docu-

menter's manual.

For example in the following docstring a variable a is defined and the expected result, as printed in

a Julia REPL, appears afterwards:

"""

Some nice documentation here.

Examples

```jldoctest

julia> a = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

```

"""

Warning

Calling rand and other RNG-related functions should be avoided in doctests since they

will not produce consistent outputs during different Julia sessions. If you would like to

show some random number generation related functionality, one option is to explicitly

https://github.com/JuliaDocs/Documenter.jl
https://juliadocs.github.io/Documenter.jl/

CHAPTER 17. DOCUMENTATION 219

construct and seed your own RNG object (see Random) and pass it to the functions you

are doctesting.

Operating system word size (Int32 or Int64) as well as path separator differences (/ or

\) will also affect the reproducibility of some doctests.

Note that whitespace in your doctest is significant! The doctest will fail if you misalign

the output of pretty-printing an array, for example.

You can then run make -C doc doctest=true to run all the doctests in the Julia Manual and API

documentation, which will ensure that your example works.

To indicate that the output result is truncated, you may write [...] at the line where checking should

stop. This is useful to hide a stacktrace (which contains non-permanent references to lines of julia

code) when the doctest shows that an exception is thrown, for example:

```jldoctest

julia> div(1, 0)

ERROR: DivideError: integer division error

[...]

```

Examples that are untestable should be written within fenced code blocks starting with ```julia so

that they are highlighted correctly in the generated documentation.

Tip

Wherever possible examples should be self-contained and runnable so that readers

are able to try them out without having to include any dependencies.

7. Use backticks to identify code and equations.

Julia identifiers and code excerpts should always appear between backticks ` to enable highlighting.

Equations in the LaTeX syntax can be inserted between double backticks ``. Use Unicode characters

rather than their LaTeX escape sequence, i.e. ``α = 1`` rather than ``\\alpha = 1``.

8. Place the starting and ending """ characters on lines by themselves.

That is, write:

"""

...

...

"""

f(x, y) = ...

rather than:

"""...

..."""

f(x, y) = ...

This makes it clearer where docstrings start and end.

CHAPTER 17. DOCUMENTATION 220

9. Respect the line length limit used in the surrounding code.

Docstrings are edited using the same tools as code. Therefore, the same conventions should apply.

It is recommended that lines are at most 92 characters wide.

10. Provide information allowing custom types to implement the function in an # Implementation sec-

tion. These implementation details are intended for developers rather than users, explaining e.g.

which functions should be overridden and which functions automatically use appropriate fallbacks.

Such details are best kept separate from the main description of the function's behavior.

11. For long docstrings, consider splitting the documentation with an # Extended help header. The

typical help-mode will show only the material above the header; you can access the full help by

adding a '?' at the beginning of the expression (i.e., "??foo" rather than "?foo").

17.3 Functions & Methods

Functions in Julia may have multiple implementations, known as methods. While it's good practice for

generic functions to have a single purpose, Julia allows methods to be documented individually if necessary.

In general, only the most generic method should be documented, or even the function itself (i.e. the object

created without any methods by function bar end). Specific methods should only be documented if their

behaviour differs from the more generic ones. In any case, they should not repeat the information provided

elsewhere. For example:

"""

*(x, y, z...)

Multiplication operator. `x * y * z *...` calls this function with multiple

arguments, i.e. `*(x, y, z...)`.

"""

function *(x, y, z...)

... [implementation sold separately] ...

end

"""

*(x::AbstractString, y::AbstractString, z::AbstractString...)

When applied to strings, concatenates them.

"""

function *(x::AbstractString, y::AbstractString, z::AbstractString...)

... [insert secret sauce here] ...

end

help?> *

search: * .*

*(x, y, z...)

Multiplication operator. x * y * z *... calls this function with multiple

arguments, i.e. *(x,y,z...).

*(x::AbstractString, y::AbstractString, z::AbstractString...)

When applied to strings, concatenates them.

CHAPTER 17. DOCUMENTATION 221

When retrieving documentation for a generic function, the metadata for each method is concatenated with

the catdoc function, which can of course be overridden for custom types.

17.4 Advanced Usage

The @doc macro associates its first argument with its second in a per-module dictionary called META.

To make it easier to write documentation, the parser treats the macro name @doc specially: if a call to @doc

has one argument, but another expression appears after a single line break, then that additional expression

is added as an argument to the macro. Therefore the following syntax is parsed as a 2-argument call to

@doc:

@doc raw"""

...

"""

f(x) = x

This makes it possible to use expressions other than normal string literals (such as the raw"" string macro)

as a docstring.

When used for retrieving documentation, the @docmacro (or equally, the doc function) will search all META

dictionaries for metadata relevant to the given object and return it. The returned object (some Markdown

content, for example) will by default display itself intelligently. This design also makes it easy to use the

doc system in a programmatic way; for example, to re-use documentation between different versions of a

function:

@doc "..." foo!

@doc (@doc foo!) foo

Or for use with Julia's metaprogramming functionality:

for (f, op) in ((:add, :+), (:subtract, :-), (:multiply, :*), (:divide, :/))

@eval begin

$f(a,b) = $op(a,b)

end

end

@doc "`add(a,b)` adds `a` and `b` together" add

@doc "`subtract(a,b)` subtracts `b` from `a`" subtract

Documentation in non-toplevel blocks, such as begin, if, for, and let, should be added to the documen-

tation system via @doc as well. For example:

if condition()

@doc "..."

f(x) = x

end

CHAPTER 17. DOCUMENTATION 222

will add documentation to f(x) when condition() is true. Note that even if f(x) goes out of scope at

the end of a block, its documentation will remain.

It is possible to make use of metaprogramming to assist in the creation of documentation. When using

string-interpolation within the docstring you will need to use an extra $ as shown with $($name):

for func in (:day, :dayofmonth)

name = string(func)

@eval begin

@doc """

$($name)(dt::TimeType) -> Int64

The day of month of a `Date` or `DateTime` as an `Int64`.

""" $func(dt::Dates.TimeType)

end

end

Dynamic documentation

Sometimes the appropriate documentation for an instance of a type depends on the field values of that

instance, rather than just on the type itself. In these cases, you can add a method to Docs.getdoc for your

custom type that returns the documentation on a per-instance basis. For instance,

struct MyType

value::Int

end

Docs.getdoc(t::MyType) = "Documentation for MyType with value $(t.value)"

x = MyType(1)

y = MyType(2)

?x will display "Documentation for MyType with value 1" while ?y will display "Documentation for MyType

with value 2".

17.5 Syntax Guide

This guide provides a comprehensive overview of how to attach documentation to all Julia syntax constructs

for which providing documentation is possible.

In the following examples "..." is used to illustrate an arbitrary docstring.

$ and \ characters

The $ and \ characters are still parsed as string interpolation or start of an escape sequence in docstrings

too. The raw"" string macro together with the @doc macro can be used to avoid having to escape them.

This is handy when the docstrings include LaTeX or Julia source code examples containing interpolation:

@doc raw"""

```math

\LaTeX



CHAPTER 17. DOCUMENTATION 223

```

"""

function f end

Functions and Methods

"..."

function f end

"..."

f

Adds docstring "..." to the function f. The first version is the preferred syntax, however both are equiv-

alent.

"..."

f(x) = x

"..."

function f(x)

x

end

"..."

f(x)

Adds docstring "..." to the method f(::Any).

"..."

f(x, y = 1) = x + y

Adds docstring "..." to two Methods, namely f(::Any) and f(::Any, ::Any).

Macros

"..."

macro m(x) end

Adds docstring "..." to the @m(::Any) macro definition.

"..."

:(@m)

Adds docstring "..." to the macro named @m.

CHAPTER 17. DOCUMENTATION 224

Types

"..."

abstract type T1 end

"..."

mutable struct T2

...

end

"..."

struct T3

...

end

Adds the docstring "..." to types T1, T2, and T3.

"..."

struct T

"x"

x

"y"

y

end

Adds docstring "..." to type T, "x" to field T.x and "y" to field T.y. Also applicable to mutable struct

types.

Modules

"..."

module M end

module M

"..."

M

end

Adds docstring "..." to the Module M. Adding the docstring above the Module is the preferred syntax,

however both are equivalent.

"..."

baremodule M

...

end

baremodule M

import Base: @doc

"..."

CHAPTER 17. DOCUMENTATION 225

f(x) = x

end

Documenting a baremodule by placing a docstring above the expression automatically imports @doc into

the module. These imports must be done manually when the module expression is not documented.

Global Variables

"..."

const a = 1

"..."

b = 2

"..."

global c = 3

Adds docstring "..." to the Bindings a, b, and c.

Bindings are used to store a reference to a particular Symbol in a Module without storing the referenced

value itself.

Note

When a const definition is only used to define an alias of another definition, such as is the case

with the function div and its alias ÷ in Base, do not document the alias and instead document

the actual function.

If the alias is documented and not the real definition then the docsystem (? mode) will not

return the docstring attached to the alias when the real definition is searched for.

For example you should write

"..."

f(x) = x + 1

const alias = f

rather than

f(x) = x + 1

"..."

const alias = f

"..."

sym

Adds docstring "..." to the value associated with sym. However, it is preferred that sym is documented

where it is defined.

CHAPTER 17. DOCUMENTATION 226

Multiple Objects

"..."

a, b

Adds docstring "..." to a and b each of which should be a documentable expression. This syntax is

equivalent to

"..."

a

"..."

b

Any number of expressions many be documented together in this way. This syntax can be useful when two

functions are related, such as non-mutating and mutating versions f and f!.

Macro-generated code

"..."

@m expression

Adds docstring "..." to the expression generated by expanding @m expression. This allows for expres-

sions decorated with @inline, @noinline, @generated, or any other macro to be documented in the same

way as undecorated expressions.

Macro authors should take note that only macros that generate a single expression will automatically sup-

port docstrings. If a macro returns a block containing multiple subexpressions then the subexpression that

should be documented must be marked using the @__doc__ macro.

The @enum macro makes use of @__doc__ to allow for documenting Enums. Examining its definition should

serve as an example of how to use @__doc__ correctly.

Core.@__doc__ – Macro.

@__doc__(ex)

Low-level macro used to mark expressions returned by a macro that should be documented. If more

than one expression is marked then the same docstring is applied to each expression.

macro example(f)

quote

$(f)() = 0

@__doc__ $(f)(x) = 1

$(f)(x, y) = 2

end |> esc

end

@__doc__ has no effect when a macro that uses it is not documented.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/Docs.jl#L457-L472

Chapter 18

Metaprogramming

The strongest legacy of Lisp in the Julia language is its metaprogramming support. Like Lisp, Julia repre-

sents its own code as a data structure of the language itself. Since code is represented by objects that

can be created and manipulated from within the language, it is possible for a program to transform and

generate its own code. This allows sophisticated code generation without extra build steps, and also allows

true Lisp-style macros operating at the level of abstract syntax trees. In contrast, preprocessor "macro"

systems, like that of C and C++, perform textual manipulation and substitution before any actual parsing

or interpretation occurs. Because all data types and code in Julia are represented by Julia data structures,

powerful reflection capabilities are available to explore the internals of a program and its types just like

any other data.

Warning

Metaprogramming is a powerful tool, but it introduces complexity that can make code more

difficult to understand. For example, it can be surprisingly hard to get scope rules correct.

Metaprogramming should typically be used only when other approaches such as higher order

functions and closures cannot be applied.

eval and defining new macros should be typically used as a last resort. It is almost never a

good idea to use Meta.parse or convert an arbitrary string into Julia code. For manipulating

Julia code, use the Expr data structure directly to avoid the complexity of how Julia syntax is

parsed.

The best uses of metaprogramming often implement most of their functionality in runtime

helper functions, striving to minimize the amount of code they generate.

18.1 Program representation

Every Julia program starts life as a string:

julia> prog = "1 + 1"

"1 + 1"

What happens next?

The next step is to parse each string into an object called an expression, represented by the Julia type Expr:

227

https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Reflection_%28computer_programming%29
https://en.wikipedia.org/wiki/Closure_(computer_programming)
https://en.wikipedia.org/wiki/Parsing#Computer_languages

CHAPTER 18. METAPROGRAMMING 228

julia> ex1 = Meta.parse(prog)

:(1 + 1)

julia> typeof(ex1)

Expr

Expr objects contain two parts:

• a Symbol identifying the kind of expression. A symbol is an interned string identifier (more discussion

below).

julia> ex1.head

:call

• the expression arguments, which may be symbols, other expressions, or literal values:

julia> ex1.args

3-element Vector{Any}:

:+

1

1

Expressions may also be constructed directly in prefix notation:

julia> ex2 = Expr(:call, :+, 1, 1)

:(1 + 1)

The two expressions constructed above – by parsing and by direct construction – are equivalent:

julia> ex1 == ex2

true

The key point here is that Julia code is internally represented as a data structure that is acces-

sible from the language itself.

The dump function provides indented and annotated display of Expr objects:

julia> dump(ex2)

Expr

head: Symbol call

args: Array{Any}((3,))

1: Symbol +

2: Int64 1

3: Int64 1

Expr objects may also be nested:

https://en.wikipedia.org/wiki/String_interning
https://en.wikipedia.org/wiki/Polish_notation

CHAPTER 18. METAPROGRAMMING 229

julia> ex3 = Meta.parse("(4 + 4) / 2")

:((4 + 4) / 2)

Another way to view expressions is with Meta.show_sexpr, which displays the S-expression form of a given

Expr, which may look very familiar to users of Lisp. Here's an example illustrating the display on a nested

Expr:

julia> Meta.show_sexpr(ex3)

(:call, :/, (:call, :+, 4, 4), 2)

Symbols

The : character has two syntactic purposes in Julia. The first form creates a Symbol, an interned string

used as one building-block of expressions, from valid identifiers:

julia> s = :foo

:foo

julia> typeof(s)

Symbol

The Symbol constructor takes any number of arguments and creates a new symbol by concatenating their

string representations together:

julia> :foo === Symbol("foo")

true

julia> Symbol("1foo") # `:1foo` would not work, as `1foo` is not a valid identifier

Symbol("1foo")

julia> Symbol("func",10)

:func10

julia> Symbol(:var,'_',"sym")

:var_sym

In the context of an expression, symbols are used to indicate access to variables; when an expression is

evaluated, a symbol is replaced with the value bound to that symbol in the appropriate scope.

Sometimes extra parentheses around the argument to : are needed to avoid ambiguity in parsing:

julia> :(:)

:(:)

julia> :(::)

:(::)

https://en.wikipedia.org/wiki/S-expression
https://en.wikipedia.org/wiki/String_interning

CHAPTER 18. METAPROGRAMMING 230

18.2 Expressions and evaluation

Quoting

The second syntactic purpose of the : character is to create expression objects without using the explicit

Expr constructor. This is referred to as quoting. The : character, followed by paired parentheses around a

single statement of Julia code, produces an Expr object based on the enclosed code. Here is an example

of the short form used to quote an arithmetic expression:

julia> ex = :(a+b*c+1)

:(a + b * c + 1)

julia> typeof(ex)

Expr

(to view the structure of this expression, try ex.head and ex.args, or use dump as above or Meta.@dump)

Note that equivalent expressions may be constructed using Meta.parse or the direct Expr form:

julia> :(a + b*c + 1) ==

Meta.parse("a + b*c + 1") ==

Expr(:call, :+, :a, Expr(:call, :*, :b, :c), 1)

true

Expressions provided by the parser generally only have symbols, other expressions, and literal values as

their args, whereas expressions constructed by Julia code can have arbitrary run-time values without literal

forms as args. In this specific example, + and a are symbols, *(b,c) is a subexpression, and 1 is a literal

64-bit signed integer.

There is a second syntactic form of quoting for multiple expressions: blocks of code enclosed in quote ...

end.

julia> ex = quote

x = 1

y = 2

x + y

end

quote

#= none:2 =#

x = 1

#= none:3 =#

y = 2

#= none:4 =#

x + y

end

julia> typeof(ex)

Expr

CHAPTER 18. METAPROGRAMMING 231

Interpolation

Direct construction of Expr objects with value arguments is powerful, but Expr constructors can be tedious

compared to "normal" Julia syntax. As an alternative, Julia allows interpolation of literals or expressions

into quoted expressions. Interpolation is indicated by a prefix $.

In this example, the value of variable a is interpolated:

julia> a = 1;

julia> ex = :($a + b)

:(1 + b)

Interpolating into an unquoted expression is not supported and will cause a compile-time error:

julia> $a + b

ERROR: syntax: "$" expression outside quote

In this example, the tuple (1,2,3) is interpolated as an expression into a conditional test:

julia> ex = :(a in $:((1,2,3)))

:(a in (1, 2, 3))

The use of $ for expression interpolation is intentionally reminiscent of string interpolation and command

interpolation. Expression interpolation allows convenient, readable programmatic construction of complex

Julia expressions.

Splatting interpolation

Notice that the $ interpolation syntax allows inserting only a single expression into an enclosing expression.

Occasionally, you have an array of expressions and need them all to become arguments of the surrounding

expression. This can be done with the syntax $(xs...). For example, the following code generates a

function call where the number of arguments is determined programmatically:

julia> args = [:x, :y, :z];

julia> :(f(1, $(args...)))

:(f(1, x, y, z))

Nested quote

Naturally, it is possible for quote expressions to contain other quote expressions. Understanding how

interpolation works in these cases can be a bit tricky. Consider this example:

julia> x = :(1 + 2);

julia> e = quote quote $x end end

quote

#= none:1 =#

CHAPTER 18. METAPROGRAMMING 232

$(Expr(:quote, quote

#= none:1 =#

$(Expr(:$, :x))

end))

end

Notice that the result contains $x, which means that x has not been evaluated yet. In other words, the $

expression "belongs to" the inner quote expression, and so its argument is only evaluated when the inner

quote expression is:

julia> eval(e)

quote

#= none:1 =#

1 + 2

end

However, the outer quote expression is able to interpolate values inside the $ in the inner quote. This is

done with multiple $s:

julia> e = quote quote $$x end end

quote

#= none:1 =#

$(Expr(:quote, quote

#= none:1 =#

$(Expr(:$, :(1 + 2)))

end))

end

Notice that (1 + 2) now appears in the result instead of the symbol x. Evaluating this expression yields

an interpolated 3:

julia> eval(e)

quote

#= none:1 =#

3

end

The intuition behind this behavior is that x is evaluated once for each $: one $ works similarly to eval(:x),

giving x's value, while two $s do the equivalent of eval(eval(:x)).

QuoteNode

The usual representation of a quote form in an AST is an Expr with head :quote:

julia> dump(Meta.parse(":(1+2)"))

Expr

head: Symbol quote

args: Array{Any}((1,))

1: Expr

CHAPTER 18. METAPROGRAMMING 233

head: Symbol call

args: Array{Any}((3,))

1: Symbol +

2: Int64 1

3: Int64 2

As we have seen, such expressions support interpolation with $. However, in some situations it is necessary

to quote code without performing interpolation. This kind of quoting does not yet have syntax, but is

represented internally as an object of type QuoteNode:

julia> eval(Meta.quot(Expr(:$, :(1+2))))

3

julia> eval(QuoteNode(Expr(:$, :(1+2))))

:($(Expr(:$, :(1 + 2))))

The parser yields QuoteNodes for simple quoted items like symbols:

julia> dump(Meta.parse(":x"))

QuoteNode

value: Symbol x

QuoteNode can also be used for certain advanced metaprogramming tasks.

Evaluating expressions

Given an expression object, one can cause Julia to evaluate (execute) it at global scope using eval:

julia> ex1 = :(1 + 2)

:(1 + 2)

julia> eval(ex1)

3

julia> ex = :(a + b)

:(a + b)

julia> eval(ex)

ERROR: UndefVarError: `b` not defined

[...]

julia> a = 1; b = 2;

julia> eval(ex)

3

Every module has its own eval function that evaluates expressions in its global scope. Expressions passed

to eval are not limited to returning values – they can also have side-effects that alter the state of the

enclosing module's environment:

CHAPTER 18. METAPROGRAMMING 234

julia> ex = :(x = 1)

:(x = 1)

julia> x

ERROR: UndefVarError: `x` not defined

julia> eval(ex)

1

julia> x

1

Here, the evaluation of an expression object causes a value to be assigned to the global variable x.

Since expressions are just Expr objects which can be constructed programmatically and then evaluated,

it is possible to dynamically generate arbitrary code which can then be run using eval. Here is a simple

example:

julia> a = 1;

julia> ex = Expr(:call, :+, a, :b)

:(1 + b)

julia> a = 0; b = 2;

julia> eval(ex)

3

The value of a is used to construct the expression ex which applies the + function to the value 1 and the

variable b. Note the important distinction between the way a and b are used:

• The value of the variable a at expression construction time is used as an immediate value in the

expression. Thus, the value of a when the expression is evaluated no longer matters: the value in

the expression is already 1, independent of whatever the value of a might be.

• On the other hand, the symbol :b is used in the expression construction, so the value of the variable

b at that time is irrelevant – :b is just a symbol and the variable b need not even be defined. At

expression evaluation time, however, the value of the symbol :b is resolved by looking up the value

of the variable b.

Functions on Expressions

As hinted above, one extremely useful feature of Julia is the capability to generate andmanipulate Julia code

within Julia itself. We have already seen one example of a function returning Expr objects: the Meta.parse

function, which takes a string of Julia code and returns the corresponding Expr. A function can also take

one or more Expr objects as arguments, and return another Expr. Here is a simple, motivating example:

julia> function math_expr(op, op1, op2)

expr = Expr(:call, op, op1, op2)

return expr

CHAPTER 18. METAPROGRAMMING 235

end

math_expr (generic function with 1 method)

julia> ex = math_expr(:+, 1, Expr(:call, :*, 4, 5))

:(1 + 4 * 5)

julia> eval(ex)

21

As another example, here is a function that doubles any numeric argument, but leaves expressions alone:

julia> function make_expr2(op, opr1, opr2)

opr1f, opr2f = map(x -> isa(x, Number) ? 2*x : x, (opr1, opr2))

retexpr = Expr(:call, op, opr1f, opr2f)

return retexpr

end

make_expr2 (generic function with 1 method)

julia> make_expr2(:+, 1, 2)

:(2 + 4)

julia> ex = make_expr2(:+, 1, Expr(:call, :*, 5, 8))

:(2 + 5 * 8)

julia> eval(ex)

42

18.3 Macros

Macros provide a mechanism to include generated code in the final body of a program. A macro maps a

tuple of arguments to a returned expression, and the resulting expression is compiled directly rather than

requiring a runtime eval call. Macro arguments may include expressions, literal values, and symbols.

Basics

Here is an extraordinarily simple macro:

julia> macro sayhello()

return :(println("Hello, world!"))

end

@sayhello (macro with 1 method)

Macros have a dedicated character in Julia's syntax: the @ (at-sign), followed by the unique name declared

in a macro NAME ... end block. In this example, the compiler will replace all instances of @sayhello with:

:(println("Hello, world!"))

When @sayhello is entered in the REPL, the expression executes immediately, thus we only see the eval-

uation result:

CHAPTER 18. METAPROGRAMMING 236

julia> @sayhello()

Hello, world!

Now, consider a slightly more complex macro:

julia> macro sayhello(name)

return :(println("Hello, ", $name))

end

@sayhello (macro with 1 method)

Thismacro takes one argument: name. When @sayhello is encountered, the quoted expression is expanded

to interpolate the value of the argument into the final expression:

julia> @sayhello("human")

Hello, human

We can view the quoted return expression using the function macroexpand (important note: this is an

extremely useful tool for debugging macros):

julia> ex = macroexpand(Main, :(@sayhello("human")))

:(Main.println("Hello, ", "human"))

julia> typeof(ex)

Expr

We can see that the "human" literal has been interpolated into the expression.

There also exists a macro @macroexpand that is perhaps a bit more convenient than the macroexpand

function:

julia> @macroexpand @sayhello "human"

:(println("Hello, ", "human"))

Hold up: why macros?

We have already seen a function f(::Expr...) -> Expr in a previous section. In fact, macroexpand is

also such a function. So, why do macros exist?

Macros are necessary because they execute when code is parsed, therefore, macros allow the programmer

to generate and include fragments of customized code before the full program is run. To illustrate the

difference, consider the following example:

julia> macro twostep(arg)

println("I execute at parse time. The argument is: ", arg)

return :(println("I execute at runtime. The argument is: ", $arg))

end

@twostep (macro with 1 method)

julia> ex = macroexpand(Main, :(@twostep :(1, 2, 3)));

I execute at parse time. The argument is: :((1, 2, 3))

CHAPTER 18. METAPROGRAMMING 237

The first call to println is executed when macroexpand is called. The resulting expression contains only

the second println:

julia> typeof(ex)

Expr

julia> ex

:(println("I execute at runtime. The argument is: ", $(Expr(:copyast, :($(QuoteNode(:((1, 2,

3)))))))))↪→

julia> eval(ex)

I execute at runtime. The argument is: (1, 2, 3)

Macro invocation

Macros are invoked with the following general syntax:

@name expr1 expr2 ...

@name(expr1, expr2, ...)

Note the distinguishing @ before the macro name and the lack of commas between the argument expres-

sions in the first form, and the lack of whitespace after @name in the second form. The two styles should

not be mixed. For example, the following syntax is different from the examples above; it passes the tuple

(expr1, expr2, ...) as one argument to the macro:

@name (expr1, expr2, ...)

An alternative way to invoke a macro over an array literal (or comprehension) is to juxtapose both without

using parentheses. In this case, the array will be the only expression fed to the macro. The following syntax

is equivalent (and different from @name [a b] * v):

@name[a b] * v

@name([a b]) * v

It is important to emphasize that macros receive their arguments as expressions, literals, or symbols. One

way to explore macro arguments is to call the show function within the macro body:

julia> macro showarg(x)

show(x)

... remainder of macro, returning an expression

end

@showarg (macro with 1 method)

julia> @showarg(a)

:a

julia> @showarg(1+1)

:(1 + 1)

julia> @showarg(println("Yo!"))

:(println("Yo!"))

CHAPTER 18. METAPROGRAMMING 238

In addition to the given argument list, every macro is passed extra arguments named __source__ and

__module__.

The argument __source__ provides information (in the form of a LineNumberNode object) about the parser

location of the @ sign from the macro invocation. This allows macros to include better error diagnostic

information, and is commonly used by logging, string-parser macros, and docs, for example, as well as to

implement the @__LINE__, @__FILE__, and @__DIR__ macros.

The location information can be accessed by referencing __source__.line and __source__.file:

julia> macro __LOCATION__(); return QuoteNode(__source__); end

@__LOCATION__ (macro with 1 method)

julia> dump(

@__LOCATION__(

))

LineNumberNode

line: Int64 2

file: Symbol none

The argument __module__ provides information (in the form of a Module object) about the expansion

context of the macro invocation. This allows macros to look up contextual information, such as existing

bindings, or to insert the value as an extra argument to a runtime function call doing self-reflection in the

current module.

Building an advanced macro

Here is a simplified definition of Julia's @assert macro:

julia> macro assert(ex)

return :($ex ? nothing : throw(AssertionError($(string(ex)))))

end

@assert (macro with 1 method)

This macro can be used like this:

julia> @assert 1 == 1.0

julia> @assert 1 == 0

ERROR: AssertionError: 1 == 0

In place of the written syntax, the macro call is expanded at parse time to its returned result. This is

equivalent to writing:

1 == 1.0 ? nothing : throw(AssertionError("1 == 1.0"))

1 == 0 ? nothing : throw(AssertionError("1 == 0"))

That is, in the first call, the expression :(1 == 1.0) is spliced into the test condition slot, while the value of

string(:(1 == 1.0)) is spliced into the assertion message slot. The entire expression, thus constructed,

CHAPTER 18. METAPROGRAMMING 239

is placed into the syntax tree where the @assert macro call occurs. Then at execution time, if the test

expression evaluates to true, then nothing is returned, whereas if the test is false, an error is raised

indicating the asserted expression that was false. Notice that it would not be possible to write this as

a function, since only the value of the condition is available and it would be impossible to display the

expression that computed it in the error message.

The actual definition of @assert in Julia Base is more complicated. It allows the user to optionally specify

their own error message, instead of just printing the failed expression. Just like in functions with a variable

number of arguments (Varargs Functions), this is specified with an ellipses following the last argument:

julia> macro assert(ex, msgs...)

msg_body = isempty(msgs) ? ex : msgs[1]

msg = string(msg_body)

return :($ex ? nothing : throw(AssertionError($msg)))

end

@assert (macro with 1 method)

Now @assert has two modes of operation, depending upon the number of arguments it receives! If there's

only one argument, the tuple of expressions captured by msgs will be empty and it will behave the same as

the simpler definition above. But now if the user specifies a second argument, it is printed in the message

body instead of the failing expression. You can inspect the result of a macro expansion with the aptly

named @macroexpand macro:

julia> @macroexpand @assert a == b

:(if Main.a == Main.b

Main.nothing

else

Main.throw(Main.AssertionError("a == b"))

end)

julia> @macroexpand @assert a==b "a should equal b!"

:(if Main.a == Main.b

Main.nothing

else

Main.throw(Main.AssertionError("a should equal b!"))

end)

There is yet another case that the actual @assert macro handles: what if, in addition to printing "a should

equal b," we wanted to print their values? One might naively try to use string interpolation in the custom

message, e.g., @assert a==b "a ($a) should equal b ($b)!", but this won't work as expected with

the above macro. Can you see why? Recall from string interpolation that an interpolated string is rewritten

to a call to string. Compare:

julia> typeof(:("a should equal b"))

String

julia> typeof(:("a ($a) should equal b ($b)!"))

Expr

julia> dump(:("a ($a) should equal b ($b)!"))

CHAPTER 18. METAPROGRAMMING 240

Expr

head: Symbol string

args: Array{Any}((5,))

1: String "a ("

2: Symbol a

3: String ") should equal b ("

4: Symbol b

5: String ")!"

So now instead of getting a plain string in msg_body, the macro is receiving a full expression that will need

to be evaluated in order to display as expected. This can be spliced directly into the returned expression

as an argument to the string call; see error.jl for the complete implementation.

The @assert macro makes great use of splicing into quoted expressions to simplify the manipulation of

expressions inside the macro body.

Hygiene

An issue that arises in more complex macros is that of hygiene. In short, macros must ensure that the

variables they introduce in their returned expressions do not accidentally clash with existing variables

in the surrounding code they expand into. Conversely, the expressions that are passed into a macro as

arguments are often expected to evaluate in the context of the surrounding code, interacting with and

modifying the existing variables. Another concern arises from the fact that a macro may be called in a

different module from where it was defined. In this case we need to ensure that all global variables are

resolved to the correct module. Julia already has a major advantage over languages with textual macro

expansion (like C) in that it only needs to consider the returned expression. All the other variables (such

as msg in @assert above) follow the normal scoping block behavior.

To demonstrate these issues, let us consider writing a @timemacro that takes an expression as its argument,

records the time, evaluates the expression, records the time again, prints the difference between the before

and after times, and then has the value of the expression as its final value. The macro might look like this:

macro time(ex)

return quote

local t0 = time_ns()

local val = $ex

local t1 = time_ns()

println("elapsed time: ", (t1-t0)/1e9, " seconds")

val

end

end

Here, we want t0, t1, and val to be private temporary variables, and we want time_ns to refer to the

time_ns function in Julia Base, not to any time_ns variable the user might have (the same applies to

println). Imagine the problems that could occur if the user expression ex also contained assignments to

a variable called t0, or defined its own time_ns variable. We might get errors, or mysteriously incorrect

behavior.

Julia's macro expander solves these problems in the following way. First, variables within a macro result are

classified as either local or global. A variable is considered local if it is assigned to (and not declared global),

declared local, or used as a function argument name. Otherwise, it is considered global. Local variables

https://github.com/JuliaLang/julia/blob/master/base/error.jl
https://en.wikipedia.org/wiki/Hygienic_macro

CHAPTER 18. METAPROGRAMMING 241

are then renamed to be unique (using the gensym function, which generates new symbols), and global

variables are resolved within the macro definition environment. Therefore both of the above concerns are

handled; the macro's locals will not conflict with any user variables, and time_ns and println will refer to

the Julia Base definitions.

One problem remains however. Consider the following use of this macro:

module MyModule

import Base.@time

time_ns() = ... # compute something

@time time_ns()

end

Here the user expression ex is a call to time_ns, but not the same time_ns function that the macro uses.

It clearly refers to MyModule.time_ns. Therefore we must arrange for the code in ex to be resolved in the

macro call environment. This is done by "escaping" the expression with esc:

macro time(ex)

...

local val = $(esc(ex))

...

end

An expression wrapped in this manner is left alone by the macro expander and simply pasted into the

output verbatim. Therefore it will be resolved in the macro call environment.

This escaping mechanism can be used to "violate" hygiene when necessary, in order to introduce or ma-

nipulate user variables. For example, the following macro sets x to zero in the call environment:

julia> macro zerox()

return esc(:(x = 0))

end

@zerox (macro with 1 method)

julia> function foo()

x = 1

@zerox

return x # is zero

end

foo (generic function with 1 method)

julia> foo()

0

This kind of manipulation of variables should be used judiciously, but is occasionally quite handy.

Getting the hygiene rules correct can be a formidable challenge. Before using a macro, you might want

to consider whether a function closure would be sufficient. Another useful strategy is to defer as much

work as possible to runtime. For example, many macros simply wrap their arguments in a QuoteNode or

CHAPTER 18. METAPROGRAMMING 242

other similar Expr. Some examples of this include @task body which simply returns schedule(Task(()

-> $body)), and @eval expr, which simply returns eval(QuoteNode(expr)).

To demonstrate, we might rewrite the @time example above as:

macro time(expr)

return :(timeit(() -> $(esc(expr))))

end

function timeit(f)

t0 = time_ns()

val = f()

t1 = time_ns()

println("elapsed time: ", (t1-t0)/1e9, " seconds")

return val

end

However, we don't do this for a good reason: wrapping the expr in a new scope block (the anonymous

function) also slightly changes the meaning of the expression (the scope of any variables in it), while we

want @time to be usable with minimum impact on the wrapped code.

Macros and dispatch

Macros, just like Julia functions, are generic. This means they can also have multiple method definitions,

thanks to multiple dispatch:

julia> macro m end

@m (macro with 0 methods)

julia> macro m(args...)

println("$(length(args)) arguments")

end

@m (macro with 1 method)

julia> macro m(x,y)

println("Two arguments")

end

@m (macro with 2 methods)

julia> @m "asd"

1 arguments

julia> @m 1 2

Two arguments

However one should keep in mind, that macro dispatch is based on the types of AST that are handed to

the macro, not the types that the AST evaluates to at runtime:

julia> macro m(::Int)

println("An Integer")

end

@m (macro with 3 methods)

CHAPTER 18. METAPROGRAMMING 243

julia> @m 2

An Integer

julia> x = 2

2

julia> @m x

1 arguments

18.4 Code Generation

When a significant amount of repetitive boilerplate code is required, it is common to generate it program-

matically to avoid redundancy. In most languages, this requires an extra build step, and a separate program

to generate the repetitive code. In Julia, expression interpolation and eval allow such code generation to

take place in the normal course of program execution. For example, consider the following custom type

struct MyNumber

x::Float64

end

output

for which we want to add a number of methods to. We can do this programmatically in the following loop:

for op = (:sin, :cos, :tan, :log, :exp)

eval(quote

Base.$op(a::MyNumber) = MyNumber($op(a.x))

end)

end

output

and we can now use those functions with our custom type:

julia> x = MyNumber(π)

MyNumber(3.141592653589793)

julia> sin(x)

MyNumber(1.2246467991473532e-16)

julia> cos(x)

MyNumber(-1.0)

In this manner, Julia acts as its own preprocessor, and allows code generation from inside the language.

The above code could be written slightly more tersely using the : prefix quoting form:

for op = (:sin, :cos, :tan, :log, :exp)

eval(:(Base.$op(a::MyNumber) = MyNumber($op(a.x))))

end

https://en.wikipedia.org/wiki/Preprocessor

CHAPTER 18. METAPROGRAMMING 244

This sort of in-language code generation, however, using the eval(quote(...)) pattern, is common

enough that Julia comes with a macro to abbreviate this pattern:

for op = (:sin, :cos, :tan, :log, :exp)

@eval Base.$op(a::MyNumber) = MyNumber($op(a.x))

end

The @eval macro rewrites this call to be precisely equivalent to the above longer versions. For longer

blocks of generated code, the expression argument given to @eval can be a block:

@eval begin

multiple lines

end

18.5 Non-Standard String Literals

Recall from Strings that string literals prefixed by an identifier are called non-standard string literals, and

can have different semantics than un-prefixed string literals. For example:

• r"^\s*(?:#|$)" produces a regular expression object rather than a string

• b"DATA\xff\u2200" is a byte array literal for [68,65,84,65,255,226,136,128].

Perhaps surprisingly, these behaviors are not hard-coded into the Julia parser or compiler. Instead, they

are custom behaviors provided by a general mechanism that anyone can use: prefixed string literals are

parsed as calls to specially-named macros. For example, the regular expression macro is just the following:

macro r_str(p)

Regex(p)

end

That's all. This macro says that the literal contents of the string literal r"^\s*(?:#|$)" should be passed

to the @r_str macro and the result of that expansion should be placed in the syntax tree where the string

literal occurs. In other words, the expression r"^\s*(?:#|$)" is equivalent to placing the following object

directly into the syntax tree:

Regex("^\\s*(?:#|\$)")

Not only is the string literal form shorter and far more convenient, but it is also more efficient: since

the regular expression is compiled and the Regex object is actually created when the code is compiled,

the compilation occurs only once, rather than every time the code is executed. Consider if the regular

expression occurs in a loop:

for line = lines

m = match(r"^\s*(?:#|$)", line)

if m === nothing

non-comment

CHAPTER 18. METAPROGRAMMING 245

else

comment

end

end

Since the regular expression r"^\s*(?:#|$)" is compiled and inserted into the syntax tree when this code

is parsed, the expression is only compiled once instead of each time the loop is executed. In order to

accomplish this without macros, one would have to write this loop like this:

re = Regex("^\\s*(?:#|\$)")

for line = lines

m = match(re, line)

if m === nothing

non-comment

else

comment

end

end

Moreover, if the compiler could not determine that the regex object was constant over all loops, certain

optimizations might not be possible, making this version still less efficient than the more convenient literal

form above. Of course, there are still situations where the non-literal form is more convenient: if one needs

to interpolate a variable into the regular expression, one must take this more verbose approach; in cases

where the regular expression pattern itself is dynamic, potentially changing upon each loop iteration, a

new regular expression object must be constructed on each iteration. In the vast majority of use cases,

however, regular expressions are not constructed based on run-time data. In this majority of cases, the

ability to write regular expressions as compile-time values is invaluable.

The mechanism for user-defined string literals is deeply, profoundly powerful. Not only are Julia's non-

standard literals implemented using it, but the command literal syntax (`echo "Hello, $person"`) is

also implemented using the following innocuous-looking macro:

macro cmd(str)

:(cmd_gen($(shell_parse(str)[1])))

end

Of course, a large amount of complexity is hidden in the functions used in this macro definition, but they

are just functions, written entirely in Julia. You can read their source and see precisely what they do – and

all they do is construct expression objects to be inserted into your program's syntax tree.

Like string literals, command literals can also be prefixed by an identifier to form what are called non-

standard command literals. These command literals are parsed as calls to specially-named macros. For

example, the syntax custom`literal` is parsed as @custom_cmd "literal". Julia itself does not contain

any non-standard command literals, but packages can make use of this syntax. Aside from the different

syntax and the _cmd suffix instead of the _str suffix, non-standard command literals behave exactly like

non-standard string literals.

In the event that two modules provide non-standard string or command literals with the same name, it

is possible to qualify the string or command literal with a module name. For instance, if both Foo and

Bar provide non-standard string literal @x_str, then one can write Foo.x"literal" or Bar.x"literal" to

disambiguate between the two.

CHAPTER 18. METAPROGRAMMING 246

Another way to define a macro would be like this:

macro foo_str(str, flag)

do stuff

end

This macro can then be called with the following syntax:

foo"str"flag

The type of flag in the above mentioned syntax would be a String with contents of whatever trails after

the string literal.

18.6 Generated functions

A very special macro is @generated, which allows you to define so-called generated functions. These have

the capability to generate specialized code depending on the types of their arguments with more flexibility

and/or less code than what can be achieved with multiple dispatch. While macros work with expressions

at parse time and cannot access the types of their inputs, a generated function gets expanded at a time

when the types of the arguments are known, but the function is not yet compiled.

Instead of performing some calculation or action, a generated function declaration returns a quoted ex-

pression which then forms the body for the method corresponding to the types of the arguments. When a

generated function is called, the expression it returns is compiled and then run. To make this efficient, the

result is usually cached. And to make this inferable, only a limited subset of the language is usable. Thus,

generated functions provide a flexible way to move work from run time to compile time, at the expense of

greater restrictions on allowed constructs.

When defining generated functions, there are five main differences to ordinary functions:

1. You annotate the function declaration with the @generated macro. This adds some information to

the AST that lets the compiler know that this is a generated function.

2. In the body of the generated function you only have access to the types of the arguments – not their

values.

3. Instead of calculating something or performing some action, you return a quoted expression which,

when evaluated, does what you want.

4. Generated functions are only permitted to call functions that were defined before the definition of the

generated function. (Failure to follow this may result in getting MethodErrors referring to functions

from a future world-age.)

5. Generated functions must not mutate or observe any non-constant global state (including, for ex-

ample, IO, locks, non-local dictionaries, or using hasmethod). This means they can only read global

constants, and cannot have any side effects. In other words, they must be completely pure. Due to

an implementation limitation, this also means that they currently cannot define a closure or gener-

ator.

It's easiest to illustrate this with an example. We can declare a generated function foo as

CHAPTER 18. METAPROGRAMMING 247

julia> @generated function foo(x)

Core.println(x)

return :(x * x)

end

foo (generic function with 1 method)

Note that the body returns a quoted expression, namely :(x * x), rather than just the value of x * x.

From the caller's perspective, this is identical to a regular function; in fact, you don't have to know whether

you're calling a regular or generated function. Let's see how foo behaves:

julia> x = foo(2); # note: output is from println() statement in the body

Int64

julia> x # now we print x

4

julia> y = foo("bar");

String

julia> y

"barbar"

So, we see that in the body of the generated function, x is the type of the passed argument, and the value

returned by the generated function, is the result of evaluating the quoted expression we returned from the

definition, now with the value of x.

What happens if we evaluate foo again with a type that we have already used?

julia> foo(4)

16

Note that there is no printout of Int64. We can see that the body of the generated function was only

executed once here, for the specific set of argument types, and the result was cached. After that, for

this example, the expression returned from the generated function on the first invocation was re-used

as the method body. However, the actual caching behavior is an implementation-defined performance

optimization, so it is invalid to depend too closely on this behavior.

The number of times a generated function is generated might be only once, but it might also be more often,

or appear to not happen at all. As a consequence, you should never write a generated function with side

effects - when, and how often, the side effects occur is undefined. (This is true for macros too - and just like

for macros, the use of eval in a generated function is a sign that you're doing something the wrong way.)

However, unlike macros, the runtime system cannot correctly handle a call to eval, so it is disallowed.

It is also important to see how @generated functions interact with method redefinition. Following the

principle that a correct @generated function must not observe any mutable state or cause any mutation of

global state, we see the following behavior. Observe that the generated function cannot call any method

that was not defined prior to the definition of the generated function itself.

Initially f(x) has one definition

julia> f(x) = "original definition";

CHAPTER 18. METAPROGRAMMING 248

Define other operations that use f(x):

julia> g(x) = f(x);

julia> @generated gen1(x) = f(x);

julia> @generated gen2(x) = :(f(x));

We now add some new definitions for f(x):

julia> f(x::Int) = "definition for Int";

julia> f(x::Type{Int}) = "definition for Type{Int}";

and compare how these results differ:

julia> f(1)

"definition for Int"

julia> g(1)

"definition for Int"

julia> gen1(1)

"original definition"

julia> gen2(1)

"definition for Int"

Each method of a generated function has its own view of defined functions:

julia> @generated gen1(x::Real) = f(x);

julia> gen1(1)

"definition for Type{Int}"

The example generated function foo above did not do anything a normal function foo(x) = x * x could

not do (except printing the type on the first invocation, and incurring higher overhead). However, the

power of a generated function lies in its ability to compute different quoted expressions depending on the

types passed to it:

julia> @generated function bar(x)

if x <: Integer

return :(x ^ 2)

else

return :(x)

end

end

bar (generic function with 1 method)

CHAPTER 18. METAPROGRAMMING 249

julia> bar(4)

16

julia> bar("baz")

"baz"

(although of course this contrived example would be more easily implemented using multiple dispatch...)

Abusing this will corrupt the runtime system and cause undefined behavior:

julia> @generated function baz(x)

if rand() < .9

return :(x^2)

else

return :("boo!")

end

end

baz (generic function with 1 method)

Since the body of the generated function is non-deterministic, its behavior, and the behavior of all subse-

quent code is undefined.

Don't copy these examples!

These examples are hopefully helpful to illustrate how generated functions work, both in the definition end

and at the call site; however, don't copy them, for the following reasons:

• the foo function has side-effects (the call to Core.println), and it is undefined exactly when, how

often or how many times these side-effects will occur

• the bar function solves a problem that is better solved with multiple dispatch - defining bar(x) = x

and bar(x::Integer) = x ^ 2 will do the same thing, but it is both simpler and faster.

• the baz function is pathological

Note that the set of operations that should not be attempted in a generated function is unbounded, and

the runtime system can currently only detect a subset of the invalid operations. There are many other

operations that will simply corrupt the runtime system without notification, usually in subtle ways not

obviously connected to the bad definition. Because the function generator is run during inference, it must

respect all of the limitations of that code.

Some operations that should not be attempted include:

1. Caching of native pointers.

2. Interacting with the contents or methods of Core.Compiler in any way.

3. Observing any mutable state.

– Inference on the generated function may be run at any time, including while your code is

attempting to observe or mutate this state.

CHAPTER 18. METAPROGRAMMING 250

4. Taking any locks: C code you call out to may use locks internally, (for example, it is not problematic

to call malloc, even though most implementations require locks internally) but don't attempt to hold

or acquire any while executing Julia code.

5. Calling any function that is defined after the body of the generated function. This condition is relaxed

for incrementally-loaded precompiled modules to allow calling any function in the module.

Alright, now that we have a better understanding of how generated functions work, let's use them to build

some more advanced (and valid) functionality...

An advanced example

Julia's base library has an internal sub2ind function to calculate a linear index into an n-dimensional array,

based on a set of n multilinear indices - in other words, to calculate the index i that can be used to index

into an array A using A[i], instead of A[x,y,z,...]. One possible implementation is the following:

julia> function sub2ind_loop(dims::NTuple{N}, I::Integer...) where N

ind = I[N] - 1

for i = N-1:-1:1

ind = I[i]-1 + dims[i]*ind

end

return ind + 1

end

sub2ind_loop (generic function with 1 method)

julia> sub2ind_loop((3, 5), 1, 2)

4

The same thing can be done using recursion:

julia> sub2ind_rec(dims::Tuple{}) = 1;

julia> sub2ind_rec(dims::Tuple{}, i1::Integer, I::Integer...) =

i1 == 1 ? sub2ind_rec(dims, I...) : throw(BoundsError());

julia> sub2ind_rec(dims::Tuple{Integer, Vararg{Integer}}, i1::Integer) = i1;

julia> sub2ind_rec(dims::Tuple{Integer, Vararg{Integer}}, i1::Integer, I::Integer...) =

i1 + dims[1] * (sub2ind_rec(Base.tail(dims), I...) - 1);

julia> sub2ind_rec((3, 5), 1, 2)

4

Both these implementations, although different, do essentially the same thing: a runtime loop over the

dimensions of the array, collecting the offset in each dimension into the final index.

However, all the information we need for the loop is embedded in the type information of the arguments.

This allows the compiler to move the iteration to compile time and eliminate the runtime loops altogether.

We can utilize generated functions to achieve a similar effect; in compiler parlance, we use generated

functions to manually unroll the loop. The body becomes almost identical, but instead of calculating the

linear index, we build up an expression that calculates the index:

CHAPTER 18. METAPROGRAMMING 251

julia> @generated function sub2ind_gen(dims::NTuple{N}, I::Integer...) where N

ex = :(I[$N] - 1)

for i = (N - 1):-1:1

ex = :(I[$i] - 1 + dims[$i] * $ex)

end

return :($ex + 1)

end

sub2ind_gen (generic function with 1 method)

julia> sub2ind_gen((3, 5), 1, 2)

4

What code will this generate?

An easy way to find out is to extract the body into another (regular) function:

julia> @generated function sub2ind_gen(dims::NTuple{N}, I::Integer...) where N

return sub2ind_gen_impl(dims, I...)

end

sub2ind_gen (generic function with 1 method)

julia> function sub2ind_gen_impl(dims::Type{T}, I...) where T <: NTuple{N,Any} where N

length(I) == N || return :(error("partial indexing is unsupported"))

ex = :(I[$N] - 1)

for i = (N - 1):-1:1

ex = :(I[$i] - 1 + dims[$i] * $ex)

end

return :($ex + 1)

end

sub2ind_gen_impl (generic function with 1 method)

We can now execute sub2ind_gen_impl and examine the expression it returns:

julia> sub2ind_gen_impl(Tuple{Int,Int}, Int, Int)

:(((I[1] - 1) + dims[1] * (I[2] - 1)) + 1)

So, the method body that will be used here doesn't include a loop at all - just indexing into the two tuples,

multiplication and addition/subtraction. All the looping is performed compile-time, and we avoid looping

during execution entirely. Thus, we only loop once per type, in this case once per N (except in edge cases

where the function is generated more than once - see disclaimer above).

Optionally-generated functions

Generated functions can achieve high efficiency at run time, but come with a compile time cost: a new

function body must be generated for every combination of concrete argument types. Typically, Julia is able

to compile "generic" versions of functions that will work for any arguments, but with generated functions

this is impossible. This means that programsmaking heavy use of generated functions might be impossible

to statically compile.

To solve this problem, the language provides syntax for writing normal, non-generated alternative imple-

mentations of generated functions. Applied to the sub2ind example above, it would look like this:

CHAPTER 18. METAPROGRAMMING 252

function sub2ind_gen(dims::NTuple{N}, I::Integer...) where N

if N != length(I)

throw(ArgumentError("Number of dimensions must match number of indices."))

end

if @generated

ex = :(I[$N] - 1)

for i = (N - 1):-1:1

ex = :(I[$i] - 1 + dims[$i] * $ex)

end

return :($ex + 1)

else

ind = I[N] - 1

for i = (N - 1):-1:1

ind = I[i] - 1 + dims[i]*ind

end

return ind + 1

end

end

Internally, this code creates two implementations of the function: a generated one where the first block

in if @generated is used, and a normal one where the else block is used. Inside the then part of the if

@generated block, code has the same semantics as other generated functions: argument names refer to

types, and the code should return an expression. Multiple if @generated blocks may occur, in which case

the generated implementation uses all of the then blocks and the alternate implementation uses all of the

else blocks.

Notice that we added an error check to the top of the function. This code will be common to both versions,

and is run-time code in both versions (it will be quoted and returned as an expression from the generated

version). That means that the values and types of local variables are not available at code generation time

–- the code-generation code can only see the types of arguments.

In this style of definition, the code generation feature is essentially an optional optimization. The compiler

will use it if convenient, but otherwise may choose to use the normal implementation instead. This style

is preferred, since it allows the compiler to make more decisions and compile programs in more ways,

and since normal code is more readable than code-generating code. However, which implementation is

used depends on compiler implementation details, so it is essential for the two implementations to behave

identically.

Chapter 19

Single- and multi-dimensional Arrays

Julia, like most technical computing languages, provides a first-class array implementation. Most technical

computing languages pay a lot of attention to their array implementation at the expense of other contain-

ers. Julia does not treat arrays in any special way. The array library is implemented almost completely in

Julia itself, and derives its performance from the compiler, just like any other code written in Julia. As such,

it's also possible to define custom array types by inheriting from AbstractArray. See the manual section

on the AbstractArray interface for more details on implementing a custom array type.

An array is a collection of objects stored in a multi-dimensional grid. Zero-dimensional arrays are allowed,

see this FAQ entry. In the most general case, an array may contain objects of type Any. For most compu-

tational purposes, arrays should contain objects of a more specific type, such as Float64 or Int32.

In general, unlike many other technical computing languages, Julia does not expect programs to be written

in a vectorized style for performance. Julia's compiler uses type inference and generates optimized code

for scalar array indexing, allowing programs to be written in a style that is convenient and readable, without

sacrificing performance, and using less memory at times.

In Julia, all arguments to functions are passed by sharing (i.e. by pointers). Some technical computing

languages pass arrays by value, and while this prevents accidental modification by callees of a value in

the caller, it makes avoiding unwanted copying of arrays difficult. By convention, a function name ending

with a ! indicates that it will mutate or destroy the value of one or more of its arguments (compare, for

example, sort and sort!). Callees must make explicit copies to ensure that they don't modify inputs that

they don't intend to change. Many non-mutating functions are implemented by calling a function of the

same name with an added ! at the end on an explicit copy of the input, and returning that copy.

19.1 Basic Functions

19.2 Construction and Initialization

Many functions for constructing and initializing arrays are provided. In the following list of such functions,

calls with a dims... argument can either take a single tuple of dimension sizes or a series of dimension

sizes passed as a variable number of arguments. Most of these functions also accept a first input T, which

is the element type of the array. If the type T is omitted it will default to Float64.

To see the various ways we can pass dimensions to these functions, consider the following examples:

1iid, independently and identically distributed.

253

https://en.wikipedia.org/wiki/Evaluation_strategy#Call_by_sharing

CHAPTER 19. SINGLE- AND MULTI-DIMENSIONAL ARRAYS 254

Function Description

eltype(A) the type of the elements contained in A

length(A) the number of elements in A

ndims(A) the number of dimensions of A

size(A) a tuple containing the dimensions of A

size(A,n) the size of A along dimension n

axes(A) a tuple containing the valid indices of A

axes(A,n) a range expressing the valid indices along dimension n

eachindex(A) an efficient iterator for visiting each position in A

stride(A,k) the stride (linear index distance between adjacent elements) along dimension k

strides(A) a tuple of the strides in each dimension

julia> zeros(Int8, 2, 3)

2×3 Matrix{Int8}:

0 0 0

0 0 0

julia> zeros(Int8, (2, 3))

2×3 Matrix{Int8}:

0 0 0

0 0 0

julia> zeros((2, 3))

2×3 Matrix{Float64}:

0.0 0.0 0.0

0.0 0.0 0.0

Here, (2, 3) is a Tuple and the first argument — the element type — is optional, defaulting to Float64.

19.3 Array literals

Arrays can also be directly constructed with square braces; the syntax [A, B, C, ...] creates a one-

dimensional array (i.e., a vector) containing the comma-separated arguments as its elements. The element

type (eltype) of the resulting array is automatically determined by the types of the arguments inside the

braces. If all the arguments are the same type, then that is its eltype. If they all have a common promotion

type then they get converted to that type using convert and that type is the array's eltype. Otherwise,

a heterogeneous array that can hold anything — a Vector{Any} — is constructed; this includes the literal

[] where no arguments are given. Array literal can be typed with the syntax T[A, B, C, ...] where T is

a type.

julia> [1, 2, 3] # An array of `Int`s

3-element Vector{Int64}:

1

2

3

julia> promote(1, 2.3, 4//5) # This combination of Int, Float64 and Rational promotes to Float64

(1.0, 2.3, 0.8)

CHAPTER 19. SINGLE- AND MULTI-DIMENSIONAL ARRAYS 255

Function Description

Array{T}(undef,

dims...)

an uninitialized dense Array

zeros(T,

dims...)

an Array of all zeros

ones(T,

dims...)

an Array of all ones

trues(dims...) a BitArray with all values true

falses(dims...)a BitArray with all values false

reshape(A,

dims...)

an array containing the same data as A, but with different dimensions

copy(A) copy A

deepcopy(A) copy A, recursively copying its elements

similar(A,

T, dims...)

an uninitialized array of the same type as A (dense, sparse, etc.), but with the

specified element type and dimensions. The second and third arguments are both

optional, defaulting to the element type and dimensions of A if omitted.

reinterpret(T,

A)

an array with the same binary data as A, but with element type T

rand(T,

dims...)

an Array with random, iid 1 and uniformly distributed values. For floating point types

T, the values lie in the half-open interval [0, 1).
randn(T,

dims...)

an Array with random, iid and standard normally distributed values

Matrix{T}(I,

m, n)

m-by-n identity matrix. Requires using LinearAlgebra for I.

range(start,

stop, n)

a range of n linearly spaced elements from start to stop

fill!(A, x) fill the array A with the value x

fill(x,

dims...)

an Array filled with the value x. In particular, fill(x) constructs a zero-dimensional

Array containing x.

julia> [1, 2.3, 4//5] # Thus that's the element type of this Array

3-element Vector{Float64}:

1.0

2.3

0.8

julia> Float32[1, 2.3, 4//5] # Specify element type manually

3-element Vector{Float32}:

1.0

2.3

0.8

julia> []

Any[]

Concatenation

If the arguments inside the square brackets are separated by single semicolons (;) or newlines instead of

commas, then their contents are vertically concatenated together instead of the arguments being used as

CHAPTER 19. SINGLE- AND MULTI-DIMENSIONAL ARRAYS 256

elements themselves.

julia> [1:2, 4:5] # Has a comma, so no concatenation occurs. The ranges are themselves the

elements↪→

2-element Vector{UnitRange{Int64}}:

1:2

4:5

julia> [1:2; 4:5]

4-element Vector{Int64}:

1

2

4

5

julia> [1:2

4:5

6]

5-element Vector{Int64}:

1

2

4

5

6

Similarly, if the arguments are separated by tabs or spaces or double semicolons, then their contents are

horizontally concatenated together.

julia> [1:2 4:5 7:8]

2×3 Matrix{Int64}:

1 4 7

2 5 8

julia> [[1,2] [4,5] [7,8]]

2×3 Matrix{Int64}:

1 4 7

2 5 8

julia> [1 2 3] # Numbers can also be horizontally concatenated

1×3 Matrix{Int64}:

1 2 3

julia> [1;; 2;; 3;; 4]

1×4 Matrix{Int64}:

1 2 3 4

Single semicolons (or newlines) and spaces (or tabs) can be combined to concatenate both horizontally

and vertically at the same time.

julia> [1 2

3 4]

CHAPTER 19. SINGLE- AND MULTI-DIMENSIONAL ARRAYS 257

2×2 Matrix{Int64}:

1 2

3 4

julia> [zeros(Int, 2, 2) [1; 2]

[3 4] 5]

3×3 Matrix{Int64}:

0 0 1

0 0 2

3 4 5

julia> [[1 1]; 2 3; [4 4]]

3×2 Matrix{Int64}:

1 1

2 3

4 4

Spaces (and tabs) have a higher precedence than semicolons, performing any horizontal concatenations

first and then concatenating the result. Using double semicolons for the horizontal concatenation, on the

other hand, performs any vertical concatenations before horizontally concatenating the result.

julia> [zeros(Int, 2, 2) ; [3 4] ;; [1; 2] ; 5]

3×3 Matrix{Int64}:

0 0 1

0 0 2

3 4 5

julia> [1:2; 4;; 1; 3:4]

3×2 Matrix{Int64}:

1 1

2 3

4 4

Just as ; and ;; concatenate in the first and second dimension, using more semicolons extends this same

general scheme. The number of semicolons in the separator specifies the particular dimension, so ;;;

concatenates in the third dimension, ;;;; in the 4th, and so on. Fewer semicolons take precedence, so

the lower dimensions are generally concatenated first.

julia> [1; 2;; 3; 4;; 5; 6;;;

7; 8;; 9; 10;; 11; 12]

2×3×2 Array{Int64, 3}:

[:, :, 1] =

1 3 5

2 4 6

[:, :, 2] =

7 9 11

8 10 12

Like before, spaces (and tabs) for horizontal concatenation have a higher precedence than any number of

semicolons. Thus, higher-dimensional arrays can also be written by specifying their rows first, with their

elements textually arranged in a manner similar to their layout:

CHAPTER 19. SINGLE- AND MULTI-DIMENSIONAL ARRAYS 258

julia> [1 3 5

2 4 6;;;

7 9 11

8 10 12]

2×3×2 Array{Int64, 3}:

[:, :, 1] =

1 3 5

2 4 6

[:, :, 2] =

7 9 11

8 10 12

julia> [1 2;;; 3 4;;;; 5 6;;; 7 8]

1×2×2×2 Array{Int64, 4}:

[:, :, 1, 1] =

1 2

[:, :, 2, 1] =

3 4

[:, :, 1, 2] =

5 6

[:, :, 2, 2] =

7 8

julia> [[1 2;;; 3 4];;;; [5 6];;; [7 8]]

1×2×2×2 Array{Int64, 4}:

[:, :, 1, 1] =

1 2

[:, :, 2, 1] =

3 4

[:, :, 1, 2] =

5 6

[:, :, 2, 2] =

7 8

Although they both mean concatenation in the second dimension, spaces (or tabs) and ;; cannot appear in

the same array expression unless the double semicolon is simply serving as a "line continuation" character.

This allows a single horizontal concatenation to spanmultiple lines (without the line break being interpreted

as a vertical concatenation).

julia> [1 2 ;;

3 4]

1×4 Matrix{Int64}:

1 2 3 4

Terminating semicolons may also be used to add trailing length 1 dimensions.

CHAPTER 19. SINGLE- AND MULTI-DIMENSIONAL ARRAYS 259

julia> [1;;]

1×1 Matrix{Int64}:

1

julia> [2; 3;;;]

2×1×1 Array{Int64, 3}:

[:, :, 1] =

2

3

More generally, concatenation can be accomplished through the cat function. These syntaxes are short-

hands for function calls that themselves are convenience functions:

Syntax Func-

tion

Description

cat concatenate input arrays along dimension(s) k

[A; B; C;

...]

vcat shorthand for cat(A...; dims=1)

[A B C ...] hcat shorthand for cat(A...; dims=2)

[A B; C D;

...]

hvcat simultaneous vertical and horizontal concatenation

[A; C;; B;

D;;; ...]

hvncat simultaneous n-dimensional concatenation, where number of semicolons

indicate the dimension to concatenate

Typed array literals

An array with a specific element type can be constructed using the syntax T[A, B, C, ...]. This will

construct a 1-d array with element type T, initialized to contain elements A, B, C, etc. For example, Any[x,

y, z] constructs a heterogeneous array that can contain any values.

Concatenation syntax can similarly be prefixed with a type to specify the element type of the result.

julia> [[1 2] [3 4]]

1×4 Matrix{Int64}:

1 2 3 4

julia> Int8[[1 2] [3 4]]

1×4 Matrix{Int8}:

1 2 3 4

19.4 Comprehensions

Comprehensions provide a general and powerful way to construct arrays. Comprehension syntax is similar

to set construction notation in mathematics:

A = [F(x, y, ...) for x=rx, y=ry, ...]

The meaning of this form is that F(x,y,...) is evaluated with the variables x, y, etc. taking on each value

in their given list of values. Values can be specified as any iterable object, but will commonly be ranges

like 1:n or 2:(n-1), or explicit arrays of values like [1.2, 3.4, 5.7]. The result is an N-d dense array

CHAPTER 19. SINGLE- AND MULTI-DIMENSIONAL ARRAYS 260

with dimensions that are the concatenation of the dimensions of the variable ranges rx, ry, etc. and each

F(x,y,...) evaluation returns a scalar.

The following example computes a weighted average of the current element and its left and right neighbor

along a 1-d grid. :

julia> x = rand(8)

8-element Array{Float64,1}:

0.843025

0.869052

0.365105

0.699456

0.977653

0.994953

0.41084

0.809411

julia> [0.25*x[i-1] + 0.5*x[i] + 0.25*x[i+1] for i=2:length(x)-1]

6-element Array{Float64,1}:

0.736559

0.57468

0.685417

0.912429

0.8446

0.656511

The resulting array type depends on the types of the computed elements just like array literals do. In order

to control the type explicitly, a type can be prepended to the comprehension. For example, we could have

requested the result in single precision by writing:

Float32[0.25*x[i-1] + 0.5*x[i] + 0.25*x[i+1] for i=2:length(x)-1]

19.5 Generator Expressions

Comprehensions can also be written without the enclosing square brackets, producing an object known

as a generator. This object can be iterated to produce values on demand, instead of allocating an array

and storing them in advance (see Iteration). For example, the following expression sums a series without

allocating memory:

julia> sum(1/n^2 for n=1:1000)

1.6439345666815615

When writing a generator expression with multiple dimensions inside an argument list, parentheses are

needed to separate the generator from subsequent arguments:

julia> map(tuple, 1/(i+j) for i=1:2, j=1:2, [1:4;])

ERROR: syntax: invalid iteration specification

All comma-separated expressions after for are interpreted as ranges. Adding parentheses lets us add a

third argument to map:

CHAPTER 19. SINGLE- AND MULTI-DIMENSIONAL ARRAYS 261

julia> map(tuple, (1/(i+j) for i=1:2, j=1:2), [1 3; 2 4])

2×2 Matrix{Tuple{Float64, Int64}}:

(0.5, 1) (0.333333, 3)

(0.333333, 2) (0.25, 4)

Generators are implemented via inner functions. Just like inner functions used elsewhere in the language,

variables from the enclosing scope can be "captured" in the inner function. For example, sum(p[i] -

q[i] for i=1:n) captures the three variables p, q and n from the enclosing scope. Captured variables

can present performance challenges; see performance tips.

Ranges in generators and comprehensions can depend on previous ranges by writing multiple for key-

words:

julia> [(i, j) for i=1:3 for j=1:i]

6-element Vector{Tuple{Int64, Int64}}:

(1, 1)

(2, 1)

(2, 2)

(3, 1)

(3, 2)

(3, 3)

In such cases, the result is always 1-d.

Generated values can be filtered using the if keyword:

julia> [(i, j) for i=1:3 for j=1:i if i+j == 4]

2-element Vector{Tuple{Int64, Int64}}:

(2, 2)

(3, 1)

19.6 Indexing

The general syntax for indexing into an n-dimensional array A is:

X = A[I_1, I_2, ..., I_n]

where each I_k may be a scalar integer, an array of integers, or any other supported index. This includes

Colon (:) to select all indices within the entire dimension, ranges of the form a:c or a:b:c to select

contiguous or strided subsections, and arrays of booleans to select elements at their true indices.

If all the indices are scalars, then the result X is a single element from the array A. Otherwise, X is an array

with the same number of dimensions as the sum of the dimensionalities of all the indices.

If all indices I_k are vectors, for example, then the shape of X would be (length(I_1), length(I_2),

..., length(I_n)), with location i_1, i_2, ..., i_n of X containing the value A[I_1[i_1], I_2[i_2],

..., I_n[i_n]].

Example:

julia> A = reshape(collect(1:16), (2, 2, 2, 2))

2×2×2×2 Array{Int64, 4}:

CHAPTER 19. SINGLE- AND MULTI-DIMENSIONAL ARRAYS 262

[:, :, 1, 1] =

1 3

2 4

[:, :, 2, 1] =

5 7

6 8

[:, :, 1, 2] =

9 11

10 12

[:, :, 2, 2] =

13 15

14 16

julia> A[1, 2, 1, 1] # all scalar indices

3

julia> A[[1, 2], [1], [1, 2], [1]] # all vector indices

2×1×2×1 Array{Int64, 4}:

[:, :, 1, 1] =

1

2

[:, :, 2, 1] =

5

6

julia> A[[1, 2], [1], [1, 2], 1] # a mix of index types

2×1×2 Array{Int64, 3}:

[:, :, 1] =

1

2

[:, :, 2] =

5

6

Note how the size of the resulting array is different in the last two cases.

If I_1 is changed to a two-dimensional matrix, then X becomes an n+1-dimensional array of shape (size(I_1,

1), size(I_1, 2), length(I_2), ..., length(I_n)). The matrix adds a dimension.

Example:

julia> A = reshape(collect(1:16), (2, 2, 2, 2));

julia> A[[1 2; 1 2]]

2×2 Matrix{Int64}:

1 2

1 2

CHAPTER 19. SINGLE- AND MULTI-DIMENSIONAL ARRAYS 263

julia> A[[1 2; 1 2], 1, 2, 1]

2×2 Matrix{Int64}:

5 6

5 6

The location i_1, i_2, i_3, ..., i_{n+1} contains the value at A[I_1[i_1, i_2], I_2[i_3], ...,

I_n[i_{n+1}]]. All dimensions indexed with scalars are dropped. For example, if J is an array of indices,

then the result of A[2, J, 3] is an array with size size(J). Its jth element is populated by A[2, J[j],

3].

As a special part of this syntax, the end keyword may be used to represent the last index of each dimension

within the indexing brackets, as determined by the size of the innermost array being indexed. Indexing

syntax without the end keyword is equivalent to a call to getindex:

X = getindex(A, I_1, I_2, ..., I_n)

Example:

julia> x = reshape(1:16, 4, 4)

4×4 reshape(::UnitRange{Int64}, 4, 4) with eltype Int64:

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

julia> x[2:3, 2:end-1]

2×2 Matrix{Int64}:

6 10

7 11

julia> x[1, [2 3; 4 1]]

2×2 Matrix{Int64}:

5 9

13 1

19.7 Indexed Assignment

The general syntax for assigning values in an n-dimensional array A is:

A[I_1, I_2, ..., I_n] = X

where each I_k may be a scalar integer, an array of integers, or any other supported index. This includes

Colon (:) to select all indices within the entire dimension, ranges of the form a:c or a:b:c to select

contiguous or strided subsections, and arrays of booleans to select elements at their true indices.

If all indices I_k are integers, then the value in location I_1, I_2, ..., I_n of A is overwritten with the

value of X, converting to the eltype of A if necessary.

If any index I_k is itself an array, then the right hand side X must also be an array with the same shape

as the result of indexing A[I_1, I_2, ..., I_n] or a vector with the same number of elements. The

value in location I_1[i_1], I_2[i_2], ..., I_n[i_n] of A is overwritten with the value X[I_1, I_2,

..., I_n], converting if necessary. The element-wise assignment operator .= may be used to broadcast

X across the selected locations:

CHAPTER 19. SINGLE- AND MULTI-DIMENSIONAL ARRAYS 264

A[I_1, I_2, ..., I_n] .= X

Just as in Indexing, the end keyword may be used to represent the last index of each dimension within the

indexing brackets, as determined by the size of the array being assigned into. Indexed assignment syntax

without the end keyword is equivalent to a call to setindex!:

setindex!(A, X, I_1, I_2, ..., I_n)

Example:

julia> x = collect(reshape(1:9, 3, 3))

3×3 Matrix{Int64}:

1 4 7

2 5 8

3 6 9

julia> x[3, 3] = -9;

julia> x[1:2, 1:2] = [-1 -4; -2 -5];

julia> x

3×3 Matrix{Int64}:

-1 -4 7

-2 -5 8

3 6 -9

19.8 Supported index types

In the expression A[I_1, I_2, ..., I_n], each I_k may be a scalar index, an array of scalar indices, or

an object that represents an array of scalar indices and can be converted to such by to_indices:

1. A scalar index. By default this includes:

– Non-boolean integers

– CartesianIndex{N}s, which behave like an N-tuple of integers spanning multiple dimensions

(see below for more details)

2. An array of scalar indices. This includes:

– Vectors and multidimensional arrays of integers

– Empty arrays like [], which select no elements e.g. A[[]] (not to be confused with A[])

– Ranges like a:c or a:b:c, which select contiguous or strided subsections from a to c (inclusive)

– Any custom array of scalar indices that is a subtype of AbstractArray

– Arrays of CartesianIndex{N} (see below for more details)

3. An object that represents an array of scalar indices and can be converted to such by to_indices.

By default this includes:

– Colon() (:), which represents all indices within an entire dimension or across the entire array

CHAPTER 19. SINGLE- AND MULTI-DIMENSIONAL ARRAYS 265

– Arrays of booleans, which select elements at their true indices (see below for more details)

Some examples:

julia> A = reshape(collect(1:2:18), (3, 3))

3×3 Matrix{Int64}:

1 7 13

3 9 15

5 11 17

julia> A[4]

7

julia> A[[2, 5, 8]]

3-element Vector{Int64}:

3

9

15

julia> A[[1 4; 3 8]]

2×2 Matrix{Int64}:

1 7

5 15

julia> A[[]]

Int64[]

julia> A[1:2:5]

3-element Vector{Int64}:

1

5

9

julia> A[2, :]

3-element Vector{Int64}:

3

9

15

julia> A[:, 3]

3-element Vector{Int64}:

13

15

17

julia> A[:, 3:3]

3×1 Matrix{Int64}:

13

15

17

CHAPTER 19. SINGLE- AND MULTI-DIMENSIONAL ARRAYS 266

Cartesian indices

The special CartesianIndex{N} object represents a scalar index that behaves like an N-tuple of integers

spanning multiple dimensions. For example:

julia> A = reshape(1:32, 4, 4, 2);

julia> A[3, 2, 1]

7

julia> A[CartesianIndex(3, 2, 1)] == A[3, 2, 1] == 7

true

Considered alone, this may seem relatively trivial; CartesianIndex simply gathers multiple integers to-

gether into one object that represents a single multidimensional index. When combined with other index-

ing forms and iterators that yield CartesianIndexes, however, this can produce very elegant and efficient

code. See Iteration below, and for some more advanced examples, see this blog post on multidimensional

algorithms and iteration.

Arrays of CartesianIndex{N} are also supported. They represent a collection of scalar indices that each

span N dimensions, enabling a form of indexing that is sometimes referred to as pointwise indexing. For

example, it enables accessing the diagonal elements from the first "page" of A from above:

julia> page = A[:, :, 1]

4×4 Matrix{Int64}:

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

julia> page[[CartesianIndex(1, 1),

CartesianIndex(2, 2),

CartesianIndex(3, 3),

CartesianIndex(4, 4)]]

4-element Vector{Int64}:

1

6

11

16

This can be expressed much more simply with dot broadcasting and by combining it with a normal integer

index (instead of extracting the first page from A as a separate step). It can even be combined with a : to

extract both diagonals from the two pages at the same time:

julia> A[CartesianIndex.(axes(A, 1), axes(A, 2)), 1]

4-element Vector{Int64}:

1

6

11

16

https://julialang.org/blog/2016/02/iteration
https://julialang.org/blog/2016/02/iteration

CHAPTER 19. SINGLE- AND MULTI-DIMENSIONAL ARRAYS 267

julia> A[CartesianIndex.(axes(A, 1), axes(A, 2)), :]

4×2 Matrix{Int64}:

1 17

6 22

11 27

16 32

Warning

CartesianIndex and arrays of CartesianIndex are not compatible with the end keyword to

represent the last index of a dimension. Do not use end in indexing expressions that may

contain either CartesianIndex or arrays thereof.

Logical indexing

Often referred to as logical indexing or indexing with a logical mask, indexing by a boolean array selects

elements at the indices where its values are true. Indexing by a boolean vector B is effectively the same as

indexing by the vector of integers that is returned by findall(B). Similarly, indexing by a N-dimensional

boolean array is effectively the same as indexing by the vector of CartesianIndex{N}s where its values

are true. A logical index must be a vector of the same length as the dimension it indexes into, or it must be

the only index provided and match the size and dimensionality of the array it indexes into. It is generally

more efficient to use boolean arrays as indices directly instead of first calling findall.

julia> x = reshape(1:16, 4, 4)

4×4 reshape(::UnitRange{Int64}, 4, 4) with eltype Int64:

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

julia> x[[false, true, true, false], :]

2×4 Matrix{Int64}:

2 6 10 14

3 7 11 15

julia> mask = map(ispow2, x)

4×4 Matrix{Bool}:

1 0 0 0

1 0 0 0

0 0 0 0

1 1 0 1

julia> x[mask]

5-element Vector{Int64}:

1

2

4

8

16

CHAPTER 19. SINGLE- AND MULTI-DIMENSIONAL ARRAYS 268

Number of indices

Cartesian indexing

The ordinary way to index into an N-dimensional array is to use exactly N indices; each index selects the

position(s) in its particular dimension. For example, in the three-dimensional array A = rand(4, 3, 2),

A[2, 3, 1] will select the number in the second row of the third column in the first "page" of the array.

This is often referred to as cartesian indexing.

Linear indexing

When exactly one index i is provided, that index no longer represents a location in a particular dimension

of the array. Instead, it selects the ith element using the column-major iteration order that linearly spans

the entire array. This is known as linear indexing. It essentially treats the array as though it had been

reshaped into a one-dimensional vector with vec.

julia> A = [2 6; 4 7; 3 1]

3×2 Matrix{Int64}:

2 6

4 7

3 1

julia> A[5]

7

julia> vec(A)[5]

7

A linear index into the array A can be converted to a CartesianIndex for cartesian indexing with CartesianIndices(A)[i]

(see CartesianIndices), and a set of N cartesian indices can be converted to a linear indexwith LinearIndices(A)[i_1,

i_2, ..., i_N] (see LinearIndices).

julia> CartesianIndices(A)[5]

CartesianIndex(2, 2)

julia> LinearIndices(A)[2, 2]

5

It's important to note that there's a very large asymmetry in the performance of these conversions. Con-

verting a linear index to a set of cartesian indices requires dividing and taking the remainder, whereas

going the other way is just multiplies and adds. In modern processors, integer division can be 10-50 times

slower than multiplication. While some arrays — like Array itself — are implemented using a linear chunk

of memory and directly use a linear index in their implementations, other arrays — like Diagonal — need

the full set of cartesian indices to do their lookup (see IndexStyle to introspect which is which).

Warnings

When iterating over all the indices for an array, it is better to iterate over eachindex(A) instead

of 1:length(A). Not only will this be faster in cases where A is IndexCartesian, but it will also

support arrays with custom indexing, such as OffsetArrays. If only the values are needed, then

is better to just iterate the array directly, i.e. for a in A.

https://github.com/JuliaArrays/OffsetArrays.jl

CHAPTER 19. SINGLE- AND MULTI-DIMENSIONAL ARRAYS 269

Omitted and extra indices

In addition to linear indexing, an N-dimensional array may be indexed with fewer or more than N indices in

certain situations.

Indices may be omitted if the trailing dimensions that are not indexed into are all length one. In other

words, trailing indices can be omitted only if there is only one possible value that those omitted indices

could be for an in-bounds indexing expression. For example, a four-dimensional array with size (3, 4, 2,

1) may be indexed with only three indices as the dimension that gets skipped (the fourth dimension) has

length one. Note that linear indexing takes precedence over this rule.

julia> A = reshape(1:24, 3, 4, 2, 1)

3×4×2×1 reshape(::UnitRange{Int64}, 3, 4, 2, 1) with eltype Int64:

[:, :, 1, 1] =

1 4 7 10

2 5 8 11

3 6 9 12

[:, :, 2, 1] =

13 16 19 22

14 17 20 23

15 18 21 24

julia> A[1, 3, 2] # Omits the fourth dimension (length 1)

19

julia> A[1, 3] # Attempts to omit dimensions 3 & 4 (lengths 2 and 1)

ERROR: BoundsError: attempt to access 3×4×2×1 reshape(::UnitRange{Int64}, 3, 4, 2, 1) with eltype

Int64 at index [1, 3]↪→

julia> A[19] # Linear indexing

19

When omitting all indices with A[], this semantic provides a simple idiom to retrieve the only element in

an array and simultaneously ensure that there was only one element.

Similarly, more than N indices may be provided if all the indices beyond the dimensionality of the array

are 1 (or more generally are the first and only element of axes(A, d) where d is that particular dimension

number). This allows vectors to be indexed like one-column matrices, for example:

julia> A = [8,6,7]

3-element Vector{Int64}:

8

6

7

julia> A[2,1]

6

19.9 Iteration

The recommended ways to iterate over a whole array are

CHAPTER 19. SINGLE- AND MULTI-DIMENSIONAL ARRAYS 270

for a in A

Do something with the element a

end

for i in eachindex(A)

Do something with i and/or A[i]

end

The first construct is used when you need the value, but not index, of each element. In the second construct,

i will be an Int if A is an array type with fast linear indexing; otherwise, it will be a CartesianIndex:

julia> A = rand(4, 3);

julia> B = view(A, 1:3, 2:3);

julia> for i in eachindex(B)

@show i

end

i = CartesianIndex(1, 1)

i = CartesianIndex(2, 1)

i = CartesianIndex(3, 1)

i = CartesianIndex(1, 2)

i = CartesianIndex(2, 2)

i = CartesianIndex(3, 2)

Note

In contrast with for i = 1:length(A), iterating with eachindex provides an efficient way to

iterate over any array type. Besides, this also supports generic arrays with custom indexing

such as OffsetArrays.

19.10 Array traits

If you write a custom AbstractArray type, you can specify that it has fast linear indexing using

Base.IndexStyle(::Type{<:MyArray}) = IndexLinear()

This setting will cause eachindex iteration over a MyArray to use integers. If you don't specify this trait,

the default value IndexCartesian() is used.

19.11 Array and Vectorized Operators and Functions

The following operators are supported for arrays:

1. Unary arithmetic – -, +

2. Binary arithmetic – -, +, *, /, \, ^

3. Comparison – ==, !=, ≈ (isapprox), ≉

https://github.com/JuliaArrays/OffsetArrays.jl

CHAPTER 19. SINGLE- AND MULTI-DIMENSIONAL ARRAYS 271

To enable convenient vectorization of mathematical and other operations, Julia provides the dot syntax

f.(args...), e.g. sin.(x) or min.(x,y), for elementwise operations over arrays or mixtures of arrays

and scalars (a Broadcasting operation); these have the additional advantage of "fusing" into a single loop

when combined with other dot calls, e.g. sin.(cos.(x)).

Also, every binary operator supports a dot version that can be applied to arrays (and combinations of arrays

and scalars) in such fused broadcasting operations, e.g. z .== sin.(x .* y).

Note that comparisons such as == operate on whole arrays, giving a single boolean answer. Use dot op-

erators like .== for elementwise comparisons. (For comparison operations like <, only the elementwise .<

version is applicable to arrays.)

Also notice the difference between max.(a,b), which broadcasts max elementwise over a and b, and

maximum(a), which finds the largest value within a. The same relationship holds for min.(a,b) and

minimum(a).

19.12 Broadcasting

It is sometimes useful to perform element-by-element binary operations on arrays of different sizes, such

as adding a vector to each column of a matrix. An inefficient way to do this would be to replicate the vector

to the size of the matrix:

julia> a = rand(2, 1); A = rand(2, 3);

julia> repeat(a, 1, 3) + A

2×3 Array{Float64,2}:

1.20813 1.82068 1.25387

1.56851 1.86401 1.67846

This is wasteful when dimensions get large, so Julia provides broadcast, which expands singleton dimen-

sions in array arguments to match the corresponding dimension in the other array without using extra

memory, and applies the given function elementwise:

julia> broadcast(+, a, A)

2×3 Array{Float64,2}:

1.20813 1.82068 1.25387

1.56851 1.86401 1.67846

julia> b = rand(1,2)

1×2 Array{Float64,2}:

0.867535 0.00457906

julia> broadcast(+, a, b)

2×2 Array{Float64,2}:

1.71056 0.847604

1.73659 0.873631

Dotted operators such as .+ and .* are equivalent to broadcast calls (except that they fuse, as described

above). There is also a broadcast! function to specify an explicit destination (which can also be accessed

in a fusing fashion by .= assignment). In fact, f.(args...) is equivalent to broadcast(f, args...),

CHAPTER 19. SINGLE- AND MULTI-DIMENSIONAL ARRAYS 272

providing a convenient syntax to broadcast any function (dot syntax). Nested "dot calls" f.(...) (including

calls to .+ etcetera) automatically fuse into a single broadcast call.

Additionally, broadcast is not limited to arrays (see the function documentation); it also handles scalars,

tuples and other collections. By default, only some argument types are considered scalars, including (but

not limited to) Numbers, Strings, Symbols, Types, Functions and some common singletons like missing

and nothing. All other arguments are iterated over or indexed into elementwise.

julia> convert.(Float32, [1, 2])

2-element Vector{Float32}:

1.0

2.0

julia> ceil.(UInt8, [1.2 3.4; 5.6 6.7])

2×2 Matrix{UInt8}:

0x02 0x04

0x06 0x07

julia> string.(1:3, ". ", ["First", "Second", "Third"])

3-element Vector{String}:

"1. First"

"2. Second"

"3. Third"

Sometimes, you want a container (like an array) that would normally participate in broadcast to be "pro-

tected" from broadcast's behavior of iterating over all of its elements. By placing it inside another container

(like a single element Tuple) broadcast will treat it as a single value.

julia> ([1, 2, 3], [4, 5, 6]) .+ ([1, 2, 3],)

([2, 4, 6], [5, 7, 9])

julia> ([1, 2, 3], [4, 5, 6]) .+ tuple([1, 2, 3])

([2, 4, 6], [5, 7, 9])

19.13 Implementation

The base array type in Julia is the abstract type AbstractArray{T,N}. It is parameterized by the number

of dimensions N and the element type T. AbstractVector and AbstractMatrix are aliases for the 1-d and

2-d cases. Operations on AbstractArray objects are defined using higher level operators and functions,

in a way that is independent of the underlying storage. These operations generally work correctly as a

fallback for any specific array implementation.

The AbstractArray type includes anything vaguely array-like, and implementations of it might be quite

different from conventional arrays. For example, elements might be computed on request rather than

stored. However, any concrete AbstractArray{T,N} type should generally implement at least size(A)

(returning an Int tuple), getindex(A,i) and getindex(A,i1,...,iN); mutable arrays should also im-

plement setindex!. It is recommended that these operations have nearly constant time complexity, as

otherwise some array functions may be unexpectedly slow. Concrete types should also typically provide

a similar(A,T=eltype(A),dims=size(A)) method, which is used to allocate a similar array for copy and

other out-of-place operations. No matter how an AbstractArray{T,N} is represented internally, T is the

type of object returned by integer indexing (A[1, ..., 1], when A is not empty) and N should be the length

CHAPTER 19. SINGLE- AND MULTI-DIMENSIONAL ARRAYS 273

of the tuple returned by size. For more details on defining custom AbstractArray implementations, see

the array interface guide in the interfaces chapter.

DenseArray is an abstract subtype of AbstractArray intended to include all arrays where elements are

stored contiguously in column-major order (see additional notes in Performance Tips). The Array type is

a specific instance of DenseArray; Vector and Matrix are aliases for the 1-d and 2-d cases. Very few

operations are implemented specifically for Array beyond those that are required for all AbstractArrays;

much of the array library is implemented in a generic manner that allows all custom arrays to behave

similarly.

SubArray is a specialization of AbstractArray that performs indexing by sharing memory with the original

array rather than by copying it. A SubArray is created with the view function, which is called the same

way as getindex (with an array and a series of index arguments). The result of view looks the same as

the result of getindex, except the data is left in place. view stores the input index vectors in a SubArray

object, which can later be used to index the original array indirectly. By putting the @views macro in front

of an expression or block of code, any array[...] slice in that expression will be converted to create a

SubArray view instead.

BitArrays are space-efficient "packed" boolean arrays, which store one bit per boolean value. They can

be used similarly to Array{Bool} arrays (which store one byte per boolean value), and can be converted

to/from the latter via Array(bitarray) and BitArray(array), respectively.

An array is "strided" if it is stored in memory with well-defined spacings (strides) between its elements.

A strided array with a supported element type may be passed to an external (non-Julia) library like BLAS

or LAPACK by simply passing its pointer and the stride for each dimension. The stride(A, d) is the

distance between elements along dimension d. For example, the builtin Array returned by rand(5,7,2)

has its elements arranged contiguously in column major order. This means that the stride of the first

dimension — the spacing between elements in the same column — is 1:

julia> A = rand(5, 7, 2);

julia> stride(A, 1)

1

The stride of the second dimension is the spacing between elements in the same row, skipping as many

elements as there are in a single column (5). Similarly, jumping between the two "pages" (in the third

dimension) requires skipping 5*7 == 35 elements. The strides of this array is the tuple of these three

numbers together:

julia> strides(A)

(1, 5, 35)

In this particular case, the number of elements skipped in memory matches the number of linear indices

skipped. This is only the case for contiguous arrays like Array (and other DenseArray subtypes) and is not

true in general. Views with range indices are a good example of non-contiguous strided arrays; consider

V = @view A[1:3:4, 2:2:6, 2:-1:1]. This view V refers to the same memory as A but is skipping and

re-arranging some of its elements. The stride of the first dimension of V is 3 because we're only selecting

every third row from our original array:

julia> V = @view A[1:3:4, 2:2:6, 2:-1:1];

CHAPTER 19. SINGLE- AND MULTI-DIMENSIONAL ARRAYS 274

julia> stride(V, 1)

3

This view is similarly selecting every other column from our original A — and thus it needs to skip the

equivalent of two five-element columns when moving between indices in the second dimension:

julia> stride(V, 2)

10

The third dimension is interesting because its order is reversed! Thus to get from the first "page" to the

second one it must go backwards in memory, and so its stride in this dimension is negative!

julia> stride(V, 3)

-35

This means that the pointer for V is actually pointing into the middle of A's memory block, and it refers

to elements both backwards and forwards in memory. See the interface guide for strided arrays for more

details on defining your own strided arrays. StridedVector and StridedMatrix are convenient aliases

for many of the builtin array types that are considered strided arrays, allowing them to dispatch to select

specialized implementations that call highly tuned and optimized BLAS and LAPACK functions using just

the pointer and strides.

It is worth emphasizing that strides are about offsets in memory rather than indexing. If you are looking to

convert between linear (single-index) indexing and cartesian (multi-index) indexing, see LinearIndices

and CartesianIndices.

Chapter 20

Missing Values

Julia provides support for representing missing values in the statistical sense. This is for situations where

no value is available for a variable in an observation, but a valid value theoretically exists. Missing values

are represented via the missing object, which is the singleton instance of the type Missing. missing is

equivalent to NULL in SQL and NA in R, and behaves like them in most situations.

20.1 Propagation of Missing Values

missing values propagate automatically when passed to standard mathematical operators and functions.

For these functions, uncertainty about the value of one of the operands induces uncertainty about the

result. In practice, this means a math operation involving a missing value generally returns missing:

julia> missing + 1

missing

julia> "a" * missing

missing

julia> abs(missing)

missing

Since missing is a normal Julia object, this propagation rule only works for functions which have opted in

to implement this behavior. This can be achieved by:

• adding a specific method defined for arguments of type Missing,

• accepting arguments of this type, and passing them to functions which propagate them (like standard

math operators).

Packages should consider whether it makes sense to propagate missing values when defining new func-

tions, and define methods appropriately if this is the case. Passing a missing value to a function which

does not have a method accepting arguments of type Missing throws a MethodError, just like for any

other type.

Functions that do not propagate missing values can bemade to do so by wrapping them in the passmissing

function provided by the Missings.jl package. For example, f(x) becomes passmissing(f)(x).

275

https://en.wikipedia.org/wiki/NULL_(SQL)
https://cran.r-project.org/doc/manuals/r-release/R-lang.html#NA-handling
https://github.com/JuliaData/Missings.jl

CHAPTER 20. MISSING VALUES 276

20.2 Equality and Comparison Operators

Standard equality and comparison operators follow the propagation rule presented above: if any of the

operands is missing, the result is missing. Here are a few examples:

julia> missing == 1

missing

julia> missing == missing

missing

julia> missing < 1

missing

julia> 2 >= missing

missing

In particular, note that missing == missing returns missing, so == cannot be used to test whether a value

is missing. To test whether x is missing, use ismissing(x).

Special comparison operators isequal and === are exceptions to the propagation rule. They will always

return a Bool value, even in the presence of missing values, considering missing as equal to missing and

as different from any other value. They can therefore be used to test whether a value is missing:

julia> missing === 1

false

julia> isequal(missing, 1)

false

julia> missing === missing

true

julia> isequal(missing, missing)

true

The isless operator is another exception: missing is considered as greater than any other value. This

operator is used by sort!, which therefore places missing values after all other values:

julia> isless(1, missing)

true

julia> isless(missing, Inf)

false

julia> isless(missing, missing)

false

CHAPTER 20. MISSING VALUES 277

20.3 Logical operators

Logical (or boolean) operators |, & and xor are another special case since they only propagate missing

values when it is logically required. For these operators, whether or not the result is uncertain, depends on

the particular operation. This follows the well-established rules of three-valued logic which are implemented

by e.g. NULL in SQL and NA in R. This abstract definition corresponds to a relatively natural behavior which

is best explained via concrete examples.

Let us illustrate this principle with the logical "or" operator |. Following the rules of boolean logic, if one of

the operands is true, the value of the other operand does not have an influence on the result, which will

always be true:

julia> true | true

true

julia> true | false

true

julia> false | true

true

Based on this observation, we can conclude if one of the operands is true and the other missing, we know

that the result is true in spite of the uncertainty about the actual value of one of the operands. If we had

been able to observe the actual value of the second operand, it could only be true or false, and in both

cases the result would be true. Therefore, in this particular case, missingness does not propagate:

julia> true | missing

true

julia> missing | true

true

On the contrary, if one of the operands is false, the result could be either true or false depending on

the value of the other operand. Therefore, if that operand is missing, the result has to be missing too:

julia> false | true

true

julia> true | false

true

julia> false | false

false

julia> false | missing

missing

julia> missing | false

missing

https://en.wikipedia.org/wiki/Three-valued_logic

CHAPTER 20. MISSING VALUES 278

The behavior of the logical "and" operator & is similar to that of the | operator, with the difference that

missingness does not propagate when one of the operands is false. For example, when that is the case

of the first operand:

julia> false & false

false

julia> false & true

false

julia> false & missing

false

On the other hand, missingness propagates when one of the operands is true, for example the first one:

julia> true & true

true

julia> true & false

false

julia> true & missing

missing

Finally, the "exclusive or" logical operator xor always propagates missing values, since both operands

always have an effect on the result. Also note that the negation operator ! returns missing when the

operand is missing, just like other unary operators.

20.4 Control Flow and Short-Circuiting Operators

Control flow operators including if, while and the ternary operator x ? y : z do not allow for missing

values. This is because of the uncertainty about whether the actual value would be true or false if we

could observe it. This implies we do not know how the program should behave. In this case, a TypeError

is thrown as soon as a missing value is encountered in this context:

julia> if missing

println("here")

end

ERROR: TypeError: non-boolean (Missing) used in boolean context

For the same reason, contrary to logical operators presented above, the short-circuiting boolean operators

&& and || do not allow for missing values in situations where the value of the operand determines whether

the next operand is evaluated or not. For example:

julia> missing || false

ERROR: TypeError: non-boolean (Missing) used in boolean context

julia> missing && false

ERROR: TypeError: non-boolean (Missing) used in boolean context

CHAPTER 20. MISSING VALUES 279

julia> true && missing && false

ERROR: TypeError: non-boolean (Missing) used in boolean context

In contrast, there is no error thrown when the result can be determined without the missing values. This

is the case when the code short-circuits before evaluating the missing operand, and when the missing

operand is the last one:

julia> true && missing

missing

julia> false && missing

false

20.5 Arrays With Missing Values

Arrays containing missing values can be created like other arrays:

julia> [1, missing]

2-element Vector{Union{Missing, Int64}}:

1

missing

As this example shows, the element type of such arrays is Union{Missing, T}, with T the type of the

non-missing values. This reflects the fact that array entries can be either of type T (here, Int64) or of type

Missing. This kind of array uses an efficient memory storage equivalent to an Array{T} holding the actual

values combined with an Array{UInt8} indicating the type of the entry (i.e. whether it is Missing or T).

Arrays allowing formissing values can be constructed with the standard syntax. Use Array{Union{Missing,

T}}(missing, dims) to create arrays filled with missing values:

julia> Array{Union{Missing, String}}(missing, 2, 3)

2×3 Matrix{Union{Missing, String}}:

missing missing missing

missing missing missing

Note

Using undef or similar may currently give an array filled with missing, but this is not the

correct way to obtain such an array. Use a missing constructor as shown above instead.

An array with element type allowing missing entries (e.g. Vector{Union{Missing, T}}) which does not

contain any missing entries can be converted to an array type that does not allow for missing entries

(e.g. Vector{T}) using convert. If the array contains missing values, a MethodError is thrown during

conversion:

julia> x = Union{Missing, String}["a", "b"]

2-element Vector{Union{Missing, String}}:

"a"

CHAPTER 20. MISSING VALUES 280

"b"

julia> convert(Array{String}, x)

2-element Vector{String}:

"a"

"b"

julia> y = Union{Missing, String}[missing, "b"]

2-element Vector{Union{Missing, String}}:

missing

"b"

julia> convert(Array{String}, y)

ERROR: MethodError: Cannot `convert` an object of type Missing to an object of type String

20.6 Skipping Missing Values

Since missing values propagate with standardmathematical operators, reduction functions return missing

when called on arrays which contain missing values:

julia> sum([1, missing])

missing

In this situation, use the skipmissing function to skip missing values:

julia> sum(skipmissing([1, missing]))

1

This convenience function returns an iterator which filters out missing values efficiently. It can therefore

be used with any function which supports iterators:

julia> x = skipmissing([3, missing, 2, 1])

skipmissing(Union{Missing, Int64}[3, missing, 2, 1])

julia> maximum(x)

3

julia> sum(x)

6

julia> mapreduce(sqrt, +, x)

4.146264369941973

Objects created by calling skipmissing on an array can be indexed using indices from the parent array.

Indices corresponding to missing values are not valid for these objects, and an error is thrown when trying

to use them (they are also skipped by keys and eachindex):

julia> x[1]

3

CHAPTER 20. MISSING VALUES 281

julia> x[2]

ERROR: MissingException: the value at index (2,) is missing

[...]

This allows functions which operate on indices to work in combination with skipmissing. This is notably

the case for search and find functions. These functions return indices valid for the object returned by

skipmissing, and are also the indices of the matching entries in the parent array:

julia> findall(==(1), x)

1-element Vector{Int64}:

4

julia> findfirst(!iszero, x)

1

julia> argmax(x)

1

Use collect to extract non-missing values and store them in an array:

julia> collect(x)

3-element Vector{Int64}:

3

2

1

20.7 Logical Operations on Arrays

The three-valued logic described above for logical operators is also used by logical functions applied to

arrays. Thus, array equality tests using the == operator return missing whenever the result cannot be

determined without knowing the actual value of the missing entry. In practice, this means missing is

returned if all non-missing values of the compared arrays are equal, but one or both arrays contain missing

values (possibly at different positions):

julia> [1, missing] == [2, missing]

false

julia> [1, missing] == [1, missing]

missing

julia> [1, 2, missing] == [1, missing, 2]

missing

As for single values, use isequal to treat missing values as equal to other missing values, but different

from non-missing values:

julia> isequal([1, missing], [1, missing])

true

CHAPTER 20. MISSING VALUES 282

julia> isequal([1, 2, missing], [1, missing, 2])

false

Functions any and all also follow the rules of three-valued logic. Thus, returning missing when the result

cannot be determined:

julia> all([true, missing])

missing

julia> all([false, missing])

false

julia> any([true, missing])

true

julia> any([false, missing])

missing

Chapter 21

Networking and Streams

Julia provides a rich interface to deal with streaming I/O objects such as terminals, pipes and TCP sockets.

This interface, though asynchronous at the system level, is presented in a synchronous manner to the

programmer and it is usually unnecessary to think about the underlying asynchronous operation. This is

achieved by making heavy use of Julia cooperative threading (coroutine) functionality.

21.1 Basic Stream I/O

All Julia streams expose at least a read and a write method, taking the stream as their first argument,

e.g.:

julia> write(stdout, "Hello World"); # suppress return value 11 with ;

Hello World

julia> read(stdin, Char)

'\n': ASCII/Unicode U+000a (category Cc: Other, control)

Note that write returns 11, the number of bytes (in "Hello World") written to stdout, but this return

value is suppressed with the ;.

Here Enter was pressed again so that Julia would read the newline. Now, as you can see from this example,

write takes the data to write as its second argument, while read takes the type of the data to be read as

the second argument.

For example, to read a simple byte array, we could do:

julia> x = zeros(UInt8, 4)

4-element Array{UInt8,1}:

0x00

0x00

0x00

0x00

julia> read!(stdin, x)

abcd

4-element Array{UInt8,1}:

0x61

283

CHAPTER 21. NETWORKING AND STREAMS 284

0x62

0x63

0x64

However, since this is slightly cumbersome, there are several conveniencemethods provided. For example,

we could have written the above as:

julia> read(stdin, 4)

abcd

4-element Array{UInt8,1}:

0x61

0x62

0x63

0x64

or if we had wanted to read the entire line instead:

julia> readline(stdin)

abcd

"abcd"

Note that depending on your terminal settings, your TTY may be line buffered and might thus require an

additional enter before the data is sent to Julia.

To read every line from stdin you can use eachline:

for line in eachline(stdin)

print("Found $line")

end

or read if you wanted to read by character instead:

while !eof(stdin)

x = read(stdin, Char)

println("Found: $x")

end

21.2 Text I/O

Note that the writemethod mentioned above operates on binary streams. In particular, values do not get

converted to any canonical text representation but are written out as is:

julia> write(stdout, 0x61); # suppress return value 1 with ;

a

Note that a is written to stdout by the write function and that the returned value is 1 (since 0x61 is one

byte).

For text I/O, use the print or show methods, depending on your needs (see the documentation for these

two methods for a detailed discussion of the difference between them):

CHAPTER 21. NETWORKING AND STREAMS 285

julia> print(stdout, 0x61)

97

See Custom pretty-printing for more information on how to implement display methods for custom types.

21.3 IO Output Contextual Properties

Sometimes IO output can benefit from the ability to pass contextual information into show methods. The

IOContext object provides this framework for associating arbitrary metadata with an IO object. For exam-

ple, :compact => true adds a hinting parameter to the IO object that the invoked show method should

print a shorter output (if applicable). See the IOContext documentation for a list of common properties.

21.4 Working with Files

You can write content to a file with the write(filename::String, content) method:

julia> write("hello.txt", "Hello, World!")

13

(13 is the number of bytes written.)

You can read the contents of a file with the read(filename::String)method, or read(filename::String,

String) to the contents as a string:

julia> read("hello.txt", String)

"Hello, World!"

Advanced: streaming files

The read and write methods above allow you to read and write file contents. Like many other environ-

ments, Julia also has an open function, which takes a filename and returns an IOStream object that you

can use to read and write things from the file. For example, if we have a file, hello.txt, whose contents

are Hello, World!:

julia> f = open("hello.txt")

IOStream(<file hello.txt>)

julia> readlines(f)

1-element Array{String,1}:

"Hello, World!"

If you want to write to a file, you can open it with the write ("w") flag:

julia> f = open("hello.txt","w")

IOStream(<file hello.txt>)

julia> write(f,"Hello again.")

12

CHAPTER 21. NETWORKING AND STREAMS 286

If you examine the contents of hello.txt at this point, you will notice that it is empty; nothing has actually

been written to disk yet. This is because the IOStream must be closed before the write is actually flushed

to disk:

julia> close(f)

Examining hello.txt again will show its contents have been changed.

Opening a file, doing something to its contents, and closing it again is a very common pattern. To make this

easier, there exists another invocation of open which takes a function as its first argument and filename

as its second, opens the file, calls the function with the file as an argument, and then closes it again. For

example, given a function:

function read_and_capitalize(f::IOStream)

return uppercase(read(f, String))

end

You can call:

julia> open(read_and_capitalize, "hello.txt")

"HELLO AGAIN."

to open hello.txt, call read_and_capitalize on it, close hello.txt and return the capitalized contents.

To avoid even having to define a named function, you can use the do syntax, which creates an anonymous

function on the fly:

julia> open("hello.txt") do f

uppercase(read(f, String))

end

"HELLO AGAIN."

21.5 A simple TCP example

Let's jump right in with a simple example involving TCP sockets. This functionality is in a standard library

package called Sockets. Let's first create a simple server:

julia> using Sockets

julia> errormonitor(@async begin

server = listen(2000)

while true

sock = accept(server)

println("Hello World\n")

end

end)

Task (runnable) @0x00007fd31dc11ae0

CHAPTER 21. NETWORKING AND STREAMS 287

To those familiar with the Unix socket API, the method names will feel familiar, though their usage is

somewhat simpler than the raw Unix socket API. The first call to listen will create a server waiting for

incoming connections on the specified port (2000) in this case. The same function may also be used to

create various other kinds of servers:

julia> listen(2000) # Listens on localhost:2000 (IPv4)

Sockets.TCPServer(active)

julia> listen(ip"127.0.0.1",2000) # Equivalent to the first

Sockets.TCPServer(active)

julia> listen(ip"::1",2000) # Listens on localhost:2000 (IPv6)

Sockets.TCPServer(active)

julia> listen(IPv4(0),2001) # Listens on port 2001 on all IPv4 interfaces

Sockets.TCPServer(active)

julia> listen(IPv6(0),2001) # Listens on port 2001 on all IPv6 interfaces

Sockets.TCPServer(active)

julia> listen("testsocket") # Listens on a UNIX domain socket

Sockets.PipeServer(active)

julia> listen("\\\\.\\pipe\\testsocket") # Listens on a Windows named pipe

Sockets.PipeServer(active)

Note that the return type of the last invocation is different. This is because this server does not listen on

TCP, but rather on a named pipe (Windows) or UNIX domain socket. Also note that Windows named pipe

format has to be a specific pattern such that the name prefix (\\.\pipe\) uniquely identifies the file type.

The difference between TCP and named pipes or UNIX domain sockets is subtle and has to do with the

accept and connect methods. The accept method retrieves a connection to the client that is connecting

on the server we just created, while the connect function connects to a server using the specified method.

The connect function takes the same arguments as listen, so, assuming the environment (i.e. host, cwd,

etc.) is the same you should be able to pass the same arguments to connect as you did to listen to establish

the connection. So let's try that out (after having created the server above):

julia> connect(2000)

TCPSocket(open, 0 bytes waiting)

julia> Hello World

As expected we saw "Hello World" printed. So, let's actually analyze what happened behind the scenes.

When we called connect, we connect to the server we had just created. Meanwhile, the accept function

returns a server-side connection to the newly created socket and prints "Hello World" to indicate that the

connection was successful.

A great strength of Julia is that since the API is exposed synchronously even though the I/O is actually

happening asynchronously, we didn't have to worry about callbacks or even making sure that the server

gets to run. When we called connect the current task waited for the connection to be established and

only continued executing after that was done. In this pause, the server task resumed execution (because

https://docs.microsoft.com/windows/desktop/ipc/pipe-names

CHAPTER 21. NETWORKING AND STREAMS 288

a connection request was now available), accepted the connection, printed the message and waited for

the next client. Reading and writing works in the same way. To see this, consider the following simple echo

server:

julia> errormonitor(@async begin

server = listen(2001)

while true

sock = accept(server)

@async while isopen(sock)

write(sock, readline(sock, keep=true))

end

end

end)

Task (runnable) @0x00007fd31dc12e60

julia> clientside = connect(2001)

TCPSocket(RawFD(28) open, 0 bytes waiting)

julia> errormonitor(@async while isopen(clientside)

write(stdout, readline(clientside, keep=true))

end)

Task (runnable) @0x00007fd31dc11870

julia> println(clientside,"Hello World from the Echo Server")

Hello World from the Echo Server

As with other streams, use close to disconnect the socket:

julia> close(clientside)

21.6 Resolving IP Addresses

One of the connect methods that does not follow the listen methods is connect(host::String,port),

which will attempt to connect to the host given by the host parameter on the port given by the port

parameter. It allows you to do things like:

julia> connect("google.com", 80)

TCPSocket(RawFD(30) open, 0 bytes waiting)

At the base of this functionality is getaddrinfo, which will do the appropriate address resolution:

julia> getaddrinfo("google.com")

ip"74.125.226.225"

21.7 Asynchronous I/O

All I/O operations exposed by Base.read and Base.write can be performed asynchronously through the

use of coroutines. You can create a new coroutine to read from or write to a stream using the @asyncmacro:

CHAPTER 21. NETWORKING AND STREAMS 289

julia> task = @async open("foo.txt", "w") do io

write(io, "Hello, World!")

end;

julia> wait(task)

julia> readlines("foo.txt")

1-element Array{String,1}:

"Hello, World!"

It's common to run into situations where you want to perform multiple asynchronous operations concur-

rently and wait until they've all completed. You can use the @sync macro to cause your program to block

until all of the coroutines it wraps around have exited:

julia> using Sockets

julia> @sync for hostname in ("google.com", "github.com", "julialang.org")

@async begin

conn = connect(hostname, 80)

write(conn, "GET / HTTP/1.1\r\nHost:$(hostname)\r\n\r\n")

readline(conn, keep=true)

println("Finished connection to $(hostname)")

end

end

Finished connection to google.com

Finished connection to julialang.org

Finished connection to github.com

21.8 Multicast

Julia supports multicast over IPv4 and IPv6 using the User Datagram Protocol (UDP) as transport.

Unlike the Transmission Control Protocol (TCP), UDP makes almost no assumptions about the needs of the

application. TCP provides flow control (it accelerates and decelerates to maximize throughput), reliability

(lost or corrupt packets are automatically retransmitted), sequencing (packets are ordered by the operating

system before they are given to the application), segment size, and session setup and teardown. UDP

provides no such features.

A common use for UDP is in multicast applications. TCP is a stateful protocol for communication between

exactly two devices. UDP can use special multicast addresses to allow simultaneous communication be-

tween many devices.

Receiving IP Multicast Packets

To transmit data over UDP multicast, simply recv on the socket, and the first packet received will be

returned. Note that it may not be the first packet that you sent however!

using Sockets

group = ip"228.5.6.7"

socket = Sockets.UDPSocket()

bind(socket, ip"0.0.0.0", 6789)

https://datatracker.ietf.org/doc/html/rfc1112
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc793

CHAPTER 21. NETWORKING AND STREAMS 290

join_multicast_group(socket, group)

println(String(recv(socket)))

leave_multicast_group(socket, group)

close(socket)

Sending IP Multicast Packets

To transmit data over UDP multicast, simply send to the socket. Notice that it is not necessary for a sender

to join the multicast group.

using Sockets

group = ip"228.5.6.7"

socket = Sockets.UDPSocket()

send(socket, group, 6789, "Hello over IPv4")

close(socket)

IPv6 Example

This example gives the same functionality as the previous program, but uses IPv6 as the network-layer

protocol.

Listener:

using Sockets

group = Sockets.IPv6("ff05::5:6:7")

socket = Sockets.UDPSocket()

bind(socket, Sockets.IPv6("::"), 6789)

join_multicast_group(socket, group)

println(String(recv(socket)))

leave_multicast_group(socket, group)

close(socket)

Sender:

using Sockets

group = Sockets.IPv6("ff05::5:6:7")

socket = Sockets.UDPSocket()

send(socket, group, 6789, "Hello over IPv6")

close(socket)

Chapter 22

Parallel Computing

Julia supports these four categories of concurrent and parallel programming:

1. Asynchronous "tasks", or coroutines:

Julia Tasks allow suspending and resuming computations for I/O, event handling, producer-consumer

processes, and similar patterns. Tasks can synchronize through operations like wait and fetch,

and communicate via Channels. While strictly not parallel computing by themselves, Julia lets you

schedule Tasks on several threads.

2. Multi-threading:

Julia's multi-threading provides the ability to schedule Tasks simultaneously on more than one thread

or CPU core, sharing memory. This is usually the easiest way to get parallelism on one's PC or on

a single large multi-core server. Julia's multi-threading is composable. When one multi-threaded

function calls another multi-threaded function, Julia will schedule all the threads globally on available

resources, without oversubscribing.

3. Distributed computing:

Distributed computing runs multiple Julia processes with separate memory spaces. These can be on

the same computer or multiple computers. The Distributed standard library provides the capability

for remote execution of a Julia function. With this basic building block, it is possible to build many

different kinds of distributed computing abstractions. Packages like DistributedArrays.jl are an

example of such an abstraction. On the other hand, packages like MPI.jl and Elemental.jl provide

access to the existing MPI ecosystem of libraries.

4. GPU computing:

The Julia GPU compiler provides the ability to run Julia code natively on GPUs. There is a rich ecosys-

tem of Julia packages that target GPUs. The JuliaGPU.org website provides a list of capabilities,

supported GPUs, related packages and documentation.

291

https://github.com/JuliaParallel/DistributedArrays.jl
https://github.com/JuliaParallel/MPI.jl
https://github.com/JuliaParallel/Elemental.jl
https://juliagpu.org

Chapter 23

Asynchronous Programming

When a program needs to interact with the outside world, for example communicating with another ma-

chine over the internet, operations in the program may need to happen in an unpredictable order. Say

your program needs to download a file. We would like to initiate the download operation, perform other

operations while we wait for it to complete, and then resume the code that needs the downloaded file

when it is available. This sort of scenario falls in the domain of asynchronous programming, sometimes

also referred to as concurrent programming (since, conceptually, multiple things are happening at once).

To address these scenarios, Julia provides Tasks (also known by several other names, such as symmetric

coroutines, lightweight threads, cooperative multitasking, or one-shot continuations). When a piece of

computing work (in practice, executing a particular function) is designated as a Task, it becomes possible

to interrupt it by switching to another Task. The original Task can later be resumed, at which point it will

pick up right where it left off. At first, this may seem similar to a function call. However there are two

key differences. First, switching tasks does not use any space, so any number of task switches can occur

without consuming the call stack. Second, switching among tasks can occur in any order, unlike function

calls, where the called function must finish executing before control returns to the calling function.

23.1 Basic Task operations

You can think of a Task as a handle to a unit of computational work to be performed. It has a create-start-

run-finish lifecycle. Tasks are created by calling the Task constructor on a 0-argument function to run, or

using the @task macro:

julia> t = @task begin; sleep(5); println("done"); end

Task (runnable) @0x00007f13a40c0eb0

@task x is equivalent to Task(()->x).

This task will wait for five seconds, and then print done. However, it has not started running yet. We can

run it whenever we're ready by calling schedule:

julia> schedule(t);

If you try this in the REPL, you will see that schedule returns immediately. That is because it simply adds

t to an internal queue of tasks to run. Then, the REPL will print the next prompt and wait for more input.

292

CHAPTER 23. ASYNCHRONOUS PROGRAMMING 293

Waiting for keyboard input provides an opportunity for other tasks to run, so at that point t will start. t

calls sleep, which sets a timer and stops execution. If other tasks have been scheduled, they could run

then. After five seconds, the timer fires and restarts t, and you will see done printed. t is then finished.

The wait function blocks the calling task until some other task finishes. So for example if you type

julia> schedule(t); wait(t)

instead of only calling schedule, you will see a five second pause before the next input prompt appears.

That is because the REPL is waiting for t to finish before proceeding.

It is common to want to create a task and schedule it right away, so the macro @async is provided for that

purpose –- @async x is equivalent to schedule(@task x).

23.2 Communicating with Channels

In some problems, the various pieces of required work are not naturally related by function calls; there is

no obvious "caller" or "callee" among the jobs that need to be done. An example is the producer-consumer

problem, where one complex procedure is generating values and another complex procedure is consuming

them. The consumer cannot simply call a producer function to get a value, because the producer may have

more values to generate and so might not yet be ready to return. With tasks, the producer and consumer

can both run as long as they need to, passing values back and forth as necessary.

Julia provides a Channelmechanism for solving this problem. A Channel is a waitable first-in first-out queue

which can have multiple tasks reading from and writing to it.

Let's define a producer task, which produces values via the put! call. To consume values, we need to

schedule the producer to run in a new task. A special Channel constructor which accepts a 1-arg function

as an argument can be used to run a task bound to a channel. We can then take! values repeatedly from

the channel object:

julia> function producer(c::Channel)

put!(c, "start")

for n=1:4

put!(c, 2n)

end

put!(c, "stop")

end;

julia> chnl = Channel(producer);

julia> take!(chnl)

"start"

julia> take!(chnl)

2

julia> take!(chnl)

4

julia> take!(chnl)

6

CHAPTER 23. ASYNCHRONOUS PROGRAMMING 294

julia> take!(chnl)

8

julia> take!(chnl)

"stop"

One way to think of this behavior is that producer was able to return multiple times. Between calls to put!,

the producer's execution is suspended and the consumer has control.

The returned Channel can be used as an iterable object in a for loop, in which case the loop variable takes

on all the produced values. The loop is terminated when the channel is closed.

julia> for x in Channel(producer)

println(x)

end

start

2

4

6

8

stop

Note that we did not have to explicitly close the channel in the producer. This is because the act of binding

a Channel to a Task associates the open lifetime of a channel with that of the bound task. The channel

object is closed automatically when the task terminates. Multiple channels can be bound to a task, and

vice-versa.

While the Task constructor expects a 0-argument function, the Channelmethod that creates a task-bound

channel expects a function that accepts a single argument of type Channel. A common pattern is for the

producer to be parameterized, in which case a partial function application is needed to create a 0 or 1

argument anonymous function.

For Task objects this can be done either directly or by use of a convenience macro:

function mytask(myarg)

...

end

taskHdl = Task(() -> mytask(7))

or, equivalently

taskHdl = @task mytask(7)

To orchestrate more advanced work distribution patterns, bind and schedule can be used in conjunction

with Task and Channel constructors to explicitly link a set of channels with a set of producer/consumer

tasks.

More on Channels

A channel can be visualized as a pipe, i.e., it has a write end and a read end :

CHAPTER 23. ASYNCHRONOUS PROGRAMMING 295

• Multiple writers in different tasks can write to the same channel concurrently via put! calls.

• Multiple readers in different tasks can read data concurrently via take! calls.

• As an example:

Given Channels c1 and c2,

c1 = Channel(32)

c2 = Channel(32)

and a function `foo` which reads items from c1, processes the item read

and writes a result to c2,

function foo()

while true

data = take!(c1)

[...] # process data

put!(c2, result) # write out result

end

end

we can schedule `n` instances of `foo` to be active concurrently.

for _ in 1:n

errormonitor(@async foo())

end

• Channels are created via the Channel{T}(sz) constructor. The channel will only hold objects of type

T. If the type is not specified, the channel can hold objects of any type. sz refers to the maximum

number of elements that can be held in the channel at any time. For example, Channel(32) creates

a channel that can hold a maximum of 32 objects of any type. A Channel{MyType}(64) can hold up

to 64 objects of MyType at any time.

• If a Channel is empty, readers (on a take! call) will block until data is available.

• If a Channel is full, writers (on a put! call) will block until space becomes available.

• isready tests for the presence of any object in the channel, while wait waits for an object to become

available.

• A Channel is in an open state initially. This means that it can be read from and written to freely via

take! and put! calls. close closes a Channel. On a closed Channel, put! will fail. For example:

julia> c = Channel(2);

julia> put!(c, 1) # `put!` on an open channel succeeds

1

julia> close(c);

julia> put!(c, 2) # `put!` on a closed channel throws an exception.

ERROR: InvalidStateException: Channel is closed.

Stacktrace:

[...]

• take! and fetch (which retrieves but does not remove the value) on a closed channel successfully

return any existing values until it is emptied. Continuing the above example:

CHAPTER 23. ASYNCHRONOUS PROGRAMMING 296

julia> fetch(c) # Any number of `fetch` calls succeed.

1

julia> fetch(c)

1

julia> take!(c) # The first `take!` removes the value.

1

julia> take!(c) # No more data available on a closed channel.

ERROR: InvalidStateException: Channel is closed.

Stacktrace:

[...]

Consider a simple example using channels for inter-task communication. We start 4 tasks to process data

from a single jobs channel. Jobs, identified by an id (job_id), are written to the channel. Each task in this

simulation reads a job_id, waits for a random amount of time and writes back a tuple of job_id and the

simulated time to the results channel. Finally all the results are printed out.

julia> const jobs = Channel{Int}(32);

julia> const results = Channel{Tuple}(32);

julia> function do_work()

for job_id in jobs

exec_time = rand()

sleep(exec_time) # simulates elapsed time doing actual work

typically performed externally.

put!(results, (job_id, exec_time))

end

end;

julia> function make_jobs(n)

for i in 1:n

put!(jobs, i)

end

end;

julia> n = 12;

julia> errormonitor(@async make_jobs(n)); # feed the jobs channel with "n" jobs

julia> for i in 1:4 # start 4 tasks to process requests in parallel

errormonitor(@async do_work())

end

julia> @elapsed while n > 0 # print out results

job_id, exec_time = take!(results)

println("$job_id finished in $(round(exec_time; digits=2)) seconds")

global n = n - 1

end

4 finished in 0.22 seconds

CHAPTER 23. ASYNCHRONOUS PROGRAMMING 297

3 finished in 0.45 seconds

1 finished in 0.5 seconds

7 finished in 0.14 seconds

2 finished in 0.78 seconds

5 finished in 0.9 seconds

9 finished in 0.36 seconds

6 finished in 0.87 seconds

8 finished in 0.79 seconds

10 finished in 0.64 seconds

12 finished in 0.5 seconds

11 finished in 0.97 seconds

0.029772311

Instead of errormonitor(t), a more robust solution may be to use bind(results, t), as that will not only

log any unexpected failures, but also force the associated resources to close and propagate the exception

everywhere.

23.3 More task operations

Task operations are built on a low-level primitive called yieldto. yieldto(task, value) suspends the

current task, switches to the specified task, and causes that task's last yieldto call to return the spec-

ified value. Notice that yieldto is the only operation required to use task-style control flow; instead of

calling and returning we are always just switching to a different task. This is why this feature is also called

"symmetric coroutines"; each task is switched to and from using the same mechanism.

yieldto is powerful, but most uses of tasks do not invoke it directly. Consider why this might be. If

you switch away from the current task, you will probably want to switch back to it at some point, but

knowing when to switch back, and knowing which task has the responsibility of switching back, can require

considerable coordination. For example, put! and take! are blocking operations, which, when used in the

context of channels maintain state to remember who the consumers are. Not needing to manually keep

track of the consuming task is what makes put! easier to use than the low-level yieldto.

In addition to yieldto, a few other basic functions are needed to use tasks effectively.

• current_task gets a reference to the currently-running task.

• istaskdone queries whether a task has exited.

• istaskstarted queries whether a task has run yet.

• task_local_storage manipulates a key-value store specific to the current task.

23.4 Tasks and events

Most task switches occur as a result of waiting for events such as I/O requests, and are performed by a

scheduler included in Julia Base. The scheduler maintains a queue of runnable tasks, and executes an

event loop that restarts tasks based on external events such as message arrival.

The basic function for waiting for an event is wait. Several objects implement wait; for example, given a

Process object, wait will wait for it to exit. wait is often implicit; for example, a wait can happen inside

a call to read to wait for data to be available.

CHAPTER 23. ASYNCHRONOUS PROGRAMMING 298

In all of these cases, wait ultimately operates on a Condition object, which is in charge of queueing and

restarting tasks. When a task calls wait on a Condition, the task is marked as non-runnable, added to the

condition's queue, and switches to the scheduler. The scheduler will then pick another task to run, or block

waiting for external events. If all goes well, eventually an event handler will call notify on the condition,

which causes tasks waiting for that condition to become runnable again.

A task created explicitly by calling Task is initially not known to the scheduler. This allows you to manage

tasks manually using yieldto if you wish. However, when such a task waits for an event, it still gets

restarted automatically when the event happens, as you would expect.

Chapter 24

Multi-Threading

Visit this blog post for a presentation of Julia multi-threading features.

24.1 Starting Julia with multiple threads

By default, Julia starts up with a single thread of execution. This can be verified by using the command

Threads.nthreads():

julia> Threads.nthreads()

1

The number of execution threads is controlled either by using the -t/--threads command line argument

or by using the JULIA_NUM_THREADS environment variable. When both are specified, then -t/--threads

takes precedence.

The number of threads can either be specified as an integer (--threads=4) or as auto (--threads=auto),

where auto tries to infer a useful default number of threads to use (see Command-line Options for more

details).

Julia 1.5

The -t/--threads command line argument requires at least Julia 1.5. In older versions you

must use the environment variable instead.

Julia 1.7

Using auto as value of the environment variable JULIA_NUM_THREADS requires at least Julia

1.7. In older versions, this value is ignored.

Lets start Julia with 4 threads:

$ julia --threads 4

Let's verify there are 4 threads at our disposal.

julia> Threads.nthreads()

4

299

https://julialang.org/blog/2019/07/multithreading/

CHAPTER 24. MULTI-THREADING 300

But we are currently on the master thread. To check, we use the function Threads.threadid

julia> Threads.threadid()

1

Note

If you prefer to use the environment variable you can set it as follows in Bash (Linux/macOS):

export JULIA_NUM_THREADS=4

C shell on Linux/macOS, CMD on Windows:

set JULIA_NUM_THREADS=4

Powershell on Windows:

$env:JULIA_NUM_THREADS=4

Note that this must be done before starting Julia.

Note

The number of threads specified with -t/--threads is propagated to worker processes that

are spawned using the -p/--procs or --machine-file command line options. For example,

julia -p2 -t2 spawns 1 main process with 2 worker processes, and all three processes have

2 threads enabled. For more fine grained control over worker threads use addprocs and pass

-t/--threads as exeflags.

Multiple GC Threads

The Garbage Collector (GC) can use multiple threads. The amount used is either half the number of com-

pute worker threads or configured by either the --gcthreads command line argument or by using the

JULIA_NUM_GC_THREADS environment variable.

Julia 1.10

The --gcthreads command line argument requires at least Julia 1.10.

24.2 Threadpools

When a program's threads are busy with many tasks to run, tasks may experience delays which may

negatively affect the responsiveness and interactivity of the program. To address this, you can specify that

a task is interactive when you Threads.@spawn it:

using Base.Threads

@spawn :interactive f()

Interactive tasks should avoid performing high latency operations, and if they are long duration tasks,

should yield frequently.

Julia may be started with one or more threads reserved to run interactive tasks:

CHAPTER 24. MULTI-THREADING 301

$ julia --threads 3,1

The environment variable JULIA_NUM_THREADS can also be used similarly:

export JULIA_NUM_THREADS=3,1

This starts Julia with 3 threads in the :default threadpool and 1 thread in the :interactive threadpool:

julia> using Base.Threads

julia> nthreadpools()

2

julia> threadpool() # the main thread is in the interactive thread pool

:interactive

julia> nthreads(:default)

3

julia> nthreads(:interactive)

1

julia> nthreads()

3

Note

The zero-argument version of nthreads returns the number of threads in the default pool.

Note

Depending on whether Julia has been started with interactive threads, themain thread is either

in the default or interactive thread pool.

Either or both numbers can be replaced with the word auto, which causes Julia to choose a reasonable

default.

24.3 Communication and synchronization

Although Julia's threads can communicate through shared memory, it is notoriously difficult to write correct

and data-race free multi-threaded code. Julia's Channels are thread-safe and may be used to communicate

safely.

Data-race freedom

You are entirely responsible for ensuring that your program is data-race free, and nothing promised here

can be assumed if you do not observe that requirement. The observed results may be highly unintuitive.

The best way to ensure this is to acquire a lock around any access to data that can be observed from

multiple threads. For example, in most cases you should use the following code pattern:

CHAPTER 24. MULTI-THREADING 302

julia> lock(lk) do

use(a)

end

julia> begin

lock(lk)

try

use(a)

finally

unlock(lk)

end

end

where lk is a lock (e.g. ReentrantLock()) and a data.

Additionally, Julia is not memory safe in the presence of a data race. Be very careful about reading any

data if another thread might write to it! Instead, always use the lock pattern above when changing data

(such as assigning to a global or closure variable) accessed by other threads.

Thread 1:

global b = false

global a = rand()

global b = true

Thread 2:

while !b; end

bad_read1(a) # it is NOT safe to access `a` here!

Thread 3:

while !@isdefined(a); end

bad_read2(a) # it is NOT safe to access `a` here

24.4 The @threads Macro

Let's work a simple example using our native threads. Let us create an array of zeros:

julia> a = zeros(10)

10-element Vector{Float64}:

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Let us operate on this array simultaneously using 4 threads. We'll have each thread write its thread ID into

each location.

CHAPTER 24. MULTI-THREADING 303

Julia supports parallel loops using the Threads.@threadsmacro. This macro is affixed in front of a for loop

to indicate to Julia that the loop is a multi-threaded region:

julia> Threads.@threads for i = 1:10

a[i] = Threads.threadid()

end

The iteration space is split among the threads, after which each thread writes its thread ID to its assigned

locations:

julia> a

10-element Vector{Float64}:

1.0

1.0

1.0

2.0

2.0

2.0

3.0

3.0

4.0

4.0

Note that Threads.@threads does not have an optional reduction parameter like @distributed.

Using @threads without data races

Taking the example of a naive sum

julia> function sum_single(a)

s = 0

for i in a

s += i

end

s

end

sum_single (generic function with 1 method)

julia> sum_single(1:1_000_000)

500000500000

Simply adding @threads exposes a data race with multiple threads reading and writing s at the same time.

julia> function sum_multi_bad(a)

s = 0

Threads.@threads for i in a

s += i

end

s

end

CHAPTER 24. MULTI-THREADING 304

sum_multi_bad (generic function with 1 method)

julia> sum_multi_bad(1:1_000_000)

70140554652

Note that the result is not 500000500000 as it should be, and will most likely change each evaluation.

To fix this, buffers that are specific to the task may be used to segment the sum into chunks that are

race-free. Here sum_single is reused, with its own internal buffer s, and vector a is split into nthreads()

chunks for parallel work via nthreads() @spawn-ed tasks.

julia> function sum_multi_good(a)

chunks = Iterators.partition(a, length(a) ÷ Threads.nthreads())

tasks = map(chunks) do chunk

Threads.@spawn sum_single(chunk)

end

chunk_sums = fetch.(tasks)

return sum_single(chunk_sums)

end

sum_multi_good (generic function with 1 method)

julia> sum_multi_good(1:1_000_000)

500000500000

Note

Buffers should not bemanaged based on threadid() i.e. buffers = zeros(Threads.nthreads())

because concurrent tasks can yield, meaning multiple concurrent tasks may use the same

buffer on a given thread, introducing risk of data races. Further, when more than one thread

is available tasks may change thread at yield points, which is known as task migration.

Another option is the use of atomic operations on variables shared across tasks/threads, which may be

more performant depending on the characteristics of the operations.

24.5 Atomic Operations

Julia supports accessing and modifying values atomically, that is, in a thread-safe way to avoid race condi-

tions. A value (which must be of a primitive type) can be wrapped as Threads.Atomic to indicate it must

be accessed in this way. Here we can see an example:

julia> i = Threads.Atomic{Int}(0);

julia> ids = zeros(4);

julia> old_is = zeros(4);

julia> Threads.@threads for id in 1:4

old_is[id] = Threads.atomic_add!(i, id)

ids[id] = id

end

https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Race_condition

CHAPTER 24. MULTI-THREADING 305

julia> old_is

4-element Vector{Float64}:

0.0

1.0

7.0

3.0

julia> i[]

10

julia> ids

4-element Vector{Float64}:

1.0

2.0

3.0

4.0

Had we tried to do the addition without the atomic tag, we might have gotten the wrong answer due to a

race condition. An example of what would happen if we didn't avoid the race:

julia> using Base.Threads

julia> Threads.nthreads()

4

julia> acc = Ref(0)

Base.RefValue{Int64}(0)

julia> @threads for i in 1:1000

acc[] += 1

end

julia> acc[]

926

julia> acc = Atomic{Int64}(0)

Atomic{Int64}(0)

julia> @threads for i in 1:1000

atomic_add!(acc, 1)

end

julia> acc[]

1000

24.6 Per-field atomics

We can also use atomics on a more granular level using the @atomic, @atomicswap, and @atomicreplace

macros.

Specific details of the memory model and other details of the design are written in the Julia Atomics Mani-

festo, which will later be published formally.

https://gist.github.com/vtjnash/11b0031f2e2a66c9c24d33e810b34ec0
https://gist.github.com/vtjnash/11b0031f2e2a66c9c24d33e810b34ec0

CHAPTER 24. MULTI-THREADING 306

Any field in a struct declaration can be decorated with @atomic, and then any write must be marked

with @atomic also, and must use one of the defined atomic orderings (:monotonic, :acquire, :release,

:acquire_release, or :sequentially_consistent). Any read of an atomic field can also be annotated

with an atomic ordering constraint, or will be done with monotonic (relaxed) ordering if unspecified.

Julia 1.7

Per-field atomics requires at least Julia 1.7.

24.7 Side effects and mutable function arguments

When using multi-threading we have to be careful when using functions that are not pure as we might

get a wrong answer. For instance functions that have a name ending with ! by convention modify their

arguments and thus are not pure.

24.8 @threadcall

External libraries, such as those called via ccall, pose a problem for Julia's task-based I/O mechanism. If

a C library performs a blocking operation, that prevents the Julia scheduler from executing any other tasks

until the call returns. (Exceptions are calls into custom C code that call back into Julia, which may then

yield, or C code that calls jl_yield(), the C equivalent of yield.)

The @threadcall macro provides a way to avoid stalling execution in such a scenario. It schedules a C

function for execution in a separate thread. A threadpool with a default size of 4 is used for this. The size of

the threadpool is controlled via environment variable UV_THREADPOOL_SIZE. While waiting for a free thread,

and during function execution once a thread is available, the requesting task (on the main Julia event loop)

yields to other tasks. Note that @threadcall does not return until the execution is complete. From a user

point of view, it is therefore a blocking call like other Julia APIs.

It is very important that the called function does not call back into Julia, as it will segfault.

@threadcall may be removed/changed in future versions of Julia.

24.9 Caveats

At this time, most operations in the Julia runtime and standard libraries can be used in a thread-safe

manner, if the user code is data-race free. However, in some areas work on stabilizing thread support

is ongoing. Multi-threaded programming has many inherent difficulties, and if a program using threads

exhibits unusual or undesirable behavior (e.g. crashes or mysterious results), thread interactions should

typically be suspected first.

There are a few specific limitations and warnings to be aware of when using threads in Julia:

• Base collection types require manual locking if used simultaneously by multiple threads where at

least one thread modifies the collection (common examples include push! on arrays, or inserting

items into a Dict).

• The schedule used by @spawn is nondeterministic and should not be relied on.

• Compute-bound, non-memory-allocating tasks can prevent garbage collection from running in other

threads that are allocating memory. In these cases it may be necessary to insert a manual call to

GC.safepoint() to allow GC to run. This limitation will be removed in the future.

https://en.wikipedia.org/wiki/Pure_function

CHAPTER 24. MULTI-THREADING 307

• Avoid running top-level operations, e.g. include, or eval of type, method, and module definitions

in parallel.

• Be aware that finalizers registered by a library may break if threads are enabled. This may require

some transitional work across the ecosystem before threading can be widely adopted with confi-

dence. See the next section for further details.

24.10 Task Migration

After a task starts running on a certain thread it may move to a different thread if the task yields.

Such tasks may have been started with @spawn or @threads, although the :static schedule option for

@threads does freeze the threadid.

This means that in most cases threadid() should not be treated as constant within a task, and therefore

should not be used to index into a vector of buffers or stateful objects.

Julia 1.7

Task migration was introduced in Julia 1.7. Before this tasks always remained on the same

thread that they were started on.

24.11 Safe use of Finalizers

Because finalizers can interrupt any code, they must be very careful in how they interact with any global

state. Unfortunately, the main reason that finalizers are used is to update global state (a pure function is

generally rather pointless as a finalizer). This leads us to a bit of a conundrum. There are a few approaches

to dealing with this problem:

1. When single-threaded, code could call the internal jl_gc_enable_finalizers C function to prevent

finalizers from being scheduled inside a critical region. Internally, this is used inside some func-

tions (such as our C locks) to prevent recursion when doing certain operations (incremental package

loading, codegen, etc.). The combination of a lock and this flag can be used to make finalizers safe.

2. A second strategy, employed by Base in a couple places, is to explicitly delay a finalizer until it may

be able to acquire its lock non-recursively. The following example demonstrates how this strategy

could be applied to Distributed.finalize_ref:

function finalize_ref(r::AbstractRemoteRef)

if r.where > 0 # Check if the finalizer is already run

if islocked(client_refs) || !trylock(client_refs)

delay finalizer for later if we aren't free to acquire the lock

finalizer(finalize_ref, r)

return nothing

end

try # `lock` should always be followed by `try`

if r.where > 0 # Must check again here

Do actual cleanup here

r.where = 0

end

finally

unlock(client_refs)

CHAPTER 24. MULTI-THREADING 308

end

end

nothing

end

3. A related third strategy is to use a yield-free queue. We don't currently have a lock-free queue imple-

mented in Base, but Base.IntrusiveLinkedListSynchronized{T} is suitable. This can frequently

be a good strategy to use for code with event loops. For example, this strategy is employed by

Gtk.jl to manage lifetime ref-counting. In this approach, we don't do any explicit work inside the

finalizer, and instead add it to a queue to run at a safer time. In fact, Julia's task scheduler already

uses this, so defining the finalizer as x -> @spawn do_cleanup(x) is one example of this approach.

Note however that this doesn't control which thread do_cleanup runs on, so do_cleanup would still

need to acquire a lock. That doesn't need to be true if you implement your own queue, as you can

explicitly only drain that queue from your thread.

Chapter 25

Multi-processing and Distributed Computing

An implementation of distributed memory parallel computing is provided by module Distributed as part

of the standard library shipped with Julia.

Most modern computers possess more than one CPU, and several computers can be combined together in

a cluster. Harnessing the power of these multiple CPUs allows many computations to be completed more

quickly. There are two major factors that influence performance: the speed of the CPUs themselves, and

the speed of their access to memory. In a cluster, it's fairly obvious that a given CPU will have fastest access

to the RAM within the same computer (node). Perhaps more surprisingly, similar issues are relevant on a

typical multicore laptop, due to differences in the speed of main memory and the cache. Consequently, a

good multiprocessing environment should allow control over the "ownership" of a chunk of memory by a

particular CPU. Julia provides a multiprocessing environment based on message passing to allow programs

to run on multiple processes in separate memory domains at once.

Julia's implementation of message passing is different from other environments such as MPI1. Communi-

cation in Julia is generally "one-sided", meaning that the programmer needs to explicitly manage only one

process in a two-process operation. Furthermore, these operations typically do not look like "message

send" and "message receive" but rather resemble higher-level operations like calls to user functions.

Distributed programming in Julia is built on two primitives: remote references and remote calls. A remote

reference is an object that can be used from any process to refer to an object stored on a particular process.

A remote call is a request by one process to call a certain function on certain arguments on another (possibly

the same) process.

Remote references come in two flavors: Future and RemoteChannel.

A remote call returns a Future to its result. Remote calls return immediately; the process that made the call

proceeds to its next operation while the remote call happens somewhere else. You can wait for a remote

call to finish by calling wait on the returned Future, and you can obtain the full value of the result using

fetch.

On the other hand, RemoteChannel s are rewritable. For example, multiple processes can coordinate their

processing by referencing the same remote Channel.

Each process has an associated identifier. The process providing the interactive Julia prompt always has

an id equal to 1. The processes used by default for parallel operations are referred to as "workers". When

there is only one process, process 1 is considered a worker. Otherwise, workers are considered to be all

processes other than process 1. As a result, adding 2 or more processes is required to gain benefits from

parallel processing methods like pmap. Adding a single process is beneficial if you just wish to do other

things in the main process while a long computation is running on the worker.

309

https://www.akkadia.org/drepper/cpumemory.pdf

CHAPTER 25. MULTI-PROCESSING AND DISTRIBUTED COMPUTING 310

Let's try this out. Starting with julia -p n provides n worker processes on the local machine. Generally

it makes sense for n to equal the number of CPU threads (logical cores) on the machine. Note that the -p

argument implicitly loads module Distributed.

$ julia -p 2

julia> r = remotecall(rand, 2, 2, 2)

Future(2, 1, 4, nothing)

julia> s = @spawnat 2 1 .+ fetch(r)

Future(2, 1, 5, nothing)

julia> fetch(s)

2×2 Array{Float64,2}:

1.18526 1.50912

1.16296 1.60607

The first argument to remotecall is the function to call. Most parallel programming in Julia does not

reference specific processes or the number of processes available, but remotecall is considered a low-

level interface providing finer control. The second argument to remotecall is the id of the process that

will do the work, and the remaining arguments will be passed to the function being called.

As you can see, in the first line we asked process 2 to construct a 2-by-2 random matrix, and in the second

line we asked it to add 1 to it. The result of both calculations is available in the two futures, r and s. The

@spawnat macro evaluates the expression in the second argument on the process specified by the first

argument.

Occasionally you might want a remotely-computed value immediately. This typically happens when you

read from a remote object to obtain data needed by the next local operation. The function remotecall_fetch

exists for this purpose. It is equivalent to fetch(remotecall(...)) but is more efficient.

julia> remotecall_fetch(r-> fetch(r)[1, 1], 2, r)

0.18526337335308085

This fetches the array on worker 2 and returns the first value. Note, that fetch doesn't move any data in

this case, since it's executed on the worker that owns the array. One can also write:

julia> remotecall_fetch(getindex, 2, r, 1, 1)

0.10824216411304866

Remember that getindex(r,1,1) is equivalent to r[1,1], so this call fetches the first element of the future

r.

To make things easier, the symbol :any can be passed to @spawnat, which picks where to do the operation

for you:

julia> r = @spawnat :any rand(2,2)

Future(2, 1, 4, nothing)

julia> s = @spawnat :any 1 .+ fetch(r)

CHAPTER 25. MULTI-PROCESSING AND DISTRIBUTED COMPUTING 311

Future(3, 1, 5, nothing)

julia> fetch(s)

2×2 Array{Float64,2}:

1.38854 1.9098

1.20939 1.57158

Note that we used 1 .+ fetch(r) instead of 1 .+ r. This is because we do not know where the code will

run, so in general a fetch might be required to move r to the process doing the addition. In this case,

@spawnat is smart enough to perform the computation on the process that owns r, so the fetch will be a

no-op (no work is done).

(It is worth noting that @spawnat is not built-in but defined in Julia as a macro. It is possible to define your

own such constructs.)

An important thing to remember is that, once fetched, a Future will cache its value locally. Further fetch

calls do not entail a network hop. Once all referencing Futures have fetched, the remote stored value is

deleted.

@async is similar to @spawnat, but only runs tasks on the local process. We use it to create a "feeder" task

for each process. Each task picks the next index that needs to be computed, then waits for its process to

finish, then repeats until we run out of indices. Note that the feeder tasks do not begin to execute until

the main task reaches the end of the @sync block, at which point it surrenders control and waits for all the

local tasks to complete before returning from the function. As for v0.7 and beyond, the feeder tasks are

able to share state via nextidx because they all run on the same process. Even if Tasks are scheduled

cooperatively, locking may still be required in some contexts, as in asynchronous I/O. This means context

switches only occur at well-defined points: in this case, when remotecall_fetch is called. This is the

current state of implementation and it may change for future Julia versions, as it is intended to make it

possible to run up to N Tasks on M Process, aka M:N Threading. Then a lock acquiring\releasing model for

nextidx will be needed, as it is not safe to let multiple processes read-write a resource at the same time.

25.1 Code Availability and Loading Packages

Your code must be available on any process that runs it. For example, type the following into the Julia

prompt:

julia> function rand2(dims...)

return 2*rand(dims...)

end

julia> rand2(2,2)

2×2 Array{Float64,2}:

0.153756 0.368514

1.15119 0.918912

julia> fetch(@spawnat :any rand2(2,2))

ERROR: RemoteException(2, CapturedException(UndefVarError(Symbol("#rand2"))

Stacktrace:

[...]

Process 1 knew about the function rand2, but process 2 did not.

https://en.wikipedia.org/wiki/Thread_(computing)#Models

CHAPTER 25. MULTI-PROCESSING AND DISTRIBUTED COMPUTING 312

Most commonly you'll be loading code from files or packages, and you have a considerable amount of flex-

ibility in controlling which processes load code. Consider a file, DummyModule.jl, containing the following

code:

module DummyModule

export MyType, f

mutable struct MyType

a::Int

end

f(x) = x^2+1

println("loaded")

end

In order to refer to MyType across all processes, DummyModule.jl needs to be loaded on every process.

Calling include("DummyModule.jl") loads it only on a single process. To load it on every process, use the

@everywhere macro (starting Julia with julia -p 2):

julia> @everywhere include("DummyModule.jl")

loaded

From worker 3: loaded

From worker 2: loaded

As usual, this does not bring DummyModule into scope on any of the process, which requires using or import.

Moreover, when DummyModule is brought into scope on one process, it is not on any other:

julia> using .DummyModule

julia> MyType(7)

MyType(7)

julia> fetch(@spawnat 2 MyType(7))

ERROR: On worker 2:

UndefVarError: `MyType` not defined

julia> fetch(@spawnat 2 DummyModule.MyType(7))

MyType(7)

However, it's still possible, for instance, to send a MyType to a process which has loaded DummyModule even

if it's not in scope:

julia> put!(RemoteChannel(2), MyType(7))

RemoteChannel{Channel{Any}}(2, 1, 13)

CHAPTER 25. MULTI-PROCESSING AND DISTRIBUTED COMPUTING 313

A file can also be preloaded on multiple processes at startup with the -L flag, and a driver script can be

used to drive the computation:

julia -p <n> -L file1.jl -L file2.jl driver.jl

The Julia process running the driver script in the example above has an id equal to 1, just like a process

providing an interactive prompt.

Finally, if DummyModule.jl is not a standalone file but a package, then using DummyModule will load

DummyModule.jl on all processes, but only bring it into scope on the process where using was called.

25.2 Starting and managing worker processes

The base Julia installation has in-built support for two types of clusters:

• A local cluster specified with the -p option as shown above.

• A cluster spanning machines using the --machine-file option. This uses a passwordless ssh login

to start Julia worker processes (from the same path as the current host) on the specified machines.

Each machine definition takes the form [count*][user@]host[:port] [bind_addr[:port]]. user

defaults to current user, port to the standard ssh port. count is the number of workers to spawn on

the node, and defaults to 1. The optional bind-to bind_addr[:port] specifies the IP address and

port that other workers should use to connect to this worker.

Note

While Julia generally strives for backward compatibility, distribution of code to worker pro-

cesses relies on Serialization.serialize. As pointed out in the corresponding documen-

tation, this can not be guaranteed to work across different Julia versions, so it is advised that

all workers on all machines use the same version.

Functions addprocs, rmprocs, workers, and others are available as a programmatic means of adding,

removing and querying the processes in a cluster.

julia> using Distributed

julia> addprocs(2)

2-element Array{Int64,1}:

2

3

Module Distributed must be explicitly loaded on the master process before invoking addprocs. It is

automatically made available on the worker processes.

Note that workers do not run a ~/.julia/config/startup.jl startup script, nor do they synchronize their

global state (such as global variables, new method definitions, and loaded modules) with any of the other

running processes. You may use addprocs(exeflags="--project") to initialize a worker with a particular

environment, and then @everywhere using <modulename> or @everywhere include("file.jl").

Other types of clusters can be supported by writing your own custom ClusterManager, as described below

in the ClusterManagers section.

CHAPTER 25. MULTI-PROCESSING AND DISTRIBUTED COMPUTING 314

25.3 Data Movement

Sending messages and moving data constitute most of the overhead in a distributed program. Reducing

the number of messages and the amount of data sent is critical to achieving performance and scalability.

To this end, it is important to understand the data movement performed by Julia's various distributed

programming constructs.

fetch can be considered an explicit data movement operation, since it directly asks that an object be

moved to the local machine. @spawnat (and a few related constructs) also moves data, but this is not as

obvious, hence it can be called an implicit data movement operation. Consider these two approaches to

constructing and squaring a random matrix:

Method 1:

julia> A = rand(1000,1000);

julia> Bref = @spawnat :any A^2;

[...]

julia> fetch(Bref);

Method 2:

julia> Bref = @spawnat :any rand(1000,1000)^2;

[...]

julia> fetch(Bref);

The difference seems trivial, but in fact is quite significant due to the behavior of @spawnat. In the first

method, a random matrix is constructed locally, then sent to another process where it is squared. In the

second method, a random matrix is both constructed and squared on another process. Therefore the

second method sends much less data than the first.

In this toy example, the two methods are easy to distinguish and choose from. However, in a real program

designing data movement might require more thought and likely some measurement. For example, if the

first process needs matrix A then the first method might be better. Or, if computing A is expensive and

only the current process has it, then moving it to another process might be unavoidable. Or, if the current

process has very little to do between the @spawnat and fetch(Bref), it might be better to eliminate the

parallelism altogether. Or imagine rand(1000,1000) is replaced with a more expensive operation. Then it

might make sense to add another @spawnat statement just for this step.

25.4 Global variables

Expressions executed remotely via @spawnat, or closures specified for remote execution using remotecall

may refer to global variables. Global bindings under module Main are treated a little differently compared

to global bindings in other modules. Consider the following code snippet:

A = rand(10,10)

remotecall_fetch(()->sum(A), 2)

CHAPTER 25. MULTI-PROCESSING AND DISTRIBUTED COMPUTING 315

In this case sum MUST be defined in the remote process. Note that A is a global variable defined in the

local workspace. Worker 2 does not have a variable called A under Main. The act of shipping the closure

()->sum(A) to worker 2 results in Main.A being defined on 2. Main.A continues to exist on worker 2

even after the call remotecall_fetch returns. Remote calls with embedded global references (under Main

module only) manage globals as follows:

• New global bindings are created on destination workers if they are referenced as part of a remote

call.

• Global constants are declared as constants on remote nodes too.

• Globals are re-sent to a destination worker only in the context of a remote call, and then only if

its value has changed. Also, the cluster does not synchronize global bindings across nodes. For

example:

A = rand(10,10)

remotecall_fetch(()->sum(A), 2) # worker 2

A = rand(10,10)

remotecall_fetch(()->sum(A), 3) # worker 3

A = nothing

Executing the above snippet results in Main.A on worker 2 having a different value from Main.A on

worker 3, while the value of Main.A on node 1 is set to nothing.

As you may have realized, while memory associated with globals may be collected when they are reas-

signed on the master, no such action is taken on the workers as the bindings continue to be valid. clear!

can be used to manually reassign specific globals on remote nodes to nothing once they are no longer

required. This will release any memory associated with them as part of a regular garbage collection cycle.

Thus programs should be careful referencing globals in remote calls. In fact, it is preferable to avoid them

altogether if possible. If you must reference globals, consider using let blocks to localize global variables.

For example:

julia> A = rand(10,10);

julia> remotecall_fetch(()->A, 2);

julia> B = rand(10,10);

julia> let B = B

remotecall_fetch(()->B, 2)

end;

julia> @fetchfrom 2 InteractiveUtils.varinfo()

name size summary

––––––––– ––––––––– ––––––––––––––––––––––

A 800 bytes 10×10 Array{Float64,2}

Base Module

Core Module

Main Module

As can be seen, global variable A is defined on worker 2, but B is captured as a local variable and hence a

binding for B does not exist on worker 2.

CHAPTER 25. MULTI-PROCESSING AND DISTRIBUTED COMPUTING 316

25.5 Parallel Map and Loops

Fortunately, many useful parallel computations do not require data movement. A common example is a

Monte Carlo simulation, where multiple processes can handle independent simulation trials simultaneously.

We can use @spawnat to flip coins on two processes. First, write the following function in count_heads.jl:

function count_heads(n)

c::Int = 0

for i = 1:n

c += rand(Bool)

end

c

end

The function count_heads simply adds together n random bits. Here is how we can perform some trials on

two machines, and add together the results:

julia> @everywhere include_string(Main, $(read("count_heads.jl", String)), "count_heads.jl")

julia> a = @spawnat :any count_heads(100000000)

Future(2, 1, 6, nothing)

julia> b = @spawnat :any count_heads(100000000)

Future(3, 1, 7, nothing)

julia> fetch(a)+fetch(b)

100001564

This example demonstrates a powerful and often-used parallel programming pattern. Many iterations

run independently over several processes, and then their results are combined using some function. The

combination process is called a reduction, since it is generally tensor-rank-reducing: a vector of numbers

is reduced to a single number, or a matrix is reduced to a single row or column, etc. In code, this typically

looks like the pattern x = f(x,v[i]), where x is the accumulator, f is the reduction function, and the v[i]

are the elements being reduced. It is desirable for f to be associative, so that it does not matter what order

the operations are performed in.

Notice that our use of this pattern with count_heads can be generalized. We used two explicit @spawnat

statements, which limits the parallelism to two processes. To run on any number of processes, we can use

a parallel for loop, running in distributed memory, which can be written in Julia using @distributed like

this:

nheads = @distributed (+) for i = 1:200000000

Int(rand(Bool))

end

This construct implements the pattern of assigning iterations to multiple processes, and combining them

with a specified reduction (in this case (+)). The result of each iteration is taken as the value of the last

expression inside the loop. The whole parallel loop expression itself evaluates to the final answer.

Note that although parallel for loops look like serial for loops, their behavior is dramatically different. In

particular, the iterations do not happen in a specified order, and writes to variables or arrays will not be

CHAPTER 25. MULTI-PROCESSING AND DISTRIBUTED COMPUTING 317

globally visible since iterations run on different processes. Any variables used inside the parallel loop will

be copied and broadcast to each process.

For example, the following code will not work as intended:

a = zeros(100000)

@distributed for i = 1:100000

a[i] = i

end

This code will not initialize all of a, since each process will have a separate copy of it. Parallel for loops like

these must be avoided. Fortunately, Shared Arrays can be used to get around this limitation:

using SharedArrays

a = SharedArray{Float64}(10)

@distributed for i = 1:10

a[i] = i

end

Using "outside" variables in parallel loops is perfectly reasonable if the variables are read-only:

a = randn(1000)

@distributed (+) for i = 1:100000

f(a[rand(1:end)])

end

Here each iteration applies f to a randomly-chosen sample from a vector a shared by all processes.

As you could see, the reduction operator can be omitted if it is not needed. In that case, the loop executes

asynchronously, i.e. it spawns independent tasks on all available workers and returns an array of Future

immediately without waiting for completion. The caller can wait for the Future completions at a later point

by calling fetch on them, or wait for completion at the end of the loop by prefixing it with @sync, like @sync

@distributed for.

In some cases no reduction operator is needed, and we merely wish to apply a function to all integers in

some range (or, more generally, to all elements in some collection). This is another useful operation called

parallel map, implemented in Julia as the pmap function. For example, we could compute the singular values

of several large random matrices in parallel as follows:

julia> M = Matrix{Float64}[rand(1000,1000) for i = 1:10];

julia> pmap(svdvals, M);

Julia's pmap is designed for the case where each function call does a large amount of work. In contrast,

@distributed for can handle situations where each iteration is tiny, perhaps merely summing two num-

bers. Only worker processes are used by both pmap and @distributed for for the parallel computation.

In case of @distributed for, the final reduction is done on the calling process.

CHAPTER 25. MULTI-PROCESSING AND DISTRIBUTED COMPUTING 318

25.6 Remote References and AbstractChannels

Remote references always refer to an implementation of an AbstractChannel.

A concrete implementation of an AbstractChannel (like Channel), is required to implement put!, take!,

fetch, isready and wait. The remote object referred to by a Future is stored in a Channel{Any}(1), i.e.,

a Channel of size 1 capable of holding objects of Any type.

RemoteChannel, which is rewritable, can point to any type and size of channels, or any other implementa-

tion of an AbstractChannel.

The constructor RemoteChannel(f::Function, pid)() allows us to construct references to channels hold-

ingmore than one value of a specific type. f is a function executed on pid and it must return an AbstractChannel.

For example, RemoteChannel(()->Channel{Int}(10), pid), will return a reference to a channel of type

Int and size 10. The channel exists on worker pid.

Methods put!, take!, fetch, isready and wait on a RemoteChannel are proxied onto the backing store

on the remote process.

RemoteChannel can thus be used to refer to user implemented AbstractChannel objects. A simple example

of this is provided in dictchannel.jl in the Examples repository, which uses a dictionary as its remote

store.

25.7 Channels and RemoteChannels

• A Channel is local to a process. Worker 2 cannot directly refer to a Channel on worker 3 and vice-

versa. A RemoteChannel, however, can put and take values across workers.

• A RemoteChannel can be thought of as a handle to a Channel.

• The process id, pid, associated with a RemoteChannel identifies the process where the backing store,

i.e., the backing Channel exists.

• Any process with a reference to a RemoteChannel can put and take items from the channel. Data is

automatically sent to (or retrieved from) the process a RemoteChannel is associated with.

• Serializing a Channel also serializes any data present in the channel. Deserializing it therefore ef-

fectively makes a copy of the original object.

• On the other hand, serializing a RemoteChannel only involves the serialization of an identifier that

identifies the location and instance of Channel referred to by the handle. A deserialized RemoteChannel

object (on any worker), therefore also points to the same backing store as the original.

The channels example from above can be modified for interprocess communication, as shown below.

We start 4 workers to process a single jobs remote channel. Jobs, identified by an id (job_id), are written

to the channel. Each remotely executing task in this simulation reads a job_id, waits for a random amount

of time and writes back a tuple of job_id, time taken and its own pid to the results channel. Finally all the

results are printed out on the master process.

julia> addprocs(4); # add worker processes

julia> const jobs = RemoteChannel(()->Channel{Int}(32));

https://github.com/JuliaAttic/Examples

CHAPTER 25. MULTI-PROCESSING AND DISTRIBUTED COMPUTING 319

julia> const results = RemoteChannel(()->Channel{Tuple}(32));

julia> @everywhere function do_work(jobs, results) # define work function everywhere

while true

job_id = take!(jobs)

exec_time = rand()

sleep(exec_time) # simulates elapsed time doing actual work

put!(results, (job_id, exec_time, myid()))

end

end

julia> function make_jobs(n)

for i in 1:n

put!(jobs, i)

end

end;

julia> n = 12;

julia> errormonitor(@async make_jobs(n)); # feed the jobs channel with "n" jobs

julia> for p in workers() # start tasks on the workers to process requests in parallel

remote_do(do_work, p, jobs, results)

end

julia> @elapsed while n > 0 # print out results

job_id, exec_time, where = take!(results)

println("$job_id finished in $(round(exec_time; digits=2)) seconds on worker $where")

global n = n - 1

end

1 finished in 0.18 seconds on worker 4

2 finished in 0.26 seconds on worker 5

6 finished in 0.12 seconds on worker 4

7 finished in 0.18 seconds on worker 4

5 finished in 0.35 seconds on worker 5

4 finished in 0.68 seconds on worker 2

3 finished in 0.73 seconds on worker 3

11 finished in 0.01 seconds on worker 3

12 finished in 0.02 seconds on worker 3

9 finished in 0.26 seconds on worker 5

8 finished in 0.57 seconds on worker 4

10 finished in 0.58 seconds on worker 2

0.055971741

Remote References and Distributed Garbage Collection

Objects referred to by remote references can be freed only when all held references in the cluster are

deleted.

The node where the value is stored keeps track of which of the workers have a reference to it. Every time

a RemoteChannel or a (unfetched) Future is serialized to a worker, the node pointed to by the reference is

notified. And every time a RemoteChannel or a (unfetched) Future is garbage collected locally, the node

CHAPTER 25. MULTI-PROCESSING AND DISTRIBUTED COMPUTING 320

owning the value is again notified. This is implemented in an internal cluster aware serializer. Remote

references are only valid in the context of a running cluster. Serializing and deserializing references to and

from regular IO objects is not supported.

The notifications are done via sending of "tracking" messages–an "add reference" message when a ref-

erence is serialized to a different process and a "delete reference" message when a reference is locally

garbage collected.

Since Futures are write-once and cached locally, the act of fetching a Future also updates reference

tracking information on the node owning the value.

The node which owns the value frees it once all references to it are cleared.

With Futures, serializing an already fetched Future to a different node also sends the value since the

original remote store may have collected the value by this time.

It is important to note that when an object is locally garbage collected depends on the size of the object

and the current memory pressure in the system.

In case of remote references, the size of the local reference object is quite small, while the value stored

on the remote node may be quite large. Since the local object may not be collected immediately, it is a

good practice to explicitly call finalize on local instances of a RemoteChannel, or on unfetched Futures.

Since calling fetch on a Future also removes its reference from the remote store, this is not required on

fetched Futures. Explicitly calling finalize results in an immediate message sent to the remote node to

go ahead and remove its reference to the value.

Once finalized, a reference becomes invalid and cannot be used in any further calls.

25.8 Local invocations

Data is necessarily copied over to the remote node for execution. This is the case for both remotecalls and

when data is stored to a RemoteChannel / Future on a different node. As expected, this results in a copy of

the serialized objects on the remote node. However, when the destination node is the local node, i.e. the

calling process id is the same as the remote node id, it is executed as a local call. It is usually (not always)

executed in a different task - but there is no serialization/deserialization of data. Consequently, the call

refers to the same object instances as passed - no copies are created. This behavior is highlighted below:

julia> using Distributed;

julia> rc = RemoteChannel(()->Channel(3)); # RemoteChannel created on local node

julia> v = [0];

julia> for i in 1:3

v[1] = i # Reusing `v`

put!(rc, v)

end;

julia> result = [take!(rc) for _ in 1:3];

julia> println(result);

Array{Int64,1}[[3], [3], [3]]

julia> println("Num Unique objects : ", length(unique(map(objectid, result))));

CHAPTER 25. MULTI-PROCESSING AND DISTRIBUTED COMPUTING 321

Num Unique objects : 1

julia> addprocs(1);

julia> rc = RemoteChannel(()->Channel(3), workers()[1]); # RemoteChannel created on remote node

julia> v = [0];

julia> for i in 1:3

v[1] = i

put!(rc, v)

end;

julia> result = [take!(rc) for _ in 1:3];

julia> println(result);

Array{Int64,1}[[1], [2], [3]]

julia> println("Num Unique objects : ", length(unique(map(objectid, result))));

Num Unique objects : 3

As can be seen, put! on a locally owned RemoteChannel with the same object v modified between calls

results in the same single object instance stored. As opposed to copies of v being created when the node

owning rc is a different node.

It is to be noted that this is generally not an issue. It is something to be factored in only if the object is both

being stored locally and modified post the call. In such cases it may be appropriate to store a deepcopy of

the object.

This is also true for remotecalls on the local node as seen in the following example:

julia> using Distributed; addprocs(1);

julia> v = [0];

julia> v2 = remotecall_fetch(x->(x[1] = 1; x), myid(), v); # Executed on local node

julia> println("v=$v, v2=$v2, ", v === v2);

v=[1], v2=[1], true

julia> v = [0];

julia> v2 = remotecall_fetch(x->(x[1] = 1; x), workers()[1], v); # Executed on remote node

julia> println("v=$v, v2=$v2, ", v === v2);

v=[0], v2=[1], false

As can be seen once again, a remote call onto the local node behaves just like a direct invocation. The

call modifies local objects passed as arguments. In the remote invocation, it operates on a copy of the

arguments.

To repeat, in general this is not an issue. If the local node is also being used as a compute node, and the

arguments used post the call, this behavior needs to be factored in and if required deep copies of arguments

CHAPTER 25. MULTI-PROCESSING AND DISTRIBUTED COMPUTING 322

must be passed to the call invoked on the local node. Calls on remote nodes will always operate on copies

of arguments.

25.9 Shared Arrays

Shared Arrays use system shared memory to map the same array across many processes. While there are

some similarities to a DArray, the behavior of a SharedArray is quite different. In a DArray, each process

has local access to just a chunk of the data, and no two processes share the same chunk; in contrast, in a

SharedArray each "participating" process has access to the entire array. A SharedArray is a good choice

when you want to have a large amount of data jointly accessible to two or more processes on the same

machine.

Shared Array support is available via module SharedArrays which must be explicitly loaded on all partici-

pating workers.

SharedArray indexing (assignment and accessing values) works just as with regular arrays, and is efficient

because the underlyingmemory is available to the local process. Therefore, most algorithms work naturally

on SharedArrays, albeit in single-process mode. In cases where an algorithm insists on an Array input, the

underlying array can be retrieved from a SharedArray by calling sdata. For other AbstractArray types,

sdata just returns the object itself, so it's safe to use sdata on any Array-type object.

The constructor for a shared array is of the form:

SharedArray{T,N}(dims::NTuple; init=false, pids=Int[])

which creates an N-dimensional shared array of a bits type T and size dims across the processes specified

by pids. Unlike distributed arrays, a shared array is accessible only from those participating workers

specified by the pids named argument (and the creating process too, if it is on the same host). Note that

only elements that are isbits are supported in a SharedArray.

If an init function, of signature initfn(S::SharedArray), is specified, it is called on all the participating

workers. You can specify that each worker runs the init function on a distinct portion of the array, thereby

parallelizing initialization.

Here's a brief example:

julia> using Distributed

julia> addprocs(3)

3-element Array{Int64,1}:

2

3

4

julia> @everywhere using SharedArrays

julia> S = SharedArray{Int,2}((3,4), init = S -> S[localindices(S)] = repeat([myid()],

length(localindices(S))))↪→

3×4 SharedArray{Int64,2}:

2 2 3 4

2 3 3 4

2 3 4 4

https://github.com/JuliaParallel/DistributedArrays.jl
https://github.com/JuliaParallel/DistributedArrays.jl

CHAPTER 25. MULTI-PROCESSING AND DISTRIBUTED COMPUTING 323

julia> S[3,2] = 7

7

julia> S

3×4 SharedArray{Int64,2}:

2 2 3 4

2 3 3 4

2 7 4 4

SharedArrays.localindices provides disjoint one-dimensional ranges of indices, and is sometimes con-

venient for splitting up tasks among processes. You can, of course, divide the work any way you wish:

julia> S = SharedArray{Int,2}((3,4), init = S -> S[indexpids(S):length(procs(S)):length(S)] =

repeat([myid()], length(indexpids(S):length(procs(S)):length(S))))↪→

3×4 SharedArray{Int64,2}:

2 2 2 2

3 3 3 3

4 4 4 4

Since all processes have access to the underlying data, you do have to be careful not to set up conflicts.

For example:

@sync begin

for p in procs(S)

@async begin

remotecall_wait(fill!, p, S, p)

end

end

end

would result in undefined behavior. Because each process fills the entire array with its own pid, whichever

process is the last to execute (for any particular element of S) will have its pid retained.

As a more extended and complex example, consider running the following "kernel" in parallel:

q[i,j,t+1] = q[i,j,t] + u[i,j,t]

In this case, if we try to split up the work using a one-dimensional index, we are likely to run into trouble:

if q[i,j,t] is near the end of the block assigned to one worker and q[i,j,t+1] is near the beginning of

the block assigned to another, it's very likely that q[i,j,t] will not be ready at the time it's needed for

computing q[i,j,t+1]. In such cases, one is better off chunking the array manually. Let's split along the

second dimension. Define a function that returns the (irange, jrange) indices assigned to this worker:

julia> @everywhere function myrange(q::SharedArray)

idx = indexpids(q)

if idx == 0 # This worker is not assigned a piece

return 1:0, 1:0

end

CHAPTER 25. MULTI-PROCESSING AND DISTRIBUTED COMPUTING 324

nchunks = length(procs(q))

splits = [round(Int, s) for s in range(0, stop=size(q,2), length=nchunks+1)]

1:size(q,1), splits[idx]+1:splits[idx+1]

end

Next, define the kernel:

julia> @everywhere function advection_chunk!(q, u, irange, jrange, trange)

@show (irange, jrange, trange) # display so we can see what's happening

for t in trange, j in jrange, i in irange

q[i,j,t+1] = q[i,j,t] + u[i,j,t]

end

q

end

We also define a convenience wrapper for a SharedArray implementation

julia> @everywhere advection_shared_chunk!(q, u) =

advection_chunk!(q, u, myrange(q)..., 1:size(q,3)-1)

Now let's compare three different versions, one that runs in a single process:

julia> advection_serial!(q, u) = advection_chunk!(q, u, 1:size(q,1), 1:size(q,2), 1:size(q,3)-1);

one that uses @distributed:

julia> function advection_parallel!(q, u)

for t = 1:size(q,3)-1

@sync @distributed for j = 1:size(q,2)

for i = 1:size(q,1)

q[i,j,t+1]= q[i,j,t] + u[i,j,t]

end

end

end

q

end;

and one that delegates in chunks:

julia> function advection_shared!(q, u)

@sync begin

for p in procs(q)

@async remotecall_wait(advection_shared_chunk!, p, q, u)

end

end

q

end;

If we create SharedArrays and time these functions, we get the following results (with julia -p 4):

CHAPTER 25. MULTI-PROCESSING AND DISTRIBUTED COMPUTING 325

julia> q = SharedArray{Float64,3}((500,500,500));

julia> u = SharedArray{Float64,3}((500,500,500));

Run the functions once to JIT-compile and @time them on the second run:

julia> @time advection_serial!(q, u);

(irange,jrange,trange) = (1:500,1:500,1:499)

830.220 milliseconds (216 allocations: 13820 bytes)

julia> @time advection_parallel!(q, u);

2.495 seconds (3999 k allocations: 289 MB, 2.09% gc time)

julia> @time advection_shared!(q,u);

From worker 2: (irange,jrange,trange) = (1:500,1:125,1:499)

From worker 4: (irange,jrange,trange) = (1:500,251:375,1:499)

From worker 3: (irange,jrange,trange) = (1:500,126:250,1:499)

From worker 5: (irange,jrange,trange) = (1:500,376:500,1:499)

238.119 milliseconds (2264 allocations: 169 KB)

The biggest advantage of advection_shared! is that it minimizes traffic among the workers, allowing

each to compute for an extended time on the assigned piece.

Shared Arrays and Distributed Garbage Collection

Like remote references, shared arrays are also dependent on garbage collection on the creating node to

release references from all participating workers. Code which creates many short lived shared array objects

would benefit from explicitly finalizing these objects as soon as possible. This results in both memory and

file handles mapping the shared segment being released sooner.

25.10 ClusterManagers

The launching, management and networking of Julia processes into a logical cluster is done via cluster

managers. A ClusterManager is responsible for

• launching worker processes in a cluster environment

• managing events during the lifetime of each worker

• optionally, providing data transport

A Julia cluster has the following characteristics:

• The initial Julia process, also called the master, is special and has an id of 1.

• Only the master process can add or remove worker processes.

• All processes can directly communicate with each other.

Connections between workers (using the in-built TCP/IP transport) is established in the following manner:

CHAPTER 25. MULTI-PROCESSING AND DISTRIBUTED COMPUTING 326

• addprocs is called on the master process with a ClusterManager object.

• addprocs calls the appropriate launch method which spawns required number of worker processes

on appropriate machines.

• Each worker starts listening on a free port and writes out its host and port information to stdout.

• The cluster manager captures the stdout of each worker and makes it available to the master pro-

cess.

• The master process parses this information and sets up TCP/IP connections to each worker.

• Every worker is also notified of other workers in the cluster.

• Each worker connects to all workers whose id is less than the worker's own id.

• In this way a mesh network is established, wherein every worker is directly connected with every

other worker.

While the default transport layer uses plain TCPSocket, it is possible for a Julia cluster to provide its own

transport.

Julia provides two in-built cluster managers:

• LocalManager, used when addprocs() or addprocs(np::Integer) are called

• SSHManager, used when addprocs(hostnames::Array) is called with a list of hostnames

LocalManager is used to launch additional workers on the same host, thereby leveraging multi-core and

multi-processor hardware.

Thus, a minimal cluster manager would need to:

• be a subtype of the abstract ClusterManager

• implement launch, a method responsible for launching new workers

• implement manage, which is called at various events during a worker's lifetime (for example, sending

an interrupt signal)

addprocs(manager::FooManager) requires FooManager to implement:

function launch(manager::FooManager, params::Dict, launched::Array, c::Condition)

[...]

end

function manage(manager::FooManager, id::Integer, config::WorkerConfig, op::Symbol)

[...]

end

As an example let us see how the LocalManager, the manager responsible for starting workers on the same

host, is implemented:

CHAPTER 25. MULTI-PROCESSING AND DISTRIBUTED COMPUTING 327

struct LocalManager <: ClusterManager

np::Integer

end

function launch(manager::LocalManager, params::Dict, launched::Array, c::Condition)

[...]

end

function manage(manager::LocalManager, id::Integer, config::WorkerConfig, op::Symbol)

[...]

end

The launch method takes the following arguments:

• manager::ClusterManager: the cluster manager that addprocs is called with

• params::Dict: all the keyword arguments passed to addprocs

• launched::Array: the array to append one or more WorkerConfig objects to

• c::Condition: the condition variable to be notified as and when workers are launched

The launchmethod is called asynchronously in a separate task. The termination of this task signals that all

requested workers have been launched. Hence the launch function MUST exit as soon as all the requested

workers have been launched.

Newly launched workers are connected to each other and the master process in an all-to-all manner. Spec-

ifying the command line argument --worker[=<cookie>] results in the launched processes initializing

themselves as workers and connections being set up via TCP/IP sockets.

All workers in a cluster share the same cookie as the master. When the cookie is unspecified, i.e, with the

--worker option, the worker tries to read it from its standard input. LocalManager and SSHManager both

pass the cookie to newly launched workers via their standard inputs.

By default a worker will listen on a free port at the address returned by a call to getipaddr(). A specific

address to listen on may be specified by optional argument --bind-to bind_addr[:port]. This is useful

for multi-homed hosts.

As an example of a non-TCP/IP transport, an implementationmay choose to use MPI, in which case --worker

must NOT be specified. Instead, newly launched workers should call init_worker(cookie) before using

any of the parallel constructs.

For every worker launched, the launch method must add a WorkerConfig object (with appropriate fields

initialized) to launched

mutable struct WorkerConfig

Common fields relevant to all cluster managers

io::Union{IO, Nothing}

host::Union{AbstractString, Nothing}

port::Union{Integer, Nothing}

Used when launching additional workers at a host

count::Union{Int, Symbol, Nothing}

CHAPTER 25. MULTI-PROCESSING AND DISTRIBUTED COMPUTING 328

exename::Union{AbstractString, Cmd, Nothing}

exeflags::Union{Cmd, Nothing}

External cluster managers can use this to store information at a per-worker level

Can be a dict if multiple fields need to be stored.

userdata::Any

SSHManager / SSH tunnel connections to workers

tunnel::Union{Bool, Nothing}

bind_addr::Union{AbstractString, Nothing}

sshflags::Union{Cmd, Nothing}

max_parallel::Union{Integer, Nothing}

Used by Local/SSH managers

connect_at::Any

[...]

end

Most of the fields in WorkerConfig are used by the inbuilt managers. Custom cluster managers would

typically specify only io or host / port:

• If io is specified, it is used to read host/port information. A Julia worker prints out its bind address

and port at startup. This allows Julia workers to listen on any free port available instead of requiring

worker ports to be configured manually.

• If io is not specified, host and port are used to connect.

• count, exename and exeflags are relevant for launching additional workers from a worker. For

example, a cluster manager may launch a single worker per node, and use that to launch additional

workers.

– count with an integer value n will launch a total of n workers.

– count with a value of :auto will launch as many workers as the number of CPU threads (logical

cores) on that machine.

– exename is the name of the julia executable including the full path.

– exeflags should be set to the required command line arguments for new workers.

• tunnel, bind_addr, sshflags and max_parallel are used when a ssh tunnel is required to connect

to the workers from the master process.

• userdata is provided for custom cluster managers to store their own worker-specific information.

manage(manager::FooManager, id::Integer, config::WorkerConfig, op::Symbol) is called at differ-

ent times during the worker's lifetime with appropriate op values:

• with :register/:deregister when a worker is added / removed from the Julia worker pool.

• with :interrupt when interrupt(workers) is called. The ClusterManager should signal the ap-

propriate worker with an interrupt signal.

• with :finalize for cleanup purposes.

CHAPTER 25. MULTI-PROCESSING AND DISTRIBUTED COMPUTING 329

Cluster Managers with Custom Transports

Replacing the default TCP/IP all-to-all socket connections with a custom transport layer is a little more

involved. Each Julia process has as many communication tasks as the workers it is connected to. For

example, consider a Julia cluster of 32 processes in an all-to-all mesh network:

• Each Julia process thus has 31 communication tasks.

• Each task handles all incoming messages from a single remote worker in a message-processing loop.

• The message-processing loop waits on an IO object (for example, a TCPSocket in the default imple-

mentation), reads an entire message, processes it and waits for the next one.

• Sendingmessages to a process is done directly from any Julia task–not just communication tasks–again,

via the appropriate IO object.

Replacing the default transport requires the new implementation to set up connections to remote workers

and to provide appropriate IO objects that themessage-processing loops can wait on. Themanager-specific

callbacks to be implemented are:

connect(manager::FooManager, pid::Integer, config::WorkerConfig)

kill(manager::FooManager, pid::Int, config::WorkerConfig)

The default implementation (which uses TCP/IP sockets) is implemented as connect(manager::ClusterManager,

pid::Integer, config::WorkerConfig).

connect should return a pair of IO objects, one for reading data sent from worker pid, and the other to write

data that needs to be sent to worker pid. Custom cluster managers can use an in-memory BufferStream

as the plumbing to proxy data between the custom, possibly non-IO transport and Julia's in-built parallel

infrastructure.

A BufferStream is an in-memory IOBuffer which behaves like an IO–it is a stream which can be handled

asynchronously.

The folder clustermanager/0mq in the Examples repository contains an example of using ZeroMQ to con-

nect Julia workers in a star topology with a 0MQ broker in the middle. Note: The Julia processes are still all

logically connected to each other–any worker can message any other worker directly without any aware-

ness of 0MQ being used as the transport layer.

When using custom transports:

• Julia workers must NOT be started with --worker. Starting with --worker will result in the newly

launched workers defaulting to the TCP/IP socket transport implementation.

• For every incoming logical connection with a worker, Base.process_messages(rd::IO, wr::IO)()

must be called. This launches a new task that handles reading and writing of messages from/to the

worker represented by the IO objects.

• init_worker(cookie, manager::FooManager) must be called as part of worker process initializa-

tion.

https://github.com/JuliaAttic/Examples

CHAPTER 25. MULTI-PROCESSING AND DISTRIBUTED COMPUTING 330

• Field connect_at::Any in WorkerConfig can be set by the cluster manager when launch is called.

The value of this field is passed in all connect callbacks. Typically, it carries information on how to

connect to a worker. For example, the TCP/IP socket transport uses this field to specify the (host,

port) tuple at which to connect to a worker.

kill(manager, pid, config) is called to remove a worker from the cluster. On the master process, the

corresponding IO objects must be closed by the implementation to ensure proper cleanup. The default

implementation simply executes an exit() call on the specified remote worker.

The Examples folder clustermanager/simple is an example that shows a simple implementation using

UNIX domain sockets for cluster setup.

Network Requirements for LocalManager and SSHManager

Julia clusters are designed to be executed on already secured environments on infrastructure such as local

laptops, departmental clusters, or even the cloud. This section covers network security requirements for

the inbuilt LocalManager and SSHManager:

• The master process does not listen on any port. It only connects out to the workers.

• Each worker binds to only one of the local interfaces and listens on an ephemeral port number

assigned by the OS.

• LocalManager, used by addprocs(N), by default binds only to the loopback interface. This means

that workers started later on remote hosts (or by anyone with malicious intentions) are unable to

connect to the cluster. An addprocs(4) followed by an addprocs(["remote_host"]) will fail. Some

users may need to create a cluster comprising their local system and a few remote systems. This

can be done by explicitly requesting LocalManager to bind to an external network interface via the

restrict keyword argument: addprocs(4; restrict=false).

• SSHManager, used by addprocs(list_of_remote_hosts), launches workers on remote hosts via

SSH. By default SSH is only used to launch Julia workers. Subsequent master-worker and worker-

worker connections use plain, unencrypted TCP/IP sockets. The remote hosts must have password-

less login enabled. Additional SSH flags or credentials may be specified via keyword argument

sshflags.

• addprocs(list_of_remote_hosts; tunnel=true, sshflags=<ssh keys and other flags>) is use-

ful when we wish to use SSH connections for master-worker too. A typical scenario for this is a local

laptop running the Julia REPL (i.e., the master) with the rest of the cluster on the cloud, say on

Amazon EC2. In this case only port 22 needs to be opened at the remote cluster coupled with SSH

client authenticated via public key infrastructure (PKI). Authentication credentials can be supplied

via sshflags, for example sshflags=`-i <keyfile>`.

In an all-to-all topology (the default), all workers connect to each other via plain TCP sockets. The

security policy on the cluster nodes must thus ensure free connectivity between workers for the

ephemeral port range (varies by OS).

Securing and encrypting all worker-worker traffic (via SSH) or encrypting individual messages can

be done via a custom ClusterManager.

• If you specify multiplex=true as an option to addprocs, SSH multiplexing is used to create a tunnel

between the master and workers. If you have configured SSH multiplexing on your own and the

CHAPTER 25. MULTI-PROCESSING AND DISTRIBUTED COMPUTING 331

connection has already been established, SSH multiplexing is used regardless of multiplex option.

If multiplexing is enabled, forwarding is set by using the existing connection (-O forward option

in ssh). This is beneficial if your servers require password authentication; you can avoid authen-

tication in Julia by logging in to the server ahead of addprocs. The control socket will be located

at ~/.ssh/julia-%r@%h:%p during the session unless the existing multiplexing connection is used.

Note that bandwidth may be limited if you create multiple processes on a node and enable multi-

plexing, because in that case processes share a single multiplexing TCP connection.

Cluster Cookie

All processes in a cluster share the same cookie which, by default, is a randomly generated string on the

master process:

• cluster_cookie() returns the cookie, while cluster_cookie(cookie)() sets it and returns the new

cookie.

• All connections are authenticated on both sides to ensure that only workers started by the master

are allowed to connect to each other.

• The cookie may be passed to the workers at startup via argument --worker=<cookie>. If argument

--worker is specified without the cookie, the worker tries to read the cookie from its standard input

(stdin). The stdin is closed immediately after the cookie is retrieved.

• ClusterManagers can retrieve the cookie on the master by calling cluster_cookie(). Cluster

managers not using the default TCP/IP transport (and hence not specifying --worker) must call

init_worker(cookie, manager) with the same cookie as on the master.

Note that environments requiring higher levels of security can implement this via a custom ClusterManager.

For example, cookies can be pre-shared and hence not specified as a startup argument.

25.11 Specifying Network Topology (Experimental)

The keyword argument topology passed to addprocs is used to specify how the workersmust be connected

to each other:

• :all_to_all, the default: all workers are connected to each other.

• :master_worker: only the driver process, i.e. pid 1, has connections to the workers.

• :custom: the launchmethod of the cluster manager specifies the connection topology via the fields

ident and connect_idents in WorkerConfig. A worker with a cluster-manager-provided identity

ident will connect to all workers specified in connect_idents.

Keyword argument lazy=true|false only affects topology option :all_to_all. If true, the cluster starts

off with the master connected to all workers. Specific worker-worker connections are established at the first

remote invocation between two workers. This helps in reducing initial resources allocated for intra-cluster

communication. Connections are setup depending on the runtime requirements of a parallel program.

Default value for lazy is true.

Currently, sending a message between unconnected workers results in an error. This behaviour, as with

the functionality and interface, should be considered experimental in nature and may change in future

releases.

CHAPTER 25. MULTI-PROCESSING AND DISTRIBUTED COMPUTING 332

25.12 Noteworthy external packages

Outside of Julia parallelism there are plenty of external packages that should be mentioned. For example

MPI.jl is a Julia wrapper for the MPI protocol, Dagger.jl provides functionality similar to Python's Dask, and

DistributedArrays.jl provides array operations distributed across workers, as presented in Shared Arrays.

A mention must be made of Julia's GPU programming ecosystem, which includes:

1. CUDA.jl wraps the various CUDA libraries and supports compiling Julia kernels for Nvidia GPUs.

2. oneAPI.jl wraps the oneAPI unified programming model, and supports executing Julia kernels on sup-

ported accelerators. Currently only Linux is supported.

3. AMDGPU.jl wraps the AMD ROCm libraries and supports compiling Julia kernels for AMD GPUs. Cur-

rently only Linux is supported.

4. High-level libraries like KernelAbstractions.jl, Tullio.jl and ArrayFire.jl.

In the following example we will use both DistributedArrays.jl and CUDA.jl to distribute an array across

multiple processes by first casting it through distribute() and CuArray().

Remember when importing DistributedArrays.jl to import it across all processes using @everywhere

$./julia -p 4

julia> addprocs()

julia> @everywhere using DistributedArrays

julia> using CUDA

julia> B = ones(10_000) ./ 2;

julia> A = ones(10_000) .* π;

julia> C = 2 .* A ./ B;

julia> all(C .≈ 4*π)

true

julia> typeof(C)

Array{Float64,1}

julia> dB = distribute(B);

julia> dA = distribute(A);

julia> dC = 2 .* dA ./ dB;

julia> all(dC .≈ 4*π)

true

julia> typeof(dC)

https://github.com/JuliaParallel/MPI.jl
https://github.com/JuliaParallel/Dagger.jl
https://dask.org/
https://github.com/JuliaParallel/Distributedarrays.jl
https://github.com/JuliaGPU/CUDA.jl
https://github.com/JuliaGPU/oneAPI.jl
https://github.com/JuliaGPU/AMDGPU.jl
https://github.com/JuliaGPU/KernelAbstractions.jl
https://github.com/mcabbott/Tullio.jl
https://github.com/JuliaComputing/ArrayFire.jl

CHAPTER 25. MULTI-PROCESSING AND DISTRIBUTED COMPUTING 333

DistributedArrays.DArray{Float64,1,Array{Float64,1}}

julia> cuB = CuArray(B);

julia> cuA = CuArray(A);

julia> cuC = 2 .* cuA ./ cuB;

julia> all(cuC .≈ 4*π);

true

julia> typeof(cuC)

CuArray{Float64,1}

In the following example we will use both DistributedArrays.jl and CUDA.jl to distribute an array across

multiple processes and call a generic function on it.

function power_method(M, v)

for i in 1:100

v = M*v

v /= norm(v)

end

return v, norm(M*v) / norm(v) # or (M*v) ./ v

end

power_method repeatedly creates a new vector and normalizes it. We have not specified any type signature

in function declaration, let's see if it works with the aforementioned datatypes:

julia> M = [2. 1; 1 1];

julia> v = rand(2)

2-element Array{Float64,1}:

0.40395

0.445877

julia> power_method(M,v)

([0.850651, 0.525731], 2.618033988749895)

julia> cuM = CuArray(M);

julia> cuv = CuArray(v);

julia> curesult = power_method(cuM, cuv);

julia> typeof(curesult)

CuArray{Float64,1}

julia> dM = distribute(M);

julia> dv = distribute(v);

CHAPTER 25. MULTI-PROCESSING AND DISTRIBUTED COMPUTING 334

julia> dC = power_method(dM, dv);

julia> typeof(dC)

Tuple{DistributedArrays.DArray{Float64,1,Array{Float64,1}},Float64}

To end this short exposure to external packages, we can consider MPI.jl, a Julia wrapper of the MPI protocol.

As it would take too long to consider every inner function, it would be better to simply appreciate the

approach used to implement the protocol.

Consider this toy script which simply calls each subprocess, instantiate its rank and when the master

process is reached, performs the ranks' sum

import MPI

MPI.Init()

comm = MPI.COMM_WORLD

MPI.Barrier(comm)

root = 0

r = MPI.Comm_rank(comm)

sr = MPI.Reduce(r, MPI.SUM, root, comm)

if(MPI.Comm_rank(comm) == root)

@printf("sum of ranks: %s\n", sr)

end

MPI.Finalize()

mpirun -np 4 ./julia example.jl

1In this context, MPI refers to the MPI-1 standard. Beginning with MPI-2, the MPI standards committee introduced a new set

of communication mechanisms, collectively referred to as Remote Memory Access (RMA). The motivation for adding rma to the MPI

standard was to facilitate one-sided communication patterns. For additional information on the latest MPI standard, see https://mpi-

forum.org/docs.

https://mpi-forum.org/docs
https://mpi-forum.org/docs

Chapter 26

Running External Programs

Julia borrows backtick notation for commands from the shell, Perl, and Ruby. However, in Julia, writing

julia> `echo hello`

`echo hello`

differs in several aspects from the behavior in various shells, Perl, or Ruby:

• Instead of immediately running the command, backticks create a Cmd object to represent the com-

mand. You can use this object to connect the command to others via pipes, run it, and read or write

to it.

• When the command is run, Julia does not capture its output unless you specifically arrange for it to.

Instead, the output of the command by default goes to stdout as it would using libc's system call.

• The command is never run with a shell. Instead, Julia parses the command syntax directly, appro-

priately interpolating variables and splitting on words as the shell would, respecting shell quoting

syntax. The command is run as julia's immediate child process, using fork and exec calls.

Note

The following assumes a Posix environment as on Linux or MacOS. On Windows, many similar

commands, such as echo and dir, are not external programs and instead are built into the

shell cmd.exe itself. One option to run these commands is to invoke cmd.exe, for example cmd

/C echo hello. Alternatively Julia can be run inside a Posix environment such as Cygwin.

Here's a simple example of running an external program:

julia> mycommand = `echo hello`

`echo hello`

julia> typeof(mycommand)

Cmd

julia> run(mycommand);

hello

335

CHAPTER 26. RUNNING EXTERNAL PROGRAMS 336

The hello is the output of the echo command, sent to stdout. If the external command fails to run

successfully, the run method throws an ProcessFailedException.

If you want to read the output of the external command, read or readchomp can be used instead:

julia> read(`echo hello`, String)

"hello\n"

julia> readchomp(`echo hello`)

"hello"

More generally, you can use open to read from or write to an external command.

julia> open(`less`, "w", stdout) do io

for i = 1:3

println(io, i)

end

end

1

2

3

The program name and the individual arguments in a command can be accessed and iterated over as if

the command were an array of strings:

julia> collect(`echo "foo bar"`)

2-element Vector{String}:

"echo"

"foo bar"

julia> `echo "foo bar"`[2]

"foo bar"

26.1 Interpolation

Suppose you want to do something a bit more complicated and use the name of a file in the variable file

as an argument to a command. You can use $ for interpolation much as you would in a string literal (see

Strings):

julia> file = "/etc/passwd"

"/etc/passwd"

julia> `sort $file`

`sort /etc/passwd`

A common pitfall when running external programs via a shell is that if a file name contains characters

that are special to the shell, they may cause undesirable behavior. Suppose, for example, rather than

/etc/passwd, we wanted to sort the contents of the file /Volumes/External HD/data.csv. Let's try it:

CHAPTER 26. RUNNING EXTERNAL PROGRAMS 337

julia> file = "/Volumes/External HD/data.csv"

"/Volumes/External HD/data.csv"

julia> `sort $file`

`sort '/Volumes/External HD/data.csv'`

How did the file name get quoted? Julia knows that file is meant to be interpolated as a single argument,

so it quotes the word for you. Actually, that is not quite accurate: the value of file is never interpreted

by a shell, so there's no need for actual quoting; the quotes are inserted only for presentation to the user.

This will even work if you interpolate a value as part of a shell word:

julia> path = "/Volumes/External HD"

"/Volumes/External HD"

julia> name = "data"

"data"

julia> ext = "csv"

"csv"

julia> `sort $path/$name.$ext`

`sort '/Volumes/External HD/data.csv'`

As you can see, the space in the path variable is appropriately escaped. But what if you want to interpolate

multiple words? In that case, just use an array (or any other iterable container):

julia> files = ["/etc/passwd","/Volumes/External HD/data.csv"]

2-element Vector{String}:

"/etc/passwd"

"/Volumes/External HD/data.csv"

julia> `grep foo $files`

`grep foo /etc/passwd '/Volumes/External HD/data.csv'`

If you interpolate an array as part of a shell word, Julia emulates the shell's {a,b,c} argument generation:

julia> names = ["foo","bar","baz"]

3-element Vector{String}:

"foo"

"bar"

"baz"

julia> `grep xylophone $names.txt`

`grep xylophone foo.txt bar.txt baz.txt`

Moreover, if you interpolate multiple arrays into the same word, the shell's Cartesian product generation

behavior is emulated:

CHAPTER 26. RUNNING EXTERNAL PROGRAMS 338

julia> names = ["foo","bar","baz"]

3-element Vector{String}:

"foo"

"bar"

"baz"

julia> exts = ["aux","log"]

2-element Vector{String}:

"aux"

"log"

julia> `rm -f $names.$exts`

`rm -f foo.aux foo.log bar.aux bar.log baz.aux baz.log`

Since you can interpolate literal arrays, you can use this generative functionality without needing to create

temporary array objects first:

julia> `rm -rf $["foo","bar","baz","qux"].$["aux","log","pdf"]`

`rm -rf foo.aux foo.log foo.pdf bar.aux bar.log bar.pdf baz.aux baz.log baz.pdf qux.aux qux.log

qux.pdf`↪→

26.2 Quoting

Inevitably, one wants to write commands that aren't quite so simple, and it becomes necessary to use

quotes. Here's a simple example of a Perl one-liner at a shell prompt:

sh$ perl -le '$|=1; for (0..3) { print }'

0

1

2

3

The Perl expression needs to be in single quotes for two reasons: so that spaces don't break the expression

into multiple shell words, and so that uses of Perl variables like $| (yes, that's the name of a variable in

Perl), don't cause interpolation. In other instances, you may want to use double quotes so that interpolation

does occur:

sh$ first="A"

sh$ second="B"

sh$ perl -le '$|=1; print for @ARGV' "1: $first" "2: $second"

1: A

2: B

In general, the Julia backtick syntax is carefully designed so that you can just cut-and-paste shell commands

as is into backticks and they will work: the escaping, quoting, and interpolation behaviors are the same as

the shell's. The only difference is that the interpolation is integrated and aware of Julia's notion of what is

a single string value, and what is a container for multiple values. Let's try the above two examples in Julia:

julia> A = `perl -le '$|=1; for (0..3) { print }'`

`perl -le '$|=1; for (0..3) { print }'`

julia> run(A);

CHAPTER 26. RUNNING EXTERNAL PROGRAMS 339

0

1

2

3

julia> first = "A"; second = "B";

julia> B = `perl -le 'print for @ARGV' "1: $first" "2: $second"`

`perl -le 'print for @ARGV' '1: A' '2: B'`

julia> run(B);

1: A

2: B

The results are identical, and Julia's interpolation behavior mimics the shell's with some improvements

due to the fact that Julia supports first-class iterable objects while most shells use strings split on spaces

for this, which introduces ambiguities. When trying to port shell commands to Julia, try cut and pasting

first. Since Julia shows commands to you before running them, you can easily and safely just examine its

interpretation without doing any damage.

26.3 Pipelines

Shell metacharacters, such as |, &, and >, need to be quoted (or escaped) inside of Julia's backticks:

julia> run(`echo hello '|' sort`);

hello | sort

julia> run(`echo hello \| sort`);

hello | sort

This expression invokes the echo command with three words as arguments: hello, |, and sort. The result

is that a single line is printed: hello | sort. How, then, does one construct a pipeline? Instead of using

'|' inside of backticks, one uses pipeline:

julia> run(pipeline(`echo hello`, `sort`));

hello

This pipes the output of the echo command to the sort command. Of course, this isn't terribly interesting

since there's only one line to sort, but we can certainly do much more interesting things:

julia> run(pipeline(`cut -d: -f3 /etc/passwd`, `sort -n`, `tail -n5`))

210

211

212

213

214

This prints the highest five user IDs on a UNIX system. The cut, sort and tail commands are all spawned

as immediate children of the current julia process, with no intervening shell process. Julia itself does the

CHAPTER 26. RUNNING EXTERNAL PROGRAMS 340

work to setup pipes and connect file descriptors that is normally done by the shell. Since Julia does this

itself, it retains better control and can do some things that shells cannot.

Julia can run multiple commands in parallel:

julia> run(`echo hello` & `echo world`);

world

hello

The order of the output here is non-deterministic because the two echo processes are started nearly simul-

taneously, and race to make the first write to the stdout descriptor they share with each other and the

julia parent process. Julia lets you pipe the output from both of these processes to another program:

julia> run(pipeline(`echo world` & `echo hello`, `sort`));

hello

world

In terms of UNIX plumbing, what's happening here is that a single UNIX pipe object is created and written

to by both echo processes, and the other end of the pipe is read from by the sort command.

IO redirection can be accomplished by passing keyword arguments stdin, stdout, and stderr to the

pipeline function:

pipeline(`do_work`, stdout=pipeline(`sort`, "out.txt"), stderr="errs.txt")

Avoiding Deadlock in Pipelines

When reading and writing to both ends of a pipeline from a single process, it is important to avoid forcing

the kernel to buffer all of the data.

For example, when reading all of the output from a command, call read(out, String), not wait(process),

since the former will actively consume all of the data written by the process, whereas the latter will attempt

to store the data in the kernel's buffers while waiting for a reader to be connected.

Another common solution is to separate the reader and writer of the pipeline into separate Tasks:

writer = @async write(process, "data")

reader = @async do_compute(read(process, String))

wait(writer)

fetch(reader)

(commonly also, reader is not a separate task, since we immediately fetch it anyways).

Complex Example

The combination of a high-level programming language, a first-class command abstraction, and automatic

setup of pipes between processes is a powerful one. To give some sense of the complex pipelines that can

be created easily, here are some more sophisticated examples, with apologies for the excessive use of Perl

one-liners:

CHAPTER 26. RUNNING EXTERNAL PROGRAMS 341

julia> prefixer(prefix, sleep) = `perl -nle '$|=1; print "'$prefix' ", $_; sleep '$sleep';'`;

julia> run(pipeline(`perl -le '$|=1; for(0..5){ print; sleep 1 }'`, prefixer("A",2) &

prefixer("B",2)));↪→

B 0

A 1

B 2

A 3

B 4

A 5

This is a classic example of a single producer feeding two concurrent consumers: one perl process gen-

erates lines with the numbers 0 through 5 on them, while two parallel processes consume that output,

one prefixing lines with the letter "A", the other with the letter "B". Which consumer gets the first line is

non-deterministic, but once that race has been won, the lines are consumed alternately by one process

and then the other. (Setting $|=1 in Perl causes each print statement to flush the stdout handle, which is

necessary for this example to work. Otherwise all the output is buffered and printed to the pipe at once,

to be read by just one consumer process.)

Here is an even more complex multi-stage producer-consumer example:

julia> run(pipeline(`perl -le '$|=1; for(0..5){ print; sleep 1 }'`,

prefixer("X",3) & prefixer("Y",3) & prefixer("Z",3),

prefixer("A",2) & prefixer("B",2)));

A X 0

B Y 1

A Z 2

B X 3

A Y 4

B Z 5

This example is similar to the previous one, except there are two stages of consumers, and the stages have

different latency so they use a different number of parallel workers, to maintain saturated throughput.

We strongly encourage you to try all these examples to see how they work.

26.4 Cmd Objects

The backtick syntax create an object of type Cmd. Such object may also be constructed directly from an

existing Cmd or list of arguments:

run(Cmd(`pwd`, dir=".."))

run(Cmd(["pwd"], detach=true, ignorestatus=true))

This allows you to specify several aspects of the Cmd's execution environment via keyword arguments. For

example, the dir keyword provides control over the Cmd's working directory:

julia> run(Cmd(`pwd`, dir="/"));

/

CHAPTER 26. RUNNING EXTERNAL PROGRAMS 342

And the env keyword allows you to set execution environment variables:

julia> run(Cmd(`sh -c "echo foo \$HOWLONG"`, env=("HOWLONG" => "ever!",)));

foo ever!

See Cmd for additional keyword arguments. The setenv and addenv commands provide another means for

replacing or adding to the Cmd execution environment variables, respectively:

julia> run(setenv(`sh -c "echo foo \$HOWLONG"`, ("HOWLONG" => "ever!",)));

foo ever!

julia> run(addenv(`sh -c "echo foo \$HOWLONG"`, "HOWLONG" => "ever!"));

foo ever!

Chapter 27

Calling C and Fortran Code

Though most code can be written in Julia, there are many high-quality, mature libraries for numerical com-

puting already written in C and Fortran. To allow easy use of this existing code, Julia makes it simple and

efficient to call C and Fortran functions. Julia has a "no boilerplate" philosophy: functions can be called

directly from Julia without any "glue" code, code generation, or compilation – even from the interactive

prompt. This is accomplished just by making an appropriate call with the @ccall macro (or the less con-

venient ccall syntax, see the ccall syntax section).

The code to be called must be available as a shared library. Most C and Fortran libraries ship compiled as

shared libraries already, but if you are compiling the code yourself using GCC (or Clang), you will need to

use the -shared and -fPIC options. The machine instructions generated by Julia's JIT are the same as a

native C call would be, so the resulting overhead is the same as calling a library function from C code. 1

By default, Fortran compilers generate mangled names (for example, converting function names to lower-

case or uppercase, often appending an underscore), and so to call a Fortran function you must pass the

mangled identifier corresponding to the rule followed by your Fortran compiler. Also, when calling a Fortran

function, all inputs must be passed as pointers to allocated values on the heap or stack. This applies not

only to arrays and other mutable objects which are normally heap-allocated, but also to scalar values such

as integers and floats which are normally stack-allocated and commonly passed in registers when using C

or Julia calling conventions.

The syntax for @ccall to generate a call to the library function is:

@ccall library.function_name(argvalue1::argtype1, ...)::returntype

@ccall function_name(argvalue1::argtype1, ...)::returntype

@ccall $function_pointer(argvalue1::argtype1, ...)::returntype

where library is a string constant or literal (but see Non-constant Function Specifications below). The

library may be omitted, in which case the function name is resolved in the current process. This form can

be used to call C library functions, functions in the Julia runtime, or functions in an application linked to

Julia. The full path to the library may also be specified. Alternatively, @ccall may also be used to call a

function pointer $function_pointer, such as one returned by Libdl.dlsym. The argtypes corresponds to

the C-function signature and the argvalues are the actual argument values to be passed to the function.

Note

See below for how to map C types to Julia types.

343

https://en.wikipedia.org/wiki/Name_mangling#Fortran

CHAPTER 27. CALLING C AND FORTRAN CODE 344

As a complete but simple example, the following calls the clock function from the standard C library on

most Unix-derived systems:

julia> t = @ccall clock()::Int32

2292761

julia> typeof(t)

Int32

clock takes no arguments and returns an Int32. To call the getenv function to get a pointer to the value

of an environment variable, one makes a call like this:

julia> path = @ccall getenv("SHELL"::Cstring)::Cstring

Cstring(@0x00007fff5fbffc45)

julia> unsafe_string(path)

"/bin/bash"

In practice, especially when providing reusable functionality, one generally wraps @ccall uses in Julia

functions that set up arguments and then check for errors in whatever manner the C or Fortran function

specifies. And if an error occurs it is thrown as a normal Julia exception. This is especially important since

C and Fortran APIs are notoriously inconsistent about how they indicate error conditions. For example,

the getenv C library function is wrapped in the following Julia function, which is a simplified version of the

actual definition from env.jl:

function getenv(var::AbstractString)

val = @ccall getenv(var::Cstring)::Cstring

if val == C_NULL

error("getenv: undefined variable: ", var)

end

return unsafe_string(val)

end

The C getenv function indicates an error by returning C_NULL, but other standard C functions indicate

errors in different ways, including by returning -1, 0, 1, and other special values. This wrapper throws an

exception indicating the problem if the caller tries to get a non-existent environment variable:

julia> getenv("SHELL")

"/bin/bash"

julia> getenv("FOOBAR")

ERROR: getenv: undefined variable: FOOBAR

Here is a slightly more complex example that discovers the local machine's hostname.

function gethostname()

hostname = Vector{UInt8}(undef, 256) # MAXHOSTNAMELEN

err = @ccall gethostname(hostname::Ptr{UInt8}, sizeof(hostname)::Csize_t)::Int32

https://github.com/JuliaLang/julia/blob/master/base/env.jl

CHAPTER 27. CALLING C AND FORTRAN CODE 345

Base.systemerror("gethostname", err != 0)

hostname[end] = 0 # ensure null-termination

return GC.@preserve hostname unsafe_string(pointer(hostname))

end

This example first allocates an array of bytes. It then calls the C library function gethostname to populate

the array with the hostname. Finally, it takes a pointer to the hostname buffer, and converts the pointer to

a Julia string, assuming that it is a null-terminated C string.

It is common for C libraries to use this pattern of requiring the caller to allocate memory to be passed to

the callee and populated. Allocation of memory from Julia like this is generally accomplished by creating an

uninitialized array and passing a pointer to its data to the C function. This is why we don't use the Cstring

type here: as the array is uninitialized, it could contain null bytes. Converting to a Cstring as part of the

@ccall checks for contained null bytes and could therefore throw a conversion error.

Dereferencing pointer(hostname) with unsafe_string is an unsafe operation as it requires access to

the memory allocated for hostname that may have been in the meanwhile garbage collected. The macro

GC.@preserve prevents this from happening and therefore accessing an invalid memory location.

Finally, here is an example of specifying a library via a path. We create a shared library with the following

content

#include <stdio.h>

void say_y(int y)

{

printf("Hello from C: got y = %d.\n", y);

}

and compile it with gcc -fPIC -shared -o mylib.so mylib.c. It can then be called by specifying the

(absolute) path as the library name:

julia> @ccall "./mylib.so".say_y(5::Cint)::Cvoid

Hello from C: got y = 5.

27.1 Creating C-Compatible Julia Function Pointers

It is possible to pass Julia functions to native C functions that accept function pointer arguments. For

example, to match C prototypes of the form:

typedef returntype (*functiontype)(argumenttype, ...)

The macro @cfunction generates the C-compatible function pointer for a call to a Julia function. The

arguments to @cfunction are:

1. A Julia function

2. The function's return type

3. A tuple of input types, corresponding to the function signature

Note

As with @ccall, the return type and the input types must be literal constants.

CHAPTER 27. CALLING C AND FORTRAN CODE 346

Note

Currently, only the platform-default C calling convention is supported. Thismeans that @cfunction-

generated pointers cannot be used in calls where WINAPI expects a stdcall function on 32-bit

Windows, but can be used on WIN64 (where stdcall is unified with the C calling convention).

Note

Callback functions exposed via @cfunction should not throw errors, as that will return control

to the Julia runtime unexpectedly and may leave the program in an undefined state.

A classic example is the standard C library qsort function, declared as:

void qsort(void *base, size_t nitems, size_t size,

int (*compare)(const void*, const void*));

The base argument is a pointer to an array of length nitems, with elements of size bytes each. compare is

a callback function which takes pointers to two elements a and b and returns an integer less/greater than

zero if a should appear before/after b (or zero if any order is permitted).

Now, suppose that we have a 1-d array A of values in Julia that we want to sort using the qsort function

(rather than Julia's built-in sort function). Before we consider calling qsort and passing arguments, we

need to write a comparison function:

julia> function mycompare(a, b)::Cint

return (a < b) ? -1 : ((a > b) ? +1 : 0)

end;

qsort expects a comparison function that return a C int, so we annotate the return type to be Cint.

In order to pass this function to C, we obtain its address using the macro @cfunction:

julia> mycompare_c = @cfunction(mycompare, Cint, (Ref{Cdouble}, Ref{Cdouble}));

@cfunction requires three arguments: the Julia function (mycompare), the return type (Cint), and a literal

tuple of the input argument types, in this case to sort an array of Cdouble (Float64) elements.

The final call to qsort looks like this:

julia> A = [1.3, -2.7, 4.4, 3.1];

julia> @ccall qsort(A::Ptr{Cdouble}, length(A)::Csize_t, sizeof(eltype(A))::Csize_t,

mycompare_c::Ptr{Cvoid})::Cvoid↪→

julia> A

4-element Vector{Float64}:

-2.7

1.3

3.1

4.4

CHAPTER 27. CALLING C AND FORTRAN CODE 347

As the example shows, the original Julia array A has now been sorted: [-2.7, 1.3, 3.1, 4.4]. Note that

Julia takes care of converting the array to a Ptr{Cdouble}), computing the size of the element type in

bytes, and so on.

For fun, try inserting a println("mycompare($a, $b)") line into mycompare, which will allow you to see

the comparisons that qsort is performing (and to verify that it is really calling the Julia function that you

passed to it).

27.2 Mapping C Types to Julia

It is critical to exactly match the declared C type with its declaration in Julia. Inconsistencies can cause

code that works correctly on one system to fail or produce indeterminate results on a different system.

Note that no C header files are used anywhere in the process of calling C functions: you are responsible

for making sure that your Julia types and call signatures accurately reflect those in the C header file.2

Automatic Type Conversion

Julia automatically inserts calls to the Base.cconvert function to convert each argument to the specified

type. For example, the following call:

@ccall "libfoo".foo(x::Int32, y::Float64)::Cvoid

will behave as if it were written like this:

@ccall "libfoo".foo(

Base.unsafe_convert(Int32, Base.cconvert(Int32, x))::Int32,

Base.unsafe_convert(Float64, Base.cconvert(Float64, y))::Float64

)::Cvoid

Base.cconvert normally just calls convert, but can be defined to return an arbitrary new object more

appropriate for passing to C. This should be used to perform all allocations of memory that will be accessed

by the C code. For example, this is used to convert an Array of objects (e.g. strings) to an array of pointers.

Base.unsafe_convert handles conversion to Ptr types. It is considered unsafe because converting an

object to a native pointer can hide the object from the garbage collector, causing it to be freed prematurely.

Type Correspondences

First, let's review some relevant Julia type terminology:

Bits Types

There are several special types to be aware of, as no other type can be defined to behave the same:

• Float32

Exactly corresponds to the float type in C (or REAL*4 in Fortran).

• Float64

Exactly corresponds to the double type in C (or REAL*8 in Fortran).

CHAPTER 27. CALLING C AND FORTRAN CODE 348

Syntax /

Keyword

Example Description

mutable

struct

BitSet "Leaf Type" :: A group of related data that includes a type-tag, is

managed by the Julia GC, and is defined by object-identity. The type

parameters of a leaf type must be fully defined (no TypeVars are

allowed) in order for the instance to be constructed.

abstract

type

Any,

AbstractArray{T,

N}, Complex{T}

"Super Type" :: A super-type (not a leaf-type) that cannot be

instantiated, but can be used to describe a group of types.

T{A} Vector{Int} "Type Parameter" :: A specialization of a type (typically used for

dispatch or storage optimization).

"TypeVar" :: The T in the type parameter declaration is referred to as a

TypeVar (short for type variable).

primitive

type

Int, Float64 "Primitive Type" :: A type with no fields, but a size. It is stored and

defined by-value.

struct Pair{Int, Int} "Struct" :: A type with all fields defined to be constant. It is defined

by-value, and may be stored with a type-tag.

ComplexF64

(isbits)

"Is-Bits" :: A primitive type, or a struct type where all fields are

other isbits types. It is defined by-value, and is stored without a

type-tag.

struct

...;

end

nothing "Singleton" :: a Leaf Type or Struct with no fields.

(...) or

tuple(...)

(1, 2, 3) "Tuple" :: an immutable data-structure similar to an anonymous struct

type, or a constant array. Represented as either an array or a struct.

• ComplexF32

Exactly corresponds to the complex float type in C (or COMPLEX*8 in Fortran).

• ComplexF64

Exactly corresponds to the complex double type in C (or COMPLEX*16 in Fortran).

• Signed

Exactly corresponds to the signed type annotation in C (or any INTEGER type in Fortran). Any Julia

type that is not a subtype of Signed is assumed to be unsigned.

• Ref{T}

Behaves like a Ptr{T} that can manage its memory via the Julia GC.

• Array{T,N}

When an array is passed to C as a Ptr{T} argument, it is not reinterpret-cast: Julia requires that the

element type of the array matches T, and the address of the first element is passed.

Therefore, if an Array contains data in the wrong format, it will have to be explicitly converted using

a call such as trunc.(Int32, A).

To pass an array A as a pointer of a different type without converting the data beforehand (for ex-

ample, to pass a Float64 array to a function that operates on uninterpreted bytes), you can declare

the argument as Ptr{Cvoid}.

CHAPTER 27. CALLING C AND FORTRAN CODE 349

If an array of eltype Ptr{T} is passed as a Ptr{Ptr{T}} argument, Base.cconvert will attempt to

first make a null-terminated copy of the array with each element replaced by its Base.cconvert

version. This allows, for example, passing an argv pointer array of type Vector{String} to an

argument of type Ptr{Ptr{Cchar}}.

On all systems we currently support, basic C/C++ value types may be translated to Julia types as follows.

Every C type also has a corresponding Julia type with the same name, prefixed by C. This can help when

writing portable code (and remembering that an int in C is not the same as an Int in Julia).

System Independent Types

The Cstring type is essentially a synonym for Ptr{UInt8}, except the conversion to Cstring throws an

error if the Julia string contains any embedded null characters (which would cause the string to be silently

truncated if the C routine treats null as the terminator). If you are passing a char* to a C routine that does

not assume null termination (e.g. because you pass an explicit string length), or if you know for certain

that your Julia string does not contain null and want to skip the check, you can use Ptr{UInt8} as the

argument type. Cstring can also be used as the ccall return type, but in that case it obviously does not

introduce any extra checks and is only meant to improve the readability of the call.

System Dependent Types

Note

When calling Fortran, all inputs must be passed by pointers to heap- or stack-allocated values,

so all type correspondences above should contain an additional Ptr{..} or Ref{..} wrapper

around their type specification.

Warning

For string arguments (char*) the Julia type should be Cstring (if null-terminated data is ex-

pected), or either Ptr{Cchar} or Ptr{UInt8} otherwise (these two pointer types have the

same effect), as described above, not String. Similarly, for array arguments (T[] or T*), the

Julia type should again be Ptr{T}, not Vector{T}.

Warning

Julia's Char type is 32 bits, which is not the same as the wide-character type (wchar_t or

wint_t) on all platforms.

Warning

A return type of Union{}means the function will not return, i.e., C++11 [[noreturn]] or C11

_Noreturn (e.g. jl_throw or longjmp). Do not use this for functions that return no value

(void) but do return, for those, use Cvoid instead.

Note

For wchar_t* arguments, the Julia type should be Cwstring (if the C routine expects a null-

terminated string), or Ptr{Cwchar_t} otherwise. Note also that UTF-8 string data in Julia is

internally null-terminated, so it can be passed to C functions expecting null-terminated data

without making a copy (but using the Cwstring type will cause an error to be thrown if the

string itself contains null characters).

CHAPTER 27. CALLING C AND FORTRAN CODE 350

Note

C functions that take an argument of type char** can be called by using a Ptr{Ptr{UInt8}}

type within Julia. For example, C functions of the form:

int main(int argc, char **argv);

can be called via the following Julia code:

argv = ["a.out", "arg1", "arg2"]

@ccall main(length(argv)::Int32, argv::Ptr{Ptr{UInt8}})::Int32

Note

For Fortran functions taking variable length strings of type character(len=*) the string lengths

are provided as hidden arguments. Type and position of these arguments in the list are com-

piler specific, where compiler vendors usually default to using Csize_t as type and append the

hidden arguments at the end of the argument list. While this behaviour is fixed for some com-

pilers (GNU), others optionally permit placing hidden arguments directly after the character

argument (Intel, PGI). For example, Fortran subroutines of the form

subroutine test(str1, str2)

character(len=*) :: str1,str2

can be called via the following Julia code, where the lengths are appended

str1 = "foo"

str2 = "bar"

ccall(:test, Cvoid, (Ptr{UInt8}, Ptr{UInt8}, Csize_t, Csize_t),

str1, str2, sizeof(str1), sizeof(str2))

Warning

Fortran compilers may also add other hidden arguments for pointers, assumed-shape (:) and

assumed-size (*) arrays. Such behaviour can be avoided by using ISO_C_BINDING and includ-

ing bind(c) in the definition of the subroutine, which is strongly recommended for interop-

erable code. In this case, there will be no hidden arguments, at the cost of some language

features (e.g. only character(len=1) will be permitted to pass strings).

Note

A C function declared to return Cvoid will return the value nothing in Julia.

Struct Type Correspondences

Composite types such as struct in C or TYPE in Fortran90 (or STRUCTURE / RECORD in some variants of F77),

can be mirrored in Julia by creating a struct definition with the same field layout.

When used recursively, isbits types are stored inline. All other types are stored as a pointer to the data.

When mirroring a struct used by-value inside another struct in C, it is imperative that you do not attempt

to manually copy the fields over, as this will not preserve the correct field alignment. Instead, declare an

isbits struct type and use that instead. Unnamed structs are not possible in the translation to Julia.

Packed structs and union declarations are not supported by Julia.

CHAPTER 27. CALLING C AND FORTRAN CODE 351

You can get an approximation of a union if you know, a priori, the field that will have the greatest size

(potentially including padding). When translating your fields to Julia, declare the Julia field to be only of

that type.

Arrays of parameters can be expressed with NTuple. For example, the struct in C notation is written as

struct B {

int A[3];

};

b_a_2 = B.A[2];

can be written in Julia as

struct B

A::NTuple{3, Cint}

end

b_a_2 = B.A[3] # note the difference in indexing (1-based in Julia, 0-based in C)

Arrays of unknown size (C99-compliant variable length structs specified by [] or [0]) are not directly

supported. Often the best way to deal with these is to deal with the byte offsets directly. For example, if a

C library declared a proper string type and returned a pointer to it:

struct String {

int strlen;

char data[];

};

In Julia, we can access the parts independently to make a copy of that string:

str = from_c::Ptr{Cvoid}

len = unsafe_load(Ptr{Cint}(str))

unsafe_string(str + Core.sizeof(Cint), len)

Type Parameters

The type arguments to @ccall and @cfunction are evaluated statically, when the method containing the

usage is defined. They therefore must take the form of a literal tuple, not a variable, and cannot reference

local variables.

This may sound like a strange restriction, but remember that since C is not a dynamic language like Julia,

its functions can only accept argument types with a statically-known, fixed signature.

However, while the type layout must be known statically to compute the intended C ABI, the static param-

eters of the function are considered to be part of this static environment. The static parameters of the

function may be used as type parameters in the call signature, as long as they don't affect the layout of

the type. For example, f(x::T) where {T} = @ccall valid(x::Ptr{T})::Ptr{T} is valid, since Ptr is

always a word-size primitive type. But, g(x::T) where {T} = @ccall notvalid(x::T)::T is not valid,

since the type layout of T is not known statically.

CHAPTER 27. CALLING C AND FORTRAN CODE 352

SIMD Values

Note: This feature is currently implemented on 64-bit x86 and AArch64 platforms only.

If a C/C++ routine has an argument or return value that is a native SIMD type, the corresponding Julia type

is a homogeneous tuple of VecElement that naturally maps to the SIMD type. Specifically:

• The tuple must be the same size as the SIMD type. For example, a tuple representing an

__m128 on x86 must have a size of 16 bytes.

• The element type of the tuple must be an instance of VecElement{T} where T is a prim-

itive type that is 1, 2, 4 or 8 bytes.

For instance, consider this C routine that uses AVX intrinsics:

#include <immintrin.h>

__m256 dist(__m256 a, __m256 b) {

return _mm256_sqrt_ps(_mm256_add_ps(_mm256_mul_ps(a, a),

_mm256_mul_ps(b, b)));

}

The following Julia code calls dist using ccall:

const m256 = NTuple{8, VecElement{Float32}}

a = m256(ntuple(i -> VecElement(sin(Float32(i))), 8))

b = m256(ntuple(i -> VecElement(cos(Float32(i))), 8))

function call_dist(a::m256, b::m256)

@ccall "libdist".dist(a::m256, b::m256)::m256

end

println(call_dist(a,b))

The host machine must have the requisite SIMD registers. For example, the code above will not work on

hosts without AVX support.

Memory Ownership

malloc/free

Memory allocation and deallocation of such objects must be handled by calls to the appropriate cleanup

routines in the libraries being used, just like in any C program. Do not try to free an object received from a

C library with Libc.free in Julia, as this may result in the free function being called via the wrong library

and cause the process to abort. The reverse (passing an object allocated in Julia to be freed by an external

library) is equally invalid.

When to use T, Ptr{T} and Ref{T}

In Julia code wrapping calls to external C routines, ordinary (non-pointer) data should be declared to be

of type T inside the @ccall, as they are passed by value. For C code accepting pointers, Ref{T} should

CHAPTER 27. CALLING C AND FORTRAN CODE 353

generally be used for the types of input arguments, allowing the use of pointers to memory managed

by either Julia or C through the implicit call to Base.cconvert. In contrast, pointers returned by the C

function called should be declared to be of the output type Ptr{T}, reflecting that the memory pointed to

is managed by C only. Pointers contained in C structs should be represented as fields of type Ptr{T} within

the corresponding Julia struct types designed to mimic the internal structure of corresponding C structs.

In Julia code wrapping calls to external Fortran routines, all input arguments should be declared as of type

Ref{T}, as Fortran passes all variables by pointers to memory locations. The return type should either be

Cvoid for Fortran subroutines, or a T for Fortran functions returning the type T.

27.3 Mapping C Functions to Julia

@ccall / @cfunction argument translation guide

For translating a C argument list to Julia:

• T, where T is one of the primitive types: char, int, long, short, float, double, complex, enum or

any of their typedef equivalents

– T, where T is an equivalent Julia Bits Type (per the table above)

– if T is an enum, the argument type should be equivalent to Cint or Cuint

– argument value will be copied (passed by value)

• struct T (including typedef to a struct)

– T, where T is a Julia leaf type

– argument value will be copied (passed by value)

• void*

– depends on how this parameter is used, first translate this to the intended pointer type, then

determine the Julia equivalent using the remaining rules in this list

– this argument may be declared as Ptr{Cvoid} if it really is just an unknown pointer

• jl_value_t*

– Any

– argument value must be a valid Julia object

• jl_value_t* const*

– Ref{Any}

– argument list must be a valid Julia object (or C_NULL)

– cannot be used for an output parameter, unless the user is able to separately arrange for the

object to be GC-preserved

• T*

– Ref{T}, where T is the Julia type corresponding to T

CHAPTER 27. CALLING C AND FORTRAN CODE 354

– argument value will be copied if it is an inlinealloc type (which includes isbits otherwise,

the value must be a valid Julia object

• T (*)(...) (e.g. a pointer to a function)

– Ptr{Cvoid} (you may need to use @cfunction explicitly to create this pointer)

• ... (e.g. a vararg)

for ccall : T..., where T is the single Julia type of all remaining arguments

for @ccall : ; va_arg1::T, va_arg2::S, etc, where T and S are the Julia type (i.e. separate the regular

arguments from varargs with a ;)

– currently unsupported by @cfunction

• va_arg

– not supported by ccall or @cfunction

@ccall / @cfunction return type translation guide

For translating a C return type to Julia:

• void

– Cvoid (this will return the singleton instance nothing::Cvoid)

• T, where T is one of the primitive types: char, int, long, short, float, double, complex, enum or

any of their typedef equivalents

– T, where T is an equivalent Julia Bits Type (per the table above)

– if T is an enum, the argument type should be equivalent to Cint or Cuint

– argument value will be copied (returned by-value)

• struct T (including typedef to a struct)

– T, where T is a Julia Leaf Type

– argument value will be copied (returned by-value)

• void*

– depends on how this parameter is used, first translate this to the intended pointer type, then

determine the Julia equivalent using the remaining rules in this list

– this argument may be declared as Ptr{Cvoid} if it really is just an unknown pointer

• jl_value_t*

– Any

– argument value must be a valid Julia object

• jl_value_t**

CHAPTER 27. CALLING C AND FORTRAN CODE 355

– Ptr{Any} (Ref{Any} is invalid as a return type)

• T*

– If the memory is already owned by Julia, or is an isbits type, and is known to be non-null:

∗ Ref{T}, where T is the Julia type corresponding to T

∗ a return type of Ref{Any} is invalid, it should either be Any (corresponding to jl_value_t*)

or Ptr{Any} (corresponding to jl_value_t**)

∗ C MUST NOT modify the memory returned via Ref{T} if T is an isbits type

– If the memory is owned by C:

∗ Ptr{T}, where T is the Julia type corresponding to T

• T (*)(...) (e.g. a pointer to a function)

– Ptr{Cvoid} to call this directly from Julia you will need to pass this as the first argument to

@ccall. See Indirect Calls.

Passing Pointers for Modifying Inputs

Because C doesn't support multiple return values, often C functions will take pointers to data that the

function will modify. To accomplish this within a @ccall, you need to first encapsulate the value inside a

Ref{T} of the appropriate type. When you pass this Ref object as an argument, Julia will automatically

pass a C pointer to the encapsulated data:

width = Ref{Cint}(0)

range = Ref{Cfloat}(0)

@ccall foo(width::Ref{Cint}, range::Ref{Cfloat})::Cvoid

Upon return, the contents of width and range can be retrieved (if they were changed by foo) by width[]

and range[]; that is, they act like zero-dimensional arrays.

27.4 C Wrapper Examples

Let's start with a simple example of a C wrapper that returns a Ptr type:

mutable struct gsl_permutation

end

The corresponding C signature is

gsl_permutation * gsl_permutation_alloc (size_t n);

function permutation_alloc(n::Integer)

output_ptr = @ccall "libgsl".gsl_permutation_alloc(n::Csize_t)::Ptr{gsl_permutation}

if output_ptr == C_NULL # Could not allocate memory

throw(OutOfMemoryError())

end

return output_ptr

end

CHAPTER 27. CALLING C AND FORTRAN CODE 356

The GNU Scientific Library (here assumed to be accessible through :libgsl) defines an opaque pointer,

gsl_permutation *, as the return type of the C function gsl_permutation_alloc. As user code never

has to look inside the gsl_permutation struct, the corresponding Julia wrapper simply needs a new type

declaration, gsl_permutation, that has no internal fields and whose sole purpose is to be placed in the

type parameter of a Ptr type. The return type of the ccall is declared as Ptr{gsl_permutation}, since

the memory allocated and pointed to by output_ptr is controlled by C.

The input n is passed by value, and so the function's input signature is simply declared as ::Csize_t with-

out any Ref or Ptr necessary. (If the wrapper was calling a Fortran function instead, the corresponding

function input signature would instead be ::Ref{Csize_t}, since Fortran variables are passed by point-

ers.) Furthermore, n can be any type that is convertible to a Csize_t integer; the ccall implicitly calls

Base.cconvert(Csize_t, n).

Here is a second example wrapping the corresponding destructor:

The corresponding C signature is

void gsl_permutation_free (gsl_permutation * p);

function permutation_free(p::Ptr{gsl_permutation})

@ccall "libgsl".gsl_permutation_free(p::Ptr{gsl_permutation})::Cvoid

end

Here is a third example passing Julia arrays:

The corresponding C signature is

int gsl_sf_bessel_Jn_array (int nmin, int nmax, double x,

double result_array[])

function sf_bessel_Jn_array(nmin::Integer, nmax::Integer, x::Real)

if nmax < nmin

throw(DomainError())

end

result_array = Vector{Cdouble}(undef, nmax - nmin + 1)

errorcode = @ccall "libgsl".gsl_sf_bessel_Jn_array(

nmin::Cint, nmax::Cint, x::Cdouble, result_array::Ref{Cdouble})::Cint

if errorcode != 0

error("GSL error code $errorcode")

end

return result_array

end

The C function wrapped returns an integer error code; the results of the actual evaluation of the Bessel J

function populate the Julia array result_array. This variable is declared as a Ref{Cdouble}, since its mem-

ory is allocated and managed by Julia. The implicit call to Base.cconvert(Ref{Cdouble}, result_array)

unpacks the Julia pointer to a Julia array data structure into a form understandable by C.

27.5 Fortran Wrapper Example

The following example utilizes ccall to call a function in a common Fortran library (libBLAS) to compute a

dot product. Notice that the argument mapping is a bit different here than above, as we need to map from

Julia to Fortran. On every argument type, we specify Ref or Ptr. This mangling convention may be specific

to your Fortran compiler and operating system and is likely undocumented. However, wrapping each in a

Ref (or Ptr, where equivalent) is a frequent requirement of Fortran compiler implementations:

https://www.gnu.org/software/gsl/

CHAPTER 27. CALLING C AND FORTRAN CODE 357

function compute_dot(DX::Vector{Float64}, DY::Vector{Float64})

@assert length(DX) == length(DY)

n = length(DX)

incx = incy = 1

product = @ccall "libLAPACK".ddot(

n::Ref{Int32}, DX::Ptr{Float64}, incx::Ref{Int32}, DY::Ptr{Float64},

incy::Ref{Int32})::Float64↪→

return product

end

27.6 Garbage Collection Safety

When passing data to a @ccall, it is best to avoid using the pointer function. Instead define a Base.cconvert

method and pass the variables directly to the @ccall. @ccall automatically arranges that all of its argu-

ments will be preserved from garbage collection until the call returns. If a C API will store a reference to

memory allocated by Julia, after the @ccall returns, you must ensure that the object remains visible to the

garbage collector. The suggested way to do this is to make a global variable of type Array{Ref,1} to hold

these values until the C library notifies you that it is finished with them.

Whenever you have created a pointer to Julia data, you must ensure the original data exists until you

have finished using the pointer. Many methods in Julia such as unsafe_load and String make copies of

data instead of taking ownership of the buffer, so that it is safe to free (or alter) the original data without

affecting Julia. A notable exception is unsafe_wrap which, for performance reasons, shares (or can be told

to take ownership of) the underlying buffer.

The garbage collector does not guarantee any order of finalization. That is, if a contained a reference to b

and both a and b are due for garbage collection, there is no guarantee that b would be finalized after a. If

proper finalization of a depends on b being valid, it must be handled in other ways.

27.7 Non-constant Function Specifications

In some cases, the exact name or path of the needed library is not known in advance and must be com-

puted at run time. To handle such cases, the library component specification can be a function call, e.g.

find_blas().dgemm. The call expression will be executed when the ccall itself is executed. However, it

is assumed that the library location does not change once it is determined, so the result of the call can be

cached and reused. Therefore, the number of times the expression executes is unspecified, and returning

different values for multiple calls results in unspecified behavior.

If even more flexibility is needed, it is possible to use computed values as function names by staging

through eval as follows:

@eval @ccall "lib".$(string("a", "b"))()::Cint

This expression constructs a name using string, then substitutes this name into a new @ccall expression,

which is then evaluated. Keep in mind that eval only operates at the top level, so within this expression

local variables will not be available (unless their values are substituted with $). For this reason, eval is

typically only used to form top-level definitions, for example when wrapping libraries that contain many

similar functions. A similar example can be constructed for @cfunction.

However, doing this will also be very slow and leak memory, so you should usually avoid this and instead

keep reading. The next section discusses how to use indirect calls to efficiently achieve a similar effect.

CHAPTER 27. CALLING C AND FORTRAN CODE 358

27.8 Indirect Calls

The first argument to @ccall can also be an expression evaluated at run time. In this case, the expression

must evaluate to a Ptr, which will be used as the address of the native function to call. This behavior occurs

when the first @ccall argument contains references to non-constants, such as local variables, function

arguments, or non-constant globals.

For example, you might look up the function via dlsym, then cache it in a shared reference for that session.

For example:

macro dlsym(lib, func)

z = Ref{Ptr{Cvoid}}(C_NULL)

quote

let zlocal = $z[]

if zlocal == C_NULL

zlocal = dlsym($(esc(lib))::Ptr{Cvoid}, $(esc(func)))::Ptr{Cvoid}

$z[] = zlocal

end

zlocal

end

end

end

mylibvar = Libdl.dlopen("mylib")

@ccall $(@dlsym(mylibvar, "myfunc"))()::Cvoid

27.9 Closure cfunctions

The first argument to @cfunction can be marked with a $, in which case the return value will instead be a

struct CFunction which closes over the argument. You must ensure that this return object is kept alive

until all uses of it are done. The contents and code at the cfunction pointer will be erased via a finalizer

when this reference is dropped and atexit. This is not usually needed, since this functionality is not present

in C, but can be useful for dealing with ill-designed APIs which don't provide a separate closure environment

parameter.

function qsort(a::Vector{T}, cmp) where T

isbits(T) || throw(ArgumentError("this method can only qsort isbits arrays"))

callback = @cfunction $cmp Cint (Ref{T}, Ref{T})

Here, `callback` isa Base.CFunction, which will be converted to Ptr{Cvoid}

(and protected against finalization) by the ccall

@ccall qsort(a::Ptr{T}, length(a)::Csize_t, Base.elsize(a)::Csize_t, callback::Ptr{Cvoid})

We could instead use:

GC.@preserve callback begin

use(Base.unsafe_convert(Ptr{Cvoid}, callback))

end

if we needed to use it outside of a `ccall`

return a

end

Note

Closure @cfunction relies on LLVM trampolines, which are not available on all platforms (for

example ARM and PowerPC).

CHAPTER 27. CALLING C AND FORTRAN CODE 359

27.10 Closing a Library

It is sometimes useful to close (unload) a library so that it can be reloaded. For instance, when developing

C code for use with Julia, one may need to compile, call the C code from Julia, then close the library, make

an edit, recompile, and load in the new changes. One can either restart Julia or use the Libdl functions to

manage the library explicitly, such as:

lib = Libdl.dlopen("./my_lib.so") # Open the library explicitly.

sym = Libdl.dlsym(lib, :my_fcn) # Get a symbol for the function to call.

@ccall $sym(...) # Use the pointer `sym` instead of the library.symbol tuple.

Libdl.dlclose(lib) # Close the library explicitly.

Note that when using @ccall with the input (e.g., @ccall "./my_lib.so".my_fcn(...)::Cvoid), the li-

brary is opened implicitly and it may not be explicitly closed.

27.11 Variadic function calls

To call variadic C functions a semicolon can be used in the argument list to separate required arguments

from variadic arguments. An example with the printf function is given below:

julia> @ccall printf("%s = %d\n"::Cstring ; "foo"::Cstring, foo::Cint)::Cint

foo = 3

8

27.12 ccall interface

There is another alternative interface to @ccall. This interface is slightly less convenient but it does allow

one to specify a calling convention.

The arguments to ccall are:

1. A (:function, "library") pair (most common),

OR

a :function name symbol or "function" name string (for symbols in the current process or libc),

OR

a function pointer (for example, from dlsym).

2. The function's return type

3. A tuple of input types, corresponding to the function signature. One common mistake is forgetting

that a 1-tuple of argument types must be written with a trailing comma.

4. The actual argument values to be passed to the function, if any; each is a separate parameter.

Note

The (:function, "library") pair, return type, and input types must be literal constants (i.e.,

they can't be variables, but see Non-constant Function Specifications).

The remaining parameters are evaluated at compile-time, when the containing method is

defined.

CHAPTER 27. CALLING C AND FORTRAN CODE 360

A table of translations between the macro and function interfaces is given below.

27.13 Calling Convention

The second argument to ccall (immediately preceding return type) can optionally be a calling convention

specifier (the @ccallmacro currently does not support giving a calling convention). Without any specifier,

the platform-default C calling convention is used. Other supported conventions are: stdcall, cdecl,

fastcall, and thiscall (no-op on 64-bit Windows). For example (from base/libc.jl) we see the same

gethostnameccall as above, but with the correct signature for Windows:

hn = Vector{UInt8}(undef, 256)

err = ccall(:gethostname, stdcall, Int32, (Ptr{UInt8}, UInt32), hn, length(hn))

For more information, please see the LLVM Language Reference.

There is one additional special calling convention llvmcall, which allows inserting calls to LLVM intrinsics

directly. This can be especially useful when targeting unusual platforms such as GPGPUs. For example, for

CUDA, we need to be able to read the thread index:

ccall("llvm.nvvm.read.ptx.sreg.tid.x", llvmcall, Int32, ())

As with any ccall, it is essential to get the argument signature exactly correct. Also, note that there is

no compatibility layer that ensures the intrinsic makes sense and works on the current target, unlike the

equivalent Julia functions exposed by Core.Intrinsics.

27.14 Accessing Global Variables

Global variables exported by native libraries can be accessed by name using the cglobal function. The

arguments to cglobal are a symbol specification identical to that used by ccall, and a type describing

the value stored in the variable:

julia> cglobal((:errno, :libc), Int32)

Ptr{Int32} @0x00007f418d0816b8

The result is a pointer giving the address of the value. The value can be manipulated through this pointer

using unsafe_load and unsafe_store!.

Note

This errno symbol may not be found in a library named "libc", as this is an implementation

detail of your system compiler. Typically standard library symbols should be accessed just

by name, allowing the compiler to fill in the correct one. Also, however, the errno symbol

shown in this example is special in most compilers, and so the value seen here is probably not

what you expect or want. Compiling the equivalent code in C on any multi-threaded-capable

system would typically actually call a different function (via macro preprocessor overloading),

and may give a different result than the legacy value printed here.

https://llvm.org/docs/LangRef.html#calling-conventions
https://llvm.org/docs/NVPTXUsage.html

CHAPTER 27. CALLING C AND FORTRAN CODE 361

27.15 Accessing Data through a Pointer

The following methods are described as "unsafe" because a bad pointer or type declaration can cause Julia

to terminate abruptly.

Given a Ptr{T}, the contents of type T can generally be copied from the referenced memory into a Julia

object using unsafe_load(ptr, [index]). The index argument is optional (default is 1), and follows the

Julia-convention of 1-based indexing. This function is intentionally similar to the behavior of getindex and

setindex! (e.g. [] access syntax).

The return value will be a new object initialized to contain a copy of the contents of the referenced memory.

The referenced memory can safely be freed or released.

If T is Any, then the memory is assumed to contain a reference to a Julia object (a jl_value_t*), the result

will be a reference to this object, and the object will not be copied. You must be careful in this case to ensure

that the object was always visible to the garbage collector (pointers do not count, but the new reference

does) to ensure the memory is not prematurely freed. Note that if the object was not originally allocated

by Julia, the new object will never be finalized by Julia's garbage collector. If the Ptr itself is actually a

jl_value_t*, it can be converted back to a Julia object reference by unsafe_pointer_to_objref(ptr).

(Julia values v can be converted to jl_value_t* pointers, as Ptr{Cvoid}, by calling pointer_from_objref(v).)

The reverse operation (writing data to a Ptr{T}), can be performed using unsafe_store!(ptr, value,

[index]). Currently, this is only supported for primitive types or other pointer-free (isbits) immutable

struct types.

Any operation that throws an error is probably currently unimplemented and should be posted as a bug so

that it can be resolved.

If the pointer of interest is a plain-data array (primitive type or immutable struct), the function unsafe_wrap(Array,

ptr,dims, own = false) may be more useful. The final parameter should be true if Julia should "take

ownership" of the underlying buffer and call free(ptr) when the returned Array object is finalized. If the

own parameter is omitted or false, the caller must ensure the buffer remains in existence until all access is

complete.

Arithmetic on the Ptr type in Julia (e.g. using +) does not behave the same as C's pointer arithmetic.

Adding an integer to a Ptr in Julia always moves the pointer by some number of bytes, not elements. This

way, the address values obtained from pointer arithmetic do not depend on the element types of pointers.

27.16 Thread-safety

Some C libraries execute their callbacks from a different thread, and since Julia isn't thread-safe you'll need

to take some extra precautions. In particular, you'll need to set up a two-layered system: the C callback

should only schedule (via Julia's event loop) the execution of your "real" callback. To do this, create an

AsyncCondition object and wait on it:

cond = Base.AsyncCondition()

wait(cond)

The callback you pass to C should only execute a ccall to :uv_async_send, passing cond.handle as the

argument, taking care to avoid any allocations or other interactions with the Julia runtime.

Note that events may be coalesced, so multiple calls to uv_async_send may result in a single wakeup

notification to the condition.

CHAPTER 27. CALLING C AND FORTRAN CODE 362

27.17 More About Callbacks

For more details on how to pass callbacks to C libraries, see this blog post.

27.18 C++

For tools to create C++ bindings, see the CxxWrap package.

1Non-library function calls in both C and Julia can be inlined and thus may have even less overhead than calls to shared library

functions. The point above is that the cost of actually doing foreign function call is about the same as doing a call in either native

language.

2The Clang package can be used to auto-generate Julia code from a C header file.

https://julialang.org/blog/2013/05/callback
https://github.com/JuliaInterop/CxxWrap.jl
https://github.com/ihnorton/Clang.jl

CHAPTER 27. CALLING C AND FORTRAN CODE 363

C name Fortran

name

Stan-

dard

Julia

Alias

Julia Base Type

unsigned char CHARACTER Cuchar UInt8

bool (_Bool in C99+) Cuchar UInt8

short INTEGER*2,

LOGICAL*2

Cshort Int16

unsigned short Cushort UInt16

int, BOOL (C, typical) INTEGER*4,

LOGICAL*4

Cint Int32

unsigned int Cuint UInt32

long long INTEGER*8,

LOGICAL*8

Clonglong Int64

unsigned long long CulonglongUInt64

intmax_t Cintmax_t Int64

uintmax_t Cuintmax_tUInt64

float REAL*4i Cfloat Float32

double REAL*8 Cdouble Float64

complex float COMPLEX*8 ComplexF32Complex{Float32}

complex double COMPLEX*16 ComplexF64Complex{Float64}

ptrdiff_t Cptrdiff_tInt

ssize_t Cssize_t Int

size_t Csize_t UInt

void Cvoid

void and [[noreturn]]

or _Noreturn

Union{}

void* Ptr{Cvoid} (or similarly Ref{Cvoid})

T* (where T represents

an appropriately defined

type)

Ref{T} (T may be safely mutated only if T is an

isbits type)

char* (or char[], e.g. a

string)

CHARACTER*N Cstring if null-terminated, or Ptr{UInt8} if not

char** (or *char[]) Ptr{Ptr{UInt8}}

jl_value_t* (any Julia

Type)

Any

jl_value_t* const* (a

reference to a Julia value)

Ref{Any} (const, since mutation would require

a write barrier, which is not possible to insert

correctly)

va_arg Not supported

... (variadic function

specification)

T... (where T is one of the above types, when

using the ccall function)

... (variadic function

specification)

; va_arg1::T, va_arg2::S, etc. (only

supported with @ccall macro)

CHAPTER 27. CALLING C AND FORTRAN CODE 364

C name Standard Julia Alias Julia Base Type

char Cchar Int8 (x86, x86_64), UInt8 (powerpc, arm)

long Clong Int (UNIX), Int32 (Windows)

unsigned long Culong UInt (UNIX), UInt32 (Windows)

wchar_t Cwchar_t Int32 (UNIX), UInt16 (Windows)

@ccall ccall

@ccall clock()::Int32 ccall(:clock, Int32, ())

@ccall f(a::Cint)::Cint ccall(:a, Cint, (Cint,), a)

@ccall "mylib".f(a::Cint,

b::Cdouble)::Cvoid

ccall((:f, "mylib"), Cvoid, (Cint,

Cdouble), (a, b))

@ccall $fptr.f()::Cvoid ccall(fptr, f, Cvoid, ())

@ccall printf("%s = %d\n"::Cstring ;

"foo"::Cstring, foo::Cint)::Cint

<unavailable>

@ccall printf("%s = %d\n"::Cstring ; "2 +

2"::Cstring, "5"::Cstring)::Cint

ccall(:printf, Cint, (Cstring,

Cstring...), "%s = %s\n", "2 + 2", "5")

<unavailable> ccall(:gethostname, stdcall, Int32,

(Ptr{UInt8}, UInt32), hn, length(hn))

Chapter 28

Handling Operating System Variation

When writing cross-platform applications or libraries, it is often necessary to allow for differences between

operating systems. The variable Sys.KERNEL can be used to handle such cases. There are several functions

in the Sys module intended to make this easier, such as isunix, islinux, isapple, isbsd, isfreebsd,

and iswindows. These may be used as follows:

if Sys.iswindows()

windows_specific_thing(a)

end

Note that islinux, isapple, and isfreebsd are mutually exclusive subsets of isunix. Additionally, there

is a macro @static which makes it possible to use these functions to conditionally hide invalid code, as

demonstrated in the following examples.

Simple blocks:

ccall((@static Sys.iswindows() ? :_fopen : :fopen), ...)

Complex blocks:

@static if Sys.islinux()

linux_specific_thing(a)

elseif Sys.isapple()

apple_specific_thing(a)

else

generic_thing(a)

end

When nesting conditionals, the @static must be repeated for each level (parentheses optional, but rec-

ommended for readability):

@static Sys.iswindows() ? :a : (@static Sys.isapple() ? :b : :c)

365

Chapter 29

Environment Variables

Julia can be configured with a number of environment variables, set either in the usual way for each operat-

ing system, or in a portable way from within Julia. Supposing that you want to set the environment variable

JULIA_EDITOR to vim, you can type ENV["JULIA_EDITOR"] = "vim" (for instance, in the REPL) to make this

change on a case by case basis, or add the same to the user configuration file ~/.julia/config/startup.jl

in the user's home directory to have a permanent effect. The current value of the same environment vari-

able can be determined by evaluating ENV["JULIA_EDITOR"].

The environment variables that Julia uses generally start with JULIA. If InteractiveUtils.versioninfo is

called with the keyword verbose=true, then the output will list any defined environment variables relevant

for Julia, including those which include JULIA in their names.

Note

Some variables, such as JULIA_NUM_THREADS and JULIA_PROJECT, need to be set before Ju-

lia starts, therefore adding these to ~/.julia/config/startup.jl is too late in the startup

process. In Bash, environment variables can either be set manually by running, e.g., export

JULIA_NUM_THREADS=4 before starting Julia, or by adding the same command to ~/.bashrc or

~/.bash_profile to set the variable each time Bash is started.

29.1 File locations

JULIA_BINDIR

The absolute path of the directory containing the Julia executable, which sets the global variable Sys.BINDIR.

If $JULIA_BINDIR is not set, then Julia determines the value Sys.BINDIR at run-time.

The executable itself is one of

$JULIA_BINDIR/julia

$JULIA_BINDIR/julia-debug

by default.

The global variable Base.DATAROOTDIR determines a relative path from Sys.BINDIR to the data directory

associated with Julia. Then the path

$JULIA_BINDIR/$DATAROOTDIR/julia/base

366

CHAPTER 29. ENVIRONMENT VARIABLES 367

determines the directory in which Julia initially searches for source files (via Base.find_source_file()).

Likewise, the global variable Base.SYSCONFDIR determines a relative path to the configuration file directory.

Then Julia searches for a startup.jl file at

$JULIA_BINDIR/$SYSCONFDIR/julia/startup.jl

$JULIA_BINDIR/../etc/julia/startup.jl

by default (via Base.load_julia_startup()).

For example, a Linux installation with a Julia executable located at /bin/julia, a DATAROOTDIR of ../share,

and a SYSCONFDIR of ../etc will have JULIA_BINDIR set to /bin, a source-file search path of

/share/julia/base

and a global configuration search path of

/etc/julia/startup.jl

JULIA_PROJECT

A directory path that indicates which project should be the initial active project. Setting this environment

variable has the same effect as specifying the --project start-up option, but --project has higher prece-

dence. If the variable is set to @. (note the trailing dot) then Julia tries to find a project directory that

contains Project.toml or JuliaProject.toml file from the current directory and its parents. See also the

chapter on Code Loading.

Note

JULIA_PROJECT must be defined before starting julia; defining it in startup.jl is too late in

the startup process.

JULIA_LOAD_PATH

The JULIA_LOAD_PATH environment variable is used to populate the global Julia LOAD_PATH variable, which

determines which packages can be loaded via import and using (see Code Loading).

Unlike the shell PATH variable, empty entries in JULIA_LOAD_PATH are expanded to the default value

of LOAD_PATH, ["@", "@v#.#", "@stdlib"] when populating LOAD_PATH. This allows easy appending,

prepending, etc. of the load path value in shell scripts regardless of whether JULIA_LOAD_PATH is already

set or not. For example, to prepend the directory /foo/bar to LOAD_PATH just do

export JULIA_LOAD_PATH="/foo/bar:$JULIA_LOAD_PATH"

If the JULIA_LOAD_PATH environment variable is already set, its old value will be prepended with /foo/bar.

On the other hand, if JULIA_LOAD_PATH is not set, then it will be set to /foo/bar: which will expand to a

LOAD_PATH value of ["/foo/bar", "@", "@v#.#", "@stdlib"]. If JULIA_LOAD_PATH is set to the empty

string, it expands to an empty LOAD_PATH array. In other words, the empty string is interpreted as a zero-

element array, not a one-element array of the empty string. This behavior was chosen so that it would be

possible to set an empty load path via the environment variable. If you want the default load path, either

unset the environment variable or if it must have a value, set it to the string :.

Note

On Windows, path elements are separated by the ; character, as is the case with most path

lists on Windows. Replace : with ; in the above paragraph.

CHAPTER 29. ENVIRONMENT VARIABLES 368

JULIA_DEPOT_PATH

The JULIA_DEPOT_PATH environment variable is used to populate the global Julia DEPOT_PATH variable,

which controls where the package manager, as well as Julia's code loading mechanisms, look for pack-

age registries, installed packages, named environments, repo clones, cached compiled package images,

configuration files, and the default location of the REPL's history file.

Unlike the shell PATH variable but similar to JULIA_LOAD_PATH, empty entries in JULIA_DEPOT_PATH are

expanded to the default value of DEPOT_PATH. This allows easy appending, prepending, etc. of the depot

path value in shell scripts regardless of whether JULIA_DEPOT_PATH is already set or not. For example, to

prepend the directory /foo/bar to DEPOT_PATH just do

export JULIA_DEPOT_PATH="/foo/bar:$JULIA_DEPOT_PATH"

If the JULIA_DEPOT_PATH environment variable is already set, its old value will be prepended with /foo/bar.

On the other hand, if JULIA_DEPOT_PATH is not set, then it will be set to /foo/bar: which will have the

effect of prepending /foo/bar to the default depot path. If JULIA_DEPOT_PATH is set to the empty string, it

expands to an empty DEPOT_PATH array. In other words, the empty string is interpreted as a zero-element

array, not a one-element array of the empty string. This behavior was chosen so that it would be possible

to set an empty depot path via the environment variable. If you want the default depot path, either unset

the environment variable or if it must have a value, set it to the string :.

Note

On Windows, path elements are separated by the ; character, as is the case with most path

lists on Windows. Replace : with ; in the above paragraph.

Note

JULIA_DEPOT_PATH must be defined before starting julia; defining it in startup.jl is too late

in the startup process; at that point you can instead directly modify the DEPOT_PATH array,

which is populated from the environment variable.

JULIA_HISTORY

The absolute path REPL.find_hist_file() of the REPL's history file. If $JULIA_HISTORY is not set, then

REPL.find_hist_file() defaults to

$(DEPOT_PATH[1])/logs/repl_history.jl

JULIA_MAX_NUM_PRECOMPILE_FILES

Sets the maximum number of different instances of a single package that are to be stored in the precompile

cache (default = 10).

JULIA_VERBOSE_LINKING

If set to true, linker commands will be displayed during precompilation.

CHAPTER 29. ENVIRONMENT VARIABLES 369

29.2 Pkg.jl

JULIA_CI

If set to true, this indicates to the package server that any package operations are part of a continuous

integration (CI) system for the purposes of gathering package usage statistics.

JULIA_NUM_PRECOMPILE_TASKS

The number of parallel tasks to use when precompiling packages. See Pkg.precompile.

JULIA_PKG_DEVDIR

The default directory used by Pkg.develop for downloading packages.

JULIA_PKG_IGNORE_HASHES

If set to 1, this will ignore incorrect hashes in artifacts. This should be used carefully, as it disables verifi-

cation of downloads, but can resolve issues when moving files across different types of file systems. See

Pkg.jl issue #2317 for more details.

Julia 1.6

This is only supported in Julia 1.6 and above.

JULIA_PKG_OFFLINE

If set to true, this will enable offline mode: see Pkg.offline.

Julia 1.5

Pkg's offline mode requires Julia 1.5 or later.

JULIA_PKG_PRECOMPILE_AUTO

If set to 0, this will disable automatic precompilation by package actions which change the manifest. See

Pkg.precompile.

JULIA_PKG_SERVER

Specifies the URL of the package registry to use. By default, Pkg uses https://pkg.julialang.org to

fetch Julia packages. In addition, you can disable the use of the PkgServer protocol, and instead access

the packages directly from their hosts (GitHub, GitLab, etc.) by setting: export JULIA_PKG_SERVER=""

JULIA_PKG_SERVER_REGISTRY_PREFERENCE

Specifies the preferred registry flavor. Currently supported values are conservative (the default), which

will only publish resources that have been processed by the storage server (and thereby have a higher

probability of being available from the PkgServers), whereas eager will publish registries whose resources

have not necessarily been processed by the storage servers. Users behind restrictive firewalls that do not

allow downloading from arbitrary servers should not use the eager flavor.

https://pkgdocs.julialang.org/v1/api/#Pkg.precompile
https://pkgdocs.julialang.org/v1/api/#Pkg.develop
https://github.com/JuliaLang/Pkg.jl/issues/2317
https://pkgdocs.julialang.org/v1/api/#Pkg.offline
https://pkgdocs.julialang.org/v1/api/#Pkg.precompile

CHAPTER 29. ENVIRONMENT VARIABLES 370

Julia 1.7

This only affects Julia 1.7 and above.

JULIA_PKG_UNPACK_REGISTRY

If set to true, this will unpack the registry instead of storing it as a compressed tarball.

Julia 1.7

This only affects Julia 1.7 and above. Earlier versions will always unpack the registry.

JULIA_PKG_USE_CLI_GIT

If set to true, Pkg operations which use the git protocol will use an external git executable instead of the

default libgit2 library.

Julia 1.7

Use of the git executable is only supported on Julia 1.7 and above.

JULIA_PKGRESOLVE_ACCURACY

The accuracy of the package resolver. This should be a positive integer, the default is 1.

JULIA_PKG_PRESERVE_TIERED_INSTALLED

Change the default package installation strategy to Pkg.PRESERVE_TIERED_INSTALLED to let the package

manager try to install versions of packages while keeping as many versions of packages already installed

as possible.

Julia 1.9

This only affects Julia 1.9 and above.

29.3 Network transport

JULIA_NO_VERIFY_HOSTS / JULIA_SSL_NO_VERIFY_HOSTS / JULIA_SSH_NO_VERIFY_HOSTS /

JULIA_ALWAYS_VERIFY_HOSTS

Specify hosts whose identity should or should not be verified for specific transport layers. See NetworkOptions.verify_host

JULIA_SSL_CA_ROOTS_PATH

Specify the file or directory containing the certificate authority roots. See NetworkOptions.ca_roots

29.4 External applications

JULIA_SHELL

The absolute path of the shell with which Julia should execute external commands (via Base.repl_cmd()).

Defaults to the environment variable $SHELL, and falls back to /bin/sh if $SHELL is unset.

https://github.com/JuliaLang/NetworkOptions.jl#verify_host
https://github.com/JuliaLang/NetworkOptions.jl#ca_roots

CHAPTER 29. ENVIRONMENT VARIABLES 371

Note

On Windows, this environment variable is ignored, and external commands are executed di-

rectly.

JULIA_EDITOR

The editor returned by InteractiveUtils.editor() and used in, e.g., InteractiveUtils.edit, referring

to the command of the preferred editor, for instance vim.

$JULIA_EDITOR takes precedence over $VISUAL, which in turn takes precedence over $EDITOR. If none

of these environment variables is set, then the editor is taken to be open on Windows and OS X, or

/etc/alternatives/editor if it exists, or emacs otherwise.

To use Visual Studio Code on Windows, set $JULIA_EDITOR to code.cmd.

29.5 Parallelization

JULIA_CPU_THREADS

Overrides the global variable Base.Sys.CPU_THREADS, the number of logical CPU cores available.

JULIA_WORKER_TIMEOUT

A Float64 that sets the value of Distributed.worker_timeout() (default: 60.0). This function gives the

number of seconds a worker process will wait for a master process to establish a connection before dying.

JULIA_NUM_THREADS

An unsigned 64-bit integer (uint64_t) that sets the maximum number of threads available to Julia. If

$JULIA_NUM_THREADS is not positive or is not set, or if the number of CPU threads cannot be determined

through system calls, then the number of threads is set to 1.

If $JULIA_NUM_THREADS is set to auto, then the number of threads will be set to the number of CPU threads.

Note

JULIA_NUM_THREADSmust be defined before starting julia; defining it in startup.jl is too late

in the startup process.

Julia 1.5

In Julia 1.5 and above the number of threads can also be specified on startup using the -t/--

threads command line argument.

Julia 1.7

The auto value for $JULIA_NUM_THREADS requires Julia 1.7 or above.

JULIA_THREAD_SLEEP_THRESHOLD

If set to a string that starts with the case-insensitive substring "infinite", then spinning threads never

sleep. Otherwise, $JULIA_THREAD_SLEEP_THRESHOLD is interpreted as an unsigned 64-bit integer (uint64_t)

and gives, in nanoseconds, the amount of time after which spinning threads should sleep.

CHAPTER 29. ENVIRONMENT VARIABLES 372

JULIA_NUM_GC_THREADS

Sets the number of threads used by Garbage Collection. If unspecified is set to half of the number of worker

threads.

Julia 1.10

The environment variable was added in 1.10

JULIA_IMAGE_THREADS

An unsigned 32-bit integer that sets the number of threads used by image compilation in this Julia process.

The value of this variable may be ignored if the module is a small module. If left unspecified, the smaller

of the value of JULIA_CPU_THREADS or half the number of logical CPU cores is used in its place.

JULIA_IMAGE_TIMINGS

A boolean value that determines if detailed timing information is printed during during image compilation.

Defaults to 0.

JULIA_EXCLUSIVE

If set to anything besides 0, then Julia's thread policy is consistent with running on a dedicated machine:

the master thread is on proc 0, and threads are affinitized. Otherwise, Julia lets the operating system

handle thread policy.

29.6 REPL formatting

Environment variables that determine how REPL output should be formatted at the terminal. Generally,

these variables should be set to ANSI terminal escape sequences. Julia provides a high-level interface with

much of the same functionality; see the section on The Julia REPL.

JULIA_ERROR_COLOR

The formatting Base.error_color() (default: light red, "\033[91m") that errors should have at the termi-

nal.

JULIA_WARN_COLOR

The formatting Base.warn_color() (default: yellow, "\033[93m") that warnings should have at the termi-

nal.

JULIA_INFO_COLOR

The formatting Base.info_color() (default: cyan, "\033[36m") that info should have at the terminal.

JULIA_INPUT_COLOR

The formatting Base.input_color() (default: normal, "\033[0m") that input should have at the terminal.

https://en.wikipedia.org/wiki/ANSI_escape_code

CHAPTER 29. ENVIRONMENT VARIABLES 373

JULIA_ANSWER_COLOR

The formatting Base.answer_color() (default: normal, "\033[0m") that output should have at the termi-

nal.

29.7 System and Package Image Building

JULIA_CPU_TARGET

Modify the target machine architecture for (pre)compiling system and package images. JULIA_CPU_TARGET

only affects machine code image generation being output to a disk cache. Unlike the --cpu-target, or -C,

command line option, it does not influence just-in-time (JIT) code generation within a Julia session where

machine code is only stored in memory.

Valid values for JULIA_CPU_TARGET can be obtained by executing julia -C help.

Setting JULIA_CPU_TARGET is important for heterogeneous compute systems where processors of distinct

types or features may be present. This is commonly encountered in high performance computing (HPC)

clusters since the component nodes may be using distinct processors.

The CPU target string is a list of strings separated by ; each string starts with a CPU or architecture name

and followed by an optional list of features separated by ,. A generic or empty CPU name means the basic

required feature set of the target ISA which is at least the architecture the C/C++ runtime is compiled with.

Each string is interpreted by LLVM.

A few special features are supported:

1. clone_all

This forces the target to have all functions in sysimg cloned. When used in negative form (i.e.

-clone_all), this disables full clone that's enabled by default for certain targets.

2. base([0-9]*)

This specifies the (0-based) base target index. The base target is the target that the current target

is based on, i.e. the functions that are not being cloned will use the version in the base target. This

option causes the base target to be fully cloned (as if clone_all is specified for it) if it is not the

default target (0). The index can only be smaller than the current index.

3. opt_size

Optimize for size with minimum performance impact. Clang/GCC's -Os.

4. min_size

Optimize only for size. Clang's -Oz.

29.8 Debugging and profiling

JULIA_DEBUG

Enable debug logging for a file or module, see Logging for more information.

CHAPTER 29. ENVIRONMENT VARIABLES 374

JULIA_GC_ALLOC_POOL, JULIA_GC_ALLOC_OTHER, JULIA_GC_ALLOC_PRINT

If set, these environment variables take strings that optionally start with the character 'r', followed by a

string interpolation of a colon-separated list of three signed 64-bit integers (int64_t). This triple of integers

a:b:c represents the arithmetic sequence a, a + b, a + 2*b, ... c.

• If it's the nth time that jl_gc_pool_alloc() has been called, and n belongs to the arithmetic se-

quence represented by $JULIA_GC_ALLOC_POOL, then garbage collection is forced.

• If it's the nth time that maybe_collect() has been called, and n belongs to the arithmetic sequence

represented by $JULIA_GC_ALLOC_OTHER, then garbage collection is forced.

• If it's the nth time that jl_gc_collect() has been called, and n belongs to the arithmetic sequence

represented by $JULIA_GC_ALLOC_PRINT, then counts for the number of calls to jl_gc_pool_alloc()

and maybe_collect() are printed.

If the value of the environment variable begins with the character 'r', then the interval between garbage

collection events is randomized.

Note

These environment variables only have an effect if Julia was compiled with garbage-collection

debugging (that is, if WITH_GC_DEBUG_ENV is set to 1 in the build configuration).

JULIA_GC_NO_GENERATIONAL

If set to anything besides 0, then the Julia garbage collector never performs "quick sweeps" of memory.

Note

This environment variable only has an effect if Julia was compiled with garbage-collection

debugging (that is, if WITH_GC_DEBUG_ENV is set to 1 in the build configuration).

JULIA_GC_WAIT_FOR_DEBUGGER

If set to anything besides 0, then the Julia garbage collector will wait for a debugger to attach instead of

aborting whenever there's a critical error.

Note

This environment variable only has an effect if Julia was compiled with garbage-collection

debugging (that is, if WITH_GC_DEBUG_ENV is set to 1 in the build configuration).

ENABLE_JITPROFILING

If set to anything besides 0, then the compiler will create and register an event listener for just-in-time (JIT)

profiling.

Note

This environment variable only has an effect if Julia was compiled with JIT profiling support,

using either

CHAPTER 29. ENVIRONMENT VARIABLES 375

• Intel's VTune™ Amplifier (USE_INTEL_JITEVENTS set to 1 in the build configuration), or

• OProfile (USE_OPROFILE_JITEVENTS set to 1 in the build configuration).

• Perf (USE_PERF_JITEVENTS set to 1 in the build configuration). This integration is enabled

by default.

ENABLE_GDBLISTENER

If set to anything besides 0 enables GDB registration of Julia code on release builds. On debug builds of

Julia this is always enabled. Recommended to use with -g 2.

JULIA_LLVM_ARGS

Arguments to be passed to the LLVM backend.

https://software.intel.com/en-us/vtune
https://oprofile.sourceforge.io/news/
https://perf.wiki.kernel.org

Chapter 30

Embedding Julia

As we have seen in Calling C and Fortran Code, Julia has a simple and efficient way to call functions written

in C. But there are situations where the opposite is needed: calling Julia functions from C code. This can be

used to integrate Julia code into a larger C/C++ project, without the need to rewrite everything in C/C++.

Julia has a C API to make this possible. As almost all programming languages have some way to call C

functions, the Julia C API can also be used to build further language bridges (e.g. calling Julia from Python,

Rust or C#). Even though Rust and C++ can use the C embedding API directly, both have packages helping

with it, for C++ Jluna is useful.

30.1 High-Level Embedding

Note: This section covers embedding Julia code in C on Unix-like operating systems. For doing this on

Windows, please see the section following this, High-Level Embedding on Windows with Visual Studio.

We start with a simple C program that initializes Julia and calls some Julia code:

#include <julia.h>

JULIA_DEFINE_FAST_TLS // only define this once, in an executable (not in a shared library) if you

want fast code.

int main(int argc, char *argv[])

{

/* required: setup the Julia context */

jl_init();

/* run Julia commands */

jl_eval_string("print(sqrt(2.0))");

/* strongly recommended: notify Julia that the

program is about to terminate. this allows

Julia time to cleanup pending write requests

and run all finalizers

*/

jl_atexit_hook(0);

return 0;

}

376

https://github.com/Clemapfel/jluna

CHAPTER 30. EMBEDDING JULIA 377

In order to build this program you must add the path to the Julia header to the include path and link against

libjulia. For instance, when Julia is installed to $JULIA_DIR, one can compile the above test program

test.c with gcc using:

gcc -o test -fPIC -I$JULIA_DIR/include/julia -L$JULIA_DIR/lib -Wl,-rpath,$JULIA_DIR/lib test.c -

ljulia

Alternatively, look at the embedding.c program in the Julia source tree in the test/embedding/ folder. The

file cli/loader_exe.c program is another simple example of how to set jl_options options while linking

against libjulia.

The first thing that must be done before calling any other Julia C function is to initialize Julia. This is done

by calling jl_init, which tries to automatically determine Julia's install location. If you need to specify a

custom location, or specify which system image to load, use jl_init_with_image instead.

The second statement in the test program evaluates a Julia statement using a call to jl_eval_string.

Before the program terminates, it is strongly recommended that jl_atexit_hook is called. The above

example program calls this just before returning from main.

Note

Currently, dynamically linking with the libjulia shared library requires passing the RTLD_GLOBAL

option. In Python, this looks like:

>>> julia=CDLL('./libjulia.dylib',RTLD_GLOBAL)

>>> julia.jl_init.argtypes = []

>>> julia.jl_init()

250593296

Note

If the julia program needs to access symbols from the main executable, it may be necessary

to add the -Wl,--export-dynamic linker flag at compile time on Linux in addition to the ones

generated by julia-config.jl described below. This is not necessary when compiling a

shared library.

Using julia-config to automatically determine build parameters

The script julia-config.jl was created to aid in determining what build parameters are required by a

program that uses embedded Julia. This script uses the build parameters and system configuration of

the particular Julia distribution it is invoked by to export the necessary compiler flags for an embedding

program to interact with that distribution. This script is located in the Julia shared data directory.

Example

#include <julia.h>

int main(int argc, char *argv[])

{

jl_init();

(void)jl_eval_string("println(sqrt(2.0))");

jl_atexit_hook(0);

return 0;

}

CHAPTER 30. EMBEDDING JULIA 378

On the command line

A simple use of this script is from the command line. Assuming that julia-config.jl is located in

/usr/local/julia/share/julia, it can be invoked on the command line directly and takes any com-

bination of three flags:

/usr/local/julia/share/julia/julia-config.jl

Usage: julia-config [--cflags|--ldflags|--ldlibs]

If the above example source is saved in the file embed_example.c, then the following command will compile

it into an executable program on Linux and Windows (MSYS2 environment). On macOS, substitute clang

for gcc.:

/usr/local/julia/share/julia/julia-config.jl --cflags --ldflags --ldlibs | xargs gcc

embed_example.c

Use in Makefiles

In general, embedding projects will be more complicated than the above example, and so the following

allows general makefile support as well – assuming GNU make because of the use of the shell macro

expansions. Furthermore, although julia-config.jl is usually in the /usr/local directory, if it isn't,

then Julia itself can be used to find julia-config.jl, and the makefile can take advantage of this. The

above example is extended to use a makefile:

JL_SHARE = $(shell julia -e 'print(joinpath(Sys.BINDIR, Base.DATAROOTDIR, "julia"))')

CFLAGS += $(shell $(JL_SHARE)/julia-config.jl --cflags)

CXXFLAGS += $(shell $(JL_SHARE)/julia-config.jl --cflags)

LDFLAGS += $(shell $(JL_SHARE)/julia-config.jl --ldflags)

LDLIBS += $(shell $(JL_SHARE)/julia-config.jl --ldlibs)

all: embed_example

Now the build command is simply make.

30.2 High-Level Embedding on Windows with Visual Studio

If the JULIA_DIR environment variable hasn't been setup, add it using the System panel before starting

Visual Studio. The bin folder under JULIA_DIR should be on the system PATH.

We start by opening Visual Studio and creating a new Console Application project. Open the 'stdafx.h'

header file, and add the following lines at the end:

#include <julia.h>

Then, replace the main() function in the project with this code:

int main(int argc, char *argv[])

{

/* required: setup the Julia context */

jl_init();

/* run Julia commands */

jl_eval_string("print(sqrt(2.0))");

CHAPTER 30. EMBEDDING JULIA 379

/* strongly recommended: notify Julia that the

program is about to terminate. this allows

Julia time to cleanup pending write requests

and run all finalizers

*/

jl_atexit_hook(0);

return 0;

}

The next step is to set up the project to find the Julia include files and the libraries. It's important to know

whether the Julia installation is 32- or 64-bit. Remove any platform configuration that doesn't correspond

to the Julia installation before proceeding.

Using the project Properties dialog, go to C/C++ | General and add $(JULIA_DIR)\include\julia\ to the

Additional Include Directories property. Then, go to the Linker | General section and add $(JULIA_DIR)\lib

to the Additional Library Directories property. Finally, under Linker | Input, add libjulia.dll.a;libopenlibm.dll.a;

to the list of libraries.

At this point, the project should build and run.

30.3 Converting Types

Real applications will not only need to execute expressions, but also return their values to the host program.

jl_eval_string returns a jl_value_t*, which is a pointer to a heap-allocated Julia object. Storing simple

data types like Float64 in this way is called boxing, and extracting the stored primitive data is called

unboxing. Our improved sample program that calculates the square root of 2 in Julia and reads back the

result in C has a body that now contains this code:

jl_value_t *ret = jl_eval_string("sqrt(2.0)");

if (jl_typeis(ret, jl_float64_type)) {

double ret_unboxed = jl_unbox_float64(ret);

printf("sqrt(2.0) in C: %e \n", ret_unboxed);

}

else {

printf("ERROR: unexpected return type from sqrt(::Float64)\n");

}

In order to check whether ret is of a specific Julia type, we can use the jl_isa, jl_typeis, or jl_is_...

functions. By typing typeof(sqrt(2.0)) into the Julia shell we can see that the return type is Float64

(double in C). To convert the boxed Julia value into a C double the jl_unbox_float64 function is used in

the above code snippet.

Corresponding jl_box_... functions are used to convert the other way:

jl_value_t *a = jl_box_float64(3.0);

jl_value_t *b = jl_box_float32(3.0f);

jl_value_t *c = jl_box_int32(3);

As we will see next, boxing is required to call Julia functions with specific arguments.

CHAPTER 30. EMBEDDING JULIA 380

30.4 Calling Julia Functions

While jl_eval_string allows C to obtain the result of a Julia expression, it does not allow passing argu-

ments computed in C to Julia. For this you will need to invoke Julia functions directly, using jl_call:

jl_function_t *func = jl_get_function(jl_base_module, "sqrt");

jl_value_t *argument = jl_box_float64(2.0);

jl_value_t *ret = jl_call1(func, argument);

In the first step, a handle to the Julia function sqrt is retrieved by calling jl_get_function. The first ar-

gument passed to jl_get_function is a pointer to the Base module in which sqrt is defined. Then, the

double value is boxed using jl_box_float64. Finally, in the last step, the function is called using jl_call1.

jl_call0, jl_call2, and jl_call3 functions also exist, to conveniently handle different numbers of argu-

ments. To pass more arguments, use jl_call:

jl_value_t *jl_call(jl_function_t *f, jl_value_t **args, int32_t nargs)

Its second argument args is an array of jl_value_t* arguments and nargs is the number of arguments.

There is also an alternative, possibly simpler, way of calling Julia functions and that is via @cfunction.

Using @cfunction allows you to do the type conversions on the Julia side which typically is easier than

doing it on the C side. The sqrt example above would with @cfunction be written as:

double (*sqrt_jl)(double) = jl_unbox_voidpointer(jl_eval_string("@cfunction(sqrt, Float64, (

Float64,))"));

double ret = sqrt_jl(2.0);

where we first define a C callable function in Julia, extract the function pointer from it and finally call it.

30.5 Memory Management

As we have seen, Julia objects are represented in C as pointers of type jl_value_t*. This raises the

question of who is responsible for freeing these objects.

Typically, Julia objects are freed by the garbage collector (GC), but the GC does not automatically know

that we are holding a reference to a Julia value from C. This means the GC can free objects out from under

you, rendering pointers invalid.

The GC will only run when new Julia objects are being allocated. Calls like jl_box_float64 perform allo-

cation, but allocation might also happen at any point in running Julia code.

When writing code that embeds Julia, it is generally safe to use jl_value_t* values in between jl_...

calls (as GC will only get triggered by those calls). But in order to make sure that values can survive jl_...

calls, we have to tell Julia that we still hold a reference to Julia root values, a process called "GC rooting".

Rooting a value will ensure that the garbage collector does not accidentally identify this value as unused

and free the memory backing that value. This can be done using the JL_GC_PUSH macros:

jl_value_t *ret = jl_eval_string("sqrt(2.0)");

JL_GC_PUSH1(&ret);

// Do something with ret

JL_GC_POP();

The JL_GC_POP call releases the references established by the previous JL_GC_PUSH. Note that JL_GC_PUSH

stores references on the C stack, so it must be exactly paired with a JL_GC_POP before the scope is exited.

https://www.cs.purdue.edu/homes/hosking/690M/p611-fenichel.pdf

CHAPTER 30. EMBEDDING JULIA 381

That is, before the function returns, or control flow otherwise leaves the block in which the JL_GC_PUSH

was invoked.

Several Julia values can be pushed at once using the JL_GC_PUSH2 to JL_GC_PUSH6 macros:

JL_GC_PUSH2(&ret1, &ret2);

// ...

JL_GC_PUSH6(&ret1, &ret2, &ret3, &ret4, &ret5, &ret6);

To push an array of Julia values one can use the JL_GC_PUSHARGS macro, which can be used as follows:

jl_value_t **args;

JL_GC_PUSHARGS(args, 2); // args can now hold 2 `jl_value_t*` objects

args[0] = some_value;

args[1] = some_other_value;

// Do something with args (e.g. call jl_... functions)

JL_GC_POP();

Each scope must have only one call to JL_GC_PUSH*, and should be paired with only a single JL_GC_POP

call. If all necessary variables you want to root cannot be pushed by a one single call to JL_GC_PUSH*, or if

there are more than 6 variables to be pushed and using an array of arguments is not an option, then one

can use inner blocks:

jl_value_t *ret1 = jl_eval_string("sqrt(2.0)");

JL_GC_PUSH1(&ret1);

jl_value_t *ret2 = 0;

{

jl_function_t *func = jl_get_function(jl_base_module, "exp");

ret2 = jl_call1(func, ret1);

JL_GC_PUSH1(&ret2);

// Do something with ret2.

JL_GC_POP(); // This pops ret2.

}

JL_GC_POP(); // This pops ret1.

Note that it is not necessary to have valid jl_value_t* values before calling JL_GC_PUSH*. It is fine to

have a number of them initialized to NULL, pass those to JL_GC_PUSH* and then create the actual Julia

values. For example:

jl_value_t *ret1 = NULL, *ret2 = NULL;

JL_GC_PUSH2(&ret1, &ret2);

ret1 = jl_eval_string("sqrt(2.0)");

ret2 = jl_eval_string("sqrt(3.0)");

// Use ret1 and ret2

JL_GC_POP();

If it is required to hold the pointer to a variable between functions (or block scopes), then it is not possible

to use JL_GC_PUSH*. In this case, it is necessary to create and keep a reference to the variable in the Julia

global scope. One simple way to accomplish this is to use a global IdDict that will hold the references,

avoiding deallocation by the GC. However, this method will only work properly with mutable types.

// This functions shall be executed only once, during the initialization.

jl_value_t* refs = jl_eval_string("refs = IdDict()");

jl_function_t* setindex = jl_get_function(jl_base_module, "setindex!");

CHAPTER 30. EMBEDDING JULIA 382

...

// `var` is the variable we want to protect between function calls.

jl_value_t* var = 0;

...

// `var` is a `Vector{Float64}`, which is mutable.

var = jl_eval_string("[sqrt(2.0); sqrt(4.0); sqrt(6.0)]");

// To protect `var`, add its reference to `refs`.

jl_call3(setindex, refs, var, var);

If the variable is immutable, then it needs to be wrapped in an equivalent mutable container or, preferably,

in a RefValue{Any} before it is pushed to IdDict. In this approach, the container has to be created or filled

in via C code using, for example, the function jl_new_struct. If the container is created by jl_call*, then

you will need to reload the pointer to be used in C code.

// This functions shall be executed only once, during the initialization.

jl_value_t* refs = jl_eval_string("refs = IdDict()");

jl_function_t* setindex = jl_get_function(jl_base_module, "setindex!");

jl_datatype_t* reft = (jl_datatype_t*)jl_eval_string("Base.RefValue{Any}");

...

// `var` is the variable we want to protect between function calls.

jl_value_t* var = 0;

...

// `var` is a `Float64`, which is immutable.

var = jl_eval_string("sqrt(2.0)");

// Protect `var` until we add its reference to `refs`.

JL_GC_PUSH1(&var);

// Wrap `var` in `RefValue{Any}` and push to `refs` to protect it.

jl_value_t* rvar = jl_new_struct(reft, var);

JL_GC_POP();

jl_call3(setindex, refs, rvar, rvar);

The GC can be allowed to deallocate a variable by removing the reference to it from refs using the function

delete!, provided that no other reference to the variable is kept anywhere:

jl_function_t* delete = jl_get_function(jl_base_module, "delete!");

jl_call2(delete, refs, rvar);

As an alternative for very simple cases, it is possible to just create a global container of type Vector{Any}

and fetch the elements from that when necessary, or even to create one global variable per pointer using

jl_module_t *mod = jl_main_module;

jl_sym_t *var = jl_symbol("var");

jl_binding_t *bp = jl_get_binding_wr(mod, var);

jl_checked_assignment(bp, mod, var, val);

CHAPTER 30. EMBEDDING JULIA 383

Updating fields of GC-managed objects

The garbage collector also operates under the assumption that it is aware of every older-generation object

pointing to a younger-generation one. Any time a pointer is updated breaking that assumption, it must be

signaled to the collector with the jl_gc_wb (write barrier) function like so:

jl_value_t *parent = some_old_value, *child = some_young_value;

((some_specific_type*)parent)->field = child;

jl_gc_wb(parent, child);

It is in general impossible to predict which values will be old at runtime, so the write barrier must be

inserted after all explicit stores. One notable exception is if the parent object has just been allocated and

no garbage collection has run since then. Note that most jl_... functions can sometimes invoke garbage

collection.

The write barrier is also necessary for arrays of pointers when updating their data directly. For example:

jl_array_t *some_array = ...; // e.g. a Vector{Any}

void **data = (void**)jl_array_data(some_array);

jl_value_t *some_value = ...;

data[0] = some_value;

jl_gc_wb(some_array, some_value);

Controlling the Garbage Collector

There are some functions to control the GC. In normal use cases, these should not be necessary.

Function Description

jl_gc_collect() Force a GC run

jl_gc_enable(0) Disable the GC, return previous state as int

jl_gc_enable(1) Enable the GC, return previous state as int

jl_gc_is_enabled() Return current state as int

30.6 Working with Arrays

Julia and C can share array data without copying. The next example will show how this works.

Julia arrays are represented in C by the datatype jl_array_t*. Basically, jl_array_t is a struct that

contains:

• Information about the datatype

• A pointer to the data block

• Information about the sizes of the array

To keep things simple, we start with a 1D array. Creating an array containing Float64 elements of length

10 can be done like this:

jl_value_t* array_type = jl_apply_array_type((jl_value_t*)jl_float64_type, 1);

jl_array_t* x = jl_alloc_array_1d(array_type, 10);

CHAPTER 30. EMBEDDING JULIA 384

Alternatively, if you have already allocated the array you can generate a thin wrapper around its data:

double *existingArray = (double*)malloc(sizeof(double)*10);

jl_array_t *x = jl_ptr_to_array_1d(array_type, existingArray, 10, 0);

The last argument is a boolean indicating whether Julia should take ownership of the data. If this argument

is non-zero, the GC will call free on the data pointer when the array is no longer referenced.

In order to access the data of x, we can use jl_array_data:

double *xData = (double*)jl_array_data(x);

Now we can fill the array:

for(size_t i=0; i<jl_array_len(x); i++)

xData[i] = i;

Now let us call a Julia function that performs an in-place operation on x:

jl_function_t *func = jl_get_function(jl_base_module, "reverse!");

jl_call1(func, (jl_value_t*)x);

By printing the array, one can verify that the elements of x are now reversed.

Accessing Returned Arrays

If a Julia function returns an array, the return value of jl_eval_string and jl_call can be cast to a

jl_array_t*:

jl_function_t *func = jl_get_function(jl_base_module, "reverse");

jl_array_t *y = (jl_array_t*)jl_call1(func, (jl_value_t*)x);

Now the content of y can be accessed as before using jl_array_data. As always, be sure to keep a

reference to the array while it is in use.

Multidimensional Arrays

Julia's multidimensional arrays are stored in memory in column-major order. Here is some code that creates

a 2D array and accesses its properties:

// Create 2D array of float64 type

jl_value_t *array_type = jl_apply_array_type((jl_value_t*)jl_float64_type, 2);

jl_array_t *x = jl_alloc_array_2d(array_type, 10, 5);

// Get array pointer

double *p = (double*)jl_array_data(x);

// Get number of dimensions

int ndims = jl_array_ndims(x);

// Get the size of the i-th dim

size_t size0 = jl_array_dim(x,0);

size_t size1 = jl_array_dim(x,1);

// Fill array with data

for(size_t i=0; i<size1; i++)

for(size_t j=0; j<size0; j++)

p[j + size0*i] = i + j;

CHAPTER 30. EMBEDDING JULIA 385

Notice that while Julia arrays use 1-based indexing, the C API uses 0-based indexing (for example in calling

jl_array_dim) in order to read as idiomatic C code.

30.7 Exceptions

Julia code can throw exceptions. For example, consider:

jl_eval_string("this_function_does_not_exist()");

This call will appear to do nothing. However, it is possible to check whether an exception was thrown:

if (jl_exception_occurred())

printf("%s \n", jl_typeof_str(jl_exception_occurred()));

If you are using the Julia C API from a language that supports exceptions (e.g. Python, C#, C++), it makes

sense to wrap each call into libjulia with a function that checks whether an exception was thrown, and

then rethrows the exception in the host language.

Throwing Julia Exceptions

When writing Julia callable functions, it might be necessary to validate arguments and throw exceptions to

indicate errors. A typical type check looks like:

if (!jl_typeis(val, jl_float64_type)) {

jl_type_error(function_name, (jl_value_t*)jl_float64_type, val);

}

General exceptions can be raised using the functions:

void jl_error(const char *str);

void jl_errorf(const char *fmt, ...);

jl_error takes a C string, and jl_errorf is called like printf:

jl_errorf("argument x = %d is too large", x);

where in this example x is assumed to be an integer.

Thread-safety

In general, the Julia C API is not fully thread-safe. When embedding Julia in a multi-threaded application

care needs to be taken not to violate the following restrictions:

• jl_init()may only be called once in the application life-time. The same applies to jl_atexit_hook(),

and it may only be called after jl_init().

• jl_...() API functions may only be called from the thread in which jl_init() was called, or from

threads started by the Julia runtime. Calling Julia API functions from user-started threads is not

supported, and may lead to undefined behaviour and crashes.

The second condition above implies that you can not safely call jl_...() functions from threads that were

not started by Julia (the thread calling jl_init() being the exception). For example, the following is not

supported and will most likely segfault:

CHAPTER 30. EMBEDDING JULIA 386

void *func(void*)

{

// Wrong, jl_eval_string() called from thread that was not started by Julia

jl_eval_string("println(Threads.threadid())");

return NULL;

}

int main()

{

pthread_t t;

jl_init();

// Start a new thread

pthread_create(&t, NULL, func, NULL);

pthread_join(t, NULL);

jl_atexit_hook(0);

}

Instead, performing all Julia calls from the same user-created thread will work:

void *func(void*)

{

// Okay, all jl_...() calls from the same thread,

// even though it is not the main application thread

jl_init();

jl_eval_string("println(Threads.threadid())");

jl_atexit_hook(0);

return NULL;

}

int main()

{

pthread_t t;

// Create a new thread, which runs func()

pthread_create(&t, NULL, func, NULL);

pthread_join(t, NULL);

}

An example of calling the Julia C API from a thread started by Julia itself:

#include <julia/julia.h>

JULIA_DEFINE_FAST_TLS

double c_func(int i)

{

printf("[C %08x] i = %d\n", pthread_self(), i);

// Call the Julia sqrt() function to compute the square root of i, and return it

jl_function_t *sqrt = jl_get_function(jl_base_module, "sqrt");

jl_value_t* arg = jl_box_int32(i);

double ret = jl_unbox_float64(jl_call1(sqrt, arg));

CHAPTER 30. EMBEDDING JULIA 387

return ret;

}

int main()

{

jl_init();

// Define a Julia function func() that calls our c_func() defined in C above

jl_eval_string("func(i) = ccall(:c_func, Float64, (Int32,), i)");

// Call func() multiple times, using multiple threads to do so

jl_eval_string("println(Threads.threadpoolsize())");

jl_eval_string("use(i) = println(\"[J $(Threads.threadid())] i = $(i) -> $(func(i))\")");

jl_eval_string("Threads.@threads for i in 1:5 use(i) end");

jl_atexit_hook(0);

}

If we run this code with 2 Julia threads we get the following output (note: the output will vary per run and

system):

$ JULIA_NUM_THREADS=2 ./thread_example

2

[C 3bfd9c00] i = 1

[C 23938640] i = 4

[J 1] i = 1 -> 1.0

[C 3bfd9c00] i = 2

[J 1] i = 2 -> 1.4142135623730951

[C 3bfd9c00] i = 3

[J 2] i = 4 -> 2.0

[C 23938640] i = 5

[J 1] i = 3 -> 1.7320508075688772

[J 2] i = 5 -> 2.23606797749979

As can be seen, Julia thread 1 corresponds to pthread ID 3bfd9c00, and Julia thread 2 corresponds to ID

23938640, showing that indeed multiple threads are used at the C level, and that we can safely call Julia

C API routines from those threads.

Chapter 31

Code Loading

Note

This chapter covers the technical details of package loading. To install packages, use Pkg,

Julia's built-in packagemanager, to add packages to your active environment. To use packages

already in your active environment, write import X or using X, as described in the Modules

documentation.

31.1 Definitions

Julia has two mechanisms for loading code:

1. Code inclusion: e.g. include("source.jl"). Inclusion allows you to split a single program

across multiple source files. The expression include("source.jl") causes the contents of the

file source.jl to be evaluated in the global scope of the module where the include call occurs.

If include("source.jl") is called multiple times, source.jl is evaluated multiple times. The in-

cluded path, source.jl, is interpreted relative to the file where the include call occurs. This makes

it simple to relocate a subtree of source files. In the REPL, included paths are interpreted relative to

the current working directory, pwd().

2. Package loading: e.g. import X or using X. The import mechanism allows you to load a pack-

age—i.e. an independent, reusable collection of Julia code, wrapped in a module—and makes the

resulting module available by the name X inside of the importing module. If the same X package

is imported multiple times in the same Julia session, it is only loaded the first time—on subsequent

imports, the importing module gets a reference to the same module. Note though, that import X

can load different packages in different contexts: X can refer to one package named X in the main

project but potentially to different packages also named X in each dependency. More on this below.

Code inclusion is quite straightforward and simple: it evaluates the given source file in the context of the

caller. Package loading is built on top of code inclusion and serves a different purpose. The rest of this

chapter focuses on the behavior and mechanics of package loading.

A package is a source tree with a standard layout providing functionality that can be reused by other

Julia projects. A package is loaded by import X or using X statements. These statements also make the

module named X—which results from loading the package code—available within the module where the

import statement occurs. The meaning of X in import X is context-dependent: which X package is loaded

388

CHAPTER 31. CODE LOADING 389

depends on what code the statement occurs in. Thus, handling of import X happens in two stages: first,

it determines what package is defined to be X in this context; second, it determines where that particular

X package is found.

These questions are answered by searching through the project environments listed in LOAD_PATH for

project files (Project.toml or JuliaProject.toml), manifest files (Manifest.toml or JuliaManifest.toml),

or folders of source files.

31.2 Federation of packages

Most of the time, a package is uniquely identifiable simply from its name. However, sometimes a project

might encounter a situation where it needs to use two different packages that share the same name. While

you might be able fix this by renaming one of the packages, being forced to do so can be highly disruptive

in a large, shared code base. Instead, Julia's code loading mechanism allows the same package name to

refer to different packages in different components of an application.

Julia supports federated package management, which means that multiple independent parties can main-

tain both public and private packages and registries of packages, and that projects can depend on a mix

of public and private packages from different registries. Packages from various registries are installed and

managed using a common set of tools and workflows. The Pkg package manager that ships with Julia

lets you install and manage your projects' dependencies. It assists in creating and manipulating project

files (which describe what other projects that your project depends on), and manifest files (which snapshot

exact versions of your project's complete dependency graph).

One consequence of federation is that there cannot be a central authority for package naming. Different

entities may use the same name to refer to unrelated packages. This possibility is unavoidable since these

entities do not coordinate and may not even know about each other. Because of the lack of a central

naming authority, a single project may end up depending on different packages that have the same name.

Julia's package loading mechanism does not require package names to be globally unique, even within the

dependency graph of a single project. Instead, packages are identified by universally unique identifiers

(UUIDs), which get assigned when each package is created. Usually you won't have to work directly with

these somewhat cumbersome 128-bit identifiers since Pkg will take care of generating and tracking them

for you. However, these UUIDs provide the definitive answer to the question of "what package does X refer

to?"

Since the decentralized naming problem is somewhat abstract, it may help to walk through a concrete

scenario to understand the issue. Suppose you're developing an application called App, which uses two

packages: Pub and Priv. Priv is a private package that you created, whereas Pub is a public package

that you use but don't control. When you created Priv, there was no public package by the name Priv.

Subsequently, however, an unrelated package also named Priv has been published and become popular.

In fact, the Pub package has started to use it. Therefore, when you next upgrade Pub to get the latest

bug fixes and features, App will end up depending on two different packages named Priv—through no

action of yours other than upgrading. App has a direct dependency on your private Priv package, and an

indirect dependency, through Pub, on the new public Priv package. Since these two Priv packages are

different but are both required for App to continue working correctly, the expression import Priv must

refer to different Priv packages depending on whether it occurs in App's code or in Pub's code. To handle

this, Julia's package loading mechanism distinguishes the two Priv packages by their UUID and picks the

correct one based on its context (the module that called import). How this distinction works is determined

by environments, as explained in the following sections.

https://en.wikipedia.org/wiki/Universally_unique_identifier

CHAPTER 31. CODE LOADING 390

31.3 Environments

An environment determines what import X and using X mean in various code contexts and what files

these statements cause to be loaded. Julia understands two kinds of environments:

1. A project environment is a directory with a project file and an optional manifest file, and forms

an explicit environment. The project file determines what the names and identities of the direct

dependencies of a project are. The manifest file, if present, gives a complete dependency graph,

including all direct and indirect dependencies, exact versions of each dependency, and sufficient

information to locate and load the correct version.

2. A package directory is a directory containing the source trees of a set of packages as subdirecto-

ries, and forms an implicit environment. If X is a subdirectory of a package directory and X/src/X.jl

exists, then the package X is available in the package directory environment and X/src/X.jl is the

source file by which it is loaded.

These can be intermixed to create a stacked environment: an ordered set of project environments and

package directories, overlaid to make a single composite environment. The precedence and visibility rules

then combine to determine which packages are available and where they get loaded from. Julia's load path

forms a stacked environment, for example.

These environment each serve a different purpose:

• Project environments provide reproducibility. By checking a project environment into version con-

trol—e.g. a git repository—along with the rest of the project's source code, you can reproduce the

exact state of the project and all of its dependencies. The manifest file, in particular, captures the ex-

act version of every dependency, identified by a cryptographic hash of its source tree, which makes

it possible for Pkg to retrieve the correct versions and be sure that you are running the exact code

that was recorded for all dependencies.

• Package directories provide convenience when a full carefully-tracked project environment is un-

necessary. They are useful when you want to put a set of packages somewhere and be able to

directly use them, without needing to create a project environment for them.

• Stacked environments allow for adding tools to the primary environment. You can push an envi-

ronment of development tools onto the end of the stack to make them available from the REPL and

scripts, but not from inside packages.

At a high-level, each environment conceptually defines threemaps: roots, graph and paths. When resolving

the meaning of import X, the roots and graph maps are used to determine the identity of X, while the paths

map is used to locate the source code of X. The specific roles of the three maps are:

• roots: name::Symbol⟶ uuid::UUID

An environment's roots map assigns package names to UUIDs for all the top-level dependencies that

the environment makes available to the main project (i.e. the ones that can be loaded in Main).

When Julia encounters import X in the main project, it looks up the identity of X as roots[:X].

CHAPTER 31. CODE LOADING 391

• graph: context::UUID⟶ name::Symbol⟶ uuid::UUID

An environment's graph is a multilevel map which assigns, for each context UUID, a map from

names to UUIDs, similar to the roots map but specific to that context. When Julia sees import X in

the code of the package whose UUID is context, it looks up the identity of X as graph[context][:X].

In particular, this means that import X can refer to different packages depending on context.

• paths: uuid::UUID × name::Symbol⟶ path::String

The paths map assigns to each package UUID-name pair, the location of that package's entry-point

source file. After the identity of X in import X has been resolved to a UUID via roots or graph

(depending on whether it is loaded from the main project or a dependency), Julia determines what

file to load to acquire X by looking up paths[uuid,:X] in the environment. Including this file should

define a module named X. Once this package is loaded, any subsequent import resolving to the same

uuid will create a new binding to the already-loaded package module.

Each kind of environment defines these three maps differently, as detailed in the following sections.

Note

For ease of understanding, the examples throughout this chapter show full data structures

for roots, graph and paths. However, Julia's package loading code does not explicitly create

these. Instead, it lazily computes only as much of each structure as it needs to load a given

package.

Project environments

A project environment is determined by a directory containing a project file called Project.toml, and

optionally a manifest file called Manifest.toml. These files may also be called JuliaProject.toml and

JuliaManifest.toml, in which case Project.toml and Manifest.toml are ignored. This allows for coex-

istence with other tools that might consider files called Project.toml and Manifest.toml significant. For

pure Julia projects, however, the names Project.toml and Manifest.toml are preferred.

The roots, graph and paths maps of a project environment are defined as follows:

The roots map of the environment is determined by the contents of the project file, specifically, its top-

level name and uuid entries and its [deps] section (all optional). Consider the following example project

file for the hypothetical application, App, as described earlier:

name = "App"

uuid = "8f986787-14fe-4607-ba5d-fbff2944afa9"

[deps]

Priv = "ba13f791-ae1d-465a-978b-69c3ad90f72b"

Pub = "c07ecb7d-0dc9-4db7-8803-fadaaeaf08e1"

This project file implies the following roots map, if it was represented by a Julia dictionary:

roots = Dict(

:App => UUID("8f986787-14fe-4607-ba5d-fbff2944afa9"),

:Priv => UUID("ba13f791-ae1d-465a-978b-69c3ad90f72b"),

:Pub => UUID("c07ecb7d-0dc9-4db7-8803-fadaaeaf08e1"),

)

CHAPTER 31. CODE LOADING 392

Given this roots map, in App's code the statement import Priv will cause Julia to look up roots[:Priv],

which yields ba13f791-ae1d-465a-978b-69c3ad90f72b, the UUID of the Priv package that is to be loaded

in that context. This UUID identifies which Priv package to load and use when the main application eval-

uates import Priv.

The dependency graph of a project environment is determined by the contents of the manifest file, if

present. If there is no manifest file, graph is empty. A manifest file contains a stanza for each of a project's

direct or indirect dependencies. For each dependency, the file lists the package's UUID and a source tree

hash or an explicit path to the source code. Consider the following example manifest file for App:

[[Priv]] # the private one

deps = ["Pub", "Zebra"]

uuid = "ba13f791-ae1d-465a-978b-69c3ad90f72b"

path = "deps/Priv"

[[Priv]] # the public one

uuid = "2d15fe94-a1f7-436c-a4d8-07a9a496e01c"

git-tree-sha1 = "1bf63d3be994fe83456a03b874b409cfd59a6373"

version = "0.1.5"

[[Pub]]

uuid = "c07ecb7d-0dc9-4db7-8803-fadaaeaf08e1"

git-tree-sha1 = "9ebd50e2b0dd1e110e842df3b433cb5869b0dd38"

version = "2.1.4"

[Pub.deps]

Priv = "2d15fe94-a1f7-436c-a4d8-07a9a496e01c"

Zebra = "f7a24cb4-21fc-4002-ac70-f0e3a0dd3f62"

[[Zebra]]

uuid = "f7a24cb4-21fc-4002-ac70-f0e3a0dd3f62"

git-tree-sha1 = "e808e36a5d7173974b90a15a353b564f3494092f"

version = "3.4.2"

This manifest file describes a possible complete dependency graph for the App project:

• There are two different packages named Priv that the application uses. It uses a private package,

which is a root dependency, and a public one, which is an indirect dependency through Pub. These

are differentiated by their distinct UUIDs, and they have different deps:

– The private Priv depends on the Pub and Zebra packages.

– The public Priv has no dependencies.

• The application also depends on the Pub package, which in turn depends on the public Priv and the

same Zebra package that the private Priv package depends on.

This dependency graph represented as a dictionary, looks like this:

graph = Dict(

Priv – the private one:

UUID("ba13f791-ae1d-465a-978b-69c3ad90f72b") => Dict(

CHAPTER 31. CODE LOADING 393

:Pub => UUID("c07ecb7d-0dc9-4db7-8803-fadaaeaf08e1"),

:Zebra => UUID("f7a24cb4-21fc-4002-ac70-f0e3a0dd3f62"),

),

Priv – the public one:

UUID("2d15fe94-a1f7-436c-a4d8-07a9a496e01c") => Dict(),

Pub:

UUID("c07ecb7d-0dc9-4db7-8803-fadaaeaf08e1") => Dict(

:Priv => UUID("2d15fe94-a1f7-436c-a4d8-07a9a496e01c"),

:Zebra => UUID("f7a24cb4-21fc-4002-ac70-f0e3a0dd3f62"),

),

Zebra:

UUID("f7a24cb4-21fc-4002-ac70-f0e3a0dd3f62") => Dict(),

)

Given this dependency graph, when Julia sees import Priv in the Pub package—which has UUID c07ecb7d-0dc9-4db7-

8803-fadaaeaf08e1—it looks up:

graph[UUID("c07ecb7d-0dc9-4db7-8803-fadaaeaf08e1")][:Priv]

and gets 2d15fe94-a1f7-436c-a4d8-07a9a496e01c, which indicates that in the context of the Pub pack-

age, import Priv refers to the public Priv package, rather than the private one which the app depends

on directly. This is how the name Priv can refer to different packages in the main project than it does in

one of its package's dependencies, which allows for duplicate names in the package ecosystem.

What happens if import Zebra is evaluated in the main App code base? Since Zebra does not appear in

the project file, the import will fail even though Zebra does appear in the manifest file. Moreover, if import

Zebra occurs in the public Priv package—the onewith UUID 2d15fe94-a1f7-436c-a4d8-07a9a496e01c—then

that would also fail since that Priv package has no declared dependencies in the manifest file and there-

fore cannot load any packages. The Zebra package can only be loaded by packages for which it appear as

an explicit dependency in the manifest file: the Pub package and one of the Priv packages.

The paths map of a project environment is extracted from the manifest file. The path of a package uuid

named X is determined by these rules (in order):

1. If the project file in the directory matches uuid and name X, then either:

– It has a toplevel path entry, then uuid will be mapped to that path, interpreted relative to the

directory containing the project file.

– Otherwise, uuid is mapped to src/X.jl relative to the directory containing the project file.

2. If the above is not the case and the project file has a corresponding manifest file and the manifest

contains a stanza matching uuid then:

– If it has a path entry, use that path (relative to the directory containing the manifest file).

– If it has a git-tree-sha1 entry, compute a deterministic hash function of uuid and git-tree-sha1—call

it slug—and look for a directory named packages/X/$slug in each directory in the Julia DEPOT_PATH

global array. Use the first such directory that exists.

CHAPTER 31. CODE LOADING 394

If any of these result in success, the path to the source code entry point will be either that result, the relative

path from that result plus src/X.jl; otherwise, there is no path mapping for uuid. When loading X, if no

source code path is found, the lookup will fail, and the user may be prompted to install the appropriate

package version or to take other corrective action (e.g. declaring X as a dependency).

In the examplemanifest file above, to find the path of the first Priv package—the onewith UUID ba13f791-ae1d-

465a-978b-69c3ad90f72b—Julia looks for its stanza in the manifest file, sees that it has a path entry, looks

at deps/Priv relative to the App project directory—let's suppose the App code lives in /home/me/projects/App—sees

that /home/me/projects/App/deps/Priv exists and therefore loads Priv from there.

If, on the other hand, Julia was loading the other Priv package—the one with UUID 2d15fe94-a1f7-436c-

a4d8-07a9a496e01c—it finds its stanza in the manifest, see that it does not have a path entry, but that it

does have a git-tree-sha1 entry. It then computes the slug for this UUID/SHA-1 pair, which is HDkrT (the

exact details of this computation aren't important, but it is consistent and deterministic). This means that

the path to this Priv package will be packages/Priv/HDkrT/src/Priv.jl in one of the package depots.

Suppose the contents of DEPOT_PATH is ["/home/me/.julia", "/usr/local/julia"], then Julia will look

at the following paths to see if they exist:

1. /home/me/.julia/packages/Priv/HDkrT

2. /usr/local/julia/packages/Priv/HDkrT

Julia uses the first of these that exists to try to load the public Priv package from the file packages/Priv/HDKrT/src/Priv.jl

in the depot where it was found.

Here is a representation of a possible paths map for our example App project environment, as provided in

the Manifest given above for the dependency graph, after searching the local file system:

paths = Dict(

Priv – the private one:

(UUID("ba13f791-ae1d-465a-978b-69c3ad90f72b"), :Priv) =>

relative entry-point inside `App` repo:

"/home/me/projects/App/deps/Priv/src/Priv.jl",

Priv – the public one:

(UUID("2d15fe94-a1f7-436c-a4d8-07a9a496e01c"), :Priv) =>

package installed in the system depot:

"/usr/local/julia/packages/Priv/HDkr/src/Priv.jl",

Pub:

(UUID("c07ecb7d-0dc9-4db7-8803-fadaaeaf08e1"), :Pub) =>

package installed in the user depot:

"/home/me/.julia/packages/Pub/oKpw/src/Pub.jl",

Zebra:

(UUID("f7a24cb4-21fc-4002-ac70-f0e3a0dd3f62"), :Zebra) =>

package installed in the system depot:

"/usr/local/julia/packages/Zebra/me9k/src/Zebra.jl",

)

This example map includes three different kinds of package locations (the first and third are part of the

default load path):

1. The private Priv package is "vendored" inside the App repository.

https://stackoverflow.com/a/35109534

CHAPTER 31. CODE LOADING 395

2. The public Priv and Zebra packages are in the system depot, where packages installed andmanaged

by the system administrator live. These are available to all users on the system.

3. The Pub package is in the user depot, where packages installed by the user live. These are only

available to the user who installed them.

Package directories

Package directories provide a simpler kind of environment without the ability to handle name collisions. In

a package directory, the set of top-level packages is the set of subdirectories that "look like" packages. A

package X exists in a package directory if the directory contains one of the following "entry point" files:

• X.jl

• X/src/X.jl

• X.jl/src/X.jl

Which dependencies a package in a package directory can import depends on whether the package con-

tains a project file:

• If it has a project file, it can only import those packages which are identified in the [deps] section of

the project file.

• If it does not have a project file, it can import any top-level package—i.e. the same packages that

can be loaded in Main or the REPL.

The roots map is determined by examining the contents of the package directory to generate a list of all

packages that exist. Additionally, a UUID will be assigned to each entry as follows: For a given package

found inside the folder X...

1. If X/Project.toml exists and has a uuid entry, then uuid is that value.

2. If X/Project.toml exists and but does not have a top-level UUID entry, uuid is a dummy UUID

generated by hashing the canonical (real) path to X/Project.toml.

3. Otherwise (if Project.toml does not exist), then uuid is the all-zero nil UUID.

The dependency graph of a project directory is determined by the presence and contents of project files

in the subdirectory of each package. The rules are:

• If a package subdirectory has no project file, then it is omitted from graph and import statements in

its code are treated as top-level, the same as the main project and REPL.

• If a package subdirectory has a project file, then the graph entry for its UUID is the [deps] map of

the project file, which is considered to be empty if the section is absent.

As an example, suppose a package directory has the following structure and content:

https://en.wikipedia.org/wiki/Universally_unique_identifier#Nil_UUID

CHAPTER 31. CODE LOADING 396

Aardvark/

src/Aardvark.jl:

import Bobcat

import Cobra

Bobcat/

Project.toml:

[deps]

Cobra = "4725e24d-f727-424b-bca0-c4307a3456fa"

Dingo = "7a7925be-828c-4418-bbeb-bac8dfc843bc"

src/Bobcat.jl:

import Cobra

import Dingo

Cobra/

Project.toml:

uuid = "4725e24d-f727-424b-bca0-c4307a3456fa"

[deps]

Dingo = "7a7925be-828c-4418-bbeb-bac8dfc843bc"

src/Cobra.jl:

import Dingo

Dingo/

Project.toml:

uuid = "7a7925be-828c-4418-bbeb-bac8dfc843bc"

src/Dingo.jl:

no imports

Here is a corresponding roots structure, represented as a dictionary:

roots = Dict(

:Aardvark => UUID("00000000-0000-0000-0000-000000000000"), # no project file, nil UUID

:Bobcat => UUID("85ad11c7-31f6-5d08-84db-0a4914d4cadf"), # dummy UUID based on path

:Cobra => UUID("4725e24d-f727-424b-bca0-c4307a3456fa"), # UUID from project file

:Dingo => UUID("7a7925be-828c-4418-bbeb-bac8dfc843bc"), # UUID from project file

)

Here is the corresponding graph structure, represented as a dictionary:

graph = Dict(

Bobcat:

UUID("85ad11c7-31f6-5d08-84db-0a4914d4cadf") => Dict(

:Cobra => UUID("4725e24d-f727-424b-bca0-c4307a3456fa"),

:Dingo => UUID("7a7925be-828c-4418-bbeb-bac8dfc843bc"),

),

Cobra:

UUID("4725e24d-f727-424b-bca0-c4307a3456fa") => Dict(

:Dingo => UUID("7a7925be-828c-4418-bbeb-bac8dfc843bc"),

),

CHAPTER 31. CODE LOADING 397

Dingo:

UUID("7a7925be-828c-4418-bbeb-bac8dfc843bc") => Dict(),

)

A few general rules to note:

1. A package without a project file can depend on any top-level dependency, and since every package

in a package directory is available at the top-level, it can import all packages in the environment.

2. A package with a project file cannot depend on one without a project file since packages with project

files can only load packages in graph and packages without project files do not appear in graph.

3. A package with a project file but no explicit UUID can only be depended on by packages without

project files since dummy UUIDs assigned to these packages are strictly internal.

Observe the following specific instances of these rules in our example:

• Aardvark can import on any of Bobcat, Cobra or Dingo; it does import Bobcat and Cobra.

• Bobcat can and does import both Cobra and Dingo, which both have project files with UUIDs and

are declared as dependencies in Bobcat's [deps] section.

• Bobcat cannot depend on Aardvark since Aardvark does not have a project file.

• Cobra can and does import Dingo, which has a project file and UUID, and is declared as a dependency

in Cobra's [deps] section.

• Cobra cannot depend on Aardvark or Bobcat since neither have real UUIDs.

• Dingo cannot import anything because it has a project file without a [deps] section.

The paths map in a package directory is simple: it maps subdirectory names to their corresponding

entry-point paths. In other words, if the path to our example project directory is /home/me/animals then

the paths map could be represented by this dictionary:

paths = Dict(

(UUID("00000000-0000-0000-0000-000000000000"), :Aardvark) =>

"/home/me/AnimalPackages/Aardvark/src/Aardvark.jl",

(UUID("85ad11c7-31f6-5d08-84db-0a4914d4cadf"), :Bobcat) =>

"/home/me/AnimalPackages/Bobcat/src/Bobcat.jl",

(UUID("4725e24d-f727-424b-bca0-c4307a3456fa"), :Cobra) =>

"/home/me/AnimalPackages/Cobra/src/Cobra.jl",

(UUID("7a7925be-828c-4418-bbeb-bac8dfc843bc"), :Dingo) =>

"/home/me/AnimalPackages/Dingo/src/Dingo.jl",

)

Since all packages in a package directory environment are, by definition, subdirectories with the expected

entry-point files, their paths map entries always have this form.

CHAPTER 31. CODE LOADING 398

Environment stacks

The third and final kind of environment is one that combines other environments by overlaying several

of them, making the packages in each available in a single composite environment. These composite

environments are called environment stacks. The Julia LOAD_PATH global defines an environment stack—the

environment in which the Julia process operates. If you want your Julia process to have access only to the

packages in one project or package directory, make it the only entry in LOAD_PATH. It is often quite useful,

however, to have access to some of your favorite tools—standard libraries, profilers, debuggers, personal

utilities, etc.—even if they are not dependencies of the project you're working on. By adding an environment

containing these tools to the load path, you immediately have access to them in top-level code without

needing to add them to your project.

The mechanism for combining the roots, graph and paths data structures of the components of an environ-

ment stack is simple: they are merged as dictionaries, favoring earlier entries over later ones in the case

of key collisions. In other words, if we have stack = [env₁, env₂, …] then we have:

roots = reduce(merge, reverse([roots₁, roots₂, …]))

graph = reduce(merge, reverse([graph₁, graph₂, …]))

paths = reduce(merge, reverse([paths₁, paths₂, …]))

The subscripted rootsᵢ, graphᵢ and pathsᵢ variables correspond to the subscripted environments, envᵢ,

contained in stack. The reverse is present because merge favors the last argument rather than first when

there are collisions between keys in its argument dictionaries. There are a couple of noteworthy features

of this design:

1. The primary environment—i.e. the first environment in a stack—is faithfully embedded in a stacked

environment. The full dependency graph of the first environment in a stack is guaranteed to be

included intact in the stacked environment including the same versions of all dependencies.

2. Packages in non-primary environments can end up using incompatible versions of their dependen-

cies even if their own environments are entirely compatible. This can happen when one of their

dependencies is shadowed by a version in an earlier environment in the stack (either by graph or

path, or both).

Since the primary environment is typically the environment of a project you're working on, while envi-

ronments later in the stack contain additional tools, this is the right trade-off: it's better to break your

development tools but keep the project working. When such incompatibilities occur, you'll typically want

to upgrade your dev tools to versions that are compatible with the main project.

Package Extensions

A package "extension" is a module that is automatically loaded when a specified set of other packages

(its "extension dependencies") are loaded in the current Julia session. Extensions are defined under the

[extensions] section in the project file. The extension dependencies of an extension are a subset of those

packages listed under the [weakdeps] section of the project file. Those packages can have compat entries

like other packages.

name = "MyPackage"

[compat]

CHAPTER 31. CODE LOADING 399

ExtDep = "1.0"

OtherExtDep = "1.0"

[weakdeps]

ExtDep = "c9a23..." # uuid

OtherExtDep = "862e..." # uuid

[extensions]

BarExt = ["ExtDep", "OtherExtDep"]

FooExt = "ExtDep"

...

The keys under extensions are the names of the extensions. They are loaded when all the packages on

the right hand side (the extension dependencies) of that extension are loaded. If an extension only has

one extension dependency the list of extension dependencies can be written as just a string for brevity.

The location for the entry point of the extension is either in ext/FooExt.jl or ext/FooExt/FooExt.jl for

extension FooExt. The content of an extension is often structured as:

module FooExt

Load main package and extension dependencies

using MyPackage, ExtDep

Extend functionality in main package with types from the extension dependencies

MyPackage.func(x::ExtDep.SomeStruct) = ...

end

When a package with extensions is added to an environment, the weakdeps and extensions sections are

stored in the manifest file in the section for that package. The dependency lookup rules for a package

are the same as for its "parent" except that the listed extension dependencies are also considered as

dependencies.

Package/Environment Preferences

Preferences are dictionaries of metadata that influence package behavior within an environment. The pref-

erences system supports reading preferences at compile-time, which means that at code-loading time, we

must ensure that the precompilation files selected by Julia were built with the same preferences as the cur-

rent environment before loading them. The public API for modifying Preferences is contained within the Pref-

erences.jl package. Preferences are stored as TOML dictionaries within a (Julia)LocalPreferences.toml

file next to the currently-active project. If a preference is "exported", it is instead stored within the

(Julia)Project.toml instead. The intention is to allow shared projects to contain shared preferences,

while allowing for users themselves to override those preferences with their own settings in the LocalPref-

erences.toml file, which should be .gitignored as the name implies.

Preferences that are accessed during compilation are automatically marked as compile-time preferences,

and any change recorded to these preferences will cause the Julia compiler to recompile any cached pre-

compilation file(s) (.ji and corresponding .so, .dll, or .dylib files) for that module. This is done by

serializing the hash of all compile-time preferences during compilation, then checking that hash against

the current environment when searching for the proper file(s) to load.

Preferences can be set with depot-wide defaults; if package Foo is installed within your global environment

and it has preferences set, these preferences will apply as long as your global environment is part of

https://github.com/JuliaPackaging/Preferences.jl
https://github.com/JuliaPackaging/Preferences.jl

CHAPTER 31. CODE LOADING 400

your LOAD_PATH. Preferences in environments higher up in the environment stack get overridden by the

more proximal entries in the load path, ending with the currently active project. This allows depot-wide

preference defaults to exist, with active projects able tomerge or even completely overwrite these inherited

preferences. See the docstring for Preferences.set_preferences!() for the full details of how to set

preferences to allow or disallow merging.

31.4 Conclusion

Federated package management and precise software reproducibility are difficult but worthy goals in a

package system. In combination, these goals lead to a more complex package loading mechanism than

most dynamic languages have, but it also yields scalability and reproducibility that is more commonly

associated with static languages. Typically, Julia users should be able to use the built-in package man-

ager to manage their projects without needing a precise understanding of these interactions. A call to

Pkg.add("X") will add to the appropriate project and manifest files, selected via Pkg.activate("Y"), so

that a future call to import X will load X without further thought.

Chapter 32

Profiling

The Profilemodule provides tools to help developers improve the performance of their code. When used,

it takes measurements on running code, and produces output that helps you understand how much time is

spent on individual line(s). The most common usage is to identify "bottlenecks" as targets for optimization.

Profile implements what is known as a "sampling" or statistical profiler. It works by periodically taking

a backtrace during the execution of any task. Each backtrace captures the currently-running function and

line number, plus the complete chain of function calls that led to this line, and hence is a "snapshot" of the

current state of execution.

If much of your run time is spent executing a particular line of code, this line will show up frequently in the

set of all backtraces. In other words, the "cost" of a given line–or really, the cost of the sequence of function

calls up to and including this line–is proportional to how often it appears in the set of all backtraces.

A sampling profiler does not provide complete line-by-line coverage, because the backtraces occur at

intervals (by default, 1 ms on Unix systems and 10 ms on Windows, although the actual scheduling is

subject to operating system load). Moreover, as discussed further below, because samples are collected

at a sparse subset of all execution points, the data collected by a sampling profiler is subject to statistical

noise.

Despite these limitations, sampling profilers have substantial strengths:

• You do not have to make any modifications to your code to take timing measurements.

• It can profile into Julia's core code and even (optionally) into C and Fortran libraries.

• By running "infrequently" there is very little performance overhead; while profiling, your code can

run at nearly native speed.

For these reasons, it's recommended that you try using the built-in sampling profiler before considering

any alternatives.

32.1 Basic usage

Let's work with a simple test case:

julia> function myfunc()

A = rand(200, 200, 400)

401

https://en.wikipedia.org/wiki/Profiling_(computer_programming)

CHAPTER 32. PROFILING 402

maximum(A)

end

It's a good idea to first run the code you intend to profile at least once (unless you want to profile Julia's

JIT-compiler):

julia> myfunc() # run once to force compilation

Now we're ready to profile this function:

julia> using Profile

julia> @profile myfunc()

To see the profiling results, there are several graphical browsers. One "family" of visualizers is based on

FlameGraphs.jl, with each family member providing a different user interface:

• VS Code is a full IDE with built-in support for profile visualization

• ProfileView.jl is a stand-alone visualizer based on GTK

• ProfileVega.jl uses VegaLight and integrates well with Jupyter notebooks

• StatProfilerHTML.jl produces HTML and presents some additional summaries, and also integrates well

with Jupyter notebooks

• ProfileSVG.jl renders SVG

• PProf.jl serves a local website for inspecting graphs, flamegraphs and more

• ProfileCanvas.jl is a HTML canvas based profile viewer UI, used by the Julia VS Code extension, but

can also generate interactive HTML files.

An entirely independent approach to profile visualization is PProf.jl, which uses the external pprof tool.

Here, though, we'll use the text-based display that comes with the standard library:

julia> Profile.print()

80 ./event.jl:73; (::Base.REPL.##1#2{Base.REPL.REPLBackend})()

80 ./REPL.jl:97; macro expansion

80 ./REPL.jl:66; eval_user_input(::Any, ::Base.REPL.REPLBackend)

80 ./boot.jl:235; eval(::Module, ::Any)

80 ./<missing>:?; anonymous

80 ./profile.jl:23; macro expansion

52 ./REPL[1]:2; myfunc()

38 ./random.jl:431; rand!(::MersenneTwister, ::Array{Float64,3}, ::Int64, ::Type{B...

38 ./dSFMT.jl:84; dsfmt_fill_array_close_open!(::Base.dSFMT.DSFMT_state, ::Ptr{F...

14 ./random.jl:278; rand

14 ./random.jl:277; rand

14 ./random.jl:366; rand

14 ./random.jl:369; rand

https://github.com/timholy/FlameGraphs.jl
https://www.julia-vscode.org/
https://github.com/timholy/ProfileView.jl
https://github.com/davidanthoff/ProfileVega.jl
https://github.com/tkluck/StatProfilerHTML.jl
https://github.com/timholy/ProfileSVG.jl
https://github.com/JuliaPerf/PProf.jl
https://github.com/pfitzseb/ProfileCanvas.jl
https://www.julia-vscode.org/
https://github.com/vchuravy/PProf.jl

CHAPTER 32. PROFILING 403

28 ./REPL[1]:3; myfunc()

28 ./reduce.jl:270; _mapreduce(::Base.#identity, ::Base.#scalarmax, ::IndexLinear,...

3 ./reduce.jl:426; mapreduce_impl(::Base.#identity, ::Base.#scalarmax, ::Array{F...

25 ./reduce.jl:428; mapreduce_impl(::Base.#identity, ::Base.#scalarmax, ::Array{F...

Each line of this display represents a particular spot (line number) in the code. Indentation is used to

indicate the nested sequence of function calls, with more-indented lines being deeper in the sequence

of calls. In each line, the first "field" is the number of backtraces (samples) taken at this line or in any

functions executed by this line. The second field is the file name and line number and the third field is the

function name. Note that the specific line numbers may change as Julia's code changes; if you want to

follow along, it's best to run this example yourself.

In this example, we can see that the top level function called is in the file event.jl. This is the function

that runs the REPL when you launch Julia. If you examine line 97 of REPL.jl, you'll see this is where the

function eval_user_input() is called. This is the function that evaluates what you type at the REPL, and

since we're working interactively these functions were invoked when we entered @profile myfunc(). The

next line reflects actions taken in the @profile macro.

The first line shows that 80 backtraces were taken at line 73 of event.jl, but it's not that this line was

"expensive" on its own: the third line reveals that all 80 of these backtraces were actually triggered inside

its call to eval_user_input, and so on. To find out which operations are actually taking the time, we need

to look deeper in the call chain.

The first "important" line in this output is this one:

52 ./REPL[1]:2; myfunc()

REPL refers to the fact that we defined myfunc in the REPL, rather than putting it in a file; if we had used

a file, this would show the file name. The [1] shows that the function myfunc was the first expression

evaluated in this REPL session. Line 2 of myfunc() contains the call to rand, and there were 52 (out of 80)

backtraces that occurred at this line. Below that, you can see a call to dsfmt_fill_array_close_open!

inside dSFMT.jl.

A little further down, you see:

28 ./REPL[1]:3; myfunc()

Line 3 of myfunc contains the call to maximum, and there were 28 (out of 80) backtraces taken here. Below

that, you can see the specific places in base/reduce.jl that carry out the time-consuming operations in

the maximum function for this type of input data.

Overall, we can tentatively conclude that generating the random numbers is approximately twice as ex-

pensive as finding the maximum element. We could increase our confidence in this result by collecting

more samples:

julia> @profile (for i = 1:100; myfunc(); end)

julia> Profile.print()

[....]

3821 ./REPL[1]:2; myfunc()

3511 ./random.jl:431; rand!(::MersenneTwister, ::Array{Float64,3}, ::Int64, ::Type...

3511 ./dSFMT.jl:84; dsfmt_fill_array_close_open!(::Base.dSFMT.DSFMT_state, ::Ptr...

310 ./random.jl:278; rand

CHAPTER 32. PROFILING 404

[....]

2893 ./REPL[1]:3; myfunc()

2893 ./reduce.jl:270; _mapreduce(::Base.#identity, ::Base.#scalarmax, ::IndexLinea...

[....]

In general, if you have N samples collected at a line, you can expect an uncertainty on the order of sqrt(N)

(barring other sources of noise, like how busy the computer is with other tasks). The major exception to this

rule is garbage collection, which runs infrequently but tends to be quite expensive. (Since Julia's garbage

collector is written in C, such events can be detected using the C=true output mode described below, or

by using ProfileView.jl.)

This illustrates the default "tree" dump; an alternative is the "flat" dump, which accumulates counts inde-

pendent of their nesting:

julia> Profile.print(format=:flat)

Count File Line Function

6714 ./<missing> -1 anonymous

6714 ./REPL.jl 66 eval_user_input(::Any, ::Base.REPL.REPLBackend)

6714 ./REPL.jl 97 macro expansion

3821 ./REPL[1] 2 myfunc()

2893 ./REPL[1] 3 myfunc()

6714 ./REPL[7] 1 macro expansion

6714 ./boot.jl 235 eval(::Module, ::Any)

3511 ./dSFMT.jl 84 dsfmt_fill_array_close_open!(::Base.dSFMT.DSFMT_s...

6714 ./event.jl 73 (::Base.REPL.##1#2{Base.REPL.REPLBackend})()

6714 ./profile.jl 23 macro expansion

3511 ./random.jl 431 rand!(::MersenneTwister, ::Array{Float64,3}, ::In...

310 ./random.jl 277 rand

310 ./random.jl 278 rand

310 ./random.jl 366 rand

310 ./random.jl 369 rand

2893 ./reduce.jl 270 _mapreduce(::Base.#identity, ::Base.#scalarmax, :...

5 ./reduce.jl 420 mapreduce_impl(::Base.#identity, ::Base.#scalarma...

253 ./reduce.jl 426 mapreduce_impl(::Base.#identity, ::Base.#scalarma...

2592 ./reduce.jl 428 mapreduce_impl(::Base.#identity, ::Base.#scalarma...

43 ./reduce.jl 429 mapreduce_impl(::Base.#identity, ::Base.#scalarma...

If your code has recursion, one potentially-confusing point is that a line in a "child" function can accumulate

more counts than there are total backtraces. Consider the following function definitions:

dumbsum(n::Integer) = n == 1 ? 1 : 1 + dumbsum(n-1)

dumbsum3() = dumbsum(3)

If you were to profile dumbsum3, and a backtrace was taken while it was executing dumbsum(1), the back-

trace would look like this:

dumbsum3

dumbsum(3)

dumbsum(2)

dumbsum(1)

https://github.com/timholy/ProfileView.jl

CHAPTER 32. PROFILING 405

Consequently, this child function gets 3 counts, even though the parent only gets one. The "tree" repre-

sentation makes this much clearer, and for this reason (among others) is probably the most useful way to

view the results.

32.2 Accumulation and clearing

Results from @profile accumulate in a buffer; if you run multiple pieces of code under @profile, then

Profile.print() will show you the combined results. This can be very useful, but sometimes you want

to start fresh; you can do so with Profile.clear().

32.3 Options for controlling the display of profile results

Profile.print has more options than we've described so far. Let's see the full declaration:

function print(io::IO = stdout, data = fetch(); kwargs...)

Let's first discuss the two positional arguments, and later the keyword arguments:

• io – Allows you to save the results to a buffer, e.g. a file, but the default is to print to stdout (the

console).

• data – Contains the data you want to analyze; by default that is obtained from Profile.fetch(),

which pulls out the backtraces from a pre-allocated buffer. For example, if you want to profile the

profiler, you could say:

data = copy(Profile.fetch())

Profile.clear()

@profile Profile.print(stdout, data) # Prints the previous results

Profile.print() # Prints results from Profile.print()

The keyword arguments can be any combination of:

• format – Introduced above, determines whether backtraces are printed with (default, :tree) or

without (:flat) indentation indicating tree structure.

• C – If true, backtraces from C and Fortran code are shown (normally they are excluded). Try running

the introductory example with Profile.print(C = true). This can be extremely helpful in deciding

whether it's Julia code or C code that is causing a bottleneck; setting C = true also improves the

interpretability of the nesting, at the cost of longer profile dumps.

• combine – Some lines of code contain multiple operations; for example, s += A[i] contains both an

array reference (A[i]) and a sum operation. These correspond to different lines in the generated

machine code, and hence there may be two or more different addresses captured during backtraces

on this line. combine = true lumps them together, and is probably what you typically want, but you

can generate an output separately for each unique instruction pointer with combine = false.

• maxdepth – Limits frames at a depth higher than maxdepth in the :tree format.

• sortedby – Controls the order in :flat format. :filefuncline (default) sorts by the source line,

whereas :count sorts in order of number of collected samples.

CHAPTER 32. PROFILING 406

• noisefloor – Limits frames that are below the heuristic noise floor of the sample (only applies to

format :tree). A suggested value to try for this is 2.0 (the default is 0). This parameter hides

samples for which n <= noisefloor * √N, where n is the number of samples on this line, and N is

the number of samples for the callee.

• mincount – Limits frames with less than mincount occurrences.

File/function names are sometimes truncated (with ...), and indentation is truncated with a +n at the

beginning, where n is the number of extra spaces that would have been inserted, had there been room.

If you want a complete profile of deeply-nested code, often a good idea is to save to a file using a wide

displaysize in an IOContext:

open("/tmp/prof.txt", "w") do s

Profile.print(IOContext(s, :displaysize => (24, 500)))

end

32.4 Configuration

@profile just accumulates backtraces, and the analysis happens when you call Profile.print(). For a

long-running computation, it's entirely possible that the pre-allocated buffer for storing backtraces will be

filled. If that happens, the backtraces stop but your computation continues. As a consequence, you may

miss some important profiling data (you will get a warning when that happens).

You can obtain and configure the relevant parameters this way:

Profile.init() # returns the current settings

Profile.init(n = 10^7, delay = 0.01)

n is the total number of instruction pointers you can store, with a default value of 10^6. If your typical

backtrace is 20 instruction pointers, then you can collect 50000 backtraces, which suggests a statistical

uncertainty of less than 1%. This may be good enough for most applications.

Consequently, you are more likely to need to modify delay, expressed in seconds, which sets the amount

of time that Julia gets between snapshots to perform the requested computations. A very long-running job

might not need frequent backtraces. The default setting is delay = 0.001. Of course, you can decrease

the delay as well as increase it; however, the overhead of profiling grows once the delay becomes similar

to the amount of time needed to take a backtrace (~30 microseconds on the author's laptop).

32.5 Memory allocation analysis

One of themost common techniques to improve performance is to reducememory allocation. Julia provides

several tools measure this:

@time

The total amount of allocation can be measured with @time, @allocated and @allocations, and specific

lines triggering allocation can often be inferred from profiling via the cost of garbage collection that these

lines incur. However, sometimes it is more efficient to directly measure the amount of memory allocated

by each line of code.

CHAPTER 32. PROFILING 407

GC Logging

While @time logs high-level stats about memory usage and garbage collection over the course of evaluating

an expression, it can be useful to log each garbage collection event, to get an intuitive sense of how often

the garbage collector is running, how long it's running each time, and how much garbage it collects each

time. This can be enabled with GC.enable_logging(true), which causes Julia to log to stderr every time

a garbage collection happens.

Allocation Profiler

Julia 1.8

This functionality requires at least Julia 1.8.

The allocation profiler records the stack trace, type, and size of each allocation while it is running. It can

be invoked with Profile.Allocs.@profile.

This information about the allocations is returned as an array of Alloc objects, wrapped in an AllocResults

object. The best way to visualize these is currently with the PProf.jl and ProfileCanvas.jl packages, which

can visualize the call stacks which are making the most allocations.

The allocation profiler does have significant overhead, so a sample_rate argument can be passed to speed

it up by making it skip some allocations. Passing sample_rate=1.0 will make it record everything (which

is slow); sample_rate=0.1 will record only 10% of the allocations (faster), etc.

Note

The current implementation of the Allocations Profiler does not capture types for all allocations.

Allocations for which the profiler could not capture the type are represented as having type

Profile.Allocs.UnknownType.

You can read more about the missing types and the plan to improve this, here: issue #43688.

Line-by-Line Allocation Tracking

An alternative way tomeasure allocations is to start Julia with the --track-allocation=<setting> command-

line option, for which you can choose none (the default, do not measure allocation), user (measure memory

allocation everywhere except Julia's core code), or all (measure memory allocation at each line of Julia

code). Allocation gets measured for each line of compiled code. When you quit Julia, the cumulative results

are written to text files with .mem appended after the file name, residing in the same directory as the source

file. Each line lists the total number of bytes allocated. The Coverage package contains some elementary

analysis tools, for example to sort the lines in order of number of bytes allocated.

In interpreting the results, there are a few important details. Under the user setting, the first line of any

function directly called from the REPL will exhibit allocation due to events that happen in the REPL code

itself. More significantly, JIT-compilation also adds to allocation counts, because much of Julia's compiler is

written in Julia (and compilation usually requires memory allocation). The recommended procedure is to

force compilation by executing all the commands youwant to analyze, then call Profile.clear_malloc_data()

to reset all allocation counters. Finally, execute the desired commands and quit Julia to trigger the gener-

ation of the .mem files.

Note

https://github.com/JuliaPerf/PProf.jl
https://github.com/pfitzseb/ProfileCanvas.jl
https://github.com/JuliaLang/julia/issues/43688
https://github.com/JuliaCI/Coverage.jl

CHAPTER 32. PROFILING 408

--track-allocation changes code generation to log the allocations, and so the allocations

may be different than what happens without the option. We recommend using the allocation

profiler instead.

32.6 External Profiling

Currently Julia supports Intel VTune, OProfile and perf as external profiling tools.

Depending on the tool you choose, compile with USE_INTEL_JITEVENTS, USE_OPROFILE_JITEVENTS and

USE_PERF_JITEVENTS set to 1 in Make.user. Multiple flags are supported.

Before running Julia set the environment variable ENABLE_JITPROFILING to 1.

Now you have a multitude of ways to employ those tools! For example with OProfile you can try a simple

recording :

>ENABLE_JITPROFILING=1 sudo operf -Vdebug ./julia test/fastmath.jl

>opreport -l `which ./julia`

Or similarly with perf :

$ ENABLE_JITPROFILING=1 perf record -o /tmp/perf.data --call-graph dwarf -k 1 ./julia /test/

fastmath.jl

$ perf inject --jit --input /tmp/perf.data --output /tmp/perf-jit.data

$ perf report --call-graph -G -i /tmp/perf-jit.data

There are many more interesting things that you can measure about your program, to get a comprehensive

list please read the Linux perf examples page.

Remember that perf saves for each execution a perf.data file that, even for small programs, can get quite

large. Also the perf LLVM module saves temporarily debug objects in ~/.debug/jit, remember to clean

that folder frequently.

https://www.brendangregg.com/perf.html

Chapter 33

Stack Traces

The StackTraces module provides simple stack traces that are both human readable and easy to use

programmatically.

33.1 Viewing a stack trace

The primary function used to obtain a stack trace is stacktrace:

6-element Array{Base.StackTraces.StackFrame,1}:

top-level scope

eval at boot.jl:317 [inlined]

eval(::Module, ::Expr) at REPL.jl:5

eval_user_input(::Any, ::REPL.REPLBackend) at REPL.jl:85

macro expansion at REPL.jl:116 [inlined]

(::getfield(REPL, Symbol("##28#29")){REPL.REPLBackend})() at event.jl:92

Calling stacktrace() returns a vector of StackTraces.StackFrame s. For ease of use, the alias StackTraces.StackTrace

can be used in place of Vector{StackFrame}. (Examples with [...] indicate that output may vary de-

pending on how the code is run.)

julia> example() = stacktrace()

example (generic function with 1 method)

julia> example()

7-element Array{Base.StackTraces.StackFrame,1}:

example() at REPL[1]:1

top-level scope

eval at boot.jl:317 [inlined]

[...]

julia> @noinline child() = stacktrace()

child (generic function with 1 method)

julia> @noinline parent() = child()

parent (generic function with 1 method)

409

CHAPTER 33. STACK TRACES 410

julia> grandparent() = parent()

grandparent (generic function with 1 method)

julia> grandparent()

9-element Array{Base.StackTraces.StackFrame,1}:

child() at REPL[3]:1

parent() at REPL[4]:1

grandparent() at REPL[5]:1

[...]

Note that when calling stacktrace() you'll typically see a frame with eval at boot.jl. When calling

stacktrace() from the REPL you'll also have a few extra frames in the stack from REPL.jl, usually looking

something like this:

julia> example() = stacktrace()

example (generic function with 1 method)

julia> example()

7-element Array{Base.StackTraces.StackFrame,1}:

example() at REPL[1]:1

top-level scope

eval at boot.jl:317 [inlined]

eval(::Module, ::Expr) at REPL.jl:5

eval_user_input(::Any, ::REPL.REPLBackend) at REPL.jl:85

macro expansion at REPL.jl:116 [inlined]

(::getfield(REPL, Symbol("##28#29")){REPL.REPLBackend})() at event.jl:92

33.2 Extracting useful information

Each StackTraces.StackFrame contains the function name, file name, line number, lambda info, a flag

indicating whether the frame has been inlined, a flag indicating whether it is a C function (by default

C functions do not appear in the stack trace), and an integer representation of the pointer returned by

backtrace:

julia> frame = stacktrace()[3]

eval(::Module, ::Expr) at REPL.jl:5

julia> frame.func

:eval

julia> frame.file

Symbol("~/julia/usr/share/julia/stdlib/v0.7/REPL/src/REPL.jl")

julia> frame.line

5

julia> frame.linfo

MethodInstance for eval(::Module, ::Expr)

julia> frame.inlined

false

CHAPTER 33. STACK TRACES 411

julia> frame.from_c

false

julia> frame.pointer

0x00007f92d6293171

This makes stack trace information available programmatically for logging, error handling, and more.

33.3 Error handling

While having easy access to information about the current state of the callstack can be helpful in many

places, the most obvious application is in error handling and debugging.

julia> @noinline bad_function() = undeclared_variable

bad_function (generic function with 1 method)

julia> @noinline example() = try

bad_function()

catch

stacktrace()

end

example (generic function with 1 method)

julia> example()

7-element Array{Base.StackTraces.StackFrame,1}:

example() at REPL[2]:4

top-level scope

eval at boot.jl:317 [inlined]

[...]

You may notice that in the example above the first stack frame points at line 4, where stacktrace is

called, rather than line 2, where bad_function is called, and bad_function's frame is missing entirely. This

is understandable, given that stacktrace is called from the context of the catch. While in this example

it's fairly easy to find the actual source of the error, in complex cases tracking down the source of the error

becomes nontrivial.

This can be remedied by passing the result of catch_backtrace to stacktrace. Instead of returning

callstack information for the current context, catch_backtrace returns stack information for the context

of the most recent exception:

julia> @noinline bad_function() = undeclared_variable

bad_function (generic function with 1 method)

julia> @noinline example() = try

bad_function()

catch

stacktrace(catch_backtrace())

end

example (generic function with 1 method)

CHAPTER 33. STACK TRACES 412

julia> example()

8-element Array{Base.StackTraces.StackFrame,1}:

bad_function() at REPL[1]:1

example() at REPL[2]:2

[...]

Notice that the stack trace now indicates the appropriate line number and the missing frame.

julia> @noinline child() = error("Whoops!")

child (generic function with 1 method)

julia> @noinline parent() = child()

parent (generic function with 1 method)

julia> @noinline function grandparent()

try

parent()

catch err

println("ERROR: ", err.msg)

stacktrace(catch_backtrace())

end

end

grandparent (generic function with 1 method)

julia> grandparent()

ERROR: Whoops!

10-element Array{Base.StackTraces.StackFrame,1}:

error at error.jl:33 [inlined]

child() at REPL[1]:1

parent() at REPL[2]:1

grandparent() at REPL[3]:3

[...]

33.4 Exception stacks and current_exceptions

Julia 1.1

Exception stacks requires at least Julia 1.1.

While handling an exception further exceptions may be thrown. It can be useful to inspect all these excep-

tions to identify the root cause of a problem. The julia runtime supports this by pushing each exception onto

an internal exception stack as it occurs. When the code exits a catch normally, any exceptions which were

pushed onto the stack in the associated try are considered to be successfully handled and are removed

from the stack.

The stack of current exceptions can be accessed using the current_exceptions function. For example,

julia> try

error("(A) The root cause")

catch

try

error("(B) An exception while handling the exception")

CHAPTER 33. STACK TRACES 413

catch

for (exc, bt) in current_exceptions()

showerror(stdout, exc, bt)

println(stdout)

end

end

end

(A) The root cause

Stacktrace:

[1] error(::String) at error.jl:33

[2] top-level scope at REPL[7]:2

[3] eval(::Module, ::Any) at boot.jl:319

[4] eval_user_input(::Any, ::REPL.REPLBackend) at REPL.jl:85

[5] macro expansion at REPL.jl:117 [inlined]

[6] (::getfield(REPL, Symbol("##26#27")){REPL.REPLBackend})() at task.jl:259

(B) An exception while handling the exception

Stacktrace:

[1] error(::String) at error.jl:33

[2] top-level scope at REPL[7]:5

[3] eval(::Module, ::Any) at boot.jl:319

[4] eval_user_input(::Any, ::REPL.REPLBackend) at REPL.jl:85

[5] macro expansion at REPL.jl:117 [inlined]

[6] (::getfield(REPL, Symbol("##26#27")){REPL.REPLBackend})() at task.jl:259

In this example the root cause exception (A) is first on the stack, with a further exception (B) following

it. After exiting both catch blocks normally (i.e., without throwing a further exception) all exceptions are

removed from the stack and are no longer accessible.

The exception stack is stored on the Task where the exceptions occurred. When a task fails with uncaught

exceptions, current_exceptions(task) may be used to inspect the exception stack for that task.

33.5 Comparison with backtrace

A call to backtrace returns a vector of Union{Ptr{Nothing}, Base.InterpreterIP}, which may then be

passed into stacktrace for translation:

julia> trace = backtrace()

18-element Array{Union{Ptr{Nothing}, Base.InterpreterIP},1}:

Ptr{Nothing} @0x00007fd8734c6209

Ptr{Nothing} @0x00007fd87362b342

Ptr{Nothing} @0x00007fd87362c136

Ptr{Nothing} @0x00007fd87362c986

Ptr{Nothing} @0x00007fd87362d089

Base.InterpreterIP(CodeInfo(:(begin

Core.SSAValue(0) = backtrace()

trace = Core.SSAValue(0)

return Core.SSAValue(0)

end)), 0x0000000000000000)

Ptr{Nothing} @0x00007fd87362e4cf

[...]

julia> stacktrace(trace)

CHAPTER 33. STACK TRACES 414

6-element Array{Base.StackTraces.StackFrame,1}:

top-level scope

eval at boot.jl:317 [inlined]

eval(::Module, ::Expr) at REPL.jl:5

eval_user_input(::Any, ::REPL.REPLBackend) at REPL.jl:85

macro expansion at REPL.jl:116 [inlined]

(::getfield(REPL, Symbol("##28#29")){REPL.REPLBackend})() at event.jl:92

Notice that the vector returned by backtrace had 18 elements, while the vector returned by stacktrace

only has 6. This is because, by default, stacktrace removes any lower-level C functions from the stack. If

you want to include stack frames from C calls, you can do it like this:

julia> stacktrace(trace, true)

21-element Array{Base.StackTraces.StackFrame,1}:

jl_apply_generic at gf.c:2167

do_call at interpreter.c:324

eval_value at interpreter.c:416

eval_body at interpreter.c:559

jl_interpret_toplevel_thunk_callback at interpreter.c:798

top-level scope

jl_interpret_toplevel_thunk at interpreter.c:807

jl_toplevel_eval_flex at toplevel.c:856

jl_toplevel_eval_in at builtins.c:624

eval at boot.jl:317 [inlined]

eval(::Module, ::Expr) at REPL.jl:5

jl_apply_generic at gf.c:2167

eval_user_input(::Any, ::REPL.REPLBackend) at REPL.jl:85

jl_apply_generic at gf.c:2167

macro expansion at REPL.jl:116 [inlined]

(::getfield(REPL, Symbol("##28#29")){REPL.REPLBackend})() at event.jl:92

jl_fptr_trampoline at gf.c:1838

jl_apply_generic at gf.c:2167

jl_apply at julia.h:1540 [inlined]

start_task at task.c:268

ip:0xffffffffffffffff

Individual pointers returned by backtrace can be translated into StackTraces.StackFrame s by passing

them into StackTraces.lookup:

julia> pointer = backtrace()[1];

julia> frame = StackTraces.lookup(pointer)

1-element Array{Base.StackTraces.StackFrame,1}:

jl_apply_generic at gf.c:2167

julia> println("The top frame is from $(frame[1].func)!")

The top frame is from jl_apply_generic!

Chapter 34

Performance Tips

In the following sections, we briefly go through a few techniques that can help make your Julia code run as

fast as possible.

34.1 Performance critical code should be inside a function

Any code that is performance critical should be inside a function. Code inside functions tends to run much

faster than top level code, due to how Julia's compiler works.

The use of functions is not only important for performance: functions are more reusable and testable, and

clarify what steps are being done and what their inputs and outputs are, Write functions, not just scripts is

also a recommendation of Julia's Styleguide.

The functions should take arguments, instead of operating directly on global variables, see the next point.

34.2 Avoid untyped global variables

The value of an untyped global variable might change at any point, possibly leading to a change of its type.

This makes it difficult for the compiler to optimize code using global variables. This also applies to type-

valued variables, i.e. type aliases on the global level. Variables should be local, or passed as arguments

to functions, whenever possible.

We find that global names are frequently constants, and declaring them as such greatly improves perfor-

mance:

const DEFAULT_VAL = 0

If a global is known to always be of the same type, the type should be annotated.

Uses of untyped globals can be optimized by annotating their types at the point of use:

global x = rand(1000)

function loop_over_global()

s = 0.0

for i in x::Vector{Float64}

s += i

415

CHAPTER 34. PERFORMANCE TIPS 416

end

return s

end

Passing arguments to functions is better style. It leads to more reusable code and clarifies what the inputs

and outputs are.

Note

All code in the REPL is evaluated in global scope, so a variable defined and assigned at top

level will be a global variable. Variables defined at top level scope inside modules are also

global.

In the following REPL session:

julia> x = 1.0

is equivalent to:

julia> global x = 1.0

so all the performance issues discussed previously apply.

34.3 Measure performance with @time and pay attention to memory

allocation

A useful tool for measuring performance is the @time macro. We here repeat the example with the global

variable above, but this time with the type annotation removed:

julia> x = rand(1000);

julia> function sum_global()

s = 0.0

for i in x

s += i

end

return s

end;

julia> @time sum_global()

0.011539 seconds (9.08 k allocations: 373.386 KiB, 98.69% compilation time)

523.0007221951678

julia> @time sum_global()

0.000091 seconds (3.49 k allocations: 70.156 KiB)

523.0007221951678

CHAPTER 34. PERFORMANCE TIPS 417

On the first call (@time sum_global()) the function gets compiled. (If you've not yet used @time in this

session, it will also compile functions needed for timing.) You should not take the results of this run seriously.

For the second run, note that in addition to reporting the time, it also indicated that a significant amount

of memory was allocated. We are here just computing a sum over all elements in a vector of 64-bit floats

so there should be no need to allocate (heap) memory.

We should clarify that what @time reports is specifically heap allocations, which are typically needed for

either mutable objects or for creating/growing variable-sized containers (such as Array or Dict, strings,

or "type-unstable" objects whose type is only known at runtime). Allocating (or deallocating) such blocks

of memory may require an expensive system call (e.g. via malloc in C), and they must be tracked for

garbage collection. In contrast, immutable values like numbers (except bignums), tuples, and immutable

structs can be stored much more cheaply, e.g. in stack or CPU-register memory, so one doesn’t typically

worry about the performance cost of "allocating" them.

Unexpected memory allocation is almost always a sign of some problem with your code, usually a problem

with type-stability or creating many small temporary arrays. Consequently, in addition to the allocation

itself, it's very likely that the code generated for your function is far from optimal. Take such indications

seriously and follow the advice below.

In this particular case, the memory allocation is due to the usage of a type-unstable global variable x, so if

we instead pass x as an argument to the function it no longer allocates memory (the remaining allocation

reported below is due to running the @time macro in global scope) and is significantly faster after the first

call:

julia> x = rand(1000);

julia> function sum_arg(x)

s = 0.0

for i in x

s += i

end

return s

end;

julia> @time sum_arg(x)

0.007551 seconds (3.98 k allocations: 200.548 KiB, 99.77% compilation time)

523.0007221951678

julia> @time sum_arg(x)

0.000006 seconds (1 allocation: 16 bytes)

523.0007221951678

The 1 allocation seen is from running the @time macro itself in global scope. If we instead run the timing

in a function, we can see that indeed no allocations are performed:

julia> time_sum(x) = @time sum_arg(x);

julia> time_sum(x)

0.000002 seconds

523.0007221951678

CHAPTER 34. PERFORMANCE TIPS 418

In some situations, your function may need to allocate memory as part of its operation, and this can

complicate the simple picture above. In such cases, consider using one of the tools below to diagnose

problems, or write a version of your function that separates allocation from its algorithmic aspects (see

Pre-allocating outputs).

Note

For more serious benchmarking, consider the BenchmarkTools.jl package which among other

things evaluates the function multiple times in order to reduce noise.

34.4 Tools

Julia and its package ecosystem includes tools that may help you diagnose problems and improve the

performance of your code:

• Profiling allows you to measure the performance of your running code and identify lines that serve

as bottlenecks. For complex projects, the ProfileView package can help you visualize your profiling

results.

• The Traceur package can help you find common performance problems in your code.

• Unexpectedly-large memory allocations–as reported by @time, @allocated, or the profiler (through

calls to the garbage-collection routines)–hint that there might be issues with your code. If you don't

see another reason for the allocations, suspect a type problem. You can also start Julia with the

--track-allocation=user option and examine the resulting *.mem files to see information about

where those allocations occur. See Memory allocation analysis.

• @code_warntype generates a representation of your code that can be helpful in finding expressions

that result in type uncertainty. See @code_warntype below.

34.5 Avoid containers with abstract type parameters

When working with parameterized types, including arrays, it is best to avoid parameterizing with abstract

types where possible.

Consider the following:

julia> a = Real[]

Real[]

julia> push!(a, 1); push!(a, 2.0); push!(a, π)

3-element Vector{Real}:

1

2.0

π = 3.1415926535897...

Because a is an array of abstract type Real, it must be able to hold any Real value. Since Real objects can

be of arbitrary size and structure, a must be represented as an array of pointers to individually allocated

Real objects. However, if we instead only allow numbers of the same type, e.g. Float64, to be stored in

a these can be stored more efficiently:

https://github.com/JuliaCI/BenchmarkTools.jl
https://github.com/timholy/ProfileView.jl
https://github.com/JunoLab/Traceur.jl

CHAPTER 34. PERFORMANCE TIPS 419

julia> a = Float64[]

Float64[]

julia> push!(a, 1); push!(a, 2.0); push!(a, π)

3-element Vector{Float64}:

1.0

2.0

3.141592653589793

Assigning numbers into a will now convert them to Float64 and a will be stored as a contiguous block of

64-bit floating-point values that can be manipulated efficiently.

If you cannot avoid containers with abstract value types, it is sometimes better to parametrize with Any to

avoid runtime type checking. E.g. IdDict{Any, Any} performs better than IdDict{Type, Vector}

See also the discussion under Parametric Types.

34.6 Type declarations

In many languages with optional type declarations, adding declarations is the principal way to make code

run faster. This is not the case in Julia. In Julia, the compiler generally knows the types of all function ar-

guments, local variables, and expressions. However, there are a few specific instances where declarations

are helpful.

Avoid fields with abstract type

Types can be declared without specifying the types of their fields:

julia> struct MyAmbiguousType

a

end

This allows a to be of any type. This can often be useful, but it does have a downside: for objects of type

MyAmbiguousType, the compiler will not be able to generate high-performance code. The reason is that the

compiler uses the types of objects, not their values, to determine how to build code. Unfortunately, very

little can be inferred about an object of type MyAmbiguousType:

julia> b = MyAmbiguousType("Hello")

MyAmbiguousType("Hello")

julia> c = MyAmbiguousType(17)

MyAmbiguousType(17)

julia> typeof(b)

MyAmbiguousType

julia> typeof(c)

MyAmbiguousType

The values of b and c have the same type, yet their underlying representation of data in memory is very

different. Even if you stored just numeric values in field a, the fact that the memory representation of a

CHAPTER 34. PERFORMANCE TIPS 420

UInt8 differs from a Float64 also means that the CPU needs to handle them using two different kinds of

instructions. Since the required information is not available in the type, such decisions have to be made

at run-time. This slows performance.

You can do better by declaring the type of a. Here, we are focused on the case where a might be any one

of several types, in which case the natural solution is to use parameters. For example:

julia> mutable struct MyType{T<:AbstractFloat}

a::T

end

This is a better choice than

julia> mutable struct MyStillAmbiguousType

a::AbstractFloat

end

because the first version specifies the type of a from the type of the wrapper object. For example:

julia> m = MyType(3.2)

MyType{Float64}(3.2)

julia> t = MyStillAmbiguousType(3.2)

MyStillAmbiguousType(3.2)

julia> typeof(m)

MyType{Float64}

julia> typeof(t)

MyStillAmbiguousType

The type of field a can be readily determined from the type of m, but not from the type of t. Indeed, in t

it's possible to change the type of the field a:

julia> typeof(t.a)

Float64

julia> t.a = 4.5f0

4.5f0

julia> typeof(t.a)

Float32

In contrast, once m is constructed, the type of m.a cannot change:

julia> m.a = 4.5f0

4.5f0

julia> typeof(m.a)

Float64

CHAPTER 34. PERFORMANCE TIPS 421

The fact that the type of m.a is known from m's type—coupled with the fact that its type cannot change

mid-function—allows the compiler to generate highly-optimized code for objects like m but not for objects

like t.

Of course, all of this is true only if we construct m with a concrete type. We can break this by explicitly

constructing it with an abstract type:

julia> m = MyType{AbstractFloat}(3.2)

MyType{AbstractFloat}(3.2)

julia> typeof(m.a)

Float64

julia> m.a = 4.5f0

4.5f0

julia> typeof(m.a)

Float32

For all practical purposes, such objects behave identically to those of MyStillAmbiguousType.

It's quite instructive to compare the sheer amount of code generated for a simple function

func(m::MyType) = m.a+1

using

code_llvm(func, Tuple{MyType{Float64}})

code_llvm(func, Tuple{MyType{AbstractFloat}})

For reasons of length the results are not shown here, but you may wish to try this yourself. Because the

type is fully-specified in the first case, the compiler doesn't need to generate any code to resolve the type

at run-time. This results in shorter and faster code.

One should also keep in mind that not-fully-parameterized types behave like abstract types. For example,

even though a fully specified Array{T,n} is concrete, Array itself with no parameters given is not concrete:

julia> !isconcretetype(Array), !isabstracttype(Array), isstructtype(Array),

!isconcretetype(Array{Int}), isconcretetype(Array{Int,1})↪→

(true, true, true, true, true)

In this case, it would be better to avoid declaring MyType with a field a::Array and instead declare the

field as a::Array{T,N} or as a::A, where {T,N} or A are parameters of MyType.

Avoid fields with abstract containers

The same best practices also work for container types:

CHAPTER 34. PERFORMANCE TIPS 422

julia> struct MySimpleContainer{A<:AbstractVector}

a::A

end

julia> struct MyAmbiguousContainer{T}

a::AbstractVector{T}

end

julia> struct MyAlsoAmbiguousContainer

a::Array

end

For example:

julia> c = MySimpleContainer(1:3);

julia> typeof(c)

MySimpleContainer{UnitRange{Int64}}

julia> c = MySimpleContainer([1:3;]);

julia> typeof(c)

MySimpleContainer{Vector{Int64}}

julia> b = MyAmbiguousContainer(1:3);

julia> typeof(b)

MyAmbiguousContainer{Int64}

julia> b = MyAmbiguousContainer([1:3;]);

julia> typeof(b)

MyAmbiguousContainer{Int64}

julia> d = MyAlsoAmbiguousContainer(1:3);

julia> typeof(d), typeof(d.a)

(MyAlsoAmbiguousContainer, Vector{Int64})

julia> d = MyAlsoAmbiguousContainer(1:1.0:3);

julia> typeof(d), typeof(d.a)

(MyAlsoAmbiguousContainer, Vector{Float64})

For MySimpleContainer, the object is fully-specified by its type and parameters, so the compiler can gen-

erate optimized functions. In most instances, this will probably suffice.

While the compiler can now do its job perfectly well, there are cases where you might wish that your code

could do different things depending on the element type of a. Usually the best way to achieve this is to

wrap your specific operation (here, foo) in a separate function:

julia> function sumfoo(c::MySimpleContainer)

s = 0

CHAPTER 34. PERFORMANCE TIPS 423

for x in c.a

s += foo(x)

end

s

end

sumfoo (generic function with 1 method)

julia> foo(x::Integer) = x

foo (generic function with 1 method)

julia> foo(x::AbstractFloat) = round(x)

foo (generic function with 2 methods)

This keeps things simple, while allowing the compiler to generate optimized code in all cases.

However, there are cases where you may need to declare different versions of the outer function for dif-

ferent element types or types of the AbstractVector of the field a in MySimpleContainer. You could do it

like this:

julia> function myfunc(c::MySimpleContainer{<:AbstractArray{<:Integer}})

return c.a[1]+1

end

myfunc (generic function with 1 method)

julia> function myfunc(c::MySimpleContainer{<:AbstractArray{<:AbstractFloat}})

return c.a[1]+2

end

myfunc (generic function with 2 methods)

julia> function myfunc(c::MySimpleContainer{Vector{T}}) where T <: Integer

return c.a[1]+3

end

myfunc (generic function with 3 methods)

julia> myfunc(MySimpleContainer(1:3))

2

julia> myfunc(MySimpleContainer(1.0:3))

3.0

julia> myfunc(MySimpleContainer([1:3;]))

4

Annotate values taken from untyped locations

It is often convenient to work with data structures that may contain values of any type (arrays of type

Array{Any}). But, if you're using one of these structures and happen to know the type of an element, it

helps to share this knowledge with the compiler:

function foo(a::Array{Any,1})

x = a[1]::Int32

b = x+1

CHAPTER 34. PERFORMANCE TIPS 424

...

end

Here, we happened to know that the first element of a would be an Int32. Making an annotation like this

has the added benefit that it will raise a run-time error if the value is not of the expected type, potentially

catching certain bugs earlier.

In the case that the type of a[1] is not known precisely, x can be declared via x = convert(Int32,

a[1])::Int32. The use of the convert function allows a[1] to be any object convertible to an Int32

(such as UInt8), thus increasing the genericity of the code by loosening the type requirement. Notice that

convert itself needs a type annotation in this context in order to achieve type stability. This is because

the compiler cannot deduce the type of the return value of a function, even convert, unless the types of

all the function's arguments are known.

Type annotation will not enhance (and can actually hinder) performance if the type is abstract, or con-

structed at run-time. This is because the compiler cannot use the annotation to specialize the subsequent

code, and the type-check itself takes time. For example, in the code:

function nr(a, prec)

ctype = prec == 32 ? Float32 : Float64

b = Complex{ctype}(a)

c = (b + 1.0f0)::Complex{ctype}

abs(c)

end

the annotation of c harms performance. To write performant code involving types constructed at run-time,

use the function-barrier technique discussed below, and ensure that the constructed type appears among

the argument types of the kernel function so that the kernel operations are properly specialized by the

compiler. For example, in the above snippet, as soon as b is constructed, it can be passed to another

function k, the kernel. If, for example, function k declares b as an argument of type Complex{T}, where T

is a type parameter, then a type annotation appearing in an assignment statement within k of the form:

c = (b + 1.0f0)::Complex{T}

does not hinder performance (but does not help either) since the compiler can determine the type of c at

the time k is compiled.

Be aware of when Julia avoids specializing

As a heuristic, Julia avoids automatically specializing on argument type parameters in three specific cases:

Type, Function, and Vararg. Julia will always specialize when the argument is used within the method,

but not if the argument is just passed through to another function. This usually has no performance impact

at runtime and improves compiler performance. If you find it does have a performance impact at runtime

in your case, you can trigger specialization by adding a type parameter to the method declaration. Here

are some examples:

This will not specialize:

function f_type(t) # or t::Type

x = ones(t, 10)

return sum(map(sin, x))

end

CHAPTER 34. PERFORMANCE TIPS 425

but this will:

function g_type(t::Type{T}) where T

x = ones(T, 10)

return sum(map(sin, x))

end

These will not specialize:

f_func(f, num) = ntuple(f, div(num, 2))

g_func(g::Function, num) = ntuple(g, div(num, 2))

but this will:

h_func(h::H, num) where {H} = ntuple(h, div(num, 2))

This will not specialize:

f_vararg(x::Int...) = tuple(x...)

but this will:

g_vararg(x::Vararg{Int, N}) where {N} = tuple(x...)

One only needs to introduce a single type parameter to force specialization, even if the other types are

unconstrained. For example, this will also specialize, and is useful when the arguments are not all of the

same type:

h_vararg(x::Vararg{Any, N}) where {N} = tuple(x...)

Note that @code_typed and friends will always show you specialized code, even if Julia would not normally

specialize that method call. You need to check the method internals if you want to see whether specializa-

tions are generated when argument types are changed, i.e., if Base.specializations(@which f(...))

contains specializations for the argument in question.

34.7 Break functions into multiple definitions

Writing a function as many small definitions allows the compiler to directly call the most applicable code,

or even inline it.

Here is an example of a "compound function" that should really be written as multiple definitions:

CHAPTER 34. PERFORMANCE TIPS 426

using LinearAlgebra

function mynorm(A)

if isa(A, Vector)

return sqrt(real(dot(A,A)))

elseif isa(A, Matrix)

return maximum(svdvals(A))

else

error("mynorm: invalid argument")

end

end

This can be written more concisely and efficiently as:

mynorm(x::Vector) = sqrt(real(dot(x, x)))

mynorm(A::Matrix) = maximum(svdvals(A))

It should however be noted that the compiler is quite efficient at optimizing away the dead branches in

code written as the mynorm example.

34.8 Write "type-stable" functions

When possible, it helps to ensure that a function always returns a value of the same type. Consider the

following definition:

pos(x) = x < 0 ? 0 : x

Although this seems innocent enough, the problem is that 0 is an integer (of type Int) and x might be of

any type. Thus, depending on the value of x, this function might return a value of either of two types. This

behavior is allowed, and may be desirable in some cases. But it can easily be fixed as follows:

pos(x) = x < 0 ? zero(x) : x

There is also a oneunit function, and a more general oftype(x, y) function, which returns y converted

to the type of x.

34.9 Avoid changing the type of a variable

An analogous "type-stability" problem exists for variables used repeatedly within a function:

function foo()

x = 1

for i = 1:10

x /= rand()

end

return x

end

CHAPTER 34. PERFORMANCE TIPS 427

Local variable x starts as an integer, and after one loop iteration becomes a floating-point number (the

result of / operator). This makes it more difficult for the compiler to optimize the body of the loop. There

are several possible fixes:

• Initialize x with x = 1.0

• Declare the type of x explicitly as x::Float64 = 1

• Use an explicit conversion by x = oneunit(Float64)

• Initialize with the first loop iteration, to x = 1 / rand(), then loop for i = 2:10

34.10 Separate kernel functions (aka, function barriers)

Many functions follow a pattern of performing some set-up work, and then running many iterations to

perform a core computation. Where possible, it is a good idea to put these core computations in separate

functions. For example, the following contrived function returns an array of a randomly-chosen type:

julia> function strange_twos(n)

a = Vector{rand(Bool) ? Int64 : Float64}(undef, n)

for i = 1:n

a[i] = 2

end

return a

end;

julia> strange_twos(3)

3-element Vector{Int64}:

2

2

2

This should be written as:

julia> function fill_twos!(a)

for i = eachindex(a)

a[i] = 2

end

end;

julia> function strange_twos(n)

a = Vector{rand(Bool) ? Int64 : Float64}(undef, n)

fill_twos!(a)

return a

end;

julia> strange_twos(3)

3-element Vector{Int64}:

2

2

2

CHAPTER 34. PERFORMANCE TIPS 428

Julia's compiler specializes code for argument types at function boundaries, so in the original implemen-

tation it does not know the type of a during the loop (since it is chosen randomly). Therefore the second

version is generally faster since the inner loop can be recompiled as part of fill_twos! for different types

of a.

The second form is also often better style and can lead to more code reuse.

This pattern is used in several places in Julia Base. For example, see vcat and hcat in abstractarray.jl,

or the fill! function, which we could have used instead of writing our own fill_twos!.

Functions like strange_twos occur when dealing with data of uncertain type, for example data loaded from

an input file that might contain either integers, floats, strings, or something else.

34.11 Types with values-as-parameters

Let's say you want to create an N-dimensional array that has size 3 along each axis. Such arrays can be

created like this:

julia> A = fill(5.0, (3, 3))

3×3 Matrix{Float64}:

5.0 5.0 5.0

5.0 5.0 5.0

5.0 5.0 5.0

This approach works very well: the compiler can figure out that A is an Array{Float64,2} because it knows

the type of the fill value (5.0::Float64) and the dimensionality ((3, 3)::NTuple{2,Int}). This implies

that the compiler can generate very efficient code for any future usage of A in the same function.

But now let's say you want to write a function that creates a 3×3×... array in arbitrary dimensions; you

might be tempted to write a function

julia> function array3(fillval, N)

fill(fillval, ntuple(d->3, N))

end

array3 (generic function with 1 method)

julia> array3(5.0, 2)

3×3 Matrix{Float64}:

5.0 5.0 5.0

5.0 5.0 5.0

5.0 5.0 5.0

This works, but (as you can verify for yourself using @code_warntype array3(5.0, 2)) the problem is that

the output type cannot be inferred: the argument N is a value of type Int, and type-inference does not

(and cannot) predict its value in advance. This means that code using the output of this function has to be

conservative, checking the type on each access of A; such code will be very slow.

Now, one very good way to solve such problems is by using the function-barrier technique. However, in

some cases you might want to eliminate the type-instability altogether. In such cases, one approach is to

pass the dimensionality as a parameter, for example through Val{T}() (see "Value types"):

https://github.com/JuliaLang/julia/blob/40fe264f4ffaa29b749bcf42239a89abdcbba846/base/abstractarray.jl#L1205-L1206

CHAPTER 34. PERFORMANCE TIPS 429

julia> function array3(fillval, ::Val{N}) where N

fill(fillval, ntuple(d->3, Val(N)))

end

array3 (generic function with 1 method)

julia> array3(5.0, Val(2))

3×3 Matrix{Float64}:

5.0 5.0 5.0

5.0 5.0 5.0

5.0 5.0 5.0

Julia has a specialized version of ntuple that accepts a Val{::Int} instance as the second parameter; by

passing N as a type-parameter, you make its "value" known to the compiler. Consequently, this version of

array3 allows the compiler to predict the return type.

However, making use of such techniques can be surprisingly subtle. For example, it would be of no help if

you called array3 from a function like this:

function call_array3(fillval, n)

A = array3(fillval, Val(n))

end

Here, you've created the same problem all over again: the compiler can't guess what n is, so it doesn't know

the type of Val(n). Attempting to use Val, but doing so incorrectly, can easily make performance worse in

many situations. (Only in situations where you're effectively combining Val with the function-barrier trick,

to make the kernel function more efficient, should code like the above be used.)

An example of correct usage of Val would be:

function filter3(A::AbstractArray{T,N}) where {T,N}

kernel = array3(1, Val(N))

filter(A, kernel)

end

In this example, N is passed as a parameter, so its "value" is known to the compiler. Essentially, Val(T)

works only when T is either hard-coded/literal (Val(3)) or already specified in the type-domain.

34.12 The dangers of abusing multiple dispatch (aka, more on types with

values-as-parameters)

Once one learns to appreciate multiple dispatch, there's an understandable tendency to go overboard and

try to use it for everything. For example, you might imagine using it to store information, e.g.

struct Car{Make, Model}

year::Int

...more fields...

end

and then dispatch on objects like Car{:Honda,:Accord}(year, args...).

This might be worthwhile when either of the following are true:

CHAPTER 34. PERFORMANCE TIPS 430

• You require CPU-intensive processing on each Car, and it becomes vastly more efficient if you know

the Make and Model at compile time and the total number of different Make or Model that will be used

is not too large.

• You have homogeneous lists of the same type of Car to process, so that you can store them all in an

Array{Car{:Honda,:Accord},N}.

When the latter holds, a function processing such a homogeneous array can be productively specialized:

Julia knows the type of each element in advance (all objects in the container have the same concrete type),

so Julia can "look up" the correct method calls when the function is being compiled (obviating the need to

check at run-time) and thereby emit efficient code for processing the whole list.

When these do not hold, then it's likely that you'll get no benefit; worse, the resulting "combinatorial

explosion of types" will be counterproductive. If items[i+1] has a different type than item[i], Julia has

to look up the type at run-time, search for the appropriate method in method tables, decide (via type

intersection) which onematches, determine whether it has been JIT-compiled yet (and do so if not), and then

make the call. In essence, you're asking the full type- system and JIT-compilation machinery to basically

execute the equivalent of a switch statement or dictionary lookup in your own code.

Some run-time benchmarks comparing (1) type dispatch, (2) dictionary lookup, and (3) a "switch" state-

ment can be found on the mailing list.

Perhaps even worse than the run-time impact is the compile-time impact: Julia will compile specialized

functions for each different Car{Make, Model}; if you have hundreds or thousands of such types, then

every function that accepts such an object as a parameter (from a custom get_year function you might

write yourself, to the generic push! function in Julia Base) will have hundreds or thousands of variants

compiled for it. Each of these increases the size of the cache of compiled code, the length of internal lists

of methods, etc. Excess enthusiasm for values-as-parameters can easily waste enormous resources.

34.13 Access arrays in memory order, along columns

Multidimensional arrays in Julia are stored in column-major order. This means that arrays are stacked one

column at a time. This can be verified using the vec function or the syntax [:] as shown below (notice

that the array is ordered [1 3 2 4], not [1 2 3 4]):

julia> x = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> x[:]

4-element Vector{Int64}:

1

3

2

4

This convention for ordering arrays is common in many languages like Fortran, Matlab, and R (to name a

few). The alternative to column-major ordering is row-major ordering, which is the convention adopted by

C and Python (numpy) among other languages. Remembering the ordering of arrays can have significant

performance effects when looping over arrays. A rule of thumb to keep in mind is that with column-major

https://groups.google.com/forum/#!msg/julia-users/jUMu9A3QKQQ/qjgVWr7vAwAJ

CHAPTER 34. PERFORMANCE TIPS 431

arrays, the first index changes most rapidly. Essentially this means that looping will be faster if the inner-

most loop index is the first to appear in a slice expression. Keep in mind that indexing an array with : is an

implicit loop that iteratively accesses all elements within a particular dimension; it can be faster to extract

columns than rows, for example.

Consider the following contrived example. Imagine we wanted to write a function that accepts a Vector

and returns a square Matrix with either the rows or the columns filled with copies of the input vector.

Assume that it is not important whether rows or columns are filled with these copies (perhaps the rest of

the code can be easily adapted accordingly). We could conceivably do this in at least four ways (in addition

to the recommended call to the built-in repeat):

function copy_cols(x::Vector{T}) where T

inds = axes(x, 1)

out = similar(Array{T}, inds, inds)

for i = inds

out[:, i] = x

end

return out

end

function copy_rows(x::Vector{T}) where T

inds = axes(x, 1)

out = similar(Array{T}, inds, inds)

for i = inds

out[i, :] = x

end

return out

end

function copy_col_row(x::Vector{T}) where T

inds = axes(x, 1)

out = similar(Array{T}, inds, inds)

for col = inds, row = inds

out[row, col] = x[row]

end

return out

end

function copy_row_col(x::Vector{T}) where T

inds = axes(x, 1)

out = similar(Array{T}, inds, inds)

for row = inds, col = inds

out[row, col] = x[col]

end

return out

end

Now we will time each of these functions using the same random 10000 by 1 input vector:

julia> x = randn(10000);

julia> fmt(f) = println(rpad(string(f)*": ", 14, ' '), @elapsed f(x))

CHAPTER 34. PERFORMANCE TIPS 432

julia> map(fmt, [copy_cols, copy_rows, copy_col_row, copy_row_col]);

copy_cols: 0.331706323

copy_rows: 1.799009911

copy_col_row: 0.415630047

copy_row_col: 1.721531501

Notice that copy_cols is much faster than copy_rows. This is expected because copy_cols respects the

column-based memory layout of the Matrix and fills it one column at a time. Additionally, copy_col_row

is much faster than copy_row_col because it follows our rule of thumb that the first element to appear in

a slice expression should be coupled with the inner-most loop.

34.14 Pre-allocating outputs

If your function returns an Array or some other complex type, it may have to allocate memory. Unfortu-

nately, oftentimes allocation and its converse, garbage collection, are substantial bottlenecks.

Sometimes you can circumvent the need to allocate memory on each function call by preallocating the

output. As a trivial example, compare

julia> function xinc(x)

return [x, x+1, x+2]

end;

julia> function loopinc()

y = 0

for i = 1:10^7

ret = xinc(i)

y += ret[2]

end

return y

end;

with

julia> function xinc!(ret::AbstractVector{T}, x::T) where T

ret[1] = x

ret[2] = x+1

ret[3] = x+2

nothing

end;

julia> function loopinc_prealloc()

ret = Vector{Int}(undef, 3)

y = 0

for i = 1:10^7

xinc!(ret, i)

y += ret[2]

end

return y

end;

CHAPTER 34. PERFORMANCE TIPS 433

Timing results:

julia> @time loopinc()

0.529894 seconds (40.00 M allocations: 1.490 GiB, 12.14% gc time)

50000015000000

julia> @time loopinc_prealloc()

0.030850 seconds (6 allocations: 288 bytes)

50000015000000

Preallocation has other advantages, for example by allowing the caller to control the "output" type from

an algorithm. In the example above, we could have passed a SubArray rather than an Array, had we so

desired.

Taken to its extreme, pre-allocation can make your code uglier, so performance measurements and some

judgment may be required. However, for "vectorized" (element-wise) functions, the convenient syntax x

.= f.(y) can be used for in-place operations with fused loops and no temporary arrays (see the dot syntax

for vectorizing functions).

34.15 More dots: Fuse vectorized operations

Julia has a special dot syntax that converts any scalar function into a "vectorized" function call, and any

operator into a "vectorized" operator, with the special property that nested "dot calls" are fusing: they are

combined at the syntax level into a single loop, without allocating temporary arrays. If you use .= and

similar assignment operators, the result can also be stored in-place in a pre-allocated array (see above).

In a linear-algebra context, this means that even though operations like vector + vector and vector

* scalar are defined, it can be advantageous to instead use vector .+ vector and vector .* scalar

because the resulting loops can be fused with surrounding computations. For example, consider the two

functions:

julia> f(x) = 3x.^2 + 4x + 7x.^3;

julia> fdot(x) = @. 3x^2 + 4x + 7x^3; # equivalent to 3 .* x.^2 .+ 4 .* x .+ 7 .* x.^3

Both f and fdot compute the same thing. However, fdot (defined with the help of the @. macro) is

significantly faster when applied to an array:

julia> x = rand(10^6);

julia> @time f(x);

0.019049 seconds (16 allocations: 45.777 MiB, 18.59% gc time)

julia> @time fdot(x);

0.002790 seconds (6 allocations: 7.630 MiB)

julia> @time f.(x);

0.002626 seconds (8 allocations: 7.630 MiB)

CHAPTER 34. PERFORMANCE TIPS 434

That is, fdot(x) is ten times faster and allocates 1/6 the memory of f(x), because each * and + operation

in f(x) allocates a new temporary array and executes in a separate loop. In this example f.(x) is as fast

as fdot(x) but in many contexts it is more convenient to sprinkle some dots in your expressions than to

define a separate function for each vectorized operation.

34.16 Consider using views for slices

In Julia, an array "slice" expression like array[1:5, :] creates a copy of that data (except on the left-hand

side of an assignment, where array[1:5, :] = ... assigns in-place to that portion of array). If you are

doing many operations on the slice, this can be good for performance because it is more efficient to work

with a smaller contiguous copy than it would be to index into the original array. On the other hand, if you

are just doing a few simple operations on the slice, the cost of the allocation and copy operations can be

substantial.

An alternative is to create a "view" of the array, which is an array object (a SubArray) that actually refer-

ences the data of the original array in-place, without making a copy. (If you write to a view, it modifies the

original array's data as well.) This can be done for individual slices by calling view, or more simply for a

whole expression or block of code by putting @views in front of that expression. For example:

julia> fcopy(x) = sum(x[2:end-1]);

julia> @views fview(x) = sum(x[2:end-1]);

julia> x = rand(10^6);

julia> @time fcopy(x);

0.003051 seconds (3 allocations: 7.629 MB)

julia> @time fview(x);

0.001020 seconds (1 allocation: 16 bytes)

Notice both the 3× speedup and the decreased memory allocation of the fview version of the function.

34.17 Copying data is not always bad

Arrays are stored contiguously in memory, lending themselves to CPU vectorization and fewer memory

accesses due to caching. These are the same reasons that it is recommended to access arrays in column-

major order (see above). Irregular access patterns and non-contiguous views can drastically slow down

computations on arrays because of non-sequential memory access.

Copying irregularly-accessed data into a contiguous array before repeated access it can result in a large

speedup, such as in the example below. Here, a matrix is being accessed at randomly-shuffled indices

before being multiplied. Copying into plain arrays speeds up the multiplication even with the added cost

of copying and allocation.

julia> using Random

julia> A = randn(3000, 3000);

julia> x = randn(2000);

CHAPTER 34. PERFORMANCE TIPS 435

julia> inds = shuffle(1:3000)[1:2000];

julia> function iterated_neural_network(A, x, depth)

for _ in 1:depth

x .= max.(0, A * x)

end

argmax(x)

end

julia> @time iterated_neural_network(view(A, inds, inds), x, 10)

0.324903 seconds (12 allocations: 157.562 KiB)

1569

julia> @time iterated_neural_network(A[inds, inds], x, 10)

0.054576 seconds (13 allocations: 30.671 MiB, 13.33% gc time)

1569

Provided there is enough memory, the cost of copying the view to an array is outweighed by the speed

boost from doing the repeated matrix multiplications on a contiguous array.

34.18 Consider StaticArrays.jl for small fixed-size vector/matrix operations

If your application involves many small (< 100 element) arrays of fixed sizes (i.e. the size is known prior

to execution), then you might want to consider using the StaticArrays.jl package. This package allows you

to represent such arrays in a way that avoids unnecessary heap allocations and allows the compiler to

specialize code for the size of the array, e.g. by completely unrolling vector operations (eliminating the

loops) and storing elements in CPU registers.

For example, if you are doing computations with 2d geometries, you might have many computations with

2-component vectors. By using the SVector type from StaticArrays.jl, you can use convenient vector

notation and operations like norm(3v - w) on vectors v and w, while allowing the compiler to unroll the

code to a minimal computation equivalent to @inbounds hypot(3v[1]-w[1], 3v[2]-w[2]).

34.19 Avoid string interpolation for I/O

When writing data to a file (or other I/O device), forming extra intermediate strings is a source of overhead.

Instead of:

println(file, "$a $b")

use:

println(file, a, " ", b)

The first version of the code forms a string, then writes it to the file, while the second version writes values

directly to the file. Also notice that in some cases string interpolation can be harder to read. Consider:

println(file, "$(f(a))$(f(b))")

https://github.com/JuliaArrays/StaticArrays.jl

CHAPTER 34. PERFORMANCE TIPS 436

versus:

println(file, f(a), f(b))

34.20 Optimize network I/O during parallel execution

When executing a remote function in parallel:

using Distributed

responses = Vector{Any}(undef, nworkers())

@sync begin

for (idx, pid) in enumerate(workers())

@async responses[idx] = remotecall_fetch(foo, pid, args...)

end

end

is faster than:

using Distributed

refs = Vector{Any}(undef, nworkers())

for (idx, pid) in enumerate(workers())

refs[idx] = @spawnat pid foo(args...)

end

responses = [fetch(r) for r in refs]

The former results in a single network round-trip to every worker, while the latter results in two network

calls - first by the @spawnat and the second due to the fetch (or even a wait). The fetch/wait is also

being executed serially resulting in an overall poorer performance.

34.21 Fix deprecation warnings

A deprecated function internally performs a lookup in order to print a relevant warning only once. This

extra lookup can cause a significant slowdown, so all uses of deprecated functions should be modified as

suggested by the warnings.

34.22 Tweaks

These are some minor points that might help in tight inner loops.

• Avoid unnecessary arrays. For example, instead of sum([x,y,z]) use x+y+z.

• Use abs2(z) instead of abs(z)^2 for complex z. In general, try to rewrite code to use abs2 instead

of abs for complex arguments.

• Use div(x,y) for truncating division of integers instead of trunc(x/y), fld(x,y) instead of floor(x/y),

and cld(x,y) instead of ceil(x/y).

CHAPTER 34. PERFORMANCE TIPS 437

34.23 Performance Annotations

Sometimes you can enable better optimization by promising certain program properties.

• Use @inbounds to eliminate array bounds checking within expressions. Be certain before doing this.

If the subscripts are ever out of bounds, you may suffer crashes or silent corruption.

• Use @fastmath to allow floating point optimizations that are correct for real numbers, but lead to

differences for IEEE numbers. Be careful when doing this, as this may change numerical results. This

corresponds to the -ffast-math option of clang.

• Write @simd in front of for loops to promise that the iterations are independent and may be re-

ordered. Note that in many cases, Julia can automatically vectorize code without the @simd macro;

it is only beneficial in cases where such a transformation would otherwise be illegal, including cases

like allowing floating-point re-associativity and ignoring dependentmemory accesses (@simd ivdep).

Again, be very careful when asserting @simd as erroneously annotating a loop with dependent itera-

tions may result in unexpected results. In particular, note that setindex! on some AbstractArray

subtypes is inherently dependent upon iteration order. This feature is experimental and could

change or disappear in future versions of Julia.

The common idiom of using 1:n to index into an AbstractArray is not safe if the Array uses unconventional

indexing, and may cause a segmentation fault if bounds checking is turned off. Use LinearIndices(x) or

eachindex(x) instead (see also Arrays with custom indices).

Note

While @simd needs to be placed directly in front of an innermost for loop, both @inbounds

and @fastmath can be applied to either single expressions or all the expressions that appear

within nested blocks of code, e.g., using @inbounds begin or @inbounds for

Here is an example with both @inbounds and @simd markup (we here use @noinline to prevent the opti-

mizer from trying to be too clever and defeat our benchmark):

@noinline function inner(x, y)

s = zero(eltype(x))

for i=eachindex(x)

@inbounds s += x[i]*y[i]

end

return s

end

@noinline function innersimd(x, y)

s = zero(eltype(x))

@simd for i = eachindex(x)

@inbounds s += x[i] * y[i]

end

return s

end

function timeit(n, reps)

x = rand(Float32, n)

CHAPTER 34. PERFORMANCE TIPS 438

y = rand(Float32, n)

s = zero(Float64)

time = @elapsed for j in 1:reps

s += inner(x, y)

end

println("GFlop/sec = ", 2n*reps / time*1E-9)

time = @elapsed for j in 1:reps

s += innersimd(x, y)

end

println("GFlop/sec (SIMD) = ", 2n*reps / time*1E-9)

end

timeit(1000, 1000)

On a computer with a 2.4GHz Intel Core i5 processor, this produces:

GFlop/sec = 1.9467069505224963

GFlop/sec (SIMD) = 17.578554163920018

(GFlop/sec measures the performance, and larger numbers are better.)

Here is an example with all three kinds of markup. This program first calculates the finite difference of a

one-dimensional array, and then evaluates the L2-norm of the result:

function init!(u::Vector)

n = length(u)

dx = 1.0 / (n-1)

@fastmath @inbounds @simd for i in 1:n #by asserting that `u` is a `Vector` we can assume it

has 1-based indexing↪→

u[i] = sin(2pi*dx*i)

end

end

function deriv!(u::Vector, du)

n = length(u)

dx = 1.0 / (n-1)

@fastmath @inbounds du[1] = (u[2] - u[1]) / dx

@fastmath @inbounds @simd for i in 2:n-1

du[i] = (u[i+1] - u[i-1]) / (2*dx)

end

@fastmath @inbounds du[n] = (u[n] - u[n-1]) / dx

end

function mynorm(u::Vector)

n = length(u)

T = eltype(u)

s = zero(T)

@fastmath @inbounds @simd for i in 1:n

s += u[i]^2

end

@fastmath @inbounds return sqrt(s)

end

CHAPTER 34. PERFORMANCE TIPS 439

function main()

n = 2000

u = Vector{Float64}(undef, n)

init!(u)

du = similar(u)

deriv!(u, du)

nu = mynorm(du)

@time for i in 1:10^6

deriv!(u, du)

nu = mynorm(du)

end

println(nu)

end

main()

On a computer with a 2.7 GHz Intel Core i7 processor, this produces:

$ julia wave.jl;

1.207814709 seconds

4.443986180758249

$ julia --math-mode=ieee wave.jl;

4.487083643 seconds

4.443986180758249

Here, the option --math-mode=ieee disables the @fastmath macro, so that we can compare results.

In this case, the speedup due to @fastmath is a factor of about 3.7. This is unusually large – in general, the

speedup will be smaller. (In this particular example, the working set of the benchmark is small enough to

fit into the L1 cache of the processor, so that memory access latency does not play a role, and computing

time is dominated by CPU usage. In many real world programs this is not the case.) Also, in this case this

optimization does not change the result – in general, the result will be slightly different. In some cases,

especially for numerically unstable algorithms, the result can be very different.

The annotation @fastmath re-arranges floating point expressions, e.g. changing the order of evaluation, or

assuming that certain special cases (inf, nan) cannot occur. In this case (and on this particular computer),

the main difference is that the expression 1 / (2*dx) in the function deriv is hoisted out of the loop (i.e.

calculated outside the loop), as if one had written idx = 1 / (2*dx). In the loop, the expression ... /

(2*dx) then becomes ... * idx, which is much faster to evaluate. Of course, both the actual optimization

that is applied by the compiler as well as the resulting speedup depend very much on the hardware. You

can examine the change in generated code by using Julia's code_native function.

Note that @fastmath also assumes that NaNs will not occur during the computation, which can lead to

surprising behavior:

julia> f(x) = isnan(x);

julia> f(NaN)

true

CHAPTER 34. PERFORMANCE TIPS 440

julia> f_fast(x) = @fastmath isnan(x);

julia> f_fast(NaN)

false

34.24 Treat Subnormal Numbers as Zeros

Subnormal numbers, formerly called denormal numbers, are useful in many contexts, but incur a perfor-

mance penalty on some hardware. A call set_zero_subnormals(true) grants permission for floating-point

operations to treat subnormal inputs or outputs as zeros, which may improve performance on some hard-

ware. A call set_zero_subnormals(false) enforces strict IEEE behavior for subnormal numbers.

Below is an example where subnormals noticeably impact performance on some hardware:

function timestep(b::Vector{T}, a::Vector{T}, Δt::T) where T

@assert length(a)==length(b)

n = length(b)

b[1] = 1 # Boundary condition

for i=2:n-1

b[i] = a[i] + (a[i-1] - T(2)*a[i] + a[i+1]) * Δt

end

b[n] = 0 # Boundary condition

end

function heatflow(a::Vector{T}, nstep::Integer) where T

b = similar(a)

for t=1:div(nstep,2) # Assume nstep is even

timestep(b,a,T(0.1))

timestep(a,b,T(0.1))

end

end

heatflow(zeros(Float32,10),2) # Force compilation

for trial=1:6

a = zeros(Float32,1000)

set_zero_subnormals(iseven(trial)) # Odd trials use strict IEEE arithmetic

@time heatflow(a,1000)

end

This gives an output similar to

0.002202 seconds (1 allocation: 4.063 KiB)

0.001502 seconds (1 allocation: 4.063 KiB)

0.002139 seconds (1 allocation: 4.063 KiB)

0.001454 seconds (1 allocation: 4.063 KiB)

0.002115 seconds (1 allocation: 4.063 KiB)

0.001455 seconds (1 allocation: 4.063 KiB)

Note how each even iteration is significantly faster.

This example generates many subnormal numbers because the values in a become an exponentially de-

creasing curve, which slowly flattens out over time.

https://en.wikipedia.org/wiki/Denormal_number

CHAPTER 34. PERFORMANCE TIPS 441

Treating subnormals as zeros should be used with caution, because doing so breaks some identities, such

as x-y == 0 implies x == y:

julia> x = 3f-38; y = 2f-38;

julia> set_zero_subnormals(true); (x - y, x == y)

(0.0f0, false)

julia> set_zero_subnormals(false); (x - y, x == y)

(1.0000001f-38, false)

In some applications, an alternative to zeroing subnormal numbers is to inject a tiny bit of noise. For

example, instead of initializing a with zeros, initialize it with:

a = rand(Float32,1000) * 1.f-9

34.25 @code_warntype

Themacro @code_warntype (or its function variant code_warntype) can sometimes be helpful in diagnosing

type-related problems. Here's an example:

julia> @noinline pos(x) = x < 0 ? 0 : x;

julia> function f(x)

y = pos(x)

return sin(y*x + 1)

end;

julia> @code_warntype f(3.2)

MethodInstance for f(::Float64)

from f(x) @ Main REPL[9]:1

Arguments

#self#::Core.Const(f)

x::Float64

Locals

y::Union{Float64, Int64}

Body::Float64

1 ─ (y = Main.pos(x))

│ %2 = (y * x)::Float64

│ %3 = (%2 + 1)::Float64

│ %4 = Main.sin(%3)::Float64

└── return %4

Interpreting the output of @code_warntype, like that of its cousins @code_lowered, @code_typed, @code_llvm,

and @code_native, takes a little practice. Your code is being presented in form that has been heavily di-

gested on its way to generating compiled machine code. Most of the expressions are annotated by a

type, indicated by the ::T (where T might be Float64, for example). The most important characteris-

tic of @code_warntype is that non-concrete types are displayed in red; since this document is written in

Markdown, which has no color, in this document, red text is denoted by uppercase.

CHAPTER 34. PERFORMANCE TIPS 442

At the top, the inferred return type of the function is shown as Body::Float64. The next lines represent

the body of f in Julia's SSA IR form. The numbered boxes are labels and represent targets for jumps (via

goto) in your code. Looking at the body, you can see that the first thing that happens is that pos is called

and the return value has been inferred as the Union type Union{Float64, Int64} shown in uppercase

since it is a non-concrete type. This means that we cannot know the exact return type of pos based on the

input types. However, the result of y*xis a Float64 no matter if y is a Float64 or Int64 The net result is

that f(x::Float64) will not be type-unstable in its output, even if some of the intermediate computations

are type-unstable.

How you use this information is up to you. Obviously, it would be far and away best to fix pos to be type-

stable: if you did so, all of the variables in f would be concrete, and its performance would be optimal.

However, there are circumstances where this kind of ephemeral type instability might not matter too much:

for example, if pos is never used in isolation, the fact that f's output is type-stable (for Float64 inputs)

will shield later code from the propagating effects of type instability. This is particularly relevant in cases

where fixing the type instability is difficult or impossible. In such cases, the tips above (e.g., adding type

annotations and/or breaking up functions) are your best tools to contain the "damage" from type instability.

Also, note that even Julia Base has functions that are type unstable. For example, the function findfirst

returns the index into an array where a key is found, or nothing if it is not found, a clear type instability. In

order to make it easier to find the type instabilities that are likely to be important, Unions containing either

missing or nothing are color highlighted in yellow, instead of red.

The following examples may help you interpret expressions marked as containing non-leaf types:

• Function body starting with Body::Union{T1,T2})

– Interpretation: function with unstable return type

– Suggestion: make the return value type-stable, even if you have to annotate it

• invoke Main.g(%%x::Int64)::Union{Float64, Int64}

– Interpretation: call to a type-unstable function g.

– Suggestion: fix the function, or if necessary annotate the return value

• invoke Base.getindex(%%x::Array{Any,1}, 1::Int64)::Any

– Interpretation: accessing elements of poorly-typed arrays

– Suggestion: use arrays with better-defined types, or if necessary annotate the type of individual

element accesses

• Base.getfield(%%x, :(:data))::Array{Float64,N} where N

– Interpretation: getting a field that is of non-leaf type. In this case, the type of x, say ArrayContainer,

had a field data::Array{T}. But Array needs the dimension N, too, to be a concrete type.

– Suggestion: use concrete types like Array{T,3} or Array{T,N}, where N is now a parameter

of ArrayContainer

CHAPTER 34. PERFORMANCE TIPS 443

34.26 Performance of captured variable

Consider the following example that defines an inner function:

function abmult(r::Int)

if r < 0

r = -r

end

f = x -> x * r

return f

end

Function abmult returns a function f that multiplies its argument by the absolute value of r. The inner

function assigned to f is called a "closure". Inner functions are also used by the language for do-blocks

and for generator expressions.

This style of code presents performance challenges for the language. The parser, when translating it into

lower-level instructions, substantially reorganizes the above code by extracting the inner function to a

separate code block. "Captured" variables such as r that are shared by inner functions and their enclosing

scope are also extracted into a heap-allocated "box" accessible to both inner and outer functions because

the language specifies that r in the inner scope must be identical to r in the outer scope even after the

outer scope (or another inner function) modifies r.

The discussion in the preceding paragraph referred to the "parser", that is, the phase of compilation that

takes place when the module containing abmult is first loaded, as opposed to the later phase when it is

first invoked. The parser does not "know" that Int is a fixed type, or that the statement r = -r transforms

an Int to another Int. The magic of type inference takes place in the later phase of compilation.

Thus, the parser does not know that r has a fixed type (Int). nor that r does not change value once the

inner function is created (so that the box is unneeded). Therefore, the parser emits code for box that holds

an object with an abstract type such as Any, which requires run-time type dispatch for each occurrence

of r. This can be verified by applying @code_warntype to the above function. Both the boxing and the

run-time type dispatch can cause loss of performance.

If captured variables are used in a performance-critical section of the code, then the following tips help

ensure that their use is performant. First, if it is known that a captured variable does not change its type,

then this can be declared explicitly with a type annotation (on the variable, not the right-hand side):

function abmult2(r0::Int)

r::Int = r0

if r < 0

r = -r

end

f = x -> x * r

return f

end

The type annotation partially recovers lost performance due to capturing because the parser can associate

a concrete type to the object in the box. Going further, if the captured variable does not need to be boxed

at all (because it will not be reassigned after the closure is created), this can be indicated with let blocks

as follows.

CHAPTER 34. PERFORMANCE TIPS 444

function abmult3(r::Int)

if r < 0

r = -r

end

f = let r = r

x -> x * r

end

return f

end

The let block creates a new variable r whose scope is only the inner function. The second technique

recovers full language performance in the presence of captured variables. Note that this is a rapidly evolv-

ing aspect of the compiler, and it is likely that future releases will not require this degree of programmer

annotation to attain performance. In the mean time, some user-contributed packages like FastClosures

automate the insertion of let statements as in abmult3.

34.27 Multithreading and linear algebra

This section applies to multithreaded Julia code which, in each thread, performs linear algebra operations.

Indeed, these linear algebra operations involve BLAS / LAPACK calls, which are themselves multithreaded.

In this case, one must ensure that cores aren't oversubscribed due to the two different types of multi-

threading.

Julia compiles and uses its own copy of OpenBLAS for linear algebra, whose number of threads is controlled

by the environment variable OPENBLAS_NUM_THREADS. It can either be set as a command line option when

launching Julia, or modified during the Julia session with BLAS.set_num_threads(N) (the submodule BLAS

is exported by using LinearAlgebra). Its current value can be accessed with BLAS.get_num_threads().

When the user does not specify anything, Julia tries to choose a reasonable value for the number of Open-

BLAS threads (e.g. based on the platform, the Julia version, etc.). However, it is generally recommended

to check and set the value manually. The OpenBLAS behavior is as follows:

• If OPENBLAS_NUM_THREADS=1, OpenBLAS uses the calling Julia thread(s), i.e. it "lives in" the Julia

thread that runs the computation.

• If OPENBLAS_NUM_THREADS=N>1, OpenBLAS creates and manages its own pool of threads (N in total).

There is just one OpenBLAS thread pool shared among all Julia threads.

When you start Julia in multithreadedmode with JULIA_NUM_THREADS=X, it is generally recommended to set

OPENBLAS_NUM_THREADS=1. Given the behavior described above, increasing the number of BLAS threads

to N>1 can very easily lead to worse performance, in particular when N<<X. However this is just a rule of

thumb, and the best way to set each number of threads is to experiment on your specific application.

34.28 Alternative linear algebra backends

As an alternative to OpenBLAS, there exist several other backends that can help with linear algebra per-

formance. Prominent examples include MKL.jl and AppleAccelerate.jl.

These are external packages, so we will not discuss them in detail here. Please refer to their respective

documentations (especially because they have different behaviors than OpenBLAS with respect to multi-

threading).

https://github.com/c42f/FastClosures.jl
https://github.com/JuliaLinearAlgebra/MKL.jl
https://github.com/JuliaMath/AppleAccelerate.jl

Chapter 35

Workflow Tips

Here are some tips for working with Julia efficiently.

35.1 REPL-based workflow

As already elaborated in The Julia REPL, Julia's REPL provides rich functionality that facilitates an efficient

interactive workflow. Here are some tips that might further enhance your experience at the command line.

A basic editor/REPL workflow

The most basic Julia workflows involve using a text editor in conjunction with the julia command line. A

common pattern includes the following elements:

• Put code under development in a temporary module. Create a file, say Tmp.jl, and include

within it

module Tmp

export say_hello

say_hello() = println("Hello!")

your other definitions here

end

• Put your test code in another file. Create another file, say tst.jl, which looks like

include("Tmp.jl")

import .Tmp

using .Tmp # we can use `using` to bring the exported symbols in `Tmp` into our namespace

Tmp.say_hello()

say_hello()

your other test code here

and includes tests for the contents of Tmp. Alternatively, you can wrap the contents of your test file

in a module, as

445

CHAPTER 35. WORKFLOW TIPS 446

module Tst

include("Tmp.jl")

import .Tmp

#using .Tmp

Tmp.say_hello()

say_hello()

your other test code here

end

The advantage is that your testing code is now contained in a module and does not use the global

scope in Main for definitions, which is a bit more tidy.

• include the tst.jl file in the Julia REPL with include("tst.jl").

• Lather. Rinse. Repeat. Explore ideas at the julia command prompt. Save good ideas in tst.jl.

To execute tst.jl after it has been changed, just include it again.

35.2 Browser-based workflow

There are a few ways to interact with Julia in a browser:

• Using Pluto notebooks through Pluto.jl

• Using Jupyter notebooks through IJulia.jl

35.3 Revise-based workflows

Whether you're at the REPL or in IJulia, you can typically improve your development experience with Revise.

It is common to configure Revise to start whenever julia is started, as per the instructions in the Revise

documentation. Once configured, Revise will track changes to files in any loaded modules, and to any

files loaded in to the REPL with includet (but not with plain include); you can then edit the files and the

changes take effect without restarting your julia session. A standard workflow is similar to the REPL-based

workflow above, with the following modifications:

1. Put your code in a module somewhere on your load path. There are several options for achieving

this, of which two recommended choices are:

– For long-term projects, use PkgTemplates:

using PkgTemplates

t = Template()

t("MyPkg")

This will create a blank package, "MyPkg", in your .julia/dev directory. Note that PkgTem-

plates allows you to control many different options through its Template constructor.

In step 2 below, edit MyPkg/src/MyPkg.jl to change the source code, and MyPkg/test/runtests.jl

for the tests.

– For "throw-away" projects, you can avoid any need for cleanup by doing your work in your

temporary directory (e.g., /tmp).

Navigate to your temporary directory and launch Julia, then do the following:

https://github.com/fonsp/Pluto.jl
https://github.com/JuliaLang/IJulia.jl
https://github.com/timholy/Revise.jl
https://timholy.github.io/Revise.jl/stable/
https://timholy.github.io/Revise.jl/stable/
https://github.com/invenia/PkgTemplates.jl

CHAPTER 35. WORKFLOW TIPS 447

pkg> generate MyPkg # type] to enter pkg mode

julia> push!(LOAD_PATH, pwd()) # hit backspace to exit pkg mode

If you restart your Julia session you'll have to re-issue that command modifying LOAD_PATH.

In step 2 below, edit MyPkg/src/MyPkg.jl to change the source code, and create any test file

of your choosing.

2. Develop your package

Before loading any code, make sure you're running Revise: say using Revise or follow its documen-

tation on configuring it to run automatically.

Then navigate to the directory containing your test file (here assumed to be "runtests.jl") and do

the following:

julia> using MyPkg

julia> include("runtests.jl")

You can iterativelymodify the code in MyPkg in your editor and re-run the tests with include("runtests.jl").

You generally should not need to restart your Julia session to see the changes take effect (subject to

a few limitations).

https://timholy.github.io/Revise.jl/stable/limitations/

Chapter 36

Style Guide

The following sections explain a few aspects of idiomatic Julia coding style. None of these rules are abso-

lute; they are only suggestions to help familiarize you with the language and to help you choose among

alternative designs.

36.1 Indentation

Use 4 spaces per indentation level.

36.2 Write functions, not just scripts

Writing code as a series of steps at the top level is a quick way to get started solving a problem, but

you should try to divide a program into functions as soon as possible. Functions are more reusable and

testable, and clarify what steps are being done and what their inputs and outputs are. Furthermore, code

inside functions tends to run much faster than top level code, due to how Julia's compiler works.

It is also worth emphasizing that functions should take arguments, instead of operating directly on global

variables (aside from constants like pi).

36.3 Avoid writing overly-specific types

Code should be as generic as possible. Instead of writing:

Complex{Float64}(x)

it's better to use available generic functions:

complex(float(x))

The second version will convert x to an appropriate type, instead of always the same type.

This style point is especially relevant to function arguments. For example, don't declare an argument to

be of type Int or Int32 if it really could be any integer, expressed with the abstract type Integer. In fact,

in many cases you can omit the argument type altogether, unless it is needed to disambiguate from other

448

CHAPTER 36. STYLE GUIDE 449

method definitions, since a MethodError will be thrown anyway if a type is passed that does not support

any of the requisite operations. (This is known as duck typing.)

For example, consider the following definitions of a function addone that returns one plus its argument:

addone(x::Int) = x + 1 # works only for Int

addone(x::Integer) = x + oneunit(x) # any integer type

addone(x::Number) = x + oneunit(x) # any numeric type

addone(x) = x + oneunit(x) # any type supporting + and oneunit

The last definition of addone handles any type supporting oneunit (which returns 1 in the same type as

x, which avoids unwanted type promotion) and the + function with those arguments. The key thing to

realize is that there is no performance penalty to defining only the general addone(x) = x + oneunit(x),

because Julia will automatically compile specialized versions as needed. For example, the first time you

call addone(12), Julia will automatically compile a specialized addone function for x::Int arguments, with

the call to oneunit replaced by its inlined value 1. Therefore, the first three definitions of addone above

are completely redundant with the fourth definition.

36.4 Handle excess argument diversity in the caller

Instead of:

function foo(x, y)

x = Int(x); y = Int(y)

...

end

foo(x, y)

use:

function foo(x::Int, y::Int)

...

end

foo(Int(x), Int(y))

This is better style because foo does not really accept numbers of all types; it really needs Int s.

One issue here is that if a function inherently requires integers, it might be better to force the caller to

decide how non-integers should be converted (e.g. floor or ceiling). Another issue is that declaring more

specific types leaves more "space" for future method definitions.

36.5 Append ! to names of functions that modify their arguments

Instead of:

function double(a::AbstractArray{<:Number})

for i = firstindex(a):lastindex(a)

a[i] *= 2

end

return a

end

https://en.wikipedia.org/wiki/Duck_typing

CHAPTER 36. STYLE GUIDE 450

use:

function double!(a::AbstractArray{<:Number})

for i = firstindex(a):lastindex(a)

a[i] *= 2

end

return a

end

Julia Base uses this convention throughout and contains examples of functions with both copying and

modifying forms (e.g., sort and sort!), and others which are just modifying (e.g., push!, pop!, splice!).

It is typical for such functions to also return the modified array for convenience.

Functions related to IO or making use of random number generators (RNG) are notable exceptions: Since

these functions almost invariably must mutate the IO or RNG, functions ending with ! are used to signify a

mutation other than mutating the IO or advancing the RNG state. For example, rand(x)mutates the RNG,

whereas rand!(x) mutates both the RNG and x; similarly, read(io) mutates io, whereas read!(io, x)

mutates both arguments.

36.6 Avoid strange type Unions

Types such as Union{Function,AbstractString} are often a sign that some design could be cleaner.

36.7 Avoid elaborate container types

It is usually not much help to construct arrays like the following:

a = Vector{Union{Int,AbstractString,Tuple,Array}}(undef, n)

In this case Vector{Any}(undef, n) is better. It is also more helpful to the compiler to annotate specific

uses (e.g. a[i]::Int) than to try to pack many alternatives into one type.

36.8 Prefer exported methods over direct field access

Idiomatic Julia code should generally treat a module's exported methods as the interface to its types. An

object's fields are generally considered implementation details and user code should only access them

directly if this is stated to be the API. This has several benefits:

• Package developers are freer to change the implementation without breaking user code.

• Methods can be passed to higher-order constructs like map (e.g. map(imag, zs)) rather than [z.im

for z in zs]).

• Methods can be defined on abstract types.

• Methods can describe a conceptual operation that can be shared across disparate types (e.g. real(z)

works on Complex numbers or Quaternions).

CHAPTER 36. STYLE GUIDE 451

Julia's dispatch system encourages this style because play(x::MyType) only defines the play method on

that particular type, leaving other types to have their own implementation.

Similarly, non-exported functions are typically internal and subject to change, unless the documentations

states otherwise. Names sometimes are given a _ prefix (or suffix) to further suggest that something is

"internal" or an implementation-detail, but it is not a rule.

Counter-examples to this rule include NamedTuple, RegexMatch, StatStruct.

36.9 Use naming conventions consistent with Julia base/

• modules and type names use capitalization and camel case: module SparseArrays, struct UnitRange.

• functions are lowercase (maximum, convert) and, when readable, with multiple words squashed to-

gether (isequal, haskey). When necessary, use underscores as word separators. Underscores are

also used to indicate a combination of concepts (remotecall_fetch as a more efficient implemen-

tation of fetch(remotecall(...))) or as modifiers.

• functions mutating at least one of their arguments end in !.

• conciseness is valued, but avoid abbreviation (indexin rather than indxin) as it becomes difficult

to remember whether and how particular words are abbreviated.

If a function name requires multiple words, consider whether it might represent more than one concept

and might be better split into pieces.

36.10 Write functions with argument ordering similar to Julia Base

As a general rule, the Base library uses the following order of arguments to functions, as applicable:

1. Function argument. Putting a function argument first permits the use of do blocks for passing

multiline anonymous functions.

2. I/O stream. Specifying the IO object first permits passing the function to functions such as sprint,

e.g. sprint(show, x).

3. Input being mutated. For example, in fill!(x, v), x is the object being mutated and it appears

before the value to be inserted into x.

4. Type. Passing a type typically means that the output will have the given type. In parse(Int, "1"),

the type comes before the string to parse. There are many such examples where the type appears

first, but it's useful to note that in read(io, String), the IO argument appears before the type,

which is in keeping with the order outlined here.

5. Input not being mutated. In fill!(x, v), v is not being mutated and it comes after x.

6. Key. For associative collections, this is the key of the key-value pair(s). For other indexed collections,

this is the index.

7. Value. For associative collections, this is the value of the key-value pair(s). In cases like fill!(x,

v), this is v.

8. Everything else. Any other arguments.

CHAPTER 36. STYLE GUIDE 452

9. Varargs. This refers to arguments that can be listed indefinitely at the end of a function call. For ex-

ample, in Matrix{T}(undef, dims), the dimensions can be given as a Tuple, e.g. Matrix{T}(undef,

(1,2)), or as Varargs, e.g. Matrix{T}(undef, 1, 2).

10. Keyword arguments. In Julia keyword arguments have to come last anyway in function definitions;

they're listed here for the sake of completeness.

The vast majority of functions will not take every kind of argument listed above; the numbers merely denote

the precedence that should be used for any applicable arguments to a function.

There are of course a few exceptions. For example, in convert, the type should always come first. In

setindex!, the value comes before the indices so that the indices can be provided as varargs.

When designing APIs, adhering to this general order as much as possible is likely to give users of your

functions a more consistent experience.

36.11 Don't overuse try-catch

It is better to avoid errors than to rely on catching them.

36.12 Don't parenthesize conditions

Julia doesn't require parens around conditions in if and while. Write:

if a == b

instead of:

if (a == b)

36.13 Don't overuse ...

Splicing function arguments can be addictive. Instead of [a..., b...], use simply [a; b], which already

concatenates arrays. collect(a) is better than [a...], but since a is already iterable it is often even

better to leave it alone, and not convert it to an array.

36.14 Don't use unnecessary static parameters

A function signature:

foo(x::T) where {T<:Real} = ...

should be written as:

foo(x::Real) = ...

CHAPTER 36. STYLE GUIDE 453

instead, especially if T is not used in the function body. Even if T is used, it can be replaced with typeof(x)

if convenient. There is no performance difference. Note that this is not a general caution against static

parameters, just against uses where they are not needed.

Note also that container types, specifically may need type parameters in function calls. See the FAQ Avoid

fields with abstract containers for more information.

36.15 Avoid confusion about whether something is an instance or a type

Sets of definitions like the following are confusing:

foo(::Type{MyType}) = ...

foo(::MyType) = foo(MyType)

Decide whether the concept in question will be written as MyType or MyType(), and stick to it.

The preferred style is to use instances by default, and only add methods involving Type{MyType} later if

they become necessary to solve some problems.

If a type is effectively an enumeration, it should be defined as a single (ideally immutable struct or primitive)

type, with the enumeration values being instances of it. Constructors and conversions can check whether

values are valid. This design is preferred over making the enumeration an abstract type, with the "values"

as subtypes.

36.16 Don't overuse macros

Be aware of when a macro could really be a function instead.

Calling eval inside a macro is a particularly dangerous warning sign; it means the macro will only work

when called at the top level. If such a macro is written as a function instead, it will naturally have access

to the run-time values it needs.

36.17 Don't expose unsafe operations at the interface level

If you have a type that uses a native pointer:

mutable struct NativeType

p::Ptr{UInt8}

...

end

don't write definitions like the following:

getindex(x::NativeType, i) = unsafe_load(x.p, i)

The problem is that users of this type can write x[i] without realizing that the operation is unsafe, and

then be susceptible to memory bugs.

Such a function should either check the operation to ensure it is safe, or have unsafe somewhere in its

name to alert callers.

CHAPTER 36. STYLE GUIDE 454

36.18 Don't overload methods of base container types

It is possible to write definitions like the following:

show(io::IO, v::Vector{MyType}) = ...

This would provide custom showing of vectors with a specific new element type. While tempting, this

should be avoided. The trouble is that users will expect a well-known type like Vector() to behave in a

certain way, and overly customizing its behavior can make it harder to work with.

36.19 Avoid type piracy

"Type piracy" refers to the practice of extending or redefining methods in Base or other packages on types

that you have not defined. In extreme cases, you can crash Julia (e.g. if your method extension or redefini-

tion causes invalid input to be passed to a ccall). Type piracy can complicate reasoning about code, and

may introduce incompatibilities that are hard to predict and diagnose.

As an example, suppose you wanted to define multiplication on symbols in a module:

module A

import Base.*

*(x::Symbol, y::Symbol) = Symbol(x,y)

end

The problem is that now any other module that uses Base.* will also see this definition. Since Symbol is

defined in Base and is used by other modules, this can change the behavior of unrelated code unexpectedly.

There are several alternatives here, including using a different function name, or wrapping the Symbols in

another type that you define.

Sometimes, coupled packages may engage in type piracy to separate features from definitions, especially

when the packages were designed by collaborating authors, and when the definitions are reusable. For

example, one package might provide some types useful for working with colors; another package could

define methods for those types that enable conversions between color spaces. Another example might

be a package that acts as a thin wrapper for some C code, which another package might then pirate to

implement a higher-level, Julia-friendly API.

36.20 Be careful with type equality

You generally want to use isa and <: for testing types, not ==. Checking types for exact equality typically

only makes sense when comparing to a known concrete type (e.g. T == Float64), or if you really, really

know what you're doing.

36.21 Don't write a trivial anonymous function x->f(x) for a named function f

Since higher-order functions are often called with anonymous functions, it is easy to conclude that this

is desirable or even necessary. But any function can be passed directly, without being "wrapped" in an

anonymous function. Instead of writing map(x->f(x), a), write map(f, a).

CHAPTER 36. STYLE GUIDE 455

36.22 Avoid using floats for numeric literals in generic code when possible

If you write generic code which handles numbers, and which can be expected to run with many different

numeric type arguments, try using literals of a numeric type that will affect the arguments as little as

possible through promotion.

For example,

julia> f(x) = 2.0 * x

f (generic function with 1 method)

julia> f(1//2)

1.0

julia> f(1/2)

1.0

julia> f(1)

2.0

while

julia> g(x) = 2 * x

g (generic function with 1 method)

julia> g(1//2)

1//1

julia> g(1/2)

1.0

julia> g(1)

2

As you can see, the second version, where we used an Int literal, preserved the type of the input argument,

while the first didn't. This is because e.g. promote_type(Int, Float64) == Float64, and promotion

happens with the multiplication. Similarly, Rational literals are less type disruptive than Float64 literals,

but more disruptive than Ints:

julia> h(x) = 2//1 * x

h (generic function with 1 method)

julia> h(1//2)

1//1

julia> h(1/2)

1.0

julia> h(1)

2//1

Thus, use Int literals when possible, with Rational{Int} for literal non-integer numbers, in order to make

it easier to use your code.

Chapter 37

Frequently Asked Questions

37.1 General

Is Julia named after someone or something?

No.

Why don't you compile Matlab/Python/R/… code to Julia?

Since many people are familiar with the syntax of other dynamic languages, and lots of code has already

been written in those languages, it is natural to wonder why we didn't just plug a Matlab or Python front-

end into a Julia back-end (or “transpile” code to Julia) in order to get all the performance benefits of Julia

without requiring programmers to learn a new language. Simple, right?

The basic issue is that there is nothing special about Julia's compiler: we use a commonplace compiler

(LLVM) with no “secret sauce” that other language developers don't know about. Indeed, Julia's compiler

is in many ways much simpler than those of other dynamic languages (e.g. PyPy or LuaJIT). Julia's perfor-

mance advantage derives almost entirely from its front-end: its language semantics allow a well-written

Julia program to give more opportunities to the compiler to generate efficient code and memory layouts.

If you tried to compile Matlab or Python code to Julia, our compiler would be limited by the semantics of

Matlab or Python to producing code no better than that of existing compilers for those languages (and

probably worse). The key role of semantics is also why several existing Python compilers (like Numba and

Pythran) only attempt to optimize a small subset of the language (e.g. operations on Numpy arrays and

scalars), and for this subset they are already doing at least as well as we could for the same semantics.

The people working on those projects are incredibly smart and have accomplished amazing things, but

retrofitting a compiler onto a language that was designed to be interpreted is a very difficult problem.

Julia's advantage is that good performance is not limited to a small subset of “built-in” types and operations,

and one can write high-level type-generic code that works on arbitrary user-defined types while remaining

fast and memory-efficient. Types in languages like Python simply don't provide enough information to the

compiler for similar capabilities, so as soon as you used those languages as a Julia front-end you would be

stuck.

For similar reasons, automated translation to Julia would also typically generate unreadable, slow, non-

idiomatic code that would not be a good starting point for a native Julia port from another language.

On the other hand, language interoperability is extremely useful: we want to exploit existing high-quality

code in other languages from Julia (and vice versa)! The best way to enable this is not a transpiler, but

456

CHAPTER 37. FREQUENTLY ASKED QUESTIONS 457

rather via easy inter-language calling facilities. We have worked hard on this, from the built-in ccall

intrinsic (to call C and Fortran libraries) to JuliaInterop packages that connect Julia to Python, Matlab, C++,

and more.

37.2 Public API

How does Julia define its public API?

Julia Base and standard library functionality described in the the documentation that is not marked as

unstable (e.g. experimental and internal) is covered by SemVer. Functions, types, and constants are not

part of the public API if they are not included in the documentation, even if they have docstrings.

There is a useful undocumented function/type/constant. Can I use it?

Updating Julia may break your code if you use non-public API. If the code is self-contained, it may be a good

idea to copy it into your project. If you want to rely on a complex non-public API, especially when using it

from a stable package, it is a good idea to open an issue or pull request to start a discussion for turning it

into a public API. However, we do not discourage the attempt to create packages that expose stable public

interfaces while relying on non-public implementation details of Julia and buffering the differences across

different Julia versions.

The documentation is not accurate enough. Can I rely on the existing behavior?

Please open an issue or pull request to start a discussion for turning the existing behavior into a public API.

37.3 Sessions and the REPL

How do I delete an object in memory?

Julia does not have an analog of MATLAB's clear function; once a name is defined in a Julia session (tech-

nically, in module Main), it is always present.

If memory usage is your concern, you can always replace objects with ones that consume less memory.

For example, if A is a gigabyte-sized array that you no longer need, you can free the memory with A =

nothing. The memory will be released the next time the garbage collector runs; you can force this to

happen with GC.gc(). Moreover, an attempt to use A will likely result in an error, because most methods

are not defined on type Nothing.

How can I modify the declaration of a type in my session?

Perhaps you've defined a type and then realize you need to add a new field. If you try this at the REPL, you

get the error:

ERROR: invalid redefinition of constant MyType

Types in module Main cannot be redefined.

While this can be inconvenient when you are developing new code, there's an excellent workaround. Mod-

ules can be replaced by redefining them, and so if you wrap all your new code inside a module you can

redefine types and constants. You can't import the type names into Main and then expect to be able to re-

define them there, but you can use the module name to resolve the scope. In other words, while developing

you might use a workflow something like this:

https://github.com/JuliaInterop
https://docs.julialang.org/
https://semver.org/
https://github.com/JuliaLang/julia/issues
https://github.com/JuliaLang/julia/pulls
https://github.com/JuliaLang/julia/issues
https://github.com/JuliaLang/julia/pulls

CHAPTER 37. FREQUENTLY ASKED QUESTIONS 458

include("mynewcode.jl") # this defines a module MyModule

obj1 = MyModule.ObjConstructor(a, b)

obj2 = MyModule.somefunction(obj1)

Got an error. Change something in "mynewcode.jl"

include("mynewcode.jl") # reload the module

obj1 = MyModule.ObjConstructor(a, b) # old objects are no longer valid, must reconstruct

obj2 = MyModule.somefunction(obj1) # this time it worked!

obj3 = MyModule.someotherfunction(obj2, c)

...

37.4 Scripting

How do I check if the current file is being run as the main script?

When a file is run as the main script using julia file.jl one might want to activate extra functionality

like command line argument handling. A way to determine that a file is run in this fashion is to check if

abspath(PROGRAM_FILE) == @__FILE__ is true.

However, it is recommended to not write files that double as a script and as an importable library. If one

needs functionality both available as a library and a script, it is better to write is as a library, then import

the functionality into a distinct script.

How do I catch CTRL-C in a script?

Running a Julia script using julia file.jl does not throw InterruptExceptionwhen you try to terminate

it with CTRL-C (SIGINT). To run a certain code before terminating a Julia script, which may or may not

be caused by CTRL-C, use atexit. Alternatively, you can use julia -e 'include(popfirst!(ARGS))'

file.jl to execute a script while being able to catch InterruptException in the try block. Note that

with this strategy PROGRAM_FILE will not be set.

How do I pass options to julia using #!/usr/bin/env?

Passing options to julia in a so-called shebang line, as in #!/usr/bin/env julia --startup-file=no,

will not work on many platforms (BSD, macOS, Linux) where the kernel, unlike the shell, does not split

arguments at space characters. The option env -S, which splits a single argument string into multiple

arguments at spaces, similar to a shell, offers a simple workaround:

#!/usr/bin/env -S julia --color=yes --startup-file=no

@show ARGS # put any Julia code here

Note

Option env -S appeared in FreeBSD 6.0 (2005), macOS Sierra (2016) and GNU/Linux coreutils

8.30 (2018).

Why doesn't run support * or pipes for scripting external programs?

Julia's run function launches external programs directly, without invoking an operating-system shell (unlike

the system("...") function in other languages like Python, R, or C). That means that run does not perform

wildcard expansion of * ("globbing"), nor does it interpret shell pipelines like | or >.

https://en.wikipedia.org/wiki/Shell_(computing)
https://en.wikipedia.org/wiki/Glob_(programming)
https://en.wikipedia.org/wiki/Pipeline_(Unix)

CHAPTER 37. FREQUENTLY ASKED QUESTIONS 459

You can still do globbing and pipelines using Julia features, however. For example, the built-in pipeline

function allows you to chain external programs and files, similar to shell pipes, and the Glob.jl package

implements POSIX-compatible globbing.

You can, of course, run programs through the shell by explicitly passing a shell and a command string

to run, e.g. run(`sh -c "ls > files.txt"`) to use the Unix Bourne shell, but you should generally

prefer pure-Julia scripting like run(pipeline(`ls`, "files.txt")). The reason why we avoid the shell

by default is that shelling out sucks: launching processes via the shell is slow, fragile to quoting of special

characters, has poor error handling, and is problematic for portability. (The Python developers came to a

similar conclusion.)

37.5 Variables and Assignments

Why am I getting UndefVarError from a simple loop?

You might have something like:

x = 0

while x < 10

x += 1

end

and notice that it works fine in an interactive environment (like the Julia REPL), but gives UndefVarError:

`x` not defined when you try to run it in script or other file. What is going on is that Julia generally

requires you to be explicit about assigning to global variables in a local scope.

Here, x is a global variable, while defines a local scope, and x += 1 is an assignment to a global in that

local scope.

As mentioned above, Julia (version 1.5 or later) allows you to omit the global keyword for code in the REPL

(and many other interactive environments), to simplify exploration (e.g. copy-pasting code from a function

to run interactively). However, once you move to code in files, Julia requires a more disciplined approach

to global variables. You have least three options:

1. Put the code into a function (so that x is a local variable in a function). In general, it is good software

engineering to use functions rather than global scripts (search online for "why global variables bad"

to see many explanations). In Julia, global variables are also slow.

2. Wrap the code in a let block. (This makes x a local variable within the let ... end statement,

again eliminating the need for global).

3. Explicitly mark x as global inside the local scope before assigning to it, e.g. write global x += 1.

More explanation can be found in the manual section on soft scope.

37.6 Functions

I passed an argument x to a function, modified it inside that function, but on the

outside, the variable x is still unchanged. Why?

Suppose you call a function like this:

https://github.com/vtjnash/Glob.jl
https://en.wikipedia.org/wiki/Bourne_shell
https://julialang.org/blog/2012/03/shelling-out-sucks/
https://www.python.org/dev/peps/pep-0324/#motivation

CHAPTER 37. FREQUENTLY ASKED QUESTIONS 460

julia> x = 10

10

julia> function change_value!(y)

y = 17

end

change_value! (generic function with 1 method)

julia> change_value!(x)

17

julia> x # x is unchanged!

10

In Julia, the binding of a variable x cannot be changed by passing x as an argument to a function. When

calling change_value!(x) in the above example, y is a newly created variable, bound initially to the value

of x, i.e. 10; then y is rebound to the constant 17, while the variable x of the outer scope is left untouched.

However, if x is bound to an object of type Array (or any other mutable type). From within the function,

you cannot "unbind" x from this Array, but you can change its content. For example:

julia> x = [1,2,3]

3-element Vector{Int64}:

1

2

3

julia> function change_array!(A)

A[1] = 5

end

change_array! (generic function with 1 method)

julia> change_array!(x)

5

julia> x

3-element Vector{Int64}:

5

2

3

Here we created a function change_array!, that assigns 5 to the first element of the passed array (bound

to x at the call site, and bound to A within the function). Notice that, after the function call, x is still bound

to the same array, but the content of that array changed: the variables A and x were distinct bindings

referring to the same mutable Array object.

Can I use using or import inside a function?

No, you are not allowed to have a using or import statement inside a function. If you want to import a

module but only use its symbols inside a specific function or set of functions, you have two options:

1. Use import:

CHAPTER 37. FREQUENTLY ASKED QUESTIONS 461

import Foo

function bar(...)

... refer to Foo symbols via Foo.baz ...

end

This loads the module Foo and defines a variable Foo that refers to the module, but does not import

any of the other symbols from the module into the current namespace. You refer to the Foo symbols

by their qualified names Foo.bar etc.

2. Wrap your function in a module:

module Bar

export bar

using Foo

function bar(...)

... refer to Foo.baz as simply baz

end

end

using Bar

This imports all the symbols from Foo, but only inside the module Bar.

What does the ... operator do?

The two uses of the ... operator: slurping and splatting

Many newcomers to Julia find the use of ... operator confusing. Part of what makes the ... operator

confusing is that it means two different things depending on context.

... combines many arguments into one argument in function definitions

In the context of function definitions, the ... operator is used to combine many different arguments into a

single argument. This use of ... for combining many different arguments into a single argument is called

slurping:

julia> function printargs(args...)

println(typeof(args))

for (i, arg) in enumerate(args)

println("Arg #$i = $arg")

end

end

printargs (generic function with 1 method)

julia> printargs(1, 2, 3)

Tuple{Int64, Int64, Int64}

Arg #1 = 1

Arg #2 = 2

Arg #3 = 3

If Julia were a language that made more liberal use of ASCII characters, the slurping operator might have

been written as <-... instead of

CHAPTER 37. FREQUENTLY ASKED QUESTIONS 462

... splits one argument into many different arguments in function calls

In contrast to the use of the ... operator to denote slurping many different arguments into one argument

when defining a function, the ... operator is also used to cause a single function argument to be split

apart into many different arguments when used in the context of a function call. This use of ... is called

splatting:

julia> function threeargs(a, b, c)

println("a = $a::$(typeof(a))")

println("b = $b::$(typeof(b))")

println("c = $c::$(typeof(c))")

end

threeargs (generic function with 1 method)

julia> x = [1, 2, 3]

3-element Vector{Int64}:

1

2

3

julia> threeargs(x...)

a = 1::Int64

b = 2::Int64

c = 3::Int64

If Julia were a language that made more liberal use of ASCII characters, the splatting operator might have

been written as ...-> instead of

What is the return value of an assignment?

The operator = always returns the right-hand side, therefore:

julia> function threeint()

x::Int = 3.0

x # returns variable x

end

threeint (generic function with 1 method)

julia> function threefloat()

x::Int = 3.0 # returns 3.0

end

threefloat (generic function with 1 method)

julia> threeint()

3

julia> threefloat()

3.0

and similarly:

CHAPTER 37. FREQUENTLY ASKED QUESTIONS 463

julia> function twothreetup()

x, y = [2, 3] # assigns 2 to x and 3 to y

x, y # returns a tuple

end

twothreetup (generic function with 1 method)

julia> function twothreearr()

x, y = [2, 3] # returns an array

end

twothreearr (generic function with 1 method)

julia> twothreetup()

(2, 3)

julia> twothreearr()

2-element Vector{Int64}:

2

3

37.7 Types, type declarations, and constructors

What does "type-stable" mean?

It means that the type of the output is predictable from the types of the inputs. In particular, it means

that the type of the output cannot vary depending on the values of the inputs. The following code is not

type-stable:

julia> function unstable(flag::Bool)

if flag

return 1

else

return 1.0

end

end

unstable (generic function with 1 method)

It returns either an Int or a Float64 depending on the value of its argument. Since Julia can't predict the

return type of this function at compile-time, any computation that uses it must be able to cope with values

of both types, which makes it hard to produce fast machine code.

Why does Julia give a DomainError for certain seemingly-sensible operations?

Certain operations make mathematical sense but result in errors:

julia> sqrt(-2.0)

ERROR: DomainError with -2.0:

sqrt was called with a negative real argument but will only return a complex result if called

with a complex argument. Try sqrt(Complex(x)).↪→

Stacktrace:

[...]

CHAPTER 37. FREQUENTLY ASKED QUESTIONS 464

This behavior is an inconvenient consequence of the requirement for type-stability. In the case of sqrt,

most users want sqrt(2.0) to give a real number, and would be unhappy if it produced the complex

number 1.4142135623730951 + 0.0im. One could write the sqrt function to switch to a complex-valued

output only when passed a negative number (which is what sqrt does in some other languages), but then

the result would not be type-stable and the sqrt function would have poor performance.

In these and other cases, you can get the result you want by choosing an input type that conveys your

willingness to accept an output type in which the result can be represented:

julia> sqrt(-2.0+0im)

0.0 + 1.4142135623730951im

How can I constrain or compute type parameters?

The parameters of a parametric type can hold either types or bits values, and the type itself chooses how it

makes use of these parameters. For example, Array{Float64, 2} is parameterized by the type Float64

to express its element type and the integer value 2 to express its number of dimensions. When defining

your own parametric type, you can use subtype constraints to declare that a certain parameter must be

a subtype (<:) of some abstract type or a previous type parameter. There is not, however, a dedicated

syntax to declare that a parameter must be a value of a given type — that is, you cannot directly declare

that a dimensionality-like parameter isa Int within the struct definition, for example. Similarly, you

cannot do computations (including simple things like addition or subtraction) on type parameters. Instead,

these sorts of constraints and relationships may be expressed through additional type parameters that are

computed and enforced within the type's constructors.

As an example, consider

struct ConstrainedType{T,N,N+1} # NOTE: INVALID SYNTAX

A::Array{T,N}

B::Array{T,N+1}

end

where the user would like to enforce that the third type parameter is always the second plus one. This can

be implemented with an explicit type parameter that is checked by an inner constructor method (where it

can be combined with other checks):

struct ConstrainedType{T,N,M}

A::Array{T,N}

B::Array{T,M}

function ConstrainedType(A::Array{T,N}, B::Array{T,M}) where {T,N,M}

N + 1 == M || throw(ArgumentError("second argument should have one more axis"))

new{T,N,M}(A, B)

end

end

This check is usually costless, as the compiler can elide the check for valid concrete types. If the second

argument is also computed, it may be advantageous to provide an outer constructor method that performs

this calculation:

ConstrainedType(A) = ConstrainedType(A, compute_B(A))

CHAPTER 37. FREQUENTLY ASKED QUESTIONS 465

Why does Julia use native machine integer arithmetic?

Julia uses machine arithmetic for integer computations. This means that the range of Int values is bounded

and wraps around at either end so that adding, subtracting and multiplying integers can overflow or un-

derflow, leading to some results that can be unsettling at first:

julia> x = typemax(Int)

9223372036854775807

julia> y = x+1

-9223372036854775808

julia> z = -y

-9223372036854775808

julia> 2*z

0

Clearly, this is far from the way mathematical integers behave, and you might think it less than ideal for

a high-level programming language to expose this to the user. For numerical work where efficiency and

transparency are at a premium, however, the alternatives are worse.

One alternative to consider would be to check each integer operation for overflow and promote results

to bigger integer types such as Int128 or BigInt in the case of overflow. Unfortunately, this introduces

major overhead on every integer operation (think incrementing a loop counter) – it requires emitting code to

perform run-time overflow checks after arithmetic instructions and branches to handle potential overflows.

Worse still, this would cause every computation involving integers to be type-unstable. As we mentioned

above, type-stability is crucial for effective generation of efficient code. If you can't count on the results

of integer operations being integers, it's impossible to generate fast, simple code the way C and Fortran

compilers do.

A variation on this approach, which avoids the appearance of type instability is to merge the Int and

BigInt types into a single hybrid integer type, that internally changes representation when a result no

longer fits into the size of a machine integer. While this superficially avoids type-instability at the level

of Julia code, it just sweeps the problem under the rug by foisting all of the same difficulties onto the C

code implementing this hybrid integer type. This approach can be made to work and can even be made

quite fast in many cases, but has several drawbacks. One problem is that the in-memory representation

of integers and arrays of integers no longer match the natural representation used by C, Fortran and other

languages with native machine integers. Thus, to interoperate with those languages, we would ultimately

need to introduce native integer types anyway. Any unbounded representation of integers cannot have a

fixed number of bits, and thus cannot be stored inline in an array with fixed-size slots – large integer values

will always require separate heap-allocated storage. And of course, no matter how clever a hybrid integer

implementation one uses, there are always performance traps – situations where performance degrades

unexpectedly. Complex representation, lack of interoperability with C and Fortran, the inability to represent

integer arrays without additional heap storage, and unpredictable performance characteristics make even

the cleverest hybrid integer implementations a poor choice for high-performance numerical work.

An alternative to using hybrid integers or promoting to BigInts is to use saturating integer arithmetic, where

adding to the largest integer value leaves it unchanged and likewise for subtracting from the smallest

integer value. This is precisely what Matlab™ does:

>> int64(9223372036854775807)

CHAPTER 37. FREQUENTLY ASKED QUESTIONS 466

ans =

9223372036854775807

>> int64(9223372036854775807) + 1

ans =

9223372036854775807

>> int64(-9223372036854775808)

ans =

-9223372036854775808

>> int64(-9223372036854775808) - 1

ans =

-9223372036854775808

At first blush, this seems reasonable enough since 9223372036854775807 ismuch closer to 9223372036854775808

than -9223372036854775808 is and integers are still represented with a fixed size in a natural way that is

compatible with C and Fortran. Saturated integer arithmetic, however, is deeply problematic. The first and

most obvious issue is that this is not the way machine integer arithmetic works, so implementing saturated

operations requires emitting instructions after each machine integer operation to check for underflow or

overflow and replace the result with typemin(Int) or typemax(Int) as appropriate. This alone expands

each integer operation from a single, fast instruction into half a dozen instructions, probably including

branches. Ouch. But it gets worse – saturating integer arithmetic isn't associative. Consider this Matlab

computation:

>> n = int64(2)^62

4611686018427387904

>> n + (n - 1)

9223372036854775807

>> (n + n) - 1

9223372036854775806

This makes it hard to write many basic integer algorithms since a lot of common techniques depend on

the fact that machine addition with overflow is associative. Consider finding the midpoint between integer

values lo and hi in Julia using the expression (lo + hi) >>> 1:

julia> n = 2^62

4611686018427387904

julia> (n + 2n) >>> 1

6917529027641081856

CHAPTER 37. FREQUENTLY ASKED QUESTIONS 467

See? No problem. That's the correct midpoint between 2^62 and 2^63, despite the fact that n + 2n is

-4611686018427387904. Now try it in Matlab:

>> (n + 2*n)/2

ans =

4611686018427387904

Oops. Adding a >>> operator to Matlab wouldn't help, because saturation that occurs when adding n and

2n has already destroyed the information necessary to compute the correct midpoint.

Not only is lack of associativity unfortunate for programmers who cannot rely it for techniques like this, but

it also defeats almost anything compilers might want to do to optimize integer arithmetic. For example,

since Julia integers use normal machine integer arithmetic, LLVM is free to aggressively optimize simple

little functions like f(k) = 5k-1. The machine code for this function is just this:

julia> code_native(f, Tuple{Int})

.text

Filename: none

pushq %rbp

movq %rsp, %rbp

Source line: 1

leaq -1(%rdi,%rdi,4), %rax

popq %rbp

retq

nopl (%rax,%rax)

The actual body of the function is a single leaq instruction, which computes the integer multiply and add

at once. This is even more beneficial when f gets inlined into another function:

julia> function g(k, n)

for i = 1:n

k = f(k)

end

return k

end

g (generic function with 1 methods)

julia> code_native(g, Tuple{Int,Int})

.text

Filename: none

pushq %rbp

movq %rsp, %rbp

Source line: 2

testq %rsi, %rsi

jle L26

nopl (%rax)

Source line: 3

L16:

leaq -1(%rdi,%rdi,4), %rdi

Source line: 2

CHAPTER 37. FREQUENTLY ASKED QUESTIONS 468

decq %rsi

jne L16

Source line: 5

L26:

movq %rdi, %rax

popq %rbp

retq

nop

Since the call to f gets inlined, the loop body ends up being just a single leaq instruction. Next, consider

what happens if we make the number of loop iterations fixed:

julia> function g(k)

for i = 1:10

k = f(k)

end

return k

end

g (generic function with 2 methods)

julia> code_native(g,(Int,))

.text

Filename: none

pushq %rbp

movq %rsp, %rbp

Source line: 3

imulq $9765625, %rdi, %rax # imm = 0x9502F9

addq $-2441406, %rax # imm = 0xFFDABF42

Source line: 5

popq %rbp

retq

nopw %cs:(%rax,%rax)

Because the compiler knows that integer addition and multiplication are associative and that multiplication

distributes over addition – neither of which is true of saturating arithmetic – it can optimize the entire loop

down to just a multiply and an add. Saturated arithmetic completely defeats this kind of optimization since

associativity and distributivity can fail at each loop iteration, causing different outcomes depending on

which iteration the failure occurs in. The compiler can unroll the loop, but it cannot algebraically reduce

multiple operations into fewer equivalent operations.

The most reasonable alternative to having integer arithmetic silently overflow is to do checked arithmetic

everywhere, raising errors when adds, subtracts, and multiplies overflow, producing values that are not

value-correct. In this blog post, Dan Luu analyzes this and finds that rather than the trivial cost that this

approach should in theory have, it ends up having a substantial cost due to compilers (LLVM and GCC) not

gracefully optimizing around the added overflow checks. If this improves in the future, we could consider

defaulting to checked integer arithmetic in Julia, but for now, we have to live with the possibility of overflow.

In the meantime, overflow-safe integer operations can be achieved through the use of external libraries

such as SaferIntegers.jl. Note that, as stated previously, the use of these libraries significantly increases

the execution time of code using the checked integer types. However, for limited usage, this is far less of

an issue than if it were used for all integer operations. You can follow the status of the discussion here.

https://danluu.com/integer-overflow/
https://github.com/JeffreySarnoff/SaferIntegers.jl
https://github.com/JuliaLang/julia/issues/855

CHAPTER 37. FREQUENTLY ASKED QUESTIONS 469

What are the possible causes of an UndefVarError during remote execution?

As the error states, an immediate cause of an UndefVarError on a remote node is that a binding by that

name does not exist. Let us explore some of the possible causes.

julia> module Foo

foo() = remotecall_fetch(x->x, 2, "Hello")

end

julia> Foo.foo()

ERROR: On worker 2:

UndefVarError: `Foo` not defined

Stacktrace:

[...]

The closure x->x carries a reference to Foo, and since Foo is unavailable on node 2, an UndefVarError is

thrown.

Globals under modules other than Main are not serialized by value to the remote node. Only a reference

is sent. Functions which create global bindings (except under Main) may cause an UndefVarError to be

thrown later.

julia> @everywhere module Foo

function foo()

global gvar = "Hello"

remotecall_fetch(()->gvar, 2)

end

end

julia> Foo.foo()

ERROR: On worker 2:

UndefVarError: `gvar` not defined

Stacktrace:

[...]

In the above example, @everywhere module Foo defined Foo on all nodes. However the call to Foo.foo()

created a new global binding gvar on the local node, but this was not found on node 2 resulting in an

UndefVarError error.

Note that this does not apply to globals created under module Main. Globals under module Main are

serialized and new bindings created under Main on the remote node.

julia> gvar_self = "Node1"

"Node1"

julia> remotecall_fetch(()->gvar_self, 2)

"Node1"

julia> remotecall_fetch(varinfo, 2)

name size summary

––––––––– –––––––– –––––––

Base Module

CHAPTER 37. FREQUENTLY ASKED QUESTIONS 470

Core Module

Main Module

gvar_self 13 bytes String

This does not apply to function or struct declarations. However, anonymous functions bound to global

variables are serialized as can be seen below.

julia> bar() = 1

bar (generic function with 1 method)

julia> remotecall_fetch(bar, 2)

ERROR: On worker 2:

UndefVarError: `#bar` not defined

[...]

julia> anon_bar = ()->1

(::#21) (generic function with 1 method)

julia> remotecall_fetch(anon_bar, 2)

1

37.8 Troubleshooting "method not matched": parametric type invariance

and MethodErrors

Why doesn't it work to declare foo(bar::Vector{Real}) = 42 and then call foo([1])?

As you'll see if you try this, the result is a MethodError:

julia> foo(x::Vector{Real}) = 42

foo (generic function with 1 method)

julia> foo([1])

ERROR: MethodError: no method matching foo(::Vector{Int64})

Closest candidates are:

foo(!Matched::Vector{Real})

@ Main none:1

Stacktrace:

[...]

This is because Vector{Real} is not a supertype of Vector{Int}! You can solve this problem with some-

thing like foo(bar::Vector{T}) where {T<:Real} (or the short form foo(bar::Vector{<:Real}) if the

static parameter T is not needed in the body of the function). The T is a wild card: you first specify that it

must be a subtype of Real, then specify the function takes a Vector of with elements of that type.

This same issue goes for any composite type Comp, not just Vector. If Comp has a parameter declared of

type Y, then another type Comp2 with a parameter of type X<:Y is not a subtype of Comp. This is type-

invariance (by contrast, Tuple is type-covariant in its parameters). See Parametric Composite Types for

more explanation of these.

CHAPTER 37. FREQUENTLY ASKED QUESTIONS 471

Why does Julia use * for string concatenation? Why not + or something else?

The main argument against + is that string concatenation is not commutative, while + is generally used as a

commutative operator. While the Julia community recognizes that other languages use different operators

and * may be unfamiliar for some users, it communicates certain algebraic properties.

Note that you can also use string(...) to concatenate strings (and other values converted to strings);

similarly, repeat can be used instead of ^ to repeat strings. The interpolation syntax is also useful for

constructing strings.

37.9 Packages and Modules

What is the difference between "using" and "import"?

There are several differences between using and import (see the Modules section), but there is an im-

portant difference that may not seem intuitive at first glance, and on the surface (i.e. syntax-wise) it may

seem very minor. When loading modules with using, you need to say function Foo.bar(... to extend

module Foo's function bar with a new method, but with import Foo.bar, you only need to say function

bar(... and it automatically extends module Foo's function bar.

The reason this is important enough to have been given separate syntax is that you don't want to acciden-

tally extend a function that you didn't know existed, because that could easily cause a bug. This is most

likely to happen with a method that takes a common type like a string or integer, because both you and the

other module could define a method to handle such a common type. If you use import, then you'll replace

the other module's implementation of bar(s::AbstractString) with your new implementation, which

could easily do something completely different (and break all/many future usages of the other functions in

module Foo that depend on calling bar).

37.10 Nothingness and missing values

How does "null", "nothingness" or "missingness" work in Julia?

Unlike many languages (for example, C and Java), Julia objects cannot be "null" by default. When a refer-

ence (variable, object field, or array element) is uninitialized, accessing it will immediately throw an error.

This situation can be detected using the isdefined or isassigned functions.

Some functions are used only for their side effects, and do not need to return a value. In these cases,

the convention is to return the value nothing, which is just a singleton object of type Nothing. This is an

ordinary type with no fields; there is nothing special about it except for this convention, and that the REPL

does not print anything for it. Some language constructs that would not otherwise have a value also yield

nothing, for example if false; end.

For situations where a value x of type T exists only sometimes, the Union{T, Nothing} type can be used

for function arguments, object fields and array element types as the equivalent of Nullable, Option or

Maybe in other languages. If the value itself can be nothing (notably, when T is Any), the Union{Some{T},

Nothing} type is more appropriate since x == nothing then indicates the absence of a value, and x ==

Some(nothing) indicates the presence of a value equal to nothing. The something function allows un-

wrapping Some objects and using a default value instead of nothing arguments. Note that the compiler is

able to generate efficient code when working with Union{T, Nothing} arguments or fields.

To represent missing data in the statistical sense (NA in R or NULL in SQL), use the missing object. See the

Missing Values section for more details.

https://docs.julialang.org/en/v1/manual/modules/#modules
https://en.wikipedia.org/wiki/Nullable_type
https://en.wikipedia.org/wiki/Nullable_type

CHAPTER 37. FREQUENTLY ASKED QUESTIONS 472

In some languages, the empty tuple (()) is considered the canonical form of nothingness. However, in julia

it is best thought of as just a regular tuple that happens to contain zero values.

The empty (or "bottom") type, written as Union{} (an empty union type), is a type with no values and no

subtypes (except itself). You will generally not need to use this type.

37.11 Memory

Why does x += y allocate memory when x and y are arrays?

In Julia, x += y gets replaced during lowering by x = x + y. For arrays, this has the consequence that,

rather than storing the result in the same location in memory as x, it allocates a new array to store the

result. If you prefer to mutate x, use x .+= y to update each element individually.

While this behavior might surprise some, the choice is deliberate. The main reason is the presence of

immutable objects within Julia, which cannot change their value once created. Indeed, a number is an

immutable object; the statements x = 5; x += 1 do not modify the meaning of 5, they modify the value

bound to x. For an immutable, the only way to change the value is to reassign it.

To amplify a bit further, consider the following function:

function power_by_squaring(x, n::Int)

ispow2(n) || error("This implementation only works for powers of 2")

while n >= 2

x *= x

n >>= 1

end

x

end

After a call like x = 5; y = power_by_squaring(x, 4), you would get the expected result: x == 5 &&

y == 625. However, now suppose that *=, when used with matrices, instead mutated the left hand side.

There would be two problems:

• For general square matrices, A = A*B cannot be implemented without temporary storage: A[1,1]

gets computed and stored on the left hand side before you're done using it on the right hand side.

• Suppose you were willing to allocate a temporary for the computation (which would eliminate most of

the point of making *= work in-place); if you took advantage of the mutability of x, then this function

would behave differently for mutable vs. immutable inputs. In particular, for immutable x, after the

call you'd have (in general) y != x, but for mutable x you'd have y == x.

Because supporting generic programming is deemedmore important than potential performance optimiza-

tions that can be achieved by other means (e.g., using broadcasting or explicit loops), operators like +=

and *= work by rebinding new values.

37.12 Asynchronous IO and concurrent synchronous writes

Why do concurrent writes to the same stream result in inter-mixed output?

While the streaming I/O API is synchronous, the underlying implementation is fully asynchronous.

CHAPTER 37. FREQUENTLY ASKED QUESTIONS 473

Consider the printed output from the following:

julia> @sync for i in 1:3

@async write(stdout, string(i), " Foo ", " Bar ")

end

123 Foo Foo Foo Bar Bar Bar

This is happening because, while the write call is synchronous, the writing of each argument yields to

other tasks while waiting for that part of the I/O to complete.

print and println "lock" the stream during a call. Consequently changing write to println in the above

example results in:

julia> @sync for i in 1:3

@async println(stdout, string(i), " Foo ", " Bar ")

end

1 Foo Bar

2 Foo Bar

3 Foo Bar

You can lock your writes with a ReentrantLock like this:

julia> l = ReentrantLock();

julia> @sync for i in 1:3

@async begin

lock(l)

try

write(stdout, string(i), " Foo ", " Bar ")

finally

unlock(l)

end

end

end

1 Foo Bar 2 Foo Bar 3 Foo Bar

37.13 Arrays

What are the differences between zero-dimensional arrays and scalars?

Zero-dimensional arrays are arrays of the form Array{T,0}. They behave similar to scalars, but there

are important differences. They deserve a special mention because they are a special case which makes

logical sense given the generic definition of arrays, but might be a bit unintuitive at first. The following line

defines a zero-dimensional array:

julia> A = zeros()

0-dimensional Array{Float64,0}:

0.0

In this example, A is a mutable container that contains one element, which can be set by A[] = 1.0 and re-

trieved with A[]. All zero-dimensional arrays have the same size (size(A) == ()), and length (length(A)

CHAPTER 37. FREQUENTLY ASKED QUESTIONS 474

== 1). In particular, zero-dimensional arrays are not empty. If you find this unintuitive, here are some ideas

that might help to understand Julia's definition.

• Zero-dimensional arrays are the "point" to vector's "line" and matrix's "plane". Just as a line has no

area (but still represents a set of things), a point has no length or any dimensions at all (but still

represents a thing).

• We define prod(()) to be 1, and the total number of elements in an array is the product of the size.

The size of a zero-dimensional array is (), and therefore its length is 1.

• Zero-dimensional arrays don't natively have any dimensions into which you index – they’re just A[].

We can apply the same "trailing one" rule for them as for all other array dimensionalities, so you can

indeed index them as A[1], A[1,1], etc; see Omitted and extra indices.

It is also important to understand the differences to ordinary scalars. Scalars are not mutable containers

(even though they are iterable and define things like length, getindex, e.g. 1[] == 1). In particular, if

x = 0.0 is defined as a scalar, it is an error to attempt to change its value via x[] = 1.0. A scalar x can

be converted into a zero-dimensional array containing it via fill(x), and conversely, a zero-dimensional

array a can be converted to the contained scalar via a[]. Another difference is that a scalar can participate

in linear algebra operations such as 2 * rand(2,2), but the analogous operation with a zero-dimensional

array fill(2) * rand(2,2) is an error.

Why are my Julia benchmarks for linear algebra operations different from other

languages?

You may find that simple benchmarks of linear algebra building blocks like

using BenchmarkTools

A = randn(1000, 1000)

B = randn(1000, 1000)

@btime $A \ $B

@btime $A * $B

can be different when compared to other languages like Matlab or R.

Since operations like this are very thin wrappers over the relevant BLAS functions, the reason for the

discrepancy is very likely to be

1. the BLAS library each language is using,

2. the number of concurrent threads.

Julia compiles and uses its own copy of OpenBLAS, with threads currently capped at 8 (or the number of

your cores).

Modifying OpenBLAS settings or compiling Julia with a different BLAS library, eg Intel MKL, may provide

performance improvements. You can use MKL.jl, a package that makes Julia's linear algebra use Intel MKL

BLAS and LAPACK instead of OpenBLAS, or search the discussion forum for suggestions on how to set this

up manually. Note that Intel MKL cannot be bundled with Julia, as it is not open source.

https://software.intel.com/en-us/mkl
https://github.com/JuliaComputing/MKL.jl

CHAPTER 37. FREQUENTLY ASKED QUESTIONS 475

37.14 Computing cluster

How do I manage precompilation caches in distributed file systems?

When using Julia in high-performance computing (HPC) facilities with shared filesystems, it is recommended

to use a shared depot (via the JULIA_DEPOT_PATH environment variable). Since Julia v1.10, multiple Julia

processes on functionally similar workers and using the same depot will coordinate via pidfile locks to

only spend effort precompiling on one process while the others wait. The precompilation process will

indicate when the process is precompiling or waiting for another that is precompiling. If non-interactive

the messages are via @debug.

However, due to caching of binary code, the cache rejection since v1.9 is more strict and users may need to

set the JULIA_CPU_TARGET environment variable appropriately to get a single cache that is usable through-

out the HPC environment.

37.15 Julia Releases

Do I want to use the Stable, LTS, or nightly version of Julia?

The Stable version of Julia is the latest released version of Julia, this is the version most people will want

to run. It has the latest features, including improved performance. The Stable version of Julia is versioned

according to SemVer as v1.x.y. A new minor release of Julia corresponding to a new Stable version is

made approximately every 4-5 months after a few weeks of testing as a release candidate. Unlike the LTS

version the Stable version will not normally receive bugfixes after another Stable version of Julia has been

released. However, upgrading to the next Stable release will always be possible as each release of Julia

v1.x will continue to run code written for earlier versions.

You may prefer the LTS (Long Term Support) version of Julia if you are looking for a very stable code base.

The current LTS version of Julia is versioned according to SemVer as v1.6.x; this branch will continue to

receive bugfixes until a new LTS branch is chosen, at which point the v1.6.x series will no longer received

regular bug fixes and all but the most conservative users will be advised to upgrade to the new LTS version

series. As a package developer, you may prefer to develop for the LTS version, to maximize the number of

users who can use your package. As per SemVer, code written for v1.0 will continue to work for all future

LTS and Stable versions. In general, even if targeting the LTS, one can develop and run code in the latest

Stable version, to take advantage of the improved performance; so long as one avoids using new features

(such as added library functions or new methods).

You may prefer the nightly version of Julia if you want to take advantage of the latest updates to the

language, and don't mind if the version available today occasionally doesn't actually work. As the name

implies, releases to the nightly version are made roughly every night (depending on build infrastructure

stability). In general nightly released are fairly safe to use—your code will not catch on fire. However, they

may be occasional regressions and or issues that will not be found until more thorough pre-release testing.

You may wish to test against the nightly version to ensure that such regressions that affect your use case

are caught before a release is made.

Finally, you may also consider building Julia from source for yourself. This option is mainly for those indi-

viduals who are comfortable at the command line, or interested in learning. If this describes you, you may

also be interested in reading our guidelines for contributing.

Links to each of these download types can be found on the download page at https://julialang.org/down-

loads/. Note that not all versions of Julia are available for all platforms.

https://semver.org/
https://github.com/JuliaLang/julia/blob/master/CONTRIBUTING.md
https://julialang.org/downloads/
https://julialang.org/downloads/

CHAPTER 37. FREQUENTLY ASKED QUESTIONS 476

How can I transfer the list of installed packages after updating my version of Julia?

Each minor version of julia has its own default environment. As a result, upon installing a newminor version

of Julia, the packages you added using the previous minor version will not be available by default. The

environment for a given julia version is defined by the files Project.toml and Manifest.toml in a folder

matching the version number in .julia/environments/, for instance, .julia/environments/v1.3.

If you install a new minor version of Julia, say 1.4, and want to use in its default environment the same

packages as in a previous version (e.g. 1.3), you can copy the contents of the file Project.toml from the

1.3 folder to 1.4. Then, in a session of the new Julia version, enter the "package management mode" by

typing the key], and run the command instantiate.

This operation will resolve a set of feasible packages from the copied file that are compatible with the

target Julia version, and will install or update them if suitable. If you want to reproduce not only the set

of packages, but also the versions you were using in the previous Julia version, you should also copy the

Manifest.toml file before running the Pkg command instantiate. However, note that packages may

define compatibility constraints that may be affected by changing the version of Julia, so the exact set of

versions you had in 1.3 may not work for 1.4.

https://docs.julialang.org/en/v1/manual/code-loading/#Environments-1
https://julialang.github.io/Pkg.jl/v1/api/#Pkg.instantiate

Chapter 38

Noteworthy Differences from other

Languages

38.1 Noteworthy differences from MATLAB

Although MATLAB users may find Julia's syntax familiar, Julia is not a MATLAB clone. There are major

syntactic and functional differences. The following are some noteworthy differences that may trip up Julia

users accustomed to MATLAB:

• Julia arrays are indexed with square brackets, A[i,j].

• Julia arrays are not copied when assigned to another variable. After A = B, changing elements of B

will modify A as well. To avoid this, use A = copy(B).

• Julia values are not copied when passed to a function. If a function modifies an array, the changes

will be visible in the caller.

• Julia does not automatically grow arrays in an assignment statement. Whereas in MATLAB a(4) =

3.2 can create the array a = [0 0 0 3.2] and a(5) = 7 can grow it into a = [0 0 0 3.2 7], the

corresponding Julia statement a[5] = 7 throws an error if the length of a is less than 5 or if this

statement is the first use of the identifier a. Julia has push! and append!, which grow Vectors much

more efficiently than MATLAB's a(end+1) = val.

• The imaginary unit sqrt(-1) is represented in Julia as im, not i or j as in MATLAB.

• In Julia, literal numbers without a decimal point (such as 42) create integers instead of floating point

numbers. As a result, some operations can throw a domain error if they expect a float; for example,

julia> a = -1; 2^a throws a domain error, as the result is not an integer (see the FAQ entry on

domain errors for details).

• In Julia, multiple values are returned and assigned as tuples, e.g. (a, b) = (1, 2) or a, b = 1,

2. MATLAB's nargout, which is often used in MATLAB to do optional work based on the number of

returned values, does not exist in Julia. Instead, users can use optional and keyword arguments to

achieve similar capabilities.

• Julia has true one-dimensional arrays. Column vectors are of size N, not Nx1. For example, rand(N)

makes a 1-dimensional array.

477

CHAPTER 38. NOTEWORTHY DIFFERENCES FROM OTHER LANGUAGES 478

• In Julia, [x,y,z] will always construct a 3-element array containing x, y and z.

– To concatenate in the first ("vertical") dimension use either vcat(x,y,z) or separate with semi-

colons ([x; y; z]).

– To concatenate in the second ("horizontal") dimension use either hcat(x,y,z) or separate with

spaces ([x y z]).

– To construct block matrices (concatenating in the first two dimensions), use either hvcat or

combine spaces and semicolons ([a b; c d]).

• In Julia, a:b and a:b:c construct AbstractRange objects. To construct a full vector like in MATLAB,

use collect(a:b). Generally, there is no need to call collect though. An AbstractRange object

will act like a normal array in most cases but is more efficient because it lazily computes its values.

This pattern of creating specialized objects instead of full arrays is used frequently, and is also seen

in functions such as range, or with iterators such as enumerate, and zip. The special objects can

mostly be used as if they were normal arrays.

• Functions in Julia return values from their last expression or the return keyword instead of listing

the names of variables to return in the function definition (see The return Keyword for details).

• A Julia script may contain any number of functions, and all definitions will be externally visible when

the file is loaded. Function definitions can be loaded from files outside the current working directory.

• In Julia, reductions such as sum, prod, and max are performed over every element of an array when

called with a single argument, as in sum(A), even if A has more than one dimension.

• In Julia, parentheses must be used to call a function with zero arguments, like in rand().

• Julia discourages the use of semicolons to end statements. The results of statements are not au-

tomatically printed (except at the interactive prompt), and lines of code do not need to end with

semicolons. println or @printf can be used to print specific output.

• In Julia, if A and B are arrays, logical comparison operations like A == B do not return an array of

booleans. Instead, use A .== B, and similarly for the other boolean operators like <, >.

• In Julia, the operators &, |, and ⊻ (xor) perform the bitwise operations equivalent to and, or, and xor

respectively in MATLAB, and have precedence similar to Python's bitwise operators (unlike C). They

can operate on scalars or element-wise across arrays and can be used to combine logical arrays, but

note the difference in order of operations: parentheses may be required (e.g., to select elements of

A equal to 1 or 2 use (A .== 1) .| (A .== 2)).

• In Julia, the elements of a collection can be passed as arguments to a function using the splat operator

..., as in xs=[1,2]; f(xs...).

• Julia's svd returns singular values as a vector instead of as a dense diagonal matrix.

• In Julia, ... is not used to continue lines of code. Instead, incomplete expressions automatically

continue onto the next line.

• In both Julia and MATLAB, the variable ans is set to the value of the last expression issued in an

interactive session. In Julia, unlike MATLAB, ans is not set when Julia code is run in non-interactive

mode.

• Julia's structs do not support dynamically adding fields at runtime, unlike MATLAB's classes. In-

stead, use a Dict. Dict in Julia isn't ordered.

CHAPTER 38. NOTEWORTHY DIFFERENCES FROM OTHER LANGUAGES 479

• In Julia each module has its own global scope/namespace, whereas in MATLAB there is just one global

scope.

• In MATLAB, an idiomatic way to remove unwanted values is to use logical indexing, like in the

expression x(x>3) or in the statement x(x>3) = [] to modify x in-place. In contrast, Julia pro-

vides the higher order functions filter and filter!, allowing users to write filter(z->z>3, x)

and filter!(z->z>3, x) as alternatives to the corresponding transliterations x[x.>3] and x =

x[x.>3]. Using filter! reduces the use of temporary arrays.

• The analogue of extracting (or "dereferencing") all elements of a cell array, e.g. in vertcat(A{:})

in MATLAB, is written using the splat operator in Julia, e.g. as vcat(A...).

• In Julia, the adjoint function performs conjugate transposition; in MATLAB, adjoint provides the

"adjugate" or classical adjoint, which is the transpose of the matrix of cofactors.

• In Julia, a^b^c is evaluated a^(b^c) while in MATLAB it's (a^b)^c.

38.2 Noteworthy differences from R

One of Julia's goals is to provide an effective language for data analysis and statistical programming. For

users coming to Julia from R, these are some noteworthy differences:

• Julia's single quotes enclose characters, not strings.

• Julia can create substrings by indexing into strings. In R, strings must be converted into character

vectors before creating substrings.

• In Julia, like Python but unlike R, strings can be created with triple quotes """ ... """. This syntax

is convenient for constructing strings that contain line breaks.

• In Julia, varargs are specified using the splat operator ..., which always follows the name of a specific

variable, unlike R, for which ... can occur in isolation.

• In Julia, modulus is mod(a, b), not a %% b. % in Julia is the remainder operator.

• Julia constructs vectors using brackets. Julia's [1, 2, 3] is the equivalent of R's c(1, 2, 3).

• In Julia, not all data structures support logical indexing. Furthermore, logical indexing in Julia is

supported only with vectors of length equal to the object being indexed. For example:

– In R, c(1, 2, 3, 4)[c(TRUE, FALSE)] is equivalent to c(1, 3).

– In R, c(1, 2, 3, 4)[c(TRUE, FALSE, TRUE, FALSE)] is equivalent to c(1, 3).

– In Julia, [1, 2, 3, 4][[true, false]] throws a BoundsError.

– In Julia, [1, 2, 3, 4][[true, false, true, false]] produces [1, 3].

• Like many languages, Julia does not always allow operations on vectors of different lengths, unlike R

where the vectors only need to share a common index range. For example, c(1, 2, 3, 4) + c(1,

2) is valid R but the equivalent [1, 2, 3, 4] + [1, 2] will throw an error in Julia.

• Julia allows an optional trailing comma when that comma does not change the meaning of code.

This can cause confusion among R users when indexing into arrays. For example, x[1,] in R would

return the first row of a matrix; in Julia, however, the comma is ignored, so x[1,] == x[1], and will

return the first element. To extract a row, be sure to use :, as in x[1,:].

CHAPTER 38. NOTEWORTHY DIFFERENCES FROM OTHER LANGUAGES 480

• Julia's map takes the function first, then its arguments, unlike lapply(<structure>, function,

...) in R. Similarly Julia's equivalent of apply(X, MARGIN, FUN, ...) in R is mapslices where

the function is the first argument.

• Multivariate apply in R, e.g. mapply(choose, 11:13, 1:3), can bewritten as broadcast(binomial,

11:13, 1:3) in Julia. Equivalently Julia offers a shorter dot syntax for vectorizing functions binomial.(11:13,

1:3).

• Julia uses end to denote the end of conditional blocks, like if, loop blocks, like while/ for, and

functions. In lieu of the one-line if (cond) statement, Julia allows statements of the form if

cond; statement; end, cond && statement and !cond || statement. Assignment statements in

the latter two syntaxes must be explicitly wrapped in parentheses, e.g. cond && (x = value).

• In Julia, <-, <<- and -> are not assignment operators.

• Julia's -> creates an anonymous function.

• Julia's * operator can perform matrix multiplication, unlike in R. If A and B are matrices, then A * B

denotes a matrix multiplication in Julia, equivalent to R's A %*% B. In R, this same notation would

perform an element-wise (Hadamard) product. To get the element-wise multiplication operation, you

need to write A .* B in Julia.

• Julia performs matrix transposition using the transpose function and conjugated transposition using

the ' operator or the adjoint function. Julia's transpose(A) is therefore equivalent to R's t(A).

Additionally a non-recursive transpose in Julia is provided by the permutedims function.

• Julia does not require parentheses when writing if statements or for/while loops: use for i in

[1, 2, 3] instead of for (i in c(1, 2, 3)) and if i == 1 instead of if (i == 1).

• Julia does not treat the numbers 0 and 1 as Booleans. You cannot write if (1) in Julia, because if

statements accept only booleans. Instead, you can write if true, if Bool(1), or if 1==1.

• Julia does not provide nrow and ncol. Instead, use size(M, 1) for nrow(M) and size(M, 2) for

ncol(M).

• Julia is careful to distinguish scalars, vectors and matrices. In R, 1 and c(1) are the same. In Julia,

they cannot be used interchangeably.

• Julia's diag and diagm are not like R's.

• Julia cannot assign to the results of function calls on the left hand side of an assignment operation:

you cannot write diag(M) = fill(1, n).

• Julia discourages populating the main namespace with functions. Most statistical functionality for

Julia is found in packages under the JuliaStats organization. For example:

– Functions pertaining to probability distributions are provided by the Distributions package.

– The DataFrames package provides data frames.

– Generalized linear models are provided by the GLM package.

• Julia provides tuples and real hash tables, but not R-style lists. When returning multiple items, you

should typically use a tuple or a named tuple: instead of list(a = 1, b = 2), use (1, 2) or (a=1,

b=2).

https://pkg.julialang.org/
https://github.com/JuliaStats
https://github.com/JuliaStats/Distributions.jl
https://github.com/JuliaData/DataFrames.jl
https://github.com/JuliaStats/GLM.jl

CHAPTER 38. NOTEWORTHY DIFFERENCES FROM OTHER LANGUAGES 481

• Julia encourages users to write their own types, which are easier to use than S3 or S4 objects in

R. Julia's multiple dispatch system means that table(x::TypeA) and table(x::TypeB) act like R's

table.TypeA(x) and table.TypeB(x).

• In Julia, values are not copied when assigned or passed to a function. If a function modifies an array,

the changes will be visible in the caller. This is very different from R and allows new functions to

operate on large data structures much more efficiently.

• In Julia, vectors and matrices are concatenated using hcat, vcat and hvcat, not c, rbind and cbind

like in R.

• In Julia, a range like a:b is not shorthand for a vector like in R, but is a specialized AbstractRange

object that is used for iteration. To convert a range into a vector, use collect(a:b).

• The : operator has a different precedence in R and Julia. In particular, in Julia arithmetic operators

have higher precedence than the : operator, whereas the reverse is true in R. For example, 1:n-1

in Julia is equivalent to 1:(n-1) in R.

• Julia's max and min are the equivalent of pmax and pmin respectively in R, but both arguments need

to have the same dimensions. While maximum and minimum replace max and min in R, there are

important differences.

• Julia's sum, prod, maximum, and minimum are different from their counterparts in R. They all accept an

optional keyword argument dims, which indicates the dimensions, over which the operation is carried

out. For instance, let A = [1 2; 3 4] in Julia and B <- rbind(c(1,2),c(3,4)) be the same matrix

in R. Then sum(A) gives the same result as sum(B), but sum(A, dims=1) is a row vector containing

the sum over each column and sum(A, dims=2) is a column vector containing the sum over each row.

This contrasts to the behavior of R, where separate colSums(B) and rowSums(B) functions provide

these functionalities. If the dims keyword argument is a vector, then it specifies all the dimensions

over which the sum is performed, while retaining the dimensions of the summed array, e.g. sum(A,

dims=(1,2)) == hcat(10). It should be noted that there is no error checking regarding the second

argument.

• Julia has several functions that can mutate their arguments. For example, it has both sort and

sort!.

• In R, performance requires vectorization. In Julia, almost the opposite is true: the best performing

code is often achieved by using devectorized loops.

• Julia is eagerly evaluated and does not support R-style lazy evaluation. For most users, this means

that there are very few unquoted expressions or column names.

• Julia does not support the NULL type. The closest equivalent is nothing, but it behaves like a scalar

value rather than like a list. Use x === nothing instead of is.null(x).

• In Julia, missing values are represented by the missing object rather than by NA. Use ismissing(x)

(or ismissing.(x) for element-wise operation on vectors) instead of is.na(x). The skipmissing

function is generally used instead of na.rm=TRUE (though in some particular cases functions take a

skipmissing argument).

• Julia lacks the equivalent of R's assign or get.

• In Julia, return does not require parentheses.

CHAPTER 38. NOTEWORTHY DIFFERENCES FROM OTHER LANGUAGES 482

• In R, an idiomatic way to remove unwanted values is to use logical indexing, like in the expression

x[x>3] or in the statement x = x[x>3] to modify x in-place. In contrast, Julia provides the higher or-

der functions filter and filter!, allowing users to write filter(z->z>3, x) and filter!(z->z>3,

x) as alternatives to the corresponding transliterations x[x.>3] and x = x[x.>3]. Using filter!

reduces the use of temporary arrays.

38.3 Noteworthy differences from Python

• Julia's for, if, while, etc. blocks are terminated by the end keyword. Indentation level is not

significant as it is in Python. Unlike Python, Julia has no pass keyword.

• Strings are denoted by double quotation marks ("text") in Julia (with three double quotation marks

for multi-line strings), whereas in Python they can be denoted either by single ('text') or double

quotation marks ("text"). Single quotation marks are used for characters in Julia ('c').

• String concatenation is done with * in Julia, not + like in Python. Analogously, string repetition is

done with ^, not *. Implicit string concatenation of string literals like in Python (e.g. 'ab' 'cd' ==

'abcd') is not done in Julia.

• Python Lists—flexible but slow—correspond to the Julia Vector{Any} type ormore generally Vector{T}

where T is some non-concrete element type. "Fast" arrays like NumPy arrays that store elements

in-place (i.e., dtype is np.float64, [('f1', np.uint64), ('f2', np.int32)], etc.) can be rep-

resented by Array{T} where T is a concrete, immutable element type. This includes built-in types

like Float64, Int32, Int64 but also more complex types like Tuple{UInt64,Float64} and many

user-defined types as well.

• In Julia, indexing of arrays, strings, etc. is 1-based not 0-based.

• Julia's slice indexing includes the last element, unlike in Python. a[2:3] in Julia is a[1:3] in Python.

• Unlike Python, Julia allows AbstractArrays with arbitrary indexes. Python's special interpretation of

negative indexing, a[-1] and a[-2], should be written a[end] and a[end-1] in Julia.

• Julia requires end for indexing until the last element. x[1:] in Python is equivalent to x[2:end] in

Julia.

• In Julia, : before any object creates a Symbol or quotes an expression; so, x[:5] is same as x[5]. If

you want to get the first n elements of an array, then use range indexing.

• Julia's range indexing has the format of x[start:step:stop], whereas Python's format is x[start:(stop+1):step].

Hence, x[0:10:2] in Python is equivalent to x[1:2:10] in Julia. Similarly, x[::-1] in Python, which

refers to the reversed array, is equivalent to x[end:-1:1] in Julia.

• In Julia, ranges can be constructed independently as start:step:stop, the same syntax it uses in

array-indexing. The range function is also supported.

• In Julia, indexing a matrix with arrays like X[[1,2], [1,3]] refers to a sub-matrix that contains

the intersections of the first and second rows with the first and third columns. In Python, X[[1,2],

[1,3]] refers to a vector that contains the values of cell [1,1] and [2,3] in the matrix. X[[1,2],

[1,3]] in Julia is equivalent with X[np.ix_([0,1],[0,2])] in Python. X[[0,1], [0,2]] in Python

is equivalent with X[[CartesianIndex(1,1), CartesianIndex(2,3)]] in Julia.

https://julialang.org/blog/2017/04/offset-arrays/

CHAPTER 38. NOTEWORTHY DIFFERENCES FROM OTHER LANGUAGES 483

• Julia has no line continuation syntax: if, at the end of a line, the input so far is a complete expression,

it is considered done; otherwise the input continues. One way to force an expression to continue is

to wrap it in parentheses.

• Julia arrays are column-major (Fortran-ordered) whereas NumPy arrays are row-major (C-ordered)

by default. To get optimal performance when looping over arrays, the order of the loops should be

reversed in Julia relative to NumPy (see relevant section of Performance Tips).

• Julia's updating operators (e.g. +=, -=, ...) are not in-place whereas NumPy's are. This means A =

[1, 1]; B = A; B += [3, 3] doesn't change values in A, it rather rebinds the name B to the result

of the right-hand side B = B + 3, which is a new array. For in-place operation, use B .+= 3 (see

also dot operators), explicit loops, or InplaceOps.jl.

• Julia evaluates default values of function arguments every time the method is invoked, unlike in

Python where the default values are evaluated only once when the function is defined. For example,

the function f(x=rand()) = x returns a new random number every time it is invoked without argu-

ment. On the other hand, the function g(x=[1,2]) = push!(x,3) returns [1,2,3] every time it is

called as g().

• In Julia, keyword arguments must be passed using keywords, unlike Python in which it is usually

possible to pass them positionally. Attempting to pass a keyword argument positionally alters the

method signature leading to a MethodError or calling of the wrong method.

• In Julia % is the remainder operator, whereas in Python it is the modulus.

• In Julia, the commonly used Int type corresponds to the machine integer type (Int32 or Int64),

unlike in Python, where int is an arbitrary length integer. This means in Julia the Int type will

overflow, such that 2^64 == 0. If you need larger values use another appropriate type, such as

Int128, BigInt or a floating point type like Float64.

• The imaginary unit sqrt(-1) is represented in Julia as im, not j as in Python.

• In Julia, the exponentiation operator is ^, not ** as in Python.

• Julia uses nothing of type Nothing to represent a null value, whereas Python uses None of type

NoneType.

• In Julia, the standard operators over a matrix type are matrix operations, whereas, in Python, the

standard operators are element-wise operations. When both A and B are matrices, A * B in Julia per-

forms matrix multiplication, not element-wise multiplication as in Python. A * B in Julia is equivalent

with A @ B in Python, whereas A * B in Python is equivalent with A .* B in Julia.

• The adjoint operator ' in Julia returns an adjoint of a vector (a lazy representation of row vector),

whereas the transpose operator .T over a vector in Python returns the original vector (non-op).

• In Julia, a function may contain multiple concrete implementations (called methods), which are se-

lected via multiple dispatch based on the types of all arguments to the call, as compared to functions

in Python, which have a single implementation and no polymorphism (as opposed to Python method

calls which use a different syntax and allows dispatch on the receiver of the method).

• There are no classes in Julia. Instead there are structures (mutable or immutable), containing data

but no methods.

CHAPTER 38. NOTEWORTHY DIFFERENCES FROM OTHER LANGUAGES 484

• Calling a method of a class instance in Python (x = MyClass(*args); x.f(y)) corresponds to a

function call in Julia, e.g. x = MyType(args...); f(x, y). In general, multiple dispatch is more

flexible and powerful than the Python class system.

• Julia structures may have exactly one abstract supertype, whereas Python classes can inherit from

one or more (abstract or concrete) superclasses.

• The logical Julia program structure (Packages and Modules) is independent of the file structure

(include for additional files), whereas the Python code structure is defined by directories (Packages)

and files (Modules).

• The ternary operator x > 0 ? 1 : -1 in Julia corresponds to a conditional expression in Python 1

if x > 0 else -1.

• In Julia the @ symbol refers to a macro, whereas in Python it refers to a decorator.

• Exception handling in Julia is done using try — catch — finally, instead of try — except —

finally. In contrast to Python, it is not recommended to use exception handling as part of the

normal workflow in Julia (compared with Python, Julia is faster at ordinary control flow but slower at

exception-catching).

• In Julia loops are fast, there is no need to write "vectorized" code for performance reasons.

• Be careful with non-constant global variables in Julia, especially in tight loops. Since you can write

close-to-metal code in Julia (unlike Python), the effect of globals can be drastic (see Performance

Tips).

• In Julia, rounding and truncation are explicit. Python's int(3.7) should be floor(Int, 3.7) or

Int(floor(3.7)) and is distinguished from round(Int, 3.7). floor(x) and round(x) on their

own return an integer value of the same type as x rather than always returning Int.

• In Julia, parsing is explicit. Python's float("3.7") would be parse(Float64, "3.7") in Julia.

• In Python, the majority of values can be used in logical contexts (e.g. if "a": means the following

block is executed, and if "": means it is not). In Julia, you need explicit conversion to Bool (e.g. if

"a" throws an exception). If you want to test for a non-empty string in Julia, you would explicitly write

if !isempty(""). Perhaps surprisingly, in Python if "False" and bool("False") both evaluate

to True (because "False" is a non-empty string); in Julia, parse(Bool, "false") returns false.

• In Julia, a new local scope is introduced by most code blocks, including loops and try — catch —

finally. Note that comprehensions (list, generator, etc.) introduce a new local scope both in Python

and Julia, whereas if blocks do not introduce a new local scope in both languages.

38.4 Noteworthy differences from C/C++

• Julia arrays are indexed with square brackets, and can have more than one dimension A[i,j]. This

syntax is not just syntactic sugar for a reference to a pointer or address as in C/C++. See the manual

entry about array construction.

• In Julia, indexing of arrays, strings, etc. is 1-based not 0-based.

• Julia arrays are not copied when assigned to another variable. After A = B, changing elements of B

will modify A as well. Updating operators like += do not operate in-place, they are equivalent to A =

A + B which rebinds the left-hand side to the result of the right-hand side expression.

CHAPTER 38. NOTEWORTHY DIFFERENCES FROM OTHER LANGUAGES 485

• Julia arrays are column major (Fortran ordered) whereas C/C++ arrays are row major ordered by

default. To get optimal performance when looping over arrays, the order of the loops should be

reversed in Julia relative to C/C++ (see relevant section of Performance Tips).

• Julia values are not copied when assigned or passed to a function. If a function modifies an array,

the changes will be visible in the caller.

• In Julia, whitespace is significant, unlike C/C++, so caremust be taken when adding/removing whites-

pace from a Julia program.

• In Julia, literal numbers without a decimal point (such as 42) create signed integers, of type Int, but

literals too large to fit in the machine word size will automatically be promoted to a larger size type,

such as Int64 (if Int is Int32), Int128, or the arbitrarily large BigInt type. There are no numeric

literal suffixes, such as L, LL, U, UL, ULL to indicate unsigned and/or signed vs. unsigned. Decimal

literals are always signed, and hexadecimal literals (which start with 0x like C/C++), are unsigned,

unless when they encode more than 128 bits, in which case they are of type BigInt. Hexadecimal

literals also, unlike C/C++/Java and unlike decimal literals in Julia, have a type based on the length

of the literal, including leading 0s. For example, 0x0 and 0x00 have type UInt8, 0x000 and 0x0000

have type UInt16, then literals with 5 to 8 hex digits have type UInt32, 9 to 16 hex digits type

UInt64, 17 to 32 hex digits type UInt128, and more that 32 hex digits type BigInt. This needs to be

taken into account when defining hexadecimal masks, for example ~0xf == 0xf0 is very different

from ~0x000f == 0xfff0. 64 bit Float64 and 32 bit Float32 bit literals are expressed as 1.0 and

1.0f0 respectively. Floating point literals are rounded (and not promoted to the BigFloat type) if

they can not be exactly represented. Floating point literals are closer in behavior to C/C++. Octal

(prefixed with 0o) and binary (prefixed with 0b) literals are also treated as unsigned (or BigInt for

more than 128 bits).

• In Julia, the division operator / returns a floating point number when both operands are of integer

type. To perform integer division, use div or ÷.

• Indexing an Array with floating point types is generally an error in Julia. The Julia equivalent of the

C expression a[i / 2] is a[i ÷ 2 + 1], where i is of integer type.

• String literals can be delimited with either " or """, """ delimited literals can contain " characters

without quoting it like "\"". String literals can have values of other variables or expressions interpo-

lated into them, indicated by $variablename or $(expression), which evaluates the variable name

or the expression in the context of the function.

• // indicates a Rational number, and not a single-line comment (which is # in Julia)

• #= indicates the start of a multiline comment, and =# ends it.

• Functions in Julia return values from their last expression(s) or the return keyword. Multiple values

can be returned from functions and assigned as tuples, e.g. (a, b) = myfunction() or a, b =

myfunction(), instead of having to pass pointers to values as one would have to do in C/C++ (i.e.

a = myfunction(&b).

• Julia does not require the use of semicolons to end statements. The results of expressions are not

automatically printed (except at the interactive prompt, i.e. the REPL), and lines of code do not need

to end with semicolons. println or @printf can be used to print specific output. In the REPL, ; can

be used to suppress output. ; also has a different meaning within [], something to watch out for.

; can be used to separate expressions on a single line, but are not strictly necessary in many cases,

and are more an aid to readability.

CHAPTER 38. NOTEWORTHY DIFFERENCES FROM OTHER LANGUAGES 486

• In Julia, the operator ⊻ (xor) performs the bitwise XOR operation, i.e. ^ in C/C++. Also, the bitwise

operators do not have the same precedence as C/C++, so parenthesis may be required.

• Julia's ^ is exponentiation (pow), not bitwise XOR as in C/C++ (use ⊻, or xor, in Julia)

• Julia has two right-shift operators, >> and >>>. >> performs an arithmetic shift, >>> always performs a

logical shift, unlike C/C++, where the meaning of >> depends on the type of the value being shifted.

• Julia's -> creates an anonymous function, it does not access a member via a pointer.

• Julia does not require parentheses when writing if statements or for/while loops: use for i in

[1, 2, 3] instead of for (int i=1; i <= 3; i++) and if i == 1 instead of if (i == 1).

• Julia does not treat the numbers 0 and 1 as Booleans. You cannot write if (1) in Julia, because if

statements accept only booleans. Instead, you can write if true, if Bool(1), or if 1==1.

• Julia uses end to denote the end of conditional blocks, like if, loop blocks, like while/ for, and

functions. In lieu of the one-line if (cond) statement, Julia allows statements of the form if

cond; statement; end, cond && statement and !cond || statement. Assignment statements

in the latter two syntaxes must be explicitly wrapped in parentheses, e.g. cond && (x = value),

because of the operator precedence.

• Julia has no line continuation syntax: if, at the end of a line, the input so far is a complete expression,

it is considered done; otherwise the input continues. One way to force an expression to continue is

to wrap it in parentheses.

• Julia macros operate on parsed expressions, rather than the text of the program, which allows them

to perform sophisticated transformations of Julia code. Macro names start with the @ character,

and have both a function-like syntax, @mymacro(arg1, arg2, arg3), and a statement-like syntax,

@mymacro arg1 arg2 arg3. The forms are interchangeable; the function-like form is particularly

useful if the macro appears within another expression, and is often clearest. The statement-like

form is often used to annotate blocks, as in the distributed for construct: @distributed for i in

1:n; #= body =#; end. Where the end of the macro construct may be unclear, use the function-like

form.

• Julia has an enumeration type, expressed using the macro @enum(name, value1, value2, ...)

For example: @enum(Fruit, banana=1, apple, pear)

• By convention, functions that modify their arguments have a ! at the end of the name, for example

push!.

• In C++, by default, you have static dispatch, i.e. you need to annotate a function as virtual, in order

to have dynamic dispatch. On the other hand, in Julia every method is "virtual" (although it's more

general than that since methods are dispatched on every argument type, not only this, using the

most-specific-declaration rule).

Julia ⇔ C/C++: Namespaces

• C/C++ namespaces correspond roughly to Julia modules.

• There are no private globals or fields in Julia. Everything is publicly accessible through fully qualified

paths (or relative paths, if desired).

• using MyNamespace::myfun (C++) corresponds roughly to import MyModule: myfun (Julia).

CHAPTER 38. NOTEWORTHY DIFFERENCES FROM OTHER LANGUAGES 487

• using namespace MyNamespace (C++) corresponds roughly to using MyModule (Julia)

– In Julia, only exported symbols are made available to the calling module.

– In C++, only elements found in the included (public) header files are made available.

• Caveat: import/using keywords (Julia) also load modules (see below).

• Caveat: import/using (Julia) works only at the global scope level (modules)

– In C++, using namespace X works within arbitrary scopes (ex: function scope).

Julia ⇔ C/C++: Module loading

• When you think of a C/C++ "library", you are likely looking for a Julia "package".

– Caveat: C/C++ libraries often house multiple "software modules" whereas Julia "packages"

typically house one.

– Reminder: Julia modules are global scopes (not necessarily "software modules").

• Instead of build/make scripts, Julia uses "Project Environments" (sometimes called either "Project"

or "Environment").

– Build scripts are only needed for more complex applications (like those needing to compile or

download C/C++ executables).

– To develop application or project in Julia, you can initialize its root directory as a "Project En-

vironment", and house application-specific code/packages there. This provides good control

over project dependencies, and future reproducibility.

– Available packages are added to a "Project Environment" with the Pkg.add() function or Pkg

REPL mode. (This does not load said package, however).

– The list of available packages (direct dependencies) for a "Project Environment" are saved in

its Project.toml file.

– The full dependency information for a "Project Environment" is auto-generated & saved in its

Manifest.toml file by Pkg.resolve().

• Packages ("software modules") available to the "Project Environment" are loaded with import or

using.

– In C/C++, you #include <moduleheader> to get object/function declarations, and link in li-

braries when you build the executable.

– In Julia, calling using/import again just brings the existing module into scope, but does not load

it again (similar to adding the non-standard #pragma once to C/C++).

• Directory-based package repositories (Julia) can be made available by adding repository paths

to the Base.LOAD_PATH array.

– Packages from directory-based repositories do not require the Pkg.add() tool prior to being

loaded with import or using. They are simply available to the project.

– Directory-based package repositories are the quickest solution to developping local libraries

of "software modules".

CHAPTER 38. NOTEWORTHY DIFFERENCES FROM OTHER LANGUAGES 488

Julia ⇔ C/C++: Assembling modules

• In C/C++, .c/.cpp files are compiled & added to a library with build/make scripts.

– In Julia, import [PkgName]/using [PkgName] statements load [PkgName].jl located in a pack-

age's [PkgName]/src/ subdirectory.

– In turn, [PkgName].jl typically loads associated source files with calls to include "[someotherfile].jl".

• include "./path/to/somefile.jl" (Julia) is very similar to #include "./path/to/somefile.jl"

(C/C++).

– However include "..." (Julia) is not used to include header files (not required).

– Do not use include "..." (Julia) to load code from other "softwaremodules" (use import/using

instead).

– include "path/to/some/module.jl" (Julia) would instantiate multiple versions of the same

code in different modules (creating distinct types (etc.) with the same names).

– include "somefile.jl" is typically used to assemble multiple files within the same Julia pack-

age ("software module"). It is therefore relatively straightforward to ensure file are included

only once (No #ifdef confusion).

Julia ⇔ C/C++: Module interface

• C++ exposes interfaces using "public" .h/.hpp files whereas Julia modules mark specific symbols

that are intended for their users as publicor exported.

– Often, Julia modules simply add functionality by generating new "methods" to existing functions

(ex: Base.push!).

– Developers of Julia packages therefore cannot rely on header files for interface documentation.

– Interfaces for Julia packages are typically described using docstrings, README.md, static web

pages, ...

• Some developers choose not to export all symbols required to use their package/module.

– Users might be expected to access these components by qualifying functions/structs/... with

the package/module name (ex: MyModule.run_this_task(...)).

Julia ⇔ C/C++: Quick reference

* The Julia package manager supports registering multiple packages from a single Git repository.
 *

This allows users to house a library of related packages in a single repository.
 ** Julia registries are

primarily designed to provide versioning \& distribution of packages.
 ** Custom package registries

can be used to create a type of module library.

38.5 Noteworthy differences from Common Lisp

• Julia uses 1-based indexing for arrays by default, and it can also handle arbitrary index offsets.

• Functions and variables share the same namespace (“Lisp-1”).

CHAPTER 38. NOTEWORTHY DIFFERENCES FROM OTHER LANGUAGES 489

Software Concept Julia C/C++

unnamed scope begin ... end { ... }

function scope function x() ... end int x() { ... }

global scope module MyMod ... end namespace MyNS { ... }

software module A Julia "package" .h/.hpp files
+compiled

somelib.a

assem-

bling
software

modules

SomePkg.jl:

...
import("subfile1.jl")
import("subfile2.jl")
...

$(AR) *.o ⇒ somelib.a

import
soft-

ware

module

import SomePkg #include

<somelib>
+link in

somelib.a

module library LOAD_PATH[], *Git repository,
**custom

package registry

more .h/.hpp

files
+bigger compiled

somebiglib.a

• There is a Pair type, but it is not meant to be used as a COMMON-LISP:CONS. Various iterable

collections can be used interchangeably in most parts of the language (eg splatting, tuples, etc).

Tuples are the closest to Common Lisp lists for short collections of heterogeneous elements. Use

NamedTuples in place of alists. For larger collections of homogeneous types, Arrays and Dicts should

be used.

• The typical Julia workflow for prototyping also uses continuous manipulation of the image, imple-

mented with the Revise.jl package.

• For performance, Julia prefers that operations have type stability. Where Common Lisp abstracts

away from the underlying machine operations, Julia cleaves closer to them. For example:

– Integer division using / always returns a floating-point result, even if the computation is exact.

∗ // always returns a rational result

∗ ÷ always returns a (truncated) integer result

– Bignums are supported, but conversion is not automatic; ordinary integers overflow.

– Complex numbers are supported, but to get complex results, you need complex inputs.

– There are multiple Complex and Rational types, with different component types.

• Modules (namespaces) can be hierarchical. import and using have a dual role: they load the code

and make it available in the namespace. import for only the module name is possible (roughly

equivalent to ASDF:LOAD-OP). Slot names don't need to be exported separately. Global variables

can't be assigned to from outside the module (except with eval(mod, :(var = val)) as an escape

hatch).

• Macros start with @, and are not as seamlessly integrated into the language as Common Lisp;

consequently, macro usage is not as widespread as in the latter. A form of hygiene for macros

is supported by the language. Because of the different surface syntax, there is no equivalent to

COMMON-LISP:&BODY.

• All functions are generic and use multiple dispatch. Argument lists don't have to follow the same

template, which leads to a powerful idiom (see do). Optional and keyword arguments are handled dif-

ferently. Method ambiguities are not resolved like in the Common Lisp Object System, necessitating

the definition of a more specific method for the intersection.

https://github.com/timholy/Revise.jl

CHAPTER 38. NOTEWORTHY DIFFERENCES FROM OTHER LANGUAGES 490

• Symbols do not belong to any package, and do not contain any values per se. M.var evaluates the

symbol var in the module M.

• A functional programming style is fully supported by the language, including closures, but isn't al-

ways the idiomatic solution for Julia. Some workarounds may be necessary for performance when

modifying captured variables.

Chapter 39

Unicode Input

The following table lists Unicode characters that can be entered via tab completion of LaTeX-like abbrevia-

tions in the Julia REPL (and in various other editing environments). You can also get information on how to

type a symbol by entering it in the REPL help, i.e. by typing ? and then entering the symbol in the REPL

(e.g., by copy-paste from somewhere you saw the symbol).

Warning

This table may appear to contain missing characters in the second column, or even show

characters that are inconsistent with the characters as they are rendered in the Julia REPL.

In these cases, users are strongly advised to check their choice of fonts in their browser and

REPL environment, as there are known issues with glyphs in many fonts.

Code

point(s)

Char-

ac-

ter(s)

Tab completion

sequence(s)

Unicode name(s)

U+000A1 ¡ \exclamdown Inverted Exclamation Mark

U+000A3 £ \sterling Pound Sign

U+000A5 ¥ \yen Yen Sign

U+000A6 ¦ \brokenbar Broken Bar / Broken Vertical Bar

U+000A7 § \S Section Sign

U+000A9 © \copyright, \:copyright: Copyright Sign

U+000AA ª \ordfeminine Feminine Ordinal Indicator

U+000AC ¬ \neg Not Sign

U+000AE ® \circledR, \:registered: Registered Sign / Registered Trade Mark Sign

U+000AF ¯ \highminus Macron / Spacing Macron

U+000B0 ° \degree Degree Sign

U+000B1 ± \pm Plus-Minus Sign / Plus-Or-Minus Sign

U+000B2 ² \^2 Superscript Two / Superscript Digit Two

U+000B3 ³ \^3 Superscript Three / Superscript Digit Three

U+000B6 ¶ \P Pilcrow Sign / Paragraph Sign

U+000B7 · \cdotp Middle Dot

U+000B9 ¹ \^1 Superscript One / Superscript Digit One

U+000BA º \ordmasculine Masculine Ordinal Indicator

U+000BC ¼ \1/4 Vulgar Fraction One Quarter / Fraction One Quarter

U+000BD ½ \1/2 Vulgar Fraction One Half / Fraction One Half

U+000BE ¾ \3/4 Vulgar Fraction Three Quarters / Fraction Three

Quarters

U+000BF ¿ \questiondown Inverted Question Mark

U+000C5 Å \AA Latin Capital Letter A With Ring Above / Latin Capital

Letter A Ring

U+000C6 Æ \AE Latin Capital Letter Ae / Latin Capital Letter A E

U+000D0 Ð \DH Latin Capital Letter Eth

U+000D7 × \times Multiplication Sign

U+000D8 Ø \O Latin Capital Letter O With Stroke / Latin Capital

Letter O Slash

U+000DE Þ \TH Latin Capital Letter Thorn

U+000DF ß \ss Latin Small Letter Sharp S

U+000E5 å \aa Latin Small Letter A With Ring Above / Latin Small

Letter A Ring

U+000E6 æ \ae Latin Small Letter Ae / Latin Small Letter A E

U+000F0 ð \eth, \dh Latin Small Letter Eth

U+000F7 ÷ \div Division Sign

U+000F8 ø \o Latin Small Letter O With Stroke / Latin Small Letter

O Slash

U+000FE þ \th Latin Small Letter Thorn

U+00110 Đ \DJ Latin Capital Letter D With Stroke / Latin Capital

Letter D Bar

U+00111 đ \dj Latin Small Letter D With Stroke / Latin Small Letter

D Bar

U+00127 ħ \hbar Latin Small Letter H With Stroke / Latin Small Letter

H Bar

U+00131 ı \imath Latin Small Letter Dotless I

U+00141 Ł \L Latin Capital Letter L With Stroke / Latin Capital

Letter L Slash

U+00142 ł \l Latin Small Letter L With Stroke / Latin Small Letter L

Slash

U+0014A Ŋ \NG Latin Capital Letter Eng

U+0014B ŋ \ng Latin Small Letter Eng

U+00152 Œ \OE Latin Capital Ligature Oe / Latin Capital Letter O E

U+00153 œ \oe Latin Small Ligature Oe / Latin Small Letter O E

U+00195 ƕ \hvlig Latin Small Letter Hv / Latin Small Letter H V

U+0019E ƞ \nrleg Latin Small Letter N With Long Right Leg

U+001B5 Ƶ \Zbar Latin Capital Letter Z With Stroke / Latin Capital

Letter Z Bar

U+001C2 ǂ \doublepipe Latin Letter Alveolar Click / Latin Letter Pipe Double

Bar

U+00237 ȷ \jmath Latin Small Letter Dotless J

U+00250 ɐ \trna Latin Small Letter Turned A

U+00252 ɒ \trnsa Latin Small Letter Turned Alpha / Latin Small Letter

Turned Script A

U+00254 ɔ \openo Latin Small Letter Open O

U+00256 ɖ \rtld Latin Small Letter D With Tail / Latin Small Letter D

Retroflex Hook

U+00259 ə \schwa Latin Small Letter Schwa

U+00263 ɣ \pgamma Latin Small Letter Gamma

U+00264 ɤ \pbgam Latin Small Letter Rams Horn / Latin Small Letter

Baby Gamma

U+00265 ɥ \trnh Latin Small Letter Turned H

U+0026C ɬ \btdl Latin Small Letter L With Belt / Latin Small Letter L

Belt

U+0026D ɭ \rtll Latin Small Letter L With Retroflex Hook / Latin Small

Letter L Retroflex Hook

U+0026F ɯ \trnm Latin Small Letter Turned M

U+00270 ɰ \trnmlr Latin Small Letter Turned M With Long Leg

U+00271 ɱ \ltlmr Latin Small Letter M With Hook / Latin Small Letter M

Hook

U+00272 ɲ \ltln Latin Small Letter N With Left Hook / Latin Small

Letter N Hook

U+00273 ɳ \rtln Latin Small Letter N With Retroflex Hook / Latin

Small Letter N Retroflex Hook

U+00277 ɷ \clomeg Latin Small Letter Closed Omega

U+00278 ɸ \ltphi Latin Small Letter Phi

U+00279 ɹ \trnr Latin Small Letter Turned R

U+0027A ɺ \trnrl Latin Small Letter Turned R With Long Leg

U+0027B ɻ \rttrnr Latin Small Letter Turned R With Hook / Latin Small

Letter Turned R Hook

U+0027C ɼ \rl Latin Small Letter R With Long Leg

U+0027D ɽ \rtlr Latin Small Letter R With Tail / Latin Small Letter R

Hook

U+0027E ɾ \fhr Latin Small Letter R With Fishhook / Latin Small

Letter Fishhook R

U+00282 ʂ \rtls Latin Small Letter S With Hook / Latin Small Letter S

Hook

U+00283 ʃ \esh Latin Small Letter Esh

U+00287 ʇ \trnt Latin Small Letter Turned T

U+00288 ʈ \rtlt Latin Small Letter T With Retroflex Hook / Latin Small

Letter T Retroflex Hook

U+0028A ʊ \pupsil Latin Small Letter Upsilon

U+0028B ʋ \pscrv Latin Small Letter V With Hook / Latin Small Letter

Script V

U+0028C ʌ \invv Latin Small Letter Turned V

U+0028D ʍ \invw Latin Small Letter Turned W

U+0028E ʎ \trny Latin Small Letter Turned Y

U+00290 ʐ \rtlz Latin Small Letter Z With Retroflex Hook / Latin

Small Letter Z Retroflex Hook

U+00292 ʒ \yogh Latin Small Letter Ezh / Latin Small Letter Yogh

U+00294 ʔ \glst Latin Letter Glottal Stop

U+00295 ʕ \reglst Latin Letter Pharyngeal Voiced Fricative / Latin

Letter Reversed Glottal Stop

U+00296 ʖ \inglst Latin Letter Inverted Glottal Stop

U+0029E ʞ \turnk Latin Small Letter Turned K

U+002A4 ʤ \dyogh Latin Small Letter Dezh Digraph / Latin Small Letter

D Yogh

U+002A7 ʧ \tesh Latin Small Letter Tesh Digraph / Latin Small Letter T

Esh

U+002B0 ʰ \^h Modifier Letter Small H

U+002B2 ʲ \^j Modifier Letter Small J

U+002B3 ʳ \^r Modifier Letter Small R

U+002B7 ʷ \^w Modifier Letter Small W

U+002B8 ʸ \^y Modifier Letter Small Y

U+002BC ʼ \rasp Modifier Letter Apostrophe

U+002C8 ˈ \verts Modifier Letter Vertical Line

U+002CC ˌ \verti Modifier Letter Low Vertical Line

U+002D0 ː \lmrk Modifier Letter Triangular Colon

U+002D1 ˑ \hlmrk Modifier Letter Half Triangular Colon

U+002D2 ˒ \sbrhr Modifier Letter Centred Right Half Ring / Modifier

Letter Centered Right Half Ring

U+002D3 ˓ \sblhr Modifier Letter Centred Left Half Ring / Modifier

Letter Centered Left Half Ring

U+002D4 ˔ \rais Modifier Letter Up Tack

U+002D5 ˕ \low Modifier Letter Down Tack

U+002D8 ˘ \u Breve / Spacing Breve

U+002DC ˜ \tildelow Small Tilde / Spacing Tilde

U+002E1 ˡ \^l Modifier Letter Small L

U+002E2 ˢ \^s Modifier Letter Small S

U+002E3 ˣ \^x Modifier Letter Small X

U+00300 ̀ \grave Combining Grave Accent / Non-Spacing Grave

U+00301 ́ \acute Combining Acute Accent / Non-Spacing Acute

U+00302 ̂ \hat Combining Circumflex Accent / Non-Spacing

Circumflex

U+00303 ̃ \tilde Combining Tilde / Non-Spacing Tilde

U+00304 ̄ \bar Combining Macron / Non-Spacing Macron

U+00305 ̅ \overbar Combining Overline / Non-Spacing Overscore

U+00306 ̆ \breve Combining Breve / Non-Spacing Breve

U+00307 ̇ \dot Combining Dot Above / Non-Spacing Dot Above

U+00308 ̈ \ddot Combining Diaeresis / Non-Spacing Diaeresis

U+00309 ̉ \ovhook Combining Hook Above / Non-Spacing Hook Above

U+0030A ̊ \ocirc Combining Ring Above / Non-Spacing Ring Above

U+0030B ̋ \H Combining Double Acute Accent / Non-Spacing

Double Acute

U+0030C ̌ \check Combining Caron / Non-Spacing Hacek

U+00310 ̐ \candra Combining Candrabindu / Non-Spacing Candrabindu

U+00312 ̒ \oturnedcomma Combining Turned Comma Above / Non-Spacing

Turned Comma Above

U+00315 ̕ \ocommatopright Combining Comma Above Right / Non-Spacing

Comma Above Right

U+0031A ̚ \droang Combining Left Angle Above / Non-Spacing Left

Angle Above

U+00321 ̡ \palh Combining Palatalized Hook Below / Non-Spacing

Palatalized Hook Below

U+00322 ̢ \rh Combining Retroflex Hook Below / Non-Spacing

Retroflex Hook Below

U+00327 ̧ \c Combining Cedilla / Non-Spacing Cedilla

U+00328 ̨ \k Combining Ogonek / Non-Spacing Ogonek

U+0032A ̪ \sbbrg Combining Bridge Below / Non-Spacing Bridge Below

U+00330 ̰ \wideutilde Combining Tilde Below / Non-Spacing Tilde Below

U+00332 ̲ \underbar Combining Low Line / Non-Spacing Underscore

U+00336 ̶ \strike, \sout Combining Long Stroke Overlay / Non-Spacing Long

Bar Overlay

U+00338 ̸ \not Combining Long Solidus Overlay / Non-Spacing Long

Slash Overlay

U+0034D ͍ \underleftrightarrow Combining Left Right Arrow Below

U+00391 Α \Alpha Greek Capital Letter Alpha

U+00392 Β \Beta Greek Capital Letter Beta

U+00393 Γ \Gamma Greek Capital Letter Gamma

U+00394 Δ \Delta Greek Capital Letter Delta

U+00395 Ε \Epsilon Greek Capital Letter Epsilon

U+00396 Ζ \Zeta Greek Capital Letter Zeta

U+00397 Η \Eta Greek Capital Letter Eta

U+00398 Θ \Theta Greek Capital Letter Theta

U+00399 Ι \Iota Greek Capital Letter Iota

U+0039A Κ \Kappa Greek Capital Letter Kappa

U+0039B Λ \Lambda Greek Capital Letter Lamda / Greek Capital Letter

Lambda

U+0039C Μ \upMu Greek Capital Letter Mu

U+0039D Ν \upNu Greek Capital Letter Nu

U+0039E Ξ \Xi Greek Capital Letter Xi

U+0039F Ο \upOmicron Greek Capital Letter Omicron

U+003A0 Π \Pi Greek Capital Letter Pi

U+003A1 Ρ \Rho Greek Capital Letter Rho

U+003A3 Σ \Sigma Greek Capital Letter Sigma

U+003A4 Τ \Tau Greek Capital Letter Tau

U+003A5 Υ \Upsilon Greek Capital Letter Upsilon

U+003A6 Φ \Phi Greek Capital Letter Phi

U+003A7 Χ \Chi Greek Capital Letter Chi

U+003A8 Ψ \Psi Greek Capital Letter Psi

U+003A9 Ω \Omega Greek Capital Letter Omega

U+003B1 α \alpha Greek Small Letter Alpha

U+003B2 β \beta Greek Small Letter Beta

U+003B3 γ \gamma Greek Small Letter Gamma

U+003B4 δ \delta Greek Small Letter Delta

U+003B5 ε \upepsilon, \varepsilon Greek Small Letter Epsilon

U+003B6 ζ \zeta Greek Small Letter Zeta

U+003B7 η \eta Greek Small Letter Eta

U+003B8 θ \theta Greek Small Letter Theta

U+003B9 ι \iota Greek Small Letter Iota

U+003BA κ \kappa Greek Small Letter Kappa

U+003BB λ \lambda Greek Small Letter Lamda / Greek Small Letter

Lambda

U+003BC μ \mu Greek Small Letter Mu

U+003BD ν \nu Greek Small Letter Nu

U+003BE ξ \xi Greek Small Letter Xi

U+003BF ο \upomicron Greek Small Letter Omicron

U+003C0 π \pi Greek Small Letter Pi

U+003C1 ρ \rho Greek Small Letter Rho

U+003C2 ς \varsigma Greek Small Letter Final Sigma

U+003C3 σ \sigma Greek Small Letter Sigma

U+003C4 τ \tau Greek Small Letter Tau

U+003C5 υ \upsilon Greek Small Letter Upsilon

U+003C6 φ \varphi Greek Small Letter Phi

U+003C7 χ \chi Greek Small Letter Chi

U+003C8 ψ \psi Greek Small Letter Psi

U+003C9 ω \omega Greek Small Letter Omega

U+003D0 ϐ \upvarbeta Greek Beta Symbol / Greek Small Letter Curled Beta

U+003D1 ϑ \vartheta Greek Theta Symbol / Greek Small Letter Script

Theta

U+003D5 ϕ \phi Greek Phi Symbol / Greek Small Letter Script Phi

U+003D6 ϖ \varpi Greek Pi Symbol / Greek Small Letter Omega Pi

U+003D8 Ϙ \upoldKoppa Greek Letter Archaic Koppa

U+003D9 ϙ \upoldkoppa Greek Small Letter Archaic Koppa

U+003DA Ϛ \Stigma Greek Letter Stigma / Greek Capital Letter Stigma

U+003DB ϛ \upstigma Greek Small Letter Stigma

U+003DC Ϝ \Digamma Greek Letter Digamma / Greek Capital Letter

Digamma

U+003DD ϝ \digamma Greek Small Letter Digamma

U+003DE Ϟ \Koppa Greek Letter Koppa / Greek Capital Letter Koppa

U+003DF ϟ \upkoppa Greek Small Letter Koppa

U+003E0 Ϡ \Sampi Greek Letter Sampi / Greek Capital Letter Sampi

U+003E1 ϡ \upsampi Greek Small Letter Sampi

U+003F0 ϰ \varkappa Greek Kappa Symbol / Greek Small Letter Script

Kappa

U+003F1 ϱ \varrho Greek Rho Symbol / Greek Small Letter Tailed Rho

U+003F4 ϴ \varTheta Greek Capital Theta Symbol

U+003F5 ϵ \epsilon Greek Lunate Epsilon Symbol

U+003F6 ϶ \backepsilon Greek Reversed Lunate Epsilon Symbol

U+01D2C ᴬ \^A Modifier Letter Capital A

U+01D2E ᴮ \^B Modifier Letter Capital B

U+01D30 ᴰ \^D Modifier Letter Capital D

U+01D31 ᴱ \^E Modifier Letter Capital E

U+01D33 ᴳ \^G Modifier Letter Capital G

U+01D34 ᴴ \^H Modifier Letter Capital H

U+01D35 ᴵ \^I Modifier Letter Capital I

U+01D36 ᴶ \^J Modifier Letter Capital J

U+01D37 ᴷ \^K Modifier Letter Capital K

U+01D38 ᴸ \^L Modifier Letter Capital L

U+01D39 ᴹ \^M Modifier Letter Capital M

U+01D3A ᴺ \^N Modifier Letter Capital N

U+01D3C ᴼ \^O Modifier Letter Capital O

U+01D3E ᴾ \^P Modifier Letter Capital P

U+01D3F ᴿ \^R Modifier Letter Capital R

U+01D40 ᵀ \^T Modifier Letter Capital T

U+01D41 ᵁ \^U Modifier Letter Capital U

U+01D42 ᵂ \^W Modifier Letter Capital W

U+01D43 ᵃ \^a Modifier Letter Small A

U+01D45 ᵅ \^alpha Modifier Letter Small Alpha

U+01D47 ᵇ \^b Modifier Letter Small B

U+01D48 ᵈ \^d Modifier Letter Small D

U+01D49 ᵉ \^e Modifier Letter Small E

U+01D4B ᵋ \^epsilon Modifier Letter Small Open E

U+01D4D ᵍ \^g Modifier Letter Small G

U+01D4F ᵏ \^k Modifier Letter Small K

U+01D50 ᵐ \^m Modifier Letter Small M

U+01D52 ᵒ \^o Modifier Letter Small O

U+01D56 ᵖ \^p Modifier Letter Small P

U+01D57 ᵗ \^t Modifier Letter Small T

U+01D58 ᵘ \^u Modifier Letter Small U

U+01D5B ᵛ \^v Modifier Letter Small V

U+01D5D ᵝ \^beta Modifier Letter Small Beta

U+01D5E ᵞ \^gamma Modifier Letter Small Greek Gamma

U+01D5F ᵟ \^delta Modifier Letter Small Delta

U+01D60 ᵠ \^phi Modifier Letter Small Greek Phi

U+01D61 ᵡ \^chi Modifier Letter Small Chi

U+01D62 ᵢ _i Latin Subscript Small Letter I

U+01D63 ᵣ _r Latin Subscript Small Letter R

U+01D64 ᵤ _u Latin Subscript Small Letter U

U+01D65 ᵥ _v Latin Subscript Small Letter V

U+01D66 ᵦ _beta Greek Subscript Small Letter Beta

U+01D67 ᵧ _gamma Greek Subscript Small Letter Gamma

U+01D68 ᵨ _rho Greek Subscript Small Letter Rho

U+01D69 ᵩ _phi Greek Subscript Small Letter Phi

U+01D6A ᵪ _chi Greek Subscript Small Letter Chi

U+01D9C ᶜ \^c Modifier Letter Small C

U+01DA0 ᶠ \^f Modifier Letter Small F

U+01DA5 ᶥ \^iota Modifier Letter Small Iota

U+01DB2 ᶲ \^ltphi Modifier Letter Small Phi

U+01DBB ᶻ \^z Modifier Letter Small Z

U+01DBF ᶿ \^theta Modifier Letter Small Theta

U+02002   \enspace En Space

U+02003   \quad Em Space

U+02005   \thickspace Four-Per-Em Space

U+02009   \thinspace Thin Space

U+0200A   \hspace Hair Space

U+02013 – \endash En Dash

U+02014 — \emdash Em Dash

U+02016 ‖ \Vert Double Vertical Line / Double Vertical Bar

U+02018 ‘ \lq Left Single Quotation Mark / Single Turned Comma

Quotation Mark

U+02019 ’ \rq Right Single Quotation Mark / Single Comma

Quotation Mark

U+0201B ‛ \reapos Single High-Reversed-9 Quotation Mark / Single

Reversed Comma Quotation Mark

U+0201C “ \ldq Left Double Quotation Mark / Double Turned Comma

Quotation Mark

U+0201D ” \rdq Right Double Quotation Mark / Double Comma

Quotation Mark

U+02020 † \dagger Dagger

U+02021 ‡ \ddagger Double Dagger

U+02022 • \bullet Bullet

U+02026 … \dots, \ldots Horizontal Ellipsis

U+02030 ‰ \perthousand Per Mille Sign

U+02031 ‱ \pertenthousand Per Ten Thousand Sign

U+02032 ′ \prime Prime

U+02033 ″ \pprime Double Prime

U+02034 ‴ \ppprime Triple Prime

U+02035 ‵ \backprime Reversed Prime

U+02036 ‶ \backpprime Reversed Double Prime

U+02037 ‷ \backppprime Reversed Triple Prime

U+02039 ‹ \guilsinglleft Single Left-Pointing Angle Quotation Mark / Left

Pointing Single Guillemet

U+0203A › \guilsinglright Single Right-Pointing Angle Quotation Mark / Right

Pointing Single Guillemet

U+0203C ‼ \:bangbang: Double Exclamation Mark

U+02040 ⁀ \tieconcat Character Tie

U+02049 ⁉ \:interrobang: Exclamation Question Mark

U+02057 ⁗ \pppprime Quadruple Prime

U+0205D ⁝ \tricolon Tricolon

U+02060 ⁠ \nolinebreak Word Joiner

U+02070 ⁰ \^0 Superscript Zero / Superscript Digit Zero

U+02071 ⁱ \^i Superscript Latin Small Letter I

U+02074 ⁴ \^4 Superscript Four / Superscript Digit Four

U+02075 ⁵ \^5 Superscript Five / Superscript Digit Five

U+02076 ⁶ \^6 Superscript Six / Superscript Digit Six

U+02077 ⁷ \^7 Superscript Seven / Superscript Digit Seven

U+02078 ⁸ \^8 Superscript Eight / Superscript Digit Eight

U+02079 ⁹ \^9 Superscript Nine / Superscript Digit Nine

U+0207A ⁺ \^+ Superscript Plus Sign

U+0207B ⁻ \^- Superscript Minus / Superscript Hyphen-Minus

U+0207C ⁼ \^= Superscript Equals Sign

U+0207D ⁽ \^(Superscript Left Parenthesis / Superscript Opening

Parenthesis

U+0207E ⁾ \^) Superscript Right Parenthesis / Superscript Closing

Parenthesis

U+0207F ⁿ \^n Superscript Latin Small Letter N

U+02080 ₀ _0 Subscript Zero / Subscript Digit Zero

U+02081 ₁ _1 Subscript One / Subscript Digit One

U+02082 ₂ _2 Subscript Two / Subscript Digit Two

U+02083 ₃ _3 Subscript Three / Subscript Digit Three

U+02084 ₄ _4 Subscript Four / Subscript Digit Four

U+02085 ₅ _5 Subscript Five / Subscript Digit Five

U+02086 ₆ _6 Subscript Six / Subscript Digit Six

U+02087 ₇ _7 Subscript Seven / Subscript Digit Seven

U+02088 ₈ _8 Subscript Eight / Subscript Digit Eight

U+02089 ₉ _9 Subscript Nine / Subscript Digit Nine

U+0208A ₊ _+ Subscript Plus Sign

U+0208B ₋ _- Subscript Minus / Subscript Hyphen-Minus

U+0208C ₌ _= Subscript Equals Sign

U+0208D ₍ _(Subscript Left Parenthesis / Subscript Opening

Parenthesis

U+0208E ₎ _) Subscript Right Parenthesis / Subscript Closing

Parenthesis

U+02090 ₐ _a Latin Subscript Small Letter A

U+02091 ₑ _e Latin Subscript Small Letter E

U+02092 ₒ _o Latin Subscript Small Letter O

U+02093 ₓ _x Latin Subscript Small Letter X

U+02094 ₔ _schwa Latin Subscript Small Letter Schwa

U+02095 ₕ _h Latin Subscript Small Letter H

U+02096 ₖ _k Latin Subscript Small Letter K

U+02097 ₗ _l Latin Subscript Small Letter L

U+02098 ₘ _m Latin Subscript Small Letter M

U+02099 ₙ _n Latin Subscript Small Letter N

U+0209A ₚ _p Latin Subscript Small Letter P

U+0209B ₛ _s Latin Subscript Small Letter S

U+0209C ₜ _t Latin Subscript Small Letter T

U+020A7 ₧ \pes Peseta Sign

U+020AC € \euro Euro Sign

U+020D0 ⃐ \leftharpoonaccent Combining Left Harpoon Above / Non-Spacing Left

Harpoon Above

U+020D1 ⃑ \rightharpoonaccent Combining Right Harpoon Above / Non-Spacing

Right Harpoon Above

U+020D2 \vertoverlay Combining Long Vertical Line Overlay / Non-Spacing

Long Vertical Bar Overlay

U+020D6 ⃖ \overleftarrow Combining Left Arrow Above / Non-Spacing Left

Arrow Above

U+020D7 ⃗ \vec Combining Right Arrow Above / Non-Spacing Right

Arrow Above

U+020DB ⃛ \dddot Combining Three Dots Above / Non-Spacing Three

Dots Above

U+020DC ⃜ \ddddot Combining Four Dots Above / Non-Spacing Four Dots

Above

U+020DD \enclosecircle Combining Enclosing Circle / Enclosing Circle

U+020DE \enclosesquare Combining Enclosing Square / Enclosing Square

U+020DF \enclosediamond Combining Enclosing Diamond / Enclosing Diamond

U+020E1 ⃡ \overleftrightarrow Combining Left Right Arrow Above / Non-Spacing

Left Right Arrow Above

U+020E4 \enclosetriangle Combining Enclosing Upward Pointing Triangle

U+020E7 \annuity Combining Annuity Symbol

U+020E8 \threeunderdot Combining Triple Underdot

U+020E9 \widebridgeabove Combining Wide Bridge Above

U+020EC \underrightharpoon-

down

Combining Rightwards Harpoon With Barb

Downwards

U+020ED \underleftharpoondown Combining Leftwards Harpoon With Barb Downwards

U+020EE \underleftarrow Combining Left Arrow Below

U+020EF \underrightarrow Combining Right Arrow Below

U+020F0 \asteraccent Combining Asterisk Above

U+02102 ℂ \bbC Double-Struck Capital C / Double-Struck C

U+02107 ℇ \eulermascheroni Euler Constant / Eulers

U+0210A \scrg Script Small G

U+0210B ℋ \scrH Script Capital H / Script H

U+0210C ℌ \frakH Black-Letter Capital H / Black-Letter H

U+0210D ℍ \bbH Double-Struck Capital H / Double-Struck H

U+0210E ℎ \ith, \planck Planck Constant

U+0210F ℏ \hslash Planck Constant Over Two Pi / Planck Constant Over

2 Pi

U+02110 ℐ \scrI Script Capital I / Script I

U+02111 ℑ \Im, \frakI Black-Letter Capital I / Black-Letter I

U+02112 ℒ \scrL Script Capital L / Script L

U+02113 ℓ \ell Script Small L

U+02115 ℕ \bbN Double-Struck Capital N / Double-Struck N

U+02116 № \numero Numero Sign / Numero

U+02118 ℘ \wp Script Capital P / Script P

U+02119 ℙ \bbP Double-Struck Capital P / Double-Struck P

U+0211A ℚ \bbQ Double-Struck Capital Q / Double-Struck Q

U+0211B ℛ \scrR Script Capital R / Script R

U+0211C ℜ \Re, \frakR Black-Letter Capital R / Black-Letter R

U+0211D ℝ \bbR Double-Struck Capital R / Double-Struck R

U+0211E ℞ \xrat Prescription Take

U+02122 ™ \trademark, \:tm: Trade Mark Sign / Trademark

U+02124 ℤ \bbZ Double-Struck Capital Z / Double-Struck Z

U+02126 Ω \ohm Ohm Sign / Ohm

U+02127 ℧ \mho Inverted Ohm Sign / Mho

U+02128 ℨ \frakZ Black-Letter Capital Z / Black-Letter Z

U+02129 ℩ \turnediota Turned Greek Small Letter Iota

U+0212B Å \Angstrom Angstrom Sign / Angstrom Unit

U+0212C ℬ \scrB Script Capital B / Script B

U+0212D ℭ \frakC Black-Letter Capital C / Black-Letter C

U+0212F ℯ \scre, \euler Script Small E

U+02130 ℰ \scrE Script Capital E / Script E

U+02131 ℱ \scrF Script Capital F / Script F

U+02132 Ⅎ \Finv Turned Capital F / Turned F

U+02133 ℳ \scrM Script Capital M / Script M

U+02134 ℴ \scro Script Small O

U+02135 ℵ \aleph Alef Symbol / First Transfinite Cardinal

U+02136 ℶ \beth Bet Symbol / Second Transfinite Cardinal

U+02137 ℷ \gimel Gimel Symbol / Third Transfinite Cardinal

U+02138 ℸ \daleth Dalet Symbol / Fourth Transfinite Cardinal

U+02139 ℹ \:information_source: Information Source

U+0213C ℼ \bbpi Double-Struck Small Pi

U+0213D ℽ \bbgamma Double-Struck Small Gamma

U+0213E ℾ \bbGamma Double-Struck Capital Gamma

U+0213F ℿ \bbPi Double-Struck Capital Pi

U+02140 ⅀ \bbsum Double-Struck N-Ary Summation

U+02141 ⅁ \Game Turned Sans-Serif Capital G

U+02142 ⅂ \sansLturned Turned Sans-Serif Capital L

U+02143 ⅃ \sansLmirrored Reversed Sans-Serif Capital L

U+02144 ⅄ \Yup Turned Sans-Serif Capital Y

U+02145 ⅅ \bbiD Double-Struck Italic Capital D

U+02146 ⅆ \bbid Double-Struck Italic Small D

U+02147 ⅇ \bbie Double-Struck Italic Small E

U+02148 ⅈ \bbii Double-Struck Italic Small I

U+02149 ⅉ \bbij Double-Struck Italic Small J

U+0214A \PropertyLine Property Line

U+0214B ⅋ \upand Turned Ampersand

U+02150 ⅐ \1/7 Vulgar Fraction One Seventh

U+02151 ⅑ \1/9 Vulgar Fraction One Ninth

U+02152 ⅒ \1/10 Vulgar Fraction One Tenth

U+02153 ⅓ \1/3 Vulgar Fraction One Third / Fraction One Third

U+02154 ⅔ \2/3 Vulgar Fraction Two Thirds / Fraction Two Thirds

U+02155 ⅕ \1/5 Vulgar Fraction One Fifth / Fraction One Fifth

U+02156 ⅖ \2/5 Vulgar Fraction Two Fifths / Fraction Two Fifths

U+02157 ⅗ \3/5 Vulgar Fraction Three Fifths / Fraction Three Fifths

U+02158 ⅘ \4/5 Vulgar Fraction Four Fifths / Fraction Four Fifths

U+02159 ⅙ \1/6 Vulgar Fraction One Sixth / Fraction One Sixth

U+0215A ⅚ \5/6 Vulgar Fraction Five Sixths / Fraction Five Sixths

U+0215B ⅛ \1/8 Vulgar Fraction One Eighth / Fraction One Eighth

U+0215C ⅜ \3/8 Vulgar Fraction Three Eighths / Fraction Three

Eighths

U+0215D ⅝ \5/8 Vulgar Fraction Five Eighths / Fraction Five Eighths

U+0215E ⅞ \7/8 Vulgar Fraction Seven Eighths / Fraction Seven

Eighths

U+0215F ⅟ \1/ Fraction Numerator One

U+02189 ↉ \0/3 Vulgar Fraction Zero Thirds

U+02190 ← \leftarrow Leftwards Arrow / Left Arrow

U+02191 ↑ \uparrow Upwards Arrow / Up Arrow

U+02192 → \to, \rightarrow Rightwards Arrow / Right Arrow

U+02193 ↓ \downarrow Downwards Arrow / Down Arrow

U+02194 ↔ \leftrightarrow,

\:left_right_arrow:

Left Right Arrow

U+02195 ↕ \updownarrow,

\:arrow_up_down:

Up Down Arrow

U+02196 ↖ \nwarrow,

\:arrow_upper_left:

North West Arrow / Upper Left Arrow

U+02197 ↗ \nearrow,

\:arrow_upper_right:

North East Arrow / Upper Right Arrow

U+02198 ↘ \searrow,

\:arrow_lower_right:

South East Arrow / Lower Right Arrow

U+02199 ↙ \swarrow,

\:arrow_lower_left:

South West Arrow / Lower Left Arrow

U+0219A ↚ \nleftarrow Leftwards Arrow With Stroke / Left Arrow With Stroke

U+0219B ↛ \nrightarrow Rightwards Arrow With Stroke / Right Arrow With

Stroke

U+0219C ↜ \leftwavearrow Leftwards Wave Arrow / Left Wave Arrow

U+0219D ↝ \rightwavearrow Rightwards Wave Arrow / Right Wave Arrow

U+0219E ↞ \twoheadleftarrow Leftwards Two Headed Arrow / Left Two Headed

Arrow

U+0219F ↟ \twoheaduparrow Upwards Two Headed Arrow / Up Two Headed Arrow

U+021A0 ↠ \twoheadrightarrow Rightwards Two Headed Arrow / Right Two Headed

Arrow

U+021A1 ↡ \twoheaddownarrow Downwards Two Headed Arrow / Down Two Headed

Arrow

U+021A2 ↢ \leftarrowtail Leftwards Arrow With Tail / Left Arrow With Tail

U+021A3 ↣ \rightarrowtail Rightwards Arrow With Tail / Right Arrow With Tail

U+021A4 ↤ \mapsfrom Leftwards Arrow From Bar / Left Arrow From Bar

U+021A5 ↥ \mapsup Upwards Arrow From Bar / Up Arrow From Bar

U+021A6 ↦ \mapsto Rightwards Arrow From Bar / Right Arrow From Bar

U+021A7 ↧ \mapsdown Downwards Arrow From Bar / Down Arrow From Bar

U+021A8 ↨ \updownarrowbar Up Down Arrow With Base

U+021A9 ↩ \hookleftarrow,

\:leftwards_ar-

row_with_hook:

Leftwards Arrow With Hook / Left Arrow With Hook

U+021AA ↪ \hookrightarrow,

\:arrow_right_hook:

Rightwards Arrow With Hook / Right Arrow With Hook

U+021AB ↫ \looparrowleft Leftwards Arrow With Loop / Left Arrow With Loop

U+021AC ↬ \looparrowright Rightwards Arrow With Loop / Right Arrow With Loop

U+021AD ↭ \leftrightsquigarrow Left Right Wave Arrow

U+021AE ↮ \nleftrightarrow Left Right Arrow With Stroke

U+021AF ↯ \downzigzagarrow Downwards Zigzag Arrow / Down Zigzag Arrow

U+021B0 ↰ \Lsh Upwards Arrow With Tip Leftwards / Up Arrow With

Tip Left

U+021B1 ↱ \Rsh Upwards Arrow With Tip Rightwards / Up Arrow With

Tip Right

U+021B2 ↲ \Ldsh Downwards Arrow With Tip Leftwards / Down Arrow

With Tip Left

U+021B3 ↳ \Rdsh Downwards Arrow With Tip Rightwards / Down Arrow

With Tip Right

U+021B4 ↴ \linefeed Rightwards Arrow With Corner Downwards / Right

Arrow With Corner Down

U+021B5 ↵ \carriagereturn Downwards Arrow With Corner Leftwards / Down

Arrow With Corner Left

U+021B6 ↶ \curvearrowleft Anticlockwise Top Semicircle Arrow

U+021B7 ↷ \curvearrowright Clockwise Top Semicircle Arrow

U+021B8 ↸ \barovernorthwestar-

row

North West Arrow To Long Bar / Upper Left Arrow To

Long Bar

U+021B9 ↹ \barleftarrowrightar-

rowbar

Leftwards Arrow To Bar Over Rightwards Arrow To

Bar / Left Arrow To Bar Over Right Arrow To Bar

U+021BA ↺ \circlearrowleft Anticlockwise Open Circle Arrow

U+021BB ↻ \circlearrowright Clockwise Open Circle Arrow

U+021BC ↼ \leftharpoonup Leftwards Harpoon With Barb Upwards / Left

Harpoon With Barb Up

U+021BD ↽ \leftharpoondown Leftwards Harpoon With Barb Downwards / Left

Harpoon With Barb Down

U+021BE ↾ \upharpoonright Upwards Harpoon With Barb Rightwards / Up

Harpoon With Barb Right

U+021BF ↿ \upharpoonleft Upwards Harpoon With Barb Leftwards / Up Harpoon

With Barb Left

U+021C0 ⇀ \rightharpoonup Rightwards Harpoon With Barb Upwards / Right

Harpoon With Barb Up

U+021C1 ⇁ \rightharpoondown Rightwards Harpoon With Barb Downwards / Right

Harpoon With Barb Down

U+021C2 ⇂ \downharpoonright Downwards Harpoon With Barb Rightwards / Down

Harpoon With Barb Right

U+021C3 ⇃ \downharpoonleft Downwards Harpoon With Barb Leftwards / Down

Harpoon With Barb Left

U+021C4 ⇄ \rightleftarrows Rightwards Arrow Over Leftwards Arrow / Right

Arrow Over Left Arrow

U+021C5 ⇅ \dblarrowupdown Upwards Arrow Leftwards Of Downwards Arrow / Up

Arrow Left Of Down Arrow

U+021C6 ⇆ \leftrightarrows Leftwards Arrow Over Rightwards Arrow / Left Arrow

Over Right Arrow

U+021C7 ⇇ \leftleftarrows Leftwards Paired Arrows / Left Paired Arrows

U+021C8 ⇈ \upuparrows Upwards Paired Arrows / Up Paired Arrows

U+021C9 ⇉ \rightrightarrows Rightwards Paired Arrows / Right Paired Arrows

U+021CA ⇊ \downdownarrows Downwards Paired Arrows / Down Paired Arrows

U+021CB ⇋ \leftrightharpoons Leftwards Harpoon Over Rightwards Harpoon / Left

Harpoon Over Right Harpoon

U+021CC ⇌ \rightleftharpoons Rightwards Harpoon Over Leftwards Harpoon / Right

Harpoon Over Left Harpoon

U+021CD ⇍ \nLeftarrow Leftwards Double Arrow With Stroke / Left Double

Arrow With Stroke

U+021CE ⇎ \nLeftrightarrow Left Right Double Arrow With Stroke

U+021CF ⇏ \nRightarrow Rightwards Double Arrow With Stroke / Right Double

Arrow With Stroke

U+021D0 ⇐ \Leftarrow Leftwards Double Arrow / Left Double Arrow

U+021D1 ⇑ \Uparrow Upwards Double Arrow / Up Double Arrow

U+021D2 ⇒ \Rightarrow Rightwards Double Arrow / Right Double Arrow

U+021D3 ⇓ \Downarrow Downwards Double Arrow / Down Double Arrow

U+021D4 ⇔ \Leftrightarrow Left Right Double Arrow

U+021D5 ⇕ \Updownarrow Up Down Double Arrow

U+021D6 ⇖ \Nwarrow North West Double Arrow / Upper Left Double Arrow

U+021D7 ⇗ \Nearrow North East Double Arrow / Upper Right Double Arrow

U+021D8 ⇘ \Searrow South East Double Arrow / Lower Right Double Arrow

U+021D9 ⇙ \Swarrow South West Double Arrow / Lower Left Double Arrow

U+021DA ⇚ \Lleftarrow Leftwards Triple Arrow / Left Triple Arrow

U+021DB ⇛ \Rrightarrow Rightwards Triple Arrow / Right Triple Arrow

U+021DC ⇜ \leftsquigarrow Leftwards Squiggle Arrow / Left Squiggle Arrow

U+021DD ⇝ \rightsquigarrow Rightwards Squiggle Arrow / Right Squiggle Arrow

U+021DE ⇞ \nHuparrow Upwards Arrow With Double Stroke / Up Arrow With

Double Stroke

U+021DF ⇟ \nHdownarrow Downwards Arrow With Double Stroke / Down Arrow

With Double Stroke

U+021E0 ⇠ \leftdasharrow Leftwards Dashed Arrow / Left Dashed Arrow

U+021E1 ⇡ \updasharrow Upwards Dashed Arrow / Up Dashed Arrow

U+021E2 ⇢ \rightdasharrow Rightwards Dashed Arrow / Right Dashed Arrow

U+021E3 ⇣ \downdasharrow Downwards Dashed Arrow / Down Dashed Arrow

U+021E4 ⇤ \barleftarrow Leftwards Arrow To Bar / Left Arrow To Bar

U+021E5 ⇥ \rightarrowbar Rightwards Arrow To Bar / Right Arrow To Bar

U+021E6 ⇦ \leftwhitearrow Leftwards White Arrow / White Left Arrow

U+021E7 ⇧ \upwhitearrow Upwards White Arrow / White Up Arrow

U+021E8 ⇨ \rightwhitearrow Rightwards White Arrow / White Right Arrow

U+021E9 ⇩ \downwhitearrow Downwards White Arrow / White Down Arrow

U+021EA ⇪ \whitearrowupfrombar Upwards White Arrow From Bar / White Up Arrow

From Bar

U+021F4 ⇴ \circleonrightarrow Right Arrow With Small Circle

U+021F5 ⇵ \DownArrowUpArrow Downwards Arrow Leftwards Of Upwards Arrow

U+021F6 ⇶ \rightthreearrows Three Rightwards Arrows

U+021F7 ⇷ \nvleftarrow Leftwards Arrow With Vertical Stroke

U+021F8 ⇸ \nvrightarrow Rightwards Arrow With Vertical Stroke

U+021F9 ⇹ \nvleftrightarrow Left Right Arrow With Vertical Stroke

U+021FA ⇺ \nVleftarrow Leftwards Arrow With Double Vertical Stroke

U+021FB ⇻ \nVrightarrow Rightwards Arrow With Double Vertical Stroke

U+021FC ⇼ \nVleftrightarrow Left Right Arrow With Double Vertical Stroke

U+021FD ⇽ \leftarrowtriangle Leftwards Open-Headed Arrow

U+021FE ⇾ \rightarrowtriangle Rightwards Open-Headed Arrow

U+021FF ⇿ \leftrightarrowtriangle Left Right Open-Headed Arrow

U+02200 ∀ \forall For All

U+02201 ∁ \complement Complement

U+02202 ∂ \partial Partial Differential

U+02203 ∃ \exists There Exists

U+02204 ∄ \nexists There Does Not Exist

U+02205 ∅ \varnothing, \emptyset Empty Set

U+02206 ∆ \increment Increment

U+02207 ∇ \del, \nabla Nabla

U+02208 ∈ \in Element Of

U+02209 ∉ \notin Not An Element Of

U+0220A ∊ \smallin Small Element Of

U+0220B ∋ \ni Contains As Member

U+0220C ∌ \nni Does Not Contain As Member

U+0220D ∍ \smallni Small Contains As Member

U+0220E ∎ \QED End Of Proof

U+0220F ∏ \prod N-Ary Product

U+02210 ∐ \coprod N-Ary Coproduct

U+02211 ∑ \sum N-Ary Summation

U+02212 − \minus Minus Sign

U+02213 ∓ \mp Minus-Or-Plus Sign

U+02214 ∔ \dotplus Dot Plus

U+02216 ∖ \setminus Set Minus

U+02217 ∗ \ast Asterisk Operator

U+02218 ∘ \circ Ring Operator

U+02219 ∙ \vysmblkcircle Bullet Operator

U+0221A √ \surd, \sqrt Square Root

U+0221B ∛ \cbrt Cube Root

U+0221C ∜ \fourthroot Fourth Root

U+0221D ∝ \propto Proportional To

U+0221E ∞ \infty Infinity

U+0221F ∟ \rightangle Right Angle

U+02220 ∠ \angle Angle

U+02221 ∡ \measuredangle Measured Angle

U+02222 ∢ \sphericalangle Spherical Angle

U+02223 ∣ \mid Divides

U+02224 ∤ \nmid Does Not Divide

U+02225 ∥ \parallel Parallel To

U+02226 ∦ \nparallel Not Parallel To

U+02227 ∧ \wedge Logical And

U+02228 ∨ \vee Logical Or

U+02229 ∩ \cap Intersection

U+0222A ∪ \cup Union

U+0222B ∫ \int Integral

U+0222C ∬ \iint Double Integral

U+0222D ∭ \iiint Triple Integral

U+0222E ∮ \oint Contour Integral

U+0222F ∯ \oiint Surface Integral

U+02230 ∰ \oiiint Volume Integral

U+02231 ∱ \clwintegral Clockwise Integral

U+02232 ∲ \varointclockwise Clockwise Contour Integral

U+02233 ∳ \ointctrclockwise Anticlockwise Contour Integral

U+02234 ∴ \therefore Therefore

U+02235 ∵ \because Because

U+02237 ∷ \Colon Proportion

U+02238 ∸ \dotminus Dot Minus

U+0223A ∺ \dotsminusdots Geometric Proportion

U+0223B ∻ \kernelcontraction Homothetic

U+0223C ∼ \sim Tilde Operator

U+0223D ∽ \backsim Reversed Tilde

U+0223E ∾ \lazysinv Inverted Lazy S

U+0223F ∿ \sinewave Sine Wave

U+02240 ≀ \wr Wreath Product

U+02241 ≁ \nsim Not Tilde

U+02242 ≂ \eqsim Minus Tilde

U+02242

+

U+00338

≂̸ \neqsim Minus Tilde + Combining Long Solidus Overlay /

Non-Spacing Long Slash Overlay

U+02243 ≃ \simeq Asymptotically Equal To

U+02244 ≄ \nsime Not Asymptotically Equal To

U+02245 ≅ \cong Approximately Equal To

U+02246 ≆ \approxnotequal Approximately But Not Actually Equal To

U+02247 ≇ \ncong Neither Approximately Nor Actually Equal To

U+02248 ≈ \approx Almost Equal To

U+02249 ≉ \napprox Not Almost Equal To

U+0224A ≊ \approxeq Almost Equal Or Equal To

U+0224B ≋ \tildetrpl Triple Tilde

U+0224C ≌ \allequal All Equal To

U+0224D ≍ \asymp Equivalent To

U+0224E ≎ \Bumpeq Geometrically Equivalent To

U+0224E

+

U+00338

≎̸ \nBumpeq Geometrically Equivalent To + Combining Long

Solidus Overlay / Non-Spacing Long Slash Overlay

U+0224F ≏ \bumpeq Difference Between

U+0224F

+

U+00338

≏̸ \nbumpeq Difference Between + Combining Long Solidus

Overlay / Non-Spacing Long Slash Overlay

U+02250 ≐ \doteq Approaches The Limit

U+02251 ≑ \Doteq Geometrically Equal To

U+02252 ≒ \fallingdotseq Approximately Equal To Or The Image Of

U+02253 ≓ \risingdotseq Image Of Or Approximately Equal To

U+02254 ≔ \coloneq Colon Equals / Colon Equal

U+02255 ≕ \eqcolon Equals Colon / Equal Colon

U+02256 ≖ \eqcirc Ring In Equal To

U+02257 ≗ \circeq Ring Equal To

U+02258 ≘ \arceq Corresponds To

U+02259 ≙ \wedgeq Estimates

U+0225A ≚ \veeeq Equiangular To

U+0225B ≛ \starequal Star Equals

U+0225C ≜ \triangleq Delta Equal To

U+0225D ≝ \eqdef Equal To By Definition

U+0225E ≞ \measeq Measured By

U+0225F ≟ \questeq Questioned Equal To

U+02260 ≠ \ne, \neq Not Equal To

U+02261 ≡ \equiv Identical To

U+02262 ≢ \nequiv Not Identical To

U+02263 ≣ \Equiv Strictly Equivalent To

U+02264 ≤ \le, \leq Less-Than Or Equal To / Less Than Or Equal To

U+02265 ≥ \ge, \geq Greater-Than Or Equal To / Greater Than Or Equal To

U+02266 ≦ \leqq Less-Than Over Equal To / Less Than Over Equal To

U+02267 ≧ \geqq Greater-Than Over Equal To / Greater Than Over

Equal To

U+02268 ≨ \lneqq Less-Than But Not Equal To / Less Than But Not

Equal To

U+02268

+

U+0FE00

≨︀ \lvertneqq Less-Than But Not Equal To / Less Than But Not

Equal To + Variation Selector-1

U+02269 ≩ \gneqq Greater-Than But Not Equal To / Greater Than But

Not Equal To

U+02269

+

U+0FE00

≩︀ \gvertneqq Greater-Than But Not Equal To / Greater Than But

Not Equal To + Variation Selector-1

U+0226A ≪ \ll Much Less-Than / Much Less Than

U+0226A

+

U+00338

≪̸ \NotLessLess Much Less-Than / Much Less Than + Combining Long

Solidus Overlay / Non-Spacing Long Slash Overlay

U+0226B ≫ \gg Much Greater-Than / Much Greater Than

U+0226B

+

U+00338

≫̸ \NotGreaterGreater Much Greater-Than / Much Greater Than +

Combining Long Solidus Overlay / Non-Spacing Long

Slash Overlay

U+0226C ≬ \between Between

U+0226D ≭ \nasymp Not Equivalent To

U+0226E ≮ \nless Not Less-Than / Not Less Than

U+0226F ≯ \ngtr Not Greater-Than / Not Greater Than

U+02270 ≰ \nleq Neither Less-Than Nor Equal To / Neither Less Than

Nor Equal To

U+02271 ≱ \ngeq Neither Greater-Than Nor Equal To / Neither Greater

Than Nor Equal To

U+02272 ≲ \lesssim Less-Than Or Equivalent To / Less Than Or Equivalent

To

U+02273 ≳ \gtrsim Greater-Than Or Equivalent To / Greater Than Or

Equivalent To

U+02274 ≴ \nlesssim Neither Less-Than Nor Equivalent To / Neither Less

Than Nor Equivalent To

U+02275 ≵ \ngtrsim Neither Greater-Than Nor Equivalent To / Neither

Greater Than Nor Equivalent To

U+02276 ≶ \lessgtr Less-Than Or Greater-Than / Less Than Or Greater

Than

U+02277 ≷ \gtrless Greater-Than Or Less-Than / Greater Than Or Less

Than

U+02278 ≸ \notlessgreater Neither Less-Than Nor Greater-Than / Neither Less

Than Nor Greater Than

U+02279 ≹ \notgreaterless Neither Greater-Than Nor Less-Than / Neither

Greater Than Nor Less Than

U+0227A ≺ \prec Precedes

U+0227B ≻ \succ Succeeds

U+0227C ≼ \preccurlyeq Precedes Or Equal To

U+0227D ≽ \succcurlyeq Succeeds Or Equal To

U+0227E ≾ \precsim Precedes Or Equivalent To

U+0227E

+

U+00338

≾̸ \nprecsim Precedes Or Equivalent To + Combining Long Solidus

Overlay / Non-Spacing Long Slash Overlay

U+0227F ≿ \succsim Succeeds Or Equivalent To

U+0227F

+

U+00338

≿̸ \nsuccsim Succeeds Or Equivalent To + Combining Long

Solidus Overlay / Non-Spacing Long Slash Overlay

U+02280 ⊀ \nprec Does Not Precede

U+02281 ⊁ \nsucc Does Not Succeed

U+02282 ⊂ \subset Subset Of

U+02283 ⊃ \supset Superset Of

U+02284 ⊄ \nsubset Not A Subset Of

U+02285 ⊅ \nsupset Not A Superset Of

U+02286 ⊆ \subseteq Subset Of Or Equal To

U+02287 ⊇ \supseteq Superset Of Or Equal To

U+02288 ⊈ \nsubseteq Neither A Subset Of Nor Equal To

U+02289 ⊉ \nsupseteq Neither A Superset Of Nor Equal To

U+0228A ⊊ \subsetneq Subset Of With Not Equal To / Subset Of Or Not Equal

To

U+0228A

+

U+0FE00

⊊︀ \varsubsetneqq Subset Of With Not Equal To / Subset Of Or Not Equal

To + Variation Selector-1

U+0228B ⊋ \supsetneq Superset Of With Not Equal To / Superset Of Or Not

Equal To

U+0228B

+

U+0FE00

⊋︀ \varsupsetneq Superset Of With Not Equal To / Superset Of Or Not

Equal To + Variation Selector-1

U+0228D ⊍ \cupdot Multiset Multiplication

U+0228E ⊎ \uplus Multiset Union

U+0228F ⊏ \sqsubset Square Image Of

U+0228F

+

U+00338

⊏̸ \NotSquareSubset Square Image Of + Combining Long Solidus Overlay

/ Non-Spacing Long Slash Overlay

U+02290 ⊐ \sqsupset Square Original Of

U+02290

+

U+00338

⊐̸ \NotSquareSuperset Square Original Of + Combining Long Solidus

Overlay / Non-Spacing Long Slash Overlay

U+02291 ⊑ \sqsubseteq Square Image Of Or Equal To

U+02292 ⊒ \sqsupseteq Square Original Of Or Equal To

U+02293 ⊓ \sqcap Square Cap

U+02294 ⊔ \sqcup Square Cup

U+02295 ⊕ \oplus Circled Plus

U+02296 ⊖ \ominus Circled Minus

U+02297 ⊗ \otimes Circled Times

U+02298 ⊘ \oslash Circled Division Slash

U+02299 ⊙ \odot Circled Dot Operator

U+0229A ⊚ \circledcirc Circled Ring Operator

U+0229B ⊛ \circledast Circled Asterisk Operator

U+0229C ⊜ \circledequal Circled Equals

U+0229D ⊝ \circleddash Circled Dash

U+0229E ⊞ \boxplus Squared Plus

U+0229F ⊟ \boxminus Squared Minus

U+022A0 ⊠ \boxtimes Squared Times

U+022A1 ⊡ \boxdot Squared Dot Operator

U+022A2 ⊢ \vdash Right Tack

U+022A3 ⊣ \dashv Left Tack

U+022A4 ⊤ \top Down Tack

U+022A5 ⊥ \bot Up Tack

U+022A7 ⊧ \models Models

U+022A8 ⊨ \vDash True

U+022A9 ⊩ \Vdash Forces

U+022AA ⊪ \Vvdash Triple Vertical Bar Right Turnstile

U+022AB ⊫ \VDash Double Vertical Bar Double Right Turnstile

U+022AC ⊬ \nvdash Does Not Prove

U+022AD ⊭ \nvDash Not True

U+022AE ⊮ \nVdash Does Not Force

U+022AF ⊯ \nVDash Negated Double Vertical Bar Double Right Turnstile

U+022B0 ⊰ \prurel Precedes Under Relation

U+022B1 ⊱ \scurel Succeeds Under Relation

U+022B2 ⊲ \vartriangleleft Normal Subgroup Of

U+022B3 ⊳ \vartriangleright Contains As Normal Subgroup

U+022B4 ⊴ \trianglelefteq Normal Subgroup Of Or Equal To

U+022B5 ⊵ \trianglerighteq Contains As Normal Subgroup Or Equal To

U+022B6 ⊶ \original Original Of

U+022B7 ⊷ \image Image Of

U+022B8 ⊸ \multimap Multimap

U+022B9 ⊹ \hermitconjmatrix Hermitian Conjugate Matrix

U+022BA ⊺ \intercal Intercalate

U+022BB ⊻ \veebar, \xor Xor

U+022BC ⊼ \barwedge, \nand Nand

U+022BD ⊽ \barvee, \nor Nor

U+022BE ⊾ \rightanglearc Right Angle With Arc

U+022BF ⊿ \varlrtriangle Right Triangle

U+022C0 ⋀ \bigwedge N-Ary Logical And

U+022C1 ⋁ \bigvee N-Ary Logical Or

U+022C2 ⋂ \bigcap N-Ary Intersection

U+022C3 ⋃ \bigcup N-Ary Union

U+022C4 ⋄ \diamond Diamond Operator

U+022C5 ⋅ \cdot Dot Operator

U+022C6 ⋆ \star Star Operator

U+022C7 ⋇ \divideontimes Division Times

U+022C8 ⋈ \bowtie Bowtie

U+022C9 ⋉ \ltimes Left Normal Factor Semidirect Product

U+022CA ⋊ \rtimes Right Normal Factor Semidirect Product

U+022CB ⋋ \leftthreetimes Left Semidirect Product

U+022CC ⋌ \rightthreetimes Right Semidirect Product

U+022CD ⋍ \backsimeq Reversed Tilde Equals

U+022CE ⋎ \curlyvee Curly Logical Or

U+022CF ⋏ \curlywedge Curly Logical And

U+022D0 ⋐ \Subset Double Subset

U+022D1 ⋑ \Supset Double Superset

U+022D2 ⋒ \Cap Double Intersection

U+022D3 ⋓ \Cup Double Union

U+022D4 ⋔ \pitchfork Pitchfork

U+022D5 ⋕ \equalparallel Equal And Parallel To

U+022D6 ⋖ \lessdot Less-Than With Dot / Less Than With Dot

U+022D7 ⋗ \gtrdot Greater-Than With Dot / Greater Than With Dot

U+022D8 ⋘ \verymuchless Very Much Less-Than / Very Much Less Than

U+022D9 ⋙ \ggg Very Much Greater-Than / Very Much Greater Than

U+022DA ⋚ \lesseqgtr Less-Than Equal To Or Greater-Than / Less Than

Equal To Or Greater Than

U+022DB ⋛ \gtreqless Greater-Than Equal To Or Less-Than / Greater Than

Equal To Or Less Than

U+022DC ⋜ \eqless Equal To Or Less-Than / Equal To Or Less Than

U+022DD ⋝ \eqgtr Equal To Or Greater-Than / Equal To Or Greater Than

U+022DE ⋞ \curlyeqprec Equal To Or Precedes

U+022DF ⋟ \curlyeqsucc Equal To Or Succeeds

U+022E0 ⋠ \npreccurlyeq Does Not Precede Or Equal

U+022E1 ⋡ \nsucccurlyeq Does Not Succeed Or Equal

U+022E2 ⋢ \nsqsubseteq Not Square Image Of Or Equal To

U+022E3 ⋣ \nsqsupseteq Not Square Original Of Or Equal To

U+022E4 ⋤ \sqsubsetneq Square Image Of Or Not Equal To

U+022E5 ⋥ \sqsupsetneq Square Original Of Or Not Equal To

U+022E6 ⋦ \lnsim Less-Than But Not Equivalent To / Less Than But Not

Equivalent To

U+022E7 ⋧ \gnsim Greater-Than But Not Equivalent To / Greater Than

But Not Equivalent To

U+022E8 ⋨ \precnsim Precedes But Not Equivalent To

U+022E9 ⋩ \succnsim Succeeds But Not Equivalent To

U+022EA ⋪ \ntriangleleft Not Normal Subgroup Of

U+022EB ⋫ \ntriangleright Does Not Contain As Normal Subgroup

U+022EC ⋬ \ntrianglelefteq Not Normal Subgroup Of Or Equal To

U+022ED ⋭ \ntrianglerighteq Does Not Contain As Normal Subgroup Or Equal

U+022EE ⋮ \vdots Vertical Ellipsis

U+022EF ⋯ \cdots Midline Horizontal Ellipsis

U+022F0 ⋰ \adots Up Right Diagonal Ellipsis

U+022F1 ⋱ \ddots Down Right Diagonal Ellipsis

U+022F2 ⋲ \disin Element Of With Long Horizontal Stroke

U+022F3 ⋳ \varisins Element Of With Vertical Bar At End Of Horizontal

Stroke

U+022F4 ⋴ \isins Small Element Of With Vertical Bar At End Of

Horizontal Stroke

U+022F5 ⋵ \isindot Element Of With Dot Above

U+022F6 ⋶ \varisinobar Element Of With Overbar

U+022F7 ⋷ \isinobar Small Element Of With Overbar

U+022F8 ⋸ \isinvb Element Of With Underbar

U+022F9 ⋹ \isinE Element Of With Two Horizontal Strokes

U+022FA ⋺ \nisd Contains With Long Horizontal Stroke

U+022FB ⋻ \varnis Contains With Vertical Bar At End Of Horizontal

Stroke

U+022FC ⋼ \nis Small Contains With Vertical Bar At End Of

Horizontal Stroke

U+022FD ⋽ \varniobar Contains With Overbar

U+022FE ⋾ \niobar Small Contains With Overbar

U+022FF ⋿ \bagmember Z Notation Bag Membership

U+02300 ⌀ \diameter Diameter Sign

U+02302 ⌂ \house House

U+02305 ⌅ \varbarwedge Projective

U+02306 ⌆ \vardoublebarwedge Perspective

U+02308 ⌈ \lceil Left Ceiling

U+02309 ⌉ \rceil Right Ceiling

U+0230A ⌊ \lfloor Left Floor

U+0230B ⌋ \rfloor Right Floor

U+02310 ⌐ \invnot Reversed Not Sign

U+02311 ⌑ \sqlozenge Square Lozenge

U+02312 \profline Arc

U+02313 \profsurf Segment

U+02315 \recorder Telephone Recorder

U+02317 \viewdata Viewdata Square

U+02319 ⌙ \turnednot Turned Not Sign

U+0231A \:watch: Watch

U+0231B \:hourglass: Hourglass

U+0231C ⌜ \ulcorner Top Left Corner

U+0231D ⌝ \urcorner Top Right Corner

U+0231E ⌞ \llcorner Bottom Left Corner

U+0231F ⌟ \lrcorner Bottom Right Corner

U+02322 \frown Frown

U+02323 \smile Smile

U+0232C ⌬ \varhexagonlrbonds Benzene Ring

U+02332 \conictaper Conical Taper

U+02336 \topbot Apl Functional Symbol I-Beam

U+0233D \obar Apl Functional Symbol Circle Stile

U+0233F \notslash Apl Functional Symbol Slash Bar

U+02340 \notbackslash Apl Functional Symbol Backslash Bar

U+02353 \boxupcaret Apl Functional Symbol Quad Up Caret

U+02370 \boxquestion Apl Functional Symbol Quad Question

U+02394 ⎔ \hexagon Software-Function Symbol

U+023A3 ⎣ \dlcorn Left Square Bracket Lower Corner

U+023B0 \lmoustache Upper Left Or Lower Right Curly Bracket Section

U+023B1 \rmoustache Upper Right Or Lower Left Curly Bracket Section

U+023B4 \overbracket Top Square Bracket

U+023B5 \underbracket Bottom Square Bracket

U+023B6 \bbrktbrk Bottom Square Bracket Over Top Square Bracket

U+023B7 \sqrtbottom Radical Symbol Bottom

U+023B8 \lvboxline Left Vertical Box Line

U+023B9 \rvboxline Right Vertical Box Line

U+023CE ⏎ \varcarriagereturn Return Symbol

U+023DE \overbrace Top Curly Bracket

U+023DF \underbrace Bottom Curly Bracket

U+023E2 \trapezium White Trapezium

U+023E3 ⏣ \benzenr Benzene Ring With Circle

U+023E4 \strns Straightness

U+023E5 ⏥ \fltns Flatness

U+023E6 \accurrent Ac Current

U+023E7 \elinters Electrical Intersection

U+023E9 \:fast_forward: Black Right-Pointing Double Triangle

U+023EA \:rewind: Black Left-Pointing Double Triangle

U+023EB \:arrow_double_up: Black Up-Pointing Double Triangle

U+023EC \:arrow_double_down: Black Down-Pointing Double Triangle

U+023F0 \:alarm_clock: Alarm Clock

U+023F3 \:hourglass_flow-

ing_sand:

Hourglass With Flowing Sand

U+02422 ␢ \blanksymbol Blank Symbol / Blank

U+02423 ␣ \visiblespace Open Box

U+024C2 \:m: Circled Latin Capital Letter M

U+024C8 \circledS Circled Latin Capital Letter S

U+02506 ┆ \dshfnc Box Drawings Light Triple Dash Vertical / Forms Light

Triple Dash Vertical

U+02519 ┙ \sqfnw Box Drawings Up Light And Left Heavy / Forms Up

Light And Left Heavy

U+02571 ╱ \diagup Box Drawings Light Diagonal Upper Right To Lower

Left / Forms Light Diagonal Upper Right To Lower Left

U+02572 ╲ \diagdown Box Drawings Light Diagonal Upper Left To Lower

Right / Forms Light Diagonal Upper Left To Lower

Right

U+02580 ▀ \blockuphalf Upper Half Block

U+02584 ▄ \blocklowhalf Lower Half Block

U+02588 █ \blockfull Full Block

U+0258C ▌ \blocklefthalf Left Half Block

U+02590 ▐ \blockrighthalf Right Half Block

U+02591 ░ \blockqtrshaded Light Shade

U+02592 ▒ \blockhalfshaded Medium Shade

U+02593 ▓ \blockthreeqtrshaded Dark Shade

U+025A0 ■ \blacksquare Black Square

U+025A1 □ \square White Square

U+025A2 ▢ \squoval White Square With Rounded Corners

U+025A3 ▣ \blackinwhitesquare White Square Containing Black Small Square

U+025A4 ▤ \squarehfill Square With Horizontal Fill

U+025A5 ▥ \squarevfill Square With Vertical Fill

U+025A6 ▦ \squarehvfill Square With Orthogonal Crosshatch Fill

U+025A7 ▧ \squarenwsefill Square With Upper Left To Lower Right Fill

U+025A8 ▨ \squareneswfill Square With Upper Right To Lower Left Fill

U+025A9 ▩ \squarecrossfill Square With Diagonal Crosshatch Fill

U+025AA ▪ \smblksquare,

\:black_small_square:

Black Small Square

U+025AB ▫ \smwhtsquare,

\:white_small_square:

White Small Square

U+025AC ▬ \hrectangleblack Black Rectangle

U+025AD ▭ \hrectangle White Rectangle

U+025AE ▮ \vrectangleblack Black Vertical Rectangle

U+025AF ▯ \vrecto White Vertical Rectangle

U+025B0 ▰ \parallelogramblack Black Parallelogram

U+025B1 ▱ \parallelogram White Parallelogram

U+025B2 ▲ \bigblacktriangleup Black Up-Pointing Triangle / Black Up Pointing

Triangle

U+025B3 △ \bigtriangleup White Up-Pointing Triangle / White Up Pointing

Triangle

U+025B4 ▴ \blacktriangle Black Up-Pointing Small Triangle / Black Up Pointing

Small Triangle

U+025B5 ▵ \vartriangle White Up-Pointing Small Triangle / White Up Pointing

Small Triangle

U+025B6 ▶ \blacktriangleright,

\:arrow_forward:

Black Right-Pointing Triangle / Black Right Pointing

Triangle

U+025B7 ▷ \triangleright White Right-Pointing Triangle / White Right Pointing

Triangle

U+025B8 ▸ \smallblacktriangleright Black Right-Pointing Small Triangle / Black Right

Pointing Small Triangle

U+025B9 ▹ \smalltriangleright White Right-Pointing Small Triangle / White Right

Pointing Small Triangle

U+025BA ► \blackpointerright Black Right-Pointing Pointer / Black Right Pointing

Pointer

U+025BB ▻ \whitepointerright White Right-Pointing Pointer / White Right Pointing

Pointer

U+025BC ▼ \bigblacktriangledown Black Down-Pointing Triangle / Black Down Pointing

Triangle

U+025BD ▽ \bigtriangledown White Down-Pointing Triangle / White Down Pointing

Triangle

U+025BE ▾ \blacktriangledown Black Down-Pointing Small Triangle / Black Down

Pointing Small Triangle

U+025BF ▿ \triangledown White Down-Pointing Small Triangle / White Down

Pointing Small Triangle

U+025C0 ◀ \blacktriangleleft,

\:arrow_backward:

Black Left-Pointing Triangle / Black Left Pointing

Triangle

U+025C1 ◁ \triangleleft White Left-Pointing Triangle / White Left Pointing

Triangle

U+025C2 ◂ \smallblacktriangleleft Black Left-Pointing Small Triangle / Black Left

Pointing Small Triangle

U+025C3 ◃ \smalltriangleleft White Left-Pointing Small Triangle / White Left

Pointing Small Triangle

U+025C4 ◄ \blackpointerleft Black Left-Pointing Pointer / Black Left Pointing

Pointer

U+025C5 ◅ \whitepointerleft White Left-Pointing Pointer / White Left Pointing

Pointer

U+025C6 ◆ \mdlgblkdiamond Black Diamond

U+025C7 ◇ \mdlgwhtdiamond White Diamond

U+025C8 ◈ \blackinwhitediamond White Diamond Containing Black Small Diamond

U+025C9 ◉ \fisheye Fisheye

U+025CA ◊ \lozenge Lozenge

U+025CB ○ \bigcirc White Circle

U+025CC ◌ \dottedcircle Dotted Circle

U+025CD ◍ \circlevertfill Circle With Vertical Fill

U+025CE ◎ \bullseye Bullseye

U+025CF ● \mdlgblkcircle Black Circle

U+025D0 ◐ \cirfl Circle With Left Half Black

U+025D1 ◑ \cirfr Circle With Right Half Black

U+025D2 ◒ \cirfb Circle With Lower Half Black

U+025D3 ◓ \circletophalfblack Circle With Upper Half Black

U+025D4 ◔ \circleurquadblack Circle With Upper Right Quadrant Black

U+025D5 ◕ \blackcircleulquadwhite Circle With All But Upper Left Quadrant Black

U+025D6 ◖ \blacklefthalfcircle Left Half Black Circle

U+025D7 ◗ \blackrighthalfcircle Right Half Black Circle

U+025D8 ◘ \rvbull Inverse Bullet

U+025D9 ◙ \inversewhitecircle Inverse White Circle

U+025DA ◚ \invwhiteupperhalfcir-

cle

Upper Half Inverse White Circle

U+025DB ◛ \invwhitelowerhalfcircle Lower Half Inverse White Circle

U+025DC ◜ \ularc Upper Left Quadrant Circular Arc

U+025DD ◝ \urarc Upper Right Quadrant Circular Arc

U+025DE ◞ \lrarc Lower Right Quadrant Circular Arc

U+025DF ◟ \llarc Lower Left Quadrant Circular Arc

U+025E0 ◠ \topsemicircle Upper Half Circle

U+025E1 ◡ \botsemicircle Lower Half Circle

U+025E2 ◢ \lrblacktriangle Black Lower Right Triangle

U+025E3 ◣ \llblacktriangle Black Lower Left Triangle

U+025E4 ◤ \ulblacktriangle Black Upper Left Triangle

U+025E5 ◥ \urblacktriangle Black Upper Right Triangle

U+025E6 ◦ \smwhtcircle White Bullet

U+025E7 ◧ \sqfl Square With Left Half Black

U+025E8 ◨ \sqfr Square With Right Half Black

U+025E9 ◩ \squareulblack Square With Upper Left Diagonal Half Black

U+025EA ◪ \sqfse Square With Lower Right Diagonal Half Black

U+025EB ◫ \boxbar White Square With Vertical Bisecting Line

U+025EC ◬ \trianglecdot White Up-Pointing Triangle With Dot / White Up

Pointing Triangle With Dot

U+025ED ◭ \triangleleftblack Up-Pointing Triangle With Left Half Black / Up

Pointing Triangle With Left Half Black

U+025EE ◮ \trianglerightblack Up-Pointing Triangle With Right Half Black / Up

Pointing Triangle With Right Half Black

U+025EF ◯ \lgwhtcircle Large Circle

U+025F0 ◰ \squareulquad White Square With Upper Left Quadrant

U+025F1 ◱ \squarellquad White Square With Lower Left Quadrant

U+025F2 ◲ \squarelrquad White Square With Lower Right Quadrant

U+025F3 ◳ \squareurquad White Square With Upper Right Quadrant

U+025F4 ◴ \circleulquad White Circle With Upper Left Quadrant

U+025F5 ◵ \circlellquad White Circle With Lower Left Quadrant

U+025F6 ◶ \circlelrquad White Circle With Lower Right Quadrant

U+025F7 ◷ \circleurquad White Circle With Upper Right Quadrant

U+025F8 ◸ \ultriangle Upper Left Triangle

U+025F9 ◹ \urtriangle Upper Right Triangle

U+025FA ◺ \lltriangle Lower Left Triangle

U+025FB ◻ \mdwhtsquare,

\:white_medium_square:

White Medium Square

U+025FC ◼ \mdblksquare,

\:black_medium_square:

Black Medium Square

U+025FD ◽ \mdsmwhtsquare,

\:white_medium_small_square:

White Medium Small Square

U+025FE ◾ \mdsmblksquare,

\:black_medium_small_square:

Black Medium Small Square

U+025FF ◿ \lrtriangle Lower Right Triangle

U+02600 ☀ \:sunny: Black Sun With Rays

U+02601 ☁ \:cloud: Cloud

U+02605 ★ \bigstar Black Star

U+02606 ☆ \bigwhitestar White Star

U+02609 ☉ \astrosun Sun

U+0260E ☎ \:phone: Black Telephone

U+02611 ☑ \:bal-

lot_box_with_check:

Ballot Box With Check

U+02614 ☔ \:um-

brella_with_rain_drops:,

\:umbrella:

Umbrella With Rain Drops

U+02615 ☕ \:coffee: Hot Beverage

U+0261D ☝ \:point_up: White Up Pointing Index

U+02621 ☡ \danger Caution Sign

U+0263A ☺ \:relaxed: White Smiling Face

U+0263B ☻ \blacksmiley Black Smiling Face

U+0263C ☼ \sun White Sun With Rays

U+0263D ☽ \rightmoon First Quarter Moon

U+0263E ☾ \leftmoon Last Quarter Moon

U+0263F ☿ \mercury Mercury

U+02640 ♀ \venus, \female Female Sign

U+02642 ♂ \male, \mars Male Sign

U+02643 ♃ \jupiter Jupiter

U+02644 ♄ \saturn Saturn

U+02645 ♅ \uranus Uranus

U+02646 ♆ \neptune Neptune

U+02647 ♇ \pluto Pluto

U+02648 ♈ \aries, \:aries: Aries

U+02649 ♉ \taurus, \:taurus: Taurus

U+0264A ♊ \gemini, \:gemini: Gemini

U+0264B ♋ \cancer, \:cancer: Cancer

U+0264C ♌ \leo, \:leo: Leo

U+0264D ♍ \virgo, \:virgo: Virgo

U+0264E ♎ \libra, \:libra: Libra

U+0264F ♏ \scorpio, \:scorpius: Scorpius

U+02650 ♐ \sagittarius,

\:sagittarius:

Sagittarius

U+02651 ♑ \capricornus,

\:capricorn:

Capricorn

U+02652 ♒ \aquarius, \:aquarius: Aquarius

U+02653 ♓ \pisces, \:pisces: Pisces

U+02660 ♠ \spadesuit, \:spades: Black Spade Suit

U+02661 ♡ \heartsuit White Heart Suit

U+02662 ♢ \diamondsuit White Diamond Suit

U+02663 ♣ \clubsuit, \:clubs: Black Club Suit

U+02664 ♤ \varspadesuit White Spade Suit

U+02665 ♥ \varheartsuit, \:hearts: Black Heart Suit

U+02666 ♦ \vardiamondsuit,

\:diamonds:

Black Diamond Suit

U+02667 ♧ \varclubsuit White Club Suit

U+02668 ♨ \:hotsprings: Hot Springs

U+02669 ♩ \quarternote Quarter Note

U+0266A ♪ \eighthnote Eighth Note

U+0266B ♫ \twonotes Beamed Eighth Notes / Barred Eighth Notes

U+0266D ♭ \flat Music Flat Sign / Flat

U+0266E ♮ \natural Music Natural Sign / Natural

U+0266F ♯ \sharp Music Sharp Sign / Sharp

U+0267B ♻ \:recycle: Black Universal Recycling Symbol

U+0267E ♾ \acidfree Permanent Paper Sign

U+0267F ♿ \:wheelchair: Wheelchair Symbol

U+02680 ⚀ \dicei Die Face-1

U+02681 ⚁ \diceii Die Face-2

U+02682 ⚂ \diceiii Die Face-3

U+02683 ⚃ \diceiv Die Face-4

U+02684 ⚄ \dicev Die Face-5

U+02685 ⚅ \dicevi Die Face-6

U+02686 ⚆ \circledrightdot White Circle With Dot Right

U+02687 ⚇ \circledtwodots White Circle With Two Dots

U+02688 ⚈ \blackcircledrightdot Black Circle With White Dot Right

U+02689 ⚉ \blackcircledtwodots Black Circle With Two White Dots

U+02693 ⚓ \:anchor: Anchor

U+026A0 ⚠ \:warning: Warning Sign

U+026A1 ⚡ \:zap: High Voltage Sign

U+026A5 ⚥ \hermaphrodite Male And Female Sign

U+026AA ⚪ \mdwhtcircle,

\:white_circle:

Medium White Circle

U+026AB ⚫ \mdblkcircle,

\:black_circle:

Medium Black Circle

U+026AC ⚬ \mdsmwhtcircle Medium Small White Circle

U+026B2 ⚲ \neuter Neuter

U+026BD \:soccer: Soccer Ball

U+026BE \:baseball: Baseball

U+026C4 \:snowman:, \:snow-

man_without_snow:

Snowman Without Snow

U+026C5 \:partly_sunny: Sun Behind Cloud

U+026CE \:ophiuchus: Ophiuchus

U+026D4 \:no_entry: No Entry

U+026EA \:church: Church

U+026F2 \:fountain: Fountain

U+026F3 \:golf: Flag In Hole

U+026F5 \:boat: Sailboat

U+026FA \:tent: Tent

U+026FD \:fuelpump: Fuel Pump

U+02702 ✂ \:scissors: Black Scissors

U+02705 \:white_check_mark: White Heavy Check Mark

U+02708 ✈ \:airplane: Airplane

U+02709 ✉ \:email: Envelope

U+0270A \:fist: Raised Fist

U+0270B \:hand: Raised Hand

U+0270C ✌ \:v: Victory Hand

U+0270F ✏ \:pencil2: Pencil

U+02712 ✒ \:black_nib: Black Nib

U+02713 ✓ \checkmark Check Mark

U+02714 ✔ \:heavy_check_mark: Heavy Check Mark

U+02716 ✖ \:heavy_multiplica-

tion_x:

Heavy Multiplication X

U+02720 ✠ \maltese Maltese Cross

U+02728 \:sparkles: Sparkles

U+0272A ✪ \circledstar Circled White Star

U+02733 ✳ \:eight_spoked_aster-

isk:

Eight Spoked Asterisk

U+02734 ✴ \:eight_pointed_black_star:Eight Pointed Black Star

U+02736 ✶ \varstar Six Pointed Black Star

U+0273D ✽ \dingasterisk Heavy Teardrop-Spoked Asterisk

U+02744 ❄ \:snowflake: Snowflake

U+02747 ❇ \:sparkle: Sparkle

U+0274C \:x: Cross Mark

U+0274E \:nega-

tive_squared_cross_mark:

Negative Squared Cross Mark

U+02753 \:question: Black Question Mark Ornament

U+02754 \:grey_question: White Question Mark Ornament

U+02755 \:grey_exclamation: White Exclamation Mark Ornament

U+02757 \:exclamation: Heavy Exclamation Mark Symbol

U+02764 ❤ \:heart: Heavy Black Heart

U+02795 \:heavy_plus_sign: Heavy Plus Sign

U+02796 \:heavy_minus_sign: Heavy Minus Sign

U+02797 \:heavy_division_sign: Heavy Division Sign

U+0279B ➛ \draftingarrow Drafting Point Rightwards Arrow / Drafting Point

Right Arrow

U+027A1 ➡ \:arrow_right: Black Rightwards Arrow / Black Right Arrow

U+027B0 \:curly_loop: Curly Loop

U+027BF \:loop: Double Curly Loop

U+027C0 \threedangle Three Dimensional Angle

U+027C1 \whiteinwhitetriangle White Triangle Containing Small White Triangle

U+027C2 \perp Perpendicular

U+027C7 \veedot Or With Dot Inside

U+027C8 \bsolhsub Reverse Solidus Preceding Subset

U+027C9 \suphsol Superset Preceding Solidus

U+027D1 \wedgedot And With Dot

U+027D2 \upin Element Of Opening Upwards

U+027D5 \leftouterjoin Left Outer Join

U+027D6 \rightouterjoin Right Outer Join

U+027D7 \fullouterjoin Full Outer Join

U+027D8 \bigbot Large Up Tack

U+027D9 \bigtop Large Down Tack

U+027E6 ⟦ \llbracket,

\openbracketleft

Mathematical Left White Square Bracket

U+027E7 ⟧ \openbracketright,

\rrbracket

Mathematical Right White Square Bracket

U+027E8 ⟨ \langle Mathematical Left Angle Bracket

U+027E9 ⟩ \rangle Mathematical Right Angle Bracket

U+027F0 ⟰ \UUparrow Upwards Quadruple Arrow

U+027F1 ⟱ \DDownarrow Downwards Quadruple Arrow

U+027F5 ⟵ \longleftarrow Long Leftwards Arrow

U+027F6 ⟶ \longrightarrow Long Rightwards Arrow

U+027F7 ⟷ \longleftrightarrow Long Left Right Arrow

U+027F8 ⟸ \impliedby,

\Longleftarrow

Long Leftwards Double Arrow

U+027F9 ⟹ \implies,

\Longrightarrow

Long Rightwards Double Arrow

U+027FA ⟺ \Longleftrightarrow, \iff Long Left Right Double Arrow

U+027FB ⟻ \longmapsfrom Long Leftwards Arrow From Bar

U+027FC ⟼ \longmapsto Long Rightwards Arrow From Bar

U+027FD ⟽ \Longmapsfrom Long Leftwards Double Arrow From Bar

U+027FE ⟾ \Longmapsto Long Rightwards Double Arrow From Bar

U+027FF ⟿ \longrightsquigarrow Long Rightwards Squiggle Arrow

U+02900 \nvtwoheadrightarrow Rightwards Two-Headed Arrow With Vertical Stroke

U+02901 \nVtwoheadrightarrow Rightwards Two-Headed Arrow With Double Vertical

Stroke

U+02902 \nvLeftarrow Leftwards Double Arrow With Vertical Stroke

U+02903 \nvRightarrow Rightwards Double Arrow With Vertical Stroke

U+02904 \nvLeftrightarrow Left Right Double Arrow With Vertical Stroke

U+02905 \twoheadmapsto Rightwards Two-Headed Arrow From Bar

U+02906 ⤆ \Mapsfrom Leftwards Double Arrow From Bar

U+02907 ⤇ \Mapsto Rightwards Double Arrow From Bar

U+02908 \downarrowbarred Downwards Arrow With Horizontal Stroke

U+02909 \uparrowbarred Upwards Arrow With Horizontal Stroke

U+0290A ⤊ \Uuparrow Upwards Triple Arrow

U+0290B ⤋ \Ddownarrow Downwards Triple Arrow

U+0290C \leftbkarrow Leftwards Double Dash Arrow

U+0290D \bkarow Rightwards Double Dash Arrow

U+0290E \leftdbkarrow Leftwards Triple Dash Arrow

U+0290F \dbkarow Rightwards Triple Dash Arrow

U+02910 \drbkarrow Rightwards Two-Headed Triple Dash Arrow

U+02911 \rightdotarrow Rightwards Arrow With Dotted Stem

U+02912 \UpArrowBar Upwards Arrow To Bar

U+02913 \DownArrowBar Downwards Arrow To Bar

U+02914 \nvrightarrowtail Rightwards Arrow With Tail With Vertical Stroke

U+02915 \nVrightarrowtail Rightwards Arrow With Tail With Double Vertical

Stroke

U+02916 \twoheadrightarrowtail Rightwards Two-Headed Arrow With Tail

U+02917 \nvtwoheadrightarrow-

tail

Rightwards Two-Headed Arrow With Tail With Vertical

Stroke

U+02918 \nVtwoheadrightarrow-

tail

Rightwards Two-Headed Arrow With Tail With Double

Vertical Stroke

U+0291D \diamondleftarrow Leftwards Arrow To Black Diamond

U+0291E \rightarrowdiamond Rightwards Arrow To Black Diamond

U+0291F \diamondleftarrowbar Leftwards Arrow From Bar To Black Diamond

U+02920 \barrightarrowdiamond Rightwards Arrow From Bar To Black Diamond

U+02925 \hksearow South East Arrow With Hook

U+02926 \hkswarow South West Arrow With Hook

U+02927 \tona North West Arrow And North East Arrow

U+02928 \toea North East Arrow And South East Arrow

U+02929 \tosa South East Arrow And South West Arrow

U+0292A \towa South West Arrow And North West Arrow

U+0292B \rdiagovfdiag Rising Diagonal Crossing Falling Diagonal

U+0292C \fdiagovrdiag Falling Diagonal Crossing Rising Diagonal

U+0292D \seovnearrow South East Arrow Crossing North East Arrow

U+0292E \neovsearrow North East Arrow Crossing South East Arrow

U+0292F \fdiagovnearrow Falling Diagonal Crossing North East Arrow

U+02930 \rdiagovsearrow Rising Diagonal Crossing South East Arrow

U+02931 \neovnwarrow North East Arrow Crossing North West Arrow

U+02932 \nwovnearrow North West Arrow Crossing North East Arrow

U+02934 \:arrow_heading_up: Arrow Pointing Rightwards Then Curving Upwards

U+02935 \:arrow_heading_down: Arrow Pointing Rightwards Then Curving Downwards

U+02942 \Rlarr Rightwards Arrow Above Short Leftwards Arrow

U+02944 \rLarr Short Rightwards Arrow Above Leftwards Arrow

U+02945 \rightarrowplus Rightwards Arrow With Plus Below

U+02946 \leftarrowplus Leftwards Arrow With Plus Below

U+02947 \rarrx Rightwards Arrow Through X

U+02948 \leftrightarrowcircle Left Right Arrow Through Small Circle

U+02949 \twoheaduparrowcircle Upwards Two-Headed Arrow From Small Circle

U+0294A \leftrightharpoonup-

down

Left Barb Up Right Barb Down Harpoon

U+0294B \leftrightharpoon-

downup

Left Barb Down Right Barb Up Harpoon

U+0294C \updownharpoon-

rightleft

Up Barb Right Down Barb Left Harpoon

U+0294D \updownharpoonleft-

right

Up Barb Left Down Barb Right Harpoon

U+0294E \LeftRightVector Left Barb Up Right Barb Up Harpoon

U+0294F \RightUpDownVector Up Barb Right Down Barb Right Harpoon

U+02950 \DownLeftRightVector Left Barb Down Right Barb Down Harpoon

U+02951 \LeftUpDownVector Up Barb Left Down Barb Left Harpoon

U+02952 \LeftVectorBar Leftwards Harpoon With Barb Up To Bar

U+02953 \RightVectorBar Rightwards Harpoon With Barb Up To Bar

U+02954 \RightUpVectorBar Upwards Harpoon With Barb Right To Bar

U+02955 \RightDownVectorBar Downwards Harpoon With Barb Right To Bar

U+02956 \DownLeftVectorBar Leftwards Harpoon With Barb Down To Bar

U+02957 \DownRightVectorBar Rightwards Harpoon With Barb Down To Bar

U+02958 \LeftUpVectorBar Upwards Harpoon With Barb Left To Bar

U+02959 \LeftDownVectorBar Downwards Harpoon With Barb Left To Bar

U+0295A \LeftTeeVector Leftwards Harpoon With Barb Up From Bar

U+0295B \RightTeeVector Rightwards Harpoon With Barb Up From Bar

U+0295C \RightUpTeeVector Upwards Harpoon With Barb Right From Bar

U+0295D \RightDownTeeVector Downwards Harpoon With Barb Right From Bar

U+0295E \DownLeftTeeVector Leftwards Harpoon With Barb Down From Bar

U+0295F \DownRightTeeVector Rightwards Harpoon With Barb Down From Bar

U+02960 \LeftUpTeeVector Upwards Harpoon With Barb Left From Bar

U+02961 \LeftDownTeeVector Downwards Harpoon With Barb Left From Bar

U+02962 \leftharpoonsupdown Leftwards Harpoon With Barb Up Above Leftwards

Harpoon With Barb Down

U+02963 \upharpoonsleftright Upwards Harpoon With Barb Left Beside Upwards

Harpoon With Barb Right

U+02964 \rightharpoonsupdown Rightwards Harpoon With Barb Up Above Rightwards

Harpoon With Barb Down

U+02965 \downharpoonsleftright Downwards Harpoon With Barb Left Beside

Downwards Harpoon With Barb Right

U+02966 \leftrightharpoonsup Leftwards Harpoon With Barb Up Above Rightwards

Harpoon With Barb Up

U+02967 \leftrightharpoonsdown Leftwards Harpoon With Barb Down Above

Rightwards Harpoon With Barb Down

U+02968 \rightleftharpoonsup Rightwards Harpoon With Barb Up Above Leftwards

Harpoon With Barb Up

U+02969 \rightleftharpoonsdown Rightwards Harpoon With Barb Down Above

Leftwards Harpoon With Barb Down

U+0296A \leftharpoonupdash Leftwards Harpoon With Barb Up Above Long Dash

U+0296B \dashleftharpoondown Leftwards Harpoon With Barb Down Below Long

Dash

U+0296C \rightharpoonupdash Rightwards Harpoon With Barb Up Above Long Dash

U+0296D \dashrightharpoon-

down

Rightwards Harpoon With Barb Down Below Long

Dash

U+0296E \UpEquilibrium Upwards Harpoon With Barb Left Beside Downwards

Harpoon With Barb Right

U+0296F \ReverseUpEquilibrium Downwards Harpoon With Barb Left Beside Upwards

Harpoon With Barb Right

U+02970 \RoundImplies Right Double Arrow With Rounded Head

U+02977 \leftarrowless Leftwards Arrow Through Less-Than

U+0297A \leftarrowsubset Leftwards Arrow Through Subset

U+02980 \Vvert Triple Vertical Bar Delimiter

U+02986 \Elroang Right White Parenthesis

U+02999 \ddfnc Dotted Fence

U+0299B \measuredangleleft Measured Angle Opening Left

U+0299C \Angle Right Angle Variant With Square

U+0299D \rightanglemdot Measured Right Angle With Dot

U+0299E \angles Angle With S Inside

U+0299F \angdnr Acute Angle

U+029A0 \lpargt Spherical Angle Opening Left

U+029A1 \sphericalangleup Spherical Angle Opening Up

U+029A2 \turnangle Turned Angle

U+029A3 \revangle Reversed Angle

U+029A4 \angleubar Angle With Underbar

U+029A5 \revangleubar Reversed Angle With Underbar

U+029A6 \wideangledown Oblique Angle Opening Up

U+029A7 \wideangleup Oblique Angle Opening Down

U+029A8 \measanglerutone Measured Angle With Open Arm Ending In Arrow

Pointing Up And Right

U+029A9 \measanglelutonw Measured Angle With Open Arm Ending In Arrow

Pointing Up And Left

U+029AA \measanglerdtose Measured Angle With Open Arm Ending In Arrow

Pointing Down And Right

U+029AB \measangleldtosw Measured Angle With Open Arm Ending In Arrow

Pointing Down And Left

U+029AC \measangleurtone Measured Angle With Open Arm Ending In Arrow

Pointing Right And Up

U+029AD \measangleultonw Measured Angle With Open Arm Ending In Arrow

Pointing Left And Up

U+029AE \measangledrtose Measured Angle With Open Arm Ending In Arrow

Pointing Right And Down

U+029AF \measangledltosw Measured Angle With Open Arm Ending In Arrow

Pointing Left And Down

U+029B0 \revemptyset Reversed Empty Set

U+029B1 \emptysetobar Empty Set With Overbar

U+029B2 \emptysetocirc Empty Set With Small Circle Above

U+029B3 \emptysetoarr Empty Set With Right Arrow Above

U+029B4 \emptysetoarrl Empty Set With Left Arrow Above

U+029B7 \circledparallel Circled Parallel

U+029B8 \obslash Circled Reverse Solidus

U+029BC \odotslashdot Circled Anticlockwise-Rotated Division Sign

U+029BE \circledwhitebullet Circled White Bullet

U+029BF \circledbullet Circled Bullet

U+029C0 \olessthan Circled Less-Than

U+029C1 \ogreaterthan Circled Greater-Than

U+029C4 \boxdiag Squared Rising Diagonal Slash

U+029C5 \boxbslash Squared Falling Diagonal Slash

U+029C6 \boxast Squared Asterisk

U+029C7 \boxcircle Squared Small Circle

U+029CA \Lap Triangle With Dot Above

U+029CB \defas Triangle With Underbar

U+029CF ⧏ \LeftTriangleBar Left Triangle Beside Vertical Bar

U+029CF

+

U+00338

⧏̸ \NotLeftTriangleBar Left Triangle Beside Vertical Bar + Combining Long

Solidus Overlay / Non-Spacing Long Slash Overlay

U+029D0 ⧐ \RightTriangleBar Vertical Bar Beside Right Triangle

U+029D0

+

U+00338

⧐̸ \NotRightTriangleBar Vertical Bar Beside Right Triangle + Combining Long

Solidus Overlay / Non-Spacing Long Slash Overlay

U+029DF \dualmap Double-Ended Multimap

U+029E1 \lrtriangleeq Increases As

U+029E2 \shuffle Shuffle Product

U+029E3 \eparsl Equals Sign And Slanted Parallel

U+029E4 \smeparsl Equals Sign And Slanted Parallel With Tilde Above

U+029E5 \eqvparsl Identical To And Slanted Parallel

U+029EB ⧫ \blacklozenge Black Lozenge

U+029F4 \RuleDelayed Rule-Delayed

U+029F6 \dsol Solidus With Overbar

U+029F7 \rsolbar Reverse Solidus With Horizontal Stroke

U+029FA ⧺ \doubleplus Double Plus

U+029FB ⧻ \tripleplus Triple Plus

U+02A00 ⨀ \bigodot N-Ary Circled Dot Operator

U+02A01 ⨁ \bigoplus N-Ary Circled Plus Operator

U+02A02 ⨂ \bigotimes N-Ary Circled Times Operator

U+02A03 \bigcupdot N-Ary Union Operator With Dot

U+02A04 \biguplus N-Ary Union Operator With Plus

U+02A05 \bigsqcap N-Ary Square Intersection Operator

U+02A06 \bigsqcup N-Ary Square Union Operator

U+02A07 \conjquant Two Logical And Operator

U+02A08 \disjquant Two Logical Or Operator

U+02A09 \bigtimes N-Ary Times Operator

U+02A0A \modtwosum Modulo Two Sum

U+02A0B \sumint Summation With Integral

U+02A0C ⨌ \iiiint Quadruple Integral Operator

U+02A0D ⨍ \intbar Finite Part Integral

U+02A0E ⨎ \intBar Integral With Double Stroke

U+02A0F ⨏ \clockoint Integral Average With Slash

U+02A10 ⨐ \cirfnint Circulation Function

U+02A11 ⨑ \awint Anticlockwise Integration

U+02A12 ⨒ \rppolint Line Integration With Rectangular Path Around Pole

U+02A13 ⨓ \scpolint Line Integration With Semicircular Path Around Pole

U+02A14 ⨔ \npolint Line Integration Not Including The Pole

U+02A15 ⨕ \pointint Integral Around A Point Operator

U+02A16 ⨖ \sqrint Quaternion Integral Operator

U+02A18 ⨘ \intx Integral With Times Sign

U+02A19 ⨙ \intcap Integral With Intersection

U+02A1A ⨚ \intcup Integral With Union

U+02A1B ⨛ \upint Integral With Overbar

U+02A1C ⨜ \lowint Integral With Underbar

U+02A1D \join Join

U+02A1F \bbsemi Z Notation Schema Composition

U+02A22 \ringplus Plus Sign With Small Circle Above

U+02A23 \plushat Plus Sign With Circumflex Accent Above

U+02A24 \simplus Plus Sign With Tilde Above

U+02A25 \plusdot Plus Sign With Dot Below

U+02A26 \plussim Plus Sign With Tilde Below

U+02A27 \plussubtwo Plus Sign With Subscript Two

U+02A28 \plustrif Plus Sign With Black Triangle

U+02A29 \commaminus Minus Sign With Comma Above

U+02A2A \minusdot Minus Sign With Dot Below

U+02A2B \minusfdots Minus Sign With Falling Dots

U+02A2C \minusrdots Minus Sign With Rising Dots

U+02A2D \opluslhrim Plus Sign In Left Half Circle

U+02A2E \oplusrhrim Plus Sign In Right Half Circle

U+02A2F ⨯ \Times Vector Or Cross Product

U+02A30 \dottimes Multiplication Sign With Dot Above

U+02A31 \timesbar Multiplication Sign With Underbar

U+02A32 \btimes Semidirect Product With Bottom Closed

U+02A33 \smashtimes Smash Product

U+02A34 \otimeslhrim Multiplication Sign In Left Half Circle

U+02A35 \otimesrhrim Multiplication Sign In Right Half Circle

U+02A36 \otimeshat Circled Multiplication Sign With Circumflex Accent

U+02A37 \Otimes Multiplication Sign In Double Circle

U+02A38 \odiv Circled Division Sign

U+02A39 \triangleplus Plus Sign In Triangle

U+02A3A \triangleminus Minus Sign In Triangle

U+02A3B \triangletimes Multiplication Sign In Triangle

U+02A3C \intprod Interior Product

U+02A3D \intprodr Righthand Interior Product

U+02A3F \amalg Amalgamation Or Coproduct

U+02A40 \capdot Intersection With Dot

U+02A41 \uminus Union With Minus Sign

U+02A42 \barcup Union With Overbar

U+02A43 \barcap Intersection With Overbar

U+02A44 \capwedge Intersection With Logical And

U+02A45 \cupvee Union With Logical Or

U+02A4A \twocups Union Beside And Joined With Union

U+02A4B \twocaps Intersection Beside And Joined With Intersection

U+02A4C \closedvarcup Closed Union With Serifs

U+02A4D \closedvarcap Closed Intersection With Serifs

U+02A4E \Sqcap Double Square Intersection

U+02A4F \Sqcup Double Square Union

U+02A50 \closedvarcupsmash-

prod

Closed Union With Serifs And Smash Product

U+02A51 \wedgeodot Logical And With Dot Above

U+02A52 \veeodot Logical Or With Dot Above

U+02A53 \And Double Logical And

U+02A54 \Or Double Logical Or

U+02A55 \wedgeonwedge Two Intersecting Logical And

U+02A56 \ElOr Two Intersecting Logical Or

U+02A57 \bigslopedvee Sloping Large Or

U+02A58 \bigslopedwedge Sloping Large And

U+02A5A \wedgemidvert Logical And With Middle Stem

U+02A5B \veemidvert Logical Or With Middle Stem

U+02A5C \midbarwedge Logical And With Horizontal Dash

U+02A5D \midbarvee Logical Or With Horizontal Dash

U+02A5E \perspcorrespond Logical And With Double Overbar

U+02A5F \minhat Logical And With Underbar

U+02A60 \wedgedoublebar Logical And With Double Underbar

U+02A61 \varveebar Small Vee With Underbar

U+02A62 \doublebarvee Logical Or With Double Overbar

U+02A63 \veedoublebar Logical Or With Double Underbar

U+02A66 \eqdot Equals Sign With Dot Below

U+02A67 \dotequiv Identical With Dot Above

U+02A6A ⩪ \dotsim Tilde Operator With Dot Above

U+02A6B ⩫ \simrdots Tilde Operator With Rising Dots

U+02A6C \simminussim Similar Minus Similar

U+02A6D \congdot Congruent With Dot Above

U+02A6E \asteq Equals With Asterisk

U+02A6F \hatapprox Almost Equal To With Circumflex Accent

U+02A70 \approxeqq Approximately Equal Or Equal To

U+02A71 \eqqplus Equals Sign Above Plus Sign

U+02A72 \pluseqq Plus Sign Above Equals Sign

U+02A73 \eqqsim Equals Sign Above Tilde Operator

U+02A74 \Coloneq Double Colon Equal

U+02A75 \Equal Two Consecutive Equals Signs

U+02A76 \eqeqeq Three Consecutive Equals Signs

U+02A77 \ddotseq Equals Sign With Two Dots Above And Two Dots

Below

U+02A78 \equivDD Equivalent With Four Dots Above

U+02A79 \ltcir Less-Than With Circle Inside

U+02A7A \gtcir Greater-Than With Circle Inside

U+02A7B \ltquest Less-Than With Question Mark Above

U+02A7C \gtquest Greater-Than With Question Mark Above

U+02A7D ⩽ \leqslant Less-Than Or Slanted Equal To

U+02A7D

+

U+00338

⩽̸ \nleqslant Less-Than Or Slanted Equal To + Combining Long

Solidus Overlay / Non-Spacing Long Slash Overlay

U+02A7E ⩾ \geqslant Greater-Than Or Slanted Equal To

U+02A7E

+

U+00338

⩾̸ \ngeqslant Greater-Than Or Slanted Equal To + Combining Long

Solidus Overlay / Non-Spacing Long Slash Overlay

U+02A7F ⩿ \lesdot Less-Than Or Slanted Equal To With Dot Inside

U+02A80 ⪀ \gesdot Greater-Than Or Slanted Equal To With Dot Inside

U+02A81 ⪁ \lesdoto Less-Than Or Slanted Equal To With Dot Above

U+02A82 ⪂ \gesdoto Greater-Than Or Slanted Equal To With Dot Above

U+02A83 ⪃ \lesdotor Less-Than Or Slanted Equal To With Dot Above Right

U+02A84 ⪄ \gesdotol Greater-Than Or Slanted Equal To With Dot Above

Left

U+02A85 ⪅ \lessapprox Less-Than Or Approximate

U+02A86 ⪆ \gtrapprox Greater-Than Or Approximate

U+02A87 ⪇ \lneq Less-Than And Single-Line Not Equal To

U+02A88 ⪈ \gneq Greater-Than And Single-Line Not Equal To

U+02A89 ⪉ \lnapprox Less-Than And Not Approximate

U+02A8A ⪊ \gnapprox Greater-Than And Not Approximate

U+02A8B ⪋ \lesseqqgtr Less-Than Above Double-Line Equal Above

Greater-Than

U+02A8C ⪌ \gtreqqless Greater-Than Above Double-Line Equal Above

Less-Than

U+02A8D ⪍ \lsime Less-Than Above Similar Or Equal

U+02A8E ⪎ \gsime Greater-Than Above Similar Or Equal

U+02A8F ⪏ \lsimg Less-Than Above Similar Above Greater-Than

U+02A90 ⪐ \gsiml Greater-Than Above Similar Above Less-Than

U+02A91 ⪑ \lgE Less-Than Above Greater-Than Above Double-Line

Equal

U+02A92 ⪒ \glE Greater-Than Above Less-Than Above Double-Line

Equal

U+02A93 ⪓ \lesges Less-Than Above Slanted Equal Above Greater-Than

Above Slanted Equal

U+02A94 ⪔ \gesles Greater-Than Above Slanted Equal Above Less-Than

Above Slanted Equal

U+02A95 ⪕ \eqslantless Slanted Equal To Or Less-Than

U+02A96 ⪖ \eqslantgtr Slanted Equal To Or Greater-Than

U+02A97 ⪗ \elsdot Slanted Equal To Or Less-Than With Dot Inside

U+02A98 ⪘ \egsdot Slanted Equal To Or Greater-Than With Dot Inside

U+02A99 ⪙ \eqqless Double-Line Equal To Or Less-Than

U+02A9A ⪚ \eqqgtr Double-Line Equal To Or Greater-Than

U+02A9B ⪛ \eqqslantless Double-Line Slanted Equal To Or Less-Than

U+02A9C ⪜ \eqqslantgtr Double-Line Slanted Equal To Or Greater-Than

U+02A9D ⪝ \simless Similar Or Less-Than

U+02A9E ⪞ \simgtr Similar Or Greater-Than

U+02A9F ⪟ \simlE Similar Above Less-Than Above Equals Sign

U+02AA0 ⪠ \simgE Similar Above Greater-Than Above Equals Sign

U+02AA1 \NestedLessLess Double Nested Less-Than

U+02AA1

+

U+00338

̸ \NotNestedLessLess Double Nested Less-Than + Combining Long Solidus

Overlay / Non-Spacing Long Slash Overlay

U+02AA2 \NestedGreaterGreater Double Nested Greater-Than

U+02AA2

+

U+00338

̸ \NotNestedGreater-

Greater

Double Nested Greater-Than + Combining Long

Solidus Overlay / Non-Spacing Long Slash Overlay

U+02AA3 \partialmeetcontraction Double Nested Less-Than With Underbar

U+02AA4 \glj Greater-Than Overlapping Less-Than

U+02AA5 \gla Greater-Than Beside Less-Than

U+02AA6 \ltcc Less-Than Closed By Curve

U+02AA7 \gtcc Greater-Than Closed By Curve

U+02AA8 \lescc Less-Than Closed By Curve Above Slanted Equal

U+02AA9 \gescc Greater-Than Closed By Curve Above Slanted Equal

U+02AAA \smt Smaller Than

U+02AAB \lat Larger Than

U+02AAC \smte Smaller Than Or Equal To

U+02AAD \late Larger Than Or Equal To

U+02AAE ⪮ \bumpeqq Equals Sign With Bumpy Above

U+02AAF ⪯ \preceq Precedes Above Single-Line Equals Sign

U+02AAF

+

U+00338

⪯̸ \npreceq Precedes Above Single-Line Equals Sign +

Combining Long Solidus Overlay / Non-Spacing Long

Slash Overlay

U+02AB0 ⪰ \succeq Succeeds Above Single-Line Equals Sign

U+02AB0

+

U+00338

⪰̸ \nsucceq Succeeds Above Single-Line Equals Sign +

Combining Long Solidus Overlay / Non-Spacing Long

Slash Overlay

U+02AB1 ⪱ \precneq Precedes Above Single-Line Not Equal To

U+02AB2 ⪲ \succneq Succeeds Above Single-Line Not Equal To

U+02AB3 ⪳ \preceqq Precedes Above Equals Sign

U+02AB4 ⪴ \succeqq Succeeds Above Equals Sign

U+02AB5 ⪵ \precneqq Precedes Above Not Equal To

U+02AB6 ⪶ \succneqq Succeeds Above Not Equal To

U+02AB7 ⪷ \precapprox Precedes Above Almost Equal To

U+02AB8 ⪸ \succapprox Succeeds Above Almost Equal To

U+02AB9 ⪹ \precnapprox Precedes Above Not Almost Equal To

U+02ABA ⪺ \succnapprox Succeeds Above Not Almost Equal To

U+02ABB \Prec Double Precedes

U+02ABC \Succ Double Succeeds

U+02ABD \subsetdot Subset With Dot

U+02ABE \supsetdot Superset With Dot

U+02ABF \subsetplus Subset With Plus Sign Below

U+02AC0 \supsetplus Superset With Plus Sign Below

U+02AC1 \submult Subset With Multiplication Sign Below

U+02AC2 \supmult Superset With Multiplication Sign Below

U+02AC3 \subedot Subset Of Or Equal To With Dot Above

U+02AC4 \supedot Superset Of Or Equal To With Dot Above

U+02AC5 \subseteqq Subset Of Above Equals Sign

U+02AC5

+

U+00338

̸ \nsubseteqq Subset Of Above Equals Sign + Combining Long

Solidus Overlay / Non-Spacing Long Slash Overlay

U+02AC6 \supseteqq Superset Of Above Equals Sign

U+02AC6

+

U+00338

̸ \nsupseteqq Superset Of Above Equals Sign + Combining Long

Solidus Overlay / Non-Spacing Long Slash Overlay

U+02AC7 \subsim Subset Of Above Tilde Operator

U+02AC8 \supsim Superset Of Above Tilde Operator

U+02AC9 \subsetapprox Subset Of Above Almost Equal To

U+02ACA \supsetapprox Superset Of Above Almost Equal To

U+02ACB \subsetneqq Subset Of Above Not Equal To

U+02ACC \supsetneqq Superset Of Above Not Equal To

U+02ACD \lsqhook Square Left Open Box Operator

U+02ACE \rsqhook Square Right Open Box Operator

U+02ACF \csub Closed Subset

U+02AD0 \csup Closed Superset

U+02AD1 \csube Closed Subset Or Equal To

U+02AD2 \csupe Closed Superset Or Equal To

U+02AD3 \subsup Subset Above Superset

U+02AD4 \supsub Superset Above Subset

U+02AD5 \subsub Subset Above Subset

U+02AD6 \supsup Superset Above Superset

U+02AD7 \suphsub Superset Beside Subset

U+02AD8 \supdsub Superset Beside And Joined By Dash With Subset

U+02AD9 \forkv Element Of Opening Downwards

U+02ADB \mlcp Transversal Intersection

U+02ADC \forks Forking

U+02ADD \forksnot Nonforking

U+02AE3 \dashV Double Vertical Bar Left Turnstile

U+02AE4 \Dashv Vertical Bar Double Left Turnstile

U+02AEA \Top, \downvDash Double Down Tack

U+02AEB \upvDash, \Bot, \indep Double Up Tack

U+02AF4 \interleave Triple Vertical Bar Binary Relation

U+02AF6 \tdcol Triple Colon Operator

U+02AF7 \lllnest Triple Nested Less-Than

U+02AF8 \gggnest Triple Nested Greater-Than

U+02AF9 ⫹ \leqqslant Double-Line Slanted Less-Than Or Equal To

U+02AFA ⫺ \geqqslant Double-Line Slanted Greater-Than Or Equal To

U+02B05 ⬅ \:arrow_left: Leftwards Black Arrow

U+02B06 ⬆ \:arrow_up: Upwards Black Arrow

U+02B07 ⬇ \:arrow_down: Downwards Black Arrow

U+02B12 ⬒ \squaretopblack Square With Top Half Black

U+02B13 ⬓ \squarebotblack Square With Bottom Half Black

U+02B14 ⬔ \squareurblack Square With Upper Right Diagonal Half Black

U+02B15 ⬕ \squarellblack Square With Lower Left Diagonal Half Black

U+02B16 ⬖ \diamondleftblack Diamond With Left Half Black

U+02B17 ⬗ \diamondrightblack Diamond With Right Half Black

U+02B18 ⬘ \diamondtopblack Diamond With Top Half Black

U+02B19 ⬙ \diamondbotblack Diamond With Bottom Half Black

U+02B1A ⬚ \dottedsquare Dotted Square

U+02B1B \lgblksquare,

\:black_large_square:

Black Large Square

U+02B1C \lgwhtsquare,

\:white_large_square:

White Large Square

U+02B1D \vysmblksquare Black Very Small Square

U+02B1E \vysmwhtsquare White Very Small Square

U+02B1F ⬟ \pentagonblack Black Pentagon

U+02B20 ⬠ \pentagon White Pentagon

U+02B21 ⬡ \varhexagon White Hexagon

U+02B22 ⬢ \varhexagonblack Black Hexagon

U+02B23 ⬣ \hexagonblack Horizontal Black Hexagon

U+02B24 ⬤ \lgblkcircle Black Large Circle

U+02B25 \mdblkdiamond Black Medium Diamond

U+02B26 \mdwhtdiamond White Medium Diamond

U+02B27 \mdblklozenge Black Medium Lozenge

U+02B28 \mdwhtlozenge White Medium Lozenge

U+02B29 \smblkdiamond Black Small Diamond

U+02B2A \smblklozenge Black Small Lozenge

U+02B2B \smwhtlozenge White Small Lozenge

U+02B2C \blkhorzoval Black Horizontal Ellipse

U+02B2D \whthorzoval White Horizontal Ellipse

U+02B2E \blkvertoval Black Vertical Ellipse

U+02B2F \whtvertoval White Vertical Ellipse

U+02B30 \circleonleftarrow Left Arrow With Small Circle

U+02B31 \leftthreearrows Three Leftwards Arrows

U+02B32 \leftarrowonoplus Left Arrow With Circled Plus

U+02B33 \longleftsquigarrow Long Leftwards Squiggle Arrow

U+02B34 \nvtwoheadleftarrow Leftwards Two-Headed Arrow With Vertical Stroke

U+02B35 \nVtwoheadleftarrow Leftwards Two-Headed Arrow With Double Vertical

Stroke

U+02B36 \twoheadmapsfrom Leftwards Two-Headed Arrow From Bar

U+02B37 \twoheadleftdbkarrow Leftwards Two-Headed Triple Dash Arrow

U+02B38 \leftdotarrow Leftwards Arrow With Dotted Stem

U+02B39 \nvleftarrowtail Leftwards Arrow With Tail With Vertical Stroke

U+02B3A \nVleftarrowtail Leftwards Arrow With Tail With Double Vertical Stroke

U+02B3B \twoheadleftarrowtail Leftwards Two-Headed Arrow With Tail

U+02B3C \nvtwoheadleftarrow-

tail

Leftwards Two-Headed Arrow With Tail With Vertical

Stroke

U+02B3D \nVtwoheadleftarrow-

tail

Leftwards Two-Headed Arrow With Tail With Double

Vertical Stroke

U+02B3E \leftarrowx Leftwards Arrow Through X

U+02B3F \leftcurvedarrow Wave Arrow Pointing Directly Left

U+02B40 \equalleftarrow Equals Sign Above Leftwards Arrow

U+02B41 \bsimilarleftarrow Reverse Tilde Operator Above Leftwards Arrow

U+02B42 \leftarrowbackapprox Leftwards Arrow Above Reverse Almost Equal To

U+02B43 \rightarrowgtr Rightwards Arrow Through Greater-Than

U+02B44 \rightarrowsupset Rightwards Arrow Through Superset

U+02B45 \LLeftarrow Leftwards Quadruple Arrow

U+02B46 \RRightarrow Rightwards Quadruple Arrow

U+02B47 \bsimilarrightarrow Reverse Tilde Operator Above Rightwards Arrow

U+02B48 \rightarrowbackapprox Rightwards Arrow Above Reverse Almost Equal To

U+02B49 \similarleftarrow Tilde Operator Above Leftwards Arrow

U+02B4A \leftarrowapprox Leftwards Arrow Above Almost Equal To

U+02B4B \leftarrowbsimilar Leftwards Arrow Above Reverse Tilde Operator

U+02B4C \rightarrowbsimilar Rightwards Arrow Above Reverse Tilde Operator

U+02B50 \medwhitestar, \:star: White Medium Star

U+02B51 \medblackstar Black Small Star

U+02B52 \smwhitestar White Small Star

U+02B53 ⭓ \rightpentagonblack Black Right-Pointing Pentagon

U+02B54 ⭔ \rightpentagon White Right-Pointing Pentagon

U+02B55 \:o: Heavy Large Circle

U+02C7C ⱼ _j Latin Subscript Small Letter J

U+02C7D ⱽ \^V Modifier Letter Capital V

U+03012 \postalmark Postal Mark

U+03030 \:wavy_dash: Wavy Dash

U+0303D \:part_alterna-

tion_mark:

Part Alternation Mark

U+03297 \:congratulations: Circled Ideograph Congratulation

U+03299 \:secret: Circled Ideograph Secret

U+0A71B ꜛ \^uparrow Modifier Letter Raised Up Arrow

U+0A71C ꜜ \^downarrow Modifier Letter Raised Down Arrow

U+0A71D ꜝ \^! Modifier Letter Raised Exclamation Mark

U+1D400 \bfA Mathematical Bold Capital A

U+1D401 \bfB Mathematical Bold Capital B

U+1D402 \bfC Mathematical Bold Capital C

U+1D403 \bfD Mathematical Bold Capital D

U+1D404 \bfE Mathematical Bold Capital E

U+1D405 \bfF Mathematical Bold Capital F

U+1D406 \bfG Mathematical Bold Capital G

U+1D407 \bfH Mathematical Bold Capital H

U+1D408 \bfI Mathematical Bold Capital I

U+1D409 \bfJ Mathematical Bold Capital J

U+1D40A \bfK Mathematical Bold Capital K

U+1D40B \bfL Mathematical Bold Capital L

U+1D40C \bfM Mathematical Bold Capital M

U+1D40D \bfN Mathematical Bold Capital N

U+1D40E \bfO Mathematical Bold Capital O

U+1D40F \bfP Mathematical Bold Capital P

U+1D410 \bfQ Mathematical Bold Capital Q

U+1D411 \bfR Mathematical Bold Capital R

U+1D412 \bfS Mathematical Bold Capital S

U+1D413 \bfT Mathematical Bold Capital T

U+1D414 \bfU Mathematical Bold Capital U

U+1D415 \bfV Mathematical Bold Capital V

U+1D416 \bfW Mathematical Bold Capital W

U+1D417 \bfX Mathematical Bold Capital X

U+1D418 \bfY Mathematical Bold Capital Y

U+1D419 \bfZ Mathematical Bold Capital Z

U+1D41A \bfa Mathematical Bold Small A

U+1D41B \bfb Mathematical Bold Small B

U+1D41C \bfc Mathematical Bold Small C

U+1D41D \bfd Mathematical Bold Small D

U+1D41E \bfe Mathematical Bold Small E

U+1D41F \bff Mathematical Bold Small F

U+1D420 \bfg Mathematical Bold Small G

U+1D421 \bfh Mathematical Bold Small H

U+1D422 \bfi Mathematical Bold Small I

U+1D423 \bfj Mathematical Bold Small J

U+1D424 \bfk Mathematical Bold Small K

U+1D425 \bfl Mathematical Bold Small L

U+1D426 \bfm Mathematical Bold Small M

U+1D427 \bfn Mathematical Bold Small N

U+1D428 \bfo Mathematical Bold Small O

U+1D429 \bfp Mathematical Bold Small P

U+1D42A \bfq Mathematical Bold Small Q

U+1D42B \bfr Mathematical Bold Small R

U+1D42C \bfs Mathematical Bold Small S

U+1D42D \bft Mathematical Bold Small T

U+1D42E \bfu Mathematical Bold Small U

U+1D42F \bfv Mathematical Bold Small V

U+1D430 \bfw Mathematical Bold Small W

U+1D431 \bfx Mathematical Bold Small X

U+1D432 \bfy Mathematical Bold Small Y

U+1D433 \bfz Mathematical Bold Small Z

U+1D434 \itA Mathematical Italic Capital A

U+1D435 \itB Mathematical Italic Capital B

U+1D436 \itC Mathematical Italic Capital C

U+1D437 \itD Mathematical Italic Capital D

U+1D438 \itE Mathematical Italic Capital E

U+1D439 \itF Mathematical Italic Capital F

U+1D43A \itG Mathematical Italic Capital G

U+1D43B \itH Mathematical Italic Capital H

U+1D43C \itI Mathematical Italic Capital I

U+1D43D \itJ Mathematical Italic Capital J

U+1D43E \itK Mathematical Italic Capital K

U+1D43F \itL Mathematical Italic Capital L

U+1D440 \itM Mathematical Italic Capital M

U+1D441 \itN Mathematical Italic Capital N

U+1D442 \itO Mathematical Italic Capital O

U+1D443 \itP Mathematical Italic Capital P

U+1D444 \itQ Mathematical Italic Capital Q

U+1D445 \itR Mathematical Italic Capital R

U+1D446 \itS Mathematical Italic Capital S

U+1D447 \itT Mathematical Italic Capital T

U+1D448 \itU Mathematical Italic Capital U

U+1D449 \itV Mathematical Italic Capital V

U+1D44A \itW Mathematical Italic Capital W

U+1D44B \itX Mathematical Italic Capital X

U+1D44C \itY Mathematical Italic Capital Y

U+1D44D \itZ Mathematical Italic Capital Z

U+1D44E \ita Mathematical Italic Small A

U+1D44F \itb Mathematical Italic Small B

U+1D450 \itc Mathematical Italic Small C

U+1D451 \itd Mathematical Italic Small D

U+1D452 \ite Mathematical Italic Small E

U+1D453 \itf Mathematical Italic Small F

U+1D454 \itg Mathematical Italic Small G

U+1D456 \iti Mathematical Italic Small I

U+1D457 \itj Mathematical Italic Small J

U+1D458 \itk Mathematical Italic Small K

U+1D459 \itl Mathematical Italic Small L

U+1D45A \itm Mathematical Italic Small M

U+1D45B \itn Mathematical Italic Small N

U+1D45C \ito Mathematical Italic Small O

U+1D45D \itp Mathematical Italic Small P

U+1D45E \itq Mathematical Italic Small Q

U+1D45F \itr Mathematical Italic Small R

U+1D460 \its Mathematical Italic Small S

U+1D461 \itt Mathematical Italic Small T

U+1D462 \itu Mathematical Italic Small U

U+1D463 \itv Mathematical Italic Small V

U+1D464 \itw Mathematical Italic Small W

U+1D465 \itx Mathematical Italic Small X

U+1D466 \ity Mathematical Italic Small Y

U+1D467 \itz Mathematical Italic Small Z

U+1D468 \biA Mathematical Bold Italic Capital A

U+1D469 \biB Mathematical Bold Italic Capital B

U+1D46A \biC Mathematical Bold Italic Capital C

U+1D46B \biD Mathematical Bold Italic Capital D

U+1D46C \biE Mathematical Bold Italic Capital E

U+1D46D \biF Mathematical Bold Italic Capital F

U+1D46E \biG Mathematical Bold Italic Capital G

U+1D46F \biH Mathematical Bold Italic Capital H

U+1D470 \biI Mathematical Bold Italic Capital I

U+1D471 \biJ Mathematical Bold Italic Capital J

U+1D472 \biK Mathematical Bold Italic Capital K

U+1D473 \biL Mathematical Bold Italic Capital L

U+1D474 \biM Mathematical Bold Italic Capital M

U+1D475 \biN Mathematical Bold Italic Capital N

U+1D476 \biO Mathematical Bold Italic Capital O

U+1D477 \biP Mathematical Bold Italic Capital P

U+1D478 \biQ Mathematical Bold Italic Capital Q

U+1D479 \biR Mathematical Bold Italic Capital R

U+1D47A \biS Mathematical Bold Italic Capital S

U+1D47B \biT Mathematical Bold Italic Capital T

U+1D47C \biU Mathematical Bold Italic Capital U

U+1D47D \biV Mathematical Bold Italic Capital V

U+1D47E \biW Mathematical Bold Italic Capital W

U+1D47F \biX Mathematical Bold Italic Capital X

U+1D480 \biY Mathematical Bold Italic Capital Y

U+1D481 \biZ Mathematical Bold Italic Capital Z

U+1D482 \bia Mathematical Bold Italic Small A

U+1D483 \bib Mathematical Bold Italic Small B

U+1D484 \bic Mathematical Bold Italic Small C

U+1D485 \bid Mathematical Bold Italic Small D

U+1D486 \bie Mathematical Bold Italic Small E

U+1D487 \bif Mathematical Bold Italic Small F

U+1D488 \big Mathematical Bold Italic Small G

U+1D489 \bih Mathematical Bold Italic Small H

U+1D48A \bii Mathematical Bold Italic Small I

U+1D48B \bij Mathematical Bold Italic Small J

U+1D48C \bik Mathematical Bold Italic Small K

U+1D48D \bil Mathematical Bold Italic Small L

U+1D48E \bim Mathematical Bold Italic Small M

U+1D48F \bin Mathematical Bold Italic Small N

U+1D490 \bio Mathematical Bold Italic Small O

U+1D491 \bip Mathematical Bold Italic Small P

U+1D492 \biq Mathematical Bold Italic Small Q

U+1D493 \bir Mathematical Bold Italic Small R

U+1D494 \bis Mathematical Bold Italic Small S

U+1D495 \bit Mathematical Bold Italic Small T

U+1D496 \biu Mathematical Bold Italic Small U

U+1D497 \biv Mathematical Bold Italic Small V

U+1D498 \biw Mathematical Bold Italic Small W

U+1D499 \bix Mathematical Bold Italic Small X

U+1D49A \biy Mathematical Bold Italic Small Y

U+1D49B \biz Mathematical Bold Italic Small Z

U+1D49C \scrA Mathematical Script Capital A

U+1D49E \scrC Mathematical Script Capital C

U+1D49F \scrD Mathematical Script Capital D

U+1D4A2 \scrG Mathematical Script Capital G

U+1D4A5 \scrJ Mathematical Script Capital J

U+1D4A6 \scrK Mathematical Script Capital K

U+1D4A9 \scrN Mathematical Script Capital N

U+1D4AA \scrO Mathematical Script Capital O

U+1D4AB \scrP Mathematical Script Capital P

U+1D4AC \scrQ Mathematical Script Capital Q

U+1D4AE \scrS Mathematical Script Capital S

U+1D4AF \scrT Mathematical Script Capital T

U+1D4B0 \scrU Mathematical Script Capital U

U+1D4B1 \scrV Mathematical Script Capital V

U+1D4B2 \scrW Mathematical Script Capital W

U+1D4B3 \scrX Mathematical Script Capital X

U+1D4B4 \scrY Mathematical Script Capital Y

U+1D4B5 \scrZ Mathematical Script Capital Z

U+1D4B6 \scra Mathematical Script Small A

U+1D4B7 \scrb Mathematical Script Small B

U+1D4B8 \scrc Mathematical Script Small C

U+1D4B9 \scrd Mathematical Script Small D

U+1D4BB \scrf Mathematical Script Small F

U+1D4BD \scrh Mathematical Script Small H

U+1D4BE \scri Mathematical Script Small I

U+1D4BF \scrj Mathematical Script Small J

U+1D4C0 \scrk Mathematical Script Small K

U+1D4C1 \scrl Mathematical Script Small L

U+1D4C2 \scrm Mathematical Script Small M

U+1D4C3 \scrn Mathematical Script Small N

U+1D4C5 \scrp Mathematical Script Small P

U+1D4C6 \scrq Mathematical Script Small Q

U+1D4C7 \scrr Mathematical Script Small R

U+1D4C8 \scrs Mathematical Script Small S

U+1D4C9 \scrt Mathematical Script Small T

U+1D4CA \scru Mathematical Script Small U

U+1D4CB \scrv Mathematical Script Small V

U+1D4CC \scrw Mathematical Script Small W

U+1D4CD \scrx Mathematical Script Small X

U+1D4CE \scry Mathematical Script Small Y

U+1D4CF \scrz Mathematical Script Small Z

U+1D4D0 \bscrA Mathematical Bold Script Capital A

U+1D4D1 \bscrB Mathematical Bold Script Capital B

U+1D4D2 \bscrC Mathematical Bold Script Capital C

U+1D4D3 \bscrD Mathematical Bold Script Capital D

U+1D4D4 \bscrE Mathematical Bold Script Capital E

U+1D4D5 \bscrF Mathematical Bold Script Capital F

U+1D4D6 \bscrG Mathematical Bold Script Capital G

U+1D4D7 \bscrH Mathematical Bold Script Capital H

U+1D4D8 \bscrI Mathematical Bold Script Capital I

U+1D4D9 \bscrJ Mathematical Bold Script Capital J

U+1D4DA \bscrK Mathematical Bold Script Capital K

U+1D4DB \bscrL Mathematical Bold Script Capital L

U+1D4DC \bscrM Mathematical Bold Script Capital M

U+1D4DD \bscrN Mathematical Bold Script Capital N

U+1D4DE \bscrO Mathematical Bold Script Capital O

U+1D4DF \bscrP Mathematical Bold Script Capital P

U+1D4E0 \bscrQ Mathematical Bold Script Capital Q

U+1D4E1 \bscrR Mathematical Bold Script Capital R

U+1D4E2 \bscrS Mathematical Bold Script Capital S

U+1D4E3 \bscrT Mathematical Bold Script Capital T

U+1D4E4 \bscrU Mathematical Bold Script Capital U

U+1D4E5 \bscrV Mathematical Bold Script Capital V

U+1D4E6 \bscrW Mathematical Bold Script Capital W

U+1D4E7 \bscrX Mathematical Bold Script Capital X

U+1D4E8 \bscrY Mathematical Bold Script Capital Y

U+1D4E9 \bscrZ Mathematical Bold Script Capital Z

U+1D4EA \bscra Mathematical Bold Script Small A

U+1D4EB \bscrb Mathematical Bold Script Small B

U+1D4EC \bscrc Mathematical Bold Script Small C

U+1D4ED \bscrd Mathematical Bold Script Small D

U+1D4EE \bscre Mathematical Bold Script Small E

U+1D4EF \bscrf Mathematical Bold Script Small F

U+1D4F0 \bscrg Mathematical Bold Script Small G

U+1D4F1 \bscrh Mathematical Bold Script Small H

U+1D4F2 \bscri Mathematical Bold Script Small I

U+1D4F3 \bscrj Mathematical Bold Script Small J

U+1D4F4 \bscrk Mathematical Bold Script Small K

U+1D4F5 \bscrl Mathematical Bold Script Small L

U+1D4F6 \bscrm Mathematical Bold Script Small M

U+1D4F7 \bscrn Mathematical Bold Script Small N

U+1D4F8 \bscro Mathematical Bold Script Small O

U+1D4F9 \bscrp Mathematical Bold Script Small P

U+1D4FA \bscrq Mathematical Bold Script Small Q

U+1D4FB \bscrr Mathematical Bold Script Small R

U+1D4FC \bscrs Mathematical Bold Script Small S

U+1D4FD \bscrt Mathematical Bold Script Small T

U+1D4FE \bscru Mathematical Bold Script Small U

U+1D4FF \bscrv Mathematical Bold Script Small V

U+1D500 \bscrw Mathematical Bold Script Small W

U+1D501 \bscrx Mathematical Bold Script Small X

U+1D502 \bscry Mathematical Bold Script Small Y

U+1D503 \bscrz Mathematical Bold Script Small Z

U+1D504 \frakA Mathematical Fraktur Capital A

U+1D505 \frakB Mathematical Fraktur Capital B

U+1D507 \frakD Mathematical Fraktur Capital D

U+1D508 \frakE Mathematical Fraktur Capital E

U+1D509 \frakF Mathematical Fraktur Capital F

U+1D50A \frakG Mathematical Fraktur Capital G

U+1D50D \frakJ Mathematical Fraktur Capital J

U+1D50E \frakK Mathematical Fraktur Capital K

U+1D50F \frakL Mathematical Fraktur Capital L

U+1D510 \frakM Mathematical Fraktur Capital M

U+1D511 \frakN Mathematical Fraktur Capital N

U+1D512 \frakO Mathematical Fraktur Capital O

U+1D513 \frakP Mathematical Fraktur Capital P

U+1D514 \frakQ Mathematical Fraktur Capital Q

U+1D516 \frakS Mathematical Fraktur Capital S

U+1D517 \frakT Mathematical Fraktur Capital T

U+1D518 \frakU Mathematical Fraktur Capital U

U+1D519 \frakV Mathematical Fraktur Capital V

U+1D51A \frakW Mathematical Fraktur Capital W

U+1D51B \frakX Mathematical Fraktur Capital X

U+1D51C \frakY Mathematical Fraktur Capital Y

U+1D51E \fraka Mathematical Fraktur Small A

U+1D51F \frakb Mathematical Fraktur Small B

U+1D520 \frakc Mathematical Fraktur Small C

U+1D521 \frakd Mathematical Fraktur Small D

U+1D522 \frake Mathematical Fraktur Small E

U+1D523 \frakf Mathematical Fraktur Small F

U+1D524 \frakg Mathematical Fraktur Small G

U+1D525 \frakh Mathematical Fraktur Small H

U+1D526 \fraki Mathematical Fraktur Small I

U+1D527 \frakj Mathematical Fraktur Small J

U+1D528 \frakk Mathematical Fraktur Small K

U+1D529 \frakl Mathematical Fraktur Small L

U+1D52A \frakm Mathematical Fraktur Small M

U+1D52B \frakn Mathematical Fraktur Small N

U+1D52C \frako Mathematical Fraktur Small O

U+1D52D \frakp Mathematical Fraktur Small P

U+1D52E \frakq Mathematical Fraktur Small Q

U+1D52F \frakr Mathematical Fraktur Small R

U+1D530 \fraks Mathematical Fraktur Small S

U+1D531 \frakt Mathematical Fraktur Small T

U+1D532 \fraku Mathematical Fraktur Small U

U+1D533 \frakv Mathematical Fraktur Small V

U+1D534 \frakw Mathematical Fraktur Small W

U+1D535 \frakx Mathematical Fraktur Small X

U+1D536 \fraky Mathematical Fraktur Small Y

U+1D537 \frakz Mathematical Fraktur Small Z

U+1D538 𝔸 \bbA Mathematical Double-Struck Capital A

U+1D539 𝔹 \bbB Mathematical Double-Struck Capital B

U+1D53B 𝔻 \bbD Mathematical Double-Struck Capital D

U+1D53C 𝔼 \bbE Mathematical Double-Struck Capital E

U+1D53D 𝔽 \bbF Mathematical Double-Struck Capital F

U+1D53E 𝔾 \bbG Mathematical Double-Struck Capital G

U+1D540 𝕀 \bbI Mathematical Double-Struck Capital I

U+1D541 𝕁 \bbJ Mathematical Double-Struck Capital J

U+1D542 𝕂 \bbK Mathematical Double-Struck Capital K

U+1D543 𝕃 \bbL Mathematical Double-Struck Capital L

U+1D544 𝕄 \bbM Mathematical Double-Struck Capital M

U+1D546 𝕆 \bbO Mathematical Double-Struck Capital O

U+1D54A 𝕊 \bbS Mathematical Double-Struck Capital S

U+1D54B 𝕋 \bbT Mathematical Double-Struck Capital T

U+1D54C 𝕌 \bbU Mathematical Double-Struck Capital U

U+1D54D 𝕍 \bbV Mathematical Double-Struck Capital V

U+1D54E 𝕎 \bbW Mathematical Double-Struck Capital W

U+1D54F 𝕏 \bbX Mathematical Double-Struck Capital X

U+1D550 𝕐 \bbY Mathematical Double-Struck Capital Y

U+1D552 𝕒 \bba Mathematical Double-Struck Small A

U+1D553 𝕓 \bbb Mathematical Double-Struck Small B

U+1D554 𝕔 \bbc Mathematical Double-Struck Small C

U+1D555 𝕕 \bbd Mathematical Double-Struck Small D

U+1D556 𝕖 \bbe Mathematical Double-Struck Small E

U+1D557 𝕗 \bbf Mathematical Double-Struck Small F

U+1D558 𝕘 \bbg Mathematical Double-Struck Small G

U+1D559 𝕙 \bbh Mathematical Double-Struck Small H

U+1D55A 𝕚 \bbi Mathematical Double-Struck Small I

U+1D55B 𝕛 \bbj Mathematical Double-Struck Small J

U+1D55C 𝕜 \bbk Mathematical Double-Struck Small K

U+1D55D 𝕝 \bbl Mathematical Double-Struck Small L

U+1D55E 𝕞 \bbm Mathematical Double-Struck Small M

U+1D55F 𝕟 \bbn Mathematical Double-Struck Small N

U+1D560 𝕠 \bbo Mathematical Double-Struck Small O

U+1D561 𝕡 \bbp Mathematical Double-Struck Small P

U+1D562 𝕢 \bbq Mathematical Double-Struck Small Q

U+1D563 𝕣 \bbr Mathematical Double-Struck Small R

U+1D564 𝕤 \bbs Mathematical Double-Struck Small S

U+1D565 𝕥 \bbt Mathematical Double-Struck Small T

U+1D566 𝕦 \bbu Mathematical Double-Struck Small U

U+1D567 𝕧 \bbv Mathematical Double-Struck Small V

U+1D568 𝕨 \bbw Mathematical Double-Struck Small W

U+1D569 𝕩 \bbx Mathematical Double-Struck Small X

U+1D56A 𝕪 \bby Mathematical Double-Struck Small Y

U+1D56B 𝕫 \bbz Mathematical Double-Struck Small Z

U+1D56C \bfrakA Mathematical Bold Fraktur Capital A

U+1D56D \bfrakB Mathematical Bold Fraktur Capital B

U+1D56E \bfrakC Mathematical Bold Fraktur Capital C

U+1D56F \bfrakD Mathematical Bold Fraktur Capital D

U+1D570 \bfrakE Mathematical Bold Fraktur Capital E

U+1D571 \bfrakF Mathematical Bold Fraktur Capital F

U+1D572 \bfrakG Mathematical Bold Fraktur Capital G

U+1D573 \bfrakH Mathematical Bold Fraktur Capital H

U+1D574 \bfrakI Mathematical Bold Fraktur Capital I

U+1D575 \bfrakJ Mathematical Bold Fraktur Capital J

U+1D576 \bfrakK Mathematical Bold Fraktur Capital K

U+1D577 \bfrakL Mathematical Bold Fraktur Capital L

U+1D578 \bfrakM Mathematical Bold Fraktur Capital M

U+1D579 \bfrakN Mathematical Bold Fraktur Capital N

U+1D57A \bfrakO Mathematical Bold Fraktur Capital O

U+1D57B \bfrakP Mathematical Bold Fraktur Capital P

U+1D57C \bfrakQ Mathematical Bold Fraktur Capital Q

U+1D57D \bfrakR Mathematical Bold Fraktur Capital R

U+1D57E \bfrakS Mathematical Bold Fraktur Capital S

U+1D57F \bfrakT Mathematical Bold Fraktur Capital T

U+1D580 \bfrakU Mathematical Bold Fraktur Capital U

U+1D581 \bfrakV Mathematical Bold Fraktur Capital V

U+1D582 \bfrakW Mathematical Bold Fraktur Capital W

U+1D583 \bfrakX Mathematical Bold Fraktur Capital X

U+1D584 \bfrakY Mathematical Bold Fraktur Capital Y

U+1D585 \bfrakZ Mathematical Bold Fraktur Capital Z

U+1D586 \bfraka Mathematical Bold Fraktur Small A

U+1D587 \bfrakb Mathematical Bold Fraktur Small B

U+1D588 \bfrakc Mathematical Bold Fraktur Small C

U+1D589 \bfrakd Mathematical Bold Fraktur Small D

U+1D58A \bfrake Mathematical Bold Fraktur Small E

U+1D58B \bfrakf Mathematical Bold Fraktur Small F

U+1D58C \bfrakg Mathematical Bold Fraktur Small G

U+1D58D \bfrakh Mathematical Bold Fraktur Small H

U+1D58E \bfraki Mathematical Bold Fraktur Small I

U+1D58F \bfrakj Mathematical Bold Fraktur Small J

U+1D590 \bfrakk Mathematical Bold Fraktur Small K

U+1D591 \bfrakl Mathematical Bold Fraktur Small L

U+1D592 \bfrakm Mathematical Bold Fraktur Small M

U+1D593 \bfrakn Mathematical Bold Fraktur Small N

U+1D594 \bfrako Mathematical Bold Fraktur Small O

U+1D595 \bfrakp Mathematical Bold Fraktur Small P

U+1D596 \bfrakq Mathematical Bold Fraktur Small Q

U+1D597 \bfrakr Mathematical Bold Fraktur Small R

U+1D598 \bfraks Mathematical Bold Fraktur Small S

U+1D599 \bfrakt Mathematical Bold Fraktur Small T

U+1D59A \bfraku Mathematical Bold Fraktur Small U

U+1D59B \bfrakv Mathematical Bold Fraktur Small V

U+1D59C \bfrakw Mathematical Bold Fraktur Small W

U+1D59D \bfrakx Mathematical Bold Fraktur Small X

U+1D59E \bfraky Mathematical Bold Fraktur Small Y

U+1D59F \bfrakz Mathematical Bold Fraktur Small Z

U+1D5A0 𝖠 \sansA Mathematical Sans-Serif Capital A

U+1D5A1 𝖡 \sansB Mathematical Sans-Serif Capital B

U+1D5A2 𝖢 \sansC Mathematical Sans-Serif Capital C

U+1D5A3 𝖣 \sansD Mathematical Sans-Serif Capital D

U+1D5A4 𝖤 \sansE Mathematical Sans-Serif Capital E

U+1D5A5 𝖥 \sansF Mathematical Sans-Serif Capital F

U+1D5A6 𝖦 \sansG Mathematical Sans-Serif Capital G

U+1D5A7 𝖧 \sansH Mathematical Sans-Serif Capital H

U+1D5A8 𝖨 \sansI Mathematical Sans-Serif Capital I

U+1D5A9 𝖩 \sansJ Mathematical Sans-Serif Capital J

U+1D5AA 𝖪 \sansK Mathematical Sans-Serif Capital K

U+1D5AB 𝖫 \sansL Mathematical Sans-Serif Capital L

U+1D5AC 𝖬 \sansM Mathematical Sans-Serif Capital M

U+1D5AD 𝖭 \sansN Mathematical Sans-Serif Capital N

U+1D5AE 𝖮 \sansO Mathematical Sans-Serif Capital O

U+1D5AF 𝖯 \sansP Mathematical Sans-Serif Capital P

U+1D5B0 𝖰 \sansQ Mathematical Sans-Serif Capital Q

U+1D5B1 𝖱 \sansR Mathematical Sans-Serif Capital R

U+1D5B2 𝖲 \sansS Mathematical Sans-Serif Capital S

U+1D5B3 𝖳 \sansT Mathematical Sans-Serif Capital T

U+1D5B4 𝖴 \sansU Mathematical Sans-Serif Capital U

U+1D5B5 𝖵 \sansV Mathematical Sans-Serif Capital V

U+1D5B6 𝖶 \sansW Mathematical Sans-Serif Capital W

U+1D5B7 𝖷 \sansX Mathematical Sans-Serif Capital X

U+1D5B8 𝖸 \sansY Mathematical Sans-Serif Capital Y

U+1D5B9 𝖹 \sansZ Mathematical Sans-Serif Capital Z

U+1D5BA 𝖺 \sansa Mathematical Sans-Serif Small A

U+1D5BB 𝖻 \sansb Mathematical Sans-Serif Small B

U+1D5BC 𝖼 \sansc Mathematical Sans-Serif Small C

U+1D5BD 𝖽 \sansd Mathematical Sans-Serif Small D

U+1D5BE 𝖾 \sanse Mathematical Sans-Serif Small E

U+1D5BF 𝖿 \sansf Mathematical Sans-Serif Small F

U+1D5C0 𝗀 \sansg Mathematical Sans-Serif Small G

U+1D5C1 𝗁 \sansh Mathematical Sans-Serif Small H

U+1D5C2 𝗂 \sansi Mathematical Sans-Serif Small I

U+1D5C3 𝗃 \sansj Mathematical Sans-Serif Small J

U+1D5C4 𝗄 \sansk Mathematical Sans-Serif Small K

U+1D5C5 𝗅 \sansl Mathematical Sans-Serif Small L

U+1D5C6 𝗆 \sansm Mathematical Sans-Serif Small M

U+1D5C7 𝗇 \sansn Mathematical Sans-Serif Small N

U+1D5C8 𝗈 \sanso Mathematical Sans-Serif Small O

U+1D5C9 𝗉 \sansp Mathematical Sans-Serif Small P

U+1D5CA 𝗊 \sansq Mathematical Sans-Serif Small Q

U+1D5CB 𝗋 \sansr Mathematical Sans-Serif Small R

U+1D5CC 𝗌 \sanss Mathematical Sans-Serif Small S

U+1D5CD 𝗍 \sanst Mathematical Sans-Serif Small T

U+1D5CE 𝗎 \sansu Mathematical Sans-Serif Small U

U+1D5CF 𝗏 \sansv Mathematical Sans-Serif Small V

U+1D5D0 𝗐 \sansw Mathematical Sans-Serif Small W

U+1D5D1 𝗑 \sansx Mathematical Sans-Serif Small X

U+1D5D2 𝗒 \sansy Mathematical Sans-Serif Small Y

U+1D5D3 𝗓 \sansz Mathematical Sans-Serif Small Z

U+1D5D4 \bsansA Mathematical Sans-Serif Bold Capital A

U+1D5D5 \bsansB Mathematical Sans-Serif Bold Capital B

U+1D5D6 \bsansC Mathematical Sans-Serif Bold Capital C

U+1D5D7 \bsansD Mathematical Sans-Serif Bold Capital D

U+1D5D8 \bsansE Mathematical Sans-Serif Bold Capital E

U+1D5D9 \bsansF Mathematical Sans-Serif Bold Capital F

U+1D5DA \bsansG Mathematical Sans-Serif Bold Capital G

U+1D5DB \bsansH Mathematical Sans-Serif Bold Capital H

U+1D5DC \bsansI Mathematical Sans-Serif Bold Capital I

U+1D5DD \bsansJ Mathematical Sans-Serif Bold Capital J

U+1D5DE \bsansK Mathematical Sans-Serif Bold Capital K

U+1D5DF \bsansL Mathematical Sans-Serif Bold Capital L

U+1D5E0 \bsansM Mathematical Sans-Serif Bold Capital M

U+1D5E1 \bsansN Mathematical Sans-Serif Bold Capital N

U+1D5E2 \bsansO Mathematical Sans-Serif Bold Capital O

U+1D5E3 \bsansP Mathematical Sans-Serif Bold Capital P

U+1D5E4 \bsansQ Mathematical Sans-Serif Bold Capital Q

U+1D5E5 \bsansR Mathematical Sans-Serif Bold Capital R

U+1D5E6 \bsansS Mathematical Sans-Serif Bold Capital S

U+1D5E7 \bsansT Mathematical Sans-Serif Bold Capital T

U+1D5E8 \bsansU Mathematical Sans-Serif Bold Capital U

U+1D5E9 \bsansV Mathematical Sans-Serif Bold Capital V

U+1D5EA \bsansW Mathematical Sans-Serif Bold Capital W

U+1D5EB \bsansX Mathematical Sans-Serif Bold Capital X

U+1D5EC \bsansY Mathematical Sans-Serif Bold Capital Y

U+1D5ED \bsansZ Mathematical Sans-Serif Bold Capital Z

U+1D5EE \bsansa Mathematical Sans-Serif Bold Small A

U+1D5EF \bsansb Mathematical Sans-Serif Bold Small B

U+1D5F0 \bsansc Mathematical Sans-Serif Bold Small C

U+1D5F1 \bsansd Mathematical Sans-Serif Bold Small D

U+1D5F2 \bsanse Mathematical Sans-Serif Bold Small E

U+1D5F3 \bsansf Mathematical Sans-Serif Bold Small F

U+1D5F4 \bsansg Mathematical Sans-Serif Bold Small G

U+1D5F5 \bsansh Mathematical Sans-Serif Bold Small H

U+1D5F6 \bsansi Mathematical Sans-Serif Bold Small I

U+1D5F7 \bsansj Mathematical Sans-Serif Bold Small J

U+1D5F8 \bsansk Mathematical Sans-Serif Bold Small K

U+1D5F9 \bsansl Mathematical Sans-Serif Bold Small L

U+1D5FA \bsansm Mathematical Sans-Serif Bold Small M

U+1D5FB \bsansn Mathematical Sans-Serif Bold Small N

U+1D5FC \bsanso Mathematical Sans-Serif Bold Small O

U+1D5FD \bsansp Mathematical Sans-Serif Bold Small P

U+1D5FE \bsansq Mathematical Sans-Serif Bold Small Q

U+1D5FF \bsansr Mathematical Sans-Serif Bold Small R

U+1D600 \bsanss Mathematical Sans-Serif Bold Small S

U+1D601 \bsanst Mathematical Sans-Serif Bold Small T

U+1D602 \bsansu Mathematical Sans-Serif Bold Small U

U+1D603 \bsansv Mathematical Sans-Serif Bold Small V

U+1D604 \bsansw Mathematical Sans-Serif Bold Small W

U+1D605 \bsansx Mathematical Sans-Serif Bold Small X

U+1D606 \bsansy Mathematical Sans-Serif Bold Small Y

U+1D607 \bsansz Mathematical Sans-Serif Bold Small Z

U+1D608 \isansA Mathematical Sans-Serif Italic Capital A

U+1D609 \isansB Mathematical Sans-Serif Italic Capital B

U+1D60A \isansC Mathematical Sans-Serif Italic Capital C

U+1D60B \isansD Mathematical Sans-Serif Italic Capital D

U+1D60C \isansE Mathematical Sans-Serif Italic Capital E

U+1D60D \isansF Mathematical Sans-Serif Italic Capital F

U+1D60E \isansG Mathematical Sans-Serif Italic Capital G

U+1D60F \isansH Mathematical Sans-Serif Italic Capital H

U+1D610 \isansI Mathematical Sans-Serif Italic Capital I

U+1D611 \isansJ Mathematical Sans-Serif Italic Capital J

U+1D612 \isansK Mathematical Sans-Serif Italic Capital K

U+1D613 \isansL Mathematical Sans-Serif Italic Capital L

U+1D614 \isansM Mathematical Sans-Serif Italic Capital M

U+1D615 \isansN Mathematical Sans-Serif Italic Capital N

U+1D616 \isansO Mathematical Sans-Serif Italic Capital O

U+1D617 \isansP Mathematical Sans-Serif Italic Capital P

U+1D618 \isansQ Mathematical Sans-Serif Italic Capital Q

U+1D619 \isansR Mathematical Sans-Serif Italic Capital R

U+1D61A \isansS Mathematical Sans-Serif Italic Capital S

U+1D61B \isansT Mathematical Sans-Serif Italic Capital T

U+1D61C \isansU Mathematical Sans-Serif Italic Capital U

U+1D61D \isansV Mathematical Sans-Serif Italic Capital V

U+1D61E \isansW Mathematical Sans-Serif Italic Capital W

U+1D61F \isansX Mathematical Sans-Serif Italic Capital X

U+1D620 \isansY Mathematical Sans-Serif Italic Capital Y

U+1D621 \isansZ Mathematical Sans-Serif Italic Capital Z

U+1D622 \isansa Mathematical Sans-Serif Italic Small A

U+1D623 \isansb Mathematical Sans-Serif Italic Small B

U+1D624 \isansc Mathematical Sans-Serif Italic Small C

U+1D625 \isansd Mathematical Sans-Serif Italic Small D

U+1D626 \isanse Mathematical Sans-Serif Italic Small E

U+1D627 \isansf Mathematical Sans-Serif Italic Small F

U+1D628 \isansg Mathematical Sans-Serif Italic Small G

U+1D629 \isansh Mathematical Sans-Serif Italic Small H

U+1D62A \isansi Mathematical Sans-Serif Italic Small I

U+1D62B \isansj Mathematical Sans-Serif Italic Small J

U+1D62C \isansk Mathematical Sans-Serif Italic Small K

U+1D62D \isansl Mathematical Sans-Serif Italic Small L

U+1D62E \isansm Mathematical Sans-Serif Italic Small M

U+1D62F \isansn Mathematical Sans-Serif Italic Small N

U+1D630 \isanso Mathematical Sans-Serif Italic Small O

U+1D631 \isansp Mathematical Sans-Serif Italic Small P

U+1D632 \isansq Mathematical Sans-Serif Italic Small Q

U+1D633 \isansr Mathematical Sans-Serif Italic Small R

U+1D634 \isanss Mathematical Sans-Serif Italic Small S

U+1D635 \isanst Mathematical Sans-Serif Italic Small T

U+1D636 \isansu Mathematical Sans-Serif Italic Small U

U+1D637 \isansv Mathematical Sans-Serif Italic Small V

U+1D638 \isansw Mathematical Sans-Serif Italic Small W

U+1D639 \isansx Mathematical Sans-Serif Italic Small X

U+1D63A \isansy Mathematical Sans-Serif Italic Small Y

U+1D63B \isansz Mathematical Sans-Serif Italic Small Z

U+1D63C \bisansA Mathematical Sans-Serif Bold Italic Capital A

U+1D63D \bisansB Mathematical Sans-Serif Bold Italic Capital B

U+1D63E \bisansC Mathematical Sans-Serif Bold Italic Capital C

U+1D63F \bisansD Mathematical Sans-Serif Bold Italic Capital D

U+1D640 \bisansE Mathematical Sans-Serif Bold Italic Capital E

U+1D641 \bisansF Mathematical Sans-Serif Bold Italic Capital F

U+1D642 \bisansG Mathematical Sans-Serif Bold Italic Capital G

U+1D643 \bisansH Mathematical Sans-Serif Bold Italic Capital H

U+1D644 \bisansI Mathematical Sans-Serif Bold Italic Capital I

U+1D645 \bisansJ Mathematical Sans-Serif Bold Italic Capital J

U+1D646 \bisansK Mathematical Sans-Serif Bold Italic Capital K

U+1D647 \bisansL Mathematical Sans-Serif Bold Italic Capital L

U+1D648 \bisansM Mathematical Sans-Serif Bold Italic Capital M

U+1D649 \bisansN Mathematical Sans-Serif Bold Italic Capital N

U+1D64A \bisansO Mathematical Sans-Serif Bold Italic Capital O

U+1D64B \bisansP Mathematical Sans-Serif Bold Italic Capital P

U+1D64C \bisansQ Mathematical Sans-Serif Bold Italic Capital Q

U+1D64D \bisansR Mathematical Sans-Serif Bold Italic Capital R

U+1D64E \bisansS Mathematical Sans-Serif Bold Italic Capital S

U+1D64F \bisansT Mathematical Sans-Serif Bold Italic Capital T

U+1D650 \bisansU Mathematical Sans-Serif Bold Italic Capital U

U+1D651 \bisansV Mathematical Sans-Serif Bold Italic Capital V

U+1D652 \bisansW Mathematical Sans-Serif Bold Italic Capital W

U+1D653 \bisansX Mathematical Sans-Serif Bold Italic Capital X

U+1D654 \bisansY Mathematical Sans-Serif Bold Italic Capital Y

U+1D655 \bisansZ Mathematical Sans-Serif Bold Italic Capital Z

U+1D656 \bisansa Mathematical Sans-Serif Bold Italic Small A

U+1D657 \bisansb Mathematical Sans-Serif Bold Italic Small B

U+1D658 \bisansc Mathematical Sans-Serif Bold Italic Small C

U+1D659 \bisansd Mathematical Sans-Serif Bold Italic Small D

U+1D65A \bisanse Mathematical Sans-Serif Bold Italic Small E

U+1D65B \bisansf Mathematical Sans-Serif Bold Italic Small F

U+1D65C \bisansg Mathematical Sans-Serif Bold Italic Small G

U+1D65D \bisansh Mathematical Sans-Serif Bold Italic Small H

U+1D65E \bisansi Mathematical Sans-Serif Bold Italic Small I

U+1D65F \bisansj Mathematical Sans-Serif Bold Italic Small J

U+1D660 \bisansk Mathematical Sans-Serif Bold Italic Small K

U+1D661 \bisansl Mathematical Sans-Serif Bold Italic Small L

U+1D662 \bisansm Mathematical Sans-Serif Bold Italic Small M

U+1D663 \bisansn Mathematical Sans-Serif Bold Italic Small N

U+1D664 \bisanso Mathematical Sans-Serif Bold Italic Small O

U+1D665 \bisansp Mathematical Sans-Serif Bold Italic Small P

U+1D666 \bisansq Mathematical Sans-Serif Bold Italic Small Q

U+1D667 \bisansr Mathematical Sans-Serif Bold Italic Small R

U+1D668 \bisanss Mathematical Sans-Serif Bold Italic Small S

U+1D669 \bisanst Mathematical Sans-Serif Bold Italic Small T

U+1D66A \bisansu Mathematical Sans-Serif Bold Italic Small U

U+1D66B \bisansv Mathematical Sans-Serif Bold Italic Small V

U+1D66C \bisansw Mathematical Sans-Serif Bold Italic Small W

U+1D66D \bisansx Mathematical Sans-Serif Bold Italic Small X

U+1D66E \bisansy Mathematical Sans-Serif Bold Italic Small Y

U+1D66F \bisansz Mathematical Sans-Serif Bold Italic Small Z

U+1D670 \ttA Mathematical Monospace Capital A

U+1D671 \ttB Mathematical Monospace Capital B

U+1D672 \ttC Mathematical Monospace Capital C

U+1D673 \ttD Mathematical Monospace Capital D

U+1D674 \ttE Mathematical Monospace Capital E

U+1D675 \ttF Mathematical Monospace Capital F

U+1D676 \ttG Mathematical Monospace Capital G

U+1D677 \ttH Mathematical Monospace Capital H

U+1D678 \ttI Mathematical Monospace Capital I

U+1D679 \ttJ Mathematical Monospace Capital J

U+1D67A \ttK Mathematical Monospace Capital K

U+1D67B \ttL Mathematical Monospace Capital L

U+1D67C \ttM Mathematical Monospace Capital M

U+1D67D \ttN Mathematical Monospace Capital N

U+1D67E \ttO Mathematical Monospace Capital O

U+1D67F \ttP Mathematical Monospace Capital P

U+1D680 \ttQ Mathematical Monospace Capital Q

U+1D681 \ttR Mathematical Monospace Capital R

U+1D682 \ttS Mathematical Monospace Capital S

U+1D683 \ttT Mathematical Monospace Capital T

U+1D684 \ttU Mathematical Monospace Capital U

U+1D685 \ttV Mathematical Monospace Capital V

U+1D686 \ttW Mathematical Monospace Capital W

U+1D687 \ttX Mathematical Monospace Capital X

U+1D688 \ttY Mathematical Monospace Capital Y

U+1D689 \ttZ Mathematical Monospace Capital Z

U+1D68A \tta Mathematical Monospace Small A

U+1D68B \ttb Mathematical Monospace Small B

U+1D68C \ttc Mathematical Monospace Small C

U+1D68D \ttd Mathematical Monospace Small D

U+1D68E \tte Mathematical Monospace Small E

U+1D68F \ttf Mathematical Monospace Small F

U+1D690 \ttg Mathematical Monospace Small G

U+1D691 \tth Mathematical Monospace Small H

U+1D692 \tti Mathematical Monospace Small I

U+1D693 \ttj Mathematical Monospace Small J

U+1D694 \ttk Mathematical Monospace Small K

U+1D695 \ttl Mathematical Monospace Small L

U+1D696 \ttm Mathematical Monospace Small M

U+1D697 \ttn Mathematical Monospace Small N

U+1D698 \tto Mathematical Monospace Small O

U+1D699 \ttp Mathematical Monospace Small P

U+1D69A \ttq Mathematical Monospace Small Q

U+1D69B \ttr Mathematical Monospace Small R

U+1D69C \tts Mathematical Monospace Small S

U+1D69D \ttt Mathematical Monospace Small T

U+1D69E \ttu Mathematical Monospace Small U

U+1D69F \ttv Mathematical Monospace Small V

U+1D6A0 \ttw Mathematical Monospace Small W

U+1D6A1 \ttx Mathematical Monospace Small X

U+1D6A2 \tty Mathematical Monospace Small Y

U+1D6A3 \ttz Mathematical Monospace Small Z

U+1D6A4 \itimath Mathematical Italic Small Dotless I

U+1D6A5 \itjmath Mathematical Italic Small Dotless J

U+1D6A8 \bfAlpha Mathematical Bold Capital Alpha

U+1D6A9 \bfBeta Mathematical Bold Capital Beta

U+1D6AA \bfGamma Mathematical Bold Capital Gamma

U+1D6AB \bfDelta Mathematical Bold Capital Delta

U+1D6AC \bfEpsilon Mathematical Bold Capital Epsilon

U+1D6AD \bfZeta Mathematical Bold Capital Zeta

U+1D6AE \bfEta Mathematical Bold Capital Eta

U+1D6AF \bfTheta Mathematical Bold Capital Theta

U+1D6B0 \bfIota Mathematical Bold Capital Iota

U+1D6B1 \bfKappa Mathematical Bold Capital Kappa

U+1D6B2 \bfLambda Mathematical Bold Capital Lamda

U+1D6B3 \bfMu Mathematical Bold Capital Mu

U+1D6B4 \bfNu Mathematical Bold Capital Nu

U+1D6B5 \bfXi Mathematical Bold Capital Xi

U+1D6B6 \bfOmicron Mathematical Bold Capital Omicron

U+1D6B7 \bfPi Mathematical Bold Capital Pi

U+1D6B8 \bfRho Mathematical Bold Capital Rho

U+1D6B9 \bfvarTheta Mathematical Bold Capital Theta Symbol

U+1D6BA \bfSigma Mathematical Bold Capital Sigma

U+1D6BB \bfTau Mathematical Bold Capital Tau

U+1D6BC \bfUpsilon Mathematical Bold Capital Upsilon

U+1D6BD \bfPhi Mathematical Bold Capital Phi

U+1D6BE \bfChi Mathematical Bold Capital Chi

U+1D6BF \bfPsi Mathematical Bold Capital Psi

U+1D6C0 \bfOmega Mathematical Bold Capital Omega

U+1D6C1 \bfnabla Mathematical Bold Nabla

U+1D6C2 \bfalpha Mathematical Bold Small Alpha

U+1D6C3 \bfbeta Mathematical Bold Small Beta

U+1D6C4 \bfgamma Mathematical Bold Small Gamma

U+1D6C5 \bfdelta Mathematical Bold Small Delta

U+1D6C6 \bfvarepsilon Mathematical Bold Small Epsilon

U+1D6C7 \bfzeta Mathematical Bold Small Zeta

U+1D6C8 \bfeta Mathematical Bold Small Eta

U+1D6C9 \bftheta Mathematical Bold Small Theta

U+1D6CA \bfiota Mathematical Bold Small Iota

U+1D6CB \bfkappa Mathematical Bold Small Kappa

U+1D6CC \bflambda Mathematical Bold Small Lamda

U+1D6CD \bfmu Mathematical Bold Small Mu

U+1D6CE \bfnu Mathematical Bold Small Nu

U+1D6CF \bfxi Mathematical Bold Small Xi

U+1D6D0 \bfomicron Mathematical Bold Small Omicron

U+1D6D1 \bfpi Mathematical Bold Small Pi

U+1D6D2 \bfrho Mathematical Bold Small Rho

U+1D6D3 \bfvarsigma Mathematical Bold Small Final Sigma

U+1D6D4 \bfsigma Mathematical Bold Small Sigma

U+1D6D5 \bftau Mathematical Bold Small Tau

U+1D6D6 \bfupsilon Mathematical Bold Small Upsilon

U+1D6D7 \bfvarphi Mathematical Bold Small Phi

U+1D6D8 \bfchi Mathematical Bold Small Chi

U+1D6D9 \bfpsi Mathematical Bold Small Psi

U+1D6DA \bfomega Mathematical Bold Small Omega

U+1D6DB \bfpartial Mathematical Bold Partial Differential

U+1D6DC \bfepsilon Mathematical Bold Epsilon Symbol

U+1D6DD \bfvartheta Mathematical Bold Theta Symbol

U+1D6DE \bfvarkappa Mathematical Bold Kappa Symbol

U+1D6DF \bfphi Mathematical Bold Phi Symbol

U+1D6E0 \bfvarrho Mathematical Bold Rho Symbol

U+1D6E1 \bfvarpi Mathematical Bold Pi Symbol

U+1D6E2 \itAlpha Mathematical Italic Capital Alpha

U+1D6E3 \itBeta Mathematical Italic Capital Beta

U+1D6E4 \itGamma Mathematical Italic Capital Gamma

U+1D6E5 \itDelta Mathematical Italic Capital Delta

U+1D6E6 \itEpsilon Mathematical Italic Capital Epsilon

U+1D6E7 \itZeta Mathematical Italic Capital Zeta

U+1D6E8 \itEta Mathematical Italic Capital Eta

U+1D6E9 \itTheta Mathematical Italic Capital Theta

U+1D6EA \itIota Mathematical Italic Capital Iota

U+1D6EB \itKappa Mathematical Italic Capital Kappa

U+1D6EC \itLambda Mathematical Italic Capital Lamda

U+1D6ED \itMu Mathematical Italic Capital Mu

U+1D6EE \itNu Mathematical Italic Capital Nu

U+1D6EF \itXi Mathematical Italic Capital Xi

U+1D6F0 \itOmicron Mathematical Italic Capital Omicron

U+1D6F1 \itPi Mathematical Italic Capital Pi

U+1D6F2 \itRho Mathematical Italic Capital Rho

U+1D6F3 \itvarTheta Mathematical Italic Capital Theta Symbol

U+1D6F4 \itSigma Mathematical Italic Capital Sigma

U+1D6F5 \itTau Mathematical Italic Capital Tau

U+1D6F6 \itUpsilon Mathematical Italic Capital Upsilon

U+1D6F7 \itPhi Mathematical Italic Capital Phi

U+1D6F8 \itChi Mathematical Italic Capital Chi

U+1D6F9 \itPsi Mathematical Italic Capital Psi

U+1D6FA \itOmega Mathematical Italic Capital Omega

U+1D6FB \itnabla Mathematical Italic Nabla

U+1D6FC \italpha Mathematical Italic Small Alpha

U+1D6FD \itbeta Mathematical Italic Small Beta

U+1D6FE \itgamma Mathematical Italic Small Gamma

U+1D6FF \itdelta Mathematical Italic Small Delta

U+1D700 \itvarepsilon Mathematical Italic Small Epsilon

U+1D701 \itzeta Mathematical Italic Small Zeta

U+1D702 \iteta Mathematical Italic Small Eta

U+1D703 \ittheta Mathematical Italic Small Theta

U+1D704 \itiota Mathematical Italic Small Iota

U+1D705 \itkappa Mathematical Italic Small Kappa

U+1D706 \itlambda Mathematical Italic Small Lamda

U+1D707 \itmu Mathematical Italic Small Mu

U+1D708 \itnu Mathematical Italic Small Nu

U+1D709 \itxi Mathematical Italic Small Xi

U+1D70A \itomicron Mathematical Italic Small Omicron

U+1D70B \itpi Mathematical Italic Small Pi

U+1D70C \itrho Mathematical Italic Small Rho

U+1D70D \itvarsigma Mathematical Italic Small Final Sigma

U+1D70E \itsigma Mathematical Italic Small Sigma

U+1D70F \ittau Mathematical Italic Small Tau

U+1D710 \itupsilon Mathematical Italic Small Upsilon

U+1D711 \itvarphi Mathematical Italic Small Phi

U+1D712 \itchi Mathematical Italic Small Chi

U+1D713 \itpsi Mathematical Italic Small Psi

U+1D714 \itomega Mathematical Italic Small Omega

U+1D715 \itpartial Mathematical Italic Partial Differential

U+1D716 \itepsilon Mathematical Italic Epsilon Symbol

U+1D717 \itvartheta Mathematical Italic Theta Symbol

U+1D718 \itvarkappa Mathematical Italic Kappa Symbol

U+1D719 \itphi Mathematical Italic Phi Symbol

U+1D71A \itvarrho Mathematical Italic Rho Symbol

U+1D71B \itvarpi Mathematical Italic Pi Symbol

U+1D71C \biAlpha Mathematical Bold Italic Capital Alpha

U+1D71D \biBeta Mathematical Bold Italic Capital Beta

U+1D71E \biGamma Mathematical Bold Italic Capital Gamma

U+1D71F \biDelta Mathematical Bold Italic Capital Delta

U+1D720 \biEpsilon Mathematical Bold Italic Capital Epsilon

U+1D721 \biZeta Mathematical Bold Italic Capital Zeta

U+1D722 \biEta Mathematical Bold Italic Capital Eta

U+1D723 \biTheta Mathematical Bold Italic Capital Theta

U+1D724 \biIota Mathematical Bold Italic Capital Iota

U+1D725 \biKappa Mathematical Bold Italic Capital Kappa

U+1D726 \biLambda Mathematical Bold Italic Capital Lamda

U+1D727 \biMu Mathematical Bold Italic Capital Mu

U+1D728 \biNu Mathematical Bold Italic Capital Nu

U+1D729 \biXi Mathematical Bold Italic Capital Xi

U+1D72A \biOmicron Mathematical Bold Italic Capital Omicron

U+1D72B \biPi Mathematical Bold Italic Capital Pi

U+1D72C \biRho Mathematical Bold Italic Capital Rho

U+1D72D \bivarTheta Mathematical Bold Italic Capital Theta Symbol

U+1D72E \biSigma Mathematical Bold Italic Capital Sigma

U+1D72F \biTau Mathematical Bold Italic Capital Tau

U+1D730 \biUpsilon Mathematical Bold Italic Capital Upsilon

U+1D731 \biPhi Mathematical Bold Italic Capital Phi

U+1D732 \biChi Mathematical Bold Italic Capital Chi

U+1D733 \biPsi Mathematical Bold Italic Capital Psi

U+1D734 \biOmega Mathematical Bold Italic Capital Omega

U+1D735 \binabla Mathematical Bold Italic Nabla

U+1D736 \bialpha Mathematical Bold Italic Small Alpha

U+1D737 \bibeta Mathematical Bold Italic Small Beta

U+1D738 \bigamma Mathematical Bold Italic Small Gamma

U+1D739 \bidelta Mathematical Bold Italic Small Delta

U+1D73A \bivarepsilon Mathematical Bold Italic Small Epsilon

U+1D73B \bizeta Mathematical Bold Italic Small Zeta

U+1D73C \bieta Mathematical Bold Italic Small Eta

U+1D73D \bitheta Mathematical Bold Italic Small Theta

U+1D73E \biiota Mathematical Bold Italic Small Iota

U+1D73F \bikappa Mathematical Bold Italic Small Kappa

U+1D740 \bilambda Mathematical Bold Italic Small Lamda

U+1D741 \bimu Mathematical Bold Italic Small Mu

U+1D742 \binu Mathematical Bold Italic Small Nu

U+1D743 \bixi Mathematical Bold Italic Small Xi

U+1D744 \biomicron Mathematical Bold Italic Small Omicron

U+1D745 \bipi Mathematical Bold Italic Small Pi

U+1D746 \birho Mathematical Bold Italic Small Rho

U+1D747 \bivarsigma Mathematical Bold Italic Small Final Sigma

U+1D748 \bisigma Mathematical Bold Italic Small Sigma

U+1D749 \bitau Mathematical Bold Italic Small Tau

U+1D74A \biupsilon Mathematical Bold Italic Small Upsilon

U+1D74B \bivarphi Mathematical Bold Italic Small Phi

U+1D74C \bichi Mathematical Bold Italic Small Chi

U+1D74D \bipsi Mathematical Bold Italic Small Psi

U+1D74E \biomega Mathematical Bold Italic Small Omega

U+1D74F \bipartial Mathematical Bold Italic Partial Differential

U+1D750 \biepsilon Mathematical Bold Italic Epsilon Symbol

U+1D751 \bivartheta Mathematical Bold Italic Theta Symbol

U+1D752 \bivarkappa Mathematical Bold Italic Kappa Symbol

U+1D753 \biphi Mathematical Bold Italic Phi Symbol

U+1D754 \bivarrho Mathematical Bold Italic Rho Symbol

U+1D755 \bivarpi Mathematical Bold Italic Pi Symbol

U+1D756 \bsansAlpha Mathematical Sans-Serif Bold Capital Alpha

U+1D757 \bsansBeta Mathematical Sans-Serif Bold Capital Beta

U+1D758 \bsansGamma Mathematical Sans-Serif Bold Capital Gamma

U+1D759 \bsansDelta Mathematical Sans-Serif Bold Capital Delta

U+1D75A \bsansEpsilon Mathematical Sans-Serif Bold Capital Epsilon

U+1D75B \bsansZeta Mathematical Sans-Serif Bold Capital Zeta

U+1D75C \bsansEta Mathematical Sans-Serif Bold Capital Eta

U+1D75D \bsansTheta Mathematical Sans-Serif Bold Capital Theta

U+1D75E \bsansIota Mathematical Sans-Serif Bold Capital Iota

U+1D75F \bsansKappa Mathematical Sans-Serif Bold Capital Kappa

U+1D760 \bsansLambda Mathematical Sans-Serif Bold Capital Lamda

U+1D761 \bsansMu Mathematical Sans-Serif Bold Capital Mu

U+1D762 \bsansNu Mathematical Sans-Serif Bold Capital Nu

U+1D763 \bsansXi Mathematical Sans-Serif Bold Capital Xi

U+1D764 \bsansOmicron Mathematical Sans-Serif Bold Capital Omicron

U+1D765 \bsansPi Mathematical Sans-Serif Bold Capital Pi

U+1D766 \bsansRho Mathematical Sans-Serif Bold Capital Rho

U+1D767 \bsansvarTheta Mathematical Sans-Serif Bold Capital Theta Symbol

U+1D768 \bsansSigma Mathematical Sans-Serif Bold Capital Sigma

U+1D769 \bsansTau Mathematical Sans-Serif Bold Capital Tau

U+1D76A \bsansUpsilon Mathematical Sans-Serif Bold Capital Upsilon

U+1D76B \bsansPhi Mathematical Sans-Serif Bold Capital Phi

U+1D76C \bsansChi Mathematical Sans-Serif Bold Capital Chi

U+1D76D \bsansPsi Mathematical Sans-Serif Bold Capital Psi

U+1D76E \bsansOmega Mathematical Sans-Serif Bold Capital Omega

U+1D76F \bsansnabla Mathematical Sans-Serif Bold Nabla

U+1D770 \bsansalpha Mathematical Sans-Serif Bold Small Alpha

U+1D771 \bsansbeta Mathematical Sans-Serif Bold Small Beta

U+1D772 \bsansgamma Mathematical Sans-Serif Bold Small Gamma

U+1D773 \bsansdelta Mathematical Sans-Serif Bold Small Delta

U+1D774 \bsansvarepsilon Mathematical Sans-Serif Bold Small Epsilon

U+1D775 \bsanszeta Mathematical Sans-Serif Bold Small Zeta

U+1D776 \bsanseta Mathematical Sans-Serif Bold Small Eta

U+1D777 \bsanstheta Mathematical Sans-Serif Bold Small Theta

U+1D778 \bsansiota Mathematical Sans-Serif Bold Small Iota

U+1D779 \bsanskappa Mathematical Sans-Serif Bold Small Kappa

U+1D77A \bsanslambda Mathematical Sans-Serif Bold Small Lamda

U+1D77B \bsansmu Mathematical Sans-Serif Bold Small Mu

U+1D77C \bsansnu Mathematical Sans-Serif Bold Small Nu

U+1D77D \bsansxi Mathematical Sans-Serif Bold Small Xi

U+1D77E \bsansomicron Mathematical Sans-Serif Bold Small Omicron

U+1D77F \bsanspi Mathematical Sans-Serif Bold Small Pi

U+1D780 \bsansrho Mathematical Sans-Serif Bold Small Rho

U+1D781 \bsansvarsigma Mathematical Sans-Serif Bold Small Final Sigma

U+1D782 \bsanssigma Mathematical Sans-Serif Bold Small Sigma

U+1D783 \bsanstau Mathematical Sans-Serif Bold Small Tau

U+1D784 \bsansupsilon Mathematical Sans-Serif Bold Small Upsilon

U+1D785 \bsansvarphi Mathematical Sans-Serif Bold Small Phi

U+1D786 \bsanschi Mathematical Sans-Serif Bold Small Chi

U+1D787 \bsanspsi Mathematical Sans-Serif Bold Small Psi

U+1D788 \bsansomega Mathematical Sans-Serif Bold Small Omega

U+1D789 \bsanspartial Mathematical Sans-Serif Bold Partial Differential

U+1D78A \bsansepsilon Mathematical Sans-Serif Bold Epsilon Symbol

U+1D78B \bsansvartheta Mathematical Sans-Serif Bold Theta Symbol

U+1D78C \bsansvarkappa Mathematical Sans-Serif Bold Kappa Symbol

U+1D78D \bsansphi Mathematical Sans-Serif Bold Phi Symbol

U+1D78E \bsansvarrho Mathematical Sans-Serif Bold Rho Symbol

U+1D78F \bsansvarpi Mathematical Sans-Serif Bold Pi Symbol

U+1D790 \bisansAlpha Mathematical Sans-Serif Bold Italic Capital Alpha

U+1D791 \bisansBeta Mathematical Sans-Serif Bold Italic Capital Beta

U+1D792 \bisansGamma Mathematical Sans-Serif Bold Italic Capital Gamma

U+1D793 \bisansDelta Mathematical Sans-Serif Bold Italic Capital Delta

U+1D794 \bisansEpsilon Mathematical Sans-Serif Bold Italic Capital Epsilon

U+1D795 \bisansZeta Mathematical Sans-Serif Bold Italic Capital Zeta

U+1D796 \bisansEta Mathematical Sans-Serif Bold Italic Capital Eta

U+1D797 \bisansTheta Mathematical Sans-Serif Bold Italic Capital Theta

U+1D798 \bisansIota Mathematical Sans-Serif Bold Italic Capital Iota

U+1D799 \bisansKappa Mathematical Sans-Serif Bold Italic Capital Kappa

U+1D79A \bisansLambda Mathematical Sans-Serif Bold Italic Capital Lamda

U+1D79B \bisansMu Mathematical Sans-Serif Bold Italic Capital Mu

U+1D79C \bisansNu Mathematical Sans-Serif Bold Italic Capital Nu

U+1D79D \bisansXi Mathematical Sans-Serif Bold Italic Capital Xi

U+1D79E \bisansOmicron Mathematical Sans-Serif Bold Italic Capital Omicron

U+1D79F \bisansPi Mathematical Sans-Serif Bold Italic Capital Pi

U+1D7A0 \bisansRho Mathematical Sans-Serif Bold Italic Capital Rho

U+1D7A1 \bisansvarTheta Mathematical Sans-Serif Bold Italic Capital Theta

Symbol

U+1D7A2 \bisansSigma Mathematical Sans-Serif Bold Italic Capital Sigma

U+1D7A3 \bisansTau Mathematical Sans-Serif Bold Italic Capital Tau

U+1D7A4 \bisansUpsilon Mathematical Sans-Serif Bold Italic Capital Upsilon

U+1D7A5 \bisansPhi Mathematical Sans-Serif Bold Italic Capital Phi

U+1D7A6 \bisansChi Mathematical Sans-Serif Bold Italic Capital Chi

U+1D7A7 \bisansPsi Mathematical Sans-Serif Bold Italic Capital Psi

U+1D7A8 \bisansOmega Mathematical Sans-Serif Bold Italic Capital Omega

U+1D7A9 \bisansnabla Mathematical Sans-Serif Bold Italic Nabla

U+1D7AA \bisansalpha Mathematical Sans-Serif Bold Italic Small Alpha

U+1D7AB \bisansbeta Mathematical Sans-Serif Bold Italic Small Beta

U+1D7AC \bisansgamma Mathematical Sans-Serif Bold Italic Small Gamma

U+1D7AD \bisansdelta Mathematical Sans-Serif Bold Italic Small Delta

U+1D7AE \bisansvarepsilon Mathematical Sans-Serif Bold Italic Small Epsilon

U+1D7AF \bisanszeta Mathematical Sans-Serif Bold Italic Small Zeta

U+1D7B0 \bisanseta Mathematical Sans-Serif Bold Italic Small Eta

U+1D7B1 \bisanstheta Mathematical Sans-Serif Bold Italic Small Theta

U+1D7B2 \bisansiota Mathematical Sans-Serif Bold Italic Small Iota

U+1D7B3 \bisanskappa Mathematical Sans-Serif Bold Italic Small Kappa

U+1D7B4 \bisanslambda Mathematical Sans-Serif Bold Italic Small Lamda

U+1D7B5 \bisansmu Mathematical Sans-Serif Bold Italic Small Mu

U+1D7B6 \bisansnu Mathematical Sans-Serif Bold Italic Small Nu

U+1D7B7 \bisansxi Mathematical Sans-Serif Bold Italic Small Xi

U+1D7B8 \bisansomicron Mathematical Sans-Serif Bold Italic Small Omicron

U+1D7B9 \bisanspi Mathematical Sans-Serif Bold Italic Small Pi

U+1D7BA \bisansrho Mathematical Sans-Serif Bold Italic Small Rho

U+1D7BB \bisansvarsigma Mathematical Sans-Serif Bold Italic Small Final Sigma

U+1D7BC \bisanssigma Mathematical Sans-Serif Bold Italic Small Sigma

U+1D7BD \bisanstau Mathematical Sans-Serif Bold Italic Small Tau

U+1D7BE \bisansupsilon Mathematical Sans-Serif Bold Italic Small Upsilon

U+1D7BF \bisansvarphi Mathematical Sans-Serif Bold Italic Small Phi

U+1D7C0 \bisanschi Mathematical Sans-Serif Bold Italic Small Chi

U+1D7C1 \bisanspsi Mathematical Sans-Serif Bold Italic Small Psi

U+1D7C2 \bisansomega Mathematical Sans-Serif Bold Italic Small Omega

U+1D7C3 \bisanspartial Mathematical Sans-Serif Bold Italic Partial

Differential

U+1D7C4 \bisansepsilon Mathematical Sans-Serif Bold Italic Epsilon Symbol

U+1D7C5 \bisansvartheta Mathematical Sans-Serif Bold Italic Theta Symbol

U+1D7C6 \bisansvarkappa Mathematical Sans-Serif Bold Italic Kappa Symbol

U+1D7C7 \bisansphi Mathematical Sans-Serif Bold Italic Phi Symbol

U+1D7C8 \bisansvarrho Mathematical Sans-Serif Bold Italic Rho Symbol

U+1D7C9 \bisansvarpi Mathematical Sans-Serif Bold Italic Pi Symbol

U+1D7CA \bfDigamma Mathematical Bold Capital Digamma

U+1D7CB \bfdigamma Mathematical Bold Small Digamma

U+1D7CE \bfzero Mathematical Bold Digit Zero

U+1D7CF \bfone Mathematical Bold Digit One

U+1D7D0 \bftwo Mathematical Bold Digit Two

U+1D7D1 \bfthree Mathematical Bold Digit Three

U+1D7D2 \bffour Mathematical Bold Digit Four

U+1D7D3 \bffive Mathematical Bold Digit Five

U+1D7D4 \bfsix Mathematical Bold Digit Six

U+1D7D5 \bfseven Mathematical Bold Digit Seven

U+1D7D6 \bfeight Mathematical Bold Digit Eight

U+1D7D7 \bfnine Mathematical Bold Digit Nine

U+1D7D8 𝟘 \bbzero Mathematical Double-Struck Digit Zero

U+1D7D9 𝟙 \bbone Mathematical Double-Struck Digit One

U+1D7DA 𝟚 \bbtwo Mathematical Double-Struck Digit Two

U+1D7DB 𝟛 \bbthree Mathematical Double-Struck Digit Three

U+1D7DC 𝟜 \bbfour Mathematical Double-Struck Digit Four

U+1D7DD 𝟝 \bbfive Mathematical Double-Struck Digit Five

U+1D7DE 𝟞 \bbsix Mathematical Double-Struck Digit Six

U+1D7DF 𝟟 \bbseven Mathematical Double-Struck Digit Seven

U+1D7E0 𝟠 \bbeight Mathematical Double-Struck Digit Eight

U+1D7E1 𝟡 \bbnine Mathematical Double-Struck Digit Nine

U+1D7E2 𝟢 \sanszero Mathematical Sans-Serif Digit Zero

U+1D7E3 𝟣 \sansone Mathematical Sans-Serif Digit One

U+1D7E4 𝟤 \sanstwo Mathematical Sans-Serif Digit Two

U+1D7E5 𝟥 \sansthree Mathematical Sans-Serif Digit Three

U+1D7E6 𝟦 \sansfour Mathematical Sans-Serif Digit Four

U+1D7E7 𝟧 \sansfive Mathematical Sans-Serif Digit Five

U+1D7E8 𝟨 \sanssix Mathematical Sans-Serif Digit Six

U+1D7E9 𝟩 \sansseven Mathematical Sans-Serif Digit Seven

U+1D7EA 𝟪 \sanseight Mathematical Sans-Serif Digit Eight

U+1D7EB 𝟫 \sansnine Mathematical Sans-Serif Digit Nine

U+1D7EC \bsanszero Mathematical Sans-Serif Bold Digit Zero

U+1D7ED \bsansone Mathematical Sans-Serif Bold Digit One

U+1D7EE \bsanstwo Mathematical Sans-Serif Bold Digit Two

U+1D7EF \bsansthree Mathematical Sans-Serif Bold Digit Three

U+1D7F0 \bsansfour Mathematical Sans-Serif Bold Digit Four

U+1D7F1 \bsansfive Mathematical Sans-Serif Bold Digit Five

U+1D7F2 \bsanssix Mathematical Sans-Serif Bold Digit Six

U+1D7F3 \bsansseven Mathematical Sans-Serif Bold Digit Seven

U+1D7F4 \bsanseight Mathematical Sans-Serif Bold Digit Eight

U+1D7F5 \bsansnine Mathematical Sans-Serif Bold Digit Nine

U+1D7F6 \ttzero Mathematical Monospace Digit Zero

U+1D7F7 \ttone Mathematical Monospace Digit One

U+1D7F8 \tttwo Mathematical Monospace Digit Two

U+1D7F9 \ttthree Mathematical Monospace Digit Three

U+1D7FA \ttfour Mathematical Monospace Digit Four

U+1D7FB \ttfive Mathematical Monospace Digit Five

U+1D7FC \ttsix Mathematical Monospace Digit Six

U+1D7FD \ttseven Mathematical Monospace Digit Seven

U+1D7FE \tteight Mathematical Monospace Digit Eight

U+1D7FF \ttnine Mathematical Monospace Digit Nine

U+1F004 \:mahjong: Mahjong Tile Red Dragon

U+1F0CF 🃏 \:black_joker: Playing Card Black Joker

U+1F170 \:a: Negative Squared Latin Capital Letter A

U+1F171 \:b: Negative Squared Latin Capital Letter B

U+1F17E \:o2: Negative Squared Latin Capital Letter O

U+1F17F \:parking: Negative Squared Latin Capital Letter P

U+1F18E \:ab: Negative Squared Ab

U+1F191 \:cl: Squared Cl

U+1F192 \:cool: Squared Cool

U+1F193 \:free: Squared Free

U+1F194 \:id: Squared Id

U+1F195 \:new: Squared New

U+1F196 \:ng: Squared Ng

U+1F197 \:ok: Squared Ok

U+1F198 \:sos: Squared Sos

U+1F199 \:up: Squared Up With Exclamation Mark

U+1F19A \:vs: Squared Vs

U+1F201 \:koko: Squared Katakana Koko

U+1F202 \:sa: Squared Katakana Sa

U+1F21A \:u7121: Squared Cjk Unified Ideograph-7121

U+1F22F \:u6307: Squared Cjk Unified Ideograph-6307

U+1F232 \:u7981: Squared Cjk Unified Ideograph-7981

U+1F233 \:u7a7a: Squared Cjk Unified Ideograph-7A7A

U+1F234 \:u5408: Squared Cjk Unified Ideograph-5408

U+1F235 \:u6e80: Squared Cjk Unified Ideograph-6E80

U+1F236 \:u6709: Squared Cjk Unified Ideograph-6709

U+1F237 \:u6708: Squared Cjk Unified Ideograph-6708

U+1F238 \:u7533: Squared Cjk Unified Ideograph-7533

U+1F239 \:u5272: Squared Cjk Unified Ideograph-5272

U+1F23A \:u55b6: Squared Cjk Unified Ideograph-55B6

U+1F250 \:ideograph_advan-

tage:

Circled Ideograph Advantage

U+1F251 \:accept: Circled Ideograph Accept

U+1F300 \:cyclone: Cyclone

U+1F301 \:foggy: Foggy

U+1F302 \:closed_umbrella: Closed Umbrella

U+1F303 \:night_with_stars: Night With Stars

U+1F304 \:sunrise_over_moun-

tains:

Sunrise Over Mountains

U+1F305 \:sunrise: Sunrise

U+1F306 \:city_sunset: Cityscape At Dusk

U+1F307 \:city_sunrise: Sunset Over Buildings

U+1F308 \:rainbow: Rainbow

U+1F309 \:bridge_at_night: Bridge At Night

U+1F30A \:ocean: Water Wave

U+1F30B \:volcano: Volcano

U+1F30C \:milky_way: Milky Way

U+1F30D \:earth_africa: Earth Globe Europe-Africa

U+1F30E \:earth_americas: Earth Globe Americas

U+1F30F \:earth_asia: Earth Globe Asia-Australia

U+1F310 \:globe_with_meridians: Globe With Meridians

U+1F311 🌑 \:new_moon: New Moon Symbol

U+1F312 🌒 \:waxing_cres-

cent_moon:

Waxing Crescent Moon Symbol

U+1F313 🌓 \:first_quarter_moon: First Quarter Moon Symbol

U+1F314 🌔 \:moon: Waxing Gibbous Moon Symbol

U+1F315 🌕 \:full_moon: Full Moon Symbol

U+1F316 🌖 \:waning_gib-

bous_moon:

Waning Gibbous Moon Symbol

U+1F317 🌗 \:last_quarter_moon: Last Quarter Moon Symbol

U+1F318 🌘 \:waning_cres-

cent_moon:

Waning Crescent Moon Symbol

U+1F319 \:crescent_moon: Crescent Moon

U+1F31A \:new_moon_with_face: New Moon With Face

U+1F31B \:first_quar-

ter_moon_with_face:

First Quarter Moon With Face

U+1F31C \:last_quar-

ter_moon_with_face:

Last Quarter Moon With Face

U+1F31D \:full_moon_with_face: Full Moon With Face

U+1F31E \:sun_with_face: Sun With Face

U+1F31F \:star2: Glowing Star

U+1F320 \:stars: Shooting Star

U+1F32D \:hotdog: Hot Dog

U+1F32E \:taco: Taco

U+1F32F \:burrito: Burrito

U+1F330 \:chestnut: Chestnut

U+1F331 \:seedling: Seedling

U+1F332 \:evergreen_tree: Evergreen Tree

U+1F333 \:deciduous_tree: Deciduous Tree

U+1F334 \:palm_tree: Palm Tree

U+1F335 \:cactus: Cactus

U+1F337 \:tulip: Tulip

U+1F338 \:cherry_blossom: Cherry Blossom

U+1F339 \:rose: Rose

U+1F33A \:hibiscus: Hibiscus

U+1F33B \:sunflower: Sunflower

U+1F33C \:blossom: Blossom

U+1F33D \:corn: Ear Of Maize

U+1F33E \:ear_of_rice: Ear Of Rice

U+1F33F \:herb: Herb

U+1F340 \:four_leaf_clover: Four Leaf Clover

U+1F341 \:maple_leaf: Maple Leaf

U+1F342 \:fallen_leaf: Fallen Leaf

U+1F343 \:leaves: Leaf Fluttering In Wind

U+1F344 \:mushroom: Mushroom

U+1F345 \:tomato: Tomato

U+1F346 \:eggplant: Aubergine

U+1F347 \:grapes: Grapes

U+1F348 \:melon: Melon

U+1F349 \:watermelon: Watermelon

U+1F34A \:tangerine: Tangerine

U+1F34B \:lemon: Lemon

U+1F34C \:banana: Banana

U+1F34D \:pineapple: Pineapple

U+1F34E \:apple: Red Apple

U+1F34F \:green_apple: Green Apple

U+1F350 \:pear: Pear

U+1F351 \:peach: Peach

U+1F352 \:cherries: Cherries

U+1F353 \:strawberry: Strawberry

U+1F354 \:hamburger: Hamburger

U+1F355 \:pizza: Slice Of Pizza

U+1F356 \:meat_on_bone: Meat On Bone

U+1F357 \:poultry_leg: Poultry Leg

U+1F358 \:rice_cracker: Rice Cracker

U+1F359 \:rice_ball: Rice Ball

U+1F35A \:rice: Cooked Rice

U+1F35B \:curry: Curry And Rice

U+1F35C \:ramen: Steaming Bowl

U+1F35D \:spaghetti: Spaghetti

U+1F35E \:bread: Bread

U+1F35F \:fries: French Fries

U+1F360 \:sweet_potato: Roasted Sweet Potato

U+1F361 \:dango: Dango

U+1F362 \:oden: Oden

U+1F363 \:sushi: Sushi

U+1F364 \:fried_shrimp: Fried Shrimp

U+1F365 \:fish_cake: Fish Cake With Swirl Design

U+1F366 \:icecream: Soft Ice Cream

U+1F367 \:shaved_ice: Shaved Ice

U+1F368 \:ice_cream: Ice Cream

U+1F369 \:doughnut: Doughnut

U+1F36A \:cookie: Cookie

U+1F36B \:chocolate_bar: Chocolate Bar

U+1F36C \:candy: Candy

U+1F36D \:lollipop: Lollipop

U+1F36E \:custard: Custard

U+1F36F \:honey_pot: Honey Pot

U+1F370 \:cake: Shortcake

U+1F371 \:bento: Bento Box

U+1F372 \:stew: Pot Of Food

U+1F373 \:fried_egg: Cooking

U+1F374 \:fork_and_knife: Fork And Knife

U+1F375 \:tea: Teacup Without Handle

U+1F376 \:sake: Sake Bottle And Cup

U+1F377 \:wine_glass: Wine Glass

U+1F378 \:cocktail: Cocktail Glass

U+1F379 \:tropical_drink: Tropical Drink

U+1F37A \:beer: Beer Mug

U+1F37B \:beers: Clinking Beer Mugs

U+1F37C \:baby_bottle: Baby Bottle

U+1F37E \:champagne: Bottle With Popping Cork

U+1F37F \:popcorn: Popcorn

U+1F380 \:ribbon: Ribbon

U+1F381 \:gift: Wrapped Present

U+1F382 \:birthday: Birthday Cake

U+1F383 \:jack_o_lantern: Jack-O-Lantern

U+1F384 \:christmas_tree: Christmas Tree

U+1F385 \:santa: Father Christmas

U+1F386 \:fireworks: Fireworks

U+1F387 \:sparkler: Firework Sparkler

U+1F388 \:balloon: Balloon

U+1F389 \:tada: Party Popper

U+1F38A \:confetti_ball: Confetti Ball

U+1F38B \:tanabata_tree: Tanabata Tree

U+1F38C \:crossed_flags: Crossed Flags

U+1F38D \:bamboo: Pine Decoration

U+1F38E \:dolls: Japanese Dolls

U+1F38F \:flags: Carp Streamer

U+1F390 \:wind_chime: Wind Chime

U+1F391 \:rice_scene: Moon Viewing Ceremony

U+1F392 \:school_satchel: School Satchel

U+1F393 \:mortar_board: Graduation Cap

U+1F3A0 \:carousel_horse: Carousel Horse

U+1F3A1 \:ferris_wheel: Ferris Wheel

U+1F3A2 \:roller_coaster: Roller Coaster

U+1F3A3 \:fishing_pole_and_fish: Fishing Pole And Fish

U+1F3A4 \:microphone: Microphone

U+1F3A5 \:movie_camera: Movie Camera

U+1F3A6 \:cinema: Cinema

U+1F3A7 \:headphones: Headphone

U+1F3A8 \:art: Artist Palette

U+1F3A9 \:tophat: Top Hat

U+1F3AA \:circus_tent: Circus Tent

U+1F3AB \:ticket: Ticket

U+1F3AC \:clapper: Clapper Board

U+1F3AD \:performing_arts: Performing Arts

U+1F3AE \:video_game: Video Game

U+1F3AF \:dart: Direct Hit

U+1F3B0 \:slot_machine: Slot Machine

U+1F3B1 \:8ball: Billiards

U+1F3B2 \:game_die: Game Die

U+1F3B3 \:bowling: Bowling

U+1F3B4 \:flower_playing_cards: Flower Playing Cards

U+1F3B5 \:musical_note: Musical Note

U+1F3B6 \:notes: Multiple Musical Notes

U+1F3B7 \:saxophone: Saxophone

U+1F3B8 \:guitar: Guitar

U+1F3B9 \:musical_keyboard: Musical Keyboard

U+1F3BA \:trumpet: Trumpet

U+1F3BB \:violin: Violin

U+1F3BC \:musical_score: Musical Score

U+1F3BD \:run-

ning_shirt_with_sash:

Running Shirt With Sash

U+1F3BE \:tennis: Tennis Racquet And Ball

U+1F3BF \:ski: Ski And Ski Boot

U+1F3C0 \:basketball: Basketball And Hoop

U+1F3C1 \:checkered_flag: Chequered Flag

U+1F3C2 \:snowboarder: Snowboarder

U+1F3C3 \:runner: Runner

U+1F3C4 \:surfer: Surfer

U+1F3C5 \:sports_medal: Sports Medal

U+1F3C6 \:trophy: Trophy

U+1F3C7 \:horse_racing: Horse Racing

U+1F3C8 \:football: American Football

U+1F3C9 \:rugby_football: Rugby Football

U+1F3CA \:swimmer: Swimmer

U+1F3CF \:cricket_bat_and_ball: Cricket Bat And Ball

U+1F3D0 \:volleyball: Volleyball

U+1F3D1 \:field_hockey_stick_and_ball:Field Hockey Stick And Ball

U+1F3D2 \:ice_hockey_stick_and_puck:Ice Hockey Stick And Puck

U+1F3D3 \:table_tennis_pad-

dle_and_ball:

Table Tennis Paddle And Ball

U+1F3E0 \:house: House Building

U+1F3E1 \:house_with_garden: House With Garden

U+1F3E2 \:office: Office Building

U+1F3E3 \:post_office: Japanese Post Office

U+1F3E4 \:european_post_office: European Post Office

U+1F3E5 \:hospital: Hospital

U+1F3E6 \:bank: Bank

U+1F3E7 \:atm: Automated Teller Machine

U+1F3E8 \:hotel: Hotel

U+1F3E9 \:love_hotel: Love Hotel

U+1F3EA \:convenience_store: Convenience Store

U+1F3EB \:school: School

U+1F3EC \:department_store: Department Store

U+1F3ED \:factory: Factory

U+1F3EE \:izakaya_lantern: Izakaya Lantern

U+1F3EF \:japanese_castle: Japanese Castle

U+1F3F0 \:european_castle: European Castle

U+1F3F4 \:waving_black_flag: Waving Black Flag

U+1F3F8 \:badminton_rac-

quet_and_shuttlecock:

Badminton Racquet And Shuttlecock

U+1F3F9 \:bow_and_arrow: Bow And Arrow

U+1F3FA \:amphora: Amphora

U+1F3FB \:skin-tone-2: Emoji Modifier Fitzpatrick Type-1-2

U+1F3FC \:skin-tone-3: Emoji Modifier Fitzpatrick Type-3

U+1F3FD \:skin-tone-4: Emoji Modifier Fitzpatrick Type-4

U+1F3FE \:skin-tone-5: Emoji Modifier Fitzpatrick Type-5

U+1F3FF \:skin-tone-6: Emoji Modifier Fitzpatrick Type-6

U+1F400 \:rat: Rat

U+1F401 \:mouse2: Mouse

U+1F402 \:ox: Ox

U+1F403 \:water_buffalo: Water Buffalo

U+1F404 \:cow2: Cow

U+1F405 \:tiger2: Tiger

U+1F406 \:leopard: Leopard

U+1F407 \:rabbit2: Rabbit

U+1F408 \:cat2: Cat

U+1F409 \:dragon: Dragon

U+1F40A \:crocodile: Crocodile

U+1F40B \:whale2: Whale

U+1F40C \:snail: Snail

U+1F40D \:snake: Snake

U+1F40E \:racehorse: Horse

U+1F40F \:ram: Ram

U+1F410 \:goat: Goat

U+1F411 \:sheep: Sheep

U+1F412 \:monkey: Monkey

U+1F413 \:rooster: Rooster

U+1F414 \:chicken: Chicken

U+1F415 \:dog2: Dog

U+1F416 \:pig2: Pig

U+1F417 \:boar: Boar

U+1F418 \:elephant: Elephant

U+1F419 \:octopus: Octopus

U+1F41A \:shell: Spiral Shell

U+1F41B \:bug: Bug

U+1F41C \:ant: Ant

U+1F41D \:bee: Honeybee

U+1F41E \:ladybug: Lady Beetle

U+1F41F \:fish: Fish

U+1F420 \:tropical_fish: Tropical Fish

U+1F421 \:blowfish: Blowfish

U+1F422 \:turtle: Turtle

U+1F423 \:hatching_chick: Hatching Chick

U+1F424 \:baby_chick: Baby Chick

U+1F425 \:hatched_chick: Front-Facing Baby Chick

U+1F426 \:bird: Bird

U+1F427 \:penguin: Penguin

U+1F428 \:koala: Koala

U+1F429 \:poodle: Poodle

U+1F42A \:dromedary_camel: Dromedary Camel

U+1F42B \:camel: Bactrian Camel

U+1F42C \:dolphin: Dolphin

U+1F42D 🐭 \:mouse: Mouse Face

U+1F42E 🐮 \:cow: Cow Face

U+1F42F \:tiger: Tiger Face

U+1F430 \:rabbit: Rabbit Face

U+1F431 🐱 \:cat: Cat Face

U+1F432 \:dragon_face: Dragon Face

U+1F433 \:whale: Spouting Whale

U+1F434 \:horse: Horse Face

U+1F435 🐵 \:monkey_face: Monkey Face

U+1F436 \:dog: Dog Face

U+1F437 \:pig: Pig Face

U+1F438 \:frog: Frog Face

U+1F439 \:hamster: Hamster Face

U+1F43A \:wolf: Wolf Face

U+1F43B \:bear: Bear Face

U+1F43C \:panda_face: Panda Face

U+1F43D \:pig_nose: Pig Nose

U+1F43E \:feet: Paw Prints

U+1F440 \:eyes: Eyes

U+1F442 \:ear: Ear

U+1F443 \:nose: Nose

U+1F444 \:lips: Mouth

U+1F445 \:tongue: Tongue

U+1F446 \:point_up_2: White Up Pointing Backhand Index

U+1F447 \:point_down: White Down Pointing Backhand Index

U+1F448 \:point_left: White Left Pointing Backhand Index

U+1F449 \:point_right: White Right Pointing Backhand Index

U+1F44A \:facepunch: Fisted Hand Sign

U+1F44B \:wave: Waving Hand Sign

U+1F44C \:ok_hand: Ok Hand Sign

U+1F44D \:+1: Thumbs Up Sign

U+1F44E \:-1: Thumbs Down Sign

U+1F44F \:clap: Clapping Hands Sign

U+1F450 \:open_hands: Open Hands Sign

U+1F451 \:crown: Crown

U+1F452 \:womans_hat: Womans Hat

U+1F453 \:eyeglasses: Eyeglasses

U+1F454 \:necktie: Necktie

U+1F455 \:shirt: T-Shirt

U+1F456 \:jeans: Jeans

U+1F457 \:dress: Dress

U+1F458 \:kimono: Kimono

U+1F459 \:bikini: Bikini

U+1F45A \:womans_clothes: Womans Clothes

U+1F45B \:purse: Purse

U+1F45C \:handbag: Handbag

U+1F45D \:pouch: Pouch

U+1F45E \:mans_shoe: Mans Shoe

U+1F45F \:athletic_shoe: Athletic Shoe

U+1F460 \:high_heel: High-Heeled Shoe

U+1F461 \:sandal: Womans Sandal

U+1F462 \:boot: Womans Boots

U+1F463 \:footprints: Footprints

U+1F464 \:bust_in_silhouette: Bust In Silhouette

U+1F465 \:busts_in_silhouette: Busts In Silhouette

U+1F466 \:boy: Boy

U+1F467 \:girl: Girl

U+1F468 \:man: Man

U+1F469 \:woman: Woman

U+1F46A \:family: Family

U+1F46B \:couple:,

\:man_and_woman_hold-

ing_hands:

Man And Woman Holding Hands

U+1F46C \:two_men_hold-

ing_hands:

Two Men Holding Hands

U+1F46D \:two_women_hold-

ing_hands:

Two Women Holding Hands

U+1F46E \:cop: Police Officer

U+1F46F \:dancers: Woman With Bunny Ears

U+1F470 \:bride_with_veil: Bride With Veil

U+1F471 \:per-

son_with_blond_hair:

Person With Blond Hair

U+1F472 \:man_with_gua_pi_mao: Man With Gua Pi Mao

U+1F473 \:man_with_turban: Man With Turban

U+1F474 \:older_man: Older Man

U+1F475 \:older_woman: Older Woman

U+1F476 \:baby: Baby

U+1F477 \:construction_worker: Construction Worker

U+1F478 \:princess: Princess

U+1F479 \:japanese_ogre: Japanese Ogre

U+1F47A \:japanese_goblin: Japanese Goblin

U+1F47B \:ghost: Ghost

U+1F47C \:angel: Baby Angel

U+1F47D \:alien: Extraterrestrial Alien

U+1F47E \:space_invader: Alien Monster

U+1F47F \:imp: Imp

U+1F480 \:skull: Skull

U+1F481 \:information_desk_per-

son:

Information Desk Person

U+1F482 \:guardsman: Guardsman

U+1F483 \:dancer: Dancer

U+1F484 \:lipstick: Lipstick

U+1F485 \:nail_care: Nail Polish

U+1F486 \:massage: Face Massage

U+1F487 \:haircut: Haircut

U+1F488 \:barber: Barber Pole

U+1F489 \:syringe: Syringe

U+1F48A \:pill: Pill

U+1F48B \:kiss: Kiss Mark

U+1F48C \:love_letter: Love Letter

U+1F48D \:ring: Ring

U+1F48E \:gem: Gem Stone

U+1F48F \:couplekiss: Kiss

U+1F490 \:bouquet: Bouquet

U+1F491 \:couple_with_heart: Couple With Heart

U+1F492 \:wedding: Wedding

U+1F493 \:heartbeat: Beating Heart

U+1F494 \:broken_heart: Broken Heart

U+1F495 \:two_hearts: Two Hearts

U+1F496 \:sparkling_heart: Sparkling Heart

U+1F497 \:heartpulse: Growing Heart

U+1F498 \:cupid: Heart With Arrow

U+1F499 \:blue_heart: Blue Heart

U+1F49A \:green_heart: Green Heart

U+1F49B \:yellow_heart: Yellow Heart

U+1F49C \:purple_heart: Purple Heart

U+1F49D \:gift_heart: Heart With Ribbon

U+1F49E \:revolving_hearts: Revolving Hearts

U+1F49F \:heart_decoration: Heart Decoration

U+1F4A0 \:dia-

mond_shape_with_a_dot_in-

side:

Diamond Shape With A Dot Inside

U+1F4A1 \:bulb: Electric Light Bulb

U+1F4A2 \:anger: Anger Symbol

U+1F4A3 \:bomb: Bomb

U+1F4A4 \:zzz: Sleeping Symbol

U+1F4A5 \:boom: Collision Symbol

U+1F4A6 \:sweat_drops: Splashing Sweat Symbol

U+1F4A7 \:droplet: Droplet

U+1F4A8 \:dash: Dash Symbol

U+1F4A9 \:hankey: Pile Of Poo

U+1F4AA \:muscle: Flexed Biceps

U+1F4AB \:dizzy: Dizzy Symbol

U+1F4AC \:speech_balloon: Speech Balloon

U+1F4AD \:thought_balloon: Thought Balloon

U+1F4AE \:white_flower: White Flower

U+1F4AF \:100: Hundred Points Symbol

U+1F4B0 \:moneybag: Money Bag

U+1F4B1 \:currency_exchange: Currency Exchange

U+1F4B2 \:heavy_dollar_sign: Heavy Dollar Sign

U+1F4B3 \:credit_card: Credit Card

U+1F4B4 \:yen: Banknote With Yen Sign

U+1F4B5 \:dollar: Banknote With Dollar Sign

U+1F4B6 \:euro: Banknote With Euro Sign

U+1F4B7 \:pound: Banknote With Pound Sign

U+1F4B8 \:money_with_wings: Money With Wings

U+1F4B9 \:chart: Chart With Upwards Trend And Yen Sign

U+1F4BA \:seat: Seat

U+1F4BB \:computer: Personal Computer

U+1F4BC \:briefcase: Briefcase

U+1F4BD \:minidisc: Minidisc

U+1F4BE \:floppy_disk: Floppy Disk

U+1F4BF \:cd: Optical Disc

U+1F4C0 \:dvd: Dvd

U+1F4C1 \:file_folder: File Folder

U+1F4C2 \:open_file_folder: Open File Folder

U+1F4C3 \:page_with_curl: Page With Curl

U+1F4C4 \:page_facing_up: Page Facing Up

U+1F4C5 \:date: Calendar

U+1F4C6 \:calendar: Tear-Off Calendar

U+1F4C7 \:card_index: Card Index

U+1F4C8 \:chart_with_up-

wards_trend:

Chart With Upwards Trend

U+1F4C9 \:chart_with_down-

wards_trend:

Chart With Downwards Trend

U+1F4CA \:bar_chart: Bar Chart

U+1F4CB \:clipboard: Clipboard

U+1F4CC \:pushpin: Pushpin

U+1F4CD \:round_pushpin: Round Pushpin

U+1F4CE \:paperclip: Paperclip

U+1F4CF \:straight_ruler: Straight Ruler

U+1F4D0 \:triangular_ruler: Triangular Ruler

U+1F4D1 \:bookmark_tabs: Bookmark Tabs

U+1F4D2 \:ledger: Ledger

U+1F4D3 \:notebook: Notebook

U+1F4D4 \:notebook_with_deco-

rative_cover:

Notebook With Decorative Cover

U+1F4D5 \:closed_book: Closed Book

U+1F4D6 \:book: Open Book

U+1F4D7 \:green_book: Green Book

U+1F4D8 \:blue_book: Blue Book

U+1F4D9 \:orange_book: Orange Book

U+1F4DA \:books: Books

U+1F4DB \:name_badge: Name Badge

U+1F4DC \:scroll: Scroll

U+1F4DD \:memo: Memo

U+1F4DE \:telephone_receiver: Telephone Receiver

U+1F4DF \:pager: Pager

U+1F4E0 \:fax: Fax Machine

U+1F4E1 \:satellite:,

\:satellite_antenna:

Satellite Antenna

U+1F4E2 \:loudspeaker: Public Address Loudspeaker

U+1F4E3 \:mega: Cheering Megaphone

U+1F4E4 \:outbox_tray: Outbox Tray

U+1F4E5 \:inbox_tray: Inbox Tray

U+1F4E6 \:package: Package

U+1F4E7 \:e-mail: E-Mail Symbol

U+1F4E8 \:incoming_envelope: Incoming Envelope

U+1F4E9 \:envelope_with_arrow: Envelope With Downwards Arrow Above

U+1F4EA \:mailbox_closed: Closed Mailbox With Lowered Flag

U+1F4EB \:mailbox: Closed Mailbox With Raised Flag

U+1F4EC \:mailbox_with_mail: Open Mailbox With Raised Flag

U+1F4ED \:mail-

box_with_no_mail:

Open Mailbox With Lowered Flag

U+1F4EE \:postbox: Postbox

U+1F4EF \:postal_horn: Postal Horn

U+1F4F0 \:newspaper: Newspaper

U+1F4F1 \:iphone: Mobile Phone

U+1F4F2 \:calling: Mobile Phone With Rightwards Arrow At Left

U+1F4F3 \:vibration_mode: Vibration Mode

U+1F4F4 \:mobile_phone_off: Mobile Phone Off

U+1F4F5 \:no_mobile_phones: No Mobile Phones

U+1F4F6 \:signal_strength: Antenna With Bars

U+1F4F7 \:camera: Camera

U+1F4F8 \:camera_with_flash: Camera With Flash

U+1F4F9 \:video_camera: Video Camera

U+1F4FA \:tv: Television

U+1F4FB \:radio: Radio

U+1F4FC \:vhs: Videocassette

U+1F4FF \:prayer_beads: Prayer Beads

U+1F500 \:twisted_right-

wards_arrows:

Twisted Rightwards Arrows

U+1F501 \:repeat: Clockwise Rightwards And Leftwards Open Circle

Arrows

U+1F502 \:repeat_one: Clockwise Rightwards And Leftwards Open Circle

Arrows With Circled One Overlay

U+1F503 \:arrows_clockwise: Clockwise Downwards And Upwards Open Circle

Arrows

U+1F504 \:arrows_counterclock-

wise:

Anticlockwise Downwards And Upwards Open Circle

Arrows

U+1F505 \:low_brightness: Low Brightness Symbol

U+1F506 \:high_brightness: High Brightness Symbol

U+1F507 \:mute: Speaker With Cancellation Stroke

U+1F508 \:speaker: Speaker

U+1F509 \:sound: Speaker With One Sound Wave

U+1F50A \:loud_sound: Speaker With Three Sound Waves

U+1F50B \:battery: Battery

U+1F50C \:electric_plug: Electric Plug

U+1F50D \:mag: Left-Pointing Magnifying Glass

U+1F50E \:mag_right: Right-Pointing Magnifying Glass

U+1F50F \:lock_with_ink_pen: Lock With Ink Pen

U+1F510 \:closed_lock_with_key: Closed Lock With Key

U+1F511 \:key: Key

U+1F512 \:lock: Lock

U+1F513 \:unlock: Open Lock

U+1F514 \:bell: Bell

U+1F515 \:no_bell: Bell With Cancellation Stroke

U+1F516 \:bookmark: Bookmark

U+1F517 \:link: Link Symbol

U+1F518 \:radio_button: Radio Button

U+1F519 \:back: Back With Leftwards Arrow Above

U+1F51A \:end: End With Leftwards Arrow Above

U+1F51B \:on: On With Exclamation Mark With Left Right Arrow

Above

U+1F51C \:soon: Soon With Rightwards Arrow Above

U+1F51D \:top: Top With Upwards Arrow Above

U+1F51E \:underage: No One Under Eighteen Symbol

U+1F51F \:keycap_ten: Keycap Ten

U+1F520 \:capital_abcd: Input Symbol For Latin Capital Letters

U+1F521 \:abcd: Input Symbol For Latin Small Letters

U+1F522 \:1234: Input Symbol For Numbers

U+1F523 \:symbols: Input Symbol For Symbols

U+1F524 \:abc: Input Symbol For Latin Letters

U+1F525 \:fire: Fire

U+1F526 \:flashlight: Electric Torch

U+1F527 \:wrench: Wrench

U+1F528 \:hammer: Hammer

U+1F529 \:nut_and_bolt: Nut And Bolt

U+1F52A \:hocho: Hocho

U+1F52B \:gun: Pistol

U+1F52C \:microscope: Microscope

U+1F52D \:telescope: Telescope

U+1F52E \:crystal_ball: Crystal Ball

U+1F52F \:six_pointed_star: Six Pointed Star With Middle Dot

U+1F530 \:beginner: Japanese Symbol For Beginner

U+1F531 \:trident: Trident Emblem

U+1F532 \:black_square_button: Black Square Button

U+1F533 \:white_square_button: White Square Button

U+1F534 \:red_circle: Large Red Circle

U+1F535 \:large_blue_circle: Large Blue Circle

U+1F536 \:large_orange_dia-

mond:

Large Orange Diamond

U+1F537 \:large_blue_diamond: Large Blue Diamond

U+1F538 \:small_orange_dia-

mond:

Small Orange Diamond

U+1F539 \:small_blue_diamond: Small Blue Diamond

U+1F53A \:small_red_triangle: Up-Pointing Red Triangle

U+1F53B \:small_red_trian-

gle_down:

Down-Pointing Red Triangle

U+1F53C \:arrow_up_small: Up-Pointing Small Red Triangle

U+1F53D \:arrow_down_small: Down-Pointing Small Red Triangle

U+1F54B \:kaaba: Kaaba

U+1F54C \:mosque: Mosque

U+1F54D \:synagogue: Synagogue

U+1F54E \:meno-

rah_with_nine_branches:

Menorah With Nine Branches

U+1F550 \:clock1: Clock Face One Oclock

U+1F551 \:clock2: Clock Face Two Oclock

U+1F552 \:clock3: Clock Face Three Oclock

U+1F553 \:clock4: Clock Face Four Oclock

U+1F554 \:clock5: Clock Face Five Oclock

U+1F555 \:clock6: Clock Face Six Oclock

U+1F556 \:clock7: Clock Face Seven Oclock

U+1F557 \:clock8: Clock Face Eight Oclock

U+1F558 \:clock9: Clock Face Nine Oclock

U+1F559 \:clock10: Clock Face Ten Oclock

U+1F55A \:clock11: Clock Face Eleven Oclock

U+1F55B \:clock12: Clock Face Twelve Oclock

U+1F55C \:clock130: Clock Face One-Thirty

U+1F55D \:clock230: Clock Face Two-Thirty

U+1F55E \:clock330: Clock Face Three-Thirty

U+1F55F \:clock430: Clock Face Four-Thirty

U+1F560 \:clock530: Clock Face Five-Thirty

U+1F561 \:clock630: Clock Face Six-Thirty

U+1F562 \:clock730: Clock Face Seven-Thirty

U+1F563 \:clock830: Clock Face Eight-Thirty

U+1F564 \:clock930: Clock Face Nine-Thirty

U+1F565 \:clock1030: Clock Face Ten-Thirty

U+1F566 \:clock1130: Clock Face Eleven-Thirty

U+1F567 \:clock1230: Clock Face Twelve-Thirty

U+1F57A \:man_dancing: Man Dancing

U+1F595 \:middle_finger: Reversed Hand With Middle Finger Extended

U+1F596 \:spock-hand: Raised Hand With Part Between Middle And Ring

Fingers

U+1F5A4 \:black_heart: Black Heart

U+1F5FB \:mount_fuji: Mount Fuji

U+1F5FC \:tokyo_tower: Tokyo Tower

U+1F5FD \:statue_of_liberty: Statue Of Liberty

U+1F5FE \:japan: Silhouette Of Japan

U+1F5FF \:moyai: Moyai

U+1F600 😀 \:grinning: Grinning Face

U+1F601 😁 \:grin: Grinning Face With Smiling Eyes

U+1F602 😂 \:joy: Face With Tears Of Joy

U+1F603 😃 \:smiley: Smiling Face With Open Mouth

U+1F604 😄 \:smile: Smiling Face With Open Mouth And Smiling Eyes

U+1F605 😅 \:sweat_smile: Smiling Face With Open Mouth And Cold Sweat

U+1F606 😆 \:laughing: Smiling Face With Open Mouth And Tightly-Closed

Eyes

U+1F607 😇 \:innocent: Smiling Face With Halo

U+1F608 😈 \:smiling_imp: Smiling Face With Horns

U+1F609 😉 \:wink: Winking Face

U+1F60A 😊 \:blush: Smiling Face With Smiling Eyes

U+1F60B 😋 \:yum: Face Savouring Delicious Food

U+1F60C 😌 \:relieved: Relieved Face

U+1F60D 😍 \:heart_eyes: Smiling Face With Heart-Shaped Eyes

U+1F60E 😎 \:sunglasses: Smiling Face With Sunglasses

U+1F60F 😏 \:smirk: Smirking Face

U+1F610 😐 \:neutral_face: Neutral Face

U+1F611 😑 \:expressionless: Expressionless Face

U+1F612 😒 \:unamused: Unamused Face

U+1F613 😓 \:sweat: Face With Cold Sweat

U+1F614 😔 \:pensive: Pensive Face

U+1F615 😕 \:confused: Confused Face

U+1F616 😖 \:confounded: Confounded Face

U+1F617 😗 \:kissing: Kissing Face

U+1F618 😘 \:kissing_heart: Face Throwing A Kiss

U+1F619 😙 \:kissing_smiling_eyes: Kissing Face With Smiling Eyes

U+1F61A 😚 \:kissing_closed_eyes: Kissing Face With Closed Eyes

U+1F61B 😛 \:stuck_out_tongue: Face With Stuck-Out Tongue

U+1F61C 😜 \:stuck_out_tongue_wink-

ing_eye:

Face With Stuck-Out Tongue And Winking Eye

U+1F61D 😝 \:stuck_out_tongue_closed_eyes:Face With Stuck-Out Tongue And Tightly-Closed Eyes

U+1F61E 😞 \:disappointed: Disappointed Face

U+1F61F 😟 \:worried: Worried Face

U+1F620 😠 \:angry: Angry Face

U+1F621 😡 \:rage: Pouting Face

U+1F622 😢 \:cry: Crying Face

U+1F623 😣 \:persevere: Persevering Face

U+1F624 \:triumph: Face With Look Of Triumph

U+1F625 😥 \:disappointed_re-

lieved:

Disappointed But Relieved Face

U+1F626 😦 \:frowning: Frowning Face With Open Mouth

U+1F627 😧 \:anguished: Anguished Face

U+1F628 😨 \:fearful: Fearful Face

U+1F629 😩 \:weary: Weary Face

U+1F62A 😪 \:sleepy: Sleepy Face

U+1F62B 😫 \:tired_face: Tired Face

U+1F62C \:grimacing: Grimacing Face

U+1F62D 😭 \:sob: Loudly Crying Face

U+1F62E 😮 \:open_mouth: Face With Open Mouth

U+1F62F 😯 \:hushed: Hushed Face

U+1F630 😰 \:cold_sweat: Face With Open Mouth And Cold Sweat

U+1F631 😱 \:scream: Face Screaming In Fear

U+1F632 😲 \:astonished: Astonished Face

U+1F633 😳 \:flushed: Flushed Face

U+1F634 😴 \:sleeping: Sleeping Face

U+1F635 😵 \:dizzy_face: Dizzy Face

U+1F636 😶 \:no_mouth: Face Without Mouth

U+1F637 😷 \:mask: Face With Medical Mask

U+1F638 😸 \:smile_cat: Grinning Cat Face With Smiling Eyes

U+1F639 😹 \:joy_cat: Cat Face With Tears Of Joy

U+1F63A 😺 \:smiley_cat: Smiling Cat Face With Open Mouth

U+1F63B 😻 \:heart_eyes_cat: Smiling Cat Face With Heart-Shaped Eyes

U+1F63C 😼 \:smirk_cat: Cat Face With Wry Smile

U+1F63D 😽 \:kissing_cat: Kissing Cat Face With Closed Eyes

U+1F63E 😾 \:pouting_cat: Pouting Cat Face

U+1F63F 😿 \:crying_cat_face: Crying Cat Face

U+1F640 🙀 \:scream_cat: Weary Cat Face

U+1F641 \:slightly_frown-

ing_face:

Slightly Frowning Face

U+1F642 \:slightly_smiling_face: Slightly Smiling Face

U+1F643 🙃 \:upside_down_face: Upside-Down Face

U+1F644 \:face_with_rolling_eyes: Face With Rolling Eyes

U+1F645 \:no_good: Face With No Good Gesture

U+1F646 \:ok_woman: Face With Ok Gesture

U+1F647 \:bow: Person Bowing Deeply

U+1F648 \:see_no_evil: See-No-Evil Monkey

U+1F649 \:hear_no_evil: Hear-No-Evil Monkey

U+1F64A \:speak_no_evil: Speak-No-Evil Monkey

U+1F64B \:raising_hand: Happy Person Raising One Hand

U+1F64C \:raised_hands: Person Raising Both Hands In Celebration

U+1F64D \:person_frowning: Person Frowning

U+1F64E \:person_with_pout-

ing_face:

Person With Pouting Face

U+1F64F \:pray: Person With Folded Hands

U+1F680 \:rocket: Rocket

U+1F681 \:helicopter: Helicopter

U+1F682 \:steam_locomotive: Steam Locomotive

U+1F683 \:railway_car: Railway Car

U+1F684 \:bullettrain_side: High-Speed Train

U+1F685 \:bullettrain_front: High-Speed Train With Bullet Nose

U+1F686 \:train2: Train

U+1F687 \:metro: Metro

U+1F688 \:light_rail: Light Rail

U+1F689 \:station: Station

U+1F68A \:tram: Tram

U+1F68B \:train: Tram Car

U+1F68C \:bus: Bus

U+1F68D \:oncoming_bus: Oncoming Bus

U+1F68E \:trolleybus: Trolleybus

U+1F68F \:busstop: Bus Stop

U+1F690 \:minibus: Minibus

U+1F691 \:ambulance: Ambulance

U+1F692 \:fire_engine: Fire Engine

U+1F693 \:police_car: Police Car

U+1F694 \:oncoming_police_car: Oncoming Police Car

U+1F695 \:taxi: Taxi

U+1F696 \:oncoming_taxi: Oncoming Taxi

U+1F697 \:car: Automobile

U+1F698 \:oncoming_automo-

bile:

Oncoming Automobile

U+1F699 \:blue_car: Recreational Vehicle

U+1F69A \:truck: Delivery Truck

U+1F69B \:articulated_lorry: Articulated Lorry

U+1F69C \:tractor: Tractor

U+1F69D \:monorail: Monorail

U+1F69E \:mountain_railway: Mountain Railway

U+1F69F \:suspension_railway: Suspension Railway

U+1F6A0 \:mountain_cableway: Mountain Cableway

U+1F6A1 \:aerial_tramway: Aerial Tramway

U+1F6A2 \:ship: Ship

U+1F6A3 \:rowboat: Rowboat

U+1F6A4 \:speedboat: Speedboat

U+1F6A5 \:traffic_light: Horizontal Traffic Light

U+1F6A6 \:vertical_traffic_light: Vertical Traffic Light

U+1F6A7 \:construction: Construction Sign

U+1F6A8 \:rotating_light: Police Cars Revolving Light

U+1F6A9 \:triangu-

lar_flag_on_post:

Triangular Flag On Post

U+1F6AA \:door: Door

U+1F6AB \:no_entry_sign: No Entry Sign

U+1F6AC \:smoking: Smoking Symbol

U+1F6AD \:no_smoking: No Smoking Symbol

U+1F6AE \:put_litter_in_its_place: Put Litter In Its Place Symbol

U+1F6AF \:do_not_litter: Do Not Litter Symbol

U+1F6B0 \:potable_water: Potable Water Symbol

U+1F6B1 \:non-potable_water: Non-Potable Water Symbol

U+1F6B2 \:bike: Bicycle

U+1F6B3 \:no_bicycles: No Bicycles

U+1F6B4 \:bicyclist: Bicyclist

U+1F6B5 \:mountain_bicyclist: Mountain Bicyclist

U+1F6B6 \:walking: Pedestrian

U+1F6B7 \:no_pedestrians: No Pedestrians

U+1F6B8 \:children_crossing: Children Crossing

U+1F6B9 \:mens: Mens Symbol

U+1F6BA \:womens: Womens Symbol

U+1F6BB \:restroom: Restroom

U+1F6BC \:baby_symbol: Baby Symbol

U+1F6BD \:toilet: Toilet

U+1F6BE \:wc: Water Closet

U+1F6BF \:shower: Shower

U+1F6C0 \:bath: Bath

U+1F6C1 \:bathtub: Bathtub

U+1F6C2 \:passport_control: Passport Control

U+1F6C3 \:customs: Customs

U+1F6C4 \:baggage_claim: Baggage Claim

U+1F6C5 \:left_luggage: Left Luggage

U+1F6CC \:sleeping_accommoda-

tion:

Sleeping Accommodation

U+1F6D0 \:place_of_worship: Place Of Worship

U+1F6D1 \:octagonal_sign: Octagonal Sign

U+1F6D2 \:shopping_trolley: Shopping Trolley

U+1F6D5 \:hindu_temple: Hindu Temple

U+1F6D6 \:hut: Hut

U+1F6D7 \:elevator: Elevator

U+1F6EB \:airplane_departure: Airplane Departure

U+1F6EC \:airplane_arriving: Airplane Arriving

U+1F6F4 \:scooter: Scooter

U+1F6F5 \:motor_scooter: Motor Scooter

U+1F6F6 \:canoe: Canoe

U+1F6F7 \:sled: Sled

U+1F6F8 \:flying_saucer: Flying Saucer

U+1F6F9 \:skateboard: Skateboard

U+1F6FA \:auto_rickshaw: Auto Rickshaw

U+1F6FB \:pickup_truck: Pickup Truck

U+1F6FC \:roller_skate: Roller Skate

U+1F7E0 \:large_orange_circle: Large Orange Circle

U+1F7E1 \:large_yellow_circle: Large Yellow Circle

U+1F7E2 \:large_green_circle: Large Green Circle

U+1F7E3 \:large_purple_circle: Large Purple Circle

U+1F7E4 \:large_brown_circle: Large Brown Circle

U+1F7E5 \:large_red_square: Large Red Square

U+1F7E6 \:large_blue_square: Large Blue Square

U+1F7E7 \:large_orange_square: Large Orange Square

U+1F7E8 \:large_yellow_square: Large Yellow Square

U+1F7E9 \:large_green_square: Large Green Square

U+1F7EA \:large_purple_square: Large Purple Square

U+1F7EB \:large_brown_square: Large Brown Square

U+1F90C \:pinched_fingers: Pinched Fingers

U+1F90D \:white_heart: White Heart

U+1F90E \:brown_heart: Brown Heart

U+1F90F \:pinching_hand: Pinching Hand

U+1F910 \:zipper_mouth_face: Zipper-Mouth Face

U+1F911 \:money_mouth_face: Money-Mouth Face

U+1F912 \:face_with_thermome-

ter:

Face With Thermometer

U+1F913 \:nerd_face: Nerd Face

U+1F914 \:thinking_face: Thinking Face

U+1F915 \:face_with_head_ban-

dage:

Face With Head-Bandage

U+1F916 \:robot_face: Robot Face

U+1F917 \:hugging_face: Hugging Face

U+1F918 \:the_horns: Sign Of The Horns

U+1F919 \:call_me_hand: Call Me Hand

U+1F91A \:raised_back_of_hand: Raised Back Of Hand

U+1F91B \:left-facing_fist: Left-Facing Fist

U+1F91C \:right-facing_fist: Right-Facing Fist

U+1F91D \:handshake: Handshake

U+1F91E \:crossed_fingers: Hand With Index And Middle Fingers Crossed

U+1F91F \:i_love_you_hand_sign: I Love You Hand Sign

U+1F920 \:face_with_cow-

boy_hat:

Face With Cowboy Hat

U+1F921 \:clown_face: Clown Face

U+1F922 \:nauseated_face: Nauseated Face

U+1F923 \:rolling_on_the_floor_laugh-

ing:

Rolling On The Floor Laughing

U+1F924 \:drooling_face: Drooling Face

U+1F925 \:lying_face: Lying Face

U+1F926 \:face_palm: Face Palm

U+1F927 \:sneezing_face: Sneezing Face

U+1F928 \:face_with_raised_eye-

brow:

Face With One Eyebrow Raised

U+1F929 \:star-struck: Grinning Face With Star Eyes

U+1F92A \:zany_face: Grinning Face With One Large And One Small Eye

U+1F92B \:shushing_face: Face With Finger Covering Closed Lips

U+1F92C \:face_with_sym-

bols_on_mouth:

Serious Face With Symbols Covering Mouth

U+1F92D \:face_with_hand_over_mouth:Smiling Face With Smiling Eyes And Hand Covering

Mouth

U+1F92E \:face_vomiting: Face With Open Mouth Vomiting

U+1F92F \:exploding_head: Shocked Face With Exploding Head

U+1F930 \:pregnant_woman: Pregnant Woman

U+1F931 \:breast-feeding: Breast-Feeding

U+1F932 \:palms_up_together: Palms Up Together

U+1F933 \:selfie: Selfie

U+1F934 \:prince: Prince

U+1F935 \:person_in_tuxedo: Man In Tuxedo

U+1F936 \:mrs_claus: Mother Christmas

U+1F937 \:shrug: Shrug

U+1F938 \:person_do-

ing_cartwheel:

Person Doing Cartwheel

U+1F939 \:juggling: Juggling

U+1F93A \:fencer: Fencer

U+1F93C \:wrestlers: Wrestlers

U+1F93D \:water_polo: Water Polo

U+1F93E \:handball: Handball

U+1F93F \:diving_mask: Diving Mask

U+1F940 \:wilted_flower: Wilted Flower

U+1F941 \:drum_with_drum-

sticks:

Drum With Drumsticks

U+1F942 \:clinking_glasses: Clinking Glasses

U+1F943 \:tumbler_glass: Tumbler Glass

U+1F944 \:spoon: Spoon

U+1F945 \:goal_net: Goal Net

U+1F947 \:first_place_medal: First Place Medal

U+1F948 \:second_place_medal: Second Place Medal

U+1F949 \:third_place_medal: Third Place Medal

U+1F94A \:boxing_glove: Boxing Glove

U+1F94B \:martial_arts_uniform: Martial Arts Uniform

U+1F94C \:curling_stone: Curling Stone

U+1F94D \:lacrosse: Lacrosse Stick And Ball

U+1F94E \:softball: Softball

U+1F94F \:flying_disc: Flying Disc

U+1F950 \:croissant: Croissant

U+1F951 \:avocado: Avocado

U+1F952 \:cucumber: Cucumber

U+1F953 \:bacon: Bacon

U+1F954 \:potato: Potato

U+1F955 \:carrot: Carrot

U+1F956 \:baguette_bread: Baguette Bread

U+1F957 \:green_salad: Green Salad

U+1F958 \:shallow_pan_of_food: Shallow Pan Of Food

U+1F959 \:stuffed_flatbread: Stuffed Flatbread

U+1F95A \:egg: Egg

U+1F95B \:glass_of_milk: Glass Of Milk

U+1F95C \:peanuts: Peanuts

U+1F95D \:kiwifruit: Kiwifruit

U+1F95E \:pancakes: Pancakes

U+1F95F \:dumpling: Dumpling

U+1F960 \:fortune_cookie: Fortune Cookie

U+1F961 \:takeout_box: Takeout Box

U+1F962 \:chopsticks: Chopsticks

U+1F963 \:bowl_with_spoon: Bowl With Spoon

U+1F964 \:cup_with_straw: Cup With Straw

U+1F965 \:coconut: Coconut

U+1F966 \:broccoli: Broccoli

U+1F967 \:pie: Pie

U+1F968 \:pretzel: Pretzel

U+1F969 \:cut_of_meat: Cut Of Meat

U+1F96A \:sandwich: Sandwich

U+1F96B \:canned_food: Canned Food

U+1F96C \:leafy_green: Leafy Green

U+1F96D \:mango: Mango

U+1F96E \:moon_cake: Moon Cake

U+1F96F \:bagel: Bagel

U+1F970 \:smil-

ing_face_with_3_hearts:

Smiling Face With Smiling Eyes And Three Hearts

U+1F971 \:yawning_face: Yawning Face

U+1F972 \:smil-

ing_face_with_tear:

Smiling Face With Tear

U+1F973 \:partying_face: Face With Party Horn And Party Hat

U+1F974 \:woozy_face: Face With Uneven Eyes And Wavy Mouth

U+1F975 \:hot_face: Overheated Face

U+1F976 \:cold_face: Freezing Face

U+1F977 \:ninja: Ninja

U+1F978 \:disguised_face: Disguised Face

U+1F97A \:pleading_face: Face With Pleading Eyes

U+1F97B \:sari: Sari

U+1F97C \:lab_coat: Lab Coat

U+1F97D \:goggles: Goggles

U+1F97E \:hiking_boot: Hiking Boot

U+1F97F \:womans_flat_shoe: Flat Shoe

U+1F980 \:crab: Crab

U+1F981 \:lion_face: Lion Face

U+1F982 \:scorpion: Scorpion

U+1F983 \:turkey: Turkey

U+1F984 \:unicorn_face: Unicorn Face

U+1F985 \:eagle: Eagle

U+1F986 \:duck: Duck

U+1F987 \:bat: Bat

U+1F988 \:shark: Shark

U+1F989 \:owl: Owl

U+1F98A \:fox_face: Fox Face

U+1F98B \:butterfly: Butterfly

U+1F98C \:deer: Deer

U+1F98D \:gorilla: Gorilla

U+1F98E \:lizard: Lizard

U+1F98F \:rhinoceros: Rhinoceros

U+1F990 \:shrimp: Shrimp

U+1F991 \:squid: Squid

U+1F992 \:giraffe_face: Giraffe Face

U+1F993 \:zebra_face: Zebra Face

U+1F994 \:hedgehog: Hedgehog

U+1F995 \:sauropod: Sauropod

U+1F996 \:t-rex: T-Rex

U+1F997 \:cricket: Cricket

U+1F998 \:kangaroo: Kangaroo

U+1F999 \:llama: Llama

U+1F99A \:peacock: Peacock

U+1F99B \:hippopotamus: Hippopotamus

U+1F99C \:parrot: Parrot

U+1F99D \:raccoon: Raccoon

U+1F99E \:lobster: Lobster

U+1F99F \:mosquito: Mosquito

U+1F9A0 \:microbe: Microbe

U+1F9A1 \:badger: Badger

U+1F9A2 \:swan: Swan

U+1F9A3 \:mammoth: Mammoth

U+1F9A4 \:dodo: Dodo

U+1F9A5 \:sloth: Sloth

U+1F9A6 \:otter: Otter

U+1F9A7 \:orangutan: Orangutan

U+1F9A8 \:skunk: Skunk

U+1F9A9 \:flamingo: Flamingo

U+1F9AA \:oyster: Oyster

U+1F9AB \:beaver: Beaver

U+1F9AC \:bison: Bison

U+1F9AD \:seal: Seal

U+1F9AE \:guide_dog: Guide Dog

U+1F9AF \:probing_cane: Probing Cane

U+1F9B4 \:bone: Bone

U+1F9B5 \:leg: Leg

U+1F9B6 \:foot: Foot

U+1F9B7 \:tooth: Tooth

U+1F9B8 \:superhero: Superhero

U+1F9B9 \:supervillain: Supervillain

U+1F9BA \:safety_vest: Safety Vest

U+1F9BB \:ear_with_hearing_aid: Ear With Hearing Aid

U+1F9BC \:motor-

ized_wheelchair:

Motorized Wheelchair

U+1F9BD \:manual_wheelchair: Manual Wheelchair

U+1F9BE \:mechanical_arm: Mechanical Arm

U+1F9BF \:mechanical_leg: Mechanical Leg

U+1F9C0 \:cheese_wedge: Cheese Wedge

U+1F9C1 \:cupcake: Cupcake

U+1F9C2 \:salt: Salt Shaker

U+1F9C3 \:beverage_box: Beverage Box

U+1F9C4 \:garlic: Garlic

U+1F9C5 \:onion: Onion

U+1F9C6 \:falafel: Falafel

U+1F9C7 \:waffle: Waffle

U+1F9C8 \:butter: Butter

U+1F9C9 \:mate_drink: Mate Drink

U+1F9CA \:ice_cube: Ice Cube

U+1F9CB \:bubble_tea: Bubble Tea

U+1F9CD \:standing_person: Standing Person

U+1F9CE \:kneeling_person: Kneeling Person

U+1F9CF \:deaf_person: Deaf Person

U+1F9D0 \:face_with_monocle: Face With Monocle

U+1F9D1 \:adult: Adult

U+1F9D2 \:child: Child

U+1F9D3 \:older_adult: Older Adult

U+1F9D4 \:bearded_person: Bearded Person

U+1F9D5 \:person_with_head-

scarf:

Person With Headscarf

U+1F9D6 \:per-

son_in_steamy_room:

Person In Steamy Room

U+1F9D7 \:person_climbing: Person Climbing

U+1F9D8 \:person_in_lotus_posi-

tion:

Person In Lotus Position

U+1F9D9 \:mage: Mage

U+1F9DA \:fairy: Fairy

U+1F9DB \:vampire: Vampire

U+1F9DC \:merperson: Merperson

U+1F9DD \:elf: Elf

U+1F9DE \:genie: Genie

U+1F9DF \:zombie: Zombie

U+1F9E0 \:brain: Brain

U+1F9E1 \:orange_heart: Orange Heart

U+1F9E2 \:billed_cap: Billed Cap

U+1F9E3 \:scarf: Scarf

U+1F9E4 \:gloves: Gloves

U+1F9E5 \:coat: Coat

U+1F9E6 \:socks: Socks

U+1F9E7 \:red_envelope: Red Gift Envelope

U+1F9E8 \:firecracker: Firecracker

U+1F9E9 \:jigsaw: Jigsaw Puzzle Piece

U+1F9EA \:test_tube: Test Tube

U+1F9EB \:petri_dish: Petri Dish

U+1F9EC \:dna: Dna Double Helix

U+1F9ED \:compass: Compass

U+1F9EE \:abacus: Abacus

U+1F9EF \:fire_extinguisher: Fire Extinguisher

U+1F9F0 \:toolbox: Toolbox

U+1F9F1 \:bricks: Brick

U+1F9F2 \:magnet: Magnet

U+1F9F3 \:luggage: Luggage

U+1F9F4 \:lotion_bottle: Lotion Bottle

U+1F9F5 \:thread: Spool Of Thread

U+1F9F6 \:yarn: Ball Of Yarn

U+1F9F7 \:safety_pin: Safety Pin

U+1F9F8 \:teddy_bear: Teddy Bear

U+1F9F9 \:broom: Broom

U+1F9FA \:basket: Basket

U+1F9FB \:roll_of_paper: Roll Of Paper

U+1F9FC \:soap: Bar Of Soap

U+1F9FD \:sponge: Sponge

U+1F9FE \:receipt: Receipt

U+1F9FF \:nazar_amulet: Nazar Amulet

U+1FA70 \:ballet_shoes: Ballet Shoes

U+1FA71 \:one-piece_swimsuit: One-Piece Swimsuit

U+1FA72 \:briefs: Briefs

U+1FA73 \:shorts: Shorts

U+1FA74 \:thong_sandal: Thong Sandal

U+1FA78 \:drop_of_blood: Drop Of Blood

U+1FA79 \:adhesive_bandage: Adhesive Bandage

U+1FA7A \:stethoscope: Stethoscope

U+1FA80 \:yo-yo: Yo-Yo

U+1FA81 \:kite: Kite

U+1FA82 \:parachute: Parachute

U+1FA83 \:boomerang: Boomerang

U+1FA84 \:magic_wand: Magic Wand

U+1FA85 \:pinata: Pinata

U+1FA86 \:nesting_dolls: Nesting Dolls

U+1FA90 \:ringed_planet: Ringed Planet

U+1FA91 \:chair: Chair

U+1FA92 \:razor: Razor

U+1FA93 \:axe: Axe

U+1FA94 \:diya_lamp: Diya Lamp

U+1FA95 \:banjo: Banjo

U+1FA96 \:military_helmet: Military Helmet

U+1FA97 \:accordion: Accordion

U+1FA98 \:long_drum: Long Drum

U+1FA99 \:coin: Coin

U+1FA9A \:carpentry_saw: Carpentry Saw

U+1FA9B \:screwdriver: Screwdriver

U+1FA9C \:ladder: Ladder

U+1FA9D \:hook: Hook

U+1FA9E \:mirror: Mirror

U+1FA9F \:window: Window

U+1FAA0 \:plunger: Plunger

U+1FAA1 \:sewing_needle: Sewing Needle

U+1FAA2 \:knot: Knot

U+1FAA3 \:bucket: Bucket

U+1FAA4 \:mouse_trap: Mouse Trap

U+1FAA5 \:toothbrush: Toothbrush

U+1FAA6 \:headstone: Headstone

U+1FAA7 \:placard: Placard

U+1FAA8 \:rock: Rock

U+1FAB0 \:fly: Fly

U+1FAB1 \:worm: Worm

U+1FAB2 \:beetle: Beetle

U+1FAB3 \:cockroach: Cockroach

U+1FAB4 \:potted_plant: Potted Plant

U+1FAB5 \:wood: Wood

U+1FAB6 \:feather: Feather

U+1FAC0 \:anatomical_heart: Anatomical Heart

U+1FAC1 \:lungs: Lungs

U+1FAC2 \:people_hugging: People Hugging

U+1FAD0 \:blueberries: Blueberries

U+1FAD1 \:bell_pepper: Bell Pepper

U+1FAD2 \:olive: Olive

U+1FAD3 \:flatbread: Flatbread

U+1FAD4 \:tamale: Tamale

U+1FAD5 \:fondue: Fondue

U+1FAD6 \:teapot: Teapot

491

Chapter 40

Command-line Interface

40.1 Using arguments inside scripts

When running a script using julia, you can pass additional arguments to your script:

$ julia script.jl arg1 arg2...

These additional command-line arguments are passed in the global constant ARGS. The name of the script

itself is passed in as the global PROGRAM_FILE. Note that ARGS is also set when a Julia expression is given

using the -e option on the command line (see the julia help output below) but PROGRAM_FILE will be

empty. For example, to just print the arguments given to a script, you could do this:

$ julia -e 'println(PROGRAM_FILE); for x in ARGS; println(x); end' foo bar

foo

bar

Or you could put that code into a script and run it:

$ echo 'println(PROGRAM_FILE); for x in ARGS; println(x); end' > script.jl

$ julia script.jl foo bar

script.jl

foo

bar

The -- delimiter can be used to separate command-line arguments intended for the script file from argu-

ments intended for Julia:

$ julia --color=yes -O -- script.jl arg1 arg2..

See also Scripting for more information on writing Julia scripts.

40.2 Parallel mode

Julia can be started in parallel mode with either the -p or the --machine-file options. -p n will launch an

additional n worker processes, while --machine-file file will launch a worker for each line in file file.

The machines defined in file must be accessible via a password-less ssh login, with Julia installed at the

same location as the current host. Each machine definition takes the form [count*][user@]host[:port]

492

CHAPTER 40. COMMAND-LINE INTERFACE 493

[bind_addr[:port]]. user defaults to current user, port to the standard ssh port. count is the number

of workers to spawn on the node, and defaults to 1. The optional bind-to bind_addr[:port] specifies

the IP address and port that other workers should use to connect to this worker.

40.3 Startup file

If you have code that youwant executedwhenever Julia is run, you can put it in ~/.julia/config/startup.jl:

$ echo 'println("Greetings! ! ?")' > ~/.julia/config/startup.jl

$ julia

Greetings! ! ?

...

Note that although you should have a ~/.julia directory once you've run Julia for the first time, you may

need to create the ~/.julia/config folder and the ~/.julia/config/startup.jl file if you use it.

To have startup code run only in The Julia REPL (and not when julia is e.g. run on a script), use atreplinit

in startup.jl:

atreplinit() do repl

...

end

40.4 Command-line switches for Julia

There are various ways to run Julia code and provide options, similar to those available for the perl and

ruby programs:

julia [switches] -- [programfile] [args...]

The following is a complete list of command-line switches available when launching julia (a '*' marks the

default value, if applicable; settings marked '($)' may trigger package precompilation):

Julia 1.1

In Julia 1.0, the default --project=@. option did not search up from the root directory of a Git

repository for the Project.toml file. From Julia 1.1 forward, it does.

CHAPTER 40. COMMAND-LINE INTERFACE 494

Switch Description

-v, --version Display version information

-h, --help Print command-line options (this message).

--help-hidden Uncommon options not shown by -h

--

project[={<dir>|@.}]

Set <dir> as the home project/environment. The default @. option will search

through parent directories until a Project.toml or JuliaProject.toml file is

found.

-J, --sysimage

<file>

Start up with the given system image file

-H, --home <dir> Set location of julia executable

--startup-

file={yes*|no}

Load JULIA_DEPOT_PATH/config/startup.jl; if JULIA_DEPOT_PATH

environment variable is unset, load ~/.julia/config/startup.jl

--handle-

signals={yes*|no}

Enable or disable Julia's default signal handlers

--sysimage-

native-

code={yes*|no}

Use native code from system image if available

--compiled-

modules={yes*|no}

Enable or disable incremental precompilation of modules

--

pkgimages={yes*|no}

Enable or disable usage of native code caching in the form of pkgimages

-e, --eval <expr> Evaluate <expr>

-E, --print <expr> Evaluate <expr> and display the result

-L, --load <file> Load <file> immediately on all processors

-t, --threads

{N|auto}

Enable N threads; auto tries to infer a useful default number of threads to use

but the exact behavior might change in the future. Currently, auto uses the

number of CPUs assigned to this julia process based on the OS-specific affinity

assignment interface, if supported (Linux and Windows). If this is not

supported (macOS) or process affinity is not configured, it uses the number of

CPU threads.

--gcthreads=N[,M] Use N threads for the mark phase of GC and M (0 or 1) threads for the

concurrent sweeping phase of GC. N is set to half of the number of compute

threads and M is set to 0 if unspecified.

-p, --procs

{N|auto}

Integer value N launches N additional local worker processes; auto launches

as many workers as the number of local CPU threads (logical cores)

--machine-file

<file>

Run processes on hosts listed in <file>

-i Interactive mode; REPL runs and isinteractive() is true

-q, --quiet Quiet startup: no banner, suppress REPL warnings

--

banner={yes|no|auto*}

Enable or disable startup banner

--

color={yes|no|auto*}

Enable or disable color text

--history-

file={yes*|no}

Load or save history

--

depwarn={yes|no*|error}

Enable or disable syntax and method deprecation warnings (error turns

warnings into errors)

--warn-

overwrite={yes|no*}

Enable or disable method overwrite warnings

--warn-

scope={yes*|no}

Enable or disable warning for ambiguous top-level scope

-C, --cpu-target

<target>

Limit usage of CPU features up to <target>; set to help to see the available

options

-O, --

optimize={0,1,2*,3}

Set the optimization level (level is 3 if -O is used without a level) ($)

--min-

optlevel={0*,1,2,3}

Set the lower bound on per-module optimization

-g, --debug-

info={0,1*,2}

Set the level of debug info generation (level is 2 if -g is used without a level)

($)

--inline={yes|no} Control whether inlining is permitted, including overriding @inline

declarations

--check-

bounds={yes|no|auto*}

Emit bounds checks always, never, or respect @inbounds declarations ($)

--math-

mode={ieee,fast}

Disallow or enable unsafe floating point optimizations (overrides @fastmath

declaration)

--code-

coverage[={none*|user|all}]

Count executions of source lines (omitting setting is equivalent to user)

--code-

coverage=@<path>

Count executions but only in files that fall under the given file path/directory.

The @ prefix is required to select this option. A @ with no path will track the

current directory.

--code-

coverage=tracefile.info

Append coverage information to the LCOV tracefile (filename supports format

tokens).

--track-

allocation[={none*|user|all}]

Count bytes allocated by each source line (omitting setting is equivalent to

"user")

--track-

allocation=@<path>

Count bytes but only in files that fall under the given file path/directory. The @

prefix is required to select this option. A @ with no path will track the current

directory.

--bug-report=KIND Launch a bug report session. It can be used to start a REPL, run a script, or

evaluate expressions. It first tries to use BugReporting.jl installed in current

environment and falls back to the latest compatible BugReporting.jl if not. For

more information, see --bug-report=help.

--

compile={yes*|no|all|min}

Enable or disable JIT compiler, or request exhaustive or minimal compilation

--output-o <name> Generate an object file (including system image data)

--output-ji

<name>

Generate a system image data file (.ji)

--strip-metadata Remove docstrings and source location info from system image

--strip-ir Remove IR (intermediate representation) of compiled functions

--output-unopt-bc

<name>

Generate unoptimized LLVM bitcode (.bc)

--output-bc

<name>

Generate LLVM bitcode (.bc)

--output-asm

<name>

Generate an assembly file (.s)

--output-

incremental={yes|no*}

Generate an incremental output file (rather than complete)

--trace-

compile={stderr,name}

Print precompile statements for methods compiled during execution or save to

a path

--image-codegen Force generate code in imaging mode

--heap-size-

hint=<size>

Forces garbage collection if memory usage is higher than that value. The

memory hint might be specified in megabytes (e.g., 500M) or gigabytes (e.g.,

1G)

Part II

Base

495

Chapter 41

Essentials

41.1 Introduction

Julia Base contains a range of functions and macros appropriate for performing scientific and numerical

computing, but is also as broad as those of many general purpose programming languages. Additional

functionality is available from a growing collection of available packages. Functions are grouped by topic

below.

Some general notes:

• To use module functions, use import Module to import the module, and Module.fn(x) to use the

functions.

• Alternatively, using Module will import all exported Module functions into the current namespace.

• By convention, function names ending with an exclamation point (!) modify their arguments. Some

functions have both modifying (e.g., sort!) and non-modifying (sort) versions.

The behaviors of Base and standard libraries are stable as defined in SemVer only if they are documented;

i.e., included in the Julia documentation and not marked as unstable. See API FAQ for more information.

41.2 Getting Around

Base.exit – Function.

exit(code=0)

Stop the programwith an exit code. The default exit code is zero, indicating that the program completed

successfully. In an interactive session, exit() can be called with the keyboard shortcut ^D.

source

Base.atexit – Function.

atexit(f)

496

https://julialang.org/packages/
https://semver.org/
https://docs.julialang.org/
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/initdefs.jl#L21-L27

CHAPTER 41. ESSENTIALS 497

Register a zero- or one-argument function f() to be called at process exit. atexit() hooks are called

in last in first out (LIFO) order and run before object finalizers.

If f has a method defined for one integer argument, it will be called as f(n::Int32), where n is the

current exit code, otherwise it will be called as f().

Julia 1.9

The one-argument form requires Julia 1.9

Exit hooks are allowed to call exit(n), in which case Julia will exit with exit code n (instead of the

original exit code). If more than one exit hook calls exit(n), then Julia will exit with the exit code

corresponding to the last called exit hook that calls exit(n). (Because exit hooks are called in LIFO

order, "last called" is equivalent to "first registered".)

Note: Once all exit hooks have been called, no more exit hooks can be registered, and any call to

atexit(f) after all hooks have completed will throw an exception. This situation may occur if you are

registering exit hooks from background Tasks that may still be executing concurrently during shutdown.

source

Base.isinteractive – Function.

isinteractive() -> Bool

Determine whether Julia is running an interactive session.

source

Base.summarysize – Function.

Base.summarysize(obj; exclude=Union{...}, chargeall=Union{...}) -> Int

Compute the amount of memory, in bytes, used by all unique objects reachable from the argument.

Keyword Arguments

• exclude: specifies the types of objects to exclude from the traversal.

• chargeall: specifies the types of objects to always charge the size of all of their fields, even if

those fields would normally be excluded.

See also sizeof.

Examples

julia> Base.summarysize(1.0)

8

julia> Base.summarysize(Ref(rand(100)))

848

julia> sizeof(Ref(rand(100)))

8

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/initdefs.jl#L371-L395
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/initdefs.jl#L35-L39
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/summarysize.jl#L11-L34

CHAPTER 41. ESSENTIALS 498

Base.__precompile__ – Function.

__precompile__(isprecompilable::Bool)

Specify whether the file calling this function is precompilable, defaulting to true. If a module or file

is not safely precompilable, it should call __precompile__(false) in order to throw an error if Julia

attempts to precompile it.

source

Base.include – Function.

Base.include([mapexpr::Function,] m::Module, path::AbstractString)

Evaluate the contents of the input source file in the global scope of module m. Every module (except

those defined with baremodule) has its own definition of include omitting the m argument, which

evaluates the file in that module. Returns the result of the last evaluated expression of the input file.

During including, a task-local include path is set to the directory containing the file. Nested calls to

include will search relative to that path. This function is typically used to load source interactively, or

to combine files in packages that are broken into multiple source files.

The optional first argument mapexpr can be used to transform the included code before it is evaluated:

for each parsed expression expr in path, the include function actually evaluates mapexpr(expr). If it

is omitted, mapexpr defaults to identity.

Julia 1.5

Julia 1.5 is required for passing the mapexpr argument.

source

Base.MainInclude.include – Function.

include([mapexpr::Function,] path::AbstractString)

Evaluate the contents of the input source file in the global scope of the containing module. Every

module (except those defined with baremodule) has its own definition of include, which evaluates the

file in that module. Returns the result of the last evaluated expression of the input file. During including,

a task-local include path is set to the directory containing the file. Nested calls to include will search

relative to that path. This function is typically used to load source interactively, or to combine files in

packages that are broken into multiple source files. The argument path is normalized using normpath

which will resolve relative path tokens such as .. and convert / to the appropriate path separator.

The optional first argument mapexpr can be used to transform the included code before it is evaluated:

for each parsed expression expr in path, the include function actually evaluates mapexpr(expr). If it

is omitted, mapexpr defaults to identity.

Use Base.include to evaluate a file into another module.

Julia 1.5

Julia 1.5 is required for passing the mapexpr argument.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/loading.jl#L1704-L1710
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/loading.jl#L2105-L2122
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/client.jl#L522-L543

CHAPTER 41. ESSENTIALS 499

Base.include_string – Function.

include_string([mapexpr::Function,] m::Module, code::AbstractString,

filename::AbstractString="string")↪→

Like include, except reads code from the given string rather than from a file.

The optional first argument mapexpr can be used to transform the included code before it is eval-

uated: for each parsed expression expr in code, the include_string function actually evaluates

mapexpr(expr). If it is omitted, mapexpr defaults to identity.

Julia 1.5

Julia 1.5 is required for passing the mapexpr argument.

source

Base.include_dependency – Function.

include_dependency(path::AbstractString)

In a module, declare that the file, directory, or symbolic link specified by path (relative or absolute)

is a dependency for precompilation; that is, the module will need to be recompiled if the modification

time of path changes.

This is only needed if your module depends on a path that is not used via include. It has no effect

outside of compilation.

source

__init__ – Keyword.

__init__

The __init__() function in a module executes immediately after the module is loaded at runtime for

the first time. It is called once, after all other statements in the module have been executed. Because it

is called after fully importing the module, __init__ functions of submodules will be executed first. Two

typical uses of __init__ are calling runtime initialization functions of external C libraries and initializing

global constants that involve pointers returned by external libraries. See the manual section about

modules for more details.

Examples

const foo_data_ptr = Ref{Ptr{Cvoid}}(0)

function __init__()

ccall((:foo_init, :libfoo), Cvoid, ())

foo_data_ptr[] = ccall((:foo_data, :libfoo), Ptr{Cvoid}, ())

nothing

end

source

Base.which – Method.

which(f, types)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/loading.jl#L2046-L2057
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/loading.jl#L1679-L1688
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L127-L147

CHAPTER 41. ESSENTIALS 500

Returns the method of f (a Method object) that would be called for arguments of the given types.

If types is an abstract type, then the method that would be called by invoke is returned.

See also: parentmodule, and @which and @edit in InteractiveUtils.

source

Base.methods – Function.

methods(f, [types], [module])

Return the method table for f.

If types is specified, return an array of methods whose types match. If module is specified, return an

array of methods defined in that module. A list of modules can also be specified as an array.

Julia 1.4

At least Julia 1.4 is required for specifying a module.

See also: which and @which.

source

Base.@show – Macro.

@show exs...

Prints one or more expressions, and their results, to stdout, and returns the last result.

See also: show, @info, println.

Examples

julia> x = @show 1+2

1 + 2 = 3

3

julia> @show x^2 x/2;

x ^ 2 = 9

x / 2 = 1.5

source

Base.MainInclude.ans – Constant.

ans

A variable referring to the last computed value, automatically imported to the interactive prompt.

source

Base.MainInclude.err – Constant.

err

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L1708-L1716
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L1053-L1066
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/show.jl#L1159-L1176
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/client.jl#L493-L497

CHAPTER 41. ESSENTIALS 501

A variable referring to the last thrown errors, automatically imported to the interactive prompt. The

thrown errors are collected in a stack of exceptions.

source

Base.active_project – Function.

active_project()

Return the path of the active Project.toml file. See also Base.set_active_project.

source

Base.set_active_project – Function.

set_active_project(projfile::Union{AbstractString,Nothing})

Set the active Project.toml file to projfile. See also Base.active_project.

Julia 1.8

This function requires at least Julia 1.8.

source

41.3 Keywords

This is the list of reserved keywords in Julia: baremodule, begin, break, catch, const, continue, do, else,

elseif, end, export, false, finally, for, function, global, if, import, let, local, macro, module,

quote, return, struct, true, try, using, while. Those keywords are not allowed to be used as variable

names.

The following two-word sequences are reserved: abstract type, mutable struct, primitive type. How-

ever, you can create variables with names: abstract, mutable, primitive and type.

Finally: where is parsed as an infix operator for writing parametric method and type definitions; in and isa

are parsed as infix operators; outer is parsed as a keyword when used to modify the scope of a variable

in an iteration specification of a for loop; and as is used as a keyword to rename an identifier brought into

scope by import or using. Creation of variables named where, in, isa, outer and as is allowed, though.

module – Keyword.

module

module declares a Module, which is a separate global variable workspace. Within a module, you can

control which names from other modules are visible (via importing), and specify which of your names

are intended to be public (via exporting). Modules allow you to create top-level definitions without

worrying about name conflicts when your code is used together with somebody else’s. See the manual

section about modules for more details.

Examples

module Foo

import Base.show

export MyType, foo

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/client.jl#L500-L505
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/initdefs.jl#L293-L297
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/initdefs.jl#L322-L329

CHAPTER 41. ESSENTIALS 502

struct MyType

x

end

bar(x) = 2x

foo(a::MyType) = bar(a.x) + 1

show(io::IO, a::MyType) = print(io, "MyType $(a.x)")

end

source

export – Keyword.

export

export is used within modules to tell Julia which functions should be made available to the user. For

example: export foomakes the name foo available when using the module. See the manual section

about modules for details.

source

import – Keyword.

import

import Foo will load the module or package Foo. Names from the imported Foo module can be ac-

cessed with dot syntax (e.g. Foo.foo to access the name foo). See the manual section about modules

for details.

source

using – Keyword.

using

using Foo will load the module or package Foo and make its exported names available for direct use.

Names can also be used via dot syntax (e.g. Foo.foo to access the name foo), whether they are

exported or not. See the manual section about modules for details.

source

as – Keyword.

as

as is used as a keyword to rename an identifier brought into scope by import or using, for the pur-

pose of working around name conflicts as well as for shortening names. (Outside of import or using

statements, as is not a keyword and can be used as an ordinary identifier.)

import LinearAlgebra as LA brings the imported LinearAlgebra standard library into scope as LA.

import LinearAlgebra: eigen as eig, cholesky as chol brings the eigen and cholesky meth-

ods from LinearAlgebra into scope as eig and chol respectively.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L99-L124
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L52-L59
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L42-L49
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L32-L39

CHAPTER 41. ESSENTIALS 503

as works with using only when individual identifiers are brought into scope. For example, using

LinearAlgebra: eigen as eig or using LinearAlgebra: eigen as eig, cholesky as cholworks,

but using LinearAlgebra as LA is invalid syntax, since it is nonsensical to rename all exported names

from LinearAlgebra to LA.

source

baremodule – Keyword.

baremodule

baremodule declares a module that does not contain using Base or local definitions of eval and

include. It does still import Core. In other words,

module Mod

...

end

is equivalent to

baremodule Mod

using Base

eval(x) = Core.eval(Mod, x)

include(p) = Base.include(Mod, p)

...

end

source

function – Keyword.

function

Functions are defined with the function keyword:

function add(a, b)

return a + b

end

Or the short form notation:

add(a, b) = a + b

The use of the return keyword is exactly the same as in other languages, but is often optional. A

function without an explicit return statement will return the last expression in the function body.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L62-L80
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L150-L178
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L784-L803

CHAPTER 41. ESSENTIALS 504

macro – Keyword.

macro

macro defines a method for inserting generated code into a program. A macro maps a sequence of

argument expressions to a returned expression, and the resulting expression is substituted directly into

the program at the point where the macro is invoked. Macros are a way to run generated code without

calling eval, since the generated code instead simply becomes part of the surrounding program. Macro

arguments may include expressions, literal values, and symbols. Macros can be defined for variable

number of arguments (varargs), but do not accept keyword arguments. Every macro also implicitly

gets passed the arguments __source__, which contains the line number and file name the macro is

called from, and __module__, which is the module the macro is expanded in.

See the manual section on Metaprogramming for more information about how to write a macro.

Examples

julia> macro sayhello(name)

return :(println("Hello, ", $name, "!"))

end

@sayhello (macro with 1 method)

julia> @sayhello "Charlie"

Hello, Charlie!

julia> macro saylots(x...)

return :(println("Say: ", $(x...)))

end

@saylots (macro with 1 method)

julia> @saylots "hey " "there " "friend"

Say: hey there friend

source

return – Keyword.

return

return x causes the enclosing function to exit early, passing the given value x back to its caller. return

by itself with no value is equivalent to return nothing (see nothing).

function compare(a, b)

a == b && return "equal to"

a < b ? "less than" : "greater than"

end

In general you can place a return statement anywhere within a function body, including within deeply

nested loops or conditionals, but be careful with do blocks. For example:

function test1(xs)

for x in xs

iseven(x) && return 2x

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L199-L234

CHAPTER 41. ESSENTIALS 505

end

end

function test2(xs)

map(xs) do x

iseven(x) && return 2x

x

end

end

In the first example, the return breaks out of test1 as soon as it hits an even number, so test1([5,6,7])

returns 12.

You might expect the second example to behave the same way, but in fact the return there only breaks

out of the inner function (inside the do block) and gives a value back to map. test2([5,6,7]) then

returns [5,12,7].

When used in a top-level expression (i.e. outside any function), return causes the entire current top-

level expression to terminate early.

source

do – Keyword.

do

Create an anonymous function and pass it as the first argument to a function call. For example:

map(1:10) do x

2x

end

is equivalent to map(x->2x, 1:10).

Use multiple arguments like so:

map(1:10, 11:20) do x, y

x + y

end

source

begin – Keyword.

begin

begin...end denotes a block of code.

begin

println("Hello, ")

println("World!")

end

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L832-L872
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1103-L1125

CHAPTER 41. ESSENTIALS 506

Usually begin will not be necessary, since keywords such as function and let implicitly begin blocks

of code. See also ;.

begin may also be used when indexing to represent the first index of a collection or the first index of

a dimension of an array.

Examples

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> A[begin, :]

2-element Array{Int64,1}:

1

2

source

end – Keyword.

end

end marks the conclusion of a block of expressions, for example module, struct, mutable struct,

begin, let, for etc.

end may also be used when indexing to represent the last index of a collection or the last index of a

dimension of an array.

Examples

julia> A = [1 2; 3 4]

2×2 Array{Int64, 2}:

1 2

3 4

julia> A[end, :]

2-element Array{Int64, 1}:

3

4

source

let – Keyword.

let

let blocks create a new hard scope and optionally introduce new local bindings.

Just like the other scope constructs, let blocks define the block of code where newly introduced local

variables are accessible. Additionally, the syntax has a special meaning for comma-separated assign-

ments and variable names that may optionally appear on the same line as the let:

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1322-L1352
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L974-L996

CHAPTER 41. ESSENTIALS 507

let var1 = value1, var2, var3 = value3

code

end

The variables introduced on this line are local to the let block and the assignments are evaluated in

order, with each right-hand side evaluated in the scope without considering the name on the left-hand

side. Therefore it makes sense to write something like let x = x, since the two x variables are distinct

with the left-hand side locally shadowing the x from the outer scope. This can even be a useful idiom as

new local variables are freshly created each time local scopes are entered, but this is only observable

in the case of variables that outlive their scope via closures. A let variable without an assignment,

such as var2 in the example above, declares a new local variable that is not yet bound to a value.

By contrast, begin blocks also group multiple expressions together but do not introduce scope or have

the special assignment syntax.

Examples

In the function below, there is a single x that is iteratively updated three times by the map. The closures

returned all reference that one x at its final value:

julia> function test_outer_x()

x = 0

map(1:3) do _

x += 1

return ()->x

end

end

test_outer_x (generic function with 1 method)

julia> [f() for f in test_outer_x()]

3-element Vector{Int64}:

3

3

3

If, however, we add a let block that introduces a new local variable we will end up with three distinct

variables being captured (one at each iteration) even though we chose to use (shadow) the same name.

julia> function test_let_x()

x = 0

map(1:3) do _

x += 1

let x = x

return ()->x

end

end

end

test_let_x (generic function with 1 method)

julia> [f() for f in test_let_x()]

3-element Vector{Int64}:

1

2

3

CHAPTER 41. ESSENTIALS 508

All scope constructs that introduce new local variables behave this way when repeatedly run; the

distinctive feature of let is its ability to succinctly declare new locals that may shadow outer variables

of the same name. For example, directly using the argument of the do function similarly captures three

distinct variables:

julia> function test_do_x()

map(1:3) do x

return ()->x

end

end

test_do_x (generic function with 1 method)

julia> [f() for f in test_do_x()]

3-element Vector{Int64}:

1

2

3

source

if – Keyword.

if/elseif/else

if/elseif/else performs conditional evaluation, which allows portions of code to be evaluated or not

evaluated depending on the value of a boolean expression. Here is the anatomy of the if/elseif/else

conditional syntax:

if x < y

println("x is less than y")

elseif x > y

println("x is greater than y")

else

println("x is equal to y")

end

If the condition expression x < y is true, then the corresponding block is evaluated; otherwise the

condition expression x > y is evaluated, and if it is true, the corresponding block is evaluated; if neither

expression is true, the else block is evaluated. The elseif and else blocks are optional, and as many

elseif blocks as desired can be used.

In contrast to some other languages conditions must be of type Bool. It does not suffice for conditions

to be convertible to Bool.

julia> if 1 end

ERROR: TypeError: non-boolean (Int64) used in boolean context

source

for – Keyword.

for

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L500-L596
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L875-L903

CHAPTER 41. ESSENTIALS 509

for loops repeatedly evaluate a block of statements while iterating over a sequence of values.

The iteration variable is always a new variable, even if a variable of the same name exists in the

enclosing scope. Use outer to reuse an existing local variable for iteration.

Examples

julia> for i in [1, 4, 0]

println(i)

end

1

4

0

source

while – Keyword.

while

while loops repeatedly evaluate a conditional expression, and continue evaluating the body of the

while loop as long as the expression remains true. If the condition expression is false when the while

loop is first reached, the body is never evaluated.

Examples

julia> i = 1

1

julia> while i < 5

println(i)

global i += 1

end

1

2

3

4

source

break – Keyword.

break

Break out of a loop immediately.

Examples

julia> i = 0

0

julia> while true

global i += 1

i > 5 && break

println(i)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L928-L947
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L950-L971

CHAPTER 41. ESSENTIALS 510

end

1

2

3

4

5

source

continue – Keyword.

continue

Skip the rest of the current loop iteration.

Examples

julia> for i = 1:6

iseven(i) && continue

println(i)

end

1

3

5

source

try – Keyword.

try/catch

A try/catch statement allows intercepting errors (exceptions) thrown by throw so that program exe-

cution can continue. For example, the following code attempts to write a file, but warns the user and

proceeds instead of terminating execution if the file cannot be written:

try

open("/danger", "w") do f

println(f, "Hello")

end

catch

@warn "Could not write file."

end

or, when the file cannot be read into a variable:

lines = try

open("/danger", "r") do f

readlines(f)

end

catch

@warn "File not found."

end

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1061-L1082
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1085-L1100

CHAPTER 41. ESSENTIALS 511

The syntax catch e (where e is any variable) assigns the thrown exception object to the given variable

within the catch block.

The power of the try/catch construct lies in the ability to unwind a deeply nested computation imme-

diately to a much higher level in the stack of calling functions.

source

finally – Keyword.

finally

Run some code when a given block of code exits, regardless of how it exits. For example, here is how

we can guarantee that an opened file is closed:

f = open("file")

try

operate_on_file(f)

finally

close(f)

end

When control leaves the try block (for example, due to a return, or just finishing normally), close(f)

will be executed. If the try block exits due to an exception, the exception will continue propagating.

A catch block may be combined with try and finally as well. In this case the finally block will run

after catch has handled the error.

source

quote – Keyword.

quote

quote creates multiple expression objects in a block without using the explicit Expr constructor. For

example:

ex = quote

x = 1

y = 2

x + y

end

Unlike the other means of quoting, :(...), this form introduces QuoteNode elements to the expres-

sion tree, which must be considered when directly manipulating the tree. For other purposes, :(...

) and quote .. end blocks are treated identically.

source

local – Keyword.

local

local introduces a new local variable. See themanual section on variable scoping formore information.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L999-L1034
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1037-L1058
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L599-L615

CHAPTER 41. ESSENTIALS 512

julia> function foo(n)

x = 0

for i = 1:n

local x # introduce a loop-local x

x = i

end

x

end

foo (generic function with 1 method)

julia> foo(10)

0

source

global – Keyword.

global

global x makes x in the current scope and its inner scopes refer to the global variable of that name.

See the manual section on variable scoping for more information.

Examples

julia> z = 3

3

julia> function foo()

global z = 6 # use the z variable defined outside foo

end

foo (generic function with 1 method)

julia> foo()

6

julia> z

6

source

outer – Keyword.

for outer

Reuse an existing local variable for iteration in a for loop.

See the manual section on variable scoping for more information.

See also for.

Examples

julia> function f()

i = 0

for i = 1:3

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L255-L276
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L279-L302

CHAPTER 41. ESSENTIALS 513

empty

end

return i

end;

julia> f()

0

julia> function f()

i = 0

for outer i = 1:3

empty

end

return i

end;

julia> f()

3

julia> i = 0 # global variable

for outer i = 1:3

end

ERROR: syntax: no outer local variable declaration exists for "for outer"

[...]

source

const – Keyword.

const

const is used to declare global variables whose values will not change. In almost all code (and partic-

ularly performance sensitive code) global variables should be declared constant in this way.

const x = 5

Multiple variables can be declared within a single const:

const y, z = 7, 11

Note that const only applies to one = operation, therefore const x = y = 1 declares x to be constant

but not y. On the other hand, const x = const y = 1 declares both x and y constant.

Note that "constant-ness" does not extend into mutable containers; only the association between a

variable and its value is constant. If x is an array or dictionary (for example) you can still modify, add,

or remove elements.

In some cases changing the value of a const variable gives a warning instead of an error. However, this

can produce unpredictable behavior or corrupt the state of your program, and so should be avoided.

This feature is intended only for convenience during interactive use.

source

struct – Keyword.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L305-L349
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L752-L781

CHAPTER 41. ESSENTIALS 514

struct

The most commonly used kind of type in Julia is a struct, specified as a name and a set of fields.

struct Point

x

y

end

Fields can have type restrictions, which may be parameterized:

struct Point{X}

x::X

y::Float64

end

A struct can also declare an abstract super type via <: syntax:

struct Point <: AbstractPoint

x

y

end

structs are immutable by default; an instance of one of these types cannot be modified after con-

struction. Use mutable struct instead to declare a type whose instances can be modified.

See the manual section on Composite Types for more details, such as how to define constructors.

source

mutable struct – Keyword.

mutable struct

mutable struct is similar to struct, but additionally allows the fields of the type to be set after

construction. See the manual section on Composite Types for more information.

source

Base.@kwdef – Macro.

@kwdef typedef

This is a helper macro that automatically defines a keyword-based constructor for the type declared in

the expression typedef, whichmust be a struct or mutable struct expression. The default argument

is supplied by declaring fields of the form field::T = default or field = default. If no default is

provided then the keyword argument becomes a required keyword argument in the resulting type

constructor.

Inner constructors can still be defined, but at least one should accept arguments in the same form as

the default inner constructor (i.e. one positional argument per field) in order to function correctly with

the keyword outer constructor.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1355-L1392
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1395-L1401

CHAPTER 41. ESSENTIALS 515

Julia 1.1

Base.@kwdef for parametric structs, and structs with supertypes requires at least Julia 1.1.

Julia 1.9

This macro is exported as of Julia 1.9.

Examples

julia> @kwdef struct Foo

a::Int = 1 # specified default

b::String # required keyword

end

Foo

julia> Foo(b="hi")

Foo(1, "hi")

julia> Foo()

ERROR: UndefKeywordError: keyword argument `b` not assigned

Stacktrace:

[...]

source

abstract type – Keyword.

abstract type

abstract type declares a type that cannot be instantiated, and serves only as a node in the type

graph, thereby describing sets of related concrete types: those concrete types which are their descen-

dants. Abstract types form the conceptual hierarchy which makes Julia’s type system more than just a

collection of object implementations. For example:

abstract type Number end

abstract type Real <: Number end

Number has no supertype, whereas Real is an abstract subtype of Number.

source

primitive type – Keyword.

primitive type

primitive type declares a concrete type whose data consists only of a series of bits. Classic exam-

ples of primitive types are integers and floating-point values. Some example built-in primitive type

declarations:

primitive type Char 32 end

primitive type Bool <: Integer 8 end

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/util.jl#L530-L566
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L83-L96

CHAPTER 41. ESSENTIALS 516

The number after the name indicates how many bits of storage the type requires. Currently, only sizes

that are multiples of 8 bits are supported. The Bool declaration shows how a primitive type can be

optionally declared to be a subtype of some supertype.

source

where – Keyword.

where

The where keyword creates a type that is an iterated union of other types, over all values of some

variable. For example Vector{T} where T<:Real includes all Vectors where the element type is some

kind of Real number.

The variable bound defaults to Any if it is omitted:

Vector{T} where T # short for `where T<:Any`

Variables can also have lower bounds:

Vector{T} where T>:Int

Vector{T} where Int<:T<:Real

There is also a concise syntax for nested where expressions. For example, this:

Pair{T, S} where S<:Array{T} where T<:Number

can be shortened to:

Pair{T, S} where {T<:Number, S<:Array{T}}

This form is often found on method signatures.

Note that in this form, the variables are listed outermost-first. This matches the order in which variables

are substituted when a type is "applied" to parameter values using the syntax T{p1, p2, ...}.

source

... – Keyword.

...

The "splat" operator, ..., represents a sequence of arguments. ... can be used in function definitions,

to indicate that the function accepts an arbitrary number of arguments. ... can also be used to apply

a function to a sequence of arguments.

Examples

julia> add(xs...) = reduce(+, xs)

add (generic function with 1 method)

julia> add(1, 2, 3, 4, 5)

15

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L181-L196
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1414-L1447

CHAPTER 41. ESSENTIALS 517

julia> add([1, 2, 3]...)

6

julia> add(7, 1:100..., 1000:1100...)

111107

source

; – Keyword.

;

; has a similar role in Julia as in many C-like languages, and is used to delimit the end of the previous

statement.

; is not necessary at the end of a line, but can be used to separate statements on a single line or to

join statements into a single expression.

Adding ; at the end of a line in the REPL will suppress printing the result of that expression.

In function declarations, and optionally in calls, ; separates regular arguments from keywords.

In array literals, arguments separated by semicolons have their contents concatenated together. A

separator made of a single ; concatenates vertically (i.e. along the first dimension), ;; concatenates

horizontally (second dimension), ;;; concatenates along the third dimension, etc. Such a separator

can also be used in last position in the square brackets to add trailing dimensions of length 1.

A ; in first position inside of parentheses can be used to construct a named tuple. The same (; ...)

syntax on the left side of an assignment allows for property destructuring.

In the standard REPL, typing ; on an empty line will switch to shell mode.

Examples

julia> function foo()

x = "Hello, "; x *= "World!"

return x

end

foo (generic function with 1 method)

julia> bar() = (x = "Hello, Mars!"; return x)

bar (generic function with 1 method)

julia> foo();

julia> bar()

"Hello, Mars!"

julia> function plot(x, y; style="solid", width=1, color="black")

###

end

julia> A = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1128-L1150

CHAPTER 41. ESSENTIALS 518

julia> [1; 3;; 2; 4;;; 10*A]

2×2×2 Array{Int64, 3}:

[:, :, 1] =

1 2

3 4

[:, :, 2] =

10 20

30 40

julia> [2; 3;;;]

2×1×1 Array{Int64, 3}:

[:, :, 1] =

2

3

julia> nt = (; x=1) # without the ; or a trailing comma this would assign to x

(x = 1,)

julia> key = :a; c = 3;

julia> nt2 = (; key => 1, b=2, c, nt.x)

(a = 1, b = 2, c = 3, x = 1)

julia> (; b, x) = nt2; # set variables b and x using property destructuring

julia> b, x

(2, 1)

shell> echo hello

julia> ; # upon typing ;, the prompt changes (in place) to: shell>

hello

source

= – Keyword.

=

= is the assignment operator.

• For variable a and expression b, a = b makes a refer to the value of b.

• For functions f(x), f(x) = x defines a new function constant f, or adds a new method to f if f

is already defined; this usage is equivalent to function f(x); x; end.

• a[i] = v calls setindex!(a,v,i).

• a.b = c calls setproperty!(a,:b,c).

• Inside a function call, f(a=b) passes b as the value of keyword argument a.

• Inside parentheses with commas, (a=1,) constructs a NamedTuple.

Examples

Assigning a to b does not create a copy of b; instead use copy or deepcopy.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1153-L1237

CHAPTER 41. ESSENTIALS 519

julia> b = [1]; a = b; b[1] = 2; a

1-element Array{Int64, 1}:

2

julia> b = [1]; a = copy(b); b[1] = 2; a

1-element Array{Int64, 1}:

1

Collections passed to functions are also not copied. Functions can modify (mutate) the contents of the

objects their arguments refer to. (The names of functions which do this are conventionally suffixed

with '!'.)

julia> function f!(x); x[:] .+= 1; end

f! (generic function with 1 method)

julia> a = [1]; f!(a); a

1-element Array{Int64, 1}:

2

Assignment can operate on multiple variables in parallel, taking values from an iterable:

julia> a, b = 4, 5

(4, 5)

julia> a, b = 1:3

1:3

julia> a, b

(1, 2)

Assignment can operate on multiple variables in series, and will return the value of the right-hand-most

expression:

julia> a = [1]; b = [2]; c = [3]; a = b = c

1-element Array{Int64, 1}:

3

julia> b[1] = 2; a, b, c

([2], [2], [2])

Assignment at out-of-bounds indices does not grow a collection. If the collection is a Vector it can

instead be grown with push! or append!.

julia> a = [1, 1]; a[3] = 2

ERROR: BoundsError: attempt to access 2-element Array{Int64, 1} at index [3]

[...]

julia> push!(a, 2, 3)

4-element Array{Int64, 1}:

1

1

2

3

CHAPTER 41. ESSENTIALS 520

Assigning [] does not eliminate elements from a collection; instead use filter!.

julia> a = collect(1:3); a[a .<= 1] = []

ERROR: DimensionMismatch: tried to assign 0 elements to 1 destinations

[...]

julia> filter!(x -> x > 1, a) # in-place & thus more efficient than a = a[a .> 1]

2-element Array{Int64, 1}:

2

3

source

?: – Keyword.

a ? b : c

Short form for conditionals; read "if a, evaluate b otherwise evaluate c". Also known as the ternary

operator.

This syntax is equivalent to if a; b else c end, but is often used to emphasize the value b-or-c

which is being used as part of a larger expression, rather than the side effects that evaluating b or c

may have.

See the manual section on control flow for more details.

Examples

julia> x = 1; y = 2;

julia> x > y ? println("x is larger") : println("y is larger")

y is larger

source

41.4 Standard Modules

Main – Module.

Main

Main is the top-level module, and Julia starts with Main set as the current module. Variables defined at

the prompt go in Main, and varinfo lists variables in Main.

julia> @__MODULE__

Main

source

Core – Module.

Core

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L365-L447
https://en.wikipedia.org/wiki/%3F:
https://en.wikipedia.org/wiki/%3F:
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L906-L925
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L3165-L3173

CHAPTER 41. ESSENTIALS 521

Core is the module that contains all identifiers considered "built in" to the language, i.e. part of the core

language and not libraries. Every module implicitly specifies using Core, since you can't do anything

without those definitions.

source

Base – Module.

Base

The base library of Julia. Base is a module that contains basic functionality (the contents of base/). All

modules implicitly contain using Base, since this is needed in the vast majority of cases.

source

41.5 Base Submodules

Base.Broadcast – Module.

Base.Broadcast

Module containing the broadcasting implementation.

source

Base.Docs – Module.

Docs

The Docsmodule provides the @docmacro which can be used to set and retrieve documentation meta-

data for Julia objects.

Please see the manual section on documentation for more information.

source

Base.Iterators – Module.

Methods for working with Iterators.

source

Base.Libc – Module.

Interface to libc, the C standard library.

source

Base.Meta – Module.

Convenience functions for metaprogramming.

source

Base.StackTraces – Module.

Tools for collecting and manipulating stack traces. Mainly used for building errors.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L3158-L3162
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L3176-L3180
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/broadcast.jl#L3-L7
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/Docs.jl#L3-L11
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iterators.jl#L3-L5
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libc.jl#L4-L6
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/meta.jl#L3-L5
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stacktraces.jl#L3-L5

CHAPTER 41. ESSENTIALS 522

Base.Sys – Module.

Provide methods for retrieving information about hardware and the operating system.

source

Base.Threads – Module.

Multithreading support.

source

Base.GC – Module.

Base.GC

Module with garbage collection utilities.

source

41.6 All Objects

Core.:=== – Function.

===(x,y) -> Bool

≡(x,y) -> Bool

Determine whether x and y are identical, in the sense that no program could distinguish them. First

the types of x and y are compared. If those are identical, mutable objects are compared by address

in memory and immutable objects (such as numbers) are compared by contents at the bit level. This

function is sometimes called "egal". It always returns a Bool value.

Examples

julia> a = [1, 2]; b = [1, 2];

julia> a == b

true

julia> a === b

false

julia> a === a

true

source

Core.isa – Function.

isa(x, type) -> Bool

Determine whether x is of the given type. Can also be used as an infix operator, e.g. x isa type.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sysinfo.jl#L4-L6
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/threads.jl#L3-L5
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/gcutils.jl#L106-L110
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L279-L302

CHAPTER 41. ESSENTIALS 523

julia> isa(1, Int)

true

julia> isa(1, Matrix)

false

julia> isa(1, Char)

false

julia> isa(1, Number)

true

julia> 1 isa Number

true

source

Base.isequal – Function.

isequal(x, y) -> Bool

Similar to ==, except for the treatment of floating point numbers and of missing values. isequal treats

all floating-point NaN values as equal to each other, treats -0.0 as unequal to 0.0, and missing as

equal to missing. Always returns a Bool value.

isequal is an equivalence relation - it is reflexive (=== implies isequal), symmetric (isequal(a, b)

implies isequal(b, a)) and transitive (isequal(a, b) and isequal(b, c) implies isequal(a, c)).

Implementation

The default implementation of isequal calls ==, so a type that does not involve floating-point values

generally only needs to define ==.

isequal is the comparison function used by hash tables (Dict). isequal(x,y)must imply that hash(x)

== hash(y).

This typically means that types for which a custom == or isequal method exists must implement

a corresponding hash method (and vice versa). Collections typically implement isequal by calling

isequal recursively on all contents.

Furthermore, isequal is linked with isless, and they work together to define a fixed total ordering,

where exactly one of isequal(x, y), isless(x, y), or isless(y, x) must be true (and the other

two false).

Scalar types generally do not need to implement isequal separate from ==, unless they represent

floating-point numbers amenable to a more efficient implementation than that provided as a generic

fallback (based on isnan, signbit, and ==).

Examples

julia> isequal([1., NaN], [1., NaN])

true

julia> [1., NaN] == [1., NaN]

false

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1944-L1967

CHAPTER 41. ESSENTIALS 524

julia> 0.0 == -0.0

true

julia> isequal(0.0, -0.0)

false

julia> missing == missing

missing

julia> isequal(missing, missing)

true

source

isequal(x)

Create a function that compares its argument to x using isequal, i.e. a function equivalent to y ->

isequal(y, x).

The returned function is of type Base.Fix2{typeof(isequal)}, which can be used to implement spe-

cialized methods.

source

Base.isless – Function.

isless(x, y)

Test whether x is less than y, according to a fixed total order (defined together with isequal). isless is

not defined for pairs (x, y) of all types. However, if it is defined, it is expected to satisfy the following:

• If isless(x, y) is defined, then so is isless(y, x) and isequal(x, y), and exactly one of

those three yields true.

• The relation defined by isless is transitive, i.e., isless(x, y) && isless(y, z) implies isless(x,

z).

Values that are normally unordered, such as NaN, are ordered after regular values. missing values are

ordered last.

This is the default comparison used by sort!.

Implementation

Non-numeric types with a total order should implement this function. Numeric types only need to

implement it if they have special values such as NaN. Types with a partial order should implement <.

See the documentation on Alternate Orderings for how to define alternate ordering methods that can

be used in sorting and related functions.

Examples

julia> isless(1, 3)

true

julia> isless("Red", "Blue")

false

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L81-L132
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L1137-L1145

CHAPTER 41. ESSENTIALS 525

source

Base.isunordered – Function.

isunordered(x)

Return true if x is a value that is not orderable according to <, such as NaN or missing.

The values that evaluate to true with this predicate may be orderable with respect to other orderings

such as isless.

Julia 1.7

This function requires Julia 1.7 or later.

source

Base.ifelse – Function.

ifelse(condition::Bool, x, y)

Return x if condition is true, otherwise return y. This differs from ? or if in that it is an ordinary func-

tion, so all the arguments are evaluated first. In some cases, using ifelse instead of an if statement

can eliminate the branch in generated code and provide higher performance in tight loops.

Examples

julia> ifelse(1 > 2, 1, 2)

2

source

Core.typeassert – Function.

typeassert(x, type)

Throw a TypeError unless x isa type. The syntax x::type calls this function.

Examples

julia> typeassert(2.5, Int)

ERROR: TypeError: in typeassert, expected Int64, got a value of type Float64

Stacktrace:

[...]

source

Core.typeof – Function.

typeof(x)

Get the concrete type of x.

See also eltype.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L142-L174
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L234-L245
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/essentials.jl#L633-L646
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2992-L3005

CHAPTER 41. ESSENTIALS 526

julia> a = 1//2;

julia> typeof(a)

Rational{Int64}

julia> M = [1 2; 3.5 4];

julia> typeof(M)

Matrix{Float64} (alias for Array{Float64, 2})

source

Core.tuple – Function.

tuple(xs...)

Construct a tuple of the given objects.

See also Tuple, ntuple, NamedTuple.

Examples

julia> tuple(1, 'b', pi)

(1, 'b', π)

julia> ans === (1, 'b', π)

true

julia> Tuple(Real[1, 2, pi]) # takes a collection

(1, 2, π)

source

Base.ntuple – Function.

ntuple(f::Function, n::Integer)

Create a tuple of length n, computing each element as f(i), where i is the index of the element.

Examples

julia> ntuple(i -> 2*i, 4)

(2, 4, 6, 8)

source

ntuple(f, ::Val{N})

Create a tuple of length N, computing each element as f(i), where i is the index of the element.

By taking a Val(N) argument, it is possible that this version of ntuple may generate more efficient

code than the version taking the length as an integer. But ntuple(f, N) is preferable to ntuple(f,

Val(N)) in cases where N cannot be determined at compile time.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2342-L2361
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2134-L2152
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/ntuple.jl#L5-L16

CHAPTER 41. ESSENTIALS 527

julia> ntuple(i -> 2*i, Val(4))

(2, 4, 6, 8)

source

Base.objectid – Function.

objectid(x) -> UInt

Get a hash value for x based on object identity.

If x === y then objectid(x) == objectid(y), and usually when x !== y, objectid(x) != objectid(y).

See also hash, IdDict.

source

Base.hash – Function.

hash(x[, h::UInt]) -> UInt

Compute an integer hash code such that isequal(x,y) implies hash(x)==hash(y). The optional sec-

ond argument h is another hash code to be mixed with the result.

New types should implement the 2-argument form, typically by calling the 2-argument hash method

recursively in order to mix hashes of the contents with each other (and with h). Typically, any type

that implements hash should also implement its own == (hence isequal) to guarantee the property

mentioned above. Types supporting subtraction (operator -) should also implement widen, which is

required to hash values inside heterogeneous arrays.

The hash value may change when a new Julia process is started.

julia> a = hash(10)

0x95ea2955abd45275

julia> hash(10, a) # only use the output of another hash function as the second argument

0xd42bad54a8575b16

See also: objectid, Dict, Set.

source

Base.finalizer – Function.

finalizer(f, x)

Register a function f(x) to be called when there are no program-accessible references to x, and return

x. The type of x must be a mutable struct, otherwise the function will throw.

fmust not cause a task switch, which excludes most I/O operations such as println. Using the @async

macro (to defer context switching to outside of the finalizer) or ccall to directly invoke IO functions in

C may be helpful for debugging purposes.

Note that there is no guaranteed world age for the execution of f. It may be called in the world age in

which the finalizer was registered or any later world age.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/ntuple.jl#L52-L68
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L597-L605
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/hashing.jl#L5-L29

CHAPTER 41. ESSENTIALS 528

finalizer(my_mutable_struct) do x

@async println("Finalizing $x.")

end

finalizer(my_mutable_struct) do x

ccall(:jl_safe_printf, Cvoid, (Cstring, Cstring), "Finalizing %s.", repr(x))

end

A finalizer may be registered at object construction. In the following example note that we implicitly

rely on the finalizer returning the newly created mutable struct x.

Example

mutable struct MyMutableStruct

bar

function MyMutableStruct(bar)

x = new(bar)

f(t) = @async println("Finalizing $t.")

finalizer(f, x)

end

end

source

Base.finalize – Function.

finalize(x)

Immediately run finalizers registered for object x.

source

Base.copy – Function.

copy(x)

Create a shallow copy of x: the outer structure is copied, but not all internal values. For example,

copying an array produces a new array with identically-same elements as the original.

See also copy!, copyto!, deepcopy.

source

Base.deepcopy – Function.

deepcopy(x)

Create a deep copy of x: everything is copied recursively, resulting in a fully independent object. For

example, deep-copying an array produces a new array whose elements are deep copies of the original

elements. Calling deepcopy on an object should generally have the same effect as serializing and then

deserializing it.

While it isn't normally necessary, user-defined types can override the default deepcopy behavior by

defining a specialized version of the function deepcopy_internal(x::T, dict::IdDict) (which shouldn't

otherwise be used), where T is the type to be specialized for, and dict keeps track of objects copied so

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/gcutils.jl#L45-L84
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/gcutils.jl#L98-L102
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L400-L408

CHAPTER 41. ESSENTIALS 529

far within the recursion. Within the definition, deepcopy_internal should be used in place of deepcopy,

and the dict variable should be updated as appropriate before returning.

source

Base.getproperty – Function.

getproperty(value, name::Symbol)

getproperty(value, name::Symbol, order::Symbol)

The syntax a.b calls getproperty(a, :b). The syntax @atomic order a.b calls getproperty(a,

:b, :order) and the syntax @atomic a.b calls getproperty(a, :b, :sequentially_consistent).

Examples

julia> struct MyType{T <: Number}

x::T

end

julia> function Base.getproperty(obj::MyType, sym::Symbol)

if sym === :special

return obj.x + 1

else # fallback to getfield

return getfield(obj, sym)

end

end

julia> obj = MyType(1);

julia> obj.special

2

julia> obj.x

1

One should overload getproperty only when necessary, as it can be confusing if the behavior of the

syntax obj.f is unusual. Also note that using methods is often preferable. See also this style guide

documentation for more information: Prefer exported methods over direct field access.

See also getfield, propertynames and setproperty!.

source

Base.setproperty! – Function.

setproperty!(value, name::Symbol, x)

setproperty!(value, name::Symbol, x, order::Symbol)

The syntax a.b = c calls setproperty!(a, :b, c). The syntax @atomic order a.b = c calls setproperty!(a,

:b, c, :order) and the syntax @atomic a.b = c calls setproperty!(a, :b, c, :sequentially_consistent).

Julia 1.8

setproperty! on modules requires at least Julia 1.8.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/deepcopy.jl#L8-L23
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L3008-L3047

CHAPTER 41. ESSENTIALS 530

See also setfield!, propertynames and getproperty.

source

Base.replaceproperty! – Function.

replaceproperty!(x, f::Symbol, expected, desired, success_order::Symbol=:not_atomic,

fail_order::Symbol=success_order)↪→

Perform a compare-and-swap operation on x.f from expected to desired, per egal. The syntax

@atomic_replace! x.f expected => desired can be used instead of the function call form.

See also replacefield! and setproperty!.

source

Base.swapproperty! – Function.

swapproperty!(x, f::Symbol, v, order::Symbol=:not_atomic)

The syntax @atomic a.b, _ = c, a.b returns (c, swapproperty!(a, :b, c, :sequentially_consistent)),

where there must be one getproperty expression common to both sides.

See also swapfield! and setproperty!.

source

Base.modifyproperty! – Function.

modifyproperty!(x, f::Symbol, op, v, order::Symbol=:not_atomic)

The syntax @atomic op(x.f, v) (and its equivalent @atomic x.f op v) returns modifyproperty!(x,

:f, op, v, :sequentially_consistent), where the first argument must be a getproperty expres-

sion and is modified atomically.

Invocation of op(getproperty(x, f), v) must return a value that can be stored in the field f of the

object x by default. In particular, unlike the default behavior of setproperty!, the convert function is

not called automatically.

See also modifyfield! and setproperty!.

source

Base.propertynames – Function.

propertynames(x, private=false)

Get a tuple or a vector of the properties (x.property) of an object x. This is typically the same as

fieldnames(typeof(x)), but types that overload getproperty should generally overload propertynames

as well to get the properties of an instance of the type.

propertynames(x)may return only "public" property names that are part of the documented interface

of x. If you want it to also return "private" property names intended for internal use, pass true for the

optional second argument. REPL tab completion on x. shows only the private=false properties.

See also: hasproperty, hasfield.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L3050-L3064
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L3095-L3104
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L3067-L3075
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L3078-L3092
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L2066-L2080

CHAPTER 41. ESSENTIALS 531

Base.hasproperty – Function.

hasproperty(x, s::Symbol)

Return a boolean indicating whether the object x has s as one of its own properties.

Julia 1.2

This function requires at least Julia 1.2.

See also: propertynames, hasfield.

source

Core.getfield – Function.

getfield(value, name::Symbol, [order::Symbol])

getfield(value, i::Int, [order::Symbol])

Extract a field from a composite value by name or position. Optionally, an ordering can be defined

for the operation. If the field was declared @atomic, the specification is strongly recommended to be

compatible with the stores to that location. Otherwise, if not declared as @atomic, this parameter must

be :not_atomic if specified. See also getproperty and fieldnames.

Examples

julia> a = 1//2

1//2

julia> getfield(a, :num)

1

julia> a.num

1

julia> getfield(a, 1)

1

source

Core.setfield! – Function.

setfield!(value, name::Symbol, x, [order::Symbol])

setfield!(value, i::Int, x, [order::Symbol])

Assign x to a named field in value of composite type. The value must be mutable and x must be

a subtype of fieldtype(typeof(value), name). Additionally, an ordering can be specified for this

operation. If the field was declared @atomic, this specification is mandatory. Otherwise, if not declared

as @atomic, it must be :not_atomic if specified. See also setproperty!.

Examples

julia> mutable struct MyMutableStruct

field::Int

end

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L2085-L2094
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2155-L2180

CHAPTER 41. ESSENTIALS 532

julia> a = MyMutableStruct(1);

julia> setfield!(a, :field, 2);

julia> getfield(a, :field)

2

julia> a = 1//2

1//2

julia> setfield!(a, :num, 3);

ERROR: setfield!: immutable struct of type Rational cannot be changed

source

Core.modifyfield! – Function.

modifyfield!(value, name::Symbol, op, x, [order::Symbol]) -> Pair

modifyfield!(value, i::Int, op, x, [order::Symbol]) -> Pair

These atomically perform the operations to get and set a field after applying the function op.

y = getfield(value, name)

z = op(y, x)

setfield!(value, name, z)

return y => z

If supported by the hardware (for example, atomic increment), this may be optimized to the appropriate

hardware instruction, otherwise it'll use a loop.

source

Core.replacefield! – Function.

replacefield!(value, name::Symbol, expected, desired,

[success_order::Symbol, [fail_order::Symbol=success_order]) -> (; old,

success::Bool)↪→

replacefield!(value, i::Int, expected, desired,

[success_order::Symbol, [fail_order::Symbol=success_order]) -> (; old,

success::Bool)↪→

These atomically perform the operations to get and conditionally set a field to a given value.

y = getfield(value, name, fail_order)

ok = y === expected

if ok

setfield!(value, name, desired, success_order)

end

return (; old = y, success = ok)

If supported by the hardware, this may be optimized to the appropriate hardware instruction, otherwise

it'll use a loop.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2183-L2213
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2228-L2242
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2245-L2263

CHAPTER 41. ESSENTIALS 533

Core.swapfield! – Function.

swapfield!(value, name::Symbol, x, [order::Symbol])

swapfield!(value, i::Int, x, [order::Symbol])

These atomically perform the operations to simultaneously get and set a field:

y = getfield(value, name)

setfield!(value, name, x)

return y

source

Core.isdefined – Function.

isdefined(m::Module, s::Symbol, [order::Symbol])

isdefined(object, s::Symbol, [order::Symbol])

isdefined(object, index::Int, [order::Symbol])

Tests whether a global variable or object field is defined. The arguments can be a module and a symbol

or a composite object and field name (as a symbol) or index. Optionally, an ordering can be defined

for the operation. If the field was declared @atomic, the specification is strongly recommended to be

compatible with the stores to that location. Otherwise, if not declared as @atomic, this parameter must

be :not_atomic if specified.

To test whether an array element is defined, use isassigned instead.

See also @isdefined.

Examples

julia> isdefined(Base, :sum)

true

julia> isdefined(Base, :NonExistentMethod)

false

julia> a = 1//2;

julia> isdefined(a, 2)

true

julia> isdefined(a, 3)

false

julia> isdefined(a, :num)

true

julia> isdefined(a, :numerator)

false

source

Core.getglobal – Function.

getglobal(module::Module, name::Symbol, [order::Symbol=:monotonic])

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2216-L2225
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2364-L2402

CHAPTER 41. ESSENTIALS 534

Retrieve the value of the binding name from the module module. Optionally, an atomic ordering can be

defined for the operation, otherwise it defaults to monotonic.

While accessing module bindings using getfield is still supported to maintain compatibility, using

getglobal should always be preferred since getglobal allows for control over atomic ordering (getfield

is always monotonic) and better signifies the code's intent both to the user as well as the compiler.

Most users should not have to call this function directly – The getproperty function or corresponding

syntax (i.e. module.name) should be preferred in all but few very specific use cases.

Julia 1.9

This function requires Julia 1.9 or later.

See also getproperty and setglobal!.

Examples

julia> a = 1

1

julia> module M

a = 2

end;

julia> getglobal(@__MODULE__, :a)

1

julia> getglobal(M, :a)

2

source

Core.setglobal! – Function.

setglobal!(module::Module, name::Symbol, x, [order::Symbol=:monotonic])

Set or change the value of the binding name in themodule module to x. No type conversion is performed,

so if a type has already been declared for the binding, x must be of appropriate type or an error is

thrown.

Additionally, an atomic ordering can be specified for this operation, otherwise it defaults to monotonic.

Users will typically access this functionality through the setproperty! function or corresponding syn-

tax (i.e. module.name = x) instead, so this is intended only for very specific use cases.

Julia 1.9

This function requires Julia 1.9 or later.

See also setproperty! and getglobal

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2266-L2303

CHAPTER 41. ESSENTIALS 535

julia> module M end;

julia> M.a # same as `getglobal(M, :a)`

ERROR: UndefVarError: `a` not defined

julia> setglobal!(M, :a, 1)

1

julia> M.a

1

source

Base.@isdefined – Macro.

@isdefined s -> Bool

Tests whether variable s is defined in the current scope.

See also isdefined for field properties and isassigned for array indexes or haskey for other mappings.

Examples

julia> @isdefined newvar

false

julia> newvar = 1

1

julia> @isdefined newvar

true

julia> function f()

println(@isdefined x)

x = 3

println(@isdefined x)

end

f (generic function with 1 method)

julia> f()

false

true

source

Base.convert – Function.

convert(T, x)

Convert x to a value of type T.

If T is an Integer type, an InexactError will be raised if x is not representable by T, for example if x

is not integer-valued, or is outside the range supported by T.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2306-L2339
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/essentials.jl#L146-L176

CHAPTER 41. ESSENTIALS 536

julia> convert(Int, 3.0)

3

julia> convert(Int, 3.5)

ERROR: InexactError: Int64(3.5)

Stacktrace:

[...]

If T is a AbstractFloat type, then it will return the closest value to x representable by T.

julia> x = 1/3

0.3333333333333333

julia> convert(Float32, x)

0.33333334f0

julia> convert(BigFloat, x)

0.333333333333333314829616256247390992939472198486328125

If T is a collection type and x a collection, the result of convert(T, x) may alias all or part of x.

julia> x = Int[1, 2, 3];

julia> y = convert(Vector{Int}, x);

julia> y === x

true

See also: round, trunc, oftype, reinterpret.

source

Base.promote – Function.

promote(xs...)

Convert all arguments to a common type, and return them all (as a tuple). If no arguments can be

converted, an error is raised.

See also: promote_type, promote_rule.

Examples

julia> promote(Int8(1), Float16(4.5), Float32(4.1))

(1.0f0, 4.5f0, 4.1f0)

julia> promote_type(Int8, Float16, Float32)

Float32

julia> reduce(Base.promote_typejoin, (Int8, Float16, Float32))

Real

julia> promote(1, "x")

ERROR: promotion of types Int64 and String failed to change any arguments

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/essentials.jl#L265-L311

CHAPTER 41. ESSENTIALS 537

[...]

julia> promote_type(Int, String)

Any

source

Base.oftype – Function.

oftype(x, y)

Convert y to the type of x i.e. convert(typeof(x), y).

Examples

julia> x = 4;

julia> y = 3.;

julia> oftype(x, y)

3

julia> oftype(y, x)

4.0

source

Base.widen – Function.

widen(x)

If x is a type, return a "larger" type, defined so that arithmetic operations + and - are guaranteed not

to overflow nor lose precision for any combination of values that type x can hold.

For fixed-size integer types less than 128 bits, widen will return a type with twice the number of bits.

If x is a value, it is converted to widen(typeof(x)).

Examples

julia> widen(Int32)

Int64

julia> widen(1.5f0)

1.5

source

Base.identity – Function.

identity(x)

The identity function. Returns its argument.

See also: one, oneunit, and LinearAlgebra's I.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/promotion.jl#L338-L364
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/essentials.jl#L504-L521
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L870-L890

CHAPTER 41. ESSENTIALS 538

julia> identity("Well, what did you expect?")

"Well, what did you expect?"

source

Core.WeakRef – Type.

WeakRef(x)

w = WeakRef(x) constructs a weak reference to the Julia value x: although w contains a reference to

x, it does not prevent x from being garbage collected. w.value is either x (if x has not been garbage-

collected yet) or nothing (if x has been garbage-collected).

julia> x = "a string"

"a string"

julia> w = WeakRef(x)

WeakRef("a string")

julia> GC.gc()

julia> w # a reference is maintained via `x`

WeakRef("a string")

julia> x = nothing # clear reference

julia> GC.gc()

julia> w

WeakRef(nothing)

source

41.7 Properties of Types

Type relations

Base.supertype – Function.

supertype(T::DataType)

Return the supertype of DataType T.

Examples

julia> supertype(Int32)

Signed

source

Core.Type – Type.

Core.Type{T}

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L509-L521
https://en.wikipedia.org/wiki/Weak_reference
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/gcutils.jl#L4-L31
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L32-L42

CHAPTER 41. ESSENTIALS 539

Core.Type is an abstract type which has all type objects as its instances. The only instance of the

singleton type Core.Type{T} is the object T.

Examples

julia> isa(Type{Float64}, Type)

true

julia> isa(Float64, Type)

true

julia> isa(Real, Type{Float64})

false

julia> isa(Real, Type{Real})

true

source

Core.DataType – Type.

DataType <: Type{T}

DataType represents explicitly declared types that have names, explicitly declared supertypes, and,

optionally, parameters. Every concrete value in the system is an instance of some DataType.

Examples

julia> typeof(Real)

DataType

julia> typeof(Int)

DataType

julia> struct Point

x::Int

y

end

julia> typeof(Point)

DataType

source

Core.:<: – Function.

<:(T1, T2)

Subtype operator: returns true if and only if all values of type T1 are also of type T2.

Examples

julia> Float64 <: AbstractFloat

true

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1513-L1534
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1537-L1560

CHAPTER 41. ESSENTIALS 540

julia> Vector{Int} <: AbstractArray

true

julia> Matrix{Float64} <: Matrix{AbstractFloat}

false

source

Base.:>: – Function.

>:(T1, T2)

Supertype operator, equivalent to T2 <: T1.

source

Base.typejoin – Function.

typejoin(T, S, ...)

Return the closest common ancestor of types T and S, i.e. the narrowest type from which they both

inherit. Recurses on additional varargs.

Examples

julia> typejoin(Int, Float64)

Real

julia> typejoin(Int, Float64, ComplexF32)

Number

source

Base.typeintersect – Function.

typeintersect(T::Type, S::Type)

Compute a type that contains the intersection of T and S. Usually this will be the smallest such type or

one close to it.

source

Base.promote_type – Function.

promote_type(type1, type2, ...)

Promotion refers to converting values of mixed types to a single common type. promote_type repre-

sents the default promotion behavior in Julia when operators (usually mathematical) are given argu-

ments of differing types. promote_type generally tries to return a type which can at least approximate

most values of either input type without excessively widening. Some loss is tolerated; for example,

promote_type(Int64, Float64) returns Float64 even though strictly, not all Int64 values can be

represented exactly as Float64 values.

See also: promote, promote_typejoin, promote_rule.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L5-L22
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L25-L29
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/promotion.jl#L5-L19
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L743-L748

CHAPTER 41. ESSENTIALS 541

julia> promote_type(Int64, Float64)

Float64

julia> promote_type(Int32, Int64)

Int64

julia> promote_type(Float32, BigInt)

BigFloat

julia> promote_type(Int16, Float16)

Float16

julia> promote_type(Int64, Float16)

Float16

julia> promote_type(Int8, UInt16)

UInt16

Don't overload this directly

To overload promotion for your own types you should overload promote_rule. promote_type

calls promote_rule internally to determine the type. Overloading promote_type directly

can cause ambiguity errors.

source

Base.promote_rule – Function.

promote_rule(type1, type2)

Specifies what type should be used by promote when given values of types type1 and type2. This

function should not be called directly, but should have definitions added to it for new types as appro-

priate.

source

Base.promote_typejoin – Function.

promote_typejoin(T, S)

Compute a type that contains both T and S, which could be either a parent of both types, or a Union if

appropriate. Falls back to typejoin.

See instead promote, promote_type.

Examples

julia> Base.promote_typejoin(Int, Float64)

Real

julia> Base.promote_type(Int, Float64)

Float64

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/promotion.jl#L255-L294
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/promotion.jl#L316-L322
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/promotion.jl#L153-L170

CHAPTER 41. ESSENTIALS 542

Base.isdispatchtuple – Function.

isdispatchtuple(T)

Determine whether type T is a tuple "leaf type", meaning it could appear as a type signature in dispatch

and has no subtypes (or supertypes) which could appear in a call.

source

Declared structure

Base.ismutable – Function.

ismutable(v) -> Bool

Return true if and only if value v is mutable. See Mutable Composite Types for a discussion of im-

mutability. Note that this function works on values, so if you give it a DataType, it will tell you that a

value of the type is mutable.

Note

For technical reasons, ismutable returns true for values of certain special types (for exam-

ple String and Symbol) even though they cannot be mutated in a permissible way.

See also isbits, isstructtype.

Examples

julia> ismutable(1)

false

julia> ismutable([1,2])

true

Julia 1.5

This function requires at least Julia 1.5.

source

Base.isimmutable – Function.

isimmutable(v) -> Bool

Warning

Consider using !ismutable(v) instead, as isimmutable(v)will be replaced by !ismutable(v)

in a future release. (Since Julia 1.5)

Return true iff value v is immutable. See Mutable Composite Types for a discussion of immutability.

Note that this function works on values, so if you give it a type, it will tell you that a value of DataType

is mutable.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L619-L625
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L492-L516

CHAPTER 41. ESSENTIALS 543

julia> isimmutable(1)

true

julia> isimmutable([1,2])

false

source

Base.ismutabletype – Function.

ismutabletype(T) -> Bool

Determine whether type T was declared as a mutable type (i.e. using mutable struct keyword).

Julia 1.7

This function requires at least Julia 1.7.

source

Base.isabstracttype – Function.

isabstracttype(T)

Determine whether type T was declared as an abstract type (i.e. using the abstract type syntax).

Examples

julia> isabstracttype(AbstractArray)

true

julia> isabstracttype(Vector)

false

source

Base.isprimitivetype – Function.

isprimitivetype(T) -> Bool

Determine whether type T was declared as a primitive type (i.e. using the primitive type syntax).

source

Base.issingletontype – Function.

Base.issingletontype(T)

Determine whether type T has exactly one possible instance; for example, a struct type with no fields.

source

Base.isstructtype – Function.

isstructtype(T) -> Bool

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/deprecated.jl#L227-L243
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L521-L529
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L713-L727
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L551-L556
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L735-L740

CHAPTER 41. ESSENTIALS 544

Determine whether type T was declared as a struct type (i.e. using the struct or mutable struct

keyword).

source

Base.nameof – Method.

nameof(t::DataType) -> Symbol

Get the name of a (potentially UnionAll-wrapped) DataType (without its parent module) as a symbol.

Examples

julia> module Foo

struct S{T}

end

end

Foo

julia> nameof(Foo.S{T} where T)

:S

source

Base.fieldnames – Function.

fieldnames(x::DataType)

Get a tuple with the names of the fields of a DataType.

See also propertynames, hasfield.

Examples

julia> fieldnames(Rational)

(:num, :den)

julia> fieldnames(typeof(1+im))

(:re, :im)

source

Base.fieldname – Function.

fieldname(x::DataType, i::Integer)

Get the name of field i of a DataType.

Examples

julia> fieldname(Rational, 1)

:num

julia> fieldname(Rational, 2)

:den

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L537-L542
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L199-L216
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L151-L166

CHAPTER 41. ESSENTIALS 545

source

Core.fieldtype – Function.

fieldtype(T, name::Symbol | index::Int)

Determine the declared type of a field (specified by name or index) in a composite DataType T.

Examples

julia> struct Foo

x::Int64

y::String

end

julia> fieldtype(Foo, :x)

Int64

julia> fieldtype(Foo, 2)

String

source

Base.fieldtypes – Function.

fieldtypes(T::Type)

The declared types of all fields in a composite DataType T as a tuple.

Julia 1.1

This function requires at least Julia 1.1.

Examples

julia> struct Foo

x::Int64

y::String

end

julia> fieldtypes(Foo)

(Int64, String)

source

Base.fieldcount – Function.

fieldcount(t::Type)

Get the number of fields that an instance of the given type would have. An error is thrown if the type

is too abstract to determine this.

source

Base.hasfield – Function.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L117-L130
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L781-L799
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L900-L918
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L874-L879

CHAPTER 41. ESSENTIALS 546

hasfield(T::Type, name::Symbol)

Return a boolean indicating whether T has name as one of its own fields.

See also fieldnames, fieldcount, hasproperty.

Julia 1.2

This function requires at least Julia 1.2.

Examples

julia> struct Foo

bar::Int

end

julia> hasfield(Foo, :bar)

true

julia> hasfield(Foo, :x)

false

source

Core.nfields – Function.

nfields(x) -> Int

Get the number of fields in the given object.

Examples

julia> a = 1//2;

julia> nfields(a)

2

julia> b = 1

1

julia> nfields(b)

0

julia> ex = ErrorException("I've done a bad thing");

julia> nfields(ex)

1

In these examples, a is a Rational, which has two fields. b is an Int, which is a primitive bitstype with

no fields at all. ex is an ErrorException, which has one field.

source

Base.isconst – Function.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L174-L196
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1772-L1799

CHAPTER 41. ESSENTIALS 547

isconst(m::Module, s::Symbol) -> Bool

Determine whether a global is declared const in a given module m.

source

isconst(t::DataType, s::Union{Int,Symbol}) -> Bool

Determine whether a field s is declared const in a given type t.

source

Base.isfieldatomic – Function.

isfieldatomic(t::DataType, s::Union{Int,Symbol}) -> Bool

Determine whether a field s is declared @atomic in a given type t.

source

Memory layout

Base.sizeof – Method.

sizeof(T::DataType)

sizeof(obj)

Size, in bytes, of the canonical binary representation of the given DataType T, if any. Or the size, in

bytes, of object obj if it is not a DataType.

See also Base.summarysize.

Examples

julia> sizeof(Float32)

4

julia> sizeof(ComplexF64)

16

julia> sizeof(1.0)

8

julia> sizeof(collect(1.0:10.0))

80

julia> struct StructWithPadding

x::Int64

flag::Bool

end

julia> sizeof(StructWithPadding) # not the sum of `sizeof` of fields due to padding

16

julia> sizeof(Int64) + sizeof(Bool) # different from above

9

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L242-L246
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L254-L258
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L276-L280

CHAPTER 41. ESSENTIALS 548

If DataType T does not have a specific size, an error is thrown.

julia> sizeof(AbstractArray)

ERROR: Abstract type AbstractArray does not have a definite size.

Stacktrace:

[...]

source

Base.isconcretetype – Function.

isconcretetype(T)

Determine whether type T is a concrete type, meaning it could have direct instances (values x such

that typeof(x) === T).

See also: isbits, isabstracttype, issingletontype.

Examples

julia> isconcretetype(Complex)

false

julia> isconcretetype(Complex{Float32})

true

julia> isconcretetype(Vector{Complex})

true

julia> isconcretetype(Vector{Complex{Float32}})

true

julia> isconcretetype(Union{})

false

julia> isconcretetype(Union{Int,String})

false

source

Base.isbits – Function.

isbits(x)

Return true if x is an instance of an isbitstype type.

source

Base.isbitstype – Function.

isbitstype(T)

Return true if type T is a "plain data" type, meaning it is immutable and contains no references to

other values, only primitive types and other isbitstype types. Typical examples are numeric types

such as UInt8, Float64, and Complex{Float64}. This category of types is significant since they are

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/essentials.jl#L587-L630
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L682-L710
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L590-L594

CHAPTER 41. ESSENTIALS 549

valid as type parameters, may not track isdefined / isassigned status, and have a defined layout

that is compatible with C.

See also isbits, isprimitivetype, ismutable.

Examples

julia> isbitstype(Complex{Float64})

true

julia> isbitstype(Complex)

false

source

Base.fieldoffset – Function.

fieldoffset(type, i)

The byte offset of field i of a type relative to the data start. For example, we could use it in the following

manner to summarize information about a struct:

julia> structinfo(T) = [(fieldoffset(T,i), fieldname(T,i), fieldtype(T,i)) for i =

1:fieldcount(T)];↪→

julia> structinfo(Base.Filesystem.StatStruct)

13-element Vector{Tuple{UInt64, Symbol, Type}}:

(0x0000000000000000, :desc, Union{RawFD, String})

(0x0000000000000008, :device, UInt64)

(0x0000000000000010, :inode, UInt64)

(0x0000000000000018, :mode, UInt64)

(0x0000000000000020, :nlink, Int64)

(0x0000000000000028, :uid, UInt64)

(0x0000000000000030, :gid, UInt64)

(0x0000000000000038, :rdev, UInt64)

(0x0000000000000040, :size, Int64)

(0x0000000000000048, :blksize, Int64)

(0x0000000000000050, :blocks, Int64)

(0x0000000000000058, :mtime, Float64)

(0x0000000000000060, :ctime, Float64)

source

Base.datatype_alignment – Function.

Base.datatype_alignment(dt::DataType) -> Int

Memory allocationminimumalignment for instances of this type. Can be called on any isconcretetype.

source

Base.datatype_haspadding – Function.

Base.datatype_haspadding(dt::DataType) -> Bool

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L565-L587
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L753-L778
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L352-L357

CHAPTER 41. ESSENTIALS 550

Return whether the fields of instances of this type are packed in memory, with no intervening padding

bytes. Can be called on any isconcretetype.

source

Base.datatype_pointerfree – Function.

Base.datatype_pointerfree(dt::DataType) -> Bool

Return whether instances of this type can contain references to gc-managed memory. Can be called

on any isconcretetype.

source

Special values

Base.typemin – Function.

typemin(T)

The lowest value representable by the given (real) numeric DataType T.

See also: floatmin, typemax, eps.

Examples

julia> typemin(Int8)

-128

julia> typemin(UInt32)

0x00000000

julia> typemin(Float16)

-Inf16

julia> typemin(Float32)

-Inf32

julia> nextfloat(-Inf32) # smallest finite Float32 floating point number

-3.4028235f38

source

Base.typemax – Function.

typemax(T)

The highest value representable by the given (real) numeric DataType.

See also: floatmax, typemin, eps.

Examples

julia> typemax(Int8)

127

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L394-L400
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L420-L425
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/int.jl#L805-L829

CHAPTER 41. ESSENTIALS 551

julia> typemax(UInt32)

0xffffffff

julia> typemax(Float64)

Inf

julia> typemax(Float32)

Inf32

julia> floatmax(Float32) # largest finite Float32 floating point number

3.4028235f38

source

Base.floatmin – Function.

floatmin(T = Float64)

Return the smallest positive normal number representable by the floating-point type T.

Examples

julia> floatmin(Float16)

Float16(6.104e-5)

julia> floatmin(Float32)

1.1754944f-38

julia> floatmin()

2.2250738585072014e-308

source

Base.floatmax – Function.

floatmax(T = Float64)

Return the largest finite number representable by the floating-point type T.

See also: typemax, floatmin, eps.

Examples

julia> floatmax(Float16)

Float16(6.55e4)

julia> floatmax(Float32)

3.4028235f38

julia> floatmax()

1.7976931348623157e308

julia> typemax(Float64)

Inf

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/int.jl#L832-L856
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/float.jl#L973-L990

CHAPTER 41. ESSENTIALS 552

source

Base.maxintfloat – Function.

maxintfloat(T=Float64)

The largest consecutive integer-valued floating-point number that is exactly represented in the given

floating-point type T (which defaults to Float64).

That is, maxintfloat returns the smallest positive integer-valued floating-point number n such that

n+1 is not exactly representable in the type T.

When an Integer-type value is needed, use Integer(maxintfloat(T)).

source

maxintfloat(T, S)

The largest consecutive integer representable in the given floating-point type T that also does not

exceed the maximum integer representable by the integer type S. Equivalently, it is the minimum of

maxintfloat(T) and typemax(S).

source

Base.eps – Method.

eps(::Type{T}) where T<:AbstractFloat

eps()

Return the machine epsilon of the floating point type T (T = Float64 by default). This is defined as

the gap between 1 and the next largest value representable by typeof(one(T)), and is equivalent to

eps(one(T)). (Since eps(T) is a bound on the relative error of T, it is a "dimensionless" quantity like

one.)

Examples

julia> eps()

2.220446049250313e-16

julia> eps(Float32)

1.1920929f-7

julia> 1.0 + eps()

1.0000000000000002

julia> 1.0 + eps()/2

1.0

source

Base.eps – Method.

eps(x::AbstractFloat)

Return the unit in last place (ulp) of x. This is the distance between consecutive representable floating

point values at x. In most cases, if the distance on either side of x is different, then the larger of the

two is taken, that is

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/float.jl#L993-L1014
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/floatfuncs.jl#L19-L29
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/floatfuncs.jl#L35-L41
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/float.jl#L1020-L1043

CHAPTER 41. ESSENTIALS 553

eps(x) == max(x-prevfloat(x), nextfloat(x)-x)

The exceptions to this rule are the smallest and largest finite values (e.g. nextfloat(-Inf) and

prevfloat(Inf) for Float64), which round to the smaller of the values.

The rationale for this behavior is that eps bounds the floating point rounding error. Under the default

RoundNearest rounding mode, if y is a real number and x is the nearest floating point number to y,
then

|y − x| ≤ eps(x)/2.

See also: nextfloat, issubnormal, floatmax.

Examples

julia> eps(1.0)

2.220446049250313e-16

julia> eps(prevfloat(2.0))

2.220446049250313e-16

julia> eps(2.0)

4.440892098500626e-16

julia> x = prevfloat(Inf) # largest finite Float64

1.7976931348623157e308

julia> x + eps(x)/2 # rounds up

Inf

julia> x + prevfloat(eps(x)/2) # rounds down

1.7976931348623157e308

source

Base.instances – Function.

instances(T::Type)

Return a collection of all instances of the given type, if applicable. Mostly used for enumerated types

(see @enum).

Example

julia> @enum Color red blue green

julia> instances(Color)

(red, blue, green)

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/float.jl#L1046-L1089
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L923-L936

CHAPTER 41. ESSENTIALS 554

41.8 Special Types

Core.Any – Type.

Any::DataType

Any is the union of all types. It has the defining property isa(x, Any) == true for any x. Any therefore

describes the entire universe of possible values. For example Integer is a subset of Any that includes

Int, Int8, and other integer types.

source

Core.Union – Type.

Union{Types...}

A type union is an abstract type which includes all instances of any of its argument types. The empty

union Union{} is the bottom type of Julia.

Examples

julia> IntOrString = Union{Int,AbstractString}

Union{Int64, AbstractString}

julia> 1 isa IntOrString

true

julia> "Hello!" isa IntOrString

true

julia> 1.0 isa IntOrString

false

source

Union{} – Keyword.

Union{}

Union{}, the empty Union of types, is the type that has no values. That is, it has the defining property

isa(x, Union{}) == false for any x. Base.Bottom is defined as its alias and the type of Union{} is

Core.TypeofBottom.

Examples

julia> isa(nothing, Union{})

false

source

Core.UnionAll – Type.

UnionAll

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2779-L2785
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2803-L2823
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2788-L2800

CHAPTER 41. ESSENTIALS 555

A union of types over all values of a type parameter. UnionAll is used to describe parametric types

where the values of some parameters are not known.

Examples

julia> typeof(Vector)

UnionAll

julia> typeof(Vector{Int})

DataType

source

Core.Tuple – Type.

Tuple{Types...}

A tuple is a fixed-length container that can hold any values of different types, but cannot be modified

(it is immutable). The values can be accessed via indexing. Tuple literals are written with commas and

parentheses:

julia> (1, 1+1)

(1, 2)

julia> (1,)

(1,)

julia> x = (0.0, "hello", 6*7)

(0.0, "hello", 42)

julia> x[2]

"hello"

julia> typeof(x)

Tuple{Float64, String, Int64}

A length-1 tuple must be written with a comma, (1,), since (1) would just be a parenthesized value.

() represents the empty (length-0) tuple.

A tuple can be constructed from an iterator by using a Tuple type as constructor:

julia> Tuple(["a", 1])

("a", 1)

julia> Tuple{String, Float64}(["a", 1])

("a", 1.0)

Tuple types are covariant in their parameters: Tuple{Int} is a subtype of Tuple{Any}. Therefore

Tuple{Any} is considered an abstract type, and tuple types are only concrete if their parameters are.

Tuples do not have field names; fields are only accessed by index. Tuple types may have any number

of parameters.

See the manual section on Tuple Types.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2827-L2841

CHAPTER 41. ESSENTIALS 556

See also Vararg, NTuple, ntuple, tuple, NamedTuple.

source

Core.NTuple – Type.

NTuple{N, T}

A compact way of representing the type for a tuple of length N where all elements are of type T.

Examples

julia> isa((1, 2, 3, 4, 5, 6), NTuple{6, Int})

true

See also ntuple.

source

Core.NamedTuple – Type.

NamedTuple

NamedTuples are, as their name suggests, named Tuples. That is, they're a tuple-like collection of

values, where each entry has a unique name, represented as a Symbol. Like Tuples, NamedTuples are

immutable; neither the names nor the values can be modified in place after construction.

A named tuple can be created as a tuple literal with keys, e.g. (a=1, b=2), or as a tuple literal

with semicolon after the opening parenthesis, e.g. (; a=1, b=2) (this form also accepts program-

matically generated names as described below), or using a NamedTuple type as constructor, e.g.

NamedTuple{(:a, :b)}((1,2)).

Accessing the value associated with a name in a named tuple can be done using field access syntax,

e.g. x.a, or using getindex, e.g. x[:a] or x[(:a, :b)]. A tuple of the names can be obtained using

keys, and a tuple of the values can be obtained using values.

Note

Iteration over NamedTuples produces the values without the names. (See example below.)

To iterate over the name-value pairs, use the pairs function.

The @NamedTuple macro can be used for conveniently declaring NamedTuple types.

Examples

julia> x = (a=1, b=2)

(a = 1, b = 2)

julia> x.a

1

julia> x[:a]

1

julia> x[(:a,)]

(a = 1,)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2910-L2955
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/tuple.jl#L4-L16

CHAPTER 41. ESSENTIALS 557

julia> keys(x)

(:a, :b)

julia> values(x)

(1, 2)

julia> collect(x)

2-element Vector{Int64}:

1

2

julia> collect(pairs(x))

2-element Vector{Pair{Symbol, Int64}}:

:a => 1

:b => 2

In a similar fashion as to how one can define keyword arguments programmatically, a named tuple can

be created by giving pairs name::Symbol => value after a semicolon inside a tuple literal. This and

the name=value syntax can be mixed:

julia> (; :a => 1, :b => 2, c=3)

(a = 1, b = 2, c = 3)

The name-value pairs can also be provided by splatting a named tuple or any iterator that yields two-

value collections holding each a symbol as first value:

julia> keys = (:a, :b, :c); values = (1, 2, 3);

julia> NamedTuple{keys}(values)

(a = 1, b = 2, c = 3)

julia> (; (keys .=> values)...)

(a = 1, b = 2, c = 3)

julia> nt1 = (a=1, b=2);

julia> nt2 = (c=3, d=4);

julia> (; nt1..., nt2..., b=20) # the final b overwrites the value from nt1

(a = 1, b = 20, c = 3, d = 4)

julia> (; zip(keys, values)...) # zip yields tuples such as (:a, 1)

(a = 1, b = 2, c = 3)

As in keyword arguments, identifiers and dot expressions imply names:

julia> x = 0

0

julia> t = (; x)

(x = 0,)

CHAPTER 41. ESSENTIALS 558

julia> (; t.x)

(x = 0,)

Julia 1.5

Implicit names from identifiers and dot expressions are available as of Julia 1.5.

Julia 1.7

Use of getindex methods with multiple Symbols is available as of Julia 1.7.

source

Base.@NamedTuple – Macro.

@NamedTuple{key1::Type1, key2::Type2, ...}

@NamedTuple begin key1::Type1; key2::Type2; ...; end

This macro gives a more convenient syntax for declaring NamedTuple types. It returns a NamedTuple

typewith the given keys and types, equivalent to NamedTuple{(:key1, :key2, ...), Tuple{Type1,Type2,...}}.

If the ::Type declaration is omitted, it is taken to be Any. The begin ... end form allows the decla-

rations to be split across multiple lines (similar to a struct declaration), but is otherwise equivalent.

The NamedTuple macro is used when printing NamedTuple types to e.g. the REPL.

For example, the tuple (a=3.1, b="hello") has a type NamedTuple{(:a, :b), Tuple{Float64,

String}}, which can also be declared via @NamedTuple as:

julia> @NamedTuple{a::Float64, b::String}

@NamedTuple{a::Float64, b::String}

julia> @NamedTuple begin

a::Float64

b::String

end

@NamedTuple{a::Float64, b::String}

Julia 1.5

This macro is available as of Julia 1.5.

source

Base.@Kwargs – Macro.

@Kwargs{key1::Type1, key2::Type2, ...}

This macro gives a convenient way to construct the type representation of keyword arguments from

the same syntax as @NamedTuple. For example, when we have a function call like func([positional

arguments]; kw1=1.0, kw2="2"), we can use this macro to construct the internal type representation

of the keyword arguments as @Kwargs{kw1::Float64, kw2::String}. The macro syntax is specifi-

cally designed to simplify the signature type of a keyword method when it is printed in the stack trace

view.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/namedtuple.jl#L3-L110
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/namedtuple.jl#L457-L483

CHAPTER 41. ESSENTIALS 559

julia> @Kwargs{init::Int} # the internal representation of keyword arguments

Base.Pairs{Symbol, Int64, Tuple{Symbol}, @NamedTuple{init::Int64}}

julia> sum("julia"; init=1)

ERROR: MethodError: no method matching +(::Char, ::Char)

Closest candidates are:

+(::Any, ::Any, ::Any, ::Any...)

@ Base operators.jl:585

+(::Integer, ::AbstractChar)

@ Base char.jl:247

+(::T, ::Integer) where T<:AbstractChar

@ Base char.jl:237

Stacktrace:

[1] add_sum(x::Char, y::Char)

@ Base ./reduce.jl:24

[2] BottomRF

@ Base ./reduce.jl:86 [inlined]

[3] _foldl_impl(op::Base.BottomRF{typeof(Base.add_sum)}, init::Int64, itr::String)

@ Base ./reduce.jl:62

[4] foldl_impl(op::Base.BottomRF{typeof(Base.add_sum)}, nt::Int64, itr::String)

@ Base ./reduce.jl:48 [inlined]

[5] mapfoldl_impl(f::typeof(identity), op::typeof(Base.add_sum), nt::Int64, itr::String)

@ Base ./reduce.jl:44 [inlined]

[6] mapfoldl(f::typeof(identity), op::typeof(Base.add_sum), itr::String; init::Int64)

@ Base ./reduce.jl:175 [inlined]

[7] mapreduce(f::typeof(identity), op::typeof(Base.add_sum), itr::String;

kw::@Kwargs{init::Int64})↪→

@ Base ./reduce.jl:307 [inlined]

[8] sum(f::typeof(identity), a::String; kw::@Kwargs{init::Int64})

@ Base ./reduce.jl:535 [inlined]

[9] sum(a::String; kw::@Kwargs{init::Int64})

@ Base ./reduce.jl:564 [inlined]

[10] top-level scope

@ REPL[12]:1

Julia 1.10

This macro is available as of Julia 1.10.

source

Base.Val – Type.

Val(c)

Return Val{c}(), which contains no run-time data. Types like this can be used to pass the information

between functions through the value c, which must be an isbits value or a Symbol. The intent of this

construct is to be able to dispatch on constants directly (at compile time) without having to test the

value of the constant at run time.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/namedtuple.jl#L495-L546

CHAPTER 41. ESSENTIALS 560

julia> f(::Val{true}) = "Good"

f (generic function with 1 method)

julia> f(::Val{false}) = "Bad"

f (generic function with 2 methods)

julia> f(Val(true))

"Good"

source

Core.Vararg – Constant.

Vararg{T,N}

The last parameter of a tuple type Tuple can be the special value Vararg, which denotes any number

of trailing elements. Vararg{T,N} corresponds to exactly N elements of type T. Finally Vararg{T}

corresponds to zero ormore elements of type T. Vararg tuple types are used to represent the arguments

accepted by varargs methods (see the section on Varargs Functions in the manual.)

See also NTuple.

Examples

julia> mytupletype = Tuple{AbstractString, Vararg{Int}}

Tuple{AbstractString, Vararg{Int64}}

julia> isa(("1",), mytupletype)

true

julia> isa(("1",1), mytupletype)

true

julia> isa(("1",1,2), mytupletype)

true

julia> isa(("1",1,2,3.0), mytupletype)

false

source

Core.Nothing – Type.

Nothing

A type with no fields that is the type of nothing.

See also: isnothing, Some, Missing.

source

Base.isnothing – Function.

isnothing(x)

Return true if x === nothing, and return false if not.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/essentials.jl#L851-L870
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2880-L2907
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1487-L1493

CHAPTER 41. ESSENTIALS 561

Julia 1.1

This function requires at least Julia 1.1.

See also something, Base.notnothing, ismissing.

source

Base.notnothing – Function.

notnothing(x)

Throw an error if x === nothing, and return x if not.

source

Base.Some – Type.

Some{T}

A wrapper type used in Union{Some{T}, Nothing} to distinguish between the absence of a value

(nothing) and the presence of a nothing value (i.e. Some(nothing)).

Use something to access the value wrapped by a Some object.

source

Base.something – Function.

something(x...)

Return the first value in the arguments which is not equal to nothing, if any. Otherwise throw an error.

Arguments of type Some are unwrapped.

See also coalesce, skipmissing, @something.

Examples

julia> something(nothing, 1)

1

julia> something(Some(1), nothing)

1

julia> something(Some(nothing), 2) === nothing

true

julia> something(missing, nothing)

missing

julia> something(nothing, nothing)

ERROR: ArgumentError: No value arguments present

source

Base.@something – Macro.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/some.jl#L59-L68
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/some.jl#L51-L55
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/some.jl#L3-L10
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/some.jl#L72-L98

CHAPTER 41. ESSENTIALS 562

@something(x...)

Short-circuiting version of something.

Examples

julia> f(x) = (println("f($x)"); nothing);

julia> a = 1;

julia> a = @something a f(2) f(3) error("Unable to find default for `a`")

1

julia> b = nothing;

julia> b = @something b f(2) f(3) error("Unable to find default for `b`")

f(2)

f(3)

ERROR: Unable to find default for `b`

[...]

julia> b = @something b f(2) f(3) Some(nothing)

f(2)

f(3)

julia> b === nothing

true

Julia 1.7

This macro is available as of Julia 1.7.

source

Base.Enums.Enum – Type.

Enum{T<:Integer}

The abstract supertype of all enumerated types defined with @enum.

source

Base.Enums.@enum – Macro.

@enum EnumName[::BaseType] value1[=x] value2[=y]

Create an Enum{BaseType} subtype with name EnumName and enum member values of value1 and

value2 with optional assigned values of x and y, respectively. EnumName can be used just like other

types and enum member values as regular values, such as

Examples

julia> @enum Fruit apple=1 orange=2 kiwi=3

julia> f(x::Fruit) = "I'm a Fruit with value: $(Int(x))"

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/some.jl#L107-L139
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/Enums.jl#L10-L14

CHAPTER 41. ESSENTIALS 563

f (generic function with 1 method)

julia> f(apple)

"I'm a Fruit with value: 1"

julia> Fruit(1)

apple::Fruit = 1

Values can also be specified inside a begin block, e.g.

@enum EnumName begin

value1

value2

end

BaseType, which defaults to Int32, must be a primitive subtype of Integer. Member values can be

converted between the enum type and BaseType. read and write perform these conversions auto-

matically. In case the enum is created with a non-default BaseType, Integer(value1) will return the

integer value1 with the type BaseType.

To list all the instances of an enum use instances, e.g.

julia> instances(Fruit)

(apple, orange, kiwi)

It is possible to construct a symbol from an enum instance:

julia> Symbol(apple)

:apple

source

Core.Expr – Type.

Expr(head::Symbol, args...)

A type representing compound expressions in parsed julia code (ASTs). Each expression consists of a

head Symbol identifying which kind of expression it is (e.g. a call, for loop, conditional statement, etc.),

and subexpressions (e.g. the arguments of a call). The subexpressions are stored in a Vector{Any}

field called args.

See the manual chapter on Metaprogramming and the developer documentation Julia ASTs.

Examples

julia> Expr(:call, :+, 1, 2)

:(1 + 2)

julia> dump(:(a ? b : c))

Expr

head: Symbol if

args: Array{Any}((3,))

1: Symbol a

2: Symbol b

3: Symbol c

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/Enums.jl#L95-L143

CHAPTER 41. ESSENTIALS 564

source

Core.Symbol – Type.

Symbol

The type of object used to represent identifiers in parsed julia code (ASTs). Also often used as a name

or label to identify an entity (e.g. as a dictionary key). Symbols can be entered using the : quote

operator:

julia> :name

:name

julia> typeof(:name)

Symbol

julia> x = 42

42

julia> eval(:x)

42

Symbols can also be constructed from strings or other values by calling the constructor Symbol(x...).

Symbols are immutable and their implementation re-uses the same object for all Symbols with the same

name.

Unlike strings, Symbols are "atomic" or "scalar" entities that do not support iteration over characters.

source

Core.Symbol – Method.

Symbol(x...) -> Symbol

Create a Symbol by concatenating the string representations of the arguments together.

Examples

julia> Symbol("my", "name")

:myname

julia> Symbol("day", 4)

:day4

source

Core.Module – Type.

Module

A Module is a separate global variable workspace. See module and the manual section about modules

for details.

Module(name::Symbol=:anonymous, std_imports=true, default_names=true)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L681-L706
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2088-L2115
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2118-L2131

CHAPTER 41. ESSENTIALS 565

Return amodule with the specified name. A baremodule corresponds to Module(:ModuleName, false)

An empty module containing no names at all can be created with Module(:ModuleName, false,

false). This module will not import Base or Core and does not contain a reference to itself.

source

41.9 Generic Functions

Core.Function – Type.

Function

Abstract type of all functions.

Examples

julia> isa(+, Function)

true

julia> typeof(sin)

typeof(sin) (singleton type of function sin, subtype of Function)

julia> ans <: Function

true

source

Base.hasmethod – Function.

hasmethod(f, t::Type{<:Tuple}[, kwnames]; world=get_world_counter()) -> Bool

Determine whether the given generic function has a method matching the given Tuple of argument

types with the upper bound of world age given by world.

If a tuple of keyword argument names kwnames is provided, this also checks whether the method of

f matching t has the given keyword argument names. If the matching method accepts a variable

number of keyword arguments, e.g. with kwargs..., any names given in kwnames are considered

valid. Otherwise the provided names must be a subset of the method's keyword arguments.

See also applicable.

Julia 1.2

Providing keyword argument names requires Julia 1.2 or later.

Examples

julia> hasmethod(length, Tuple{Array})

true

julia> f(; oranges=0) = oranges;

julia> hasmethod(f, Tuple{}, (:oranges,))

true

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L3144-L3155
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1563-L1579

CHAPTER 41. ESSENTIALS 566

julia> hasmethod(f, Tuple{}, (:apples, :bananas))

false

julia> g(; xs...) = 4;

julia> hasmethod(g, Tuple{}, (:a, :b, :c, :d)) # g accepts arbitrary kwargs

true

source

Core.applicable – Function.

applicable(f, args...) -> Bool

Determine whether the given generic function has a method applicable to the given arguments.

See also hasmethod.

Examples

julia> function f(x, y)

x + y

end;

julia> applicable(f, 1)

false

julia> applicable(f, 1, 2)

true

source

Base.isambiguous – Function.

Base.isambiguous(m1, m2; ambiguous_bottom=false) -> Bool

Determine whether two methods m1 and m2 may be ambiguous for some call signature. This test is

performed in the context of other methods of the same function; in isolation, m1 and m2 might be

ambiguous, but if a third method resolving the ambiguity has been defined, this returns false. Alter-

natively, in isolation m1 and m2 might be ordered, but if a third method cannot be sorted with them,

they may cause an ambiguity together.

For parametric types, the ambiguous_bottom keyword argument controls whether Union{} counts as

an ambiguous intersection of type parameters – when true, it is considered ambiguous, when false

it is not.

Examples

julia> foo(x::Complex{<:Integer}) = 1

foo (generic function with 1 method)

julia> foo(x::Complex{<:Rational}) = 2

foo (generic function with 2 methods)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L1799-L1834
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1874-L1893

CHAPTER 41. ESSENTIALS 567

julia> m1, m2 = collect(methods(foo));

julia> typeintersect(m1.sig, m2.sig)

Tuple{typeof(foo), Complex{Union{}}}

julia> Base.isambiguous(m1, m2, ambiguous_bottom=true)

true

julia> Base.isambiguous(m1, m2, ambiguous_bottom=false)

false

source

Core.invoke – Function.

invoke(f, argtypes::Type, args...; kwargs...)

Invoke a method for the given generic function f matching the specified types argtypes on the speci-

fied arguments args and passing the keyword arguments kwargs. The arguments args must conform

with the specified types in argtypes, i.e. conversion is not automatically performed. This method

allows invoking a method other than the most specific matching method, which is useful when the be-

havior of a more general definition is explicitly needed (often as part of the implementation of a more

specific method of the same function).

Be careful when using invoke for functions that you don't write. What definition is used for given

argtypes is an implementation detail unless the function is explicitly states that calling with certain

argtypes is a part of public API. For example, the change between f1 and f2 in the example below is

usually considered compatible because the change is invisible by the caller with a normal (non-invoke)

call. However, the change is visible if you use invoke.

Examples

julia> f(x::Real) = x^2;

julia> f(x::Integer) = 1 + invoke(f, Tuple{Real}, x);

julia> f(2)

5

julia> f1(::Integer) = Integer

f1(::Real) = Real;

julia> f2(x::Real) = _f2(x)

_f2(::Integer) = Integer

f2() = Real;

julia> f1(1)

Integer

julia> f2(1)

Integer

julia> invoke(f1, Tuple{Real}, 1)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L1907-L1940

CHAPTER 41. ESSENTIALS 568

Real

julia> invoke(f2, Tuple{Real}, 1)

Integer

source

Base.@invoke – Macro.

@invoke f(arg::T, ...; kwargs...)

Provides a convenient way to call invoke by expanding @invoke f(arg1::T1, arg2::T2; kwargs...)

to invoke(f, Tuple{T1,T2}, arg1, arg2; kwargs...). When an argument's type annotation is

omitted, it's replaced with Core.Typeof that argument. To invoke a method where an argument is

untyped or explicitly typed as Any, annotate the argument with ::Any.

It also supports the following syntax:

• @invoke (x::X).f expands to invoke(getproperty, Tuple{X,Symbol}, x, :f)

• @invoke (x::X).f = v::V expands to invoke(setproperty!, Tuple{X,Symbol,V}, x, :f,

v)

• @invoke (xs::Xs)[i::I] expands to invoke(getindex, Tuple{Xs,I}, xs, i)

• @invoke (xs::Xs)[i::I] = v::V expands to invoke(setindex!, Tuple{Xs,V,I}, xs, v, i)

Examples

julia> @macroexpand @invoke f(x::T, y)

:(Core.invoke(f, Tuple{T, Core.Typeof(y)}, x, y))

julia> @invoke 420::Integer % Unsigned

0x00000000000001a4

julia> @macroexpand @invoke (x::X).f

:(Core.invoke(Base.getproperty, Tuple{X, Core.Typeof(:f)}, x, :f))

julia> @macroexpand @invoke (x::X).f = v::V

:(Core.invoke(Base.setproperty!, Tuple{X, Core.Typeof(:f), V}, x, :f, v))

julia> @macroexpand @invoke (xs::Xs)[i::I]

:(Core.invoke(Base.getindex, Tuple{Xs, I}, xs, i))

julia> @macroexpand @invoke (xs::Xs)[i::I] = v::V

:(Core.invoke(Base.setindex!, Tuple{Xs, V, I}, xs, v, i))

Julia 1.7

This macro requires Julia 1.7 or later.

Julia 1.9

This macro is exported as of Julia 1.9.

Julia 1.10

The additional syntax is supported as of Julia 1.10.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1896-L1941

CHAPTER 41. ESSENTIALS 569

source

Base.invokelatest – Function.

invokelatest(f, args...; kwargs...)

Calls f(args...; kwargs...), but guarantees that the most recent method of f will be executed. This

is useful in specialized circumstances, e.g. long-running event loops or callback functions that may call

obsolete versions of a function f. (The drawback is that invokelatest is somewhat slower than calling

f directly, and the type of the result cannot be inferred by the compiler.)

Julia 1.9

Prior to Julia 1.9, this function was not exported, and was called as Base.invokelatest.

source

Base.@invokelatest – Macro.

@invokelatest f(args...; kwargs...)

Provides a convenient way to call invokelatest. @invokelatest f(args...; kwargs...) will simply

be expanded into Base.invokelatest(f, args...; kwargs...).

It also supports the following syntax:

• @invokelatest x.f expands to Base.invokelatest(getproperty, x, :f)

• @invokelatest x.f = v expands to Base.invokelatest(setproperty!, x, :f, v)

• @invokelatest xs[i] expands to Base.invokelatest(getindex, xs, i)

• @invokelatest xs[i] = v expands to Base.invokelatest(setindex!, xs, v, i)

julia> @macroexpand @invokelatest f(x; kw=kwv)

:(Base.invokelatest(f, x; kw = kwv))

julia> @macroexpand @invokelatest x.f

:(Base.invokelatest(Base.getproperty, x, :f))

julia> @macroexpand @invokelatest x.f = v

:(Base.invokelatest(Base.setproperty!, x, :f, v))

julia> @macroexpand @invokelatest xs[i]

:(Base.invokelatest(Base.getindex, xs, i))

julia> @macroexpand @invokelatest xs[i] = v

:(Base.invokelatest(Base.setindex!, xs, v, i))

Julia 1.7

This macro requires Julia 1.7 or later.

Julia 1.9

Prior to Julia 1.9, this macro was not exported, and was called as Base.@invokelatest.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L2097-L2142
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/essentials.jl#L876-L888

CHAPTER 41. ESSENTIALS 570

Julia 1.10

The additional x.f and xs[i] syntax requires Julia 1.10.

source

new – Keyword.

new, or new{A,B,...}

Special function available to inner constructors which creates a new object of the type. The form

new{A,B,...} explicitly specifies values of parameters for parametric types. See the manual section on

Inner Constructor Methods for more information.

source

Base.:|> – Function.

|>(x, f)

Infix operator which applies function f to the argument x. This allows f(g(x)) to be written x |> g

|> f. When used with anonymous functions, parentheses are typically required around the definition

to get the intended chain.

Examples

julia> 4 |> inv

0.25

julia> [2, 3, 5] |> sum |> inv

0.1

julia> [0 1; 2 3] .|> (x -> x^2) |> sum

14

source

Base.:∘ – Function.

f ∘ g

Compose functions: i.e. (f ∘ g)(args...; kwargs...) means f(g(args...; kwargs...)). The

∘ symbol can be entered in the Julia REPL (and most editors, appropriately configured) by typing

\circ<tab>.

Function composition also works in prefix form: ∘(f, g) is the same as f ∘ g. The prefix form supports

composition of multiple functions: ∘(f, g, h) = f ∘ g ∘ h and splatting ∘(fs...) for composing

an iterable collection of functions. The last argument to ∘ execute first.

Julia 1.4

Multiple function composition requires at least Julia 1.4.

Julia 1.5

Composition of one function ∘(f) requires at least Julia 1.5.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L2163-L2201
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1404-L1411
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L897-L916

CHAPTER 41. ESSENTIALS 571

Julia 1.7

Using keyword arguments requires at least Julia 1.7.

Examples

julia> map(uppercase∘first, ["apple", "banana", "carrot"])

3-element Vector{Char}:

'A': ASCII/Unicode U+0041 (category Lu: Letter, uppercase)

'B': ASCII/Unicode U+0042 (category Lu: Letter, uppercase)

'C': ASCII/Unicode U+0043 (category Lu: Letter, uppercase)

julia> (==(6)∘length).(["apple", "banana", "carrot"])

3-element BitVector:

0

1

1

julia> fs = [

x -> 2x

x -> x-1

x -> x/2

x -> x+1

];

julia> ∘(fs...)(3)

2.0

See also ComposedFunction, !f::Function.

source

Base.ComposedFunction – Type.

ComposedFunction{Outer,Inner} <: Function

Represents the composition of two callable objects outer::Outer and inner::Inner. That is

ComposedFunction(outer, inner)(args...; kw...) === outer(inner(args...; kw...))

The preferred way to construct an instance of ComposedFunction is to use the composition operator ∘:

julia> sin ∘ cos === ComposedFunction(sin, cos)

true

julia> typeof(sin∘cos)

ComposedFunction{typeof(sin), typeof(cos)}

The composed pieces are stored in the fields of ComposedFunction and can be retrieved as follows:

julia> composition = sin ∘ cos

sin ∘ cos

julia> composition.outer === sin

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L955-L1000

CHAPTER 41. ESSENTIALS 572

true

julia> composition.inner === cos

true

Julia 1.6

ComposedFunction requires at least Julia 1.6. In earlier versions ∘ returns an anonymous

function instead.

See also ∘.

source

Base.splat – Function.

splat(f)

Equivalent to

my_splat(f) = args->f(args...)

i.e. given a function returns a new function that takes one argument and splats it into the original

function. This is useful as an adaptor to pass a multi-argument function in a context that expects a

single argument, but passes a tuple as that single argument.

Example usage:

julia> map(splat(+), zip(1:3,4:6))

3-element Vector{Int64}:

5

7

9

julia> my_add = splat(+)

splat(+)

julia> my_add((1,2,3))

6

source

Base.Fix1 – Type.

Fix1(f, x)

A type representing a partially-applied version of the two-argument function f, with the first argument

fixed to the value "x". In other words, Fix1(f, x) behaves similarly to y->f(x, y).

See also Fix2.

source

Base.Fix2 – Type.

Fix2(f, x)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L1003-L1033
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L1224-L1250
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L1101-L1109

CHAPTER 41. ESSENTIALS 573

A type representing a partially-applied version of the two-argument function f, with the second argu-

ment fixed to the value "x". In other words, Fix2(f, x) behaves similarly to y->f(y, x).

source

41.10 Syntax

Core.eval – Function.

Core.eval(m::Module, expr)

Evaluate an expression in the given module and return the result.

source

Base.MainInclude.eval – Function.

eval(expr)

Evaluate an expression in the global scope of the containing module. Every Module (except those

defined with baremodule) has its own 1-argument definition of eval, which evaluates expressions in

that module.

source

Base.@eval – Macro.

@eval [mod,] ex

Evaluate an expression with values interpolated into it using eval. If two arguments are provided, the

first is the module to evaluate in.

source

Base.evalfile – Function.

evalfile(path::AbstractString, args::Vector{String}=String[])

Load the file into an anonymous module using include, evaluate all expressions, and return the value

of the last expression. The optional args argument can be used to set the input arguments of the

script (i.e. the global ARGS variable). Note that definitions (e.g. methods, globals) are evaluated in the

anonymous module and do not affect the current module.

Example

julia> write("testfile.jl", """

@show ARGS

1 + 1

""");

julia> x = evalfile("testfile.jl", ["ARG1", "ARG2"]);

ARGS = ["ARG1", "ARG2"]

julia> x

2

julia> rm("testfile.jl")

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L1120-L1126
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/expr.jl#L183-L187
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/client.jl#L513-L519
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/essentials.jl#L323-L328

CHAPTER 41. ESSENTIALS 574

source

Base.esc – Function.

esc(e)

Only valid in the context of an Expr returned from a macro. Prevents the macro hygiene pass from

turning embedded variables into gensym variables. See the Macros section of the Metaprogramming

chapter of the manual for more details and examples.

source

Base.@inbounds – Macro.

@inbounds(blk)

Eliminates array bounds checking within expressions.

In the example below the in-range check for referencing element i of array A is skipped to improve

performance.

function sum(A::AbstractArray)

r = zero(eltype(A))

for i in eachindex(A)

@inbounds r += A[i]

end

return r

end

Warning

Using @inbounds may return incorrect results/crashes/corruption for out-of-bounds indices.

The user is responsible for checking it manually. Only use @inbounds when it is certain

from the information locally available that all accesses are in bounds. In particular, using

1:length(A) instead of eachindex(A) in a function like the one above is not safely in-

bounds because the first index of A may not be 1 for all user defined types that subtype

AbstractArray.

source

Base.@boundscheck – Macro.

@boundscheck(blk)

Annotates the expression blk as a bounds checking block, allowing it to be elided by @inbounds.

Note

The function in which @boundscheck is written must be inlined into its caller in order for

@inbounds to have effect.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/loading.jl#L2146-L2170
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/essentials.jl#L652-L658
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/essentials.jl#L709-L736

CHAPTER 41. ESSENTIALS 575

julia> @inline function g(A, i)

@boundscheck checkbounds(A, i)

return "accessing ($A)[$i]"

end;

julia> f1() = return g(1:2, -1);

julia> f2() = @inbounds return g(1:2, -1);

julia> f1()

ERROR: BoundsError: attempt to access 2-element UnitRange{Int64} at index [-1]

Stacktrace:

[1] throw_boundserror(::UnitRange{Int64}, ::Tuple{Int64}) at ./abstractarray.jl:455

[2] checkbounds at ./abstractarray.jl:420 [inlined]

[3] g at ./none:2 [inlined]

[4] f1() at ./none:1

[5] top-level scope

julia> f2()

"accessing (1:2)[-1]"

Warning

The @boundscheck annotation allows you, as a library writer, to opt-in to allowing other code

to remove your bounds checks with @inbounds. As noted there, the caller must verify—us-

ing information they can access—that their accesses are valid before using @inbounds. For

indexing into your AbstractArray subclasses, for example, this involves checking the in-

dices against its axes. Therefore, @boundscheck annotations should only be added to a

getindex or setindex! implementation after you are certain its behavior is correct.

source

Base.@propagate_inbounds – Macro.

@propagate_inbounds

Tells the compiler to inline a function while retaining the caller's inbounds context.

source

Base.@inline – Macro.

@inline

Give a hint to the compiler that this function is worth inlining.

Small functions typically do not need the @inline annotation, as the compiler does it automatically.

By using @inline on bigger functions, an extra nudge can be given to the compiler to inline it.

@inline can be applied immediately before a function definition or within a function body.

annotate long-form definition

@inline function longdef(x)

...

end

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/essentials.jl#L661-L704
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/expr.jl#L803-L807

CHAPTER 41. ESSENTIALS 576

annotate short-form definition

@inline shortdef(x) = ...

annotate anonymous function that a `do` block creates

f() do

@inline

...

end

Julia 1.8

The usage within a function body requires at least Julia 1.8.

@inline block

Give a hint to the compiler that calls within block are worth inlining.

The compiler will try to inline `f`

@inline f(...)

The compiler will try to inline `f`, `g` and `+`

@inline f(...) + g(...)

Note

A callsite annotation always has the precedence over the annotation applied to the definition

of the called function:

@noinline function explicit_noinline(args...)

body

end

let

@inline explicit_noinline(args...) # will be inlined

end

Note

When there are nested callsite annotations, the innermost annotation has the precedence:

@noinline let a0, b0 = ...

a = @inline f(a0) # the compiler will try to inline this call

b = f(b0) # the compiler will NOT try to inline this call

return a, b

end

Warning

Although a callsite annotation will try to force inlining in regardless of the cost model, there

are still chances it can't succeed in it. Especially, recursive calls can not be inlined even if

they are annotated as @inlined.

Julia 1.8

The callsite annotation requires at least Julia 1.8.

CHAPTER 41. ESSENTIALS 577

source

Base.@noinline – Macro.

@noinline

Give a hint to the compiler that it should not inline a function.

Small functions are typically inlined automatically. By using @noinline on small functions, auto-inlining

can be prevented.

@noinline can be applied immediately before a function definition or within a function body.

annotate long-form definition

@noinline function longdef(x)

...

end

annotate short-form definition

@noinline shortdef(x) = ...

annotate anonymous function that a `do` block creates

f() do

@noinline

...

end

Julia 1.8

The usage within a function body requires at least Julia 1.8.

@noinline block

Give a hint to the compiler that it should not inline the calls within block.

The compiler will try to not inline `f`

@noinline f(...)

The compiler will try to not inline `f`, `g` and `+`

@noinline f(...) + g(...)

Note

A callsite annotation always has the precedence over the annotation applied to the definition

of the called function:

@inline function explicit_inline(args...)

body

end

let

@noinline explicit_inline(args...) # will not be inlined

end

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/expr.jl#L190-L263

CHAPTER 41. ESSENTIALS 578

Note

When there are nested callsite annotations, the innermost annotation has the precedence:

@inline let a0, b0 = ...

a = @noinline f(a0) # the compiler will NOT try to inline this call

b = f(b0) # the compiler will try to inline this call

return a, b

end

Julia 1.8

The callsite annotation requires at least Julia 1.8.

Note

If the function is trivial (for example returning a constant) it might get inlined anyway.

source

Base.@nospecialize – Macro.

@nospecialize

Applied to a function argument name, hints to the compiler that the method implementation should not

be specialized for different types of that argument, but instead use the declared type for that argument.

It can be applied to an argument within a formal argument list, or in the function body. When applied

to an argument, the macro must wrap the entire argument expression, e.g., @nospecialize(x::Real)

or @nospecialize(i::Integer...) rather than wrapping just the argument name. When used in a

function body, the macro must occur in statement position and before any code.

When used without arguments, it applies to all arguments of the parent scope. In local scope, this

means all arguments of the containing function. In global (top-level) scope, this means all methods

subsequently defined in the current module.

Specialization can reset back to the default by using @specialize.

function example_function(@nospecialize x)

...

end

function example_function(x, @nospecialize(y = 1))

...

end

function example_function(x, y, z)

@nospecialize x y

...

end

@nospecialize

f(y) = [x for x in y]

@specialize

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/expr.jl#L268-L340

CHAPTER 41. ESSENTIALS 579

Note

@nospecialize affects code generation but not inference: it limits the diversity of the re-

sulting native code, but it does not impose any limitations (beyond the standard ones) on

type-inference. Use Base.@nospecializeinfer together with @nospecialize to addition-

ally suppress inference.

Example

julia> f(A::AbstractArray) = g(A)

f (generic function with 1 method)

julia> @noinline g(@nospecialize(A::AbstractArray)) = A[1]

g (generic function with 1 method)

julia> @code_typed f([1.0])

CodeInfo(

1 ─ %1 = invoke Main.g(_2::AbstractArray)::Float64

└── return %1

) => Float64

Here, the @nospecialize annotation results in the equivalent of

f(A::AbstractArray) = invoke(g, Tuple{AbstractArray}, A)

ensuring that only one version of native code will be generated for g, one that is generic for any

AbstractArray. However, the specific return type is still inferred for both g and f, and this is still used

in optimizing the callers of f and g.

source

Base.@specialize – Macro.

@specialize

Reset the specialization hint for an argument back to the default. For details, see @nospecialize.

source

Base.@nospecializeinfer – Macro.

Base.@nospecializeinfer function f(args...)

@nospecialize ...

...

end

Base.@nospecializeinfer f(@nospecialize args...) = ...

Tells the compiler to infer f using the declared types of @nospecialized arguments. This can be used

to limit the number of compiler-generated specializations during inference.

Example

julia> f(A::AbstractArray) = g(A)

f (generic function with 1 method)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/essentials.jl#L47-L117
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/essentials.jl#L129-L134

CHAPTER 41. ESSENTIALS 580

julia> @noinline Base.@nospecializeinfer g(@nospecialize(A::AbstractArray)) = A[1]

g (generic function with 1 method)

julia> @code_typed f([1.0])

CodeInfo(

1 ─ %1 = invoke Main.g(_2::AbstractArray)::Any

└── return %1

) => Any

In this example, f will be inferred for each specific type of A, but g will only be inferred once with the de-

clared argument type A::AbstractArray, meaning that the compiler will not likely see the excessive in-

ference time on it while it can not infer the concrete return type of it. Without the @nospecializeinfer,

f([1.0])would infer the return type of g as Float64, indicating that inference ran for g(::Vector{Float64})

despite the prohibition on specialized code generation.

source

Base.@constprop – Macro.

@constprop setting [ex]

Control the mode of interprocedural constant propagation for the annotated function.

Two settings are supported:

• @constprop :aggressive [ex]: apply constant propagation aggressively. For a method where

the return type depends on the value of the arguments, this can yield improved inference results

at the cost of additional compile time.

• @constprop :none [ex]: disable constant propagation. This can reduce compile times for func-

tions that Julia might otherwise deem worthy of constant-propagation. Common cases are for

functions with Bool- or Symbol-valued arguments or keyword arguments.

@constprop can be applied immediately before a function definition or within a function body.

annotate long-form definition

@constprop :aggressive function longdef(x)

...

end

annotate short-form definition

@constprop :aggressive shortdef(x) = ...

annotate anonymous function that a `do` block creates

f() do

@constprop :aggressive

...

end

Julia 1.10

The usage within a function body requires at least Julia 1.10.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/expr.jl#L765-L798
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/expr.jl#L345-L379

CHAPTER 41. ESSENTIALS 581

Base.gensym – Function.

gensym([tag])

Generates a symbol which will not conflict with other variable names (in the same module).

source

Base.@gensym – Macro.

@gensym

Generates a gensym symbol for a variable. For example, @gensym x y is transformed into x = gensym("x");

y = gensym("y").

source

var"name" – Keyword.

var

The syntax var"#example#" refers to a variable named Symbol("#example#"), even though #example#

is not a valid Julia identifier name.

This can be useful for interoperability with programming languages which have different rules for the

construction of valid identifiers. For example, to refer to the R variable draw.segments, you can use

var"draw.segments" in your Julia code.

It is also used to show julia source code which has gone through macro hygiene or otherwise contains

variable names which can't be parsed normally.

Note that this syntax requires parser support so it is expanded directly by the parser rather than being

implemented as a normal string macro @var_str.

Julia 1.3

This syntax requires at least Julia 1.3.

source

Base.@goto – Macro.

@goto name

@goto name unconditionally jumps to the statement at the location @label name.

@label and @goto cannot create jumps to different top-level statements. Attempts cause an error. To

still use @goto, enclose the @label and @goto in a block.

source

Base.@label – Macro.

@label name

Labels a statement with the symbolic label name. The label marks the end-point of an unconditional

jump with @goto name.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/expr.jl#L9-L13
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/expr.jl#L21-L26
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1450-L1470
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/essentials.jl#L755-L762
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/essentials.jl#L745-L750

CHAPTER 41. ESSENTIALS 582

Base.SimdLoop.@simd – Macro.

@simd

Annotate a for loop to allow the compiler to take extra liberties to allow loop re-ordering

Warning

This feature is experimental and could change or disappear in future versions of Julia. In-

correct use of the @simd macro may cause unexpected results.

The object iterated over in a @simd for loop should be a one-dimensional range. By using @simd, you

are asserting several properties of the loop:

• It is safe to execute iterations in arbitrary or overlapping order, with special consideration for

reduction variables.

• Floating-point operations on reduction variables can be reordered or contracted, possibly causing

different results than without @simd.

In many cases, Julia is able to automatically vectorize inner for loops without the use of @simd. Using

@simd gives the compiler a little extra leeway to make it possible in more situations. In either case,

your inner loop should have the following properties to allow vectorization:

• The loop must be an innermost loop

• The loop body must be straight-line code. Therefore, @inbounds is currently needed for all array

accesses. The compiler can sometimes turn short &&, ||, and ?: expressions into straight-line

code if it is safe to evaluate all operands unconditionally. Consider using the ifelse function

instead of ?: in the loop if it is safe to do so.

• Accesses must have a stride pattern and cannot be "gathers" (random-index reads) or "scatters"

(random-index writes).

• The stride should be unit stride.

Note

The @simd does not assert by default that the loop is completely free of loop-carried memory

dependencies, which is an assumption that can easily be violated in generic code. If you

are writing non-generic code, you can use @simd ivdep for ... end to also assert that:

• There exists no loop-carried memory dependencies

• No iteration ever waits on a previous iteration to make forward progress.

source

Base.@polly – Macro.

@polly

Tells the compiler to apply the polyhedral optimizer Polly to a function.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/simdloop.jl#L90-L126
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/expr.jl#L816-L820

CHAPTER 41. ESSENTIALS 583

Base.@generated – Macro.

@generated f

@generated is used to annotate a function which will be generated. In the body of the generated

function, only types of arguments can be read (not the values). The function returns a quoted expres-

sion evaluated when the function is called. The @generated macro should not be used on functions

mutating the global scope or depending on mutable elements.

See Metaprogramming for further details.

Examples

julia> @generated function bar(x)

if x <: Integer

return :(x ^ 2)

else

return :(x)

end

end

bar (generic function with 1 method)

julia> bar(4)

16

julia> bar("baz")

"baz"

source

Base.@assume_effects – Macro.

@assume_effects setting... [ex]

Override the compiler's effect modeling for the given method or foreign call. @assume_effects can

be applied immediately before a function definition or within a function body. It can also be applied

immediately before a @ccall expression.

Julia 1.8

Using Base.@assume_effects requires Julia version 1.8.

Examples

julia> Base.@assume_effects :terminates_locally function pow(x)

this :terminates_locally allows `pow` to be constant-folded

res = 1

1 < x < 20 || error("bad pow")

while x > 1

res *= x

x -= 1

end

return res

end

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/expr.jl#L993-L1021

CHAPTER 41. ESSENTIALS 584

pow (generic function with 1 method)

julia> code_typed() do

pow(12)

end

1-element Vector{Any}:

CodeInfo(

1 ─ return 479001600

) => Int64

julia> code_typed() do

map((2,3,4)) do x

this :terminates_locally allows this anonymous function to be

constant-folded↪→

Base.@assume_effects :terminates_locally

res = 1

1 < x < 20 || error("bad pow")

while x > 1

res *= x

x -= 1

end

return res

end

end

1-element Vector{Any}:

CodeInfo(

1 ─ return (2, 6, 24)

) => Tuple{Int64, Int64, Int64}

julia> Base.@assume_effects :total !:nothrow @ccall jl_type_intersection(Vector{Int}::Any,

Vector{<:Integer}::Any)::Any↪→

Vector{Int64} (alias for Array{Int64, 1})

Julia 1.10

The usage within a function body requires at least Julia 1.10.

Warning

Improper use of thismacro causes undefined behavior (including crashes, incorrect answers,

or other hard to track bugs). Use with care and only as a last resort if absolutely required.

Even in such a case, you SHOULD take all possible steps to minimize the strength of the

effect assertion (e.g., do not use :total if :nothrow would have been sufficient).

In general, each setting valuemakes an assertion about the behavior of the function, without requiring

the compiler to prove that this behavior is indeed true. These assertions are made for all world ages.

It is thus advisable to limit the use of generic functions that may later be extended to invalidate the

assumption (which would cause undefined behavior).

The following settings are supported.

• :consistent

• :effect_free

CHAPTER 41. ESSENTIALS 585

• :nothrow

• :terminates_globally

• :terminates_locally

• :notaskstate

• :inaccessiblememonly

• :foldable

• :removable

• :total

Extended help

:consistent

The :consistent setting asserts that for egal (===) inputs:

• The manner of termination (return value, exception, non-termination) will always be the same.

• If the method returns, the results will always be egal.

Note

This in particular implies that the methodmust not return a freshly allocatedmutable object.

Multiple allocations of mutable objects (even with identical contents) are not egal.

Note

The :consistent-cy assertion is made world-age wise. More formally, write f for the eval-
uation of f in world-age i, then we require:

i, x, y : xy→f(x)f(y)

However, for two world ages i, j s.t. ij, we may have f(x)f(y).

A further implication is that :consistent functions may not make their return value depen-

dent on the state of the heap or any other global state that is not constant for a given world

age.

Note

The :consistent-cy includes all legal rewrites performed by the optimizer. For example,

floating-point fastmath operations are not considered :consistent, because the optimizer

may rewrite them causing the output to not be :consistent, even for the same world age

(e.g. because one ran in the interpreter, while the other was optimized).

Note

The :consistent-cy assertion currrently includes the assertion that the function will not ex-

ecute any undefined behavior (for any input). Note that undefined behavior may technically

cause the function to violate other effect assertions (such as :nothrow or :effect_free)

as well, but we do not model this, and all effects except :consistent assume the absence

of undefined behavior.

CHAPTER 41. ESSENTIALS 586

Note

If :consistent functions terminate by throwing an exception, that exception itself is not

required to meet the egality requirement specified above.

:effect_free

The :effect_free setting asserts that the method is free of externally semantically visible side effects.

The following is an incomplete list of externally semantically visible side effects:

• Changing the value of a global variable.

• Mutating the heap (e.g. an array or mutable value), except as noted below

• Changing the method table (e.g. through calls to eval)

• File/Network/etc. I/O

• Task switching

However, the following are explicitly not semantically visible, even if they may be observable:

• Memory allocations (both mutable and immutable)

• Elapsed time

• Garbage collection

• Heap mutations of objects whose lifetime does not exceed the method (i.e. were allocated in the

method and do not escape).

• The returned value (which is externally visible, but not a side effect)

The rule of thumb here is that an externally visible side effect is anything that would affect the execution

of the remainder of the program if the function were not executed.

Note

The :effect_free assertion is made both for the method itself and any code that is exe-

cuted by the method. Keep in mind that the assertion must be valid for all world ages and

limit use of this assertion accordingly.

:nothrow

The :nothrow settings asserts that this method does not terminate abnormally (i.e. will either always

return a value or never return).

Note

It is permissible for :nothrow annotated methods to make use of exception handling inter-

nally as long as the exception is not rethrown out of the method itself.

Note

MethodErrors and similar exceptions count as abnormal termination.

CHAPTER 41. ESSENTIALS 587

:terminates_globally

The :terminates_globally settings asserts that thismethodwill eventually terminate (either normally

or abnormally), i.e. does not loop indefinitely.

Note

This :terminates_globally assertion covers any other methods called by the annotated

method.

Note

The compiler will consider this a strong indication that the method will terminate relatively

quickly and may (if otherwise legal), call this method at compile time. I.e. it is a bad idea

to annotate this setting on a method that technically, but not practically, terminates.

:terminates_locally

The :terminates_locally setting is like :terminates_globally, except that it only applies to syn-

tactic control flow within the annotated method. It is thus a much weaker (and thus safer) assertion

that allows for the possibility of non-termination if the method calls some other method that does not

terminate.

Note

:terminates_globally implies :terminates_locally.

:notaskstate

The :notaskstate setting asserts that themethod does not use ormodify the local task state (task local

storage, RNG state, etc.) and may thus be safely moved between tasks without observable results.

Note

The implementation of exception handling makes use of state stored in the task object.

However, this state is currently not considered to be within the scope of :notaskstate and

is tracked separately using the :nothrow effect.

Note

The :notaskstate assertion concerns the state of the currently running task. If a reference

to a Task object is obtained by some other means that does not consider which task is

currently running, the :notaskstate effect need not be tainted. This is true, even if said

task object happens to be === to the currently running task.

Note

Access to task state usually also results in the tainting of other effects, such as :effect_free

(if task state is modified) or :consistent (if task state is used in the computation of the

result). In particular, code that is not :notaskstate, but is :effect_free and :consistent

may still be dead-code-eliminated and thus promoted to :total.

CHAPTER 41. ESSENTIALS 588

:inaccessiblememonly

The :inaccessiblememonly setting asserts that the method does not access or modify externally ac-

cessible mutable memory. This means the method can access or modify mutable memory for newly

allocated objects that is not accessible by other methods or top-level execution before return from the

method, but it can not access or modify any mutable global state or mutable memory pointed to by its

arguments.

Note

Below is an incomplete list of examples that invalidate this assumption:

• a global reference or getglobal call to access a mutable global variable

• a global assignment or setglobal! call to perform assignment to a non-constant global

variable

• setfield! call that changes a field of a global mutable variable

Note

This :inaccessiblememonly assertion covers any other methods called by the annotated

method.

:foldable

This setting is a convenient shortcut for the set of effects that the compiler requires to be guaranteed

to constant fold a call at compile time. It is currently equivalent to the following settings:

• :consistent

• :effect_free

• :terminates_globally

Note

This list in particular does not include :nothrow. The compiler will still attempt constant

propagation and note any thrown error at compile time. Note however, that by the :consistent-

cy requirements, any such annotated call must consistently throw given the same argument

values.

Note

An explicit @inbounds annotation inside the function will also disable constant folding and

not be overriden by :foldable.

:removable

This setting is a convenient shortcut for the set of effects that the compiler requires to be guaranteed to

delete a call whose result is unused at compile time. It is currently equivalent to the following settings:

• :effect_free

• :nothrow

CHAPTER 41. ESSENTIALS 589

• :terminates_globally

:total

This setting is the maximum possible set of effects. It currently implies the following other settings:

• :consistent

• :effect_free

• :nothrow

• :terminates_globally

• :notaskstate

• :inaccessiblememonly

Warning

:total is a very strong assertion and will likely gain additional semantics in future versions

of Julia (e.g. if additional effects are added and included in the definition of :total). As a

result, it should be used with care. Whenever possible, prefer to use the minimum possible

set of specific effect assertions required for a particular application. In cases where a large

number of effect overrides apply to a set of functions, a custom macro is recommended

over the use of :total.

Negated effects

Effect names may be prefixed by ! to indicate that the effect should be removed from an earlier meta

effect. For example, :total !:nothrow indicates that while the call is generally total, it may however

throw.

source

Base.@deprecate – Macro.

@deprecate old new [export_old=true]

Deprecate method old and specify the replacement call new, defining a new method old with the

specified signature in the process.

To prevent old from being exported, set export_old to false.

Julia 1.5

As of Julia 1.5, functions defined by @deprecate do not print warning when julia is run

without the --depwarn=yes flag set, as the default value of --depwarn option is no. The

warnings are printed from tests run by Pkg.test().

Examples

julia> @deprecate old(x) new(x)

old (generic function with 1 method)

julia> @deprecate old(x) new(x) false

old (generic function with 1 method)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/expr.jl#L400-L698

CHAPTER 41. ESSENTIALS 590

Calls to @deprecate without explicit type-annotations will define deprecated methods accepting any

number of positional and keyword arguments of type Any.

Julia 1.9

Keyword arguments are forwarded when there is no explicit type annotation as of Julia 1.9.

For older versions, you can manually forward positional and keyword arguments by doing

@deprecate old(args...; kwargs...) new(args...; kwargs...).

To restrict deprecation to a specific signature, annotate the arguments of old. For example,

julia> new(x::Int) = x;

julia> new(x::Float64) = 2x;

julia> @deprecate old(x::Int) new(x);

julia> methods(old)

1 method for generic function "old" from Main:

[1] old(x::Int64)

@ deprecated.jl:94

will define and deprecate a method old(x::Int) that mirrors new(x::Int) but will not define nor

deprecate the method old(x::Float64).

source

41.11 Missing Values

Base.Missing – Type.

Missing

A type with no fields whose singleton instance missing is used to represent missing values.

See also: skipmissing, nonmissingtype, Nothing.

source

Base.missing – Constant.

missing

The singleton instance of type Missing representing a missing value.

See also: NaN, skipmissing, nonmissingtype.

source

Base.coalesce – Function.

coalesce(x...)

Return the first value in the arguments which is not equal to missing, if any. Otherwise return missing.

See also skipmissing, something, @coalesce.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/deprecated.jl#L17-L65
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/essentials.jl#L984-L991
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/essentials.jl#L994-L1000

CHAPTER 41. ESSENTIALS 591

julia> coalesce(missing, 1)

1

julia> coalesce(1, missing)

1

julia> coalesce(nothing, 1) # returns `nothing`

julia> coalesce(missing, missing)

missing

source

Base.@coalesce – Macro.

@coalesce(x...)

Short-circuiting version of coalesce.

Examples

julia> f(x) = (println("f($x)"); missing);

julia> a = 1;

julia> a = @coalesce a f(2) f(3) error("`a` is still missing")

1

julia> b = missing;

julia> b = @coalesce b f(2) f(3) error("`b` is still missing")

f(2)

f(3)

ERROR: `b` is still missing

[...]

Julia 1.7

This macro is available as of Julia 1.7.

source

Base.ismissing – Function.

ismissing(x)

Indicate whether x is missing.

See also: skipmissing, isnothing, isnan.

source

Base.skipmissing – Function.

skipmissing(itr)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/missing.jl#L405-L427
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/missing.jl#L435-L460
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/essentials.jl#L1003-L1009

CHAPTER 41. ESSENTIALS 592

Return an iterator over the elements in itr skipping missing values. The returned object can be

indexed using indices of itr if the latter is indexable. Indices corresponding to missing values are not

valid: they are skipped by keys and eachindex, and a MissingException is thrown when trying to use

them.

Use collect to obtain an Array containing the non-missing values in itr. Note that even if itr is a

multidimensional array, the result will always be a Vector since it is not possible to remove missings

while preserving dimensions of the input.

See also coalesce, ismissing, something.

Examples

julia> x = skipmissing([1, missing, 2])

skipmissing(Union{Missing, Int64}[1, missing, 2])

julia> sum(x)

3

julia> x[1]

1

julia> x[2]

ERROR: MissingException: the value at index (2,) is missing

[...]

julia> argmax(x)

3

julia> collect(keys(x))

2-element Vector{Int64}:

1

3

julia> collect(skipmissing([1, missing, 2]))

2-element Vector{Int64}:

1

2

julia> collect(skipmissing([1 missing; 2 missing]))

2-element Vector{Int64}:

1

2

source

Base.nonmissingtype – Function.

nonmissingtype(T::Type)

If T is a union of types containing Missing, return a new type with Missing removed.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/missing.jl#L193-L241

CHAPTER 41. ESSENTIALS 593

julia> nonmissingtype(Union{Int64,Missing})

Int64

julia> nonmissingtype(Any)

Any

Julia 1.3

This function is exported as of Julia 1.3.

source

41.12 System

Base.run – Function.

run(command, args...; wait::Bool = true)

Run a command object, constructed with backticks (see the Running External Programs section in the

manual). Throws an error if anything goes wrong, including the process exiting with a non-zero status

(when wait is true).

The args... allow you to pass through file descriptors to the command, and are ordered like regular

unix file descriptors (eg stdin, stdout, stderr, FD(3), FD(4)...).

If wait is false, the process runs asynchronously. You can later wait for it and check its exit status by

calling success on the returned process object.

When wait is false, the process' I/O streams are directed to devnull. When wait is true, I/O streams

are shared with the parent process. Use pipeline to control I/O redirection.

source

Base.devnull – Constant.

devnull

Used in a stream redirect to discard all data written to it. Essentially equivalent to /dev/null on Unix

or NUL on Windows. Usage:

run(pipeline(`cat test.txt`, devnull))

source

Base.success – Function.

success(command)

Run a command object, constructed with backticks (see the Running External Programs section in the

manual), and tell whether it was successful (exited with a code of 0). An exception is raised if the

process cannot be started.

source

Base.process_running – Function.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/missing.jl#L21-L38
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/process.jl#L460-L476
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1473-L1482
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/process.jl#L529-L535

CHAPTER 41. ESSENTIALS 594

process_running(p::Process)

Determine whether a process is currently running.

source

Base.process_exited – Function.

process_exited(p::Process)

Determine whether a process has exited.

source

Base.kill – Method.

kill(p::Process, signum=Base.SIGTERM)

Send a signal to a process. The default is to terminate the process. Returns successfully if the process

has already exited, but throws an error if killing the process failed for other reasons (e.g. insufficient

permissions).

source

Base.Sys.set_process_title – Function.

Sys.set_process_title(title::AbstractString)

Set the process title. No-op on some operating systems.

source

Base.Sys.get_process_title – Function.

Sys.get_process_title()

Get the process title. On some systems, will always return an empty string.

source

Base.ignorestatus – Function.

ignorestatus(command)

Mark a command object so that running it will not throw an error if the result code is non-zero.

source

Base.detach – Function.

detach(command)

Mark a command object so that it will be run in a new process group, allowing it to outlive the julia

process, and not have Ctrl-C interrupts passed to it.

source

Base.Cmd – Type.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/process.jl#L626-L630
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/process.jl#L635-L639
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/process.jl#L581-L588
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sysinfo.jl#L303-L307
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sysinfo.jl#L291-L295
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/cmd.jl#L219-L223
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/cmd.jl#L228-L232

CHAPTER 41. ESSENTIALS 595

Cmd(cmd::Cmd; ignorestatus, detach, windows_verbatim, windows_hide, env, dir)

Cmd(exec::Vector{String})

Construct a new Cmd object, representing an external program and arguments, from cmd, while changing

the settings of the optional keyword arguments:

• ignorestatus::Bool: If true (defaults to false), then the Cmdwill not throw an error if the return

code is nonzero.

• detach::Bool: If true (defaults to false), then the Cmd will be run in a new process group,

allowing it to outlive the julia process and not have Ctrl-C passed to it.

• windows_verbatim::Bool: If true (defaults to false), then on Windows the Cmd will send a

command-line string to the process with no quoting or escaping of arguments, even arguments

containing spaces. (On Windows, arguments are sent to a program as a single "command-line"

string, and programs are responsible for parsing it into arguments. By default, empty arguments

and arguments with spaces or tabs are quoted with double quotes " in the command line, and

\ or " are preceded by backslashes. windows_verbatim=true is useful for launching programs

that parse their command line in nonstandard ways.) Has no effect on non-Windows systems.

• windows_hide::Bool: If true (defaults to false), then on Windows no new console window is

displayed when the Cmd is executed. This has no effect if a console is already open or on non-

Windows systems.

• env: Set environment variables to use when running the Cmd. env is either a dictionary mapping

strings to strings, an array of strings of the form "var=val", an array or tuple of "var"=>val pairs.

In order to modify (rather than replace) the existing environment, initialize env with copy(ENV)

and then set env["var"]=val as desired. To add to an environment block within a Cmd object

without replacing all elements, use addenv() which will return a Cmd object with the updated

environment.

• dir::AbstractString: Specify a working directory for the command (instead of the current

directory).

For any keywords that are not specified, the current settings from cmd are used.

Note that the Cmd(exec) constructor does not create a copy of exec. Any subsequent changes to exec

will be reflected in the Cmd object.

The most common way to construct a Cmd object is with command literals (backticks), e.g.

`ls -l`

This can then be passed to the Cmd constructor to modify its settings, e.g.

Cmd(`echo "Hello world"`, ignorestatus=true, detach=false)

source

Base.setenv – Function.

setenv(command::Cmd, env; dir)

Set environment variables to use when running the given command. env is either a dictionary map-

ping strings to strings, an array of strings of the form "var=val", or zero or more "var"=>val pair

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/cmd.jl#L42-L85

CHAPTER 41. ESSENTIALS 596

arguments. In order to modify (rather than replace) the existing environment, create env through

copy(ENV) and then setting env["var"]=val as desired, or use addenv.

The dir keyword argument can be used to specify a working directory for the command. dir defaults

to the currently set dir for command (which is the current working directory if not specified already).

See also Cmd, addenv, ENV, pwd.

source

Base.addenv – Function.

addenv(command::Cmd, env...; inherit::Bool = true)

Merge new environment mappings into the given Cmd object, returning a new Cmd object. Duplicate

keys are replaced. If command does not contain any environment values set already, it inherits the

current environment at time of addenv() call if inherit is true. Keys with value nothing are deleted

from the env.

See also Cmd, setenv, ENV.

Julia 1.6

This function requires Julia 1.6 or later.

source

Base.withenv – Function.

withenv(f, kv::Pair...)

Execute f in an environment that is temporarily modified (not replaced as in setenv) by zero or more

"var"=>val arguments kv. withenv is generally used via the withenv(kv...) do ... end syntax. A

value of nothing can be used to temporarily unset an environment variable (if it is set). When withenv

returns, the original environment has been restored.

Warning

Changing the environment is not thread-safe. For running external commands with a differ-

ent environment from the parent process, prefer using addenv over withenv.

source

Base.setcpuaffinity – Function.

setcpuaffinity(original_command::Cmd, cpus) -> command::Cmd

Set the CPU affinity of the command by a list of CPU IDs (1-based) cpus. Passing cpus = nothingmeans

to unset the CPU affinity if the original_command has any.

This function is supported only in Linux and Windows. It is not supported in macOS because libuv does

not support affinity setting.

Julia 1.8

This function requires at least Julia 1.8.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/cmd.jl#L253-L267
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/cmd.jl#L282-L294
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/env.jl#L238-L250

CHAPTER 41. ESSENTIALS 597

Examples

In Linux, the taskset command line program can be used to see how setcpuaffinity works.

julia> run(setcpuaffinity(`sh -c 'taskset -p $$'`, [1, 2, 5]));

pid 2273's current affinity mask: 13

Note that the mask value 13 reflects that the first, second, and the fifth bits (counting from the least

significant position) are turned on:

julia> 0b010011

0x13

source

Base.pipeline – Method.

pipeline(from, to, ...)

Create a pipeline from a data source to a destination. The source and destination can be commands,

I/O streams, strings, or results of other pipeline calls. At least one argument must be a command.

Strings refer to filenames. When called with more than two arguments, they are chained together

from left to right. For example, pipeline(a,b,c) is equivalent to pipeline(pipeline(a,b),c). This

provides a more concise way to specify multi-stage pipelines.

Examples:

run(pipeline(`ls`, `grep xyz`))

run(pipeline(`ls`, "out.txt"))

run(pipeline("out.txt", `grep xyz`))

source

Base.pipeline – Method.

pipeline(command; stdin, stdout, stderr, append=false)

Redirect I/O to or from the given command. Keyword arguments specify which of the command's streams

should be redirected. append controls whether file output appends to the file. This is a more general

version of the 2-argument pipeline function. pipeline(from, to) is equivalent to pipeline(from,

stdout=to) when from is a command, and to pipeline(to, stdin=from) when from is another kind

of data source.

Examples:

run(pipeline(`dothings`, stdout="out.txt", stderr="errs.txt"))

run(pipeline(`update`, stdout="log.txt", append=true))

source

Base.Libc.gethostname – Function.

gethostname() -> String

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/cmd.jl#L324-L352
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/cmd.jl#L408-L425
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/cmd.jl#L373-L388

CHAPTER 41. ESSENTIALS 598

Get the local machine's host name.

source

Base.Libc.getpid – Function.

getpid() -> Int32

Get Julia's process ID.

source

getpid(process) -> Int32

Get the child process ID, if it still exists.

Julia 1.1

This function requires at least Julia 1.1.

source

Base.Libc.time – Method.

time() -> Float64

Get the system time in seconds since the epoch, with fairly high (typically, microsecond) resolution.

source

Base.time_ns – Function.

time_ns() -> UInt64

Get the time in nanoseconds. The time corresponding to 0 is undefined, and wraps every 5.8 years.

source

Base.@time – Macro.

@time expr

@time "description" expr

A macro to execute an expression, printing the time it took to execute, the number of allocations,

and the total number of bytes its execution caused to be allocated, before returning the value of the

expression. Any time spent garbage collecting (gc), compiling new code, or recompiling invalidated

code is shown as a percentage.

Optionally provide a description string to print before the time report.

In some cases the system will look inside the @time expression and compile some of the called code

before execution of the top-level expression begins. When that happens, some compilation time will

not be counted. To include this time you can run @time @eval

See also @showtime, @timev, @timed, @elapsed, @allocated, and @allocations.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libc.jl#L265-L269
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libc.jl#L256-L260
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/process.jl#L604-L611
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libc.jl#L247-L251
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/Base.jl#L109-L113

CHAPTER 41. ESSENTIALS 599

Note

For more serious benchmarking, consider the @btime macro from the BenchmarkTools.jl

package which among other things evaluates the function multiple times in order to reduce

noise.

Julia 1.8

The option to add a description was introduced in Julia 1.8.

Recompilation time being shown separately from compilation time was introduced in Julia

1.8

julia> x = rand(10,10);

julia> @time x * x;

0.606588 seconds (2.19 M allocations: 116.555 MiB, 3.75% gc time, 99.94% compilation time)

julia> @time x * x;

0.000009 seconds (1 allocation: 896 bytes)

julia> @time begin

sleep(0.3)

1+1

end

0.301395 seconds (8 allocations: 336 bytes)

2

julia> @time "A one second sleep" sleep(1)

A one second sleep: 1.005750 seconds (5 allocations: 144 bytes)

julia> for loop in 1:3

@time loop sleep(1)

end

1: 1.006760 seconds (5 allocations: 144 bytes)

2: 1.001263 seconds (5 allocations: 144 bytes)

3: 1.003676 seconds (5 allocations: 144 bytes)

source

Base.@showtime – Macro.

@showtime expr

Like @time but also prints the expression being evaluated for reference.

Julia 1.8

This macro was added in Julia 1.8.

See also @time.

julia> @showtime sleep(1)

sleep(1): 1.002164 seconds (4 allocations: 128 bytes)

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/timing.jl#L212-L266
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/timing.jl#L291-L305

CHAPTER 41. ESSENTIALS 600

Base.@timev – Macro.

@timev expr

@timev "description" expr

This is a verbose version of the @time macro. It first prints the same information as @time, then any

non-zero memory allocation counters, and then returns the value of the expression.

Optionally provide a description string to print before the time report.

Julia 1.8

The option to add a description was introduced in Julia 1.8.

See also @time, @timed, @elapsed, @allocated, and @allocations.

julia> x = rand(10,10);

julia> @timev x * x;

0.546770 seconds (2.20 M allocations: 116.632 MiB, 4.23% gc time, 99.94% compilation time)

elapsed time (ns): 546769547

gc time (ns): 23115606

bytes allocated: 122297811

pool allocs: 2197930

non-pool GC allocs:1327

malloc() calls: 36

realloc() calls: 5

GC pauses: 3

julia> @timev x * x;

0.000010 seconds (1 allocation: 896 bytes)

elapsed time (ns): 9848

bytes allocated: 896

pool allocs: 1

source

Base.@timed – Macro.

@timed

A macro to execute an expression, and return the value of the expression, elapsed time, total bytes

allocated, garbage collection time, and an object with various memory allocation counters.

In some cases the system will look inside the @timed expression and compile some of the called code

before execution of the top-level expression begins. When that happens, some compilation time will

not be counted. To include this time you can run @timed @eval

See also @time, @timev, @elapsed, @allocated, and @allocations.

julia> stats = @timed rand(10^6);

julia> stats.time

0.006634834

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/timing.jl#L312-L348

CHAPTER 41. ESSENTIALS 601

julia> stats.bytes

8000256

julia> stats.gctime

0.0055765

julia> propertynames(stats.gcstats)

(:allocd, :malloc, :realloc, :poolalloc, :bigalloc, :freecall, :total_time, :pause,

:full_sweep)↪→

julia> stats.gcstats.total_time

5576500

Julia 1.5

The return type of this macro was changed from Tuple to NamedTuple in Julia 1.5.

source

Base.@elapsed – Macro.

@elapsed

A macro to evaluate an expression, discarding the resulting value, instead returning the number of

seconds it took to execute as a floating-point number.

In some cases the system will look inside the @elapsed expression and compile some of the called

code before execution of the top-level expression begins. When that happens, some compilation time

will not be counted. To include this time you can run @elapsed @eval

See also @time, @timev, @timed, @allocated, and @allocations.

julia> @elapsed sleep(0.3)

0.301391426

source

Base.@allocated – Macro.

@allocated

A macro to evaluate an expression, discarding the resulting value, instead returning the total number

of bytes allocated during evaluation of the expression.

See also @allocations, @time, @timev, @timed, and @elapsed.

julia> @allocated rand(10^6)

8000080

source

Base.@allocations – Macro.

@allocations

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/timing.jl#L462-L497
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/timing.jl#L373-L390
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/timing.jl#L409-L422

CHAPTER 41. ESSENTIALS 602

A macro to evaluate an expression, discard the resulting value, and instead return the total number of

allocations during evaluation of the expression.

See also @allocated, @time, @timev, @timed, and @elapsed.

julia> @allocations rand(10^6)

2

Julia 1.9

This macro was added in Julia 1.9.

source

Base.EnvDict – Type.

EnvDict() -> EnvDict

A singleton of this type provides a hash table interface to environment variables.

source

Base.ENV – Constant.

ENV

Reference to the singleton EnvDict, providing a dictionary interface to system environment variables.

(On Windows, system environment variables are case-insensitive, and ENV correspondingly converts

all keys to uppercase for display, iteration, and copying. Portable code should not rely on the ability

to distinguish variables by case, and should beware that setting an ostensibly lowercase variable may

result in an uppercase ENV key.)

Warning

Mutating the environment is not thread-safe.

Examples

julia> ENV

Base.EnvDict with "50" entries:

"SECURITYSESSIONID" => "123"

"USER" => "username"

"MallocNanoZone" => "0"

=>

julia> ENV["JULIA_EDITOR"] = "vim"

"vim"

julia> ENV["JULIA_EDITOR"]

"vim"

See also: withenv, addenv.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/timing.jl#L435-L451
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/env.jl#L77-L81
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/env.jl#L84-L115

CHAPTER 41. ESSENTIALS 603

Base.Sys.STDLIB – Constant.

Sys.STDLIB::String

A string containing the full path to the directory containing the stdlib packages.

source

Base.Sys.isunix – Function.

Sys.isunix([os])

Predicate for testing if the OS provides a Unix-like interface. See documentation in Handling Operating

System Variation.

source

Base.Sys.isapple – Function.

Sys.isapple([os])

Predicate for testing if the OS is a derivative of Apple Macintosh OS X or Darwin. See documentation

in Handling Operating System Variation.

source

Base.Sys.islinux – Function.

Sys.islinux([os])

Predicate for testing if the OS is a derivative of Linux. See documentation in Handling Operating System

Variation.

source

Base.Sys.isbsd – Function.

Sys.isbsd([os])

Predicate for testing if the OS is a derivative of BSD. See documentation in Handling Operating System

Variation.

Note

The Darwin kernel descends from BSD, which means that Sys.isbsd() is true on macOS

systems. To exclude macOS from a predicate, use Sys.isbsd() && !Sys.isapple().

source

Base.Sys.isfreebsd – Function.

Sys.isfreebsd([os])

Predicate for testing if the OS is a derivative of FreeBSD. See documentation in Handling Operating

System Variation.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sysinfo.jl#L47-L51
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sysinfo.jl#L323-L328
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sysinfo.jl#L430-L435
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sysinfo.jl#L345-L350
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sysinfo.jl#L353-L363

CHAPTER 41. ESSENTIALS 604

Note

Not to be confused with Sys.isbsd(), which is true on FreeBSD but also on other BSD-

based systems. Sys.isfreebsd() refers only to FreeBSD.

Julia 1.1

This function requires at least Julia 1.1.

source

Base.Sys.isopenbsd – Function.

Sys.isopenbsd([os])

Predicate for testing if the OS is a derivative of OpenBSD. See documentation in Handling Operating

System Variation.

Note

Not to be confused with Sys.isbsd(), which is true on OpenBSD but also on other BSD-

based systems. Sys.isopenbsd() refers only to OpenBSD.

Julia 1.1

This function requires at least Julia 1.1.

source

Base.Sys.isnetbsd – Function.

Sys.isnetbsd([os])

Predicate for testing if the OS is a derivative of NetBSD. See documentation in Handling Operating

System Variation.

Note

Not to be confused with Sys.isbsd(), which is true on NetBSD but also on other BSD-based

systems. Sys.isnetbsd() refers only to NetBSD.

Julia 1.1

This function requires at least Julia 1.1.

source

Base.Sys.isdragonfly – Function.

Sys.isdragonfly([os])

Predicate for testing if the OS is a derivative of DragonFly BSD. See documentation in Handling Oper-

ating System Variation.

Note

Not to be confused with Sys.isbsd(), which is true on DragonFly but also on other BSD-

based systems. Sys.isdragonfly() refers only to DragonFly.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sysinfo.jl#L366-L377
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sysinfo.jl#L380-L391
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sysinfo.jl#L394-L405

CHAPTER 41. ESSENTIALS 605

Julia 1.1

This function requires at least Julia 1.1.

source

Base.Sys.iswindows – Function.

Sys.iswindows([os])

Predicate for testing if the OS is a derivative of Microsoft Windows NT. See documentation in Handling

Operating System Variation.

source

Base.Sys.windows_version – Function.

Sys.windows_version()

Return the version number for theWindows NT Kernel as a VersionNumber, i.e. v"major.minor.build",

or v"0.0.0" if this is not running on Windows.

source

Base.Sys.free_memory – Function.

Sys.free_memory()

Get the total free memory in RAM in bytes.

source

Base.Sys.total_memory – Function.

Sys.total_memory()

Get the total memory in RAM (including that which is currently used) in bytes. This amount may be con-

strained, e.g., by Linux control groups. For the unconstrained amount, see Sys.total_physical_memory().

source

Base.Sys.free_physical_memory – Function.

Sys.free_physical_memory()

Get the free memory of the system in bytes. The entire amount may not be available to the current

process; use Sys.free_memory() for the actually available amount.

source

Base.Sys.total_physical_memory – Function.

Sys.total_physical_memory()

Get the total memory in RAM (including that which is currently used) in bytes. The entire amount may

not be available to the current process; see Sys.total_memory().

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sysinfo.jl#L408-L419
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sysinfo.jl#L422-L427
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sysinfo.jl#L462-L467
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sysinfo.jl#L267-L271
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sysinfo.jl#L274-L280
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sysinfo.jl#L251-L256
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sysinfo.jl#L259-L264

CHAPTER 41. ESSENTIALS 606

Base.Sys.uptime – Function.

Sys.uptime()

Gets the current system uptime in seconds.

source

Base.Sys.isjsvm – Function.

Sys.isjsvm([os])

Predicate for testing if Julia is running in a JavaScript VM (JSVM), including e.g. aWebAssembly JavaScript

embedding in a web browser.

Julia 1.2

This function requires at least Julia 1.2.

source

Base.Sys.loadavg – Function.

Sys.loadavg()

Get the load average. See: https://en.wikipedia.org/wiki/Load_(computing).

source

Base.Sys.isexecutable – Function.

Sys.isexecutable(path::String)

Return true if the given path has executable permissions.

Note

Prior to Julia 1.6, this did not correctly interrogate filesystem ACLs on Windows, therefore it

would return true for any file. From Julia 1.6 on, it correctly determines whether the file is

marked as executable or not.

source

Base.@static – Macro.

@static

Partially evaluate an expression at parse time.

For example, @static Sys.iswindows() ? foo : bar will evaluate Sys.iswindows() and insert ei-

ther foo or bar into the expression. This is useful in cases where a construct would be invalid on

other platforms, such as a ccall to a non-existent function. @static if Sys.isapple() foo end

and @static foo <&&,||> bar are also valid syntax.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sysinfo.jl#L228-L232
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sysinfo.jl#L438-L446
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sysinfo.jl#L240-L244
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sysinfo.jl#L472-L482
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/osutils.jl#L3-L13

CHAPTER 41. ESSENTIALS 607

41.13 Versioning

Base.VersionNumber – Type.

VersionNumber

Version number type which follows the specifications of semantic versioning (semver), composed of

major, minor and patch numeric values, followed by pre-release and build alpha-numeric annotations.

VersionNumber objects can be compared with all of the standard comparison operators (==, <, <=, etc.),

with the result following semver rules.

See also @v_str to efficiently construct VersionNumber objects from semver-format literal strings,

VERSION for the VersionNumber of Julia itself, and Version Number Literals in the manual.

Examples

julia> a = VersionNumber(1, 2, 3)

v"1.2.3"

julia> a >= v"1.2"

true

julia> b = VersionNumber("2.0.1-rc1")

v"2.0.1-rc1"

julia> b >= v"2.0.1"

false

source

Base.@v_str – Macro.

@v_str

String macro used to parse a string to a VersionNumber.

Examples

julia> v"1.2.3"

v"1.2.3"

julia> v"2.0.1-rc1"

v"2.0.1-rc1"

source

41.14 Errors

Base.error – Function.

error(message::AbstractString)

Raise an ErrorException with the given message.

source

https://semver.org/
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/version.jl#L8-L38
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/version.jl#L147-L160
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/error.jl#L30-L34

CHAPTER 41. ESSENTIALS 608

error(msg...)

Raise an ErrorException with the given message.

source

Core.throw – Function.

throw(e)

Throw an object as an exception.

See also: rethrow, error.

source

Base.rethrow – Function.

rethrow()

Rethrow the current exception from within a catch block. The rethrown exception will continue propa-

gation as if it had not been caught.

Note

The alternative form rethrow(e) allows you to associate an alternative exception object

e with the current backtrace. However this misrepresents the program state at the time

of the error so you're encouraged to instead throw a new exception using throw(e). In

Julia 1.1 and above, using throw(e) will preserve the root cause exception on the stack, as

described in current_exceptions.

source

Base.backtrace – Function.

backtrace()

Get a backtrace object for the current program point.

source

Base.catch_backtrace – Function.

catch_backtrace()

Get the backtrace of the current exception, for use within catch blocks.

source

Base.current_exceptions – Function.

current_exceptions(task::Task=current_task(); [backtrace::Bool=true])

Get the stack of exceptions currently being handled. For nested catch blocks there may be more than

one current exception in which case the most recently thrown exception is last in the stack. The stack is

returned as an ExceptionStack which is an AbstractVector of named tuples (exception,backtrace).

If backtrace is false, the backtrace in each pair will be set to nothing.

Explicitly passing task will return the current exception stack on an arbitrary task. This is useful for

inspecting tasks which have failed due to uncaught exceptions.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/error.jl#L37-L41
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/error.jl#L19-L25
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/error.jl#L47-L60
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/error.jl#L104-L108
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/error.jl#L118-L122

CHAPTER 41. ESSENTIALS 609

Julia 1.7

This function went by the experimental name catch_stack() in Julia 1.1–1.6, and had a

plain Vector-of-tuples as a return type.

source

Base.@assert – Macro.

@assert cond [text]

Throw an AssertionError if cond is false. Preferred syntax for writing assertions. Message text is

optionally displayed upon assertion failure.

Warning

An assert might be disabled at various optimization levels. Assert should therefore only

be used as a debugging tool and not used for authentication verification (e.g., verifying

passwords), nor should side effects needed for the function to work correctly be used inside

of asserts.

Examples

julia> @assert iseven(3) "3 is an odd number!"

ERROR: AssertionError: 3 is an odd number!

julia> @assert isodd(3) "What even are numbers?"

source

Base.Experimental.register_error_hint – Function.

Experimental.register_error_hint(handler, exceptiontype)

Register a "hinting" function handler(io, exception) that can suggest potential ways for users to

circumvent errors. handler should examine exception to see whether the conditions appropriate for a

hint are met, and if so generate output to io. Packages should call register_error_hint from within

their __init__ function.

For specific exception types, handler is required to accept additional arguments:

• MethodError: provide handler(io, exc::MethodError, argtypes, kwargs), which splits the

combined arguments into positional and keyword arguments.

When issuing a hint, the output should typically start with \n.

If you define custom exception types, your showerrormethod can support hints by calling Experimental.show_error_hints.

Example

julia> module Hinter

only_int(x::Int) = 1

any_number(x::Number) = 2

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/error.jl#L132-L149
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/error.jl#L197-L217

CHAPTER 41. ESSENTIALS 610

function __init__()

Base.Experimental.register_error_hint(MethodError) do io, exc, argtypes, kwargs

if exc.f == only_int

Color is not necessary, this is just to show it's possible.

print(io, "\nDid you mean to call ")

printstyled(io, "`any_number`?", color=:cyan)

end

end

end

end

Then if you call Hinter.only_int on something that isn't an Int (thereby triggering a MethodError),

it issues the hint:

julia> Hinter.only_int(1.0)

ERROR: MethodError: no method matching only_int(::Float64)

Did you mean to call `any_number`?

Closest candidates are:

...

Julia 1.5

Custom error hints are available as of Julia 1.5.

Warning

This interface is experimental and subject to change or removal without notice. To insulate

yourself against changes, consider putting any registrations inside an if isdefined(Base.Experimental,

:register_error_hint) ... end block.

source

Base.Experimental.show_error_hints – Function.

Experimental.show_error_hints(io, ex, args...)

Invoke all handlers from Experimental.register_error_hint for the particular exception type typeof(ex).

args must contain any other arguments expected by the handler for that type.

Julia 1.5

Custom error hints are available as of Julia 1.5.

Warning

This interface is experimental and subject to change or removal without notice.

source

Core.ArgumentError – Type.

ArgumentError(msg)

The arguments passed to a function are invalid. msg is a descriptive error message.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/experimental.jl#L235-L292
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/experimental.jl#L301-L312
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2728-L2733

CHAPTER 41. ESSENTIALS 611

Core.AssertionError – Type.

AssertionError([msg])

The asserted condition did not evaluate to true. Optional argument msg is a descriptive error string.

Examples

julia> @assert false "this is not true"

ERROR: AssertionError: this is not true

AssertionError is usually thrown from @assert.

source

Core.BoundsError – Type.

BoundsError([a],[i])

An indexing operation into an array, a, tried to access an out-of-bounds element at index i.

Examples

julia> A = fill(1.0, 7);

julia> A[8]

ERROR: BoundsError: attempt to access 7-element Vector{Float64} at index [8]

julia> B = fill(1.0, (2,3));

julia> B[2, 4]

ERROR: BoundsError: attempt to access 2×3 Matrix{Float64} at index [2, 4]

julia> B[9]

ERROR: BoundsError: attempt to access 2×3 Matrix{Float64} at index [9]

source

Base.CompositeException – Type.

CompositeException

Wrap a Vector of exceptions thrown by a Task (e.g. generated from a remote worker over a channel

or an asynchronously executing local I/O write or a remote worker under pmap) with information about

the series of exceptions. For example, if a group of workers are executing several tasks, and multiple

workers fail, the resulting CompositeException will contain a "bundle" of information from each worker

indicating where and why the exception(s) occurred.

source

Base.DimensionMismatch – Type.

DimensionMismatch([msg])

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2744-L2757
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1682-L1705
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/task.jl#L38-L45

CHAPTER 41. ESSENTIALS 612

The objects called do not have matching dimensionality. Optional argument msg is a descriptive error

string.

source

Core.DivideError – Type.

DivideError()

Integer division was attempted with a denominator value of 0.

Examples

julia> 2/0

Inf

julia> div(2, 0)

ERROR: DivideError: integer division error

Stacktrace:

[...]

source

Core.DomainError – Type.

DomainError(val)

DomainError(val, msg)

The argument val to a function or constructor is outside the valid domain.

Examples

julia> sqrt(-1)

ERROR: DomainError with -1.0:

sqrt was called with a negative real argument but will only return a complex result if called

with a complex argument. Try sqrt(Complex(x)).↪→

Stacktrace:

[...]

source

Base.EOFError – Type.

EOFError()

No more data was available to read from a file or stream.

source

Core.ErrorException – Type.

ErrorException(msg)

Generic error type. The error message, in the .msg field, may provide more specific details.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L5-L10
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1970-L1985
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1723-L1737
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L5-L9

CHAPTER 41. ESSENTIALS 613

julia> ex = ErrorException("I've done a bad thing");

julia> ex.msg

"I've done a bad thing"

source

Core.InexactError – Type.

InexactError(name::Symbol, T, val)

Cannot exactly convert val to type T in a method of function name.

Examples

julia> convert(Float64, 1+2im)

ERROR: InexactError: Float64(1 + 2im)

Stacktrace:

[...]

source

Core.InterruptException – Type.

InterruptException()

The process was stopped by a terminal interrupt (CTRL+C).

Note that, in Julia script started without -i (interactive) option, InterruptException is not thrown

by default. Calling Base.exit_on_sigint(false) in the script can recover the behavior of the REPL.

Alternatively, a Julia script can be started with

julia -e "include(popfirst!(ARGS))" script.jl

to let InterruptException be thrown by CTRL+C during the execution.

source

Base.KeyError – Type.

KeyError(key)

An indexing operation into an AbstractDict (Dict) or Set like object tried to access or delete a non-

existent element.

source

Core.LoadError – Type.

LoadError(file::AbstractString, line::Int, error)

An error occurred while includeing, requireing, or using a file. The error specifics should be available

in the .error field.

Julia 1.7

LoadErrors are no longer emitted by @macroexpand, @macroexpand1, and macroexpand as

of Julia 1.7.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1589-L1601
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1708-L1720
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1855-L1871
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractdict.jl#L5-L10

CHAPTER 41. ESSENTIALS 614

source

Core.MethodError – Type.

MethodError(f, args)

A method with the required type signature does not exist in the given generic function. Alternatively,

there is no unique most-specific method.

source

Base.MissingException – Type.

MissingException(msg)

Exception thrown when a missing value is encountered in a situation where it is not supported. The

error message, in the msg field may provide more specific details.

source

Core.OutOfMemoryError – Type.

OutOfMemoryError()

An operation allocated too much memory for either the system or the garbage collector to handle

properly.

source

Core.ReadOnlyMemoryError – Type.

ReadOnlyMemoryError()

An operation tried to write to memory that is read-only.

source

Core.OverflowError – Type.

OverflowError(msg)

The result of an expression is too large for the specified type and will cause a wraparound.

source

Base.ProcessFailedException – Type.

ProcessFailedException

Indicates problematic exit status of a process. When running commands or pipelines, this is thrown to

indicate a nonzero exit code was returned (i.e. that the invoked process failed).

source

Base.TaskFailedException – Type.

TaskFailedException

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2760-L2768
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2736-L2741
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/missing.jl#L7-L13
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1674-L1679
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1582-L1586
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1841-L1845
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/process.jl#L539-L545

CHAPTER 41. ESSENTIALS 615

This exception is thrown by a wait(t) call when task t fails. TaskFailedException wraps the failed

task t.

source

Core.StackOverflowError – Type.

StackOverflowError()

The function call grew beyond the size of the call stack. This usually happens when a call recurses

infinitely.

source

Base.SystemError – Type.

SystemError(prefix::AbstractString, [errno::Int32])

A system call failed with an error code (in the errno global variable).

source

Core.TypeError – Type.

TypeError(func::Symbol, context::AbstractString, expected::Type, got)

A type assertion failure, or calling an intrinsic function with an incorrect argument type.

source

Core.UndefKeywordError – Type.

UndefKeywordError(var::Symbol)

The required keyword argument var was not assigned in a function call.

Examples

julia> function my_func(;my_arg)

return my_arg + 1

end

my_func (generic function with 1 method)

julia> my_func()

ERROR: UndefKeywordError: keyword argument `my_arg` not assigned

Stacktrace:

[1] my_func() at ./REPL[1]:2

[2] top-level scope at REPL[2]:1

source

Core.UndefRefError – Type.

UndefRefError()

The item or field is not defined for the given object.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/task.jl#L70-L75
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1764-L1769
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L12-L16
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1848-L1852
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1820-L1838

CHAPTER 41. ESSENTIALS 616

julia> struct MyType

a::Vector{Int}

MyType() = new()

end

julia> A = MyType()

MyType(#undef)

julia> A.a

ERROR: UndefRefError: access to undefined reference

Stacktrace:

[...]

source

Core.UndefVarError – Type.

UndefVarError(var::Symbol)

A symbol in the current scope is not defined.

Examples

julia> a

ERROR: UndefVarError: `a` not defined

julia> a = 1;

julia> a

1

source

Base.StringIndexError – Type.

StringIndexError(str, i)

An error occurred when trying to access str at index i that is not valid.

source

Core.InitError – Type.

InitError(mod::Symbol, error)

An error occurred when running a module's __init__ function. The actual error thrown is available in

the .error field.

source

Base.retry – Function.

retry(f; delays=ExponentialBackOff(), check=nothing) -> Function

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1613-L1633
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1802-L1817
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/string.jl#L3-L7
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2771-L2776

CHAPTER 41. ESSENTIALS 617

Return an anonymous function that calls function f. If an exception arises, f is repeatedly called again,

each time check returns true, after waiting the number of seconds specified in delays. check should

input delays's current state and the Exception.

Julia 1.2

Before Julia 1.2 this signature was restricted to f::Function.

Examples

retry(f, delays=fill(5.0, 3))

retry(f, delays=rand(5:10, 2))

retry(f, delays=Base.ExponentialBackOff(n=3, first_delay=5, max_delay=1000))

retry(http_get, check=(s,e)->e.status == "503")(url)

retry(read, check=(s,e)->isa(e, IOError))(io, 128; all=false)

source

Base.ExponentialBackOff – Type.

ExponentialBackOff(; n=1, first_delay=0.05, max_delay=10.0, factor=5.0, jitter=0.1)

A Float64 iterator of length n whose elements exponentially increase at a rate in the interval factor

* (1 ± jitter). The first element is first_delay and all elements are clamped to max_delay.

source

41.15 Events

Base.Timer – Method.

Timer(callback::Function, delay; interval = 0)

Create a timer that runs the function callback at each timer expiration.

Waiting tasks are woken and the function callback is called after an initial delay of delay seconds,

and then repeating with the given interval in seconds. If interval is equal to 0, the callback is only

run once. The function callback is called with a single argument, the timer itself. Stop a timer by

calling close. The callback may still be run one final time, if the timer has already expired.

Examples

Here the first number is printed after a delay of two seconds, then the following numbers are printed

quickly.

julia> begin

i = 0

cb(timer) = (global i += 1; println(i))

t = Timer(cb, 2, interval=0.2)

wait(t)

sleep(0.5)

close(t)

end

1

2

3

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/error.jl#L270-L289
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/error.jl#L251-L257

CHAPTER 41. ESSENTIALS 618

source

Base.Timer – Type.

Timer(delay; interval = 0)

Create a timer that wakes up tasks waiting for it (by calling wait on the timer object).

Waiting tasks are woken after an initial delay of at least delay seconds, and then repeating after at

least interval seconds again elapse. If interval is equal to 0, the timer is only triggered once. When

the timer is closed (by close) waiting tasks are woken with an error. Use isopen to check whether a

timer is still active.

Note

interval is subject to accumulating time skew. If you need precise events at a particular

absolute time, create a new timer at each expiration with the difference to the next time

computed.

Note

A Timer requires yield points to update its state. For instance, isopen(t::Timer) cannot

be used to timeout a non-yielding while loop.

source

Base.AsyncCondition – Type.

AsyncCondition()

Create a async condition that wakes up tasks waiting for it (by calling wait on the object) when notified

from C by a call to uv_async_send. Waiting tasks are woken with an error when the object is closed

(by close). Use isopen to check whether it is still active.

This provides an implicit acquire & release memory ordering between the sending and waiting threads.

source

Base.AsyncCondition – Method.

AsyncCondition(callback::Function)

Create a async condition that calls the given callback function. The callback is passed one argument,

the async condition object itself.

source

41.16 Reflection

Base.nameof – Method.

nameof(m::Module) -> Symbol

Get the name of a Module as a Symbol.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/asyncevent.jl#L270-L299
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/asyncevent.jl#L69-L87
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/asyncevent.jl#L5-L15
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/asyncevent.jl#L40-L45

CHAPTER 41. ESSENTIALS 619

julia> nameof(Base.Broadcast)

:Broadcast

source

Base.parentmodule – Function.

parentmodule(m::Module) -> Module

Get a module's enclosing Module. Main is its own parent.

See also: names, nameof, fullname, @__MODULE__.

Examples

julia> parentmodule(Main)

Main

julia> parentmodule(Base.Broadcast)

Base

source

parentmodule(t::DataType) -> Module

Determine the module containing the definition of a (potentially UnionAll-wrapped) DataType.

Examples

julia> module Foo

struct Int end

end

Foo

julia> parentmodule(Int)

Core

julia> parentmodule(Foo.Int)

Foo

source

parentmodule(f::Function) -> Module

Determine the module containing the (first) definition of a generic function.

source

parentmodule(f::Function, types) -> Module

Determine the module containing the first method of a generic function fmatching the specified types.

source

parentmodule(m::Method) -> Module

Return the module in which the given method m is defined.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/essentials.jl#L181-L191
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L5-L20
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L220-L238
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L1767-L1772
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L1775-L1780

CHAPTER 41. ESSENTIALS 620

Julia 1.9

Passing a Method as an argument requires Julia 1.9 or later.

source

Base.pathof – Method.

pathof(m::Module)

Return the path of the m.jl file that was used to import module m, or nothing if m was not imported

from a package.

Use dirname to get the directory part and basename to get the file name part of the path.

source

Base.pkgdir – Method.

pkgdir(m::Module[, paths::String...])

Return the root directory of the package that declared module m, or nothing if m was not declared in

a package. Optionally further path component strings can be provided to construct a path within the

package root.

To get the root directory of the package that implements the currentmodule the form pkgdir(@__MODULE__)

can be used.

julia> pkgdir(Foo)

"/path/to/Foo.jl"

julia> pkgdir(Foo, "src", "file.jl")

"/path/to/Foo.jl/src/file.jl"

Julia 1.7

The optional argument paths requires at least Julia 1.7.

source

Base.pkgversion – Method.

pkgversion(m::Module)

Return the version of the package that imported module m, or nothing if m was not imported from a

package, or imported from a package without a version field set.

The version is read from the package's Project.toml during package load.

To get the version of the package that imported the currentmodule the form pkgversion(@__MODULE__)

can be used.

Julia 1.9

This function was introduced in Julia 1.9.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L1789-L1796
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/loading.jl#L470-L478
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/loading.jl#L491-L512
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/loading.jl#L532-L547

CHAPTER 41. ESSENTIALS 621

Base.moduleroot – Function.

moduleroot(m::Module) -> Module

Find the root module of a given module. This is the first module in the chain of parent modules of m

which is either a registered root module or which is its own parent module.

source

__module__ – Keyword.

__module__

The argument __module__ is only visible inside the macro, and it provides information (in the form of a

Module object) about the expansion context of the macro invocation. See the manual section on Macro

invocation for more information.

source

__source__ – Keyword.

__source__

The argument __source__ is only visible inside the macro, and it provides information (in the form of

a LineNumberNode object) about the parser location of the @ sign from the macro invocation. See the

manual section on Macro invocation for more information.

source

Base.@__MODULE__ – Macro.

@__MODULE__ -> Module

Get the Module of the toplevel eval, which is the Module code is currently being read from.

source

Base.@__FILE__ – Macro.

@__FILE__ -> String

Expand to a string with the path to the file containing the macrocall, or an empty string if evaluated by

julia -e <expr>. Return nothing if the macro was missing parser source information. Alternatively

see PROGRAM_FILE.

source

Base.@__DIR__ – Macro.

@__DIR__ -> String

Expand to a string with the absolute path to the directory of the file containing the macrocall. Return

the current working directory if run from a REPL or if evaluated by julia -e <expr>.

source

Base.@__LINE__ – Macro.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L23-L29
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L237-L243
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L246-L252
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L39-L44
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/loading.jl#L3173-L3180
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/loading.jl#L3186-L3192

CHAPTER 41. ESSENTIALS 622

@__LINE__ -> Int

Expand to the line number of the location of the macrocall. Return 0 if the line number could not be

determined.

source

Base.fullname – Function.

fullname(m::Module)

Get the fully-qualified name of a module as a tuple of symbols. For example,

Examples

julia> fullname(Base.Iterators)

(:Base, :Iterators)

julia> fullname(Main)

(:Main,)

source

Base.names – Function.

names(x::Module; all::Bool = false, imported::Bool = false)

Get an array of the names exported by a Module, excluding deprecated names. If all is true, then

the list also includes non-exported names defined in the module, deprecated names, and compiler-

generated names. If imported is true, then names explicitly imported from other modules are also

included.

As a special case, all names defined in Main are considered "exported", since it is not idiomatic to

explicitly export names from Main.

See also: @locals, @__MODULE__.

source

Base.nameof – Method.

nameof(f::Function) -> Symbol

Get the name of a generic Function as a symbol. For anonymous functions, this is a compiler-generated

name. For explicitly-declared subtypes of Function, it is the name of the function's type.

source

Base.functionloc – Method.

functionloc(f::Function, types)

Return a tuple (filename,line) giving the location of a generic Function definition.

source

Base.functionloc – Method.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/essentials.jl#L1040-L1045
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L49-L62
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L75-L88
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L1745-L1751
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/methodshow.jl#L174-L178

CHAPTER 41. ESSENTIALS 623

functionloc(m::Method)

Return a tuple (filename,line) giving the location of a Method definition.

source

Base.@locals – Macro.

@locals()

Construct a dictionary of the names (as symbols) and values of all local variables defined as of the call

site.

Julia 1.1

This macro requires at least Julia 1.1.

Examples

julia> let x = 1, y = 2

Base.@locals

end

Dict{Symbol, Any} with 2 entries:

:y => 2

:x => 1

julia> function f(x)

local y

show(Base.@locals); println()

for i = 1:1

show(Base.@locals); println()

end

y = 2

show(Base.@locals); println()

nothing

end;

julia> f(42)

Dict{Symbol, Any}(:x => 42)

Dict{Symbol, Any}(:i => 1, :x => 42)

Dict{Symbol, Any}(:y => 2, :x => 42)

source

41.17 Code loading

Base.identify_package – Function.

Base.identify_package(name::String)::Union{PkgId, Nothing}

Base.identify_package(where::Union{Module,PkgId}, name::String)::Union{PkgId, Nothing}

Identify the package by its name from the current environment stack, returning its PkgId, or nothing

if it cannot be found.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/methodshow.jl#L161-L165
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L298-L332

CHAPTER 41. ESSENTIALS 624

If only the name argument is provided, it searches each environment in the stack and its named direct

dependencies.

There where argument provides the context from where to search for the package: in this case it first

checks if the name matches the context itself, otherwise it searches all recursive dependencies (from

the resolved manifest of each environment) until it locates the context where, and from there identifies

the dependency with the corresponding name.

julia> Base.identify_package("Pkg") # Pkg is a dependency of the default environment

Pkg [44cfe95a-1eb2-52ea-b672-e2afdf69b78f]

julia> using LinearAlgebra

julia> Base.identify_package(LinearAlgebra, "Pkg") # Pkg is not a dependency of LinearAlgebra

source

Base.locate_package – Function.

Base.locate_package(pkg::PkgId)::Union{String, Nothing}

The path to the entry-point file for the package corresponding to the identifier pkg, or nothing if not

found. See also identify_package.

julia> pkg = Base.identify_package("Pkg")

Pkg [44cfe95a-1eb2-52ea-b672-e2afdf69b78f]

julia> Base.locate_package(pkg)

"/path/to/julia/stdlib/v1.10/Pkg/src/Pkg.jl"

source

Base.require – Function.

require(into::Module, module::Symbol)

This function is part of the implementation of using / import, if a module is not already defined in

Main. It can also be called directly to force reloading a module, regardless of whether it has been

loaded before (for example, when interactively developing libraries).

Loads a source file, in the context of the Main module, on every active node, searching standard

locations for files. require is considered a top-level operation, so it sets the current include path but

does not use it to search for files (see help for include). This function is typically used to load library

code, and is implicitly called by using to load packages.

When searching for files, require first looks for package code in the global array LOAD_PATH. require

is case-sensitive on all platforms, including those with case-insensitive filesystems like macOS and

Windows.

For more details regarding code loading, see the manual sections on modules and parallel computing.

source

Base.compilecache – Function.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/loading.jl#L364-L388
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/loading.jl#L452-L465
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/loading.jl#L1723-L1743

CHAPTER 41. ESSENTIALS 625

Base.compilecache(module::PkgId)

Creates a precompiled cache file for a module and all of its dependencies. This can be used to reduce

package load times. Cache files are stored in DEPOT_PATH[1]/compiled. See Module initialization and

precompilation for important notes.

source

Base.isprecompiled – Function.

Base.isprecompiled(pkg::PkgId; ignore_loaded::Bool=false)

Returns whether a given PkgId within the active project is precompiled.

By default this check observes the same approach that code loading takes with respect to when differ-

ent versions of dependencies are currently loaded to that which is expected. To ignore loaded modules

and answer as if in a fresh julia session specify ignore_loaded=true.

Julia 1.10

This function requires at least Julia 1.10.

source

Base.get_extension – Function.

get_extension(parent::Module, extension::Symbol)

Return the module for extension of parent or return nothing if the extension is not loaded.

source

41.18 Internals

Base.GC.gc – Function.

GC.gc([full=true])

Perform garbage collection. The argument full determines the kind of collection: A full collection (de-

fault) sweeps all objects, which makes the next GC scan much slower, while an incremental collection

may only sweep so-called young objects.

Warning

Excessive use will likely lead to poor performance.

source

Base.GC.enable – Function.

GC.enable(on::Bool)

Control whether garbage collection is enabled using a boolean argument (true for enabled, false for

disabled). Return previous GC state.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/loading.jl#L2318-L2325
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/loading.jl#L1376-L1388
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/loading.jl#L1359-L1363
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/gcutils.jl#L118-L128

CHAPTER 41. ESSENTIALS 626

Warning

Disabling garbage collection should be used only with caution, as it can cause memory use

to grow without bound.

source

Base.GC.@preserve – Macro.

GC.@preserve x1 x2 ... xn expr

Mark the objects x1, x2, ... as being in use during the evaluation of the expression expr. This is

only required in unsafe code where expr implicitly uses memory or other resources owned by one of

the xs.

Implicit use of x covers any indirect use of resources logically owned by x which the compiler cannot

see. Some examples:

• Accessing memory of an object directly via a Ptr

• Passing a pointer to x to ccall

• Using resources of x which would be cleaned up in the finalizer.

@preserve should generally not have any performance impact in typical use cases where it briefly

extends object lifetime. In implementation, @preserve has effects such as protecting dynamically

allocated objects from garbage collection.

Examples

When loading from a pointer with unsafe_load, the underlying object is implicitly used, for example x

is implicitly used by unsafe_load(p) in the following:

julia> let

x = Ref{Int}(101)

p = Base.unsafe_convert(Ptr{Int}, x)

GC.@preserve x unsafe_load(p)

end

101

When passing pointers to ccall, the pointed-to object is implicitly used and should be preserved. (Note

however that you should normally just pass x directly to ccall which counts as an explicit use.)

julia> let

x = "Hello"

p = pointer(x)

Int(GC.@preserve x @ccall strlen(p::Cstring)::Csize_t)

Preferred alternative

Int(@ccall strlen(x::Cstring)::Csize_t)

end

5

source

Base.GC.safepoint – Function.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/gcutils.jl#L132-L141
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/gcutils.jl#L182-L229

CHAPTER 41. ESSENTIALS 627

GC.safepoint()

Inserts a point in the program where garbage collection may run. This can be useful in rare cases in

multi-threaded programs where some threads are allocating memory (and hence may need to run GC)

but other threads are doing only simple operations (no allocation, task switches, or I/O). Calling this

function periodically in non-allocating threads allows garbage collection to run.

Julia 1.4

This function is available as of Julia 1.4.

source

Base.GC.enable_logging – Function.

GC.enable_logging(on::Bool)

When turned on, print statistics about each GC to stderr.

source

Base.Meta.lower – Function.

lower(m, x)

Takes the expression x and returns an equivalent expression in lowered form for executing in module

m. See also code_lowered.

source

Base.Meta.@lower – Macro.

@lower [m] x

Return lowered form of the expression x in module m. By default m is the module in which the macro is

called. See also lower.

source

Base.Meta.parse – Method.

parse(str, start; greedy=true, raise=true, depwarn=true, filename="none")

Parse the expression string and return an expression (which could later be passed to eval for execution).

start is the code unit index into str of the first character to start parsing at (as with all string indexing,

these are not character indices). If greedy is true (default), parse will try to consume as much input

as it can; otherwise, it will stop as soon as it has parsed a valid expression. Incomplete but otherwise

syntactically valid expressions will return Expr(:incomplete, "(error message)"). If raise is true

(default), syntax errors other than incomplete expressions will raise an error. If raise is false, parse

will return an expression that will raise an error upon evaluation. If depwarn is false, deprecation

warnings will be suppressed. The filename argument is used to display diagnostics when an error is

raised.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/gcutils.jl#L238-L250
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/gcutils.jl#L253-L257
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/meta.jl#L156-L162
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/meta.jl#L165-L171

CHAPTER 41. ESSENTIALS 628

julia> Meta.parse("(α, β) = 3, 5", 1) # start of string

(:((α, β) = (3, 5)), 16)

julia> Meta.parse("(α, β) = 3, 5", 1, greedy=false)

(:((α, β)), 9)

julia> Meta.parse("(α, β) = 3, 5", 16) # end of string

(nothing, 16)

julia> Meta.parse("(α, β) = 3, 5", 11) # index of 3

(:((3, 5)), 16)

julia> Meta.parse("(α, β) = 3, 5", 11, greedy=false)

(3, 13)

source

Base.Meta.parse – Method.

parse(str; raise=true, depwarn=true, filename="none")

Parse the expression string greedily, returning a single expression. An error is thrown if there are

additional characters after the first expression. If raise is true (default), syntax errors will raise an

error; otherwise, parse will return an expression that will raise an error upon evaluation. If depwarn is

false, deprecation warnings will be suppressed. The filename argument is used to display diagnostics

when an error is raised.

julia> Meta.parse("x = 3")

:(x = 3)

julia> Meta.parse("1.0.2")

ERROR: ParseError:

Error @ none:1:1

1.0.2

└──┘ ── invalid numeric constant

[...]

julia> Meta.parse("1.0.2"; raise = false)

:($(Expr(:error, "invalid numeric constant "1.0."")))

julia> Meta.parse("x = ")

:($(Expr(:incomplete, "incomplete: premature end of input")))

source

Base.Meta.ParseError – Type.

ParseError(msg)

The expression passed to the parse function could not be interpreted as a valid Julia expression.

source

Core.QuoteNode – Type.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/meta.jl#L204-L235
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/meta.jl#L249-L275
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/meta.jl#L182-L187

CHAPTER 41. ESSENTIALS 629

QuoteNode

A quoted piece of code, that does not support interpolation. See the manual section about QuoteNodes

for details.

source

Base.macroexpand – Function.

macroexpand(m::Module, x; recursive=true)

Take the expression x and return an equivalent expression with all macros removed (expanded) for

executing in module m. The recursive keyword controls whether deeper levels of nested macros are

also expanded. This is demonstrated in the example below:

julia> module M

macro m1()

42

end

macro m2()

:(@m1())

end

end

M

julia> macroexpand(M, :(@m2()), recursive=true)

42

julia> macroexpand(M, :(@m2()), recursive=false)

:(#= REPL[16]:6 =# M.@m1)

source

Base.@macroexpand – Macro.

@macroexpand

Return equivalent expression with all macros removed (expanded).

There are differences between @macroexpand and macroexpand.

• While macroexpand takes a keyword argument recursive, @macroexpand is always recursive.

For a non recursive macro version, see @macroexpand1.

• While macroexpand has an explicit module argument, @macroexpand always expands with respect

to the module in which it is called.

This is best seen in the following example:

julia> module M

macro m()

1

end

function f()

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L3183-L3187
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/expr.jl#L95-L119

CHAPTER 41. ESSENTIALS 630

(@macroexpand(@m),

macroexpand(M, :(@m)),

macroexpand(Main, :(@m))

)

end

end

M

julia> macro m()

2

end

@m (macro with 1 method)

julia> M.f()

(1, 1, 2)

With @macroexpand the expression expands where @macroexpand appears in the code (module M in the

example). With macroexpand the expression expands in the module given as the first argument.

source

Base.@macroexpand1 – Macro.

@macroexpand1

Non recursive version of @macroexpand.

source

Base.code_lowered – Function.

code_lowered(f, types; generated=true, debuginfo=:default)

Return an array of the lowered forms (IR) for the methods matching the given generic function and

type signature.

If generated is false, the returned CodeInfo instances will correspond to fallback implementations.

An error is thrown if no fallback implementation exists. If generated is true, these CodeInfo instances

will correspond to the method bodies yielded by expanding the generators.

The keyword debuginfo controls the amount of code metadata present in the output.

Note that an error will be thrown if types are not leaf types when generated is true and any of the

corresponding methods are an @generated method.

source

Base.code_typed – Function.

code_typed(f, types; kw...)

Returns an array of type-inferred lowered form (IR) for the methods matching the given generic function

and type signature.

Keyword Arguments

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/expr.jl#L128-L166
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/expr.jl#L172-L176
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L965-L980

CHAPTER 41. ESSENTIALS 631

• optimize::Bool = true: optional, controls whether additional optimizations, such as inlining,

are also applied.

• debuginfo::Symbol = :default: optional, controls the amount of code metadata present in the

output, possible options are :source or :none.

Internal Keyword Arguments

This section should be considered internal, and is only for who understands Julia compiler internals.

• world::UInt = Base.get_world_counter(): optional, controls the world age to use when look-

ing up methods, use current world age if not specified.

• interp::Core.Compiler.AbstractInterpreter = Core.Compiler.NativeInterpreter(world):

optional, controls the abstract interpreter to use, use the native interpreter if not specified.

Example

One can put the argument types in a tuple to get the corresponding code_typed.

julia> code_typed(+, (Float64, Float64))

1-element Vector{Any}:

CodeInfo(

1 ─ %1 = Base.add_float(x, y)::Float64

└── return %1

) => Float64

source

Base.precompile – Function.

precompile(f, argtypes::Tuple{Vararg{Any}})

Compile the given function f for the argument tuple (of types) argtypes, but do not execute it.

source

precompile(f, argtypes::Tuple{Vararg{Any}}, m::Method)

Precompile a specific method for the given argument types. This may be used to precompile a different

method than the one that would ordinarily be chosen by dispatch, thus mimicking invoke.

source

Base.jit_total_bytes – Function.

Base.jit_total_bytes()

Return the total amount (in bytes) allocated by the just-in-time compiler for e.g. native code and data.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reflection.jl#L1319-L1354
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/loading.jl#L3199-L3203
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/loading.jl#L3221-L3227
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/timing.jl#L100-L105

CHAPTER 41. ESSENTIALS 632

41.19 Meta

Base.Meta.quot – Function.

Meta.quot(ex)::Expr

Quote expression ex to produce an expression with head quote. This can for instance be used to

represent objects of type Expr in the AST. See also the manual section about QuoteNode.

Examples

julia> eval(Meta.quot(:x))

:x

julia> dump(Meta.quot(:x))

Expr

head: Symbol quote

args: Array{Any}((1,))

1: Symbol x

julia> eval(Meta.quot(:(1+2)))

:(1 + 2)

source

Base.isexpr – Function.

Meta.isexpr(ex, head[, n])::Bool

Return true if ex is an Expr with the given type head and optionally that the argument list is of length

n. head may be a Symbol or collection of Symbols. For example, to check that a macro was passed a

function call expression, you might use isexpr(ex, :call).

Examples

julia> ex = :(f(x))

:(f(x))

julia> Meta.isexpr(ex, :block)

false

julia> Meta.isexpr(ex, :call)

true

julia> Meta.isexpr(ex, [:block, :call]) # multiple possible heads

true

julia> Meta.isexpr(ex, :call, 1)

false

julia> Meta.isexpr(ex, :call, 2)

true

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/meta.jl#L24-L45
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/meta.jl#L48-L76

CHAPTER 41. ESSENTIALS 633

Base.isidentifier – Function.

isidentifier(s) -> Bool

Return whether the symbol or string s contains characters that are parsed as a valid ordinary identifier

(not a binary/unary operator) in Julia code; see also Base.isoperator.

Internally Julia allows any sequence of characters in a Symbol (except \0s), and macros automatically

use variable names containing # in order to avoid naming collision with the surrounding code. In

order for the parser to recognize a variable, it uses a limited set of characters (greatly extended by

Unicode). isidentifier() makes it possible to query the parser directly whether a symbol contains

valid characters.

Examples

julia> Meta.isidentifier(:x), Meta.isidentifier("1x")

(true, false)

source

Base.isoperator – Function.

isoperator(s::Symbol)

Return true if the symbol can be used as an operator, false otherwise.

Examples

julia> Meta.isoperator(:+), Meta.isoperator(:f)

(true, false)

source

Base.isunaryoperator – Function.

isunaryoperator(s::Symbol)

Return true if the symbol can be used as a unary (prefix) operator, false otherwise.

Examples

julia> Meta.isunaryoperator(:-), Meta.isunaryoperator(:√), Meta.isunaryoperator(:f)

(true, true, false)

source

Base.isbinaryoperator – Function.

isbinaryoperator(s::Symbol)

Return true if the symbol can be used as a binary (infix) operator, false otherwise.

Examples

julia> Meta.isbinaryoperator(:-), Meta.isbinaryoperator(:√), Meta.isbinaryoperator(:f)

(true, false, false)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/show.jl#L1471-L1490
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/show.jl#L1505-L1515
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/show.jl#L1518-L1528

CHAPTER 41. ESSENTIALS 634

source

Base.Meta.show_sexpr – Function.

Meta.show_sexpr([io::IO,], ex)

Show expression ex as a lisp style S-expression.

Examples

julia> Meta.show_sexpr(:(f(x, g(y,z))))

(:call, :f, :x, (:call, :g, :y, :z))

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/show.jl#L1533-L1543
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/meta.jl#L108-L118

Chapter 42

Collections and Data Structures

42.1 Iteration

Sequential iteration is implemented by the iterate function. The general for loop:

for i in iter # or "for i = iter"

body

end

is translated into:

next = iterate(iter)

while next !== nothing

(i, state) = next

body

next = iterate(iter, state)

end

The state object may be anything, and should be chosen appropriately for each iterable type. See the

manual section on the iteration interface for more details about defining a custom iterable type.

Base.iterate – Function.

iterate(iter [, state]) -> Union{Nothing, Tuple{Any, Any}}

Advance the iterator to obtain the next element. If no elements remain, nothing should be returned.

Otherwise, a 2-tuple of the next element and the new iteration state should be returned.

source

Base.IteratorSize – Type.

IteratorSize(itertype::Type) -> IteratorSize

Given the type of an iterator, return one of the following values:

• SizeUnknown() if the length (number of elements) cannot be determined in advance.

635

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/essentials.jl#L1066-L1072

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 636

• HasLength() if there is a fixed, finite length.

• HasShape{N}() if there is a known length plus a notion of multidimensional shape (as for an

array). In this case N should give the number of dimensions, and the axes function is valid for the

iterator.

• IsInfinite() if the iterator yields values forever.

The default value (for iterators that do not define this function) is HasLength(). This means that most

iterators are assumed to implement length.

This trait is generally used to select between algorithms that pre-allocate space for their result, and

algorithms that resize their result incrementally.

julia> Base.IteratorSize(1:5)

Base.HasShape{1}()

julia> Base.IteratorSize((2,3))

Base.HasLength()

source

Base.IteratorEltype – Type.

IteratorEltype(itertype::Type) -> IteratorEltype

Given the type of an iterator, return one of the following values:

• EltypeUnknown() if the type of elements yielded by the iterator is not known in advance.

• HasEltype() if the element type is known, and eltype would return a meaningful value.

HasEltype() is the default, since iterators are assumed to implement eltype.

This trait is generally used to select between algorithms that pre-allocate a specific type of result, and

algorithms that pick a result type based on the types of yielded values.

julia> Base.IteratorEltype(1:5)

Base.HasEltype()

source

Fully implemented by:

• AbstractRange

• UnitRange

• Tuple

• Number

• AbstractArray

• BitSet

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/generator.jl#L67-L92
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/generator.jl#L108-L126

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 637

• IdDict

• Dict

• WeakKeyDict

• EachLine

• AbstractString

• Set

• Pair

• NamedTuple

42.2 Constructors and Types

Base.AbstractRange – Type.

AbstractRange{T}

Supertype for ranges with elements of type T. UnitRange and other types are subtypes of this.

source

Base.OrdinalRange – Type.

OrdinalRange{T, S} <: AbstractRange{T}

Supertype for ordinal ranges with elements of type T with spacing(s) of type S. The steps should be

always-exact multiples of oneunit, and T should be a "discrete" type, which cannot have values smaller

than oneunit. For example, Integer or Date types would qualify, whereas Float64 would not (since

this type can represent values smaller than oneunit(Float64). UnitRange, StepRange, and other

types are subtypes of this.

source

Base.AbstractUnitRange – Type.

AbstractUnitRange{T} <: OrdinalRange{T, T}

Supertype for ranges with a step size of oneunit(T) with elements of type T. UnitRange and other

types are subtypes of this.

source

Base.StepRange – Type.

StepRange{T, S} <: OrdinalRange{T, S}

Ranges with elements of type T with spacing of type S. The step between each element is constant,

and the range is defined in terms of a start and stop of type T and a step of type S. Neither T nor

S should be floating point types. The syntax a:b:c with b != 0 and a, b, and c all integers creates a

StepRange.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/range.jl#L254-L259
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/range.jl#L269-L279
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/range.jl#L282-L287

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 638

julia> collect(StepRange(1, Int8(2), 10))

5-element Vector{Int64}:

1

3

5

7

9

julia> typeof(StepRange(1, Int8(2), 10))

StepRange{Int64, Int8}

julia> typeof(1:3:6)

StepRange{Int64, Int64}

source

Base.UnitRange – Type.

UnitRange{T<:Real}

A range parameterized by a start and stop of type T, filled with elements spaced by 1 from start

until stop is exceeded. The syntax a:b with a and b both Integers creates a UnitRange.

Examples

julia> collect(UnitRange(2.3, 5.2))

3-element Vector{Float64}:

2.3

3.3

4.3

julia> typeof(1:10)

UnitRange{Int64}

source

Base.LinRange – Type.

LinRange{T,L}

A range with len linearly spaced elements between its start and stop. The size of the spacing is

controlled by len, which must be an Integer.

Examples

julia> LinRange(1.5, 5.5, 9)

9-element LinRange{Float64, Int64}:

1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5

Compared to using range, directly constructing a LinRange should have less overhead but won't try to

correct for floating point errors:

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/range.jl#L290-L315
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/range.jl#L381-L399

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 639

julia> collect(range(-0.1, 0.3, length=5))

5-element Vector{Float64}:

-0.1

0.0

0.1

0.2

0.3

julia> collect(LinRange(-0.1, 0.3, 5))

5-element Vector{Float64}:

-0.1

-1.3877787807814457e-17

0.09999999999999999

0.19999999999999998

0.3

source

42.3 General Collections

Base.isempty – Function.

isempty(collection) -> Bool

Determine whether a collection is empty (has no elements).

Warning

isempty(itr)may consume the next element of a stateful iterator itr unless an appropri-

ate Base.isdone(itr) or isempty method is defined. Use of isempty should therefore be

avoided when writing generic code which should support any iterator type.

Examples

julia> isempty([])

true

julia> isempty([1 2 3])

false

source

isempty(condition)

Return true if no tasks are waiting on the condition, false otherwise.

source

Base.empty! – Function.

empty!(collection) -> collection

Remove all elements from a collection.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/range.jl#L517-L550
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/essentials.jl#L933-L953
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/condition.jl#L163-L167

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 640

julia> A = Dict("a" => 1, "b" => 2)

Dict{String, Int64} with 2 entries:

"b" => 2

"a" => 1

julia> empty!(A);

julia> A

Dict{String, Int64}()

source

Base.length – Function.

length(collection) -> Integer

Return the number of elements in the collection.

Use lastindex to get the last valid index of an indexable collection.

See also: size, ndims, eachindex.

Examples

julia> length(1:5)

5

julia> length([1, 2, 3, 4])

4

julia> length([1 2; 3 4])

4

source

Base.checked_length – Function.

Base.checked_length(r)

Calculates length(r), but may check for overflow errors where applicable when the result doesn't fit

into Union{Integer(eltype(r)),Int}.

source

Fully implemented by:

• AbstractRange

• UnitRange

• Tuple

• Number

• AbstractArray

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/dict.jl#L228-L245
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L278-L298
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/checked.jl#L361-L366

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 641

• BitSet

• IdDict

• Dict

• WeakKeyDict

• AbstractString

• Set

• NamedTuple

42.4 Iterable Collections

Base.in – Function.

in(item, collection) -> Bool

∈(item, collection) -> Bool

Determine whether an item is in the given collection, in the sense that it is == to one of the values

generated by iterating over the collection. Return a Bool value, except if item is missing or collection

contains missing but not item, in which case missing is returned (three-valued logic, matching the

behavior of any and ==).

Some collections follow a slightly different definition. For example, Sets check whether the item

isequal to one of the elements; Dicts look for key=>value pairs, and the key is compared using

isequal.

To test for the presence of a key in a dictionary, use haskey or k in keys(dict). For the collections

mentioned above, the result is always a Bool.

When broadcasting with in.(items, collection) or items .∈ collection, both item and collection

are broadcasted over, which is often not what is intended. For example, if both arguments are vec-

tors (and the dimensions match), the result is a vector indicating whether each value in collection

items is in the value at the corresponding position in collection. To get a vector indicating whether

each value in items is in collection, wrap collection in a tuple or a Ref like this: in.(items,

Ref(collection)) or items .∈ Ref(collection).

See also: ∉, insorted, contains, occursin, issubset.

Examples

julia> a = 1:3:20

1:3:19

julia> 4 in a

true

julia> 5 in a

false

julia> missing in [1, 2]

missing

https://en.wikipedia.org/wiki/Three-valued_logic

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 642

julia> 1 in [2, missing]

missing

julia> 1 in [1, missing]

true

julia> missing in Set([1, 2])

false

julia> (1=>missing) in Dict(1=>10, 2=>20)

missing

julia> [1, 2] .∈ [2, 3]

2-element BitVector:

0

0

julia> [1, 2] .∈ ([2, 3],)

2-element BitVector:

0

1

source

Base.:∉ – Function.

∉(item, collection) -> Bool

∌(collection, item) -> Bool

Negation of ∈ and ∋, i.e. checks that item is not in collection.

When broadcasting with items .∉ collection, both item and collection are broadcasted over,

which is often not what is intended. For example, if both arguments are vectors (and the dimensions

match), the result is a vector indicating whether each value in collection items is not in the value at

the corresponding position in collection. To get a vector indicating whether each value in items is

not in collection, wrap collection in a tuple or a Ref like this: items .∉ Ref(collection).

Examples

julia> 1 ∉ 2:4

true

julia> 1 ∉ 1:3

false

julia> [1, 2] .∉ [2, 3]

2-element BitVector:

1

1

julia> [1, 2] .∉ ([2, 3],)

2-element BitVector:

1

0

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L1329-L1395

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 643

source

Base.eltype – Function.

eltype(type)

Determine the type of the elements generated by iterating a collection of the given type. For dictio-

nary types, this will be a Pair{KeyType,ValType}. The definition eltype(x) = eltype(typeof(x))

is provided for convenience so that instances can be passed instead of types. However the form that

accepts a type argument should be defined for new types.

See also: keytype, typeof.

Examples

julia> eltype(fill(1f0, (2,2)))

Float32

julia> eltype(fill(0x1, (2,2)))

UInt8

source

Base.indexin – Function.

indexin(a, b)

Return an array containing the first index in b for each value in a that is a member of b. The output

array contains nothing wherever a is not a member of b.

See also: sortperm, findfirst.

Examples

julia> a = ['a', 'b', 'c', 'b', 'd', 'a'];

julia> b = ['a', 'b', 'c'];

julia> indexin(a, b)

6-element Vector{Union{Nothing, Int64}}:

1

2

3

2

nothing

1

julia> indexin(b, a)

3-element Vector{Union{Nothing, Int64}}:

1

2

3

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L1398-L1430
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L219-L238
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L2512-L2542

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 644

Base.unique – Function.

unique(itr)

Return an array containing only the unique elements of collection itr, as determined by isequal, in

the order that the first of each set of equivalent elements originally appears. The element type of the

input is preserved.

See also: unique!, allunique, allequal.

Examples

julia> unique([1, 2, 6, 2])

3-element Vector{Int64}:

1

2

6

julia> unique(Real[1, 1.0, 2])

2-element Vector{Real}:

1

2

source

unique(f, itr)

Return an array containing one value from itr for each unique value produced by f applied to elements

of itr.

Examples

julia> unique(x -> x^2, [1, -1, 3, -3, 4])

3-element Vector{Int64}:

1

3

4

This functionality can also be used to extract the indices of the first occurrences of unique elements in

an array:

julia> a = [3.1, 4.2, 5.3, 3.1, 3.1, 3.1, 4.2, 1.7];

julia> i = unique(i -> a[i], eachindex(a))

4-element Vector{Int64}:

1

2

3

8

julia> a[i]

4-element Vector{Float64}:

3.1

4.2

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/set.jl#L146-L169

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 645

5.3

1.7

julia> a[i] == unique(a)

true

source

unique(A::AbstractArray; dims::Int)

Return unique regions of A along dimension dims.

Examples

julia> A = map(isodd, reshape(Vector(1:8), (2,2,2)))

2×2×2 Array{Bool, 3}:

[:, :, 1] =

1 1

0 0

[:, :, 2] =

1 1

0 0

julia> unique(A)

2-element Vector{Bool}:

1

0

julia> unique(A, dims=2)

2×1×2 Array{Bool, 3}:

[:, :, 1] =

1

0

[:, :, 2] =

1

0

julia> unique(A, dims=3)

2×2×1 Array{Bool, 3}:

[:, :, 1] =

1 1

0 0

source

Base.unique! – Function.

unique!(f, A::AbstractVector)

Selects one value from A for each unique value produced by f applied to elements of A, then return the

modified A.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/set.jl#L210-L246
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/multidimensional.jl#L1651-L1689

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 646

Julia 1.1

This method is available as of Julia 1.1.

Examples

julia> unique!(x -> x^2, [1, -1, 3, -3, 4])

3-element Vector{Int64}:

1

3

4

julia> unique!(n -> n%3, [5, 1, 8, 9, 3, 4, 10, 7, 2, 6])

3-element Vector{Int64}:

5

1

9

julia> unique!(iseven, [2, 3, 5, 7, 9])

2-element Vector{Int64}:

2

3

source

unique!(A::AbstractVector)

Remove duplicate items as determined by isequal, then return the modified A. unique! will return

the elements of A in the order that they occur. If you do not care about the order of the returned data,

then calling (sort!(A); unique!(A)) will be much more efficient as long as the elements of A can be

sorted.

Examples

julia> unique!([1, 1, 1])

1-element Vector{Int64}:

1

julia> A = [7, 3, 2, 3, 7, 5];

julia> unique!(A)

4-element Vector{Int64}:

7

3

2

5

julia> B = [7, 6, 42, 6, 7, 42];

julia> sort!(B); # unique! is able to process sorted data much more efficiently.

julia> unique!(B)

3-element Vector{Int64}:

6

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/set.jl#L290-L318

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 647

7

42

source

Base.allunique – Function.

allunique(itr) -> Bool

Return true if all values from itr are distinct when compared with isequal.

See also: unique, issorted, allequal.

Examples

julia> allunique([1, 2, 3])

true

julia> allunique([1, 2, 1, 2])

false

julia> allunique(Real[1, 1.0, 2])

false

julia> allunique([NaN, 2.0, NaN, 4.0])

false

source

Base.allequal – Function.

allequal(itr) -> Bool

Return true if all values from itr are equal when compared with isequal.

See also: unique, allunique.

Julia 1.8

The allequal function requires at least Julia 1.8.

Examples

julia> allequal([])

true

julia> allequal([1])

true

julia> allequal([1, 1])

true

julia> allequal([1, 2])

false

julia> allequal(Dict(:a => 1, :b => 1))

false

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/set.jl#L382-L415
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/set.jl#L426-L447

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 648

source

Base.reduce – Method.

reduce(op, itr; [init])

Reduce the given collection itr with the given binary operator op. If provided, the initial value init

must be a neutral element for op that will be returned for empty collections. It is unspecified whether

init is used for non-empty collections.

For empty collections, providing init will be necessary, except for some special cases (e.g. when op

is one of +, *, max, min, &, |) when Julia can determine the neutral element of op.

Reductions for certain commonly-used operators may have special implementations, and should be

used instead: maximum(itr), minimum(itr), sum(itr), prod(itr), any(itr), all(itr). There are ef-

ficientmethods for concatenating certain arrays of arrays by calling reduce(vcat, arr) or reduce(hcat,

arr).

The associativity of the reduction is implementation dependent. This means that you can't use non-

associative operations like - because it is undefined whether reduce(-,[1,2,3]) should be evaluated

as (1-2)-3 or 1-(2-3). Use foldl or foldr instead for guaranteed left or right associativity.

Some operations accumulate error. Parallelism will be easier if the reduction can be executed in groups.

Future versions of Julia might change the algorithm. Note that the elements are not reordered if you

use an ordered collection.

Examples

julia> reduce(*, [2; 3; 4])

24

julia> reduce(*, [2; 3; 4]; init=-1)

-24

source

Base.reduce – Method.

reduce(f, A::AbstractArray; dims=:, [init])

Reduce 2-argument function f along dimensions of A. dims is a vector specifying the dimensions to

reduce, and the keyword argument init is the initial value to use in the reductions. For +, *, max and

min the init argument is optional.

The associativity of the reduction is implementation-dependent; if you need a particular associativity,

e.g. left-to-right, you should write your own loop or consider using foldl or foldr. See documentation

for reduce.

Examples

julia> a = reshape(Vector(1:16), (4,4))

4×4 Matrix{Int64}:

1 5 9 13

2 6 10 14

3 7 11 15

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/set.jl#L505-L532
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reduce.jl#L455-L489

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 649

4 8 12 16

julia> reduce(max, a, dims=2)

4×1 Matrix{Int64}:

13

14

15

16

julia> reduce(max, a, dims=1)

1×4 Matrix{Int64}:

4 8 12 16

source

Base.foldl – Method.

foldl(op, itr; [init])

Like reduce, but with guaranteed left associativity. If provided, the keyword argument init will be

used exactly once. In general, it will be necessary to provide init to work with empty collections.

See also mapfoldl, foldr, accumulate.

Examples

julia> foldl(=>, 1:4)

((1 => 2) => 3) => 4

julia> foldl(=>, 1:4; init=0)

(((0 => 1) => 2) => 3) => 4

julia> accumulate(=>, (1,2,3,4))

(1, 1 => 2, (1 => 2) => 3, ((1 => 2) => 3) => 4)

source

Base.foldr – Method.

foldr(op, itr; [init])

Like reduce, but with guaranteed right associativity. If provided, the keyword argument init will be

used exactly once. In general, it will be necessary to provide init to work with empty collections.

Examples

julia> foldr(=>, 1:4)

1 => (2 => (3 => 4))

julia> foldr(=>, 1:4; init=0)

1 => (2 => (3 => (4 => 0)))

source

Base.maximum – Function.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reducedim.jl#L374-L405
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reduce.jl#L177-L197
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reduce.jl#L226-L241

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 650

maximum(f, itr; [init])

Return the largest result of calling function f on each element of itr.

The value returned for empty itr can be specified by init. It must be a neutral element for max (i.e.

which is less than or equal to any other element) as it is unspecified whether init is used for non-empty

collections.

Julia 1.6

Keyword argument init requires Julia 1.6 or later.

Examples

julia> maximum(length, ["Julion", "Julia", "Jule"])

6

julia> maximum(length, []; init=-1)

-1

julia> maximum(sin, Real[]; init=-1.0) # good, since output of sin is >= -1

-1.0

source

maximum(itr; [init])

Return the largest element in a collection.

The value returned for empty itr can be specified by init. It must be a neutral element for max (i.e.

which is less than or equal to any other element) as it is unspecified whether init is used for non-empty

collections.

Julia 1.6

Keyword argument init requires Julia 1.6 or later.

Examples

julia> maximum(-20.5:10)

9.5

julia> maximum([1,2,3])

3

julia> maximum(())

ERROR: MethodError: reducing over an empty collection is not allowed; consider supplying

`init` to the reducer↪→

Stacktrace:

[...]

julia> maximum((); init=-Inf)

-Inf

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reduce.jl#L680-L704
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reduce.jl#L734-L763

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 651

maximum(A::AbstractArray; dims)

Compute the maximum value of an array over the given dimensions. See also the max(a,b) function

to take the maximum of two or more arguments, which can be applied elementwise to arrays via

max.(a,b).

See also: maximum!, extrema, findmax, argmax.

Examples

julia> A = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> maximum(A, dims=1)

1×2 Matrix{Int64}:

3 4

julia> maximum(A, dims=2)

2×1 Matrix{Int64}:

2

4

source

maximum(f, A::AbstractArray; dims)

Compute the maximum value by calling the function f on each element of an array over the given

dimensions.

Examples

julia> A = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> maximum(abs2, A, dims=1)

1×2 Matrix{Int64}:

9 16

julia> maximum(abs2, A, dims=2)

2×1 Matrix{Int64}:

4

16

source

Base.maximum! – Function.

maximum!(r, A)

Compute the maximum value of A over the singleton dimensions of r, and write results to r.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reducedim.jl#L627-L652
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reducedim.jl#L655-L677

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 652

Warning

Behavior can be unexpected when any mutated argument shares memory with any other

argument.

Examples

julia> A = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> maximum!([1; 1], A)

2-element Vector{Int64}:

2

4

julia> maximum!([1 1], A)

1×2 Matrix{Int64}:

3 4

source

Base.minimum – Function.

minimum(f, itr; [init])

Return the smallest result of calling function f on each element of itr.

The value returned for empty itr can be specified by init. It must be a neutral element for min

(i.e. which is greater than or equal to any other element) as it is unspecified whether init is used for

non-empty collections.

Julia 1.6

Keyword argument init requires Julia 1.6 or later.

Examples

julia> minimum(length, ["Julion", "Julia", "Jule"])

4

julia> minimum(length, []; init=typemax(Int64))

9223372036854775807

julia> minimum(sin, Real[]; init=1.0) # good, since output of sin is <= 1

1.0

source

minimum(itr; [init])

Return the smallest element in a collection.

The value returned for empty itr can be specified by init. It must be a neutral element for min

(i.e. which is greater than or equal to any other element) as it is unspecified whether init is used for

non-empty collections.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reducedim.jl#L680-L703
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reduce.jl#L707-L731

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 653

Julia 1.6

Keyword argument init requires Julia 1.6 or later.

Examples

julia> minimum(-20.5:10)

-20.5

julia> minimum([1,2,3])

1

julia> minimum([])

ERROR: MethodError: reducing over an empty collection is not allowed; consider supplying

`init` to the reducer↪→

Stacktrace:

[...]

julia> minimum([]; init=Inf)

Inf

source

minimum(A::AbstractArray; dims)

Compute the minimum value of an array over the given dimensions. See also the min(a,b) func-

tion to take the minimum of two or more arguments, which can be applied elementwise to arrays via

min.(a,b).

See also: minimum!, extrema, findmin, argmin.

Examples

julia> A = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> minimum(A, dims=1)

1×2 Matrix{Int64}:

1 2

julia> minimum(A, dims=2)

2×1 Matrix{Int64}:

1

3

source

minimum(f, A::AbstractArray; dims)

Compute the minimum value by calling the function f on each element of an array over the given

dimensions.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reduce.jl#L766-L795
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reducedim.jl#L706-L731

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 654

julia> A = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> minimum(abs2, A, dims=1)

1×2 Matrix{Int64}:

1 4

julia> minimum(abs2, A, dims=2)

2×1 Matrix{Int64}:

1

9

source

Base.minimum! – Function.

minimum!(r, A)

Compute the minimum value of A over the singleton dimensions of r, and write results to r.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other

argument.

Examples

julia> A = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> minimum!([1; 1], A)

2-element Vector{Int64}:

1

3

julia> minimum!([1 1], A)

1×2 Matrix{Int64}:

1 2

source

Base.extrema – Function.

extrema(itr; [init]) -> (mn, mx)

Compute both theminimum mn andmaximum mx element in a single pass, and return them as a 2-tuple.

The value returned for empty itr can be specified by init. It must be a 2-tuple whose first and second

elements are neutral elements for min and max respectively (i.e. which are greater/less than or equal

to any other element). As a consequence, when itr is empty the returned (mn, mx) tuple will satisfy

mn ≥ mx. When init is specified it may be used even for non-empty itr.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reducedim.jl#L734-L756
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reducedim.jl#L759-L782

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 655

Julia 1.8

Keyword argument init requires Julia 1.8 or later.

Examples

julia> extrema(2:10)

(2, 10)

julia> extrema([9,pi,4.5])

(3.141592653589793, 9.0)

julia> extrema([]; init = (Inf, -Inf))

(Inf, -Inf)

source

extrema(f, itr; [init]) -> (mn, mx)

Compute both the minimum mn and maximum mx of f applied to each element in itr and return them

as a 2-tuple. Only one pass is made over itr.

The value returned for empty itr can be specified by init. It must be a 2-tuple whose first and second

elements are neutral elements for min and max respectively (i.e. which are greater/less than or equal

to any other element). It is used for non-empty collections. Note: it implies that, for empty itr, the

returned value (mn, mx) satisfies mn ≥ mx even though for non-empty itr it satisfies mn ≤ mx. This is

a "paradoxical" but yet expected result.

Julia 1.2

This method requires Julia 1.2 or later.

Julia 1.8

Keyword argument init requires Julia 1.8 or later.

Examples

julia> extrema(sin, 0:π)

(0.0, 0.9092974268256817)

julia> extrema(sin, Real[]; init = (1.0, -1.0)) # good, since -1 ≤ sin(::Real) ≤ 1

(1.0, -1.0)

source

extrema(A::AbstractArray; dims) -> Array{Tuple}

Compute the minimum and maximum elements of an array over the given dimensions.

See also: minimum, maximum, extrema!.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reduce.jl#L798-L824
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reduce.jl#L827-L854

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 656

julia> A = reshape(Vector(1:2:16), (2,2,2))

2×2×2 Array{Int64, 3}:

[:, :, 1] =

1 5

3 7

[:, :, 2] =

9 13

11 15

julia> extrema(A, dims = (1,2))

1×1×2 Array{Tuple{Int64, Int64}, 3}:

[:, :, 1] =

(1, 7)

[:, :, 2] =

(9, 15)

source

extrema(f, A::AbstractArray; dims) -> Array{Tuple}

Compute the minimum and maximum of f applied to each element in the given dimensions of A.

Julia 1.2

This method requires Julia 1.2 or later.

source

Base.extrema! – Function.

extrema!(r, A)

Compute the minimum and maximum value of A over the singleton dimensions of r, and write results

to r.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other

argument.

Julia 1.8

This method requires Julia 1.8 or later.

Examples

julia> A = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> extrema!([(1, 1); (1, 1)], A)

2-element Vector{Tuple{Int64, Int64}}:

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reducedim.jl#L785-L812
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reducedim.jl#L815-L823

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 657

(1, 2)

(3, 4)

julia> extrema!([(1, 1);; (1, 1)], A)

1×2 Matrix{Tuple{Int64, Int64}}:

(1, 3) (2, 4)

source

Base.argmax – Function.

argmax(r::AbstractRange)

Ranges can have multiple maximal elements. In that case argmax will return a maximal index, but not

necessarily the first one.

source

argmax(f, domain)

Return a value x from domain for which f(x) is maximised. If there are multiple maximal values for

f(x) then the first one will be found.

domain must be a non-empty iterable.

Values are compared with isless.

Julia 1.7

This method requires Julia 1.7 or later.

See also argmin, findmax.

Examples

julia> argmax(abs, -10:5)

-10

julia> argmax(cos, 0:π/2:2π)

0.0

source

argmax(itr)

Return the index or key of the maximal element in a collection. If there are multiple maximal elements,

then the first one will be returned.

The collection must not be empty.

Values are compared with isless.

See also: argmin, findmax.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reducedim.jl#L826-L852
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/range.jl#L865-L871
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reduce.jl#L996-L1019

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 658

julia> argmax([8, 0.1, -9, pi])

1

julia> argmax([1, 7, 7, 6])

2

julia> argmax([1, 7, 7, NaN])

4

source

argmax(A; dims) -> indices

For an array input, return the indices of the maximum elements over the given dimensions. NaN is

treated as greater than all other values except missing.

Examples

julia> A = [1.0 2; 3 4]

2×2 Matrix{Float64}:

1.0 2.0

3.0 4.0

julia> argmax(A, dims=1)

1×2 Matrix{CartesianIndex{2}}:

CartesianIndex(2, 1) CartesianIndex(2, 2)

julia> argmax(A, dims=2)

2×1 Matrix{CartesianIndex{2}}:

CartesianIndex(1, 2)

CartesianIndex(2, 2)

source

Base.argmin – Function.

argmin(r::AbstractRange)

Ranges can have multiple minimal elements. In that case argmin will return a minimal index, but not

necessarily the first one.

source

argmin(f, domain)

Return a value x from domain for which f(x) is minimised. If there are multiple minimal values for f(x)

then the first one will be found.

domain must be a non-empty iterable.

NaN is treated as less than all other values except missing.

Julia 1.7

This method requires Julia 1.7 or later.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reduce.jl#L1022-L1045
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reducedim.jl#L1279-L1301
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/range.jl#L848-L854

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 659

See also argmax, findmin.

Examples

julia> argmin(sign, -10:5)

-10

julia> argmin(x -> -x^3 + x^2 - 10, -5:5)

5

julia> argmin(acos, 0:0.1:1)

1.0

source

argmin(itr)

Return the index or key of the minimal element in a collection. If there are multiple minimal elements,

then the first one will be returned.

The collection must not be empty.

NaN is treated as less than all other values except missing.

See also: argmax, findmin.

Examples

julia> argmin([8, 0.1, -9, pi])

3

julia> argmin([7, 1, 1, 6])

2

julia> argmin([7, 1, 1, NaN])

4

source

argmin(A; dims) -> indices

For an array input, return the indices of the minimum elements over the given dimensions. NaN is

treated as less than all other values except missing.

Examples

julia> A = [1.0 2; 3 4]

2×2 Matrix{Float64}:

1.0 2.0

3.0 4.0

julia> argmin(A, dims=1)

1×2 Matrix{CartesianIndex{2}}:

CartesianIndex(1, 1) CartesianIndex(1, 2)

julia> argmin(A, dims=2)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reduce.jl#L1048-L1074
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reduce.jl#L1077-L1100

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 660

2×1 Matrix{CartesianIndex{2}}:

CartesianIndex(1, 1)

CartesianIndex(2, 1)

source

Base.findmax – Function.

findmax(f, domain) -> (f(x), index)

Return a pair of a value in the codomain (outputs of f) and the index of the corresponding value in the

domain (inputs to f) such that f(x) is maximised. If there are multiple maximal points, then the first

one will be returned.

domain must be a non-empty iterable.

Values are compared with isless.

Julia 1.7

This method requires Julia 1.7 or later.

Examples

julia> findmax(identity, 5:9)

(9, 5)

julia> findmax(-, 1:10)

(-1, 1)

julia> findmax(first, [(1, :a), (3, :b), (3, :c)])

(3, 2)

julia> findmax(cos, 0:π/2:2π)

(1.0, 1)

source

findmax(itr) -> (x, index)

Return the maximal element of the collection itr and its index or key. If there are multiple maximal

elements, then the first one will be returned. Values are compared with isless.

See also: findmin, argmax, maximum.

Examples

julia> findmax([8, 0.1, -9, pi])

(8.0, 1)

julia> findmax([1, 7, 7, 6])

(7, 2)

julia> findmax([1, 7, 7, NaN])

(NaN, 4)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reducedim.jl#L1254-L1276
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reduce.jl#L877-L906

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 661

source

findmax(A; dims) -> (maxval, index)

For an array input, returns the value and index of the maximum over the given dimensions. NaN is

treated as greater than all other values except missing.

Examples

julia> A = [1.0 2; 3 4]

2×2 Matrix{Float64}:

1.0 2.0

3.0 4.0

julia> findmax(A, dims=1)

([3.0 4.0], CartesianIndex{2}[CartesianIndex(2, 1) CartesianIndex(2, 2)])

julia> findmax(A, dims=2)

([2.0; 4.0;;], CartesianIndex{2}[CartesianIndex(1, 2); CartesianIndex(2, 2);;])

source

findmax(f, A; dims) -> (f(x), index)

For an array input, returns the value in the codomain and index of the corresponding value which

maximize f over the given dimensions.

Examples

julia> A = [-1.0 1; -0.5 2]

2×2 Matrix{Float64}:

-1.0 1.0

-0.5 2.0

julia> findmax(abs2, A, dims=1)

([1.0 4.0], CartesianIndex{2}[CartesianIndex(1, 1) CartesianIndex(2, 2)])

julia> findmax(abs2, A, dims=2)

([1.0; 4.0;;], CartesianIndex{2}[CartesianIndex(1, 1); CartesianIndex(2, 2);;])

source

Base.findmin – Function.

findmin(f, domain) -> (f(x), index)

Return a pair of a value in the codomain (outputs of f) and the index of the corresponding value in the

domain (inputs to f) such that f(x) is minimised. If there are multiple minimal points, then the first

one will be returned.

domain must be a non-empty iterable.

NaN is treated as less than all other values except missing.

Julia 1.7

This method requires Julia 1.7 or later.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reduce.jl#L911-L932
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reducedim.jl#L1183-L1202
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reducedim.jl#L1206-L1225

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 662

Examples

julia> findmin(identity, 5:9)

(5, 1)

julia> findmin(-, 1:10)

(-10, 10)

julia> findmin(first, [(2, :a), (2, :b), (3, :c)])

(2, 1)

julia> findmin(cos, 0:π/2:2π)

(-1.0, 3)

source

findmin(itr) -> (x, index)

Return the minimal element of the collection itr and its index or key. If there are multiple minimal

elements, then the first one will be returned. NaN is treated as less than all other values except missing.

See also: findmax, argmin, minimum.

Examples

julia> findmin([8, 0.1, -9, pi])

(-9.0, 3)

julia> findmin([1, 7, 7, 6])

(1, 1)

julia> findmin([1, 7, 7, NaN])

(NaN, 4)

source

findmin(A; dims) -> (minval, index)

For an array input, returns the value and index of the minimum over the given dimensions. NaN is

treated as less than all other values except missing.

Examples

julia> A = [1.0 2; 3 4]

2×2 Matrix{Float64}:

1.0 2.0

3.0 4.0

julia> findmin(A, dims=1)

([1.0 2.0], CartesianIndex{2}[CartesianIndex(1, 1) CartesianIndex(1, 2)])

julia> findmin(A, dims=2)

([1.0; 3.0;;], CartesianIndex{2}[CartesianIndex(1, 1); CartesianIndex(2, 1);;])

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reduce.jl#L936-L966
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reduce.jl#L971-L992
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reducedim.jl#L1110-L1129

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 663

findmin(f, A; dims) -> (f(x), index)

For an array input, returns the value in the codomain and index of the corresponding value which

minimize f over the given dimensions.

Examples

julia> A = [-1.0 1; -0.5 2]

2×2 Matrix{Float64}:

-1.0 1.0

-0.5 2.0

julia> findmin(abs2, A, dims=1)

([0.25 1.0], CartesianIndex{2}[CartesianIndex(2, 1) CartesianIndex(1, 2)])

julia> findmin(abs2, A, dims=2)

([1.0; 0.25;;], CartesianIndex{2}[CartesianIndex(1, 1); CartesianIndex(2, 1);;])

source

Base.findmax! – Function.

findmax!(rval, rind, A) -> (maxval, index)

Find the maximum of A and the corresponding linear index along singleton dimensions of rval and

rind, and store the results in rval and rind. NaN is treated as greater than all other values except

missing.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other

argument.

source

Base.findmin! – Function.

findmin!(rval, rind, A) -> (minval, index)

Find the minimum of A and the corresponding linear index along singleton dimensions of rval and rind,

and store the results in rval and rind. NaN is treated as less than all other values except missing.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other

argument.

source

Base.sum – Function.

sum(f, itr; [init])

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reducedim.jl#L1133-L1152
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reducedim.jl#L1169-L1177
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reducedim.jl#L1096-L1104

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 664

Sum the results of calling function f on each element of itr.

The return type is Int for signed integers of less than system word size, and UInt for unsigned integers

of less than system word size. For all other arguments, a common return type is found to which all

arguments are promoted.

The value returned for empty itr can be specified by init. It must be the additive identity (i.e. zero)

as it is unspecified whether init is used for non-empty collections.

Julia 1.6

Keyword argument init requires Julia 1.6 or later.

Examples

julia> sum(abs2, [2; 3; 4])

29

Note the important difference between sum(A) and reduce(+, A) for arrays with small integer eltype:

julia> sum(Int8[100, 28])

128

julia> reduce(+, Int8[100, 28])

-128

In the former case, the integers are widened to system word size and therefore the result is 128. In

the latter case, no such widening happens and integer overflow results in -128.

source

sum(itr; [init])

Return the sum of all elements in a collection.

The return type is Int for signed integers of less than system word size, and UInt for unsigned integers

of less than system word size. For all other arguments, a common return type is found to which all

arguments are promoted.

The value returned for empty itr can be specified by init. It must be the additive identity (i.e. zero)

as it is unspecified whether init is used for non-empty collections.

Julia 1.6

Keyword argument init requires Julia 1.6 or later.

See also: reduce, mapreduce, count, union.

Examples

julia> sum(1:20)

210

julia> sum(1:20; init = 0.0)

210.0

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reduce.jl#L498-L534

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 665

source

sum(A::AbstractArray; dims)

Sum elements of an array over the given dimensions.

Examples

julia> A = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> sum(A, dims=1)

1×2 Matrix{Int64}:

4 6

julia> sum(A, dims=2)

2×1 Matrix{Int64}:

3

7

source

sum(f, A::AbstractArray; dims)

Sum the results of calling function f on each element of an array over the given dimensions.

Examples

julia> A = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> sum(abs2, A, dims=1)

1×2 Matrix{Int64}:

10 20

julia> sum(abs2, A, dims=2)

2×1 Matrix{Int64}:

5

25

source

Base.sum! – Function.

sum!(r, A)

Sum elements of A over the singleton dimensions of r, and write results to r.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other

argument.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reduce.jl#L537-L563
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reducedim.jl#L477-L498
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reducedim.jl#L501-L523

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 666

Examples

julia> A = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> sum!([1; 1], A)

2-element Vector{Int64}:

3

7

julia> sum!([1 1], A)

1×2 Matrix{Int64}:

4 6

source

Base.prod – Function.

prod(f, itr; [init])

Return the product of f applied to each element of itr.

The return type is Int for signed integers of less than system word size, and UInt for unsigned integers

of less than system word size. For all other arguments, a common return type is found to which all

arguments are promoted.

The value returned for empty itr can be specified by init. It must be the multiplicative identity (i.e.

one) as it is unspecified whether init is used for non-empty collections.

Julia 1.6

Keyword argument init requires Julia 1.6 or later.

Examples

julia> prod(abs2, [2; 3; 4])

576

source

prod(itr; [init])

Return the product of all elements of a collection.

The return type is Int for signed integers of less than system word size, and UInt for unsigned integers

of less than system word size. For all other arguments, a common return type is found to which all

arguments are promoted.

The value returned for empty itr can be specified by init. It must be the multiplicative identity (i.e.

one) as it is unspecified whether init is used for non-empty collections.

Julia 1.6

Keyword argument init requires Julia 1.6 or later.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reducedim.jl#L526-L549
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reduce.jl#L569-L590

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 667

See also: reduce, cumprod, any.

Examples

julia> prod(1:5)

120

julia> prod(1:5; init = 1.0)

120.0

source

prod(A::AbstractArray; dims)

Multiply elements of an array over the given dimensions.

Examples

julia> A = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> prod(A, dims=1)

1×2 Matrix{Int64}:

3 8

julia> prod(A, dims=2)

2×1 Matrix{Int64}:

2

12

source

prod(f, A::AbstractArray; dims)

Multiply the results of calling the function f on each element of an array over the given dimensions.

Examples

julia> A = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> prod(abs2, A, dims=1)

1×2 Matrix{Int64}:

9 64

julia> prod(abs2, A, dims=2)

2×1 Matrix{Int64}:

4

144

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reduce.jl#L593-L619
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reducedim.jl#L552-L573
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reducedim.jl#L576-L598

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 668

Base.prod! – Function.

prod!(r, A)

Multiply elements of A over the singleton dimensions of r, and write results to r.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other

argument.

Examples

julia> A = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> prod!([1; 1], A)

2-element Vector{Int64}:

2

12

julia> prod!([1 1], A)

1×2 Matrix{Int64}:

3 8

source

Base.any – Method.

any(itr) -> Bool

Test whether any elements of a boolean collection are true, returning true as soon as the first true

value in itr is encountered (short-circuiting). To short-circuit on false, use all.

If the input contains missing values, return missing if all non-missing values are false (or equivalently,

if the input contains no true value), following three-valued logic.

See also: all, count, sum, |, , ||.

Examples

julia> a = [true,false,false,true]

4-element Vector{Bool}:

1

0

0

1

julia> any(a)

true

julia> any((println(i); v) for (i, v) in enumerate(a))

1

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reducedim.jl#L601-L624
https://en.wikipedia.org/wiki/Three-valued_logic

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 669

true

julia> any([missing, true])

true

julia> any([false, missing])

missing

source

Base.any – Method.

any(p, itr) -> Bool

Determine whether predicate p returns true for any elements of itr, returning true as soon as the

first item in itr for which p returns true is encountered (short-circuiting). To short-circuit on false,

use all.

If the input contains missing values, return missing if all non-missing values are false (or equivalently,

if the input contains no true value), following three-valued logic.

Examples

julia> any(i->(4<=i<=6), [3,5,7])

true

julia> any(i -> (println(i); i > 3), 1:10)

1

2

3

4

true

julia> any(i -> i > 0, [1, missing])

true

julia> any(i -> i > 0, [-1, missing])

missing

julia> any(i -> i > 0, [-1, 0])

false

source

Base.any! – Function.

any!(r, A)

Test whether any values in A along the singleton dimensions of r are true, and write results to r.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other

argument.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reduce.jl#L1105-L1140
https://en.wikipedia.org/wiki/Three-valued_logic
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reduce.jl#L1182-L1214

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 670

Examples

julia> A = [true false; true false]

2×2 Matrix{Bool}:

1 0

1 0

julia> any!([1; 1], A)

2-element Vector{Int64}:

1

1

julia> any!([1 1], A)

1×2 Matrix{Int64}:

1 0

source

Base.all – Method.

all(itr) -> Bool

Test whether all elements of a boolean collection are true, returning false as soon as the first false

value in itr is encountered (short-circuiting). To short-circuit on true, use any.

If the input contains missing values, return missing if all non-missing values are true (or equivalently,

if the input contains no false value), following three-valued logic.

See also: all!, any, count, &, , &&, allunique.

Examples

julia> a = [true,false,false,true]

4-element Vector{Bool}:

1

0

0

1

julia> all(a)

false

julia> all((println(i); v) for (i, v) in enumerate(a))

1

2

false

julia> all([missing, false])

false

julia> all([true, missing])

missing

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reducedim.jl#L977-L1001
https://en.wikipedia.org/wiki/Three-valued_logic
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reduce.jl#L1143-L1179

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 671

Base.all – Method.

all(p, itr) -> Bool

Determine whether predicate p returns true for all elements of itr, returning false as soon as the

first item in itr for which p returns false is encountered (short-circuiting). To short-circuit on true,

use any.

If the input contains missing values, return missing if all non-missing values are true (or equivalently,

if the input contains no false value), following three-valued logic.

Examples

julia> all(i->(4<=i<=6), [4,5,6])

true

julia> all(i -> (println(i); i < 3), 1:10)

1

2

3

false

julia> all(i -> i > 0, [1, missing])

missing

julia> all(i -> i > 0, [-1, missing])

false

julia> all(i -> i > 0, [1, 2])

true

source

Base.all! – Function.

all!(r, A)

Test whether all values in A along the singleton dimensions of r are true, and write results to r.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other

argument.

Examples

julia> A = [true false; true false]

2×2 Matrix{Bool}:

1 0

1 0

julia> all!([1; 1], A)

2-element Vector{Int64}:

0

https://en.wikipedia.org/wiki/Three-valued_logic
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reduce.jl#L1251-L1282

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 672

0

julia> all!([1 1], A)

1×2 Matrix{Int64}:

1 0

source

Base.count – Function.

count([f=identity,] itr; init=0) -> Integer

Count the number of elements in itr for which the function f returns true. If f is omitted, count

the number of true elements in itr (which should be a collection of boolean values). init optionally

specifies the value to start counting from and therefore also determines the output type.

Julia 1.6

init keyword was added in Julia 1.6.

See also: any, sum.

Examples

julia> count(i->(4<=i<=6), [2,3,4,5,6])

3

julia> count([true, false, true, true])

3

julia> count(>(3), 1:7, init=0x03)

0x07

source

count(

pattern::Union{AbstractChar,AbstractString,AbstractPattern},

string::AbstractString;

overlap::Bool = false,

)

Return the number ofmatches for pattern in string. This is equivalent to calling length(findall(pattern,

string)) but more efficient.

If overlap=true, thematching sequences are allowed to overlap indices in the original string, otherwise

they must be from disjoint character ranges.

Julia 1.3

This method requires at least Julia 1.3.

Julia 1.7

Using a character as the pattern requires at least Julia 1.7.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reducedim.jl#L903-L926
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reduce.jl#L1328-L1352

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 673

julia> count('a', "JuliaLang")

2

julia> count(r"a(.)a", "cabacabac", overlap=true)

3

julia> count(r"a(.)a", "cabacabac")

2

source

count([f=identity,] A::AbstractArray; dims=:)

Count the number of elements in A for which f returns true over the given dimensions.

Julia 1.5

dims keyword was added in Julia 1.5.

Julia 1.6

init keyword was added in Julia 1.6.

Examples

julia> A = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> count(<=(2), A, dims=1)

1×2 Matrix{Int64}:

1 1

julia> count(<=(2), A, dims=2)

2×1 Matrix{Int64}:

2

0

source

Base.foreach – Function.

foreach(f, c...) -> Nothing

Call function f on each element of iterable c. For multiple iterable arguments, f is called elementwise,

and iteration stops when any iterator is finished.

foreach should be used instead of mapwhen the results of f are not needed, for example in foreach(println,

array).

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/regex.jl#L482-L512
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reducedim.jl#L410-L438

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 674

julia> tri = 1:3:7; res = Int[];

julia> foreach(x -> push!(res, x^2), tri)

julia> res

3-element Vector{Int64}:

1

16

49

julia> foreach((x, y) -> println(x, " with ", y), tri, 'a':'z')

1 with a

4 with b

7 with c

source

Base.map – Function.

map(f, c...) -> collection

Transform collection c by applying f to each element. For multiple collection arguments, apply f ele-

mentwise, and stop when any of them is exhausted.

See also map!, foreach, mapreduce, mapslices, zip, Iterators.map.

Examples

julia> map(x -> x * 2, [1, 2, 3])

3-element Vector{Int64}:

2

4

6

julia> map(+, [1, 2, 3], [10, 20, 30, 400, 5000])

3-element Vector{Int64}:

11

22

33

source

map(f, A::AbstractArray...) -> N-array

When acting on multi-dimensional arrays of the same ndims, they must all have the same axes, and

the answer will too.

See also broadcast, which allows mismatched sizes.

Examples

julia> map(//, [1 2; 3 4], [4 3; 2 1])

2×2 Matrix{Rational{Int64}}:

1//4 2//3

3//2 4//1

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L3068-L3095
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L3290-L3312

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 675

julia> map(+, [1 2; 3 4], zeros(2,1))

ERROR: DimensionMismatch

julia> map(+, [1 2; 3 4], [1,10,100,1000], zeros(3,1)) # iterates until 3rd is exhausted

3-element Vector{Float64}:

2.0

13.0

102.0

source

Base.map! – Function.

map!(function, destination, collection...)

Like map, but stores the result in destination rather than a new collection. destination must be at

least as large as the smallest collection.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other

argument.

See also: map, foreach, zip, copyto!.

Examples

julia> a = zeros(3);

julia> map!(x -> x * 2, a, [1, 2, 3]);

julia> a

3-element Vector{Float64}:

2.0

4.0

6.0

julia> map!(+, zeros(Int, 5), 100:999, 1:3)

5-element Vector{Int64}:

101

103

105

0

0

source

map!(f, values(dict::AbstractDict))

Modifies dict by transforming each value from val to f(val). Note that the type of dict cannot be

changed: if f(val) is not an instance of the value type of dict then it will be converted to the value

type if possible and otherwise raise an error.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L3384-L3408
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L3347-L3377

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 676

Julia 1.2

map!(f, values(dict::AbstractDict)) requires Julia 1.2 or later.

Examples

julia> d = Dict(:a => 1, :b => 2)

Dict{Symbol, Int64} with 2 entries:

:a => 1

:b => 2

julia> map!(v -> v-1, values(d))

ValueIterator for a Dict{Symbol, Int64} with 2 entries. Values:

0

1

source

Base.mapreduce – Method.

mapreduce(f, op, itrs...; [init])

Apply function f to each element(s) in itrs, and then reduce the result using the binary function op.

If provided, init must be a neutral element for op that will be returned for empty collections. It is

unspecified whether init is used for non-empty collections. In general, it will be necessary to provide

init to work with empty collections.

mapreduce is functionally equivalent to calling reduce(op, map(f, itr); init=init), but will in gen-

eral execute faster since no intermediate collection needs to be created. See documentation for reduce

and map.

Julia 1.2

mapreduce with multiple iterators requires Julia 1.2 or later.

Examples

julia> mapreduce(x->x^2, +, [1:3;]) # == 1 + 4 + 9

14

The associativity of the reduction is implementation-dependent. Additionally, some implementations

may reuse the return value of f for elements that appear multiple times in itr. Use mapfoldl or

mapfoldr instead for guaranteed left or right associativity and invocation of f for every value.

source

Base.mapfoldl – Method.

mapfoldl(f, op, itr; [init])

Like mapreduce, but with guaranteed left associativity, as in foldl. If provided, the keyword argument

init will be used exactly once. In general, it will be necessary to provide init to work with empty

collections.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractdict.jl#L593-L615
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reduce.jl#L280-L306
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reduce.jl#L168-L174

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 677

Base.mapfoldr – Method.

mapfoldr(f, op, itr; [init])

Like mapreduce, but with guaranteed right associativity, as in foldr. If provided, the keyword argument

init will be used exactly once. In general, it will be necessary to provide init to work with empty

collections.

source

Base.first – Function.

first(coll)

Get the first element of an iterable collection. Return the start point of an AbstractRange even if it is

empty.

See also: only, firstindex, last.

Examples

julia> first(2:2:10)

2

julia> first([1; 2; 3; 4])

1

source

first(itr, n::Integer)

Get the first n elements of the iterable collection itr, or fewer elements if itr is not long enough.

See also: startswith, Iterators.take.

Julia 1.6

This method requires at least Julia 1.6.

Examples

julia> first(["foo", "bar", "qux"], 2)

2-element Vector{String}:

"foo"

"bar"

julia> first(1:6, 10)

1:6

julia> first(Bool[], 1)

Bool[]

source

first(s::AbstractString, n::Integer)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reduce.jl#L216-L222
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L454-L470
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L477-L501

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 678

Get a string consisting of the first n characters of s.

Examples

julia> first("∀ϵ≠0: ϵ²>0", 0)

""

julia> first("∀ϵ≠0: ϵ²>0", 1)

"∀"

julia> first("∀ϵ≠0: ϵ²>0", 3)

"∀ϵ≠"

source

Base.last – Function.

last(coll)

Get the last element of an ordered collection, if it can be computed in O(1) time. This is accomplished

by calling lastindex to get the last index. Return the end point of an AbstractRange even if it is

empty.

See also first, endswith.

Examples

julia> last(1:2:10)

9

julia> last([1; 2; 3; 4])

4

source

last(itr, n::Integer)

Get the last n elements of the iterable collection itr, or fewer elements if itr is not long enough.

Julia 1.6

This method requires at least Julia 1.6.

Examples

julia> last(["foo", "bar", "qux"], 2)

2-element Vector{String}:

"bar"

"qux"

julia> last(1:6, 10)

1:6

julia> last(Float64[], 1)

Float64[]

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/basic.jl#L676-L692
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L509-L526

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 679

source

last(s::AbstractString, n::Integer)

Get a string consisting of the last n characters of s.

Examples

julia> last("∀ϵ≠0: ϵ²>0", 0)

""

julia> last("∀ϵ≠0: ϵ²>0", 1)

"0"

julia> last("∀ϵ≠0: ϵ²>0", 3)

"²>0"

source

Base.front – Function.

front(x::Tuple)::Tuple

Return a Tuple consisting of all but the last component of x.

See also: first, tail.

Examples

julia> Base.front((1,2,3))

(1, 2)

julia> Base.front(())

ERROR: ArgumentError: Cannot call front on an empty tuple.

source

Base.tail – Function.

tail(x::Tuple)::Tuple

Return a Tuple consisting of all but the first component of x.

See also: front, rest, first, Iterators.peel.

Examples

julia> Base.tail((1,2,3))

(2, 3)

julia> Base.tail(())

ERROR: ArgumentError: Cannot call tail on an empty tuple.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L529-L551
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/basic.jl#L695-L711
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/tuple.jl#L260-L275
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/essentials.jl#L358-L373

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 680

Base.step – Function.

step(r)

Get the step size of an AbstractRange object.

Examples

julia> step(1:10)

1

julia> step(1:2:10)

2

julia> step(2.5:0.3:10.9)

0.3

julia> step(range(2.5, stop=10.9, length=85))

0.1

source

Base.collect – Method.

collect(collection)

Return an Array of all items in a collection or iterator. For dictionaries, returns Vector{Pair{KeyType,

ValType}}. If the argument is array-like or is an iterator with the HasShape trait, the result will have

the same shape and number of dimensions as the argument.

Used by comprehensions to turn a generator into an Array.

Examples

julia> collect(1:2:13)

7-element Vector{Int64}:

1

3

5

7

9

11

13

julia> [x^2 for x in 1:8 if isodd(x)]

4-element Vector{Int64}:

1

9

25

49

source

Base.collect – Method.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/range.jl#L676-L695
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L729-L758

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 681

collect(element_type, collection)

Return an Array with the given element type of all items in a collection or iterable. The result has the

same shape and number of dimensions as collection.

Examples

julia> collect(Float64, 1:2:5)

3-element Vector{Float64}:

1.0

3.0

5.0

source

Base.filter – Function.

filter(f, a)

Return a copy of collection a, removing elements for which f is false. The function f is passed one

argument.

Julia 1.4

Support for a as a tuple requires at least Julia 1.4.

See also: filter!, Iterators.filter.

Examples

julia> a = 1:10

1:10

julia> filter(isodd, a)

5-element Vector{Int64}:

1

3

5

7

9

source

filter(f)

Create a function that filters its arguments with function f using filter, i.e. a function equivalent to

x -> filter(f, x).

The returned function is of type Base.Fix1{typeof(filter)}, which can be used to implement spe-

cialized methods.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L679-L693
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L2645-L2669

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 682

julia> (1, 2, Inf, 4, NaN, 6) |> filter(isfinite)

(1, 2, 4, 6)

julia> map(filter(iseven), [1:3, 2:4, 3:5])

3-element Vector{Vector{Int64}}:

[2]

[2, 4]

[4]

Julia 1.9

This method requires at least Julia 1.9.

source

filter(f, d::AbstractDict)

Return a copy of d, removing elements for which f is false. The function f is passed key=>value pairs.

Examples

julia> d = Dict(1=>"a", 2=>"b")

Dict{Int64, String} with 2 entries:

2 => "b"

1 => "a"

julia> filter(p->isodd(p.first), d)

Dict{Int64, String} with 1 entry:

1 => "a"

source

filter(f, itr::SkipMissing{<:AbstractArray})

Return a vector similar to the array wrapped by the given SkipMissing iterator but with all missing

elements and those for which f returns false removed.

Julia 1.2

This method requires Julia 1.2 or later.

Examples

julia> x = [1 2; missing 4]

2×2 Matrix{Union{Missing, Int64}}:

1 2

missing 4

julia> filter(isodd, skipmissing(x))

1-element Vector{Int64}:

1

source

Base.filter! – Function.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L2732-L2754
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractdict.jl#L453-L470
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/missing.jl#L374-L394

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 683

filter!(f, a)

Update collection a, removing elements for which f is false. The function f is passed one argument.

Examples

julia> filter!(isodd, Vector(1:10))

5-element Vector{Int64}:

1

3

5

7

9

source

filter!(f, d::AbstractDict)

Update d, removing elements for which f is false. The function f is passed key=>value pairs.

Example

julia> d = Dict(1=>"a", 2=>"b", 3=>"c")

Dict{Int64, String} with 3 entries:

2 => "b"

3 => "c"

1 => "a"

julia> filter!(p->isodd(p.first), d)

Dict{Int64, String} with 2 entries:

3 => "c"

1 => "a"

source

Base.replace – Method.

replace(A, old_new::Pair...; [count::Integer])

Return a copy of collection A where, for each pair old=>new in old_new, all occurrences of old are

replaced by new. Equality is determined using isequal. If count is specified, then replace at most

count occurrences in total.

The element type of the result is chosen using promotion (see promote_type) based on the element

type of A and on the types of the new values in pairs. If count is omitted and the element type of A is

a Union, the element type of the result will not include singleton types which are replaced with values

of a different type: for example, Union{T,Missing} will become T if missing is replaced.

See also replace!, splice!, delete!, insert!.

Julia 1.7

Version 1.7 is required to replace elements of a Tuple.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L2699-L2715
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractdict.jl#L411-L430

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 684

julia> replace([1, 2, 1, 3], 1=>0, 2=>4, count=2)

4-element Vector{Int64}:

0

4

1

3

julia> replace([1, missing], missing=>0)

2-element Vector{Int64}:

1

0

source

Base.replace – Method.

replace(new::Union{Function, Type}, A; [count::Integer])

Return a copy of A where each value x in A is replaced by new(x). If count is specified, then replace at

most count values in total (replacements being defined as new(x) !== x).

Julia 1.7

Version 1.7 is required to replace elements of a Tuple.

Examples

julia> replace(x -> isodd(x) ? 2x : x, [1, 2, 3, 4])

4-element Vector{Int64}:

2

2

6

4

julia> replace(Dict(1=>2, 3=>4)) do kv

first(kv) < 3 ? first(kv)=>3 : kv

end

Dict{Int64, Int64} with 2 entries:

3 => 4

1 => 3

source

Base.replace! – Function.

replace!(A, old_new::Pair...; [count::Integer])

For each pair old=>new in old_new, replace all occurrences of old in collection A by new. Equality is

determined using isequal. If count is specified, then replace at most count occurrences in total. See

also replace.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/set.jl#L651-L685
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/set.jl#L712-L738

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 685

julia> replace!([1, 2, 1, 3], 1=>0, 2=>4, count=2)

4-element Vector{Int64}:

0

4

1

3

julia> replace!(Set([1, 2, 3]), 1=>0)

Set{Int64} with 3 elements:

0

2

3

source

replace!(new::Union{Function, Type}, A; [count::Integer])

Replace each element x in collection A by new(x). If count is specified, then replace at most count

values in total (replacements being defined as new(x) !== x).

Examples

julia> replace!(x -> isodd(x) ? 2x : x, [1, 2, 3, 4])

4-element Vector{Int64}:

2

2

6

4

julia> replace!(Dict(1=>2, 3=>4)) do kv

first(kv) < 3 ? first(kv)=>3 : kv

end

Dict{Int64, Int64} with 2 entries:

3 => 4

1 => 3

julia> replace!(x->2x, Set([3, 6]))

Set{Int64} with 2 elements:

6

12

source

Base.rest – Function.

Base.rest(collection[, itr_state])

Generic function for taking the tail of collection, starting from a specific iteration state itr_state.

Return a Tuple, if collection itself is a Tuple, a subtype of AbstractVector, if collection is an

AbstractArray, a subtype of AbstractString if collection is an AbstractString, and an arbitrary

iterator, falling back to Iterators.rest(collection[, itr_state]), otherwise.

Can be overloaded for user-defined collection types to customize the behavior of slurping in assign-

ments in final position, like a, b... = collection.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/set.jl#L581-L605
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/set.jl#L619-L647

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 686

Julia 1.6

Base.rest requires at least Julia 1.6.

See also: first, Iterators.rest, Base.split_rest.

Examples

julia> a = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> first, state = iterate(a)

(1, 2)

julia> first, Base.rest(a, state)

(1, [3, 2, 4])

source

Base.split_rest – Function.

Base.split_rest(collection, n::Int[, itr_state]) -> (rest_but_n, last_n)

Generic function for splitting the tail of collection, starting from a specific iteration state itr_state.

Returns a tuple of two new collections. The first one contains all elements of the tail but the n last

ones, which make up the second collection.

The type of the first collection generally follows that of Base.rest, except that the fallback case is not

lazy, but is collected eagerly into a vector.

Can be overloaded for user-defined collection types to customize the behavior of slurping in assign-

ments in non-final position, like a, b..., c = collection.

Julia 1.9

Base.split_rest requires at least Julia 1.9.

See also: Base.rest.

Examples

julia> a = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> first, state = iterate(a)

(1, 2)

julia> first, Base.split_rest(a, 1, state)

(1, ([3, 2], [4]))

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/tuple.jl#L105-L135
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/tuple.jl#L143-L174

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 687

42.5 Indexable Collections

Base.getindex – Function.

getindex(collection, key...)

Retrieve the value(s) stored at the given key or index within a collection. The syntax a[i,j,...] is

converted by the compiler to getindex(a, i, j, ...).

See also get, keys, eachindex.

Examples

julia> A = Dict("a" => 1, "b" => 2)

Dict{String, Int64} with 2 entries:

"b" => 2

"a" => 1

julia> getindex(A, "a")

1

source

Base.setindex! – Function.

setindex!(collection, value, key...)

Store the given value at the given key or index within a collection. The syntax a[i,j,...] = x is

converted by the compiler to (setindex!(a, x, i, j, ...); x).

Examples

julia> a = Dict("a"=>1)

Dict{String, Int64} with 1 entry:

"a" => 1

julia> setindex!(a, 2, "b")

Dict{String, Int64} with 2 entries:

"b" => 2

"a" => 1

source

Base.firstindex – Function.

firstindex(collection) -> Integer

firstindex(collection, d) -> Integer

Return the first index of collection. If d is given, return the first index of collection along dimension

d.

The syntaxes A[begin] and A[1, begin] lower to A[firstindex(A)] and A[1, firstindex(A, 2)],

respectively.

See also: first, axes, lastindex, nextind.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L949-L967
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L1001-L1018

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 688

julia> firstindex([1,2,4])

1

julia> firstindex(rand(3,4,5), 2)

1

source

Base.lastindex – Function.

lastindex(collection) -> Integer

lastindex(collection, d) -> Integer

Return the last index of collection. If d is given, return the last index of collection along dimension

d.

The syntaxes A[end] and A[end, end] lower to A[lastindex(A)] and A[lastindex(A, 1), lastindex(A,

2)], respectively.

See also: axes, firstindex, eachindex, prevind.

Examples

julia> lastindex([1,2,4])

3

julia> lastindex(rand(3,4,5), 2)

4

source

Fully implemented by:

• Array

• BitArray

• AbstractArray

• SubArray

Partially implemented by:

• AbstractRange

• UnitRange

• Tuple

• AbstractString

• Dict

• IdDict

• WeakKeyDict

• NamedTuple

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L429-L448
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L406-L425

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 689

42.6 Dictionaries

Dict is the standard dictionary. Its implementation uses hash as the hashing function for the key, and

isequal to determine equality. Define these two functions for custom types to override how they are

stored in a hash table.

IdDict is a special hash table where the keys are always object identities.

WeakKeyDict is a hash table implementation where the keys are weak references to objects, and thus may

be garbage collected even when referenced in a hash table. Like Dict it uses hash for hashing and isequal

for equality, unlike Dict it does not convert keys on insertion.

Dicts can be created by passing pair objects constructed with => to a Dict constructor: Dict("A"=>1,

"B"=>2). This call will attempt to infer type information from the keys and values (i.e. this example creates

a Dict{String, Int64}). To explicitly specify types use the syntax Dict{KeyType,ValueType}(...). For

example, Dict{String,Int32}("A"=>1, "B"=>2).

Dictionaries may also be created with generators. For example, Dict(i => f(i) for i = 1:10).

Given a dictionary D, the syntax D[x] returns the value of key x (if it exists) or throws an error, and D[x] =

y stores the key-value pair x => y in D (replacing any existing value for the key x). Multiple arguments to

D[...] are converted to tuples; for example, the syntax D[x,y] is equivalent to D[(x,y)], i.e. it refers to

the value keyed by the tuple (x,y).

Base.AbstractDict – Type.

AbstractDict{K, V}

Supertype for dictionary-like types with keys of type K and values of type V. Dict, IdDict and other

types are subtypes of this. An AbstractDict{K, V} should be an iterator of Pair{K, V}.

source

Base.Dict – Type.

Dict([itr])

Dict{K,V}() constructs a hash table with keys of type K and values of type V. Keys are compared with

isequal and hashed with hash.

Given a single iterable argument, constructs a Dict whose key-value pairs are taken from 2-tuples

(key,value) generated by the argument.

Examples

julia> Dict([("A", 1), ("B", 2)])

Dict{String, Int64} with 2 entries:

"B" => 2

"A" => 1

Alternatively, a sequence of pair arguments may be passed.

julia> Dict("A"=>1, "B"=>2)

Dict{String, Int64} with 2 entries:

"B" => 2

"A" => 1

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/essentials.jl#L26-L32

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 690

source

Base.IdDict – Type.

IdDict([itr])

IdDict{K,V}() constructs a hash table using objectid as hash and === as equality with keys of type

K and values of type V.

See Dict for further help. In the example below, The Dict keys are all isequal and therefore get

hashed the same, so they get overwritten. The IdDict hashes by object-id, and thus preserves the 3

different keys.

Examples

julia> Dict(true => "yes", 1 => "no", 1.0 => "maybe")

Dict{Real, String} with 1 entry:

1.0 => "maybe"

julia> IdDict(true => "yes", 1 => "no", 1.0 => "maybe")

IdDict{Any, String} with 3 entries:

true => "yes"

1.0 => "maybe"

1 => "no"

source

Base.WeakKeyDict – Type.

WeakKeyDict([itr])

WeakKeyDict() constructs a hash table where the keys are weak references to objects which may be

garbage collected even when referenced in a hash table.

See Dict for further help. Note, unlike Dict, WeakKeyDict does not convert keys on insertion, as this

would imply the key object was unreferenced anywhere before insertion.

See also WeakRef.

source

Base.ImmutableDict – Type.

ImmutableDict

ImmutableDict is a dictionary implemented as an immutable linked list, which is optimal for small

dictionaries that are constructed over many individual insertions. Note that it is not possible to remove

a value, although it can be partially overridden and hidden by inserting a new value with the same key.

ImmutableDict(KV::Pair)

Create a new entry in the ImmutableDict for a key => value pair

• use (key => value) in dict to see if this particular combination is in the properties set

• use get(dict, key, default) to retrieve the most recent value for a particular key

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/dict.jl#L31-L56
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iddict.jl#L3-L25
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/weakkeydict.jl#L5-L17

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 691

source

Base.haskey – Function.

haskey(collection, key) -> Bool

Determine whether a collection has a mapping for a given key.

Examples

julia> D = Dict('a'=>2, 'b'=>3)

Dict{Char, Int64} with 2 entries:

'a' => 2

'b' => 3

julia> haskey(D, 'a')

true

julia> haskey(D, 'c')

false

source

Base.get – Function.

get(collection, key, default)

Return the value stored for the given key, or the given default value if no mapping for the key is present.

Julia 1.7

For tuples and numbers, this function requires at least Julia 1.7.

Examples

julia> d = Dict("a"=>1, "b"=>2);

julia> get(d, "a", 3)

1

julia> get(d, "c", 3)

3

source

get(f::Union{Function, Type}, collection, key)

Return the value stored for the given key, or if no mapping for the key is present, return f(). Use get!

to also store the default value in the dictionary.

This is intended to be called using do block syntax

get(dict, key) do

default value calculated here

time()

end

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/dict.jl#L797-L812
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/dict.jl#L550-L568
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/dict.jl#L501-L520

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 692

source

Base.get! – Function.

get!(collection, key, default)

Return the value stored for the given key, or if nomapping for the key is present, store key => default,

and return default.

Examples

julia> d = Dict("a"=>1, "b"=>2, "c"=>3);

julia> get!(d, "a", 5)

1

julia> get!(d, "d", 4)

4

julia> d

Dict{String, Int64} with 4 entries:

"c" => 3

"b" => 2

"a" => 1

"d" => 4

source

get!(f::Union{Function, Type}, collection, key)

Return the value stored for the given key, or if no mapping for the key is present, store key => f(),

and return f().

This is intended to be called using do block syntax.

Examples

julia> squares = Dict{Int, Int}();

julia> function get_square!(d, i)

get!(d, i) do

i^2

end

end

get_square! (generic function with 1 method)

julia> get_square!(squares, 2)

4

julia> squares

Dict{Int64, Int64} with 1 entry:

2 => 4

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/dict.jl#L528-L542
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/dict.jl#L406-L429
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/dict.jl#L432-L458

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 693

Base.getkey – Function.

getkey(collection, key, default)

Return the key matching argument key if one exists in collection, otherwise return default.

Examples

julia> D = Dict('a'=>2, 'b'=>3)

Dict{Char, Int64} with 2 entries:

'a' => 2

'b' => 3

julia> getkey(D, 'a', 1)

'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)

julia> getkey(D, 'd', 'a')

'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)

source

Base.delete! – Function.

delete!(collection, key)

Delete the mapping for the given key in a collection, if any, and return the collection.

Examples

julia> d = Dict("a"=>1, "b"=>2)

Dict{String, Int64} with 2 entries:

"b" => 2

"a" => 1

julia> delete!(d, "b")

Dict{String, Int64} with 1 entry:

"a" => 1

julia> delete!(d, "b") # d is left unchanged

Dict{String, Int64} with 1 entry:

"a" => 1

source

Base.pop! – Method.

pop!(collection, key[, default])

Delete and return the mapping for key if it exists in collection, otherwise return default, or throw

an error if default is not specified.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/dict.jl#L572-L590
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/dict.jl#L672-L692

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 694

julia> d = Dict("a"=>1, "b"=>2, "c"=>3);

julia> pop!(d, "a")

1

julia> pop!(d, "d")

ERROR: KeyError: key "d" not found

Stacktrace:

[...]

julia> pop!(d, "e", 4)

4

source

Base.keys – Function.

keys(iterator)

For an iterator or collection that has keys and values (e.g. arrays and dictionaries), return an iterator

over the keys.

source

Base.values – Function.

values(iterator)

For an iterator or collection that has keys and values, return an iterator over the values. This function

simply returns its argument by default, since the elements of a general iterator are normally considered

its "values".

Examples

julia> d = Dict("a"=>1, "b"=>2);

julia> values(d)

ValueIterator for a Dict{String, Int64} with 2 entries. Values:

2

1

julia> values([2])

1-element Vector{Int64}:

2

source

values(a::AbstractDict)

Return an iterator over all values in a collection. collect(values(a)) returns an array of values. When

the values are stored internally in a hash table, as is the case for Dict, the order in which they are

returned may vary. But keys(a) and values(a) both iterate a and return the elements in the same

order.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/dict.jl#L607-L628
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractdict.jl#L73-L78
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/essentials.jl#L960-L981

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 695

julia> D = Dict('a'=>2, 'b'=>3)

Dict{Char, Int64} with 2 entries:

'a' => 2

'b' => 3

julia> collect(values(D))

2-element Vector{Int64}:

2

3

source

Base.pairs – Function.

pairs(IndexLinear(), A)

pairs(IndexCartesian(), A)

pairs(IndexStyle(A), A)

An iterator that accesses each element of the array A, returning i => x, where i is the index for the

element and x = A[i]. Identical to pairs(A), except that the style of index can be selected. Also

similar to enumerate(A), except i will be a valid index for A, while enumerate always counts from 1

regardless of the indices of A.

Specifying IndexLinear() ensures that iwill be an integer; specifying IndexCartesian() ensures that

i will be a Base.CartesianIndex; specifying IndexStyle(A) chooses whichever has been defined as

the native indexing style for array A.

Mutation of the bounds of the underlying array will invalidate this iterator.

Examples

julia> A = ["a" "d"; "b" "e"; "c" "f"];

julia> for (index, value) in pairs(IndexStyle(A), A)

println("$index $value")

end

1 a

2 b

3 c

4 d

5 e

6 f

julia> S = view(A, 1:2, :);

julia> for (index, value) in pairs(IndexStyle(S), S)

println("$index $value")

end

CartesianIndex(1, 1) a

CartesianIndex(2, 1) b

CartesianIndex(1, 2) d

CartesianIndex(2, 2) e

See also IndexStyle, axes.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractdict.jl#L107-L130
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iterators.jl#L228-L273

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 696

pairs(collection)

Return an iterator over key => value pairs for any collection that maps a set of keys to a set of values.

This includes arrays, where the keys are the array indices.

Examples

julia> a = Dict(zip(["a", "b", "c"], [1, 2, 3]))

Dict{String, Int64} with 3 entries:

"c" => 3

"b" => 2

"a" => 1

julia> pairs(a)

Dict{String, Int64} with 3 entries:

"c" => 3

"b" => 2

"a" => 1

julia> foreach(println, pairs(["a", "b", "c"]))

1 => "a"

2 => "b"

3 => "c"

julia> (;a=1, b=2, c=3) |> pairs |> collect

3-element Vector{Pair{Symbol, Int64}}:

:a => 1

:b => 2

:c => 3

julia> (;a=1, b=2, c=3) |> collect

3-element Vector{Int64}:

1

2

3

source

Base.merge – Function.

merge(d::AbstractDict, others::AbstractDict...)

Construct a merged collection from the given collections. If necessary, the types of the resulting collec-

tion will be promoted to accommodate the types of the merged collections. If the same key is present

in another collection, the value for that key will be the value it has in the last collection listed. See also

mergewith for custom handling of values with the same key.

Examples

julia> a = Dict("foo" => 0.0, "bar" => 42.0)

Dict{String, Float64} with 2 entries:

"bar" => 42.0

"foo" => 0.0

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractdict.jl#L133-L171

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 697

julia> b = Dict("baz" => 17, "bar" => 4711)

Dict{String, Int64} with 2 entries:

"bar" => 4711

"baz" => 17

julia> merge(a, b)

Dict{String, Float64} with 3 entries:

"bar" => 4711.0

"baz" => 17.0

"foo" => 0.0

julia> merge(b, a)

Dict{String, Float64} with 3 entries:

"bar" => 42.0

"baz" => 17.0

"foo" => 0.0

source

merge(a::NamedTuple, bs::NamedTuple...)

Construct a new named tuple by merging two or more existing ones, in a left-associative manner. Merg-

ing proceeds left-to-right, between pairs of named tuples, and so the order of fields present in both the

leftmost and rightmost named tuples take the same position as they are found in the leftmost named

tuple. However, values are taken from matching fields in the rightmost named tuple that contains that

field. Fields present in only the rightmost named tuple of a pair are appended at the end. A fallback is

implemented for when only a single named tuple is supplied, with signature merge(a::NamedTuple).

Julia 1.1

Merging 3 or more NamedTuple requires at least Julia 1.1.

Examples

julia> merge((a=1, b=2, c=3), (b=4, d=5))

(a = 1, b = 4, c = 3, d = 5)

julia> merge((a=1, b=2), (b=3, c=(d=1,)), (c=(d=2,),))

(a = 1, b = 3, c = (d = 2,))

source

merge(a::NamedTuple, iterable)

Interpret an iterable of key-value pairs as a named tuple, and perform a merge.

julia> merge((a=1, b=2, c=3), [:b=>4, :d=>5])

(a = 1, b = 4, c = 3, d = 5)

source

Base.mergewith – Function.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractdict.jl#L319-L352
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/namedtuple.jl#L299-L323
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/namedtuple.jl#L347-L356

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 698

mergewith(combine, d::AbstractDict, others::AbstractDict...)

mergewith(combine)

merge(combine, d::AbstractDict, others::AbstractDict...)

Construct a merged collection from the given collections. If necessary, the types of the resulting col-

lection will be promoted to accommodate the types of the merged collections. Values with the same

key will be combined using the combiner function. The curried form mergewith(combine) returns the

function (args...) -> mergewith(combine, args...).

Method merge(combine::Union{Function,Type}, args...) as an alias of mergewith(combine, args...)

is still available for backward compatibility.

Julia 1.5

mergewith requires Julia 1.5 or later.

Examples

julia> a = Dict("foo" => 0.0, "bar" => 42.0)

Dict{String, Float64} with 2 entries:

"bar" => 42.0

"foo" => 0.0

julia> b = Dict("baz" => 17, "bar" => 4711)

Dict{String, Int64} with 2 entries:

"bar" => 4711

"baz" => 17

julia> mergewith(+, a, b)

Dict{String, Float64} with 3 entries:

"bar" => 4753.0

"baz" => 17.0

"foo" => 0.0

julia> ans == mergewith(+)(a, b)

true

source

Base.merge! – Function.

merge!(d::AbstractDict, others::AbstractDict...)

Update collection with pairs from the other collections. See also merge.

Examples

julia> d1 = Dict(1 => 2, 3 => 4);

julia> d2 = Dict(1 => 4, 4 => 5);

julia> merge!(d1, d2);

julia> d1

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractdict.jl#L356-L394

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 699

Dict{Int64, Int64} with 3 entries:

4 => 5

3 => 4

1 => 4

source

Base.mergewith! – Function.

mergewith!(combine, d::AbstractDict, others::AbstractDict...) -> d

mergewith!(combine)

merge!(combine, d::AbstractDict, others::AbstractDict...) -> d

Update collection with pairs from the other collections. Values with the same key will be combined

using the combiner function. The curried form mergewith!(combine) returns the function (args...)

-> mergewith!(combine, args...).

Method merge!(combine::Union{Function,Type}, args...) as an alias of mergewith!(combine,

args...) is still available for backward compatibility.

Julia 1.5

mergewith! requires Julia 1.5 or later.

Examples

julia> d1 = Dict(1 => 2, 3 => 4);

julia> d2 = Dict(1 => 4, 4 => 5);

julia> mergewith!(+, d1, d2);

julia> d1

Dict{Int64, Int64} with 3 entries:

4 => 5

3 => 4

1 => 6

julia> mergewith!(-, d1, d1);

julia> d1

Dict{Int64, Int64} with 3 entries:

4 => 0

3 => 0

1 => 0

julia> foldl(mergewith!(+), [d1, d2]; init=Dict{Int64, Int64}())

Dict{Int64, Int64} with 3 entries:

4 => 5

3 => 0

1 => 4

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractdict.jl#L197-L217
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractdict.jl#L230-L275

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 700

Base.sizehint! – Function.

sizehint!(s, n) -> s

Suggest that collection s reserve capacity for at least n elements. That is, if you expect that you're

going to have to push a lot of values onto s, you can avoid the cost of incremental reallocation by doing

it once up front; this can improve performance.

See also resize!.

Notes on the performance model

For types that support sizehint!,

1. push! and append! methods generally may (but are not required to) preallocate extra storage.

For types implemented in Base, they typically do, using a heuristic optimized for a general use

case.

2. sizehint! may control this preallocation. Again, it typically does this for types in Base.

3. empty! is nearly costless (and O(1)) for types that support this kind of preallocation.

source

Base.keytype – Function.

keytype(T::Type{<:AbstractArray})

keytype(A::AbstractArray)

Return the key type of an array. This is equal to the eltype of the result of keys(...), and is provided

mainly for compatibility with the dictionary interface.

Examples

julia> keytype([1, 2, 3]) == Int

true

julia> keytype([1 2; 3 4])

CartesianIndex{2}

Julia 1.2

For arrays, this function requires at least Julia 1.2.

source

keytype(type)

Get the key type of a dictionary type. Behaves similarly to eltype.

Examples

julia> keytype(Dict(Int32(1) => "foo"))

Int32

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L1325-L1347
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L168-L187
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractdict.jl#L291-L301

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 701

Base.valtype – Function.

valtype(T::Type{<:AbstractArray})

valtype(A::AbstractArray)

Return the value type of an array. This is identical to eltype and is provided mainly for compatibility

with the dictionary interface.

Examples

julia> valtype(["one", "two", "three"])

String

Julia 1.2

For arrays, this function requires at least Julia 1.2.

source

valtype(type)

Get the value type of a dictionary type. Behaves similarly to eltype.

Examples

julia> valtype(Dict(Int32(1) => "foo"))

String

source

Fully implemented by:

• IdDict

• Dict

• WeakKeyDict

Partially implemented by:

• BitSet

• Set

• EnvDict

• Array

• BitArray

• ImmutableDict

• Iterators.Pairs

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L197-L212
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractdict.jl#L305-L315

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 702

42.7 Set-Like Collections

Base.AbstractSet – Type.

AbstractSet{T}

Supertype for set-like types whose elements are of type T. Set, BitSet and other types are subtypes

of this.

source

Base.Set – Type.

Set{T} <: AbstractSet{T}

Sets are mutable containers that provide fast membership testing.

Sets have efficient implementations of set operations such as in, union and intersect. Elements in

a Set are unique, as determined by the elements' definition of isequal. The order of elements in a

Set is an implementation detail and cannot be relied on.

See also: AbstractSet, BitSet, Dict, push!, empty!, union!, in, isequal

Examples

julia> s = Set("aaBca")

Set{Char} with 3 elements:

'a'

'c'

'B'

julia> push!(s, 'b')

Set{Char} with 4 elements:

'a'

'b'

'B'

'c'

julia> s = Set([NaN, 0.0, 1.0, 2.0]);

julia> -0.0 in s # isequal(0.0, -0.0) is false

false

julia> NaN in s # isequal(NaN, NaN) is true

true

source

Base.BitSet – Type.

BitSet([itr])

Construct a sorted set of Ints generated by the given iterable object, or an empty set. Implemented

as a bit string, and therefore designed for dense integer sets. If the set will be sparse (for example,

holding a few very large integers), use Set instead.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/essentials.jl#L18-L23
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/set.jl#L3-L38
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/bitset.jl#L21-L28

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 703

Base.union – Function.

union(s, itrs...)

∪(s, itrs...)

Construct an object containing all distinct elements from all of the arguments.

The first argument controls what kind of container is returned. If this is an array, it maintains the order

in which elements first appear.

Unicode ∪ can be typed by writing \cup then pressing tab in the Julia REPL, and in many editors. This

is an infix operator, allowing s ∪ itr.

See also unique, intersect, isdisjoint, vcat, Iterators.flatten.

Examples

julia> union([1, 2], [3])

3-element Vector{Int64}:

1

2

3

julia> union([4 2 3 4 4], 1:3, 3.0)

4-element Vector{Float64}:

4.0

2.0

3.0

1.0

julia> (0, 0.0) ∪ (-0.0, NaN)

3-element Vector{Real}:

0

-0.0

NaN

julia> union(Set([1, 2]), 2:3)

Set{Int64} with 3 elements:

2

3

1

source

Base.union! – Function.

union!(s::Union{AbstractSet,AbstractVector}, itrs...)

Construct the union of passed in sets and overwrite s with the result. Maintain order with arrays.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other

argument.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractset.jl#L13-L54

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 704

julia> a = Set([3, 4, 5]);

julia> union!(a, 1:2:7);

julia> a

Set{Int64} with 5 elements:

5

4

7

3

1

source

Base.intersect – Function.

intersect(s, itrs...)

∩(s, itrs...)

Construct the set containing those elements which appear in all of the arguments.

The first argument controls what kind of container is returned. If this is an array, it maintains the order

in which elements first appear.

Unicode ∩ can be typed by writing \cap then pressing tab in the Julia REPL, and in many editors. This

is an infix operator, allowing s ∩ itr.

See also setdiff, isdisjoint, issubset, issetequal.

Julia 1.8

As of Julia 1.8 intersect returns a result with the eltype of the type-promoted eltypes of the

two inputs

Examples

julia> intersect([1, 2, 3], [3, 4, 5])

1-element Vector{Int64}:

3

julia> intersect([1, 4, 4, 5, 6], [6, 4, 6, 7, 8])

2-element Vector{Int64}:

4

6

julia> intersect(1:16, 7:99)

7:16

julia> (0, 0.0) ∩ (-0.0, 0)

1-element Vector{Real}:

0

julia> intersect(Set([1, 2]), BitSet([2, 3]), 1.0:10.0)

Set{Float64} with 1 element:

2.0

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractset.jl#L62-L84

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 705

source

Base.setdiff – Function.

setdiff(s, itrs...)

Construct the set of elements in s but not in any of the iterables in itrs. Maintain order with arrays.

See also setdiff!, union and intersect.

Examples

julia> setdiff([1,2,3], [3,4,5])

2-element Vector{Int64}:

1

2

source

Base.setdiff! – Function.

setdiff!(s, itrs...)

Remove from set s (in-place) each element of each iterable from itrs. Maintain order with arrays.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other

argument.

Examples

julia> a = Set([1, 3, 4, 5]);

julia> setdiff!(a, 1:2:6);

julia> a

Set{Int64} with 1 element:

4

source

Base.symdiff – Function.

symdiff(s, itrs...)

Construct the symmetric difference of elements in the passed in sets. When s is not an AbstractSet,

the order is maintained.

See also symdiff!, setdiff, union and intersect.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractset.jl#L112-L152
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractset.jl#L200-L215
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractset.jl#L219-L237

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 706

julia> symdiff([1,2,3], [3,4,5], [4,5,6])

3-element Vector{Int64}:

1

2

6

julia> symdiff([1,2,1], [2, 1, 2])

Int64[]

source

Base.symdiff! – Function.

symdiff!(s::Union{AbstractSet,AbstractVector}, itrs...)

Construct the symmetric difference of the passed in sets, and overwrite s with the result. When s is

an array, the order is maintained. Note that in this case the multiplicity of elements matters.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other

argument.

source

Base.intersect! – Function.

intersect!(s::Union{AbstractSet,AbstractVector}, itrs...)

Intersect all passed in sets and overwrite s with the result. Maintain order with arrays.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other

argument.

source

Base.issubset – Function.

issubset(a, b) -> Bool

⊆(a, b) -> Bool

⊇(b, a) -> Bool

Determine whether every element of a is also in b, using in.

See also ⊊, ⊈, ∩, ∪, contains.

Examples

julia> issubset([1, 2], [1, 2, 3])

true

julia> [1, 2, 3] ⊆ [1, 2]

false

julia> [1, 2, 3] ⊇ [1, 2]

true

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractset.jl#L252-L271
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractset.jl#L275-L283
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractset.jl#L182-L189

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 707

source

Base.:⊈ – Function.

⊈(a, b) -> Bool

⊉(b, a) -> Bool

Negation of ⊆ and ⊇, i.e. checks that a is not a subset of b.

See also issubset (⊆), ⊊.

Examples

julia> (1, 2) ⊈ (2, 3)

true

julia> (1, 2) ⊈ (1, 2, 3)

false

source

Base.:⊊ – Function.

⊊(a, b) -> Bool

⊋(b, a) -> Bool

Determines if a is a subset of, but not equal to, b.

See also issubset (⊆), ⊈.

Examples

julia> (1, 2) ⊊ (1, 2, 3)

true

julia> (1, 2) ⊊ (1, 2)

false

source

Base.issetequal – Function.

issetequal(a, b) -> Bool

Determine whether a and b have the same elements. Equivalent to a ⊆ b && b ⊆ a but more efficient

when possible.

See also: isdisjoint, union.

Examples

julia> issetequal([1, 2], [1, 2, 3])

false

julia> issetequal([1, 2], [2, 1])

true

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractset.jl#L304-L324
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractset.jl#L394-L410
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractset.jl#L367-L383

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 708

source

Base.isdisjoint – Function.

isdisjoint(a, b) -> Bool

Determine whether the collections a and b are disjoint. Equivalent to isempty(a ∩ b) but more effi-

cient when possible.

See also: intersect, isempty, issetequal.

Julia 1.5

This function requires at least Julia 1.5.

Examples

julia> isdisjoint([1, 2], [2, 3, 4])

false

julia> isdisjoint([3, 1], [2, 4])

true

source

Fully implemented by:

• BitSet

• Set

Partially implemented by:

• Array

42.8 Dequeues

Base.push! – Function.

push!(collection, items...) -> collection

Insert one or more items in collection. If collection is an ordered container, the items are inserted

at the end (in the given order).

Examples

julia> push!([1, 2, 3], 4, 5, 6)

6-element Vector{Int64}:

1

2

3

4

5

6

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractset.jl#L418-L434
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractset.jl#L453-L472

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 709

If collection is ordered, use append! to add all the elements of another collection to it. The result of

the preceding example is equivalent to append!([1, 2, 3], [4, 5, 6]). For AbstractSet objects,

union! can be used instead.

See sizehint! for notes about the performance model.

See also pushfirst!.

source

Base.pop! – Function.

pop!(collection) -> item

Remove an item in collection and return it. If collection is an ordered container, the last item is

returned; for unordered containers, an arbitrary element is returned.

See also: popfirst!, popat!, delete!, deleteat!, splice!, and push!.

Examples

julia> A=[1, 2, 3]

3-element Vector{Int64}:

1

2

3

julia> pop!(A)

3

julia> A

2-element Vector{Int64}:

1

2

julia> S = Set([1, 2])

Set{Int64} with 2 elements:

2

1

julia> pop!(S)

2

julia> S

Set{Int64} with 1 element:

1

julia> pop!(Dict(1=>2))

1 => 2

source

pop!(collection, key[, default])

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L1088-L1113
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L1355-L1395

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 710

Delete and return the mapping for key if it exists in collection, otherwise return default, or throw

an error if default is not specified.

Examples

julia> d = Dict("a"=>1, "b"=>2, "c"=>3);

julia> pop!(d, "a")

1

julia> pop!(d, "d")

ERROR: KeyError: key "d" not found

Stacktrace:

[...]

julia> pop!(d, "e", 4)

4

source

Base.popat! – Function.

popat!(a::Vector, i::Integer, [default])

Remove the item at the given i and return it. Subsequent items are shifted to fill the resulting gap.

When i is not a valid index for a, return default, or throw an error if default is not specified.

See also: pop!, popfirst!, deleteat!, splice!.

Julia 1.5

This function is available as of Julia 1.5.

Examples

julia> a = [4, 3, 2, 1]; popat!(a, 2)

3

julia> a

3-element Vector{Int64}:

4

2

1

julia> popat!(a, 4, missing)

missing

julia> popat!(a, 4)

ERROR: BoundsError: attempt to access 3-element Vector{Int64} at index [4]

[...]

source

Base.pushfirst! – Function.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/dict.jl#L607-L628
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L1405-L1436

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 711

pushfirst!(collection, items...) -> collection

Insert one or more items at the beginning of collection.

This function is called unshift in many other programming languages.

Examples

julia> pushfirst!([1, 2, 3, 4], 5, 6)

6-element Vector{Int64}:

5

6

1

2

3

4

source

Base.popfirst! – Function.

popfirst!(collection) -> item

Remove the first item from collection.

This function is called shift in many other programming languages.

See also: pop!, popat!, delete!.

Examples

julia> A = [1, 2, 3, 4, 5, 6]

6-element Vector{Int64}:

1

2

3

4

5

6

julia> popfirst!(A)

1

julia> A

5-element Vector{Int64}:

2

3

4

5

6

source

Base.insert! – Function.

insert!(a::Vector, index::Integer, item)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L1453-L1471
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L1496-L1527

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 712

Insert an item into a at the given index. index is the index of item in the resulting a.

See also: push!, replace, popat!, splice!.

Examples

julia> insert!(Any[1:6;], 3, "here")

7-element Vector{Any}:

1

2

"here"

3

4

5

6

source

Base.deleteat! – Function.

deleteat!(a::Vector, i::Integer)

Remove the item at the given i and return the modified a. Subsequent items are shifted to fill the

resulting gap.

See also: keepat!, delete!, popat!, splice!.

Examples

julia> deleteat!([6, 5, 4, 3, 2, 1], 2)

5-element Vector{Int64}:

6

4

3

2

1

source

deleteat!(a::Vector, inds)

Remove the items at the indices given by inds, and return the modified a. Subsequent items are

shifted to fill the resulting gap.

inds can be either an iterator or a collection of sorted and unique integer indices, or a boolean vector

of the same length as a with true indicating entries to delete.

Examples

julia> deleteat!([6, 5, 4, 3, 2, 1], 1:2:5)

3-element Vector{Int64}:

5

3

1

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L1537-L1557
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L1567-L1585

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 713

julia> deleteat!([6, 5, 4, 3, 2, 1], [true, false, true, false, true, false])

3-element Vector{Int64}:

5

3

1

julia> deleteat!([6, 5, 4, 3, 2, 1], (2, 2))

ERROR: ArgumentError: indices must be unique and sorted

Stacktrace:

[...]

source

Base.keepat! – Function.

keepat!(a::Vector, inds)

keepat!(a::BitVector, inds)

Remove the items at all the indices which are not given by inds, and return the modified a. Items

which are kept are shifted to fill the resulting gaps.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other

argument.

inds must be an iterator of sorted and unique integer indices. See also deleteat!.

Julia 1.7

This function is available as of Julia 1.7.

Examples

julia> keepat!([6, 5, 4, 3, 2, 1], 1:2:5)

3-element Vector{Int64}:

6

4

2

source

keepat!(a::Vector, m::AbstractVector{Bool})

keepat!(a::BitVector, m::AbstractVector{Bool})

The in-place version of logical indexing a = a[m]. That is, keepat!(a, m) on vectors of equal length

a and m will remove all elements from a for which m at the corresponding index is false.

Examples

julia> a = [:a, :b, :c];

julia> keepat!(a, [true, false, true])

2-element Vector{Symbol}:

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L1604-L1632
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L2759-L2783

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 714

:a

:c

julia> a

2-element Vector{Symbol}:

:a

:c

source

Base.splice! – Function.

splice!(a::Vector, index::Integer, [replacement]) -> item

Remove the item at the given index, and return the removed item. Subsequent items are shifted left

to fill the resulting gap. If specified, replacement values from an ordered collection will be spliced in

place of the removed item.

See also: replace, delete!, deleteat!, pop!, popat!.

Examples

julia> A = [6, 5, 4, 3, 2, 1]; splice!(A, 5)

2

julia> A

5-element Vector{Int64}:

6

5

4

3

1

julia> splice!(A, 5, -1)

1

julia> A

5-element Vector{Int64}:

6

5

4

3

-1

julia> splice!(A, 1, [-1, -2, -3])

6

julia> A

7-element Vector{Int64}:

-1

-2

-3

5

4

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L2786-L2808

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 715

3

-1

To insert replacement before an index n without removing any items, use splice!(collection,

n:n-1, replacement).

source

splice!(a::Vector, indices, [replacement]) -> items

Remove items at specified indices, and return a collection containing the removed items. Subsequent

items are shifted left to fill the resulting gaps. If specified, replacement values from an ordered collec-

tion will be spliced in place of the removed items; in this case, indicesmust be a AbstractUnitRange.

To insert replacement before an index n without removing any items, use splice!(collection,

n:n-1, replacement).

Warning

Behavior can be unexpected when any mutated argument shares memory with any other

argument.

Julia 1.5

Prior to Julia 1.5, indices must always be a UnitRange.

Julia 1.8

Prior to Julia 1.8, indices must be a UnitRange if splicing in replacement values.

Examples

julia> A = [-1, -2, -3, 5, 4, 3, -1]; splice!(A, 4:3, 2)

Int64[]

julia> A

8-element Vector{Int64}:

-1

-2

-3

2

5

4

3

-1

source

Base.resize! – Function.

resize!(a::Vector, n::Integer) -> Vector

Resize a to contain n elements. If n is smaller than the current collection length, the first n elements

will be retained. If n is larger, the new elements are not guaranteed to be initialized.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L1705-L1755
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L1774-L1810

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 716

julia> resize!([6, 5, 4, 3, 2, 1], 3)

3-element Vector{Int64}:

6

5

4

julia> a = resize!([6, 5, 4, 3, 2, 1], 8);

julia> length(a)

8

julia> a[1:6]

6-element Vector{Int64}:

6

5

4

3

2

1

source

Base.append! – Function.

append!(collection, collections...) -> collection.

For an ordered container collection, add the elements of each collections to the end of it.

Julia 1.6

Specifying multiple collections to be appended requires at least Julia 1.6.

Examples

julia> append!([1], [2, 3])

3-element Vector{Int64}:

1

2

3

julia> append!([1, 2, 3], [4, 5], [6])

6-element Vector{Int64}:

1

2

3

4

5

6

Use push! to add individual items to collection which are not already themselves in another collec-

tion. The result of the preceding example is equivalent to push!([1, 2, 3], 4, 5, 6).

See sizehint! for notes about the performance model.

See also vcat for vectors, union! for sets, and prepend! and pushfirst! for the opposite order.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L1282-L1311

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 717

source

Base.prepend! – Function.

prepend!(a::Vector, collections...) -> collection

Insert the elements of each collections to the beginning of a.

When collections specifies multiple collections, order is maintained: elements of collections[1]

will appear leftmost in a, and so on.

Julia 1.6

Specifying multiple collections to be prepended requires at least Julia 1.6.

Examples

julia> prepend!([3], [1, 2])

3-element Vector{Int64}:

1

2

3

julia> prepend!([6], [1, 2], [3, 4, 5])

6-element Vector{Int64}:

1

2

3

4

5

6

source

Fully implemented by:

• Vector (a.k.a. 1-dimensional Array)

• BitVector (a.k.a. 1-dimensional BitArray)

42.9 Utility Collections

Core.Pair – Type.

Pair(x, y)

x => y

Construct a Pair object with type Pair{typeof(x), typeof(y)}. The elements are stored in the fields

first and second. They can also be accessed via iteration (but a Pair is treated as a single "scalar"

for broadcasting operations).

See also Dict.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L1141-L1176
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L1213-L1241

CHAPTER 42. COLLECTIONS AND DATA STRUCTURES 718

julia> p = "foo" => 7

"foo" => 7

julia> typeof(p)

Pair{String, Int64}

julia> p.first

"foo"

julia> for x in p

println(x)

end

foo

7

julia> replace.(["xops", "oxps"], "x" => "o")

2-element Vector{String}:

"oops"

"oops"

source

Base.Pairs – Type.

Iterators.Pairs(values, keys) <: AbstractDict{eltype(keys), eltype(values)}

Transforms an indexable container into a Dictionary-view of the same data. Modifying the key-space

of the underlying data may invalidate this object.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/pair.jl#L5-L37
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/essentials.jl#L348-L353

Chapter 43

Mathematics

43.1 Mathematical Operators

Base.:- – Method.

-(x)

Unary minus operator.

See also: abs, flipsign.

Examples

julia> -1

-1

julia> -(2)

-2

julia> -[1 2; 3 4]

2×2 Matrix{Int64}:

-1 -2

-3 -4

source

Base.:+ – Function.

dt::Date + t::Time -> DateTime

The addition of a Date with a Time produces a DateTime. The hour, minute, second, and millisecond

parts of the Time are used along with the year, month, and day of the Date to create the new DateTime.

Non-zero microseconds or nanoseconds in the Time type will result in an InexactError being thrown.

+(x, y...)

Addition operator. x+y+z+... calls this function with all arguments, i.e. +(x, y, z, ...).

Examples

719

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2653-L2673

CHAPTER 43. MATHEMATICS 720

julia> 1 + 20 + 4

25

julia> +(1, 20, 4)

25

source

Base.:- – Method.

-(x, y)

Subtraction operator.

Examples

julia> 2 - 3

-1

julia> -(2, 4.5)

-2.5

source

Base.:* – Method.

*(x, y...)

Multiplication operator. x*y*z*... calls this function with all arguments, i.e. *(x, y, z, ...).

Examples

julia> 2 * 7 * 8

112

julia> *(2, 7, 8)

112

source

Base.:/ – Function.

/(x, y)

Right division operator: multiplication of x by the inverse of y on the right. Gives floating-point results

for integer arguments.

Examples

julia> 1/2

0.5

julia> 4/2

2.0

julia> 4.5/2

2.25

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2637-L2650
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2676-L2689
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2692-L2705

CHAPTER 43. MATHEMATICS 721

source

A / B

Matrix right-division: A / B is equivalent to (B' \ A')'where \ is the left-division operator. For square

matrices, the result X is such that A == X*B.

See also: rdiv!.

Examples

julia> A = Float64[1 4 5; 3 9 2]; B = Float64[1 4 2; 3 4 2; 8 7 1];

julia> X = A / B

2×3 Matrix{Float64}:

-0.65 3.75 -1.2

3.25 -2.75 1.0

julia> isapprox(A, X*B)

true

julia> isapprox(X, A*pinv(B))

true

Base.:\ – Method.

\(x, y)

Left division operator: multiplication of y by the inverse of x on the left. Gives floating-point results for

integer arguments.

Examples

julia> 3 \ 6

2.0

julia> inv(3) * 6

2.0

julia> A = [4 3; 2 1]; x = [5, 6];

julia> A \ x

2-element Vector{Float64}:

6.5

-7.0

julia> inv(A) * x

2-element Vector{Float64}:

6.5

-7.0

source

Base.:^ – Method.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2708-L2725
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L598-L624

CHAPTER 43. MATHEMATICS 722

^(x, y)

Exponentiation operator. If x is a matrix, computes matrix exponentiation.

If y is an Int literal (e.g. 2 in x^2 or -3 in x^-3), the Julia code x^y is transformed by the compiler to

Base.literal_pow(^, x, Val(y)), to enable compile-time specialization on the value of the expo-

nent. (As a default fallback we have Base.literal_pow(^, x, Val(y)) = ^(x,y), where usually ^

== Base.^ unless ^ has been defined in the calling namespace.) If y is a negative integer literal, then

Base.literal_pow transforms the operation to inv(x)^-y by default, where -y is positive.

Examples

julia> 3^5

243

julia> A = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> A^3

2×2 Matrix{Int64}:

37 54

81 118

source

Base.fma – Function.

fma(x, y, z)

Computes x*y+z without rounding the intermediate result x*y. On some systems this is significantly

more expensive than x*y+z. fma is used to improve accuracy in certain algorithms. See muladd.

source

Base.muladd – Function.

muladd(x, y, z)

Combined multiply-add: computes x*y+z, but allowing the add and multiply to be merged with each

other or with surrounding operations for performance. For example, this may be implemented as an

fma if the hardware supports it efficiently. The result can be different on different machines and can

also be different on the same machine due to constant propagation or other optimizations. See fma.

Examples

julia> muladd(3, 2, 1)

7

julia> 3 * 2 + 1

7

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/promotion.jl#L427-L455
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/floatfuncs.jl#L353-L359
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L1497-L1516

CHAPTER 43. MATHEMATICS 723

muladd(A, y, z)

Combined multiply-add, A*y .+ z, for matrix-matrix or matrix-vector multiplication. The result is al-

ways the same size as A*y, but z may be smaller, or a scalar.

Julia 1.6

These methods require Julia 1.6 or later.

Examples

julia> A=[1.0 2.0; 3.0 4.0]; B=[1.0 1.0; 1.0 1.0]; z=[0, 100];

julia> muladd(A, B, z)

2×2 Matrix{Float64}:

3.0 3.0

107.0 107.0

Base.inv – Method.

inv(x)

Return the multiplicative inverse of x, such that x*inv(x) or inv(x)*x yields one(x) (the multiplicative

identity) up to roundoff errors.

If x is a number, this is essentially the same as one(x)/x, but for some types inv(x) may be slightly

more efficient.

Examples

julia> inv(2)

0.5

julia> inv(1 + 2im)

0.2 - 0.4im

julia> inv(1 + 2im) * (1 + 2im)

1.0 + 0.0im

julia> inv(2//3)

3//2

Julia 1.2

inv(::Missing) requires at least Julia 1.2.

source

Base.div – Function.

div(x, y)

÷(x, y)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/number.jl#L228-L254

CHAPTER 43. MATHEMATICS 724

The quotient from Euclidean (integer) division. Generally equivalent to a mathematical operation x/y

without a fractional part.

See also: cld, fld, rem, divrem.

Examples

julia> 9 ÷ 4

2

julia> -5 ÷ 3

-1

julia> 5.0 ÷ 2

2.0

julia> div.(-5:5, 3)'

1×11 adjoint(::Vector{Int64}) with eltype Int64:

-1 -1 -1 0 0 0 0 0 1 1 1

source

Base.fld – Function.

fld(x, y)

Largest integer less than or equal to x / y. Equivalent to div(x, y, RoundDown).

See also div, cld, fld1.

Examples

julia> fld(7.3, 5.5)

1.0

julia> fld.(-5:5, 3)'

1×11 adjoint(::Vector{Int64}) with eltype Int64:

-2 -2 -1 -1 -1 0 0 0 1 1 1

Because fld(x, y) implements strictly correct floored rounding based on the true value of floating-

point numbers, unintuitive situations can arise. For example:

julia> fld(6.0, 0.1)

59.0

julia> 6.0 / 0.1

60.0

julia> 6.0 / big(0.1)

59.99999999999999666933092612453056361837965690217069245739573412231113406246995

What is happening here is that the true value of the floating-point number written as 0.1 is slightly

larger than the numerical value 1/10 while 6.0 represents the number 6 precisely. Therefore the true

value of 6.0 / 0.1 is slightly less than 60. When doing division, this is rounded to precisely 60.0, but

fld(6.0, 0.1) always takes the floor of the true value, so the result is 59.0.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L776-L800
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/div.jl#L107-L138

CHAPTER 43. MATHEMATICS 725

Base.cld – Function.

cld(x, y)

Smallest integer larger than or equal to x / y. Equivalent to div(x, y, RoundUp).

See also div, fld.

Examples

julia> cld(5.5, 2.2)

3.0

julia> cld.(-5:5, 3)'

1×11 adjoint(::Vector{Int64}) with eltype Int64:

-1 -1 -1 0 0 0 1 1 1 2 2

source

Base.mod – Function.

mod(x::Integer, r::AbstractUnitRange)

Find y in the range r such that xy(modn), where n = length(r), i.e. y = mod(x - first(r), n) +

first(r).

See also mod1.

Examples

julia> mod(0, Base.OneTo(3)) # mod1(0, 3)

3

julia> mod(3, 0:2) # mod(3, 3)

0

Julia 1.3

This method requires at least Julia 1.3.

source

mod(x, y)

rem(x, y, RoundDown)

The reduction of x modulo y, or equivalently, the remainder of x after floored division by y, i.e. x -

y*fld(x,y) if computed without intermediate rounding.

The result will have the same sign as y, and magnitude less than abs(y) (with some exceptions, see

note below).

Note

When used with floating point values, the exact result may not be representable by the

type, and so rounding error may occur. In particular, if the exact result is very close to y,

then it may be rounded to y.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/div.jl#L141-L157
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/range.jl#L1488-L1507

CHAPTER 43. MATHEMATICS 726

See also: rem, div, fld, mod1, invmod.

julia> mod(8, 3)

2

julia> mod(9, 3)

0

julia> mod(8.9, 3)

2.9000000000000004

julia> mod(eps(), 3)

2.220446049250313e-16

julia> mod(-eps(), 3)

3.0

julia> mod.(-5:5, 3)'

1×11 adjoint(::Vector{Int64}) with eltype Int64:

1 2 0 1 2 0 1 2 0 1 2

source

rem(x::Integer, T::Type{<:Integer}) -> T

mod(x::Integer, T::Type{<:Integer}) -> T

%(x::Integer, T::Type{<:Integer}) -> T

Find y::T such that x ≡ y (mod n), where n is the number of integers representable in T, and y is an

integer in [typemin(T),typemax(T)]. If T can represent any integer (e.g. T == BigInt), then this

operation corresponds to a conversion to T.

Examples

julia> x = 129 % Int8

-127

julia> typeof(x)

Int8

julia> x = 129 % BigInt

129

julia> typeof(x)

BigInt

source

Base.rem – Function.

rem(x, y)

%(x, y)

Remainder from Euclidean division, returning a value of the same sign as x, and smaller in magnitude

than y. This value is always exact.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/int.jl#L246-L284
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/int.jl#L595-L619

CHAPTER 43. MATHEMATICS 727

See also: div, mod, mod1, divrem.

Examples

julia> x = 15; y = 4;

julia> x % y

3

julia> x == div(x, y) * y + rem(x, y)

true

julia> rem.(-5:5, 3)'

1×11 adjoint(::Vector{Int64}) with eltype Int64:

-2 -1 0 -2 -1 0 1 2 0 1 2

source

Base.Math.rem2pi – Function.

rem2pi(x, r::RoundingMode)

Compute the remainder of x after integer division by 2π, with the quotient rounded according to the

rounding mode r. In other words, the quantity

x - π2*round(xπ/(2),r)

without any intermediate rounding. This internally uses a high precision approximation of 2π, and so

will give a more accurate result than rem(x,2π,r)

• if r == RoundNearest, then the result is in the interval [−,]. This will generally be the most
accurate result. See also RoundNearest.

• if r == RoundToZero, then the result is in the interval [0, 2] if x is positive,. or [−2, 0] otherwise.
See also RoundToZero.

• if r == RoundDown, then the result is in the interval [0, 2]. See also RoundDown.

• if r == RoundUp, then the result is in the interval [−2, 0]. See also RoundUp.

Examples

julia> rem2pi(7pi/4, RoundNearest)

-0.7853981633974485

julia> rem2pi(7pi/4, RoundDown)

5.497787143782138

source

Base.Math.mod2pi – Function.

mod2pi(x)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L749-L772
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L1312-L1342

CHAPTER 43. MATHEMATICS 728

Modulus after division by 2π, returning in the range [0, 2).

This function computes a floating point representation of the modulus after division by numerically

exact 2π, and is therefore not exactly the same as mod(x,2π), which would compute the modulus of x

relative to division by the floating-point number 2π.

Note

Depending on the format of the input value, the closest representable value to 2π may

be less than 2π. For example, the expression mod2pi(2π) will not return 0, because the

intermediate value of 2*π is a Float64 and 2*Float64(π) < 2*big(π). See rem2pi for

more refined control of this behavior.

Examples

julia> mod2pi(9*pi/4)

0.7853981633974481

source

Base.divrem – Function.

divrem(x, y, r::RoundingMode=RoundToZero)

The quotient and remainder from Euclidean division. Equivalent to (div(x, y, r), rem(x, y, r)).

Equivalently, with the default value of r, this call is equivalent to (x ÷ y, x % y).

See also: fldmod, cld.

Examples

julia> divrem(3, 7)

(0, 3)

julia> divrem(7, 3)

(2, 1)

source

Base.fldmod – Function.

fldmod(x, y)

The floored quotient andmodulus after division. A convenience wrapper for divrem(x, y, RoundDown).

Equivalent to (fld(x, y), mod(x, y)).

See also: fld, cld, fldmod1.

source

Base.fld1 – Function.

fld1(x, y)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L1472-L1492
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/div.jl#L161-L178
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/div.jl#L266-L273

CHAPTER 43. MATHEMATICS 729

Flooring division, returning a value consistent with mod1(x,y)

See also mod1, fldmod1.

Examples

julia> x = 15; y = 4;

julia> fld1(x, y)

4

julia> x == fld(x, y) * y + mod(x, y)

true

julia> x == (fld1(x, y) - 1) * y + mod1(x, y)

true

source

Base.mod1 – Function.

mod1(x, y)

Modulus after flooring division, returning a value r such that mod(r, y) == mod(x, y) in the range

(0, y] for positive y and in the range [y, 0) for negative y.

With integer arguments and positive y, this is equal to mod(x, 1:y), and hence natural for 1-based

indexing. By comparison, mod(x, y) == mod(x, 0:y-1) is natural for computations with offsets or

strides.

See also mod, fld1, fldmod1.

Examples

julia> mod1(4, 2)

2

julia> mod1.(-5:5, 3)'

1×11 adjoint(::Vector{Int64}) with eltype Int64:

1 2 3 1 2 3 1 2 3 1 2

julia> mod1.([-0.1, 0, 0.1, 1, 2, 2.9, 3, 3.1]', 3)

1×8 Matrix{Float64}:

2.9 3.0 0.1 1.0 2.0 2.9 3.0 0.1

source

Base.fldmod1 – Function.

fldmod1(x, y)

Return (fld1(x,y), mod1(x,y)).

See also fld1, mod1.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L833-L853
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L804-L829
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L860-L866

CHAPTER 43. MATHEMATICS 730

Base.:// – Function.

//(num, den)

Divide two integers or rational numbers, giving a Rational result.

Examples

julia> 3 // 5

3//5

julia> (3 // 5) // (2 // 1)

3//10

source

Base.rationalize – Function.

rationalize([T<:Integer=Int,] x; tol::Real=eps(x))

Approximate floating point number x as a Rational number with components of the given integer type.

The result will differ from x by no more than tol.

Examples

julia> rationalize(5.6)

28//5

julia> a = rationalize(BigInt, 10.3)

103//10

julia> typeof(numerator(a))

BigInt

source

Base.numerator – Function.

numerator(x)

Numerator of the rational representation of x.

Examples

julia> numerator(2//3)

2

julia> numerator(4)

4

source

Base.denominator – Function.

denominator(x)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/rational.jl#L48-L61
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/rational.jl#L158-L175
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/rational.jl#L252-L265

CHAPTER 43. MATHEMATICS 731

Denominator of the rational representation of x.

Examples

julia> denominator(2//3)

3

julia> denominator(4)

1

source

Base.:<< – Function.

<<(x, n)

Left bit shift operator, x << n. For n >= 0, the result is x shifted left by n bits, filling with 0s. This is

equivalent to x * 2^n. For n < 0, this is equivalent to x >> -n.

Examples

julia> Int8(3) << 2

12

julia> bitstring(Int8(3))

"00000011"

julia> bitstring(Int8(12))

"00001100"

See also >>, >>>, exp2, ldexp.

source

<<(B::BitVector, n) -> BitVector

Left bit shift operator, B << n. For n >= 0, the result is B with elements shifted n positions backwards,

filling with false values. If n < 0, elements are shifted forwards. Equivalent to B >> -n.

Examples

julia> B = BitVector([true, false, true, false, false])

5-element BitVector:

1

0

1

0

0

julia> B << 1

5-element BitVector:

0

1

0

0

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/rational.jl#L269-L282
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L631-L650

CHAPTER 43. MATHEMATICS 732

0

julia> B << -1

5-element BitVector:

0

1

0

1

0

source

Base.:>> – Function.

>>(x, n)

Right bit shift operator, x >> n. For n >= 0, the result is x shifted right by n bits, filling with 0s if x >=

0, 1s if x < 0, preserving the sign of x. This is equivalent to fld(x, 2^n). For n < 0, this is equivalent

to x << -n.

Examples

julia> Int8(13) >> 2

3

julia> bitstring(Int8(13))

"00001101"

julia> bitstring(Int8(3))

"00000011"

julia> Int8(-14) >> 2

-4

julia> bitstring(Int8(-14))

"11110010"

julia> bitstring(Int8(-4))

"11111100"

See also >>>, <<.

source

>>(B::BitVector, n) -> BitVector

Right bit shift operator, B >> n. For n >= 0, the result is B with elements shifted n positions forward,

filling with false values. If n < 0, elements are shifted backwards. Equivalent to B << -n.

Examples

julia> B = BitVector([true, false, true, false, false])

5-element BitVector:

1

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/bitarray.jl#L1378-L1412
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L666-L695

CHAPTER 43. MATHEMATICS 733

0

1

0

0

julia> B >> 1

5-element BitVector:

0

1

0

1

0

julia> B >> -1

5-element BitVector:

0

1

0

0

0

source

Base.:>>> – Function.

>>>(x, n)

Unsigned right bit shift operator, x >>> n. For n >= 0, the result is x shifted right by n bits, filling with

0s. For n < 0, this is equivalent to x << -n.

For Unsigned integer types, this is equivalent to >>. For Signed integer types, this is equivalent to

signed(unsigned(x) >> n).

Examples

julia> Int8(-14) >>> 2

60

julia> bitstring(Int8(-14))

"11110010"

julia> bitstring(Int8(60))

"00111100"

BigInts are treated as if having infinite size, so no filling is required and this is equivalent to >>.

See also >>, <<.

source

>>>(B::BitVector, n) -> BitVector

Unsigned right bitshift operator, B >>> n. Equivalent to B >> n. See >> for details and examples.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/bitarray.jl#L1340-L1374
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L707-L733
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/bitarray.jl#L1415-L1420

CHAPTER 43. MATHEMATICS 734

Base.bitrotate – Function.

bitrotate(x::Base.BitInteger, k::Integer)

bitrotate(x, k) implements bitwise rotation. It returns the value of xwith its bits rotated left k times.

A negative value of k will rotate to the right instead.

Julia 1.5

This function requires Julia 1.5 or later.

See also: <<, circshift, BitArray.

julia> bitrotate(UInt8(114), 2)

0xc9

julia> bitstring(bitrotate(0b01110010, 2))

"11001001"

julia> bitstring(bitrotate(0b01110010, -2))

"10011100"

julia> bitstring(bitrotate(0b01110010, 8))

"01110010"

source

Base.:: – Function.

:expr

Quote an expression expr, returning the abstract syntax tree (AST) of expr. The AST may be of type

Expr, Symbol, or a literal value. The syntax :identifier evaluates to a Symbol.

See also: Expr, Symbol, Meta.parse

Examples

julia> expr = :(a = b + 2*x)

:(a = b + 2x)

julia> sym = :some_identifier

:some_identifier

julia> value = :0xff

0xff

julia> typeof((expr, sym, value))

Tuple{Expr, Symbol, UInt8}

source

Base.range – Function.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/int.jl#L561-L586
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L709-L732

CHAPTER 43. MATHEMATICS 735

range(start, stop, length)

range(start, stop; length, step)

range(start; length, stop, step)

range(;start, length, stop, step)

Construct a specialized array with evenly spaced elements and optimized storage (an AbstractRange)

from the arguments. Mathematically a range is uniquely determined by any three of start, step, stop

and length. Valid invocations of range are:

• Call range with any three of start, step, stop, length.

• Call range with two of start, stop, length. In this case step will be assumed to be one. If both

arguments are Integers, a UnitRange will be returned.

• Call range with one of stop or length. start and step will be assumed to be one.

See Extended Help for additional details on the returned type.

Examples

julia> range(1, length=100)

1:100

julia> range(1, stop=100)

1:100

julia> range(1, step=5, length=100)

1:5:496

julia> range(1, step=5, stop=100)

1:5:96

julia> range(1, 10, length=101)

1.0:0.09:10.0

julia> range(1, 100, step=5)

1:5:96

julia> range(stop=10, length=5)

6:10

julia> range(stop=10, step=1, length=5)

6:1:10

julia> range(start=1, step=1, stop=10)

1:1:10

julia> range(; length = 10)

Base.OneTo(10)

julia> range(; stop = 6)

Base.OneTo(6)

julia> range(; stop = 6.5)

1.0:1.0:6.0

CHAPTER 43. MATHEMATICS 736

If length is not specified and stop - start is not an integer multiple of step, a range that ends before

stop will be produced.

julia> range(1, 3.5, step=2)

1.0:2.0:3.0

Special care is taken to ensure intermediate values are computed rationally. To avoid this induced

overhead, see the LinRange constructor.

Julia 1.1

stop as a positional argument requires at least Julia 1.1.

Julia 1.7

The versions without keyword arguments and start as a keyword argument require at least

Julia 1.7.

Julia 1.8

The versions with stop as a sole keyword argument, or length as a sole keyword argument

require at least Julia 1.8.

Extended Help

range will produce a Base.OneTo when the arguments are Integers and

• Only length is provided

• Only stop is provided

range will produce a UnitRange when the arguments are Integers and

• Only start and stop are provided

• Only length and stop are provided

A UnitRange is not produced if step is provided even if specified as one.

source

Base.OneTo – Type.

Base.OneTo(n)

Define an AbstractUnitRange that behaves like 1:n, with the added distinction that the lower limit is

guaranteed (by the type system) to be 1.

source

Base.StepRangeLen – Type.

StepRangeLen(ref::R, step::S, len, [offset=1]) where { R,S}

StepRangeLen{T,R,S}(ref::R, step::S, len, [offset=1]) where {T,R,S}

StepRangeLen{T,R,S,L}(ref::R, step::S, len, [offset=1]) where {T,R,S,L}

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/range.jl#L58-L144
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/range.jl#L442-L448

CHAPTER 43. MATHEMATICS 737

A range r where r[i] produces values of type T (in the first form, T is deduced automatically), param-

eterized by a reference value, a step, and the length. By default ref is the starting value r[1], but

alternatively you can supply it as the value of r[offset] for some other index 1 <= offset <= len.

The syntax a:b or a:b:c, where any of a, b, or c are floating-point numbers, creates a StepRangeLen.

Julia 1.7

The 4th type parameter L requires at least Julia 1.7.

source

Base.:== – Function.

==(x, y)

Generic equality operator. Falls back to ===. Should be implemented for all types with a notion of

equality, based on the abstract value that an instance represents. For example, all numeric types are

compared by numeric value, ignoring type. Strings are compared as sequences of characters, ignoring

encoding. For collections, == is generally called recursively on all contents, though other properties

(like the shape for arrays) may also be taken into account.

This operator follows IEEE semantics for floating-point numbers: 0.0 == -0.0 and NaN != NaN.

The result is of type Bool, except when one of the operands is missing, in which case missing is re-

turned (three-valued logic). For collections, missing is returned if at least one of the operands contains

a missing value and all non-missing values are equal. Use isequal or === to always get a Bool result.

Implementation

New numeric types should implement this function for two arguments of the new type, and handle

comparison to other types via promotion rules where possible.

isequal falls back to ==, so new methods of == will be used by the Dict type to compare keys. If your

type will be used as a dictionary key, it should therefore also implement hash.

If some type defines ==, isequal, and isless then it should also implement < to ensure consistency

of comparisons.

source

Base.:!= – Function.

!=(x, y)

≠(x,y)

Not-equals comparison operator. Always gives the opposite answer as ==.

Implementation

New types should generally not implement this, and rely on the fallback definition !=(x,y) = !(x==y)

instead.

Examples

julia> 3 != 2

true

julia> "foo" ≠ "foo"

false

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/range.jl#L473-L488
https://en.wikipedia.org/wiki/Three-valued_logic
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L48-L78

CHAPTER 43. MATHEMATICS 738

source

!=(x)

Create a function that compares its argument to x using !=, i.e. a function equivalent to y -> y != x.

The returned function is of type Base.Fix2{typeof(!=)}, which can be used to implement specialized

methods.

Julia 1.2

This functionality requires at least Julia 1.2.

source

Base.:!== – Function.

!==(x, y)

≢(x,y)

Always gives the opposite answer as ===.

Examples

julia> a = [1, 2]; b = [1, 2];

julia> a ≢ b

true

julia> a ≢ a

false

source

Base.:< – Function.

<(x, y)

Less-than comparison operator. Falls back to isless. Because of the behavior of floating-point NaN

values, this operator implements a partial order.

Implementation

New types with a canonical partial order should implement this function for two arguments of the new

type. Types with a canonical total order should implement isless instead.

See also isunordered.

Examples

julia> 'a' < 'b'

true

julia> "abc" < "abd"

true

julia> 5 < 3

false

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L257-L275
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L1159-L1169
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L306-L322

CHAPTER 43. MATHEMATICS 739

source

<(x)

Create a function that compares its argument to x using <, i.e. a function equivalent to y -> y < x.

The returned function is of type Base.Fix2{typeof(<)}, which can be used to implement specialized

methods.

Julia 1.2

This functionality requires at least Julia 1.2.

source

Base.:<= – Function.

<=(x, y)

≤(x,y)

Less-than-or-equals comparison operator. Falls back to (x < y) | (x == y).

Examples

julia> 'a' <= 'b'

true

julia> 7 ≤ 7 ≤ 9

true

julia> "abc" ≤ "abc"

true

julia> 5 <= 3

false

source

<=(x)

Create a function that compares its argument to x using <=, i.e. a function equivalent to y -> y <= x.

The returned function is of type Base.Fix2{typeof(<=)}, which can be used to implement specialized

methods.

Julia 1.2

This functionality requires at least Julia 1.2.

source

Base.:> – Function.

>(x, y)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L326-L351
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L1211-L1221
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L380-L400
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L1185-L1195

CHAPTER 43. MATHEMATICS 740

Greater-than comparison operator. Falls back to y < x.

Implementation

Generally, new types should implement < instead of this function, and rely on the fallback definition

>(x, y) = y < x.

Examples

julia> 'a' > 'b'

false

julia> 7 > 3 > 1

true

julia> "abc" > "abd"

false

julia> 5 > 3

true

source

>(x)

Create a function that compares its argument to x using >, i.e. a function equivalent to y -> y > x.

The returned function is of type Base.Fix2{typeof(>)}, which can be used to implement specialized

methods.

Julia 1.2

This functionality requires at least Julia 1.2.

source

Base.:>= – Function.

>=(x, y)

≥(x,y)

Greater-than-or-equals comparison operator. Falls back to y <= x.

Examples

julia> 'a' >= 'b'

false

julia> 7 ≥ 7 ≥ 3

true

julia> "abc" ≥ "abc"

true

julia> 5 >= 3

true

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L354-L377
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L1198-L1208

CHAPTER 43. MATHEMATICS 741

source

>=(x)

Create a function that compares its argument to x using >=, i.e. a function equivalent to y -> y >= x.

The returned function is of type Base.Fix2{typeof(>=)}, which can be used to implement specialized

methods.

Julia 1.2

This functionality requires at least Julia 1.2.

source

Base.cmp – Function.

cmp(x,y)

Return -1, 0, or 1 depending on whether x is less than, equal to, or greater than y, respectively. Uses

the total order implemented by isless.

Examples

julia> cmp(1, 2)

-1

julia> cmp(2, 1)

1

julia> cmp(2+im, 3-im)

ERROR: MethodError: no method matching isless(::Complex{Int64}, ::Complex{Int64})

[...]

source

cmp(<, x, y)

Return -1, 0, or 1 depending on whether x is less than, equal to, or greater than y, respectively. The

first argument specifies a less-than comparison function to use.

source

cmp(a::AbstractString, b::AbstractString) -> Int

Compare two strings. Return 0 if both strings have the same length and the character at each index

is the same in both strings. Return -1 if a is a prefix of b, or if a comes before b in alphabetical order.

Return 1 if b is a prefix of a, or if b comes before a in alphabetical order (technically, lexicographical

order by Unicode code points).

Examples

julia> cmp("abc", "abc")

0

julia> cmp("ab", "abc")

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L404-L424
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L1172-L1182
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L432-L450
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L453-L458

CHAPTER 43. MATHEMATICS 742

-1

julia> cmp("abc", "ab")

1

julia> cmp("ab", "ac")

-1

julia> cmp("ac", "ab")

1

julia> cmp("α", "a")

1

julia> cmp("b", "β")

-1

source

Base.:~ – Function.

~(x)

Bitwise not.

See also: !, &, |.

Examples

julia> ~4

-5

julia> ~10

-11

julia> ~true

false

source

Base.:& – Function.

x & y

Bitwise and. Implements three-valued logic, returning missing if one operand is missing and the other

is true. Add parentheses for function application form: (&)(x, y).

See also: |, xor, &&.

Examples

julia> 4 & 10

0

julia> 4 & 12

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/basic.jl#L266-L298
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/int.jl#L302-L320
https://en.wikipedia.org/wiki/Three-valued_logic

CHAPTER 43. MATHEMATICS 743

4

julia> true & missing

missing

julia> false & missing

false

source

Base.:| – Function.

x | y

Bitwise or. Implements three-valued logic, returning missing if one operand is missing and the other

is false.

See also: &, xor, ||.

Examples

julia> 4 | 10

14

julia> 4 | 1

5

julia> true | missing

true

julia> false | missing

missing

source

Base.xor – Function.

xor(x, y)

⊻(x, y)

Bitwise exclusive or of x and y. Implements three-valued logic, returning missing if one of the argu-

ments is missing.

The infix operation a ⊻ b is a synonym for xor(a,b), and ⊻ can be typed by tab-completing \xor or

\veebar in the Julia REPL.

Examples

julia> xor(true, false)

true

julia> xor(true, true)

false

julia> xor(true, missing)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/int.jl#L323-L346
https://en.wikipedia.org/wiki/Three-valued_logic
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/int.jl#L349-L371
https://en.wikipedia.org/wiki/Three-valued_logic

CHAPTER 43. MATHEMATICS 744

missing

julia> false ⊻ false

false

julia> [true; true; false] .⊻ [true; false; false]

3-element BitVector:

0

1

0

source

Base.nand – Function.

nand(x, y)

(x, y)

Bitwise nand (not and) of x and y. Implements three-valued logic, returning missing if one of the

arguments is missing.

The infix operation a b is a synonym for nand(a,b), and can be typed by tab-completing \nand or

\barwedge in the Julia REPL.

Examples

julia> nand(true, false)

true

julia> nand(true, true)

false

julia> nand(true, missing)

missing

julia> false false

true

julia> [true; true; false] . [true; false; false]

3-element BitVector:

0

1

1

source

Base.nor – Function.

nor(x, y)

(x, y)

Bitwise nor (not or) of x and y. Implements three-valued logic, returning missing if one of the argu-

ments is missing and the other is not true.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/bool.jl#L41-L72
https://en.wikipedia.org/wiki/Three-valued_logic
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/bool.jl#L75-L106
https://en.wikipedia.org/wiki/Three-valued_logic

CHAPTER 43. MATHEMATICS 745

The infix operation a b is a synonym for nor(a,b), and can be typed by tab-completing \nor or

\barvee in the Julia REPL.

Examples

julia> nor(true, false)

false

julia> nor(true, true)

false

julia> nor(true, missing)

false

julia> false false

true

julia> false missing

missing

julia> [true; true; false] . [true; false; false]

3-element BitVector:

0

0

1

source

Base.:! – Function.

!(x)

Boolean not. Implements three-valued logic, returning missing if x is missing.

See also ~ for bitwise not.

Examples

julia> !true

false

julia> !false

true

julia> !missing

missing

julia> .![true false true]

1×3 BitMatrix:

0 1 0

source

!f::Function

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/bool.jl#L109-L144
https://en.wikipedia.org/wiki/Three-valued_logic
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/bool.jl#L11-L34

CHAPTER 43. MATHEMATICS 746

Predicate function negation: when the argument of ! is a function, it returns a composed function

which computes the boolean negation of f.

See also ∘.

Examples

julia> str = "∀ ε > 0, ∃ δ > 0: |x-y| < δ ⇒ |f(x)-f(y)| < ε"

"∀ ε > 0, ∃ δ > 0: |x-y| < δ ⇒ |f(x)-f(y)| < ε"

julia> filter(isletter, str)

"εδxyδfxfyε"

julia> filter(!isletter, str)

"∀ > 0, ∃ > 0: |-| < ⇒ |()-()| < "

Julia 1.9

Starting with Julia 1.9, !f returns a ComposedFunction instead of an anonymous function.

source

&& – Keyword.

x && y

Short-circuiting boolean AND.

See also &, the ternary operator ? :, and the manual section on control flow.

Examples

julia> x = 3;

julia> x > 1 && x < 10 && x isa Int

true

julia> x < 0 && error("expected positive x")

false

source

|| – Keyword.

x || y

Short-circuiting boolean OR.

See also: |, xor, &&.

Examples

julia> pi < 3 || < 3

true

julia> false || true || println("neither is true!")

true

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L1076-L1097
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1240-L1257
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1260-L1275

CHAPTER 43. MATHEMATICS 747

43.2 Mathematical Functions

Base.isapprox – Function.

isapprox(x, y; atol::Real=0, rtol::Real=atol>0 ? 0 : √eps, nans::Bool=false[,

norm::Function])↪→

Inexact equality comparison. Two numbers compare equal if their relative distance or their absolute dis-

tance is within tolerance bounds: isapprox returns true if norm(x-y) <= max(atol, rtol*max(norm(x),

norm(y))). The default atol (absolute tolerance) is zero and the default rtol (relative tolerance) de-

pends on the types of x and y. The keyword argument nans determines whether or not NaN values are

considered equal (defaults to false).

For real or complex floating-point values, if an atol > 0 is not specified, rtol defaults to the square

root of eps of the type of x or y, whichever is bigger (least precise). This corresponds to requiring

equality of about half of the significant digits. Otherwise, e.g. for integer arguments or if an atol > 0

is supplied, rtol defaults to zero.

The norm keyword defaults to abs for numeric (x,y) and to LinearAlgebra.norm for arrays (where an

alternative norm choice is sometimes useful). When x and y are arrays, if norm(x-y) is not finite (i.e.

±Inf or NaN), the comparison falls back to checking whether all elements of x and y are approximately

equal component-wise.

The binary operator ≈ is equivalent to isapprox with the default arguments, and x ≉ y is equivalent

to !isapprox(x,y).

Note that x ≈ 0 (i.e., comparing to zero with the default tolerances) is equivalent to x == 0 since the

default atol is 0. In such cases, you should either supply an appropriate atol (or use norm(x) ≤ atol)

or rearrange your code (e.g. use x ≈ y rather than x - y ≈ 0). It is not possible to pick a nonzero atol

automatically because it depends on the overall scaling (the "units") of your problem: for example, in

x - y ≈ 0, atol=1e-9 is an absurdly small tolerance if x is the radius of the Earth in meters, but an

absurdly large tolerance if x is the radius of a Hydrogen atom in meters.

Julia 1.6

Passing the norm keyword argument when comparing numeric (non-array) arguments re-

quires Julia 1.6 or later.

Examples

julia> isapprox(0.1, 0.15; atol=0.05)

true

julia> isapprox(0.1, 0.15; rtol=0.34)

true

julia> isapprox(0.1, 0.15; rtol=0.33)

false

julia> 0.1 + 1e-10 ≈ 0.1

true

julia> 1e-10 ≈ 0

false

https://en.wikipedia.org/wiki/Earth_radius
https://en.wikipedia.org/wiki/Bohr_radius

CHAPTER 43. MATHEMATICS 748

julia> isapprox(1e-10, 0, atol=1e-8)

true

julia> isapprox([10.0^9, 1.0], [10.0^9, 2.0]) # using `norm`

true

source

isapprox(x; kwargs...) / ≈(x; kwargs...)

Create a function that compares its argument to x using ≈, i.e. a function equivalent to y -> y ≈ x.

The keyword arguments supported here are the same as those in the 2-argument isapprox.

Julia 1.5

This method requires Julia 1.5 or later.

source

Base.sin – Method.

sin(x)

Compute sine of x, where x is in radians.

See also sind, sinpi, sincos, cis, asin.

Examples

julia> round.(sin.(range(0, 2pi, length=9)'), digits=3)

1×9 Matrix{Float64}:

0.0 0.707 1.0 0.707 0.0 -0.707 -1.0 -0.707 -0.0

julia> sind(45)

0.7071067811865476

julia> sinpi(1/4)

0.7071067811865475

julia> round.(sincos(pi/6), digits=3)

(0.5, 0.866)

julia> round(cis(pi/6), digits=3)

0.866 + 0.5im

julia> round(exp(im*pi/6), digits=3)

0.866 + 0.5im

source

Base.cos – Method.

cos(x)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/floatfuncs.jl#L243-L303
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/floatfuncs.jl#L323-L332
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L490-L518

CHAPTER 43. MATHEMATICS 749

Compute cosine of x, where x is in radians.

See also cosd, cospi, sincos, cis.

source

Base.Math.sincos – Method.

sincos(x)

Simultaneously compute the sine and cosine of x, where x is in radians, returning a tuple (sine,

cosine).

See also cis, sincospi, sincosd.

source

Base.tan – Method.

tan(x)

Compute tangent of x, where x is in radians.

source

Base.Math.sind – Function.

sind(x)

Compute sine of x, where x is in degrees. If x is a matrix, x needs to be a square matrix.

Julia 1.7

Matrix arguments require Julia 1.7 or later.

source

Base.Math.cosd – Function.

cosd(x)

Compute cosine of x, where x is in degrees. If x is a matrix, x needs to be a square matrix.

Julia 1.7

Matrix arguments require Julia 1.7 or later.

source

Base.Math.tand – Function.

tand(x)

Compute tangent of x, where x is in degrees. If x is a matrix, x needs to be a square matrix.

Julia 1.7

Matrix arguments require Julia 1.7 or later.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L521-L527
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/trig.jl#L167-L174
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L530-L534
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/trig.jl#L1258-L1266
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/trig.jl#L1258-L1266

CHAPTER 43. MATHEMATICS 750

source

Base.Math.sincosd – Function.

sincosd(x)

Simultaneously compute the sine and cosine of x, where x is in degrees.

Julia 1.3

This function requires at least Julia 1.3.

source

Base.Math.sinpi – Function.

sinpi(x)

Compute sin(πx) more accurately than sin(pi*x), especially for large x.

See also sind, cospi, sincospi.

source

Base.Math.cospi – Function.

cospi(x)

Compute cos(πx) more accurately than cos(pi*x), especially for large x.

source

Base.Math.tanpi – Function.

tanpi(x)

Compute tan(πx) more accurately than tan(pi*x), especially for large x.

Julia 1.10

This function requires at least Julia 1.10.

See also tand, sinpi, cospi, sincospi.

source

Base.Math.sincospi – Function.

sincospi(x)

Simultaneously compute sinpi(x) and cospi(x) (the sine and cosine of π*x, where x is in radians),

returning a tuple (sine, cosine).

Julia 1.6

This function requires Julia 1.6 or later.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/trig.jl#L1258-L1266
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/trig.jl#L1240-L1247
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/trig.jl#L785-L791
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/trig.jl#L816-L820
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/trig.jl#L882-L891

CHAPTER 43. MATHEMATICS 751

See also: cispi, sincosd, sinpi.

source

Base.sinh – Method.

sinh(x)

Compute hyperbolic sine of x.

source

Base.cosh – Method.

cosh(x)

Compute hyperbolic cosine of x.

source

Base.tanh – Method.

tanh(x)

Compute hyperbolic tangent of x.

See also tan, atanh.

Examples

julia> tanh.(-3:3f0) # Here 3f0 isa Float32

7-element Vector{Float32}:

-0.9950548

-0.9640276

-0.7615942

0.0

0.7615942

0.9640276

0.9950548

julia> tan.(im .* (1:3))

3-element Vector{ComplexF64}:

0.0 + 0.7615941559557649im

0.0 + 0.9640275800758169im

0.0 + 0.9950547536867306im

source

Base.asin – Method.

asin(x)

Compute the inverse sine of x, where the output is in radians.

See also asind for output in degrees.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/trig.jl#L844-L854
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L402-L406
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L409-L413
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L416-L442

CHAPTER 43. MATHEMATICS 752

julia> asin.((0, 1/2, 1))

(0.0, 0.5235987755982989, 1.5707963267948966)

julia> asind.((0, 1/2, 1))

(0.0, 30.000000000000004, 90.0)

source

Base.acos – Method.

acos(x)

Compute the inverse cosine of x, where the output is in radians

source

Base.atan – Method.

atan(y)

atan(y, x)

Compute the inverse tangent of y or y/x, respectively.

For one argument, this is the angle in radians between the positive x-axis and the point (1, y), returning

a value in the interval [−π/2, π/2].

For two arguments, this is the angle in radians between the positive x-axis and the point (x, y), returning

a value in the interval [−π, π]. This corresponds to a standard atan2 function. Note that by convention
atan(0.0,x) is defined as π and atan(-0.0,x) is defined as −π when x < 0.

See also atand for degrees.

Examples

julia> rad2deg(atan(-1/√3))

-30.000000000000004

julia> rad2deg(atan(-1, √3))

-30.000000000000004

julia> rad2deg(atan(1, -√3))

150.0

source

Base.Math.asind – Function.

asind(x)

Compute the inverse sine of x, where the output is in degrees. If x is a matrix, x needs to be a square

matrix.

Julia 1.7

Matrix arguments require Julia 1.7 or later.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L537-L552
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L555-L559
https://en.wikipedia.org/wiki/Atan2
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L445-L473

CHAPTER 43. MATHEMATICS 753

source

Base.Math.acosd – Function.

acosd(x)

Compute the inverse cosine of x, where the output is in degrees. If x is a matrix, x needs to be a square

matrix.

Julia 1.7

Matrix arguments require Julia 1.7 or later.

source

Base.Math.atand – Function.

atand(y)

atand(y,x)

Compute the inverse tangent of y or y/x, respectively, where the output is in degrees.

Julia 1.7

The one-argument method supports square matrix arguments as of Julia 1.7.

source

Base.Math.sec – Method.

sec(x)

Compute the secant of x, where x is in radians.

source

Base.Math.csc – Method.

csc(x)

Compute the cosecant of x, where x is in radians.

source

Base.Math.cot – Method.

cot(x)

Compute the cotangent of x, where x is in radians.

source

Base.Math.secd – Function.

secd(x)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/trig.jl#L1277-L1285
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/trig.jl#L1277-L1285
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/trig.jl#L1290-L1298
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/trig.jl#L1129-L1133
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/trig.jl#L1129-L1133
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/trig.jl#L1129-L1133

CHAPTER 43. MATHEMATICS 754

Compute the secant of x, where x is in degrees.

source

Base.Math.cscd – Function.

cscd(x)

Compute the cosecant of x, where x is in degrees.

source

Base.Math.cotd – Function.

cotd(x)

Compute the cotangent of x, where x is in degrees.

source

Base.Math.asec – Method.

asec(x)

Compute the inverse secant of x, where the output is in radians.

source

Base.Math.acsc – Method.

acsc(x)

Compute the inverse cosecant of x, where the output is in radians.

source

Base.Math.acot – Method.

acot(x)

Compute the inverse cotangent of x, where the output is in radians.

source

Base.Math.asecd – Function.

asecd(x)

Compute the inverse secant of x, where the output is in degrees. If x is a matrix, x needs to be a square

matrix.

Julia 1.7

Matrix arguments require Julia 1.7 or later.

source

Base.Math.acscd – Function.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/trig.jl#L1139-L1143
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/trig.jl#L1139-L1143
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/trig.jl#L1139-L1143
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/trig.jl#L1153-L1155
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/trig.jl#L1153-L1155
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/trig.jl#L1153-L1155
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/trig.jl#L1277-L1285

CHAPTER 43. MATHEMATICS 755

acscd(x)

Compute the inverse cosecant of x, where the output is in degrees. If x is a matrix, x needs to be a

square matrix.

Julia 1.7

Matrix arguments require Julia 1.7 or later.

source

Base.Math.acotd – Function.

acotd(x)

Compute the inverse cotangent of x, where the output is in degrees. If x is a matrix, x needs to be a

square matrix.

Julia 1.7

Matrix arguments require Julia 1.7 or later.

source

Base.Math.sech – Method.

sech(x)

Compute the hyperbolic secant of x.

source

Base.Math.csch – Method.

csch(x)

Compute the hyperbolic cosecant of x.

source

Base.Math.coth – Method.

coth(x)

Compute the hyperbolic cotangent of x.

source

Base.asinh – Method.

asinh(x)

Compute the inverse hyperbolic sine of x.

source

Base.acosh – Method.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/trig.jl#L1277-L1285
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/trig.jl#L1277-L1285
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/trig.jl#L1134-L1138
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/trig.jl#L1134-L1138
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/trig.jl#L1134-L1138
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L476-L480

CHAPTER 43. MATHEMATICS 756

acosh(x)

Compute the inverse hyperbolic cosine of x.

source

Base.atanh – Method.

atanh(x)

Compute the inverse hyperbolic tangent of x.

source

Base.Math.asech – Method.

asech(x)

Compute the inverse hyperbolic secant of x.

source

Base.Math.acsch – Method.

acsch(x)

Compute the inverse hyperbolic cosecant of x.

source

Base.Math.acoth – Method.

acoth(x)

Compute the inverse hyperbolic cotangent of x.

source

Base.Math.sinc – Function.

sinc(x)

Compute sin(πx)/(πx) if x 6= 0, and 1 if x = 0.

See also cosc, its derivative.

source

Base.Math.cosc – Function.

cosc(x)

Compute cos(πx)/x− sin(πx)/(πx2) if x 6= 0, and 0 if x = 0. This is the derivative of sinc(x).

source

Base.Math.deg2rad – Function.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L562-L566
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L569-L573
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/trig.jl#L1156-L1158
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/trig.jl#L1156-L1158
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/trig.jl#L1156-L1158
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/trig.jl#L1065-L1071
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/trig.jl#L1082-L1087

CHAPTER 43. MATHEMATICS 757

deg2rad(x)

Convert x from degrees to radians.

See also rad2deg, sind, pi.

Examples

julia> deg2rad(90)

1.5707963267948966

source

Base.Math.rad2deg – Function.

rad2deg(x)

Convert x from radians to degrees.

See also deg2rad.

Examples

julia> rad2deg(pi)

180.0

source

Base.Math.hypot – Function.

hypot(x, y)

Compute the hypotenuse
√
|x|2 + |y|2 avoiding overflow and underflow.

This code is an implementation of the algorithm described in: An Improved Algorithm for hypot(a,b)

by Carlos F. Borges The article is available online at arXiv at the link https://arxiv.org/abs/1904.09481

hypot(x...)

Compute the hypotenuse
√∑

|xi|2 avoiding overflow and underflow.

See also norm in the LinearAlgebra standard library.

Examples

julia> a = Int64(10)^10;

julia> hypot(a, a)

1.4142135623730951e10

julia> √(a^2 + a^2) # a^2 overflows

ERROR: DomainError with -2.914184810805068e18:

sqrt was called with a negative real argument but will only return a complex result if called

with a complex argument. Try sqrt(Complex(x)).↪→

Stacktrace:

[...]

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L333-L345
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L318-L330

CHAPTER 43. MATHEMATICS 758

julia> hypot(3, 4im)

5.0

julia> hypot(-5.7)

5.7

julia> hypot(3, 4im, 12.0)

13.0

julia> using LinearAlgebra

julia> norm([a, a, a, a]) == hypot(a, a, a, a)

true

source

Base.log – Method.

log(x)

Compute the natural logarithm of x. Throws DomainError for negative Real arguments. Use complex

negative arguments to obtain complex results.

See also , log1p, log2, log10.

Examples

julia> log(2)

0.6931471805599453

julia> log(-3)

ERROR: DomainError with -3.0:

log was called with a negative real argument but will only return a complex result if called

with a complex argument. Try log(Complex(x)).↪→

Stacktrace:

[1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31

[...]

julia> log.(exp.(-1:1))

3-element Vector{Float64}:

-1.0

0.0

1.0

source

Base.log – Method.

log(b,x)

Compute the base b logarithm of x. Throws DomainError for negative Real arguments.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L730-L774
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L576-L602

CHAPTER 43. MATHEMATICS 759

julia> log(4,8)

1.5

julia> log(4,2)

0.5

julia> log(-2, 3)

ERROR: DomainError with -2.0:

log was called with a negative real argument but will only return a complex result if called

with a complex argument. Try log(Complex(x)).↪→

Stacktrace:

[1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31

[...]

julia> log(2, -3)

ERROR: DomainError with -3.0:

log was called with a negative real argument but will only return a complex result if called

with a complex argument. Try log(Complex(x)).↪→

Stacktrace:

[1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31

[...]

Note

If b is a power of 2 or 10, log2 or log10 should be used, as these will typically be faster and

more accurate. For example,

julia> log(100,1000000)

2.9999999999999996

julia> log10(1000000)/2

3.0

source

Base.log2 – Function.

log2(x)

Compute the logarithm of x to base 2. Throws DomainError for negative Real arguments.

See also: exp2, ldexp, ispow2.

Examples

julia> log2(4)

2.0

julia> log2(10)

3.321928094887362

julia> log2(-2)

ERROR: DomainError with -2.0:

log2 was called with a negative real argument but will only return a complex result if called

with a complex argument. Try log2(Complex(x)).↪→

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L354-L394

CHAPTER 43. MATHEMATICS 760

Stacktrace:

[1] throw_complex_domainerror(f::Symbol, x::Float64) at ./math.jl:31

[...]

julia> log2.(2.0 .^ (-1:1))

3-element Vector{Float64}:

-1.0

0.0

1.0

source

Base.log10 – Function.

log10(x)

Compute the logarithm of x to base 10. Throws DomainError for negative Real arguments.

Examples

julia> log10(100)

2.0

julia> log10(2)

0.3010299956639812

julia> log10(-2)

ERROR: DomainError with -2.0:

log10 was called with a negative real argument but will only return a complex result if

called with a complex argument. Try log10(Complex(x)).↪→

Stacktrace:

[1] throw_complex_domainerror(f::Symbol, x::Float64) at ./math.jl:31

[...]

source

Base.log1p – Function.

log1p(x)

Accurate natural logarithm of 1+x. Throws DomainError for Real arguments less than -1.

Examples

julia> log1p(-0.5)

-0.6931471805599453

julia> log1p(0)

0.0

julia> log1p(-2)

ERROR: DomainError with -2.0:

log1p was called with a real argument < -1 but will only return a complex result if called

with a complex argument. Try log1p(Complex(x)).↪→

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L605-L634
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L637-L658

CHAPTER 43. MATHEMATICS 761

Stacktrace:

[1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31

[...]

source

Base.Math.frexp – Function.

frexp(val)

Return (x,exp) such that x has a magnitude in the interval [1/2, 1) or 0, and val is equal to x× 2exp.

Examples

julia> frexp(12.8)

(0.8, 4)

source

Base.exp – Method.

exp(x)

Compute the natural base exponential of x, in other words x.

See also exp2, exp10 and cis.

Examples

julia> exp(1.0)

2.718281828459045

julia> exp(im * pi) ≈ cis(pi)

true

source

Base.exp2 – Function.

exp2(x)

Compute the base 2 exponential of x, in other words 2x.

See also ldexp, <<.

Examples

julia> exp2(5)

32.0

julia> 2^5

32

julia> exp2(63) > typemax(Int)

true

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L661-L682
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L1071-L1081
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/exp.jl#L332-L347

CHAPTER 43. MATHEMATICS 762

source

Base.exp10 – Function.

exp10(x)

Compute the base 10 exponential of x, in other words 10x.

Examples

julia> exp10(2)

100.0

julia> 10^2

100

source

Base.Math.ldexp – Function.

ldexp(x, n)

Compute x× 2n.

Examples

julia> ldexp(5., 2)

20.0

source

Base.Math.modf – Function.

modf(x)

Return a tuple (fpart, ipart) of the fractional and integral parts of a number. Both parts have the

same sign as the argument.

Examples

julia> modf(3.5)

(0.5, 3.0)

julia> modf(-3.5)

(-0.5, -3.0)

source

Base.expm1 – Function.

expm1(x)

Accurately compute ex − 1. It avoids the loss of precision involved in the direct evaluation of exp(x)-1
for small values of x.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/exp.jl#L349-L367
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/exp.jl#L370-L383
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L925-L935
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L1168-L1182

CHAPTER 43. MATHEMATICS 763

julia> expm1(1e-16)

1.0e-16

julia> exp(1e-16) - 1

0.0

source

Base.round – Method.

round([T,] x, [r::RoundingMode])

round(x, [r::RoundingMode]; digits::Integer=0, base = 10)

round(x, [r::RoundingMode]; sigdigits::Integer, base = 10)

Rounds the number x.

Without keyword arguments, x is rounded to an integer value, returning a value of type T, or of the

same type of x if no T is provided. An InexactError will be thrown if the value is not representable by

T, similar to convert.

If the digits keyword argument is provided, it rounds to the specified number of digits after the decimal

place (or before if negative), in base base.

If the sigdigits keyword argument is provided, it rounds to the specified number of significant digits,

in base base.

The RoundingMode r controls the direction of the rounding; the default is RoundNearest, which rounds

to the nearest integer, with ties (fractional values of 0.5) being rounded to the nearest even integer.

Note that round may give incorrect results if the global rounding mode is changed (see rounding).

Examples

julia> round(1.7)

2.0

julia> round(Int, 1.7)

2

julia> round(1.5)

2.0

julia> round(2.5)

2.0

julia> round(pi; digits=2)

3.14

julia> round(pi; digits=3, base=2)

3.125

julia> round(123.456; sigdigits=2)

120.0

julia> round(357.913; sigdigits=4, base=2)

352.0

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/exp.jl#L488-L501

CHAPTER 43. MATHEMATICS 764

Note

Rounding to specified digits in bases other than 2 can be inexact when operating on binary

floating point numbers. For example, the Float64 value represented by 1.15 is actually

less than 1.15, yet will be rounded to 1.2. For example:

julia> x = 1.15

1.15

julia> big(1.15)

1.149999999999999911182158029987476766109466552734375

julia> x < 115//100

true

julia> round(x, digits=1)

1.2

Extensions

To extend round to new numeric types, it is typically sufficient to define Base.round(x::NewType,

r::RoundingMode).

source

Base.Rounding.RoundingMode – Type.

RoundingMode

A type used for controlling the rounding mode of floating point operations (via rounding/setrounding

functions), or as optional arguments for rounding to the nearest integer (via the round function).

Currently supported rounding modes are:

• RoundNearest (default)

• RoundNearestTiesAway

• RoundNearestTiesUp

• RoundToZero

• RoundFromZero

• RoundUp

• RoundDown

Julia 1.9

RoundFromZero requires at least Julia 1.9. Prior versions support RoundFromZero for BigFloats

only.

source

Base.Rounding.RoundNearest – Constant.

RoundNearest

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/floatfuncs.jl#L47-L119
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/rounding.jl#L26-L47

CHAPTER 43. MATHEMATICS 765

The default rounding mode. Rounds to the nearest integer, with ties (fractional values of 0.5) being

rounded to the nearest even integer.

source

Base.Rounding.RoundNearestTiesAway – Constant.

RoundNearestTiesAway

Rounds to nearest integer, with ties rounded away from zero (C/C++ round behaviour).

source

Base.Rounding.RoundNearestTiesUp – Constant.

RoundNearestTiesUp

Rounds to nearest integer, with ties rounded toward positive infinity (Java/JavaScript round behaviour).

source

Base.Rounding.RoundToZero – Constant.

RoundToZero

round using this rounding mode is an alias for trunc.

source

Base.Rounding.RoundFromZero – Constant.

RoundFromZero

Rounds away from zero.

Julia 1.9

RoundFromZero requires at least Julia 1.9. Prior versions support RoundFromZero for BigFloats

only.

Examples

julia> BigFloat("1.0000000000000001", 5, RoundFromZero)

1.06

source

Base.Rounding.RoundUp – Constant.

RoundUp

round using this rounding mode is an alias for ceil.

source

Base.Rounding.RoundDown – Constant.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/rounding.jl#L50-L55
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/rounding.jl#L96-L101
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/rounding.jl#L104-L109
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/rounding.jl#L58-L62
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/rounding.jl#L79-L93
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/rounding.jl#L65-L69

CHAPTER 43. MATHEMATICS 766

RoundDown

round using this rounding mode is an alias for floor.

source

Base.round – Method.

round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]])

round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]]; digits=0, base=10)

round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]]; sigdigits, base=10)

Return the nearest integral value of the same type as the complex-valued z to z, breaking ties using

the specified RoundingModes. The first RoundingMode is used for rounding the real components while

the second is used for rounding the imaginary components.

RoundingModeReal and RoundingModeImaginary default to RoundNearest, which rounds to the near-

est integer, with ties (fractional values of 0.5) being rounded to the nearest even integer.

Example

julia> round(3.14 + 4.5im)

3.0 + 4.0im

julia> round(3.14 + 4.5im, RoundUp, RoundNearestTiesUp)

4.0 + 5.0im

julia> round(3.14159 + 4.512im; digits = 1)

3.1 + 4.5im

julia> round(3.14159 + 4.512im; sigdigits = 3)

3.14 + 4.51im

source

Base.ceil – Function.

ceil([T,] x)

ceil(x; digits::Integer= [, base = 10])

ceil(x; sigdigits::Integer= [, base = 10])

ceil(x) returns the nearest integral value of the same type as x that is greater than or equal to x.

ceil(T, x) converts the result to type T, throwing an InexactError if the value is not representable.

Keywords digits, sigdigits and base work as for round.

source

Base.floor – Function.

floor([T,] x)

floor(x; digits::Integer= [, base = 10])

floor(x; sigdigits::Integer= [, base = 10])

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/rounding.jl#L72-L76
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/complex.jl#L1076-L1105
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/int.jl#L676-L688

CHAPTER 43. MATHEMATICS 767

floor(x) returns the nearest integral value of the same type as x that is less than or equal to x.

floor(T, x) converts the result to type T, throwing an InexactError if the value is not representable.

Keywords digits, sigdigits and base work as for round.

source

Base.trunc – Function.

trunc([T,] x)

trunc(x; digits::Integer= [, base = 10])

trunc(x; sigdigits::Integer= [, base = 10])

trunc(x) returns the nearest integral value of the same type as x whose absolute value is less than

or equal to the absolute value of x.

trunc(T, x) converts the result to type T, throwing an InexactError if the value is not representable.

Keywords digits, sigdigits and base work as for round.

See also: %, floor, unsigned, unsafe_trunc.

Examples

julia> trunc(2.22)

2.0

julia> trunc(-2.22, digits=1)

-2.2

julia> trunc(Int, -2.22)

-2

source

Base.unsafe_trunc – Function.

unsafe_trunc(T, x)

Return the nearest integral value of type T whose absolute value is less than or equal to the absolute

value of x. If the value is not representable by T, an arbitrary value will be returned. See also trunc.

Examples

julia> unsafe_trunc(Int, -2.2)

-2

julia> unsafe_trunc(Int, NaN)

-9223372036854775808

source

Base.min – Function.

min(x, y, ...)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/int.jl#L661-L673
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/int.jl#L632-L658
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/float.jl#L315-L331

CHAPTER 43. MATHEMATICS 768

Return the minimum of the arguments (with respect to isless). See also the minimum function to take

the minimum element from a collection.

Examples

julia> min(2, 5, 1)

1

source

Base.max – Function.

max(x, y, ...)

Return the maximum of the arguments (with respect to isless). See also the maximum function to take

the maximum element from a collection.

Examples

julia> max(2, 5, 1)

5

source

Base.minmax – Function.

minmax(x, y)

Return (min(x,y), max(x,y)).

See also extrema that returns (minimum(x), maximum(x)).

Examples

julia> minmax('c','b')

('b', 'c')

source

Base.Math.clamp – Function.

clamp(x, lo, hi)

Return x if lo <= x <= hi. If x > hi, return hi. If x < lo, return lo. Arguments are promoted to a

common type.

See also clamp!, min, max.

Julia 1.3

missing as the first argument requires at least Julia 1.3.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L478-L489
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L464-L475
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/operators.jl#L492-L504

CHAPTER 43. MATHEMATICS 769

julia> clamp.([pi, 1.0, big(10)], 2.0, 9.0)

3-element Vector{BigFloat}:

3.141592653589793238462643383279502884197169399375105820974944592307816406286198

2.0

9.0

julia> clamp.([11, 8, 5], 10, 6) # an example where lo > hi

3-element Vector{Int64}:

6

6

10

source

clamp(x, T)::T

Clamp x between typemin(T) and typemax(T) and convert the result to type T.

See also trunc.

Examples

julia> clamp(200, Int8)

127

julia> clamp(-200, Int8)

-128

julia> trunc(Int, 4pi^2)

39

source

clamp(x::Integer, r::AbstractUnitRange)

Clamp x to lie within range r.

Julia 1.6

This method requires at least Julia 1.6.

source

Base.Math.clamp! – Function.

clamp!(array::AbstractArray, lo, hi)

Restrict values in array to the specified range, in-place. See also clamp.

Julia 1.3

missing entries in array require at least Julia 1.3.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L72-L97
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L104-L122
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L155-L162

CHAPTER 43. MATHEMATICS 770

julia> row = collect(-4:4)';

julia> clamp!(row, 0, Inf)

1×9 adjoint(::Vector{Int64}) with eltype Int64:

0 0 0 0 0 1 2 3 4

julia> clamp.((-4:4)', 0, Inf)

1×9 Matrix{Float64}:

0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0

source

Base.abs – Function.

abs(x)

The absolute value of x.

When abs is applied to signed integers, overflow may occur, resulting in the return of a negative value.

This overflow occurs only when abs is applied to the minimum representable value of a signed integer.

That is, when x == typemin(typeof(x)), abs(x) == x < 0, not -x as might be expected.

See also: abs2, unsigned, sign.

Examples

julia> abs(-3)

3

julia> abs(1 + im)

1.4142135623730951

julia> abs.(Int8[-128 -127 -126 0 126 127]) # overflow at typemin(Int8)

1×6 Matrix{Int8}:

-128 127 126 0 126 127

julia> maximum(abs, [1, -2, 3, -4])

4

source

Base.Checked.checked_abs – Function.

Base.checked_abs(x)

Calculates abs(x), checking for overflow errors where applicable. For example, standard two's com-

plement signed integers (e.g. Int) cannot represent abs(typemin(Int)), thus leading to an overflow.

The overflow protection may impose a perceptible performance penalty.

source

Base.Checked.checked_neg – Function.

Base.checked_neg(x)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L126-L147
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/int.jl#L156-L184
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/checked.jl#L113-L121

CHAPTER 43. MATHEMATICS 771

Calculates -x, checking for overflow errors where applicable. For example, standard two's complement

signed integers (e.g. Int) cannot represent -typemin(Int), thus leading to an overflow.

The overflow protection may impose a perceptible performance penalty.

source

Base.Checked.checked_add – Function.

Base.checked_add(x, y)

Calculates x+y, checking for overflow errors where applicable.

The overflow protection may impose a perceptible performance penalty.

source

Base.Checked.checked_sub – Function.

Base.checked_sub(x, y)

Calculates x-y, checking for overflow errors where applicable.

The overflow protection may impose a perceptible performance penalty.

source

Base.Checked.checked_mul – Function.

Base.checked_mul(x, y)

Calculates x*y, checking for overflow errors where applicable.

The overflow protection may impose a perceptible performance penalty.

source

Base.Checked.checked_div – Function.

Base.checked_div(x, y)

Calculates div(x,y), checking for overflow errors where applicable.

The overflow protection may impose a perceptible performance penalty.

source

Base.Checked.checked_rem – Function.

Base.checked_rem(x, y)

Calculates x%y, checking for overflow errors where applicable.

The overflow protection may impose a perceptible performance penalty.

source

Base.Checked.checked_fld – Function.

Base.checked_fld(x, y)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/checked.jl#L85-L93
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/checked.jl#L165-L171
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/checked.jl#L222-L228
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/checked.jl#L287-L293
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/checked.jl#L316-L322
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/checked.jl#L325-L331

CHAPTER 43. MATHEMATICS 772

Calculates fld(x,y), checking for overflow errors where applicable.

The overflow protection may impose a perceptible performance penalty.

source

Base.Checked.checked_mod – Function.

Base.checked_mod(x, y)

Calculates mod(x,y), checking for overflow errors where applicable.

The overflow protection may impose a perceptible performance penalty.

source

Base.Checked.checked_cld – Function.

Base.checked_cld(x, y)

Calculates cld(x,y), checking for overflow errors where applicable.

The overflow protection may impose a perceptible performance penalty.

source

Base.Checked.add_with_overflow – Function.

Base.add_with_overflow(x, y) -> (r, f)

Calculates r = x+y, with the flag f indicating whether overflow has occurred.

source

Base.Checked.sub_with_overflow – Function.

Base.sub_with_overflow(x, y) -> (r, f)

Calculates r = x-y, with the flag f indicating whether overflow has occurred.

source

Base.Checked.mul_with_overflow – Function.

Base.mul_with_overflow(x, y) -> (r, f)

Calculates r = x*y, with the flag f indicating whether overflow has occurred.

source

Base.abs2 – Function.

abs2(x)

Squared absolute value of x.

This can be faster than abs(x)^2, especially for complex numbers where abs(x) requires a square root

via hypot.

See also abs, conj, real.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/checked.jl#L334-L340
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/checked.jl#L343-L349
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/checked.jl#L352-L358
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/checked.jl#L135-L139
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/checked.jl#L197-L201
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/checked.jl#L237-L241

CHAPTER 43. MATHEMATICS 773

julia> abs2(-3)

9

julia> abs2(3.0 + 4.0im)

25.0

julia> sum(abs2, [1+2im, 3+4im]) # LinearAlgebra.norm(x)^2

30

source

Base.copysign – Function.

copysign(x, y) -> z

Return z which has the magnitude of x and the same sign as y.

Examples

julia> copysign(1, -2)

-1

julia> copysign(-1, 2)

1

source

Base.sign – Function.

sign(x)

Return zero if x==0 and x/|x| otherwise (i.e., ±1 for real x).

See also signbit, zero, copysign, flipsign.

Examples

julia> sign(-4.0)

-1.0

julia> sign(99)

1

julia> sign(-0.0)

-0.0

julia> sign(0 + im)

0.0 + 1.0im

source

Base.signbit – Function.

signbit(x)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/number.jl#L166-L187
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/number.jl#L207-L220
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/number.jl#L139-L160

CHAPTER 43. MATHEMATICS 774

Return true if the value of the sign of x is negative, otherwise false.

See also sign and copysign.

Examples

julia> signbit(-4)

true

julia> signbit(5)

false

julia> signbit(5.5)

false

julia> signbit(-4.1)

true

source

Base.flipsign – Function.

flipsign(x, y)

Return x with its sign flipped if y is negative. For example abs(x) = flipsign(x,x).

Examples

julia> flipsign(5, 3)

5

julia> flipsign(5, -3)

-5

source

Base.sqrt – Method.

sqrt(x)

Return
√
x. Throws DomainError for negative Real arguments. Use complex negative arguments

instead. The prefix operator √ is equivalent to sqrt.

See also: hypot.

Examples

julia> sqrt(big(81))

9.0

julia> sqrt(big(-81))

ERROR: DomainError with -81.0:

NaN result for non-NaN input.

Stacktrace:

[1] sqrt(::BigFloat) at ./mpfr.jl:501

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/number.jl#L115-L136
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/number.jl#L191-L204

CHAPTER 43. MATHEMATICS 775

[...]

julia> sqrt(big(complex(-81)))

0.0 + 9.0im

julia> .√(1:4)

4-element Vector{Float64}:

1.0

1.4142135623730951

1.7320508075688772

2.0

source

Base.isqrt – Function.

isqrt(n::Integer)

Integer square root: the largest integer m such that m*m <= n.

julia> isqrt(5)

2

source

Base.Math.cbrt – Function.

cbrt(x::Real)

Return the cube root of x, i.e. x1/3. Negative values are accepted (returning the negative real root

when x < 0).

The prefix operator ∛ is equivalent to cbrt.

Examples

julia> cbrt(big(27))

3.0

julia> cbrt(big(-27))

-3.0

source

Base.real – Function.

real(z)

Return the real part of the complex number z.

See also: imag, reim, complex, isreal, Real.

Examples

julia> real(1 + 3im)

1

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L690-L720
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/intfuncs.jl#L1050-L1059
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/special/cbrt.jl#L17-L33

CHAPTER 43. MATHEMATICS 776

source

real(T::Type)

Return the type that represents the real part of a value of type T. e.g: for T == Complex{R}, returns R.

Equivalent to typeof(real(zero(T))).

Examples

julia> real(Complex{Int})

Int64

julia> real(Float64)

Float64

source

real(A::AbstractArray)

Return an array containing the real part of each entry in array A.

Equivalent to real.(A), except that when eltype(A) <: Real A is returned without copying, and that

when A has zero dimensions, a 0-dimensional array is returned (rather than a scalar).

Examples

julia> real([1, 2im, 3 + 4im])

3-element Vector{Int64}:

1

0

3

julia> real(fill(2 - im))

0-dimensional Array{Int64, 0}:

2

source

Base.imag – Function.

imag(z)

Return the imaginary part of the complex number z.

See also: conj, reim, adjoint, angle.

Examples

julia> imag(1 + 3im)

3

source

imag(A::AbstractArray)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/complex.jl#L59-L71
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/complex.jl#L104-L119
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarraymath.jl#L148-L169
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/complex.jl#L74-L86

CHAPTER 43. MATHEMATICS 777

Return an array containing the imaginary part of each entry in array A.

Equivalent to imag.(A), except that when A has zero dimensions, a 0-dimensional array is returned

(rather than a scalar).

Examples

julia> imag([1, 2im, 3 + 4im])

3-element Vector{Int64}:

0

2

4

julia> imag(fill(2 - im))

0-dimensional Array{Int64, 0}:

-1

source

Base.reim – Function.

reim(z)

Return a tuple of the real and imaginary parts of the complex number z.

Examples

julia> reim(1 + 3im)

(1, 3)

source

reim(A::AbstractArray)

Return a tuple of two arrays containing respectively the real and the imaginary part of each entry in A.

Equivalent to (real.(A), imag.(A)), except that when eltype(A) <: Real A is returned without

copying to represent the real part, and that when A has zero dimensions, a 0-dimensional array is

returned (rather than a scalar).

Examples

julia> reim([1, 2im, 3 + 4im])

([1, 0, 3], [0, 2, 4])

julia> reim(fill(2 - im))

(fill(2), fill(-1))

source

Base.conj – Function.

conj(z)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarraymath.jl#L173-L193
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/complex.jl#L91-L101
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarraymath.jl#L197-L215

CHAPTER 43. MATHEMATICS 778

Compute the complex conjugate of a complex number z.

See also: angle, adjoint.

Examples

julia> conj(1 + 3im)

1 - 3im

source

conj(A::AbstractArray)

Return an array containing the complex conjugate of each entry in array A.

Equivalent to conj.(A), except that when eltype(A) <: Real A is returned without copying, and that

when A has zero dimensions, a 0-dimensional array is returned (rather than a scalar).

Examples

julia> conj([1, 2im, 3 + 4im])

3-element Vector{Complex{Int64}}:

1 + 0im

0 - 2im

3 - 4im

julia> conj(fill(2 - im))

0-dimensional Array{Complex{Int64}, 0}:

2 + 1im

source

Base.angle – Function.

angle(z)

Compute the phase angle in radians of a complex number z.

See also: atan, cis.

Examples

julia> rad2deg(angle(1 + im))

45.0

julia> rad2deg(angle(1 - im))

-45.0

julia> rad2deg(angle(-1 - im))

-135.0

source

Base.cis – Function.

cis(x)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/complex.jl#L269-L281
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarraymath.jl#L123-L144
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/complex.jl#L620-L638

CHAPTER 43. MATHEMATICS 779

More efficient method for exp(im*x) by using Euler's formula: cos(x) + isin(x) = exp(ix).

See also cispi, sincos, exp, angle.

Examples

julia> cis(π) ≈ -1

true

source

Base.cispi – Function.

cispi(x)

More accurate method for cis(pi*x) (especially for large x).

See also cis, sincospi, exp, angle.

Examples

julia> cispi(10000)

1.0 + 0.0im

julia> cispi(0.25 + 1im)

0.030556854645954562 + 0.03055685464595456im

Julia 1.6

This function requires Julia 1.6 or later.

source

Base.binomial – Function.

binomial(n::Integer, k::Integer)

The binomial coefficient
(
n
k

)
, being the coefficient of the kth term in the polynomial expansion of

(1 + x)n.

If n is non-negative, then it is the number of ways to choose k out of n items:

(
n

k

)
=

n!

k!(n− k)!

where n! is the factorial function.

If n is negative, then it is defined in terms of the identity

(
n

k

)
= (−1)k

(
k − n− 1

k

)
See also factorial.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/complex.jl#L567-L579
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/complex.jl#L592-L610

CHAPTER 43. MATHEMATICS 780

julia> binomial(5, 3)

10

julia> factorial(5) ÷ (factorial(5-3) * factorial(3))

10

julia> binomial(-5, 3)

-35

External links

• Binomial coefficient on Wikipedia.

source

binomial(x::Number, k::Integer)

The generalized binomial coefficient, defined for k ≥ 0 by the polynomial

1

k!

k−1∏
j=0

(x− j)

When k < 0 it returns zero.

For the case of integer x, this is equivalent to the ordinary integer binomial coefficient

(
n

k

)
=

n!

k!(n− k)!

Further generalizations to non-integer k are mathematically possible, but involve the Gamma function

and/or the beta function, which are not provided by the Julia standard library but are available in

external packages such as SpecialFunctions.jl.

External links

• Binomial coefficient on Wikipedia.

source

Base.factorial – Function.

factorial(n::Integer)

Factorial of n. If n is an Integer, the factorial is computed as an integer (promoted to at least 64 bits).

Note that this may overflow if n is not small, but you can use factorial(big(n)) to compute the result

exactly in arbitrary precision.

See also binomial.

Examples

https://en.wikipedia.org/wiki/Binomial_coefficient
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/intfuncs.jl#L1106-L1139
https://github.com/JuliaMath/SpecialFunctions.jl
https://en.wikipedia.org/wiki/Binomial_coefficient
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/intfuncs.jl#L1169-L1192

CHAPTER 43. MATHEMATICS 781

julia> factorial(6)

720

julia> factorial(21)

ERROR: OverflowError: 21 is too large to look up in the table; consider using

`factorial(big(21))` instead↪→

Stacktrace:

[...]

julia> factorial(big(21))

51090942171709440000

External links

• Factorial on Wikipedia.

source

Base.gcd – Function.

gcd(x, y...)

Greatest common (positive) divisor (or zero if all arguments are zero). The arguments may be integer

and rational numbers.

Julia 1.4

Rational arguments require Julia 1.4 or later.

Examples

julia> gcd(6, 9)

3

julia> gcd(6, -9)

3

julia> gcd(6, 0)

6

julia> gcd(0, 0)

0

julia> gcd(1//3, 2//3)

1//3

julia> gcd(1//3, -2//3)

1//3

julia> gcd(1//3, 2)

1//3

julia> gcd(0, 0, 10, 15)

5

https://en.wikipedia.org/wiki/Factorial
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/intfuncs.jl#L1071-L1096

CHAPTER 43. MATHEMATICS 782

source

Base.lcm – Function.

lcm(x, y...)

Least common (positive) multiple (or zero if any argument is zero). The arguments may be integer and

rational numbers.

Julia 1.4

Rational arguments require Julia 1.4 or later.

Examples

julia> lcm(2, 3)

6

julia> lcm(-2, 3)

6

julia> lcm(0, 3)

0

julia> lcm(0, 0)

0

julia> lcm(1//3, 2//3)

2//3

julia> lcm(1//3, -2//3)

2//3

julia> lcm(1//3, 2)

2//1

julia> lcm(1, 3, 5, 7)

105

source

Base.gcdx – Function.

gcdx(a, b)

Computes the greatest common (positive) divisor of a and b and their Bézout coefficients, i.e. the

integer coefficients u and v that satisfy ua+ vb = d = gcd(a, b). gcdx(a, b) returns (d, u, v).

The arguments may be integer and rational numbers.

Julia 1.4

Rational arguments require Julia 1.4 or later.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/intfuncs.jl#L5-L40
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/intfuncs.jl#L94-L129

CHAPTER 43. MATHEMATICS 783

julia> gcdx(12, 42)

(6, -3, 1)

julia> gcdx(240, 46)

(2, -9, 47)

Note

Bézout coefficients are not uniquely defined. gcdx returns the minimal Bézout coefficients

that are computed by the extended Euclidean algorithm. (Ref: D. Knuth, TAoCP, 2/e, p. 325,

Algorithm X.) For signed integers, these coefficients u and v are minimal in the sense that

|u| < |b/d| and |v| < |a/d|. Furthermore, the signs of u and v are chosen so that d is

positive. For unsigned integers, the coefficients u and v might be near their typemax, and

the identity then holds only via the unsigned integers' modulo arithmetic.

source

Base.ispow2 – Function.

ispow2(n::Number) -> Bool

Test whether n is an integer power of two.

See also count_ones, prevpow, nextpow.

Examples

julia> ispow2(4)

true

julia> ispow2(5)

false

julia> ispow2(4.5)

false

julia> ispow2(0.25)

true

julia> ispow2(1//8)

true

Julia 1.6

Support for non-Integer arguments was added in Julia 1.6.

source

Base.nextpow – Function.

nextpow(a, x)

The smallest a^n not less than x, where n is a non-negative integer. a must be greater than 1, and x

must be greater than 0.

See also prevpow.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/intfuncs.jl#L167-L198
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/intfuncs.jl#L425-L452

CHAPTER 43. MATHEMATICS 784

julia> nextpow(2, 7)

8

julia> nextpow(2, 9)

16

julia> nextpow(5, 20)

25

julia> nextpow(4, 16)

16

source

Base.prevpow – Function.

prevpow(a, x)

The largest a^n not greater than x, where n is a non-negative integer. a must be greater than 1, and x

must not be less than 1.

See also nextpow, isqrt.

Examples

julia> prevpow(2, 7)

4

julia> prevpow(2, 9)

8

julia> prevpow(5, 20)

5

julia> prevpow(4, 16)

16

source

Base.nextprod – Function.

nextprod(factors::Union{Tuple,AbstractVector}, n)

Next integer greater than or equal to n that can be written as
∏

kpi

i for integers p1, p2, etcetera, for
factors ki in factors.

Examples

julia> nextprod((2, 3), 105)

108

julia> 2^2 * 3^3

108

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/intfuncs.jl#L457-L479
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/intfuncs.jl#L501-L523

CHAPTER 43. MATHEMATICS 785

Julia 1.6

The method that accepts a tuple requires Julia 1.6 or later.

source

Base.invmod – Function.

invmod(n, m)

Take the inverse of n modulo m: y such that ny = 1 (mod m), and div(y,m) = 0. This will throw an
error ifm = 0, or if gcd(n,m) 6= 1.

Examples

julia> invmod(2, 5)

3

julia> invmod(2, 3)

2

julia> invmod(5, 6)

5

source

Base.powermod – Function.

powermod(x::Integer, p::Integer, m)

Compute xp (mod m).

Examples

julia> powermod(2, 6, 5)

4

julia> mod(2^6, 5)

4

julia> powermod(5, 2, 20)

5

julia> powermod(5, 2, 19)

6

julia> powermod(5, 3, 19)

11

source

Base.ndigits – Function.

ndigits(n::Integer; base::Integer=10, pad::Integer=1)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/combinatorics.jl#L321-L338
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/intfuncs.jl#L220-L238
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/intfuncs.jl#L361-L383

CHAPTER 43. MATHEMATICS 786

Compute the number of digits in integer n written in base base (base must not be in [-1, 0, 1]),

optionally padded with zeros to a specified size (the result will never be less than pad).

See also digits, count_ones.

Examples

julia> ndigits(0)

1

julia> ndigits(12345)

5

julia> ndigits(1022, base=16)

3

julia> string(1022, base=16)

"3fe"

julia> ndigits(123, pad=5)

5

julia> ndigits(-123)

3

source

Base.add_sum – Function.

Base.add_sum(x, y)

The reduction operator used in sum. The main difference from + is that small integers are promoted to

Int/UInt.

source

Base.widemul – Function.

widemul(x, y)

Multiply x and y, giving the result as a larger type.

See also promote, Base.add_sum.

Examples

julia> widemul(Float32(3.0), 4.0) isa BigFloat

true

julia> typemax(Int8) * typemax(Int8)

1

julia> widemul(typemax(Int8), typemax(Int8)) # == 127^2

16129

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/intfuncs.jl#L670-L699
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reduce.jl#L18-L23
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/number.jl#L258-L276

CHAPTER 43. MATHEMATICS 787

Base.Math.evalpoly – Function.

evalpoly(x, p)

Evaluate the polynomial
∑

k x
k−1p[k] for the coefficients p[1], p[2], ...; that is, the coefficients are

given in ascending order by power of x. Loops are unrolled at compile time if the number of coefficients

is statically known, i.e. when p is a Tuple. This function generates efficient code using Horner's method

if x is real, or using a Goertzel-like 1 algorithm if x is complex.

Julia 1.4

This function requires Julia 1.4 or later.

Example

julia> evalpoly(2, (1, 2, 3))

17

source

Base.Math.@evalpoly – Macro.

@evalpoly(z, c...)

Evaluate the polynomial
∑

k z
k−1c[k] for the coefficients c[1], c[2], ...; that is, the coefficients are

given in ascending order by power of z. This macro expands to efficient inline code that uses either

Horner's method or, for complex z, a more efficient Goertzel-like algorithm.

See also evalpoly.

Examples

julia> @evalpoly(3, 1, 0, 1)

10

julia> @evalpoly(2, 1, 0, 1)

5

julia> @evalpoly(2, 1, 1, 1)

7

source

Base.FastMath.@fastmath – Macro.

@fastmath expr

Execute a transformed version of the expression, which calls functions that may violate strict IEEE

semantics. This allows the fastest possible operation, but results are undefined – be careful when

doing this, as it may change numerical results.

This sets the LLVM Fast-Math flags, and corresponds to the -ffast-math option in clang. See the notes

on performance annotations for more details.

Examples

1Donald Knuth, Art of Computer Programming, Volume 2: Seminumerical Algorithms, Sec. 4.6.4.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L165-L185
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L278-L299
http://llvm.org/docs/LangRef.html#fast-math-flags

CHAPTER 43. MATHEMATICS 788

julia> @fastmath 1+2

3

julia> @fastmath(sin(3))

0.1411200080598672

source

43.3 Customizable binary operators

Some unicode characters can be used to define new binary operators that support infix notation. For

example ⊗(x,y) = kron(x,y) defines the ⊗ (otimes) function to be the Kronecker product, and one can

call it as binary operator using infix syntax: C = A ⊗ B as well as with the usual prefix syntax C = ⊗(A,B).

Other characters that support such extensions include \odot ⊙ and \oplus ⊕

The complete list is in the parser code: https://github.com/JuliaLang/julia/blob/master/src/julia-parser.scm

Those that are parsed like * (in terms of precedence) include * / ÷ % & ⋅ ∘ × |\\| ∩ ∧ ⊗ ⊘ ⊙ ⊚ ⊛ ⊠ ⊡

⊓ ∗ ∙ ⋄ ⋆ ⋏ ⊍ ▷ and those that are parsed

like + include + - |\|| ⊕ ⊖ ⊞ ⊟ |++| ∪ ∨ ⊔ ± ∓ ∸ ≏ ⊎ ⊻ ⋎ ⧺ ⧻

There are many others that are related to arrows, comparisons, and powers.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/fastmath.jl#L131-L151
https://github.com/JuliaLang/julia/blob/master/src/julia-parser.scm

Chapter 44

Numbers

44.1 Standard Numeric Types

A type tree for all subtypes of Number in Base is shown below. Abstract types have been marked, the rest

are concrete types.

Number (Abstract Type)├─

Complex└─

Real (Abstract Type)

├─ AbstractFloat (Abstract Type)

│ ├─ Float16

│ ├─ Float32

│ ├─ Float64

│ └─ BigFloat

├─ Integer (Abstract Type)

│ ├─ Bool

│ ├─ Signed (Abstract Type)

│ │ ├─ Int8

│ │ ├─ Int16

│ │ ├─ Int32

│ │ ├─ Int64

│ │ ├─ Int128

│ │ └─ BigInt

│ └─ Unsigned (Abstract Type)

│ ├─ UInt8

│ ├─ UInt16

│ ├─ UInt32

│ ├─ UInt64

│ └─ UInt128

├─ Rational

└─ AbstractIrrational (Abstract Type)

└─ Irrational

Abstract number types

Core.Number – Type.

Number

789

CHAPTER 44. NUMBERS 790

Abstract supertype for all number types.

source

Core.Real – Type.

Real <: Number

Abstract supertype for all real numbers.

source

Core.AbstractFloat – Type.

AbstractFloat <: Real

Abstract supertype for all floating point numbers.

source

Core.Integer – Type.

Integer <: Real

Abstract supertype for all integers.

source

Core.Signed – Type.

Signed <: Integer

Abstract supertype for all signed integers.

source

Core.Unsigned – Type.

Unsigned <: Integer

Abstract supertype for all unsigned integers.

source

Base.AbstractIrrational – Type.

AbstractIrrational <: Real

Number type representing an exact irrational value, which is automatically rounded to the correct

precision in arithmetic operations with other numeric quantities.

Subtypes MyIrrational <: AbstractIrrational should implement at least ==(::MyIrrational,

::MyIrrational), hash(x::MyIrrational, h::UInt), and convert(::Type{F}, x::MyIrrational)

where {F <: Union{BigFloat,Float32,Float64}}.

If a subtype is used to represent values that may occasionally be rational (e.g. a square-root type that

represents √n for integers n will give a rational result when n is a perfect square), then it should also

implement isinteger, iszero, isone, and == with Real values (since all of these default to false for

AbstractIrrational types), as well as defining hash to equal that of the corresponding Rational.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1988-L1992
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1995-L1999
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2002-L2006
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2009-L2013
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2016-L2020
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2023-L2027
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/irrationals.jl#L5-L18

CHAPTER 44. NUMBERS 791

Concrete number types

Core.Float16 – Type.

Float16 <: AbstractFloat

16-bit floating point number type (IEEE 754 standard).

Binary format: 1 sign, 5 exponent, 10 fraction bits.

source

Core.Float32 – Type.

Float32 <: AbstractFloat

32-bit floating point number type (IEEE 754 standard).

Binary format: 1 sign, 8 exponent, 23 fraction bits.

source

Core.Float64 – Type.

Float64 <: AbstractFloat

64-bit floating point number type (IEEE 754 standard).

Binary format: 1 sign, 11 exponent, 52 fraction bits.

source

Base.MPFR.BigFloat – Type.

BigFloat <: AbstractFloat

Arbitrary precision floating point number type.

source

Core.Bool – Type.

Bool <: Integer

Boolean type, containing the values true and false.

Bool is a kind of number: false is numerically equal to 0 and true is numerically equal to 1. Moreover,

false acts as a multiplicative "strong zero":

julia> false == 0

true

julia> true == 1

true

julia> 0 * NaN

NaN

julia> false * NaN

0.0

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2059-L2065
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2059-L2065
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2059-L2065
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/mpfr.jl#L97-L101

CHAPTER 44. NUMBERS 792

See also: digits, iszero, NaN.

source

Core.Int8 – Type.

Int8 <: Signed

8-bit signed integer type.

source

Core.UInt8 – Type.

UInt8 <: Unsigned

8-bit unsigned integer type.

source

Core.Int16 – Type.

Int16 <: Signed

16-bit signed integer type.

source

Core.UInt16 – Type.

UInt16 <: Unsigned

16-bit unsigned integer type.

source

Core.Int32 – Type.

Int32 <: Signed

32-bit signed integer type.

source

Core.UInt32 – Type.

UInt32 <: Unsigned

32-bit unsigned integer type.

source

Core.Int64 – Type.

Int64 <: Signed

64-bit signed integer type.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2030-L2054
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2072-L2076
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2079-L2083
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2072-L2076
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2079-L2083
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2072-L2076
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2079-L2083
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2072-L2076

CHAPTER 44. NUMBERS 793

Core.UInt64 – Type.

UInt64 <: Unsigned

64-bit unsigned integer type.

source

Core.Int128 – Type.

Int128 <: Signed

128-bit signed integer type.

source

Core.UInt128 – Type.

UInt128 <: Unsigned

128-bit unsigned integer type.

source

Base.GMP.BigInt – Type.

BigInt <: Signed

Arbitrary precision integer type.

source

Base.Complex – Type.

Complex{T<:Real} <: Number

Complex number type with real and imaginary part of type T.

ComplexF16, ComplexF32 and ComplexF64 are aliases for Complex{Float16}, Complex{Float32} and

Complex{Float64} respectively.

See also: Real, complex, real.

source

Base.Rational – Type.

Rational{T<:Integer} <: Real

Rational number type, with numerator and denominator of type T. Rationals are checked for overflow.

source

Base.Irrational – Type.

Irrational{sym} <: AbstractIrrational

Number type representing an exact irrational value denoted by the symbol sym, such as π, and γ.

See also AbstractIrrational.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2079-L2083
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2072-L2076
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2079-L2083
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/gmp.jl#L53-L57
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/complex.jl#L3-L12
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/rational.jl#L3-L8
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/irrationals.jl#L21-L28

CHAPTER 44. NUMBERS 794

44.2 Data Formats

Base.digits – Function.

digits([T<:Integer], n::Integer; base::T = 10, pad::Integer = 1)

Return an array with element type T (default Int) of the digits of n in the given base, optionally

padded with zeros to a specified size. More significant digits are at higher indices, such that n ==

sum(digits[k]*base^(k-1) for k=1:length(digits)).

See also ndigits, digits!, and for base 2 also bitstring, count_ones.

Examples

julia> digits(10)

2-element Vector{Int64}:

0

1

julia> digits(10, base = 2)

4-element Vector{Int64}:

0

1

0

1

julia> digits(-256, base = 10, pad = 5)

5-element Vector{Int64}:

-6

-5

-2

0

0

julia> n = rand(-999:999);

julia> n == evalpoly(13, digits(n, base = 13))

true

source

Base.digits! – Function.

digits!(array, n::Integer; base::Integer = 10)

Fills an array of the digits of n in the given base. More significant digits are at higher indices. If the array

length is insufficient, the least significant digits are filled up to the array length. If the array length is

excessive, the excess portion is filled with zeros.

Examples

julia> digits!([2, 2, 2, 2], 10, base = 2)

4-element Vector{Int64}:

0

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/intfuncs.jl#L936-L973

CHAPTER 44. NUMBERS 795

1

0

1

julia> digits!([2, 2, 2, 2, 2, 2], 10, base = 2)

6-element Vector{Int64}:

0

1

0

1

0

0

source

Base.bitstring – Function.

bitstring(n)

A string giving the literal bit representation of a primitive type.

See also count_ones, count_zeros, digits.

Examples

julia> bitstring(Int32(4))

"00000000000000000000000000000100"

julia> bitstring(2.2)

"0100000000000001100110011001100110011001100110011001100110011010"

source

Base.parse – Function.

parse(::Type{Platform}, triplet::AbstractString)

Parses a string platform triplet back into a Platform object.

source

parse(type, str; base)

Parse a string as a number. For Integer types, a base can be specified (the default is 10). For floating-

point types, the string is parsed as a decimal floating-point number. Complex types are parsed from

decimal strings of the form "R±Iim" as a Complex(R,I) of the requested type; "i" or "j" can also

be used instead of "im", and "R" or "Iim" are also permitted. If the string does not contain a valid

number, an error is raised.

Julia 1.1

parse(Bool, str) requires at least Julia 1.1.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/intfuncs.jl#L990-L1015
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/intfuncs.jl#L902-L917
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/binaryplatforms.jl#L666-L670

CHAPTER 44. NUMBERS 796

julia> parse(Int, "1234")

1234

julia> parse(Int, "1234", base = 5)

194

julia> parse(Int, "afc", base = 16)

2812

julia> parse(Float64, "1.2e-3")

0.0012

julia> parse(Complex{Float64}, "3.2e-1 + 4.5im")

0.32 + 4.5im

source

Base.tryparse – Function.

tryparse(type, str; base)

Like parse, but returns either a value of the requested type, or nothing if the string does not contain

a valid number.

source

Base.big – Function.

big(x)

Convert a number to amaximumprecision representation (typically BigInt or BigFloat). See BigFloat

for information about some pitfalls with floating-point numbers.

source

Base.signed – Function.

signed(T::Integer)

Convert an integer bitstype to the signed type of the same size.

Examples

julia> signed(UInt16)

Int16

julia> signed(UInt64)

Int64

source

signed(x)

Convert a number to a signed integer. If the argument is unsigned, it is reinterpreted as signed without

checking for overflow.

See also: unsigned, sign, signbit.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/parse.jl#L7-L37
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/parse.jl#L242-L247
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/gmp.jl#L481-L487
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/int.jl#L61-L72
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/int.jl#L218-L225

CHAPTER 44. NUMBERS 797

Base.unsigned – Function.

unsigned(T::Integer)

Convert an integer bitstype to the unsigned type of the same size.

Examples

julia> unsigned(Int16)

UInt16

julia> unsigned(UInt64)

UInt64

source

Base.float – Method.

float(x)

Convert a number or array to a floating point data type.

See also: complex, oftype, convert.

Examples

julia> float(1:1000)

1.0:1.0:1000.0

julia> float(typemax(Int32))

2.147483647e9

source

Base.Math.significand – Function.

significand(x)

Extract the significand (a.k.a. mantissa) of a floating-point number. If x is a non-zero finite number,

then the result will be a number of the same type and sign as x, and whose absolute value is on the

interval [1, 2). Otherwise x is returned.

Examples

julia> significand(15.2)

1.9

julia> significand(-15.2)

-1.9

julia> significand(-15.2) * 2^3

-15.2

julia> significand(-Inf), significand(Inf), significand(NaN)

(-Inf, Inf, NaN)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/int.jl#L48-L59
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/float.jl#L278-L293

CHAPTER 44. NUMBERS 798

source

Base.Math.exponent – Function.

exponent(x) -> Int

Returns the largest integer y such that 2^y ≤ abs(x). For a normalized floating-point number x, this

corresponds to the exponent of x.

Examples

julia> exponent(8)

3

julia> exponent(64//1)

6

julia> exponent(6.5)

2

julia> exponent(16.0)

4

julia> exponent(3.142e-4)

-12

source

Base.complex – Method.

complex(r, [i])

Convert real numbers or arrays to complex. i defaults to zero.

Examples

julia> complex(7)

7 + 0im

julia> complex([1, 2, 3])

3-element Vector{Complex{Int64}}:

1 + 0im

2 + 0im

3 + 0im

source

Base.bswap – Function.

bswap(n)

Reverse the byte order of n.

(See also ntoh and hton to convert between the current native byte order and big-endian order.)

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L1034-L1056
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L981-L1004
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/complex.jl#L156-L172

CHAPTER 44. NUMBERS 799

julia> a = bswap(0x10203040)

0x40302010

julia> bswap(a)

0x10203040

julia> string(1, base = 2)

"1"

julia> string(bswap(1), base = 2)

"100"

source

Base.hex2bytes – Function.

hex2bytes(itr)

Given an iterable itr of ASCII codes for a sequence of hexadecimal digits, returns a Vector{UInt8}

of bytes corresponding to the binary representation: each successive pair of hexadecimal digits in itr

gives the value of one byte in the return vector.

The length of itr must be even, and the returned array has half of the length of itr. See also

hex2bytes! for an in-place version, and bytes2hex for the inverse.

Julia 1.7

Calling hex2bytes with iterators producing UInt8 values requires Julia 1.7 or later. In earlier

versions, you can collect the iterator before calling hex2bytes.

Examples

julia> s = string(12345, base = 16)

"3039"

julia> hex2bytes(s)

2-element Vector{UInt8}:

0x30

0x39

julia> a = b"01abEF"

6-element Base.CodeUnits{UInt8, String}:

0x30

0x31

0x61

0x62

0x45

0x46

julia> hex2bytes(a)

3-element Vector{UInt8}:

0x01

0xab

0xef

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/int.jl#L375-L396

CHAPTER 44. NUMBERS 800

source

Base.hex2bytes! – Function.

hex2bytes!(dest::AbstractVector{UInt8}, itr)

Convert an iterable itr of bytes representing a hexadecimal string to its binary representation, similar

to hex2bytes except that the output is written in-place to dest. The length of dest must be half the

length of itr.

Julia 1.7

Calling hex2bytes! with iterators producing UInt8 requires version 1.7. In earlier versions,

you can collect the iterable before calling instead.

source

Base.bytes2hex – Function.

bytes2hex(itr) -> String

bytes2hex(io::IO, itr)

Convert an iterator itr of bytes to its hexadecimal string representation, either returning a String

via bytes2hex(itr) or writing the string to an io stream via bytes2hex(io, itr). The hexadecimal

characters are all lowercase.

Julia 1.7

Calling bytes2hex with arbitrary iterators producing UInt8 values requires Julia 1.7 or later.

In earlier versions, you can collect the iterator before calling bytes2hex.

Examples

julia> a = string(12345, base = 16)

"3039"

julia> b = hex2bytes(a)

2-element Vector{UInt8}:

0x30

0x39

julia> bytes2hex(b)

"3039"

source

44.3 General Number Functions and Constants

Base.one – Function.

one(x)

one(T::type)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/util.jl#L855-L895
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/util.jl#L907-L918
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/util.jl#L944-L970

CHAPTER 44. NUMBERS 801

Return a multiplicative identity for x: a value such that one(x)*x == x*one(x) == x. Alternatively

one(T) can take a type T, in which case one returns a multiplicative identity for any x of type T.

If possible, one(x) returns a value of the same type as x, and one(T) returns a value of type T. However,

this may not be the case for types representing dimensionful quantities (e.g. time in days), since the

multiplicative identity must be dimensionless. In that case, one(x) should return an identity value of

the same precision (and shape, for matrices) as x.

If you want a quantity that is of the same type as x, or of type T, even if x is dimensionful, use oneunit

instead.

See also the identity function, and I in LinearAlgebra for the identity matrix.

Examples

julia> one(3.7)

1.0

julia> one(Int)

1

julia> import Dates; one(Dates.Day(1))

1

source

Base.oneunit – Function.

oneunit(x::T)

oneunit(T::Type)

Return T(one(x)), where T is either the type of the argument or (if a type is passed) the argument.

This differs from one for dimensionful quantities: one is dimensionless (a multiplicative identity) while

oneunit is dimensionful (of the same type as x, or of type T).

Examples

julia> oneunit(3.7)

1.0

julia> import Dates; oneunit(Dates.Day)

1 day

source

Base.zero – Function.

zero(x)

zero(::Type)

Get the additive identity element for the type of x (x can also specify the type itself).

See also iszero, one, oneunit, oftype.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/number.jl#L312-L346
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/number.jl#L353-L370

CHAPTER 44. NUMBERS 802

julia> zero(1)

0

julia> zero(big"2.0")

0.0

julia> zero(rand(2,2))

2×2 Matrix{Float64}:

0.0 0.0

0.0 0.0

source

Base.im – Constant.

im

The imaginary unit.

See also: imag, angle, complex.

Examples

julia> im * im

-1 + 0im

julia> (2.0 + 3im)^2

-5.0 + 12.0im

source

Base.MathConstants.pi – Constant.

π

pi

The constant pi.

Unicode π can be typed by writing \pi then pressing tab in the Julia REPL, and in many editors.

See also: sinpi, sincospi, deg2rad.

Examples

julia> pi

π = 3.1415926535897...

julia> 1/2pi

0.15915494309189535

source

Base.MathConstants. – Constant.

e

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/number.jl#L286-L307
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/complex.jl#L20-L35
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/mathconstants.jl#L20-L38

CHAPTER 44. NUMBERS 803

The constant ℯ.

Unicode can be typed by writing \euler and pressing tab in the Julia REPL, and in many editors.

See also: exp, cis, cispi.

Examples

julia>

= 2.7182818284590...

julia> log()

1

julia> ^(im)π ≈ -1

true

source

Base.MathConstants.catalan – Constant.

catalan

Catalan's constant.

Examples

julia> Base.MathConstants.catalan

catalan = 0.9159655941772...

julia> sum(log(x)/(1+x^2) for x in 1:0.01:10^6) * 0.01

0.9159466120554123

source

Base.MathConstants.eulergamma – Constant.

γ

eulergamma

Euler's constant.

Examples

julia> Base.MathConstants.eulergamma

γ = 0.5772156649015...

julia> dx = 10^-6;

julia> sum(-exp(-x) * log(x) for x in dx:dx:100) * dx

0.5772078382499133

source

Base.MathConstants.golden – Constant.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/mathconstants.jl#L41-L62
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/mathconstants.jl#L101-L114
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/mathconstants.jl#L65-L81

CHAPTER 44. NUMBERS 804

φ

golden

The golden ratio.

Examples

julia> Base.MathConstants.golden

φ = 1.6180339887498...

julia> (2ans - 1)^2 ≈ 5

true

source

Base.Inf – Constant.

Inf, Inf64

Positive infinity of type Float64.

See also: isfinite, typemax, NaN, Inf32.

Examples

julia> π/0

Inf

julia> +1.0 / -0.0

-Inf

julia> ^-Inf

0.0

source

Base.Inf64 – Constant.

Inf, Inf64

Positive infinity of type Float64.

See also: isfinite, typemax, NaN, Inf32.

Examples

julia> π/0

Inf

julia> +1.0 / -0.0

-Inf

julia> ^-Inf

0.0

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/mathconstants.jl#L84-L98
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/float.jl#L35-L53

CHAPTER 44. NUMBERS 805

source

Base.Inf32 – Constant.

Inf32

Positive infinity of type Float32.

source

Base.Inf16 – Constant.

Inf16

Positive infinity of type Float16.

source

Base.NaN – Constant.

NaN, NaN64

A not-a-number value of type Float64.

See also: isnan, missing, NaN32, Inf.

Examples

julia> 0/0

NaN

julia> Inf - Inf

NaN

julia> NaN == NaN, isequal(NaN, NaN), NaN === NaN

(false, true, true)

source

Base.NaN64 – Constant.

NaN, NaN64

A not-a-number value of type Float64.

See also: isnan, missing, NaN32, Inf.

Examples

julia> 0/0

NaN

julia> Inf - Inf

NaN

julia> NaN == NaN, isequal(NaN, NaN), NaN === NaN

(false, true, true)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/float.jl#L35-L53
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/float.jl#L19-L23
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/float.jl#L7-L11
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/float.jl#L57-L75

CHAPTER 44. NUMBERS 806

source

Base.NaN32 – Constant.

NaN32

A not-a-number value of type Float32.

source

Base.NaN16 – Constant.

NaN16

A not-a-number value of type Float16.

source

Base.issubnormal – Function.

issubnormal(f) -> Bool

Test whether a floating point number is subnormal.

An IEEE floating point number is subnormal when its exponent bits are zero and its significand is not

zero.

Examples

julia> floatmin(Float32)

1.1754944f-38

julia> issubnormal(1.0f-37)

false

julia> issubnormal(1.0f-38)

true

source

Base.isfinite – Function.

isfinite(f) -> Bool

Test whether a number is finite.

Examples

julia> isfinite(5)

true

julia> isfinite(NaN32)

false

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/float.jl#L57-L75
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/float.jl#L25-L29
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/float.jl#L13-L17
https://en.wikipedia.org/wiki/Subnormal_number
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/float.jl#L920-L939
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/number.jl#L64-L77

CHAPTER 44. NUMBERS 807

Base.isinf – Function.

isinf(f) -> Bool

Test whether a number is infinite.

See also: Inf, iszero, isfinite, isnan.

source

Base.isnan – Function.

isnan(f) -> Bool

Test whether a number value is a NaN, an indeterminate value which is neither an infinity nor a finite

number ("not a number").

See also: iszero, isone, isinf, ismissing.

source

Base.iszero – Function.

iszero(x)

Return true if x == zero(x); if x is an array, this checks whether all of the elements of x are zero.

See also: isone, isinteger, isfinite, isnan.

Examples

julia> iszero(0.0)

true

julia> iszero([1, 9, 0])

false

julia> iszero([false, 0, 0])

true

source

Base.isone – Function.

isone(x)

Return true if x == one(x); if x is an array, this checks whether x is an identity matrix.

Examples

julia> isone(1.0)

true

julia> isone([1 0; 0 2])

false

julia> isone([1 0; 0 true])

true

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/float.jl#L627-L633
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/float.jl#L612-L619
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/number.jl#L22-L41

CHAPTER 44. NUMBERS 808

source

Base.nextfloat – Function.

nextfloat(x::AbstractFloat, n::Integer)

The result of n iterative applications of nextfloat to x if n >= 0, or -n applications of prevfloat if n

< 0.

source

nextfloat(x::AbstractFloat)

Return the smallest floating point number y of the same type as x such x < y. If no such y exists (e.g.

if x is Inf or NaN), then return x.

See also: prevfloat, eps, issubnormal.

source

Base.prevfloat – Function.

prevfloat(x::AbstractFloat, n::Integer)

The result of n iterative applications of prevfloat to x if n >= 0, or -n applications of nextfloat if n

< 0.

source

prevfloat(x::AbstractFloat)

Return the largest floating point number y of the same type as x such y < x. If no such y exists (e.g.

if x is -Inf or NaN), then return x.

source

Base.isinteger – Function.

isinteger(x) -> Bool

Test whether x is numerically equal to some integer.

Examples

julia> isinteger(4.0)

true

source

Base.isreal – Function.

isreal(x) -> Bool

Test whether x or all its elements are numerically equal to some real number including infinities and

NaNs. isreal(x) is true if isequal(x, real(x)) is true.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/number.jl#L44-L61
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/float.jl#L800-L805
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/float.jl#L844-L851
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/float.jl#L854-L859
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/float.jl#L862-L867
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/number.jl#L9-L19

CHAPTER 44. NUMBERS 809

julia> isreal(5.)

true

julia> isreal(1 - 3im)

false

julia> isreal(Inf + 0im)

true

julia> isreal([4.; complex(0,1)])

false

source

Core.Float32 – Method.

Float32(x [, mode::RoundingMode])

Create a Float32 from x. If x is not exactly representable then mode determines how x is rounded.

Examples

julia> Float32(1/3, RoundDown)

0.3333333f0

julia> Float32(1/3, RoundUp)

0.33333334f0

See RoundingMode for available rounding modes.

source

Core.Float64 – Method.

Float64(x [, mode::RoundingMode])

Create a Float64 from x. If x is not exactly representable then mode determines how x is rounded.

Examples

julia> Float64(pi, RoundDown)

3.141592653589793

julia> Float64(pi, RoundUp)

3.1415926535897936

See RoundingMode for available rounding modes.

source

Base.Rounding.rounding – Function.

rounding(T)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/complex.jl#L125-L146
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1636-L1652
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1655-L1671

CHAPTER 44. NUMBERS 810

Get the current floating point rounding mode for type T, controlling the rounding of basic arithmetic

functions (+, -, *, / and sqrt) and type conversion.

See RoundingMode for available modes.

source

Base.Rounding.setrounding – Method.

setrounding(T, mode)

Set the rounding mode of floating point type T, controlling the rounding of basic arithmetic functions (+,

-, *, / and sqrt) and type conversion. Other numerical functions may give incorrect or invalid values

when using rounding modes other than the default RoundNearest.

Note that this is currently only supported for T == BigFloat.

Warning

This function is not thread-safe. It will affect code running on all threads, but its behavior is

undefined if called concurrently with computations that use the setting.

source

Base.Rounding.setrounding – Method.

setrounding(f::Function, T, mode)

Change the rounding mode of floating point type T for the duration of f. It is logically equivalent to:

old = rounding(T)

setrounding(T, mode)

f()

setrounding(T, old)

See RoundingMode for available rounding modes.

source

Base.Rounding.get_zero_subnormals – Function.

get_zero_subnormals() -> Bool

Return false if operations on subnormal floating-point values ("denormals") obey rules for IEEE arith-

metic, and true if they might be converted to zeros.

Warning

This function only affects the current thread.

source

Base.Rounding.set_zero_subnormals – Function.

set_zero_subnormals(yes::Bool) -> Bool

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/rounding.jl#L150-L158
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/rounding.jl#L131-L147
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/rounding.jl#L166-L178
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/rounding.jl#L244-L253

CHAPTER 44. NUMBERS 811

If yes is false, subsequent floating-point operations follow rules for IEEE arithmetic on subnormal

values ("denormals"). Otherwise, floating-point operations are permitted (but not required) to convert

subnormal inputs or outputs to zero. Returns true unless yes==true but the hardware does not support

zeroing of subnormal numbers.

set_zero_subnormals(true) can speed up some computations on some hardware. However, it can

break identities such as (x-y==0) == (x==y).

Warning

This function only affects the current thread.

source

Integers

Base.count_ones – Function.

count_ones(x::Integer) -> Integer

Number of ones in the binary representation of x.

Examples

julia> count_ones(7)

3

julia> count_ones(Int32(-1))

32

source

Base.count_zeros – Function.

count_zeros(x::Integer) -> Integer

Number of zeros in the binary representation of x.

Examples

julia> count_zeros(Int32(2 ^ 16 - 1))

16

julia> count_zeros(-1)

0

source

Base.leading_zeros – Function.

leading_zeros(x::Integer) -> Integer

Number of zeros leading the binary representation of x.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/rounding.jl#L227-L241
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/int.jl#L401-L414
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/int.jl#L443-L456

CHAPTER 44. NUMBERS 812

julia> leading_zeros(Int32(1))

31

source

Base.leading_ones – Function.

leading_ones(x::Integer) -> Integer

Number of ones leading the binary representation of x.

Examples

julia> leading_ones(UInt32(2 ^ 32 - 2))

31

source

Base.trailing_zeros – Function.

trailing_zeros(x::Integer) -> Integer

Number of zeros trailing the binary representation of x.

Examples

julia> trailing_zeros(2)

1

source

Base.trailing_ones – Function.

trailing_ones(x::Integer) -> Integer

Number of ones trailing the binary representation of x.

Examples

julia> trailing_ones(3)

2

source

Base.isodd – Function.

isodd(x::Number) -> Bool

Return true if x is an odd integer (that is, an integer not divisible by 2), and false otherwise.

Julia 1.7

Non-Integer arguments require Julia 1.7 or later.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/int.jl#L417-L427
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/int.jl#L459-L469
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/int.jl#L430-L440
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/int.jl#L472-L482

CHAPTER 44. NUMBERS 813

julia> isodd(9)

true

julia> isodd(10)

false

source

Base.iseven – Function.

iseven(x::Number) -> Bool

Return true if x is an even integer (that is, an integer divisible by 2), and false otherwise.

Julia 1.7

Non-Integer arguments require Julia 1.7 or later.

Examples

julia> iseven(9)

false

julia> iseven(10)

true

source

Core.@int128_str – Macro.

@int128_str str

Parse str as an Int128. Throw an ArgumentError if the string is not a valid integer.

Examples

julia> int128"123456789123"

123456789123

julia> int128"123456789123.4"

ERROR: LoadError: ArgumentError: invalid base 10 digit '.' in "123456789123.4"

[...]

source

Core.@uint128_str – Macro.

@uint128_str str

Parse str as an UInt128. Throw an ArgumentError if the string is not a valid integer.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/int.jl#L99-L115
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/int.jl#L119-L135
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/int.jl#L698-L713

CHAPTER 44. NUMBERS 814

julia> uint128"123456789123"

0x00000000000000000000001cbe991a83

julia> uint128"-123456789123"

ERROR: LoadError: ArgumentError: invalid base 10 digit '-' in "-123456789123"

[...]

source

44.4 BigFloats and BigInts

The BigFloat and BigInt types implements arbitrary-precision floating point and integer arithmetic, re-

spectively. For BigFloat the GNUMPFR library is used, and for BigInt the GNUMultiple Precision Arithmetic

Library (GMP) is used.

Base.MPFR.BigFloat – Method.

BigFloat(x::Union{Real, AbstractString} [, rounding::RoundingMode=rounding(BigFloat)];

[precision::Integer=precision(BigFloat)])↪→

Create an arbitrary precision floating point number from x, with precision precision. The rounding

argument specifies the direction in which the result should be rounded if the conversion cannot be

done exactly. If not provided, these are set by the current global values.

BigFloat(x::Real) is the same as convert(BigFloat,x), except if x itself is already BigFloat, in

which case it will return a value with the precision set to the current global precision; convert will

always return x.

BigFloat(x::AbstractString) is identical to parse. This is provided for convenience since decimal

literals are converted to Float64 when parsed, so BigFloat(2.1) may not yield what you expect.

See also:

• @big_str

• rounding and setrounding

• precision and setprecision

Julia 1.1

precision as a keyword argument requires at least Julia 1.1. In Julia 1.0 precision is the

second positional argument (BigFloat(x, precision)).

Examples

julia> BigFloat(2.1) # 2.1 here is a Float64

2.100000000000000088817841970012523233890533447265625

julia> BigFloat("2.1") # the closest BigFloat to 2.1

2.099986

julia> BigFloat("2.1", RoundUp)

2.100021

julia> BigFloat("2.1", RoundUp, precision=128)

2.100000000000000000000000000000000000007

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/int.jl#L718-L733
https://www.mpfr.org/
https://gmplib.org
https://gmplib.org

CHAPTER 44. NUMBERS 815

source

Base.precision – Function.

precision(num::AbstractFloat; base::Integer=2)

precision(T::Type; base::Integer=2)

Get the precision of a floating point number, as defined by the effective number of bits in the signifi-

cand, or the precision of a floating-point type T (its current default, if T is a variable-precision type like

BigFloat).

If base is specified, then it returns the maximum corresponding number of significand digits in that

base.

Julia 1.8

The base keyword requires at least Julia 1.8.

source

Base.MPFR.setprecision – Function.

setprecision([T=BigFloat,] precision::Int; base=2)

Set the precision (in bits, by default) to be used for T arithmetic. If base is specified, then the precision

is the minimum required to give at least precision digits in the given base.

Warning

This function is not thread-safe. It will affect code running on all threads, but its behavior is

undefined if called concurrently with computations that use the setting.

Julia 1.8

The base keyword requires at least Julia 1.8.

source

setprecision(f::Function, [T=BigFloat,] precision::Integer; base=2)

Change the T arithmetic precision (in the given base) for the duration of f. It is logically equivalent to:

old = precision(BigFloat)

setprecision(BigFloat, precision)

f()

setprecision(BigFloat, old)

Often used as setprecision(T, precision) do ... end

Note: nextfloat(), prevfloat() do not use the precision mentioned by setprecision.

Julia 1.8

The base keyword requires at least Julia 1.8.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/mpfr.jl#L151-L189
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/float.jl#L772-L785
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/mpfr.jl#L902-L917
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/mpfr.jl#L1018-L1036

CHAPTER 44. NUMBERS 816

Base.GMP.BigInt – Method.

BigInt(x)

Create an arbitrary precision integer. x may be an Int (or anything that can be converted to an Int).

The usual mathematical operators are defined for this type, and results are promoted to a BigInt.

Instances can be constructed from strings via parse, or using the big string literal.

Examples

julia> parse(BigInt, "42")

42

julia> big"313"

313

julia> BigInt(10)^19

10000000000000000000

source

Core.@big_str – Macro.

@big_str str

Parse a string into a BigInt or BigFloat, and throw an ArgumentError if the string is not a valid

number. For integers _ is allowed in the string as a separator.

Examples

julia> big"123_456"

123456

julia> big"7891.5"

7891.5

julia> big"_"

ERROR: ArgumentError: invalid number format _ for BigInt or BigFloat

[...]

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/gmp.jl#L70-L91
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/int.jl#L738-L757

Chapter 45

Strings

Core.AbstractString – Type.

The AbstractString type is the supertype of all string implementations in Julia. Strings are encodings

of sequences of Unicode code points as represented by the AbstractChar type. Julia makes a few

assumptions about strings:

• Strings are encoded in terms of fixed-size "code units"

– Code units can be extracted with codeunit(s, i)

– The first code unit has index 1

– The last code unit has index ncodeunits(s)

– Any index i such that 1 ≤ i ≤ ncodeunits(s) is in bounds

• String indexing is done in terms of these code units:

– Characters are extracted by s[i] with a valid string index i

– Each AbstractChar in a string is encoded by one or more code units

– Only the index of the first code unit of an AbstractChar is a valid index

– The encoding of an AbstractChar is independent of what precedes or follows it

– String encodings are [self-synchronizing] – i.e. isvalid(s, i) is O(1)

[self-synchronizing]: https://en.wikipedia.org/wiki/Self-synchronizing_code

Some string functions that extract code units, characters or substrings from strings error if you pass

them out-of-bounds or invalid string indices. This includes codeunit(s, i) and s[i]. Functions that

do string index arithmetic take a more relaxed approach to indexing and give you the closest valid

string index when in-bounds, or when out-of-bounds, behave as if there were an infinite number of

characters padding each side of the string. Usually these imaginary padding characters have code

unit length 1 but string types may choose different "imaginary" character sizes as makes sense for

their implementations (e.g. substrings may pass index arithmetic through to the underlying string

they provide a view into). Relaxed indexing functions include those intended for index arithmetic:

thisind, nextind and prevind. This model allows index arithmetic to work with out-of- bounds indices

as intermediate values so long as one never uses them to retrieve a character, which often helps avoid

needing to code around edge cases.

See also codeunit, ncodeunits, thisind, nextind, prevind.

source

817

https://unicode.org/
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/basic.jl#L3-L40

CHAPTER 45. STRINGS 818

Core.AbstractChar – Type.

The AbstractChar type is the supertype of all character implementations in Julia. A character repre-

sents a Unicode code point, and can be converted to an integer via the codepoint function in order to

obtain the numerical value of the code point, or constructed from the same integer. These numerical

values determine how characters are compared with < and ==, for example. New T <: AbstractChar

types should define a codepoint(::T) method and a T(::UInt32) constructor, at minimum.

A given AbstractChar subtype may be capable of representing only a subset of Unicode, in which case

conversion from an unsupported UInt32 value may throw an error. Conversely, the built-in Char type

represents a superset of Unicode (in order to losslessly encode invalid byte streams), in which case

conversion of a non-Unicode value to UInt32 throws an error. The isvalid function can be used to

check which codepoints are representable in a given AbstractChar type.

Internally, an AbstractChar type may use a variety of encodings. Conversion via codepoint(char)

will not reveal this encoding because it always returns the Unicode value of the character. print(io,

c) of any c::AbstractChar produces an encoding determined by io (UTF-8 for all built-in IO types),

via conversion to Char if necessary.

write(io, c), in contrast, may emit an encoding depending on typeof(c), and read(io, typeof(c))

should read the same encoding as write. New AbstractChar types must provide their own implemen-

tations of write and read.

source

Core.Char – Type.

Char(c::Union{Number,AbstractChar})

Char is a 32-bit AbstractChar type that is the default representation of characters in Julia. Char is the

type used for character literals like 'x' and it is also the element type of String.

In order to losslessly represent arbitrary byte streams stored in a String, a Char value may store

information that cannot be converted to a Unicode codepoint — converting such a Char to UInt32 will

throw an error. The isvalid(c::Char) function can be used to query whether c represents a valid

Unicode character.

source

Base.codepoint – Function.

codepoint(c::AbstractChar) -> Integer

Return the Unicode codepoint (an unsigned integer) corresponding to the character c (or throw an

exception if c does not represent a valid character). For Char, this is a UInt32 value, but AbstractChar

types that represent only a subset of Unicode may return a different-sized integer (e.g. UInt8).

source

Base.length – Method.

length(s::AbstractString) -> Int

length(s::AbstractString, i::Integer, j::Integer) -> Int

Return the number of characters in string s from indices i through j.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/char.jl#L3-L30
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/char.jl#L33-L45
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/char.jl#L67-L75

CHAPTER 45. STRINGS 819

This is computed as the number of code unit indices from i to j which are valid character indices. With

only a single string argument, this computes the number of characters in the entire string. With i and

j arguments it computes the number of indices between i and j inclusive that are valid indices in the

string s. In addition to in-bounds values, i may take the out-of-bounds value ncodeunits(s) + 1 and

j may take the out-of-bounds value 0.

Note

The time complexity of this operation is linear in general. That is, it will take the time

proportional to the number of bytes or characters in the string because it counts the value

on the fly. This is in contrast to the method for arrays, which is a constant-time operation.

See also isvalid, ncodeunits, lastindex, thisind, nextind, prevind.

Examples

julia> length("jμΛIα")

5

source

Base.sizeof – Method.

sizeof(str::AbstractString)

Size, in bytes, of the string str. Equal to the number of code units in str multiplied by the size, in

bytes, of one code unit in str.

Examples

julia> sizeof("")

0

julia> sizeof("∀")

3

source

Base.:* – Method.

*(s::Union{AbstractString, AbstractChar}, t::Union{AbstractString, AbstractChar}...) ->

AbstractString↪→

Concatenate strings and/or characters, producing a String. This is equivalent to calling the string

function on the arguments. Concatenation of built-in string types always produces a value of type

String but other string types may choose to return a string of a different type as appropriate.

Examples

julia> "Hello " * "world"

"Hello world"

julia> 'j' * "ulia"

"julia"

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/basic.jl#L361-L389
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/basic.jl#L164-L178

CHAPTER 45. STRINGS 820

source

Base.:^ – Method.

^(s::Union{AbstractString,AbstractChar}, n::Integer) -> AbstractString

Repeat a string or character n times. This can also be written as repeat(s, n).

See also repeat.

Examples

julia> "Test "^3

"Test Test Test "

source

Base.string – Function.

string(n::Integer; base::Integer = 10, pad::Integer = 1)

Convert an integer n to a string in the given base, optionally specifying a number of digits to pad to.

See also digits, bitstring, count_zeros.

Examples

julia> string(5, base = 13, pad = 4)

"0005"

julia> string(-13, base = 5, pad = 4)

"-0023"

source

string(xs...)

Create a string from any values using the print function.

string should usually not be defined directly. Instead, define a method print(io::IO, x::MyType).

If string(x) for a certain type needs to be highly efficient, then it may make sense to add a method

to string and define print(io::IO, x::MyType) = print(io, string(x)) to ensure the functions

are consistent.

See also: String, repr, sprint, show.

Examples

julia> string("a", 1, true)

"a1true"

source

Base.repeat – Method.

repeat(s::AbstractString, r::Integer)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/basic.jl#L243-L259
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/basic.jl#L752-L764
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/intfuncs.jl#L864-L880
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/io.jl#L170-L188

CHAPTER 45. STRINGS 821

Repeat a string r times. This can be written as s^r.

See also ^.

Examples

julia> repeat("ha", 3)

"hahaha"

source

Base.repeat – Method.

repeat(c::AbstractChar, r::Integer) -> String

Repeat a character r times. This can equivalently be accomplished by calling c^r.

Examples

julia> repeat('A', 3)

"AAA"

source

Base.repr – Method.

repr(x; context=nothing)

Create a string from any value using the show function. You should not add methods to repr; define a

show method instead.

The optional keyword argument context can be set to a :key=>value pair, a tuple of :key=>value

pairs, or an IO or IOContext object whose attributes are used for the I/O stream passed to show.

Note that repr(x) is usually similar to how the value of xwould be entered in Julia. See also repr(MIME("text/plain"),

x) to instead return a "pretty-printed" version of x designed more for human consumption, equivalent

to the REPL display of x.

Julia 1.7

Passing a tuple to keyword context requires Julia 1.7 or later.

Examples

julia> repr(1)

"1"

julia> repr(zeros(3))

"[0.0, 0.0, 0.0]"

julia> repr(big(1/3))

"0.333333333333333314829616256247390992939472198486328125"

julia> repr(big(1/3), context=:compact => true)

"0.333333"

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/basic.jl#L737-L749
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/string.jl#L528-L539

CHAPTER 45. STRINGS 822

source

Core.String – Method.

String(s::AbstractString)

Create a new String from an existing AbstractString.

source

Base.SubString – Type.

SubString(s::AbstractString, i::Integer, j::Integer=lastindex(s))

SubString(s::AbstractString, r::UnitRange{<:Integer})

Like getindex, but returns a view into the parent string s within range i:j or r respectively instead of

making a copy.

The @viewsmacro converts any string slices s[i:j] into substrings SubString(s, i, j) in a block of

code.

Examples

julia> SubString("abc", 1, 2)

"ab"

julia> SubString("abc", 1:2)

"ab"

julia> SubString("abc", 2)

"bc"

source

Base.LazyString – Type.

LazyString <: AbstractString

A lazy representation of string interpolation. This is useful when a string needs to be constructed in a

context where performing the actual interpolation and string construction is unnecessary or undesirable

(e.g. in error paths of functions).

This type is designed to be cheap to construct at runtime, trying to offload as much work as possible

to either the macro or later printing operations.

Examples

julia> n = 5; str = LazyString("n is ", n)

"n is 5"

See also @lazy_str.

Julia 1.8

LazyString requires Julia 1.8 or later.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/io.jl#L252-L285
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/string.jl#L92-L96
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/substring.jl#L3-L24

CHAPTER 45. STRINGS 823

Extended help

Safety properties for concurrent programs

A lazy string itself does not introduce any concurrency problems even if it is printed in multiple Julia

tasks. However, if print methods on a captured value can have a concurrency issue when invoked

without synchronizations, printing the lazy string may cause an issue. Furthermore, the printmethods

on the captured values may be invoked multiple times, though only exactly one result will be returned.

Julia 1.9

LazyString is safe in the above sense in Julia 1.9 and later.

source

Base.@lazy_str – Macro.

lazy"str"

Create a LazyString using regular string interpolation syntax. Note that interpolations are evaluated

at LazyString construction time, but printing is delayed until the first access to the string.

See LazyString documentation for the safety properties for concurrent programs.

Examples

julia> n = 5; str = lazy"n is $n"

"n is 5"

julia> typeof(str)

LazyString

Julia 1.8

lazy"str" requires Julia 1.8 or later.

source

Base.transcode – Function.

transcode(T, src)

Convert string data between Unicode encodings. src is either a String or a Vector{UIntXX} of UTF-XX

code units, where XX is 8, 16, or 32. T indicates the encoding of the return value: String to return a

(UTF-8 encoded) String or UIntXX to return a Vector{UIntXX} of UTF-XX data. (The alias Cwchar_t

can also be used as the integer type, for converting wchar_t* strings used by external C libraries.)

The transcode function succeeds as long as the input data can be reasonably represented in the target

encoding; it always succeeds for conversions between UTF-XX encodings, even for invalid Unicode data.

Only conversion to/from UTF-8 is currently supported.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/lazy.jl#L1-L35
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/lazy.jl#L44-L65

CHAPTER 45. STRINGS 824

julia> str = "αβγ"

"αβγ"

julia> transcode(UInt16, str)

3-element Vector{UInt16}:

0x03b1

0x03b2

0x03b3

julia> transcode(String, transcode(UInt16, str))

"αβγ"

source

Base.unsafe_string – Function.

unsafe_string(p::Ptr{UInt8}, [length::Integer])

Copy a string from the address of a C-style (NUL-terminated) string encoded as UTF-8. (The pointer

can be safely freed afterwards.) If length is specified (the length of the data in bytes), the string does

not have to be NUL-terminated.

This function is labeled "unsafe" because it will crash if p is not a valid memory address to data of the

requested length.

source

Base.ncodeunits – Method.

ncodeunits(s::AbstractString) -> Int

Return the number of code units in a string. Indices that are in bounds to access this string must satisfy

1 ≤ i ≤ ncodeunits(s). Not all such indices are valid – they may not be the start of a character, but

they will return a code unit value when calling codeunit(s,i).

Examples

julia> ncodeunits("The Julia Language")

18

julia> ncodeunits("∫eˣ")

6

julia> ncodeunits('∫'), ncodeunits('e'), ncodeunits('ˣ')

(3, 1, 2)

See also codeunit, checkbounds, sizeof, length, lastindex.

source

Base.codeunit – Function.

codeunit(s::AbstractString) -> Type{<:Union{UInt8, UInt16, UInt32}}

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/c.jl#L257-L288
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/string.jl#L69-L78
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/basic.jl#L45-L67

CHAPTER 45. STRINGS 825

Return the code unit type of the given string object. For ASCII, Latin-1, or UTF-8 encoded strings, this

would be UInt8; for UCS-2 and UTF-16 it would be UInt16; for UTF-32 it would be UInt32. The code

unit type need not be limited to these three types, but it's hard to think of widely used string encodings

that don't use one of these units. codeunit(s) is the same as typeof(codeunit(s,1)) when s is a

non-empty string.

See also ncodeunits.

source

codeunit(s::AbstractString, i::Integer) -> Union{UInt8, UInt16, UInt32}

Return the code unit value in the string s at index i. Note that

codeunit(s, i) :: codeunit(s)

I.e. the value returned by codeunit(s, i) is of the type returned by codeunit(s).

Examples

julia> a = codeunit("Hello", 2)

0x65

julia> typeof(a)

UInt8

See also ncodeunits, checkbounds.

source

Base.codeunits – Function.

codeunits(s::AbstractString)

Obtain a vector-like object containing the code units of a string. Returns a CodeUnits wrapper by

default, but codeunits may optionally be defined for new string types if necessary.

Examples

julia> codeunits("Juλia")

6-element Base.CodeUnits{UInt8, String}:

0x4a

0x75

0xce

0xbb

0x69

0x61

source

Base.ascii – Function.

ascii(s::AbstractString)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/basic.jl#L70-L81
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/basic.jl#L86-L106
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/basic.jl#L798-L816

CHAPTER 45. STRINGS 826

Convert a string to String type and check that it contains only ASCII data, otherwise throwing an

ArgumentError indicating the position of the first non-ASCII byte.

See also the isascii predicate to filter or replace non-ASCII characters.

Examples

julia> ascii("abcdeγfgh")

ERROR: ArgumentError: invalid ASCII at index 6 in "abcdeγfgh"

Stacktrace:

[...]

julia> ascii("abcdefgh")

"abcdefgh"

source

Base.Regex – Type.

Regex(pattern[, flags]) <: AbstractPattern

A type representing a regular expression. Regex objects can be used to match strings with match.

Regex objects can be created using the @r_str string macro. The Regex(pattern[, flags]) con-

structor is usually used if the pattern string needs to be interpolated. See the documentation of the

string macro for details on flags.

Note

To escape interpolated variables use \Q and \E (e.g. Regex("\\Q$x\\E"))

source

Base.@r_str – Macro.

@r_str -> Regex

Construct a regex, such as r"^[a-z]*$", without interpolation and unescaping (except for quotation

mark " which still has to be escaped). The regex also accepts one or more flags, listed after the ending

quote, to change its behaviour:

• i enables case-insensitive matching

• m treats the ^ and $ tokens as matching the start and end of individual lines, as opposed to the

whole string.

• s allows the . modifier to match newlines.

• x enables "comment mode": whitespace is enabled except when escaped with \, and # is treated

as starting a comment.

• a enables ASCII mode (disables UTF and UCP modes). By default \B, \b, \D, \d, \S, \s, \W, \w,

etc. match based on Unicode character properties. With this option, these sequences only match

ASCII characters. This includes \u also, which will emit the specified character value directly as

a single byte, and not attempt to encode it into UTF-8. Importantly, this option allows matching

against invalid UTF-8 strings, by treating both matcher and target as simple bytes (as if they were

ISO/IEC 8859-1 / Latin-1 bytes) instead of as character encodings. In this case, this option is often

combined with s. This option can be further refined by starting the pattern with (UCP) or (UTF).

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/util.jl#L999-L1017
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/regex.jl#L10-L22

CHAPTER 45. STRINGS 827

See Regex if interpolation is needed.

Examples

julia> match(r"a+.*b+.*?d$"ism, "Goodbye,\nOh, angry,\nBad world\n")

RegexMatch("angry,\nBad world")

This regex has the first three flags enabled.

source

Base.SubstitutionString – Type.

SubstitutionString(substr) <: AbstractString

Stores the given string substr as a SubstitutionString, for use in regular expression substitutions.

Most commonly constructed using the @s_str macro.

Examples

julia> SubstitutionString("Hello \\g<name>, it's \\1")

s"Hello \g<name>, it's \1"

julia> subst = s"Hello \g<name>, it's \1"

s"Hello \g<name>, it's \1"

julia> typeof(subst)

SubstitutionString{String}

source

Base.@s_str – Macro.

@s_str -> SubstitutionString

Construct a substitution string, used for regular expression substitutions. Within the string, sequences

of the form \N refer to the Nth capture group in the regex, and \g<groupname> refers to a named

capture group with name groupname.

Examples

julia> msg = "#Hello# from Julia";

julia> replace(msg, r"#(.+)# from (?<from>\w+)" => s"FROM: \g<from>; MESSAGE: \1")

"FROM: Julia; MESSAGE: Hello"

source

Base.@raw_str – Macro.

@raw_str -> String

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/regex.jl#L91-L122
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/regex.jl#L527-L544
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/regex.jl#L561-L575

CHAPTER 45. STRINGS 828

Create a raw string without interpolation and unescaping. The exception is that quotation marks still

must be escaped. Backslashes escape both quotation marks and other backslashes, but only when

a sequence of backslashes precedes a quote character. Thus, 2n backslashes followed by a quote

encodes n backslashes and the end of the literal while 2n+1 backslashes followed by a quote encodes

n backslashes followed by a quote character.

Examples

julia> println(raw"\ $x")

\ $x

julia> println(raw"\"")

"

julia> println(raw"\\\"")

\"

julia> println(raw"\\x \\\"")

\\x \"

source

Base.@b_str – Macro.

@b_str

Create an immutable byte (UInt8) vector using string syntax.

Examples

julia> v = b"12\x01\x02"

4-element Base.CodeUnits{UInt8, String}:

0x31

0x32

0x01

0x02

julia> v[2]

0x32

source

Base.Docs.@html_str – Macro.

@html_str -> Docs.HTML

Create an HTML object from a literal string.

Examples

julia> html"Julia"

HTML{String}("Julia")

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/io.jl#L565-L589
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/io.jl#L542-L559
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/utils.jl#L44-L54

CHAPTER 45. STRINGS 829

Base.Docs.@text_str – Macro.

@text_str -> Docs.Text

Create a Text object from a literal string.

Examples

julia> text"Julia"

Julia

source

Base.isvalid – Method.

isvalid(value) -> Bool

Return true if the given value is valid for its type, which currently can be either AbstractChar or

String or SubString{String}.

Examples

julia> isvalid(Char(0xd800))

false

julia> isvalid(SubString(String(UInt8[0xfe,0x80,0x80,0x80,0x80,0x80]),1,2))

false

julia> isvalid(Char(0xd799))

true

source

Base.isvalid – Method.

isvalid(T, value) -> Bool

Return true if the given value is valid for that type. Types currently can be either AbstractChar or

String. Values for AbstractChar can be of type AbstractChar or UInt32. Values for String can be

of that type, SubString{String}, Vector{UInt8}, or a contiguous subarray thereof.

Examples

julia> isvalid(Char, 0xd800)

false

julia> isvalid(String, SubString("thisisvalid",1,5))

true

julia> isvalid(Char, 0xd799)

true

Julia 1.6

Support for subarray values was added in Julia 1.6.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/utils.jl#L98-L108
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/unicode.jl#L11-L28

CHAPTER 45. STRINGS 830

source

Base.isvalid – Method.

isvalid(s::AbstractString, i::Integer) -> Bool

Predicate indicating whether the given index is the start of the encoding of a character in s or not. If

isvalid(s, i) is true then s[i] will return the character whose encoding starts at that index, if it's

false, then s[i] will raise an invalid index error or a bounds error depending on if i is in bounds. In

order for isvalid(s, i) to be an O(1) function, the encoding of s must be self-synchronizing. This is

a basic assumption of Julia's generic string support.

See also getindex, iterate, thisind, nextind, prevind, length.

Examples

julia> str = "αβγdef";

julia> isvalid(str, 1)

true

julia> str[1]

'α': Unicode U+03B1 (category Ll: Letter, lowercase)

julia> isvalid(str, 2)

false

julia> str[2]

ERROR: StringIndexError: invalid index [2], valid nearby indices [1]=>'α', [3]=>'β'

Stacktrace:

[...]

source

Base.match – Function.

match(r::Regex, s::AbstractString[, idx::Integer[, addopts]])

Search for the first match of the regular expression r in s and return a RegexMatch object containing the

match, or nothing if the match failed. The matching substring can be retrieved by accessing m.match

and the captured sequences can be retrieved by accessing m.captures The optional idx argument

specifies an index at which to start the search.

Examples

julia> rx = r"a(.)a"

r"a(.)a"

julia> m = match(rx, "cabac")

RegexMatch("aba", 1="b")

julia> m.captures

1-element Vector{Union{Nothing, SubString{String}}}:

"b"

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/unicode.jl#L31-L53
https://en.wikipedia.org/wiki/Self-synchronizing_code
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/basic.jl#L110-L142

CHAPTER 45. STRINGS 831

julia> m.match

"aba"

julia> match(rx, "cabac", 3) === nothing

true

source

Base.eachmatch – Function.

eachmatch(r::Regex, s::AbstractString; overlap::Bool=false)

Search for all matches of the regular expression r in s and return an iterator over the matches. If

overlap is true, the matching sequences are allowed to overlap indices in the original string, otherwise

they must be from distinct character ranges.

Examples

julia> rx = r"a.a"

r"a.a"

julia> m = eachmatch(rx, "a1a2a3a")

Base.RegexMatchIterator(r"a.a", "a1a2a3a", false)

julia> collect(m)

2-element Vector{RegexMatch}:

RegexMatch("a1a")

RegexMatch("a3a")

julia> collect(eachmatch(rx, "a1a2a3a", overlap = true))

3-element Vector{RegexMatch}:

RegexMatch("a1a")

RegexMatch("a2a")

RegexMatch("a3a")

source

Base.RegexMatch – Type.

RegexMatch <: AbstractMatch

A type representing a single match to a Regex found in a string. Typically created from the match

function.

The match field stores the substring of the entire matched string. The captures field stores the sub-

strings for each capture group, indexed by number. To index by capture group name, the entire match

object should be indexed instead, as shown in the examples. The location of the start of the match is

stored in the offset field. The offsets field stores the locations of the start of each capture group,

with 0 denoting a group that was not captured.

This type can be used as an iterator over the capture groups of the Regex, yielding the substrings

captured in each group. Because of this, the captures of a match can be destructured. If a group was

not captured, nothing will be yielded instead of a substring.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/regex.jl#L376-L402
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/regex.jl#L716-L742

CHAPTER 45. STRINGS 832

Methods that accept a RegexMatch object are defined for iterate, length, eltype, keys, haskey, and

getindex, where keys are the the names or numbers of a capture group. See keys for more information.

Examples

julia> m = match(r"(?<hour>\d+):(?<minute>\d+)(am|pm)?", "11:30 in the morning")

RegexMatch("11:30", hour="11", minute="30", 3=nothing)

julia> m.match

"11:30"

julia> m.captures

3-element Vector{Union{Nothing, SubString{String}}}:

"11"

"30"

nothing

julia> m["minute"]

"30"

julia> hr, min, ampm = m; # destructure capture groups by iteration

julia> hr

"11"

source

Base.keys – Method.

keys(m::RegexMatch) -> Vector

Return a vector of keys for all capture groups of the underlying regex. A key is included even if the

capture group fails to match. That is, idx will be in the return value even if m[idx] == nothing.

Unnamed capture groups will have integer keys corresponding to their index. Named capture groups

will have string keys.

Julia 1.7

This method was added in Julia 1.7

Examples

julia> keys(match(r"(?<hour>\d+):(?<minute>\d+)(am|pm)?", "11:30"))

3-element Vector{Any}:

"hour"

"minute"

3

source

Base.isless – Method.

isless(a::AbstractString, b::AbstractString) -> Bool

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/regex.jl#L167-L214
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/regex.jl#L223-L244

CHAPTER 45. STRINGS 833

Test whether string a comes before string b in alphabetical order (technically, in lexicographical order

by Unicode code points).

Examples

julia> isless("a", "b")

true

julia> isless("β", "α")

false

julia> isless("a", "a")

false

source

Base.:== – Method.

==(a::AbstractString, b::AbstractString) -> Bool

Test whether two strings are equal character by character (technically, Unicode code point by code

point).

Examples

julia> "abc" == "abc"

true

julia> "abc" == "αβγ"

false

source

Base.cmp – Method.

cmp(a::AbstractString, b::AbstractString) -> Int

Compare two strings. Return 0 if both strings have the same length and the character at each index

is the same in both strings. Return -1 if a is a prefix of b, or if a comes before b in alphabetical order.

Return 1 if b is a prefix of a, or if b comes before a in alphabetical order (technically, lexicographical

order by Unicode code points).

Examples

julia> cmp("abc", "abc")

0

julia> cmp("ab", "abc")

-1

julia> cmp("abc", "ab")

1

julia> cmp("ab", "ac")

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/basic.jl#L327-L344
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/basic.jl#L310-L324

CHAPTER 45. STRINGS 834

-1

julia> cmp("ac", "ab")

1

julia> cmp("α", "a")

1

julia> cmp("b", "β")

-1

source

Base.lpad – Function.

lpad(s, n::Integer, p::Union{AbstractChar,AbstractString}=' ') -> String

Stringify s and pad the resulting string on the left with p to make it n characters (in textwidth) long.

If s is already n characters long, an equal string is returned. Pad with spaces by default.

Examples

julia> lpad("March", 10)

" March"

Julia 1.7

In Julia 1.7, this function was changed to use textwidth rather than a raw character (code-

point) count.

source

Base.rpad – Function.

rpad(s, n::Integer, p::Union{AbstractChar,AbstractString}=' ') -> String

Stringify s and pad the resulting string on the right with p to make it n characters (in textwidth) long.

If s is already n characters long, an equal string is returned. Pad with spaces by default.

Examples

julia> rpad("March", 20)

"March "

Julia 1.7

In Julia 1.7, this function was changed to use textwidth rather than a raw character (code-

point) count.

source

Base.findfirst – Method.

findfirst(pattern::AbstractString, string::AbstractString)

findfirst(pattern::AbstractPattern, string::String)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/basic.jl#L266-L298
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/util.jl#L440-L454
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/util.jl#L470-L484

CHAPTER 45. STRINGS 835

Find the first occurrence of pattern in string. Equivalent to findnext(pattern, string, firstindex(s)).

Examples

julia> findfirst("z", "Hello to the world") # returns nothing, but not printed in the REPL

julia> findfirst("Julia", "JuliaLang")

1:5

source

Base.findnext – Method.

findnext(pattern::AbstractString, string::AbstractString, start::Integer)

findnext(pattern::AbstractPattern, string::String, start::Integer)

Find the next occurrence of pattern in string starting at position start. pattern can be either a

string, or a regular expression, in which case string must be of type String.

The return value is a range of indices where the matching sequence is found, such that s[findnext(x,

s, i)] == x:

findnext("substring", string, i)== start:stop such that string[start:stop] == "substring"

and i <= start, or nothing if unmatched.

Examples

julia> findnext("z", "Hello to the world", 1) === nothing

true

julia> findnext("o", "Hello to the world", 6)

8:8

julia> findnext("Lang", "JuliaLang", 2)

6:9

source

Base.findnext – Method.

findnext(ch::AbstractChar, string::AbstractString, start::Integer)

Find the next occurrence of character ch in string starting at position start.

Julia 1.3

This method requires at least Julia 1.3.

Examples

julia> findnext('z', "Hello to the world", 1) === nothing

true

julia> findnext('o', "Hello to the world", 6)

8

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/search.jl#L105-L119
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/search.jl#L293-L318

CHAPTER 45. STRINGS 836

source

Base.findlast – Method.

findlast(pattern::AbstractString, string::AbstractString)

Find the last occurrence of pattern in string. Equivalent to findprev(pattern, string, lastindex(string)).

Examples

julia> findlast("o", "Hello to the world")

15:15

julia> findfirst("Julia", "JuliaLang")

1:5

source

Base.findlast – Method.

findlast(ch::AbstractChar, string::AbstractString)

Find the last occurrence of character ch in string.

Julia 1.3

This method requires at least Julia 1.3.

Examples

julia> findlast('p', "happy")

4

julia> findlast('z', "happy") === nothing

true

source

Base.findprev – Method.

findprev(pattern::AbstractString, string::AbstractString, start::Integer)

Find the previous occurrence of pattern in string starting at position start.

The return value is a range of indices where the matching sequence is found, such that s[findprev(x,

s, i)] == x:

findprev("substring", string, i)== start:stop such that string[start:stop] == "substring"

and stop <= i, or nothing if unmatched.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/search.jl#L321-L337
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/search.jl#L365-L379
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/search.jl#L400-L416

CHAPTER 45. STRINGS 837

julia> findprev("z", "Hello to the world", 18) === nothing

true

julia> findprev("o", "Hello to the world", 18)

15:15

julia> findprev("Julia", "JuliaLang", 6)

1:5

source

Base.occursin – Function.

occursin(needle::Union{AbstractString,AbstractPattern,AbstractChar},

haystack::AbstractString)↪→

Determine whether the first argument is a substring of the second. If needle is a regular expression,

checks whether haystack contains a match.

Examples

julia> occursin("Julia", "JuliaLang is pretty cool!")

true

julia> occursin('a', "JuliaLang is pretty cool!")

true

julia> occursin(r"a.a", "aba")

true

julia> occursin(r"a.a", "abba")

false

See also contains.

source

occursin(haystack)

Create a function that checks whether its argument occurs in haystack, i.e. a function equivalent to

needle -> occursin(needle, haystack).

The returned function is of type Base.Fix2{typeof(occursin)}.

Julia 1.6

This method requires Julia 1.6 or later.

Examples

julia> search_f = occursin("JuliaLang is a programming language");

julia> search_f("JuliaLang")

true

julia> search_f("Python")

false

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/search.jl#L611-L633
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/search.jl#L676-L698

CHAPTER 45. STRINGS 838

source

Base.reverse – Method.

reverse(s::AbstractString) -> AbstractString

Reverses a string. Technically, this function reverses the codepoints in a string and its main utility

is for reversed-order string processing, especially for reversed regular-expression searches. See also

reverseind to convert indices in s to indices in reverse(s) and vice-versa, and graphemes from mod-

ule Unicode to operate on user-visible "characters" (graphemes) rather than codepoints. See also

Iterators.reverse for reverse-order iteration without making a copy. Custom string types must im-

plement the reverse function themselves and should typically return a string with the same type and

encoding. If they return a string with a different encoding, they must also override reverseind for that

string type to satisfy s[reverseind(s,i)] == reverse(s)[i].

Examples

julia> reverse("JuliaLang")

"gnaLailuJ"

Note

The examples below may be rendered differently on different systems. The comments in-

dicate how they're supposed to be rendered

Combining characters can lead to surprising results:

julia> reverse("ax̂ e") # hat is above x in the input, above e in the output

"ê xa"

julia> using Unicode

julia> join(reverse(collect(graphemes("ax̂ e")))) # reverses graphemes; hat is above x in both

in- and output↪→

"ex̂ a"

source

Base.replace – Method.

replace([io::IO], s::AbstractString, pat=>r, [pat2=>r2, ...]; [count::Integer])

Search for the given pattern pat in s, and replace each occurrence with r. If count is provided, replace

at most count occurrences. patmay be a single character, a vector or a set of characters, a string, or a

regular expression. If r is a function, each occurrence is replaced with r(s)where s is the matched sub-

string (when pat is a AbstractPattern or AbstractString) or character (when pat is an AbstractChar

or a collection of AbstractChar). If pat is a regular expression and r is a SubstitutionString, then

capture group references in r are replaced with the corresponding matched text. To remove instances

of pat from string, set r to the empty String ("").

The return value is a new string after the replacements. If the io::IO argument is supplied, the trans-

formed string is instead written to io (returning io). (For example, this can be used in conjunction with

an IOBuffer to re-use a pre-allocated buffer array in-place.)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/search.jl#L702-L723
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/substring.jl#L134-L169

CHAPTER 45. STRINGS 839

Multiple patterns can be specified, and they will be applied left-to-right simultaneously, so only one

pattern will be applied to any character, and the patterns will only be applied to the input text, not the

replacements.

Julia 1.7

Support for multiple patterns requires version 1.7.

Julia 1.10

The io::IO argument requires version 1.10.

Examples

julia> replace("Python is a programming language.", "Python" => "Julia")

"Julia is a programming language."

julia> replace("The quick foxes run quickly.", "quick" => "slow", count=1)

"The slow foxes run quickly."

julia> replace("The quick foxes run quickly.", "quick" => "", count=1)

"The foxes run quickly."

julia> replace("The quick foxes run quickly.", r"fox(es)?" => s"bus\1")

"The quick buses run quickly."

julia> replace("abcabc", "a" => "b", "b" => "c", r".+" => "a")

"bca"

source

Base.eachsplit – Function.

eachsplit(str::AbstractString, dlm; limit::Integer=0, keepempty::Bool=true)

eachsplit(str::AbstractString; limit::Integer=0, keepempty::Bool=false)

Split str on occurrences of the delimiter(s) dlm and return an iterator over the substrings. dlm can

be any of the formats allowed by findnext's first argument (i.e. as a string, regular expression or a

function), or as a single character or collection of characters.

If dlm is omitted, it defaults to isspace.

The optional keyword arguments are:

• limit: the maximum size of the result. limit=0 implies no maximum (default)

• keepempty: whether empty fields should be kept in the result. Default is false without a dlm

argument, true with a dlm argument.

See also split.

Julia 1.8

The eachsplit function requires at least Julia 1.8.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/util.jl#L797-L843

CHAPTER 45. STRINGS 840

julia> a = "Ma.rch"

"Ma.rch"

julia> b = eachsplit(a, ".")

Base.SplitIterator{String, String}("Ma.rch", ".", 0, true)

julia> collect(b)

2-element Vector{SubString{String}}:

"Ma"

"rch"

source

Base.split – Function.

split(str::AbstractString, dlm; limit::Integer=0, keepempty::Bool=true)

split(str::AbstractString; limit::Integer=0, keepempty::Bool=false)

Split str into an array of substrings on occurrences of the delimiter(s) dlm. dlm can be any of the

formats allowed by findnext's first argument (i.e. as a string, regular expression or a function), or as

a single character or collection of characters.

If dlm is omitted, it defaults to isspace.

The optional keyword arguments are:

• limit: the maximum size of the result. limit=0 implies no maximum (default)

• keepempty: whether empty fields should be kept in the result. Default is false without a dlm

argument, true with a dlm argument.

See also rsplit, eachsplit.

Examples

julia> a = "Ma.rch"

"Ma.rch"

julia> split(a, ".")

2-element Vector{SubString{String}}:

"Ma"

"rch"

source

Base.rsplit – Function.

rsplit(s::AbstractString; limit::Integer=0, keepempty::Bool=false)

rsplit(s::AbstractString, chars; limit::Integer=0, keepempty::Bool=true)

Similar to split, but starting from the end of the string.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/util.jl#L500-L534
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/util.jl#L597-L625

CHAPTER 45. STRINGS 841

julia> a = "M.a.r.c.h"

"M.a.r.c.h"

julia> rsplit(a, ".")

5-element Vector{SubString{String}}:

"M"

"a"

"r"

"c"

"h"

julia> rsplit(a, "."; limit=1)

1-element Vector{SubString{String}}:

"M.a.r.c.h"

julia> rsplit(a, "."; limit=2)

2-element Vector{SubString{String}}:

"M.a.r.c"

"h"

source

Base.strip – Function.

strip([pred=isspace,] str::AbstractString) -> SubString

strip(str::AbstractString, chars) -> SubString

Remove leading and trailing characters from str, either those specified by chars or those for which

the function pred returns true.

The default behaviour is to remove leading and trailing whitespace and delimiters: see isspace for

precise details.

The optional chars argument specifies which characters to remove: it can be a single character, vector

or set of characters.

See also lstrip and rstrip.

Julia 1.2

The method which accepts a predicate function requires Julia 1.2 or later.

Examples

julia> strip("{3, 5}\n", ['{', '}', '\n'])

"3, 5"

source

Base.lstrip – Function.

lstrip([pred=isspace,] str::AbstractString) -> SubString

lstrip(str::AbstractString, chars) -> SubString

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/util.jl#L636-L664
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/util.jl#L409-L432

CHAPTER 45. STRINGS 842

Remove leading characters from str, either those specified by chars or those for which the function

pred returns true.

The default behaviour is to remove leading whitespace and delimiters: see isspace for precise details.

The optional chars argument specifies which characters to remove: it can be a single character, or a

vector or set of characters.

See also strip and rstrip.

Examples

julia> a = lpad("March", 20)

" March"

julia> lstrip(a)

"March"

source

Base.rstrip – Function.

rstrip([pred=isspace,] str::AbstractString) -> SubString

rstrip(str::AbstractString, chars) -> SubString

Remove trailing characters from str, either those specified by chars or those for which the function

pred returns true.

The default behaviour is to remove trailing whitespace and delimiters: see isspace for precise details.

The optional chars argument specifies which characters to remove: it can be a single character, or a

vector or set of characters.

See also strip and lstrip.

Examples

julia> a = rpad("March", 20)

"March "

julia> rstrip(a)

"March"

source

Base.startswith – Function.

startswith(s::AbstractString, prefix::AbstractString)

Return true if s starts with prefix. If prefix is a vector or set of characters, test whether the first

character of s belongs to that set.

See also endswith, contains.

Examples

julia> startswith("JuliaLang", "Julia")

true

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/util.jl#L339-L362
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/util.jl#L374-L397

CHAPTER 45. STRINGS 843

source

startswith(io::IO, prefix::Union{AbstractString,Base.Chars})

Check if an IO object starts with a prefix. See also peek.

source

startswith(prefix)

Create a function that checks whether its argument starts with prefix, i.e. a function equivalent to y

-> startswith(y, prefix).

The returned function is of type Base.Fix2{typeof(startswith)}, which can be used to implement

specialized methods.

Julia 1.5

The single argument startswith(prefix) requires at least Julia 1.5.

Examples

julia> startswith("Julia")("JuliaLang")

true

julia> startswith("Julia")("Ends with Julia")

false

source

startswith(s::AbstractString, prefix::Regex)

Return true if s starts with the regex pattern, prefix.

Note

startswith does not compile the anchoring into the regular expression, but instead passes

the anchoring as match_option to PCRE. If compile time is amortized, occursin(r"^...",

s) is faster than startswith(s, r"...").

See also occursin and endswith.

Julia 1.2

This method requires at least Julia 1.2.

Examples

julia> startswith("JuliaLang", r"Julia|Romeo")

true

source

Base.endswith – Function.

endswith(s::AbstractString, suffix::AbstractString)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/util.jl#L7-L20
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/util.jl#L70-L74
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/util.jl#L154-L174
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/regex.jl#L298-L319

CHAPTER 45. STRINGS 844

Return true if s ends with suffix. If suffix is a vector or set of characters, test whether the last

character of s belongs to that set.

See also startswith, contains.

Examples

julia> endswith("Sunday", "day")

true

source

endswith(suffix)

Create a function that checks whether its argument ends with suffix, i.e. a function equivalent to y

-> endswith(y, suffix).

The returned function is of type Base.Fix2{typeof(endswith)}, which can be used to implement

specialized methods.

Julia 1.5

The single argument endswith(suffix) requires at least Julia 1.5.

Examples

julia> endswith("Julia")("Ends with Julia")

true

julia> endswith("Julia")("JuliaLang")

false

source

endswith(s::AbstractString, suffix::Regex)

Return true if s ends with the regex pattern, suffix.

Note

endswith does not compile the anchoring into the regular expression, but instead passes

the anchoring as match_option to PCRE. If compile time is amortized, occursin(r"...$",

s) is faster than endswith(s, r"...").

See also occursin and startswith.

Julia 1.2

This method requires at least Julia 1.2.

Examples

julia> endswith("JuliaLang", r"Lang|Roberts")

true

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/util.jl#L32-L45
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/util.jl#L131-L151
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/regex.jl#L330-L351

CHAPTER 45. STRINGS 845

Base.contains – Function.

contains(haystack::AbstractString, needle)

Return true if haystack contains needle. This is the same as occursin(needle, haystack), but is

provided for consistency with startswith(haystack, needle) and endswith(haystack, needle).

See also occursin, in, issubset.

Examples

julia> contains("JuliaLang is pretty cool!", "Julia")

true

julia> contains("JuliaLang is pretty cool!", 'a')

true

julia> contains("aba", r"a.a")

true

julia> contains("abba", r"a.a")

false

Julia 1.5

The contains function requires at least Julia 1.5.

source

contains(needle)

Create a function that checks whether its argument contains needle, i.e. a function equivalent to

haystack -> contains(haystack, needle).

The returned function is of type Base.Fix2{typeof(contains)}, which can be used to implement

specialized methods.

source

Base.first – Method.

first(s::AbstractString, n::Integer)

Get a string consisting of the first n characters of s.

Examples

julia> first("∀ϵ≠0: ϵ²>0", 0)

""

julia> first("∀ϵ≠0: ϵ²>0", 1)

"∀"

julia> first("∀ϵ≠0: ϵ²>0", 3)

"∀ϵ≠"

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/util.jl#L102-L128
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/util.jl#L177-L185

CHAPTER 45. STRINGS 846

source

Base.last – Method.

last(s::AbstractString, n::Integer)

Get a string consisting of the last n characters of s.

Examples

julia> last("∀ϵ≠0: ϵ²>0", 0)

""

julia> last("∀ϵ≠0: ϵ²>0", 1)

"0"

julia> last("∀ϵ≠0: ϵ²>0", 3)

"²>0"

source

Base.Unicode.uppercase – Function.

uppercase(c::AbstractChar)

Convert c to uppercase.

See also lowercase, titlecase.

Examples

julia> uppercase('a')

'A': ASCII/Unicode U+0041 (category Lu: Letter, uppercase)

julia> uppercase('ê')

'Ê': Unicode U+00CA (category Lu: Letter, uppercase)

source

uppercase(s::AbstractString)

Return s with all characters converted to uppercase.

See also lowercase, titlecase, uppercasefirst.

Examples

julia> uppercase("Julia")

"JULIA"

source

Base.Unicode.lowercase – Function.

lowercase(c::AbstractChar)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/basic.jl#L676-L692
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/basic.jl#L695-L711
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/unicode.jl#L293-L308
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/unicode.jl#L595-L607

CHAPTER 45. STRINGS 847

Convert c to lowercase.

See also uppercase, titlecase.

Examples

julia> lowercase('A')

'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)

julia> lowercase('Ö')

'ö': Unicode U+00F6 (category Ll: Letter, lowercase)

source

lowercase(s::AbstractString)

Return s with all characters converted to lowercase.

See also uppercase, titlecase, lowercasefirst.

Examples

julia> lowercase("STRINGS AND THINGS")

"strings and things"

source

Base.Unicode.titlecase – Function.

titlecase(c::AbstractChar)

Convert c to titlecase. This may differ from uppercase for digraphs, compare the example below.

See also uppercase, lowercase.

Examples

julia> titlecase('a')

'A': ASCII/Unicode U+0041 (category Lu: Letter, uppercase)

julia> titlecase('')

'': Unicode U+01C5 (category Lt: Letter, titlecase)

julia> uppercase('')

'': Unicode U+01C4 (category Lu: Letter, uppercase)

source

titlecase(s::AbstractString; [wordsep::Function], strict::Bool=true) -> String

Capitalize the first character of each word in s; if strict is true, every other character is converted to

lowercase, otherwise they are left unchanged. By default, all non-letters beginning a new grapheme

are considered as word separators; a predicate can be passed as the wordsep keyword to determine

which characters should be considered as word separators. See also uppercasefirst to capitalize

only the first character in s.

See also uppercase, lowercase, uppercasefirst.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/unicode.jl#L274-L289
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/unicode.jl#L610-L622
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/unicode.jl#L312-L331

CHAPTER 45. STRINGS 848

julia> titlecase("the JULIA programming language")

"The Julia Programming Language"

julia> titlecase("ISS - international space station", strict=false)

"ISS - International Space Station"

julia> titlecase("a-a b-b", wordsep = c->c==' ')

"A-a B-b"

source

Base.Unicode.uppercasefirst – Function.

uppercasefirst(s::AbstractString) -> String

Return s with the first character converted to uppercase (technically "title case" for Unicode). See also

titlecase to capitalize the first character of every word in s.

See also lowercasefirst, uppercase, lowercase, titlecase.

Examples

julia> uppercasefirst("python")

"Python"

source

Base.Unicode.lowercasefirst – Function.

lowercasefirst(s::AbstractString)

Return s with the first character converted to lowercase.

See also uppercasefirst, uppercase, lowercase, titlecase.

Examples

julia> lowercasefirst("Julia")

"julia"

source

Base.join – Function.

join([io::IO,] iterator [, delim [, last]])

Join any iterator into a single string, inserting the given delimiter (if any) between adjacent items.

If last is given, it will be used instead of delim between the last two items. Each item of iterator

is converted to a string via print(io::IOBuffer, x). If io is given, the result is written to io rather

than returned as a String.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/unicode.jl#L625-L650
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/unicode.jl#L672-L687
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/unicode.jl#L696-L709

CHAPTER 45. STRINGS 849

julia> join(["apples", "bananas", "pineapples"], ", ", " and ")

"apples, bananas and pineapples"

julia> join([1,2,3,4,5])

"12345"

source

Base.chop – Function.

chop(s::AbstractString; head::Integer = 0, tail::Integer = 1)

Remove the first head and the last tail characters from s. The call chop(s) removes the last character

from s. If it is requested to remove more characters than length(s) then an empty string is returned.

See also chomp, startswith, first.

Examples

julia> a = "March"

"March"

julia> chop(a)

"Marc"

julia> chop(a, head = 1, tail = 2)

"ar"

julia> chop(a, head = 5, tail = 5)

""

source

Base.chopprefix – Function.

chopprefix(s::AbstractString, prefix::Union{AbstractString,Regex}) -> SubString

Remove the prefix prefix from s. If s does not start with prefix, a string equal to s is returned.

See also chopsuffix.

Julia 1.8

This function is available as of Julia 1.8.

Examples

julia> chopprefix("Hamburger", "Ham")

"burger"

julia> chopprefix("Hamburger", "hotdog")

"Hamburger"

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/io.jl#L313-L329
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/util.jl#L188-L212
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/util.jl#L223-L241

CHAPTER 45. STRINGS 850

Base.chopsuffix – Function.

chopsuffix(s::AbstractString, suffix::Union{AbstractString,Regex}) -> SubString

Remove the suffix suffix from s. If s does not end with suffix, a string equal to s is returned.

See also chopprefix.

Julia 1.8

This function is available as of Julia 1.8.

Examples

julia> chopsuffix("Hamburger", "er")

"Hamburg"

julia> chopsuffix("Hamburger", "hotdog")

"Hamburger"

source

Base.chomp – Function.

chomp(s::AbstractString) -> SubString

Remove a single trailing newline from a string.

See also chop.

Examples

julia> chomp("Hello\n")

"Hello"

source

Base.thisind – Function.

thisind(s::AbstractString, i::Integer) -> Int

If i is in bounds in s return the index of the start of the character whose encoding code unit i is part

of. In other words, if i is the start of a character, return i; if i is not the start of a character, rewind

until the start of a character and return that index. If i is equal to 0 or ncodeunits(s)+1 return i. In

all other cases throw BoundsError.

Examples

julia> thisind("α", 0)

0

julia> thisind("α", 1)

1

julia> thisind("α", 2)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/util.jl#L264-L282
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/util.jl#L308-L320

CHAPTER 45. STRINGS 851

1

julia> thisind("α", 3)

3

julia> thisind("α", 4)

ERROR: BoundsError: attempt to access 2-codeunit String at index [4]

[...]

julia> thisind("α", -1)

ERROR: BoundsError: attempt to access 2-codeunit String at index [-1]

[...]

source

Base.nextind – Function.

nextind(str::AbstractString, i::Integer, n::Integer=1) -> Int

• Case n == 1

If i is in bounds in s return the index of the start of the character whose encoding starts after

index i. In other words, if i is the start of a character, return the start of the next character;

if i is not the start of a character, move forward until the start of a character and return that

index. If i is equal to 0 return 1. If i is in bounds but greater or equal to lastindex(str) return

ncodeunits(str)+1. Otherwise throw BoundsError.

• Case n > 1

Behaves like applying n times nextind for n==1. The only difference is that if n is so large that

applying nextind would reach ncodeunits(str)+1 then each remaining iteration increases the

returned value by 1. This means that in this case nextind can return a value greater than

ncodeunits(str)+1.

• Case n == 0

Return i only if i is a valid index in s or is equal to 0. Otherwise StringIndexError or BoundsError

is thrown.

Examples

julia> nextind("α", 0)

1

julia> nextind("α", 1)

3

julia> nextind("α", 3)

ERROR: BoundsError: attempt to access 2-codeunit String at index [3]

[...]

julia> nextind("α", 0, 2)

3

julia> nextind("α", 1, 2)

4

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/basic.jl#L407-L438

CHAPTER 45. STRINGS 852

source

Base.prevind – Function.

prevind(str::AbstractString, i::Integer, n::Integer=1) -> Int

• Case n == 1

If i is in bounds in s return the index of the start of the character whose encoding starts before

index i. In other words, if i is the start of a character, return the start of the previous character;

if i is not the start of a character, rewind until the start of a character and return that index. If

i is equal to 1 return 0. If i is equal to ncodeunits(str)+1 return lastindex(str). Otherwise

throw BoundsError.

• Case n > 1

Behaves like applying n times prevind for n==1. The only difference is that if n is so large that

applying prevind would reach 0 then each remaining iteration decreases the returned value by

1. This means that in this case prevind can return a negative value.

• Case n == 0

Return i only if i is a valid index in str or is equal to ncodeunits(str)+1. Otherwise StringIndexError

or BoundsError is thrown.

Examples

julia> prevind("α", 3)

1

julia> prevind("α", 1)

0

julia> prevind("α", 0)

ERROR: BoundsError: attempt to access 2-codeunit String at index [0]

[...]

julia> prevind("α", 2, 2)

0

julia> prevind("α", 2, 3)

-1

source

Base.Unicode.textwidth – Function.

textwidth(c)

Give the number of columns needed to print a character.

Examples

julia> textwidth('α')

1

julia> textwidth('')

2

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/basic.jl#L510-L553
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/basic.jl#L451-L494

CHAPTER 45. STRINGS 853

source

textwidth(s::AbstractString)

Give the number of columns needed to print a string.

Examples

julia> textwidth("March")

5

source

Base.isascii – Function.

isascii(c::Union{AbstractChar,AbstractString}) -> Bool

Test whether a character belongs to the ASCII character set, or whether this is true for all elements of

a string.

Examples

julia> isascii('a')

true

julia> isascii('α')

false

julia> isascii("abc")

true

julia> isascii("αβγ")

false

For example, isascii can be used as a predicate function for filter or replace to remove or replace

non-ASCII characters, respectively:

julia> filter(isascii, "abcdeγfgh") # discard non-ASCII chars

"abcdefgh"

julia> replace("abcdeγfgh", !isascii=>' ') # replace non-ASCII chars with spaces

"abcde fgh"

source

isascii(cu::AbstractVector{CU}) where {CU <: Integer} -> Bool

Test whether all values in the vector belong to the ASCII character set (0x00 to 0x7f). This function is

intended to be used by other string implementations that need a fast ASCII check.

source

Base.Unicode.iscntrl – Function.

iscntrl(c::AbstractChar) -> Bool

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/unicode.jl#L242-L255
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/unicode.jl#L261-L271
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/basic.jl#L582-L611
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/basic.jl#L633-L638

CHAPTER 45. STRINGS 854

Tests whether a character is a control character. Control characters are the non-printing characters of

the Latin-1 subset of Unicode.

Examples

julia> iscntrl('\x01')

true

julia> iscntrl('a')

false

source

Base.Unicode.isdigit – Function.

isdigit(c::AbstractChar) -> Bool

Tests whether a character is a decimal digit (0-9).

See also: isletter.

Examples

julia> isdigit('❤')

false

julia> isdigit('9')

true

julia> isdigit('α')

false

source

Base.Unicode.isletter – Function.

isletter(c::AbstractChar) -> Bool

Test whether a character is a letter. A character is classified as a letter if it belongs to the Unicode

general category Letter, i.e. a character whose category code begins with 'L'.

See also: isdigit.

Examples

julia> isletter('❤')

false

julia> isletter('α')

true

julia> isletter('9')

false

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/unicode.jl#L493-L507
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/unicode.jl#L420-L438
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/unicode.jl#L441-L461

CHAPTER 45. STRINGS 855

Base.Unicode.islowercase – Function.

islowercase(c::AbstractChar) -> Bool

Tests whether a character is a lowercase letter (according to the Unicode standard's Lowercase derived

property).

See also isuppercase.

Examples

julia> islowercase('α')

true

julia> islowercase('Γ')

false

julia> islowercase('❤')

false

source

Base.Unicode.isnumeric – Function.

isnumeric(c::AbstractChar) -> Bool

Tests whether a character is numeric. A character is classified as numeric if it belongs to the Unicode

general category Number, i.e. a character whose category code begins with 'N'.

Note that this broad category includes characters such as ¾ and . Use isdigit to check whether a

character is a decimal digit between 0 and 9.

Examples

julia> isnumeric('')

true

julia> isnumeric('9')

true

julia> isnumeric('α')

false

julia> isnumeric('❤')

false

source

Base.Unicode.isprint – Function.

isprint(c::AbstractChar) -> Bool

Tests whether a character is printable, including spaces, but not a control character.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/unicode.jl#L359-L378
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/unicode.jl#L464-L488

CHAPTER 45. STRINGS 856

julia> isprint('\x01')

false

julia> isprint('A')

true

source

Base.Unicode.ispunct – Function.

ispunct(c::AbstractChar) -> Bool

Tests whether a character belongs to the Unicode general category Punctuation, i.e. a character whose

category code begins with 'P'.

Examples

julia> ispunct('α')

false

julia> ispunct('/')

true

julia> ispunct(';')

true

source

Base.Unicode.isspace – Function.

isspace(c::AbstractChar) -> Bool

Tests whether a character is any whitespace character. Includes ASCII characters '\t', '\n', '\v', '\f', '\r',

and ' ', Latin-1 character U+0085, and characters in Unicode category Zs.

Examples

julia> isspace('\n')

true

julia> isspace('\r')

true

julia> isspace(' ')

true

julia> isspace('\x20')

true

source

Base.Unicode.isuppercase – Function.

isuppercase(c::AbstractChar) -> Bool

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/unicode.jl#L558-L571
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/unicode.jl#L510-L527
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/unicode.jl#L532-L553

CHAPTER 45. STRINGS 857

Tests whether a character is an uppercase letter (according to the Unicode standard's Uppercase de-

rived property).

See also islowercase.

Examples

julia> isuppercase('γ')

false

julia> isuppercase('Γ')

true

julia> isuppercase('❤')

false

source

Base.Unicode.isxdigit – Function.

isxdigit(c::AbstractChar) -> Bool

Test whether a character is a valid hexadecimal digit. Note that this does not include x (as in the

standard 0x prefix).

Examples

julia> isxdigit('a')

true

julia> isxdigit('x')

false

source

Base.escape_string – Function.

escape_string(str::AbstractString[, esc]; keep = ())::AbstractString

escape_string(io, str::AbstractString[, esc]; keep = ())::Nothing

General escaping of traditional C and Unicode escape sequences. The first form returns the escaped

string, the second prints the result to io.

Backslashes (\) are escaped with a double-backslash ("\\"). Non-printable characters are escaped

either with their standard C escape codes, "\0" for NUL (if unambiguous), unicode code point ("\u"

prefix) or hex ("\x" prefix).

The optional esc argument specifies any additional characters that should also be escaped by a prepend-

ing backslash (" is also escaped by default in the first form).

The argument keep specifies a collection of characters which are to be kept as they are. Notice that

esc has precedence here.

See also unescape_string for the reverse operation.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/unicode.jl#L383-L402
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/unicode.jl#L576-L590

CHAPTER 45. STRINGS 858

Julia 1.7

The keep argument is available as of Julia 1.7.

Examples

julia> escape_string("aaa\nbbb")

"aaa\\nbbb"

julia> escape_string("aaa\nbbb"; keep = '\n')

"aaa\nbbb"

julia> escape_string("\xfe\xff") # invalid utf-8

"\\xfe\\xff"

julia> escape_string(string('\u2135','\0')) # unambiguous

"\\0"

julia> escape_string(string('\u2135','\0','0')) # \0 would be ambiguous

"\\x000"

source

Base.unescape_string – Function.

unescape_string(str::AbstractString, keep = ())::AbstractString

unescape_string(io, s::AbstractString, keep = ())::Nothing

General unescaping of traditional C and Unicode escape sequences. The first form returns the escaped

string, the second prints the result to io. The argument keep specifies a collection of characters which

(along with backlashes) are to be kept as they are.

The following escape sequences are recognised:

• Escaped backslash (\\)

• Escaped double-quote (\")

• Standard C escape sequences (\a, \b, \t, \n, \v, \f, \r, \e)

• Unicode BMP code points (\u with 1-4 trailing hex digits)

• All Unicode code points (\U with 1-8 trailing hex digits; max value = 0010ffff)

• Hex bytes (\x with 1-2 trailing hex digits)

• Octal bytes (\ with 1-3 trailing octal digits)

See also escape_string.

Examples

julia> unescape_string("aaa\\nbbb") # C escape sequence

"aaa\nbbb"

julia> unescape_string("\\u03c0") # unicode

"π"

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/io.jl#L366-L405

CHAPTER 45. STRINGS 859

julia> unescape_string("\\101") # octal

"A"

julia> unescape_string("aaa \\g \\n", ['g']) # using `keep` argument

"aaa \\g \n"

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/io.jl#L447-L481

Chapter 46

Arrays

46.1 Constructors and Types

Core.AbstractArray – Type.

AbstractArray{T,N}

Supertype for N-dimensional arrays (or array-like types) with elements of type T. Array and other types

are subtypes of this. See the manual section on the AbstractArray interface.

See also: AbstractVector, AbstractMatrix, eltype, ndims.

source

Base.AbstractVector – Type.

AbstractVector{T}

Supertype for one-dimensional arrays (or array-like types) with elements of type T. Alias for AbstractArray{T,1}.

source

Base.AbstractMatrix – Type.

AbstractMatrix{T}

Supertype for two-dimensional arrays (or array-like types) with elements of type T. Alias for AbstractArray{T,2}.

source

Base.AbstractVecOrMat – Type.

AbstractVecOrMat{T}

Union type of AbstractVector{T} and AbstractMatrix{T}.

source

Core.Array – Type.

Array{T,N} <: AbstractArray{T,N}

860

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L5-L13
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L17-L22
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L25-L30
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L33-L37

CHAPTER 46. ARRAYS 861

N-dimensional dense array with elements of type T.

source

Core.Array – Method.

Array{T}(undef, dims)

Array{T,N}(undef, dims)

Construct an uninitialized N-dimensional Array containing elements of type T. N can either be supplied

explicitly, as in Array{T,N}(undef, dims), or be determined by the length or number of dims. dims

may be a tuple or a series of integer arguments corresponding to the lengths in each dimension. If

the rank N is supplied explicitly, then it must match the length or number of dims. Here undef is the

UndefInitializer.

Examples

julia> A = Array{Float64, 2}(undef, 2, 3) # N given explicitly

2×3 Matrix{Float64}:

6.90198e-310 6.90198e-310 6.90198e-310

6.90198e-310 6.90198e-310 0.0

julia> B = Array{Float64}(undef, 4) # N determined by the input

4-element Vector{Float64}:

2.360075077e-314

NaN

2.2671131793e-314

2.299821756e-314

julia> similar(B, 2, 4, 1) # use typeof(B), and the given size

2×4×1 Array{Float64, 3}:

[:, :, 1] =

2.26703e-314 2.26708e-314 0.0 2.80997e-314

0.0 2.26703e-314 2.26708e-314 0.0

source

Core.Array – Method.

Array{T}(nothing, dims)

Array{T,N}(nothing, dims)

Construct an N-dimensional Array containing elements of type T, initialized with nothing entries. Ele-

ment type T must be able to hold these values, i.e. Nothing <: T.

Examples

julia> Array{Union{Nothing, String}}(nothing, 2)

2-element Vector{Union{Nothing, String}}:

nothing

nothing

julia> Array{Union{Nothing, Int}}(nothing, 2, 3)

2×3 Matrix{Union{Nothing, Int64}}:

nothing nothing nothing

nothing nothing nothing

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L45-L49
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2510-L2542

CHAPTER 46. ARRAYS 862

source

Core.Array – Method.

Array{T}(missing, dims)

Array{T,N}(missing, dims)

Construct an N-dimensional Array containing elements of type T, initialized with missing entries. Ele-

ment type T must be able to hold these values, i.e. Missing <: T.

Examples

julia> Array{Union{Missing, String}}(missing, 2)

2-element Vector{Union{Missing, String}}:

missing

missing

julia> Array{Union{Missing, Int}}(missing, 2, 3)

2×3 Matrix{Union{Missing, Int64}}:

missing missing missing

missing missing missing

source

Core.UndefInitializer – Type.

UndefInitializer

Singleton type used in array initialization, indicating the array-constructor-caller would like an unini-

tialized array. See also undef, an alias for UndefInitializer().

Examples

julia> Array{Float64, 1}(UndefInitializer(), 3)

3-element Array{Float64, 1}:

2.2752528595e-314

2.202942107e-314

2.275252907e-314

source

Core.undef – Constant.

undef

Alias for UndefInitializer(), which constructs an instance of the singleton type UndefInitializer,

used in array initialization to indicate the array-constructor-caller would like an uninitialized array.

See also: missing, similar.

Examples

julia> Array{Float64, 1}(undef, 3)

3-element Vector{Float64}:

2.2752528595e-314

2.202942107e-314

2.275252907e-314

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2545-L2565
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2569-L2589
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2592-L2607

CHAPTER 46. ARRAYS 863

source

Base.Vector – Type.

Vector{T} <: AbstractVector{T}

One-dimensional dense array with elements of type T, often used to represent a mathematical vector.

Alias for Array{T,1}.

See also empty, similar and zero for creating vectors.

source

Base.Vector – Method.

Vector{T}(undef, n)

Construct an uninitialized Vector{T} of length n.

Examples

julia> Vector{Float64}(undef, 3)

3-element Array{Float64, 1}:

6.90966e-310

6.90966e-310

6.90966e-310

source

Base.Vector – Method.

Vector{T}(nothing, m)

Construct a Vector{T} of length m, initialized with nothing entries. Element type T must be able to

hold these values, i.e. Nothing <: T.

Examples

julia> Vector{Union{Nothing, String}}(nothing, 2)

2-element Vector{Union{Nothing, String}}:

nothing

nothing

source

Base.Vector – Method.

Vector{T}(missing, m)

Construct a Vector{T} of length m, initialized with missing entries. Element type T must be able to

hold these values, i.e. Missing <: T.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2610-L2627
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L52-L59
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2406-L2419
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2422-L2436

CHAPTER 46. ARRAYS 864

julia> Vector{Union{Missing, String}}(missing, 2)

2-element Vector{Union{Missing, String}}:

missing

missing

source

Base.Matrix – Type.

Matrix{T} <: AbstractMatrix{T}

Two-dimensional dense array with elements of type T, often used to represent a mathematical matrix.

Alias for Array{T,2}.

See also fill, zeros, undef and similar for creating matrices.

source

Base.Matrix – Method.

Matrix{T}(undef, m, n)

Construct an uninitialized Matrix{T} of size m×n.

Examples

julia> Matrix{Float64}(undef, 2, 3)

2×3 Array{Float64, 2}:

2.36365e-314 2.28473e-314 5.0e-324

2.26704e-314 2.26711e-314 NaN

julia> similar(ans, Int32, 2, 2)

2×2 Matrix{Int32}:

490537216 1277177453

1 1936748399

source

Base.Matrix – Method.

Matrix{T}(nothing, m, n)

Construct a Matrix{T} of size m×n, initialized with nothing entries. Element type T must be able to

hold these values, i.e. Nothing <: T.

Examples

julia> Matrix{Union{Nothing, String}}(nothing, 2, 3)

2×3 Matrix{Union{Nothing, String}}:

nothing nothing nothing

nothing nothing nothing

source

Base.Matrix – Method.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2439-L2453
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L62-L70
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2456-L2473
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2476-L2490

CHAPTER 46. ARRAYS 865

Matrix{T}(missing, m, n)

Construct a Matrix{T} of size m×n, initialized with missing entries. Element type T must be able to

hold these values, i.e. Missing <: T.

Examples

julia> Matrix{Union{Missing, String}}(missing, 2, 3)

2×3 Matrix{Union{Missing, String}}:

missing missing missing

missing missing missing

source

Base.VecOrMat – Type.

VecOrMat{T}

Union type of Vector{T} and Matrix{T} which allows functions to accept either a Matrix or a Vector.

Examples

julia> Vector{Float64} <: VecOrMat{Float64}

true

julia> Matrix{Float64} <: VecOrMat{Float64}

true

julia> Array{Float64, 3} <: VecOrMat{Float64}

false

source

Core.DenseArray – Type.

DenseArray{T, N} <: AbstractArray{T,N}

N-dimensional dense array with elements of type T. The elements of a dense array are stored contigu-

ously in memory.

source

Base.DenseVector – Type.

DenseVector{T}

One-dimensional DenseArray with elements of type T. Alias for DenseArray{T,1}.

source

Base.DenseMatrix – Type.

DenseMatrix{T}

Two-dimensional DenseArray with elements of type T. Alias for DenseArray{T,2}.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L2493-L2507
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L73-L89
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L92-L97
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L100-L104
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L107-L111

CHAPTER 46. ARRAYS 866

Base.DenseVecOrMat – Type.

DenseVecOrMat{T}

Union type of DenseVector{T} and DenseMatrix{T}.

source

Base.StridedArray – Type.

StridedArray{T, N}

A hard-coded Union of common array types that follow the strided array interface, with elements of

type T and N dimensions.

If A is a StridedArray, then its elements are stored in memory with offsets, which may vary between

dimensions but are constant within a dimension. For example, A could have stride 2 in dimension 1,

and stride 3 in dimension 2. Incrementing A along dimension d jumps in memory by [stride(A, d)]

slots. Strided arrays are particularly important and useful because they can sometimes be passed

directly as pointers to foreign language libraries like BLAS.

source

Base.StridedVector – Type.

StridedVector{T}

One dimensional StridedArray with elements of type T.

source

Base.StridedMatrix – Type.

StridedMatrix{T}

Two dimensional StridedArray with elements of type T.

source

Base.StridedVecOrMat – Type.

StridedVecOrMat{T}

Union type of StridedVector and StridedMatrix with elements of type T.

source

Base.Slices – Type.

Slices{P,SM,AX,S,N} <: AbstractSlices{S,N}

An AbstractArray of slices into a parent array over specified dimension(s), returning views that select

all the data from the other dimension(s).

These should typically be constructed by eachslice, eachcol or eachrow.

parent(s::Slices) will return the parent array.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L114-L118
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L3108-L3120
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L3123-L3127
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L3130-L3134
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L3137-L3141
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/slicearray.jl#L11-L21

CHAPTER 46. ARRAYS 867

Base.RowSlices – Type.

RowSlices{M,AX,S}

A special case of Slices that is a vector of row slices of a matrix, as constructed by eachrow.

parent can be used to get the underlying matrix.

source

Base.ColumnSlices – Type.

ColumnSlices{M,AX,S}

A special case of Slices that is a vector of column slices of a matrix, as constructed by eachcol.

parent can be used to get the underlying matrix.

source

Base.getindex – Method.

getindex(type[, elements...])

Construct a 1-d array of the specified type. This is usually called with the syntax Type[]. Element

values can be specified using Type[a,b,c,...].

Examples

julia> Int8[1, 2, 3]

3-element Vector{Int8}:

1

2

3

julia> getindex(Int8, 1, 2, 3)

3-element Vector{Int8}:

1

2

3

source

Base.zeros – Function.

zeros([T=Float64,] dims::Tuple)

zeros([T=Float64,] dims...)

Create an Array, with element type T, of all zeros with size specified by dims. See also fill, ones,

zero.

Examples

julia> zeros(1)

1-element Vector{Float64}:

0.0

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/slicearray.jl#L207-L214
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/slicearray.jl#L217-L224
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L424-L444

CHAPTER 46. ARRAYS 868

julia> zeros(Int8, 2, 3)

2×3 Matrix{Int8}:

0 0 0

0 0 0

source

Base.ones – Function.

ones([T=Float64,] dims::Tuple)

ones([T=Float64,] dims...)

Create an Array, with element type T, of all ones with size specified by dims. See also fill, zeros.

Examples

julia> ones(1,2)

1×2 Matrix{Float64}:

1.0 1.0

julia> ones(ComplexF64, 2, 3)

2×3 Matrix{ComplexF64}:

1.0+0.0im 1.0+0.0im 1.0+0.0im

1.0+0.0im 1.0+0.0im 1.0+0.0im

source

Base.BitArray – Type.

BitArray{N} <: AbstractArray{Bool, N}

Space-efficient N-dimensional boolean array, using just one bit for each boolean value.

BitArrays pack up to 64 values into every 8 bytes, resulting in an 8x space efficiency over Array{Bool,

N} and allowing some operations to work on 64 values at once.

By default, Julia returns BitArrays from broadcasting operations that generate boolean elements (in-

cluding dotted-comparisons like .==) as well as from the functions trues and falses.

Note

Due to its packed storage format, concurrent access to the elements of a BitArray where

at least one of them is a write is not thread-safe.

source

Base.BitArray – Method.

BitArray(undef, dims::Integer...)

BitArray{N}(undef, dims::NTuple{N,Int})

Construct an undef BitArray with the given dimensions. Behaves identically to the Array constructor.

See undef.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L587-L605
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L608-L626
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/bitarray.jl#L7-L23

CHAPTER 46. ARRAYS 869

julia> BitArray(undef, 2, 2)

2×2 BitMatrix:

0 0

0 0

julia> BitArray(undef, (3, 1))

3×1 BitMatrix:

0

0

0

source

Base.BitArray – Method.

BitArray(itr)

Construct a BitArray generated by the given iterable object. The shape is inferred from the itr object.

Examples

julia> BitArray([1 0; 0 1])

2×2 BitMatrix:

1 0

0 1

julia> BitArray(x+y == 3 for x = 1:2, y = 1:3)

2×3 BitMatrix:

0 1 0

1 0 0

julia> BitArray(x+y == 3 for x = 1:2 for y = 1:3)

6-element BitVector:

0

1

0

1

0

0

source

Base.trues – Function.

trues(dims)

Create a BitArray with all values set to true.

Examples

julia> trues(2,3)

2×3 BitMatrix:

1 1 1

1 1 1

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/bitarray.jl#L48-L68
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/bitarray.jl#L549-L576

CHAPTER 46. ARRAYS 870

source

Base.falses – Function.

falses(dims)

Create a BitArray with all values set to false.

Examples

julia> falses(2,3)

2×3 BitMatrix:

0 0 0

0 0 0

source

Base.fill – Function.

fill(value, dims::Tuple)

fill(value, dims...)

Create an array of size dims with every location set to value.

For example, fill(1.0, (5,5)) returns a 5×5 array of floats, with 1.0 in every location of the array.

The dimension lengths dimsmay be specified as either a tuple or a sequence of arguments. An N-length

tuple or N arguments following the value specify an N-dimensional array. Thus, a common idiom for

creating a zero-dimensional array with its only location set to x is fill(x).

Every location of the returned array is set to (and is thus === to) the value that was passed; this

means that if the value is itself modified, all elements of the filled array will reflect that modification

because they're still that very value. This is of no concern with fill(1.0, (5,5)) as the value 1.0

is immutable and cannot itself be modified, but can be unexpected with mutable values like — most

commonly — arrays. For example, fill([], 3) places the very same empty array in all three locations

of the returned vector:

julia> v = fill([], 3)

3-element Vector{Vector{Any}}:

[]

[]

[]

julia> v[1] === v[2] === v[3]

true

julia> value = v[1]

Any[]

julia> push!(value, 867_5309)

1-element Vector{Any}:

8675309

julia> v

3-element Vector{Vector{Any}}:

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/bitarray.jl#L408-L420
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/bitarray.jl#L390-L402

CHAPTER 46. ARRAYS 871

[8675309]

[8675309]

[8675309]

To create an array of many independent inner arrays, use a comprehension instead. This creates a new

and distinct array on each iteration of the loop:

julia> v2 = [[] for _ in 1:3]

3-element Vector{Vector{Any}}:

[]

[]

[]

julia> v2[1] === v2[2] === v2[3]

false

julia> push!(v2[1], 8675309)

1-element Vector{Any}:

8675309

julia> v2

3-element Vector{Vector{Any}}:

[8675309]

[]

[]

See also: fill!, zeros, ones, similar.

Examples

julia> fill(1.0, (2,3))

2×3 Matrix{Float64}:

1.0 1.0 1.0

1.0 1.0 1.0

julia> fill(42)

0-dimensional Array{Int64, 0}:

42

julia> A = fill(zeros(2), 2) # sets both elements to the same [0.0, 0.0] vector

2-element Vector{Vector{Float64}}:

[0.0, 0.0]

[0.0, 0.0]

julia> A[1][1] = 42; # modifies the filled value to be [42.0, 0.0]

julia> A # both A[1] and A[2] are the very same vector

2-element Vector{Vector{Float64}}:

[42.0, 0.0]

[42.0, 0.0]

source

Base.fill! – Function.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L484-L579

CHAPTER 46. ARRAYS 872

fill!(A, x)

Fill array A with the value x. If x is an object reference, all elements will refer to the same object.

fill!(A, Foo()) will return A filled with the result of evaluating Foo() once.

Examples

julia> A = zeros(2,3)

2×3 Matrix{Float64}:

0.0 0.0 0.0

0.0 0.0 0.0

julia> fill!(A, 2.)

2×3 Matrix{Float64}:

2.0 2.0 2.0

2.0 2.0 2.0

julia> a = [1, 1, 1]; A = fill!(Vector{Vector{Int}}(undef, 3), a); a[1] = 2; A

3-element Vector{Vector{Int64}}:

[2, 1, 1]

[2, 1, 1]

[2, 1, 1]

julia> x = 0; f() = (global x += 1; x); fill!(Vector{Int}(undef, 3), f())

3-element Vector{Int64}:

1

1

1

source

Base.empty – Function.

empty(x::Tuple)

Return an empty tuple, ().

source

empty(v::AbstractVector, [eltype])

Create an empty vector similar to v, optionally changing the eltype.

See also: empty!, isempty, isassigned.

Examples

julia> empty([1.0, 2.0, 3.0])

Float64[]

julia> empty([1.0, 2.0, 3.0], String)

String[]

source

empty(a::AbstractDict, [index_type=keytype(a)], [value_type=valtype(a)])

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/multidimensional.jl#L1079-L1110
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/tuple.jl#L620-L624
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L879-L895

CHAPTER 46. ARRAYS 873

Create an empty AbstractDict container which can accept indices of type index_type and values of

type value_type. The second and third arguments are optional and default to the input's keytype and

valtype, respectively. (If only one of the two types is specified, it is assumed to be the value_type,

and the index_type we default to keytype(a)).

Custom AbstractDict subtypes may choose which specific dictionary type is best suited to return for

the given index and value types, by specializing on the three-argument signature. The default is to

return an empty Dict.

source

Base.similar – Function.

similar(A::AbstractSparseMatrixCSC{Tv,Ti}, [::Type{TvNew}, ::Type{TiNew}, m::Integer,

n::Integer]) where {Tv,Ti}↪→

Create an uninitialized mutable array with the given element type, index type, and size, based upon the

given source SparseMatrixCSC. The new sparse matrix maintains the structure of the original sparse

matrix, except in the case where dimensions of the output matrix are different from the output.

The output matrix has zeros in the same locations as the input, but uninitialized values for the nonzero

locations.

source

similar(array, [element_type=eltype(array)], [dims=size(array)])

Create an uninitialized mutable array with the given element type and size, based upon the given

source array. The second and third arguments are both optional, defaulting to the given array's eltype

and size. The dimensions may be specified either as a single tuple argument or as a series of integer

arguments.

Custom AbstractArray subtypes may choose which specific array type is best-suited to return for

the given element type and dimensionality. If they do not specialize this method, the default is an

Array{element_type}(undef, dims...).

For example, similar(1:10, 1, 4) returns an uninitialized Array{Int,2} since ranges are neither

mutable nor support 2 dimensions:

julia> similar(1:10, 1, 4)

1×4 Matrix{Int64}:

4419743872 4374413872 4419743888 0

Conversely, similar(trues(10,10), 2) returns an uninitialized BitVector with two elements since

BitArrays are both mutable and can support 1-dimensional arrays:

julia> similar(trues(10,10), 2)

2-element BitVector:

0

0

Since BitArrays can only store elements of type Bool, however, if you request a different element

type it will create a regular Array instead:

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractdict.jl#L176-L187
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsematrix.jl#L698-L709

CHAPTER 46. ARRAYS 874

julia> similar(falses(10), Float64, 2, 4)

2×4 Matrix{Float64}:

2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314

2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314

See also: undef, isassigned.

source

similar(storagetype, axes)

Create an uninitialized mutable array analogous to that specified by storagetype, but with axes spec-

ified by the last argument.

Examples:

similar(Array{Int}, axes(A))

creates an array that "acts like" an Array{Int} (and might indeed be backed by one), but which is

indexed identically to A. If A has conventional indexing, this will be identical to Array{Int}(undef,

size(A)), but if A has unconventional indexing then the indices of the result will match A.

similar(BitArray, (axes(A, 2),))

would create a 1-dimensional logical array whose indices match those of the columns of A.

source

46.2 Basic functions

Base.ndims – Function.

ndims(A::AbstractArray) -> Integer

Return the number of dimensions of A.

See also: size, axes.

Examples

julia> A = fill(1, (3,4,5));

julia> ndims(A)

3

source

Base.size – Function.

size(A::AbstractArray, [dim])

Return a tuple containing the dimensions of A. Optionally you can specify a dimension to just get the

length of that dimension.

Note that size may not be defined for arrays with non-standard indices, in which case axes may be

useful. See the manual chapter on arrays with custom indices.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L786-L828
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L853-L874
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L259-L273

CHAPTER 46. ARRAYS 875

See also: length, ndims, eachindex, sizeof.

Examples

julia> A = fill(1, (2,3,4));

julia> size(A)

(2, 3, 4)

julia> size(A, 2)

3

source

Base.axes – Method.

axes(A)

Return the tuple of valid indices for array A.

See also: size, keys, eachindex.

Examples

julia> A = fill(1, (5,6,7));

julia> axes(A)

(Base.OneTo(5), Base.OneTo(6), Base.OneTo(7))

source

Base.axes – Method.

axes(A, d)

Return the valid range of indices for array A along dimension d.

See also size, and the manual chapter on arrays with custom indices.

Examples

julia> A = fill(1, (5,6,7));

julia> axes(A, 2)

Base.OneTo(6)

julia> axes(A, 4) == 1:1 # all dimensions d > ndims(A) have size 1

true

Usage note

Each of the indices has to be an AbstractUnitRange{<:Integer}, but at the same time can be a type

that uses custom indices. So, for example, if you need a subset, use generalized indexing constructs

like begin/end or firstindex/lastindex:

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L20-L41
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L80-L95

CHAPTER 46. ARRAYS 876

ix = axes(v, 1)

ix[2:end] # will work for eg Vector, but may fail in general

ix[(begin+1):end] # works for generalized indexes

source

Base.length – Method.

length(A::AbstractArray)

Return the number of elements in the array, defaults to prod(size(A)).

Examples

julia> length([1, 2, 3, 4])

4

julia> length([1 2; 3 4])

4

source

Base.keys – Method.

keys(a::AbstractArray)

Return an efficient array describing all valid indices for a arranged in the shape of a itself.

The keys of 1-dimensional arrays (vectors) are integers, whereas all other N-dimensional arrays use

CartesianIndex to describe their locations. Often the special array types LinearIndices and CartesianIndices

are used to efficiently represent these arrays of integers and CartesianIndexes, respectively.

Note that the keys of an array might not be the most efficient index type; for maximum performance

use eachindex instead.

Examples

julia> keys([4, 5, 6])

3-element LinearIndices{1, Tuple{Base.OneTo{Int64}}}:

1

2

3

julia> keys([4 5; 6 7])

CartesianIndices((2, 2))

source

Base.eachindex – Function.

eachindex(A...)

eachindex(::IndexStyle, A::AbstractArray...)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L44-L74
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L301-L314
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L140-L164

CHAPTER 46. ARRAYS 877

Create an iterable object for visiting each index of an AbstractArray A in an efficient manner. For

array types that have opted into fast linear indexing (like Array), this is simply the range 1:length(A)

if they use 1-based indexing. For array types that have not opted into fast linear indexing, a specialized

Cartesian range is typically returned to efficiently index into the array with indices specified for every

dimension.

In general eachindex accepts arbitrary iterables, including strings and dictionaries, and returns an

iterator object supporting arbitrary index types (e.g. unevenly spaced or non-integer indices).

If A is AbstractArray it is possible to explicitly specify the style of the indices that should be returned by

eachindex by passing a value having IndexStyle type as its first argument (typically IndexLinear()

if linear indices are required or IndexCartesian() if Cartesian range is wanted).

If you supply more than one AbstractArray argument, eachindex will create an iterable object that is

fast for all arguments (typically a UnitRange if all inputs have fast linear indexing, a CartesianIndices

otherwise). If the arrays have different sizes and/or dimensionalities, a DimensionMismatch exception

will be thrown.

See also pairs(A) to iterate over indices and values together, and axes(A, 2) for valid indices along

one dimension.

Examples

julia> A = [10 20; 30 40];

julia> for i in eachindex(A) # linear indexing

println("A[", i, "] == ", A[i])

end

A[1] == 10

A[2] == 30

A[3] == 20

A[4] == 40

julia> for i in eachindex(view(A, 1:2, 1:1)) # Cartesian indexing

println(i)

end

CartesianIndex(1, 1)

CartesianIndex(2, 1)

source

Base.IndexStyle – Type.

IndexStyle(A)

IndexStyle(typeof(A))

IndexStyle specifies the "native indexing style" for array A. When you define a new AbstractArray

type, you can choose to implement either linear indexing (with IndexLinear) or cartesian indexing. If

you decide to only implement linear indexing, then you must set this trait for your array type:

Base.IndexStyle(::Type{<:MyArray}) = IndexLinear()

The default is IndexCartesian().

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L331-L377

CHAPTER 46. ARRAYS 878

Julia's internal indexing machinery will automatically (and invisibly) recompute all indexing operations

into the preferred style. This allows users to access elements of your array using any indexing style,

even when explicit methods have not been provided.

If you define both styles of indexing for your AbstractArray, this trait can be used to select the most

performant indexing style. Some methods check this trait on their inputs, and dispatch to different

algorithms depending on the most efficient access pattern. In particular, eachindex creates an iterator

whose type depends on the setting of this trait.

source

Base.IndexLinear – Type.

IndexLinear()

Subtype of IndexStyle used to describe arrays which are optimally indexed by one linear index.

A linear indexing style uses one integer index to describe the position in the array (even if it's a multi-

dimensional array) and column-major ordering is used to efficiently access the elements. This means

that requesting eachindex from an array that is IndexLinear will return a simple one-dimensional

range, even if it is multidimensional.

A custom array that reports its IndexStyle as IndexLinear only needs to implement indexing (and

indexed assignment) with a single Int index; all other indexing expressions — including multidimen-

sional accesses — will be recomputed to the linear index. For example, if A were a 2×3 custom matrix

with linear indexing, and we referenced A[1, 3], this would be recomputed to the equivalent linear

index and call A[5] since 1 + 2*(3 - 1) = 5.

See also IndexCartesian.

source

Base.IndexCartesian – Type.

IndexCartesian()

Subtype of IndexStyle used to describe arrays which are optimally indexed by a Cartesian index. This

is the default for new custom AbstractArray subtypes.

A Cartesian indexing style uses multiple integer indices to describe the position in a multidimensional

array, with exactly one index per dimension. This means that requesting eachindex from an array that

is IndexCartesian will return a range of CartesianIndices.

A N-dimensional custom array that reports its IndexStyle as IndexCartesian needs to implement in-

dexing (and indexed assignment) with exactly N Int indices; all other indexing expressions — including

linear indexing — will be recomputed to the equivalent Cartesian location. For example, if A were a

2×3 custom matrix with cartesian indexing, and we referenced A[5], this would be recomputed to the

equivalent Cartesian index and call A[1, 3] since 5 = 1 + 2*(3 - 1).

It is significantly more expensive to compute Cartesian indices from a linear index than it is to go

the other way. The former operation requires division — a very costly operation — whereas the latter

only uses multiplication and addition and is essentially free. This asymmetry means it is far more

costly to use linear indexing with an IndexCartesian array than it is to use Cartesian indexing with an

IndexLinear array.

See also IndexLinear.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/indices.jl#L68-L93
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/indices.jl#L16-L36
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/indices.jl#L39-L65

CHAPTER 46. ARRAYS 879

Base.conj! – Function.

conj!(A)

Transform an array to its complex conjugate in-place.

See also conj.

Examples

julia> A = [1+im 2-im; 2+2im 3+im]

2×2 Matrix{Complex{Int64}}:

1+1im 2-1im

2+2im 3+1im

julia> conj!(A);

julia> A

2×2 Matrix{Complex{Int64}}:

1-1im 2+1im

2-2im 3-1im

source

Base.stride – Function.

stride(A, k::Integer)

Return the distance in memory (in number of elements) between adjacent elements in dimension k.

See also: strides.

Examples

julia> A = fill(1, (3,4,5));

julia> stride(A,2)

3

julia> stride(A,3)

12

source

Base.strides – Function.

strides(A)

Return a tuple of the memory strides in each dimension.

See also: stride.

Examples

julia> A = fill(1, (3,4,5));

julia> strides(A)

(1, 3, 12)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarraymath.jl#L98-L119
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L576-L593

CHAPTER 46. ARRAYS 880

source

46.3 Broadcast and vectorization

See also the dot syntax for vectorizing functions; for example, f.(args...) implicitly calls broadcast(f,

args...). Rather than relying on "vectorized" methods of functions like sin to operate on arrays, you

should use sin.(a) to vectorize via broadcast.

Base.Broadcast.broadcast – Function.

broadcast(f, As...)

Broadcast the function f over the arrays, tuples, collections, Refs and/or scalars As.

Broadcasting applies the function f over the elements of the container arguments and the scalars

themselves in As. Singleton and missing dimensions are expanded to match the extents of the other

arguments by virtually repeating the value. By default, only a limited number of types are considered

scalars, including Numbers, Strings, Symbols, Types, Functions and some common singletons like

missing and nothing. All other arguments are iterated over or indexed into elementwise.

The resulting container type is established by the following rules:

• If all the arguments are scalars or zero-dimensional arrays, it returns an unwrapped scalar.

• If at least one argument is a tuple and all others are scalars or zero-dimensional arrays, it returns

a tuple.

• All other combinations of arguments default to returning an Array, but custom container types

can define their own implementation and promotion-like rules to customize the result when they

appear as arguments.

A special syntax exists for broadcasting: f.(args...) is equivalent to broadcast(f, args...), and

nested f.(g.(args...)) calls are fused into a single broadcast loop.

Examples

julia> A = [1, 2, 3, 4, 5]

5-element Vector{Int64}:

1

2

3

4

5

julia> B = [1 2; 3 4; 5 6; 7 8; 9 10]

5×2 Matrix{Int64}:

1 2

3 4

5 6

7 8

9 10

julia> broadcast(+, A, B)

5×2 Matrix{Int64}:

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L559-L573

CHAPTER 46. ARRAYS 881

2 3

5 6

8 9

11 12

14 15

julia> parse.(Int, ["1", "2"])

2-element Vector{Int64}:

1

2

julia> abs.((1, -2))

(1, 2)

julia> broadcast(+, 1.0, (0, -2.0))

(1.0, -1.0)

julia> (+).([[0,2], [1,3]], Ref{Vector{Int}}([1,-1]))

2-element Vector{Vector{Int64}}:

[1, 1]

[2, 2]

julia> string.(("one","two","three","four"), ": ", 1:4)

4-element Vector{String}:

"one: 1"

"two: 2"

"three: 3"

"four: 4"

source

Base.Broadcast.broadcast! – Function.

broadcast!(f, dest, As...)

Like broadcast, but store the result of broadcast(f, As...) in the dest array. Note that dest is only

used to store the result, and does not supply arguments to f unless it is also listed in the As, as in

broadcast!(f, A, A, B) to perform A[:] = broadcast(f, A, B).

Examples

julia> A = [1.0; 0.0]; B = [0.0; 0.0];

julia> broadcast!(+, B, A, (0, -2.0));

julia> B

2-element Vector{Float64}:

1.0

-2.0

julia> A

2-element Vector{Float64}:

1.0

0.0

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/broadcast.jl#L765-L840

CHAPTER 46. ARRAYS 882

julia> broadcast!(+, A, A, (0, -2.0));

julia> A

2-element Vector{Float64}:

1.0

-2.0

source

Base.Broadcast.@__dot__ – Macro.

@. expr

Convert every function call or operator in expr into a "dot call" (e.g. convert f(x) to f.(x)), and

convert every assignment in expr to a "dot assignment" (e.g. convert += to .+=).

If you want to avoid adding dots for selected function calls in expr, splice those function calls in with

$. For example, @. sqrt(abs($sort(x))) is equivalent to sqrt.(abs.(sort(x))) (no dot for sort).

(@. is equivalent to a call to @__dot__.)

Examples

julia> x = 1.0:3.0; y = similar(x);

julia> @. y = x + 3 * sin(x)

3-element Vector{Float64}:

3.5244129544236893

4.727892280477045

3.4233600241796016

source

For specializing broadcast on custom types, see

Base.Broadcast.BroadcastStyle – Type.

BroadcastStyle is an abstract type and trait-function used to determine behavior of objects under

broadcasting. BroadcastStyle(typeof(x)) returns the style associated with x. To customize the

broadcasting behavior of a type, one can declare a style by defining a type/method pair

struct MyContainerStyle <: BroadcastStyle end

Base.BroadcastStyle(::Type{<:MyContainer}) = MyContainerStyle()

One then writes method(s) (at least similar) operating on Broadcasted{MyContainerStyle}. There

are also several pre-defined subtypes of BroadcastStyle that you may be able to leverage; see the

Interfaces chapter for more information.

source

Base.Broadcast.AbstractArrayStyle – Type.

Broadcast.AbstractArrayStyle{N} <: BroadcastStyle is the abstract supertype for any style as-

sociated with an AbstractArray type. The N parameter is the dimensionality, which can be handy for

AbstractArray types that only support specific dimensionalities:

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/broadcast.jl#L847-L879
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/broadcast.jl#L1294-L1318
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/broadcast.jl#L21-L34

CHAPTER 46. ARRAYS 883

struct SparseMatrixStyle <: Broadcast.AbstractArrayStyle{2} end

Base.BroadcastStyle(::Type{<:SparseMatrixCSC}) = SparseMatrixStyle()

For AbstractArray types that support arbitrary dimensionality, N can be set to Any:

struct MyArrayStyle <: Broadcast.AbstractArrayStyle{Any} end

Base.BroadcastStyle(::Type{<:MyArray}) = MyArrayStyle()

In cases where you want to be able to mix multiple AbstractArrayStyles and keep track of dimen-

sionality, your style needs to support a Val constructor:

struct MyArrayStyleDim{N} <: Broadcast.AbstractArrayStyle{N} end

(::Type{<:MyArrayStyleDim})(::Val{N}) where N = MyArrayStyleDim{N}()

Note that if two or more AbstractArrayStyle subtypes conflict, broadcasting machinery will fall back

to producing Arrays. If this is undesirable, you may need to define binary BroadcastStyle rules to

control the output type.

See also Broadcast.DefaultArrayStyle.

source

Base.Broadcast.ArrayStyle – Type.

Broadcast.ArrayStyle{MyArrayType}() is a BroadcastStyle indicating that an object behaves as an

array for broadcasting. It presents a simple way to construct Broadcast.AbstractArrayStyles for spe-

cific AbstractArray container types. Broadcast styles created this way lose track of dimensionality; if

keeping track is important for your type, you should create your own custom Broadcast.AbstractArrayStyle.

source

Base.Broadcast.DefaultArrayStyle – Type.

Broadcast.DefaultArrayStyle{N}() is a BroadcastStyle indicating that an object behaves as an N-

dimensional array for broadcasting. Specifically, DefaultArrayStyle is used for any AbstractArray

type that hasn't defined a specialized style, and in the absence of overrides from other broadcast argu-

ments the resulting output type is Array. When there aremultiple inputs to broadcast, DefaultArrayStyle

"loses" to any other Broadcast.ArrayStyle.

source

Base.Broadcast.broadcastable – Function.

Broadcast.broadcastable(x)

Return either x or an object like x such that it supports axes, indexing, and its type supports ndims.

If x supports iteration, the returned value should have the same axes and indexing behaviors as

collect(x).

If x is not an AbstractArray but it supports axes, indexing, and its type supports ndims, then broadcastable(::typeof(x))

may be implemented to just return itself. Further, if x defines its own BroadcastStyle, then it must

define its broadcastable method to return itself for the custom style to have any effect.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/broadcast.jl#L51-L76
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/broadcast.jl#L79-L85
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/broadcast.jl#L89-L96

CHAPTER 46. ARRAYS 884

julia> Broadcast.broadcastable([1,2,3]) # like `identity` since arrays already support axes

and indexing↪→

3-element Vector{Int64}:

1

2

3

julia> Broadcast.broadcastable(Int) # Types don't support axes, indexing, or iteration but

are commonly used as scalars↪→

Base.RefValue{Type{Int64}}(Int64)

julia> Broadcast.broadcastable("hello") # Strings break convention of matching iteration and

act like a scalar instead↪→

Base.RefValue{String}("hello")

source

Base.Broadcast.combine_axes – Function.

combine_axes(As...) -> Tuple

Determine the result axes for broadcasting across all values in As.

julia> Broadcast.combine_axes([1], [1 2; 3 4; 5 6])

(Base.OneTo(3), Base.OneTo(2))

julia> Broadcast.combine_axes(1, 1, 1)

()

source

Base.Broadcast.combine_styles – Function.

combine_styles(cs...) -> BroadcastStyle

Decides which BroadcastStyle to use for any number of value arguments. Uses BroadcastStyle to

get the style for each argument, and uses result_style to combine styles.

Examples

julia> Broadcast.combine_styles([1], [1 2; 3 4])

Base.Broadcast.DefaultArrayStyle{2}()

source

Base.Broadcast.result_style – Function.

result_style(s1::BroadcastStyle[, s2::BroadcastStyle]) -> BroadcastStyle

Takes one or two BroadcastStyles and combines them using BroadcastStyle to determine a common

BroadcastStyle.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/broadcast.jl#L711-L738
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/broadcast.jl#L510-L522
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/broadcast.jl#L443-L456

CHAPTER 46. ARRAYS 885

julia> Broadcast.result_style(Broadcast.DefaultArrayStyle{0}(),

Broadcast.DefaultArrayStyle{3}())↪→

Base.Broadcast.DefaultArrayStyle{3}()

julia> Broadcast.result_style(Broadcast.Unknown(), Broadcast.DefaultArrayStyle{1}())

Base.Broadcast.DefaultArrayStyle{1}()

source

46.4 Indexing and assignment

Base.getindex – Method.

getindex(A, inds...)

Return a subset of array A as specified by inds, where each ind may be, for example, an Int, an

AbstractRange, or a Vector. See the manual section on array indexing for details.

Examples

julia> A = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> getindex(A, 1)

1

julia> getindex(A, [2, 1])

2-element Vector{Int64}:

3

1

julia> getindex(A, 2:4)

3-element Vector{Int64}:

3

2

4

source

Base.setindex! – Method.

setindex!(A, X, inds...)

A[inds...] = X

Store values from array X within some subset of A as specified by inds. The syntax A[inds...] = X

is equivalent to (setindex!(A, X, inds...); X).

Warning

Behavior can be unexpected when any mutated argument shares memory with any other

argument.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/broadcast.jl#L464-L479
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L1259-L1287

CHAPTER 46. ARRAYS 886

Examples

julia> A = zeros(2,2);

julia> setindex!(A, [10, 20], [1, 2]);

julia> A[[3, 4]] = [30, 40];

julia> A

2×2 Matrix{Float64}:

10.0 30.0

20.0 40.0

source

Base.copyto! – Method.

copyto!(dest, Rdest::CartesianIndices, src, Rsrc::CartesianIndices) -> dest

Copy the block of src in the range of Rsrc to the block of dest in the range of Rdest. The sizes of the

two regions must match.

Examples

julia> A = zeros(5, 5);

julia> B = [1 2; 3 4];

julia> Ainds = CartesianIndices((2:3, 2:3));

julia> Binds = CartesianIndices(B);

julia> copyto!(A, Ainds, B, Binds)

5×5 Matrix{Float64}:

0.0 0.0 0.0 0.0 0.0

0.0 1.0 2.0 0.0 0.0

0.0 3.0 4.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

source

Base.copy! – Function.

copy!(dst, src) -> dst

In-place copy of src into dst, discarding any pre-existing elements in dst. If dst and src are of the

same type, dst == src should hold after the call. If dst and src are multidimensional arrays, they

must have equal axes.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other

argument.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L1370-L1392
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/multidimensional.jl#L1147-L1171

CHAPTER 46. ARRAYS 887

See also copyto!.

Julia 1.1

This method requires at least Julia 1.1. In Julia 1.0 this method is available from the Future

standard library as Future.copy!.

source

Base.isassigned – Function.

isassigned(array, i) -> Bool

Test whether the given array has a value associated with index i. Return false if the index is out of

bounds, or has an undefined reference.

Examples

julia> isassigned(rand(3, 3), 5)

true

julia> isassigned(rand(3, 3), 3 * 3 + 1)

false

julia> mutable struct Foo end

julia> v = similar(rand(3), Foo)

3-element Vector{Foo}:

#undef

#undef

#undef

julia> isassigned(v, 1)

false

source

Base.Colon – Type.

Colon()

Colons (:) are used to signify indexing entire objects or dimensions at once.

Very few operations are defined on Colons directly; instead they are converted by to_indices to an

internal vector type (Base.Slice) to represent the collection of indices they span before being used.

The singleton instance of Colon is also a function used to construct ranges; see :.

source

Base.IteratorsMD.CartesianIndex – Type.

CartesianIndex(i, j, k...) -> I

CartesianIndex((i, j, k...)) -> I

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L902-L918
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/essentials.jl#L800-L825
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/essentials.jl#L834-L845

CHAPTER 46. ARRAYS 888

Create a multidimensional index I, which can be used for indexing a multidimensional array A. In

particular, A[I] is equivalent to A[i,j,k...]. One can freely mix integer and CartesianIndex indices;

for example, A[Ipre, i, Ipost] (where Ipre and Ipost are CartesianIndex indices and i is an Int)

can be a useful expression when writing algorithms that work along a single dimension of an array of

arbitrary dimensionality.

A CartesianIndex is sometimes produced by eachindex, and always when iterating with an explicit

CartesianIndices.

An I::CartesianIndex is treated as a "scalar" (not a container) for broadcast. In order to iterate over

the components of a CartesianIndex, convert it to a tuple with Tuple(I).

Examples

julia> A = reshape(Vector(1:16), (2, 2, 2, 2))

2×2×2×2 Array{Int64, 4}:

[:, :, 1, 1] =

1 3

2 4

[:, :, 2, 1] =

5 7

6 8

[:, :, 1, 2] =

9 11

10 12

[:, :, 2, 2] =

13 15

14 16

julia> A[CartesianIndex((1, 1, 1, 1))]

1

julia> A[CartesianIndex((1, 1, 1, 2))]

9

julia> A[CartesianIndex((1, 1, 2, 1))]

5

Julia 1.10

Using a CartesianIndex as a "scalar" for broadcast requires Julia 1.10; in previous releases,

use Ref(I).

source

Base.IteratorsMD.CartesianIndices – Type.

CartesianIndices(sz::Dims) -> R

CartesianIndices((istart:[istep:]istop, jstart:[jstep:]jstop, ...)) -> R

Define a region R spanning a multidimensional rectangular range of integer indices. These are most

commonly encountered in the context of iteration, where for I in R ... endwill return CartesianIndex

indices I equivalent to the nested loops

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/multidimensional.jl#L19-L72

CHAPTER 46. ARRAYS 889

for j = jstart:jstep:jstop

for i = istart:istep:istop

...

end

end

Consequently these can be useful for writing algorithms that work in arbitrary dimensions.

CartesianIndices(A::AbstractArray) -> R

As a convenience, constructing a CartesianIndices from an array makes a range of its indices.

Julia 1.6

The step rangemethod CartesianIndices((istart:istep:istop, jstart:[jstep:]jstop,

...)) requires at least Julia 1.6.

Examples

julia> foreach(println, CartesianIndices((2, 2, 2)))

CartesianIndex(1, 1, 1)

CartesianIndex(2, 1, 1)

CartesianIndex(1, 2, 1)

CartesianIndex(2, 2, 1)

CartesianIndex(1, 1, 2)

CartesianIndex(2, 1, 2)

CartesianIndex(1, 2, 2)

CartesianIndex(2, 2, 2)

julia> CartesianIndices(fill(1, (2,3)))

CartesianIndices((2, 3))

Conversion between linear and cartesian indices

Linear index to cartesian index conversion exploits the fact that a CartesianIndices is an AbstractArray

and can be indexed linearly:

julia> cartesian = CartesianIndices((1:3, 1:2))

CartesianIndices((1:3, 1:2))

julia> cartesian[4]

CartesianIndex(1, 2)

julia> cartesian = CartesianIndices((1:2:5, 1:2))

CartesianIndices((1:2:5, 1:2))

julia> cartesian[2, 2]

CartesianIndex(3, 2)

Broadcasting

CartesianIndices support broadcasting arithmetic (+ and -) with a CartesianIndex.

Julia 1.1

Broadcasting of CartesianIndices requires at least Julia 1.1.

CHAPTER 46. ARRAYS 890

julia> CIs = CartesianIndices((2:3, 5:6))

CartesianIndices((2:3, 5:6))

julia> CI = CartesianIndex(3, 4)

CartesianIndex(3, 4)

julia> CIs .+ CI

CartesianIndices((5:6, 9:10))

For cartesian to linear index conversion, see LinearIndices.

source

Base.Dims – Type.

Dims{N}

An NTuple of N Ints used to represent the dimensions of an AbstractArray.

source

Base.LinearIndices – Type.

LinearIndices(A::AbstractArray)

Return a LinearIndices array with the same shape and axes as A, holding the linear index of each

entry in A. Indexing this array with cartesian indices allows mapping them to linear indices.

For arrays with conventional indexing (indices start at 1), or any multidimensional array, linear in-

dices range from 1 to length(A). However, for AbstractVectors linear indices are axes(A, 1), and

therefore do not start at 1 for vectors with unconventional indexing.

Calling this function is the "safe" way to write algorithms that exploit linear indexing.

Examples

julia> A = fill(1, (5,6,7));

julia> b = LinearIndices(A);

julia> extrema(b)

(1, 210)

LinearIndices(inds::CartesianIndices) -> R

LinearIndices(sz::Dims) -> R

LinearIndices((istart:istop, jstart:jstop, ...)) -> R

Return a LinearIndices array with the specified shape or axes.

Example

The main purpose of this constructor is intuitive conversion from cartesian to linear indexing:

julia> linear = LinearIndices((1:3, 1:2))

3×2 LinearIndices{2, Tuple{UnitRange{Int64}, UnitRange{Int64}}}:

1 4

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/multidimensional.jl#L171-L252
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/indices.jl#L3-L8

CHAPTER 46. ARRAYS 891

2 5

3 6

julia> linear[1,2]

4

source

Base.to_indices – Function.

to_indices(A, I::Tuple)

Convert the tuple I to a tuple of indices for use in indexing into array A.

The returned tuple must only contain either Ints or AbstractArrays of scalar indices that are sup-

ported by array A. It will error upon encountering a novel index type that it does not know how to

process.

For simple index types, it defers to the unexported Base.to_index(A, i) to process each index i.

While this internal function is not intended to be called directly, Base.to_index may be extended by

custom array or index types to provide custom indexing behaviors.

More complicated index types may require more context about the dimension into which they index.

To support those cases, to_indices(A, I) calls to_indices(A, axes(A), I), which then recursively

walks through both the given tuple of indices and the dimensional indices of A in tandem. As such, not

all index types are guaranteed to propagate to Base.to_index.

Examples

julia> A = zeros(1,2,3,4);

julia> to_indices(A, (1,1,2,2))

(1, 1, 2, 2)

julia> to_indices(A, (1,1,2,20)) # no bounds checking

(1, 1, 2, 20)

julia> to_indices(A, (CartesianIndex((1,)), 2, CartesianIndex((3,4)))) # exotic index

(1, 2, 3, 4)

julia> to_indices(A, ([1,1], 1:2, 3, 4))

([1, 1], 1:2, 3, 4)

julia> to_indices(A, (1,2)) # no shape checking

(1, 2)

source

Base.checkbounds – Function.

checkbounds(Bool, A, I...)

Return true if the specified indices I are in bounds for the given array A. Subtypes of AbstractArray

should specialize this method if they need to provide custom bounds checking behaviors; however, in

many cases one can rely on A's indices and checkindex.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/indices.jl#L428-L474
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/indices.jl#L304-L343

CHAPTER 46. ARRAYS 892

See also checkindex.

Examples

julia> A = rand(3, 3);

julia> checkbounds(Bool, A, 2)

true

julia> checkbounds(Bool, A, 3, 4)

false

julia> checkbounds(Bool, A, 1:3)

true

julia> checkbounds(Bool, A, 1:3, 2:4)

false

source

checkbounds(A, I...)

Throw an error if the specified indices I are not in bounds for the given array A.

source

Base.checkindex – Function.

checkindex(Bool, inds::AbstractUnitRange, index)

Return true if the given index is within the bounds of inds. Custom types that would like to behave

as indices for all arrays can extend this method in order to provide a specialized bounds checking

implementation.

See also checkbounds.

Examples

julia> checkindex(Bool, 1:20, 8)

true

julia> checkindex(Bool, 1:20, 21)

false

source

Base.elsize – Function.

elsize(type)

Compute the memory stride in bytes between consecutive elements of eltype stored inside the given

type, if the array elements are stored densely with a uniform linear stride.

Examples

julia> Base.elsize(rand(Float32, 10))

4

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L652-L678
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L695-L699
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L740-L758
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L244-L256

CHAPTER 46. ARRAYS 893

46.5 Views (SubArrays and other view types)

A “view” is a data structure that acts like an array (it is a subtype of AbstractArray), but the underlying

data is actually part of another array.

For example, if x is an array and v = @view x[1:10], then v acts like a 10-element array, but its data

is actually accessing the first 10 elements of x. Writing to a view, e.g. v[3] = 2, writes directly to the

underlying array x (in this case modifying x[3]).

Slicing operations like x[1:10] create a copy by default in Julia. @view x[1:10] changes it to make a

view. The @viewsmacro can be used on a whole block of code (e.g. @views function foo() end or

@views begin ... end) to change all the slicing operations in that block to use views. Sometimes making

a copy of the data is faster and sometimes using a view is faster, as described in the performance tips.

Base.view – Function.

view(A, inds...)

Like getindex, but returns a lightweight array that lazily references (or is effectively a view into) the

parent array A at the given index or indices inds instead of eagerly extracting elements or constructing

a copied subset. Calling getindex or setindex! on the returned value (often a SubArray) computes

the indices to access or modify the parent array on the fly. The behavior is undefined if the shape of

the parent array is changed after view is called because there is no bound check for the parent array;

e.g., it may cause a segmentation fault.

Some immutable parent arrays (like ranges) may choose to simply recompute a new array in some cir-

cumstances instead of returning a SubArray if doing so is efficient and provides compatible semantics.

Julia 1.6

In Julia 1.6 or later, view can be called on an AbstractString, returning a SubString.

Examples

julia> A = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> b = view(A, :, 1)

2-element view(::Matrix{Int64}, :, 1) with eltype Int64:

1

3

julia> fill!(b, 0)

2-element view(::Matrix{Int64}, :, 1) with eltype Int64:

0

0

julia> A # Note A has changed even though we modified b

2×2 Matrix{Int64}:

0 2

0 4

julia> view(2:5, 2:3) # returns a range as type is immutable

3:4

CHAPTER 46. ARRAYS 894

source

Base.@view – Macro.

@view A[inds...]

Transform the indexing expression A[inds...] into the equivalent view call.

This can only be applied directly to a single indexing expression and is particularly helpful for expres-

sions that include the special begin or end indexing syntaxes like A[begin, 2:end-1] (as those are

not supported by the normal view function).

Note that @view cannot be used as the target of a regular assignment (e.g., @view(A[1, 2:end]) =

...), nor would the un-decorated indexed assignment (A[1, 2:end] = ...) or broadcasted indexed

assignment (A[1, 2:end] .= ...) make a copy. It can be useful, however, for updating broadcasted

assignments like @view(A[1, 2:end]) .+= 1 because this is a simple syntax for @view(A[1, 2:end])

.= @view(A[1, 2:end]) + 1, and the indexing expression on the right-hand side would otherwise

make a copy without the @view.

See also @views to switch an entire block of code to use views for non-scalar indexing.

Julia 1.5

Using begin in an indexing expression to refer to the first index requires at least Julia 1.5.

Examples

julia> A = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> b = @view A[:, 1]

2-element view(::Matrix{Int64}, :, 1) with eltype Int64:

1

3

julia> fill!(b, 0)

2-element view(::Matrix{Int64}, :, 1) with eltype Int64:

0

0

julia> A

2×2 Matrix{Int64}:

0 2

0 4

source

Base.@views – Macro.

@views expression

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/subarray.jl#L135-L180
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/views.jl#L77-L124

CHAPTER 46. ARRAYS 895

Convert every array-slicing operation in the given expression (which may be a begin/end block, loop,

function, etc.) to return a view. Scalar indices, non-array types, and explicit getindex calls (as opposed

to array[...]) are unaffected.

Similarly, @views converts string slices into SubString views.

Note

The @views macro only affects array[...] expressions that appear explicitly in the given

expression, not array slicing that occurs in functions called by that code.

Julia 1.5

Using begin in an indexing expression to refer to the first index requires at least Julia 1.5.

Examples

julia> A = zeros(3, 3);

julia> @views for row in 1:3

b = A[row, :]

b[:] .= row

end

julia> A

3×3 Matrix{Float64}:

1.0 1.0 1.0

2.0 2.0 2.0

3.0 3.0 3.0

source

Base.parent – Function.

parent(A)

Return the underlying parent object of the view. This parent of objects of types SubArray, SubString,

ReshapedArray or LinearAlgebra.Transpose is what was passed as an argument to view, reshape,

transpose, etc. during object creation. If the input is not a wrapped object, return the input itself. If

the input is wrapped multiple times, only the outermost wrapper will be removed.

Examples

julia> A = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> V = view(A, 1:2, :)

2×2 view(::Matrix{Int64}, 1:2, :) with eltype Int64:

1 2

3 4

julia> parent(V)

2×2 Matrix{Int64}:

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/views.jl#L210-L245

CHAPTER 46. ARRAYS 896

1 2

3 4

source

Base.parentindices – Function.

parentindices(A)

Return the indices in the parent which correspond to the view A.

Examples

julia> A = [1 2; 3 4];

julia> V = view(A, 1, :)

2-element view(::Matrix{Int64}, 1, :) with eltype Int64:

1

2

julia> parentindices(V)

(1, Base.Slice(Base.OneTo(2)))

source

Base.selectdim – Function.

selectdim(A, d::Integer, i)

Return a view of all the data of A where the index for dimension d equals i.

Equivalent to view(A,:,:,...,i,:,:,...) where i is in position d.

See also: eachslice.

Examples

julia> A = [1 2 3 4; 5 6 7 8]

2×4 Matrix{Int64}:

1 2 3 4

5 6 7 8

julia> selectdim(A, 2, 3)

2-element view(::Matrix{Int64}, :, 3) with eltype Int64:

3

7

julia> selectdim(A, 2, 3:4)

2×2 view(::Matrix{Int64}, :, 3:4) with eltype Int64:

3 4

7 8

source

Base.reinterpret – Function.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L1435-L1460
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/subarray.jl#L81-L98
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarraymath.jl#L225-L251

CHAPTER 46. ARRAYS 897

reinterpret(::Type{Out}, x::In)

Change the type-interpretation of the binary data in the isbits value x to that of the isbits type Out. The

size (ignoring padding) of Out has to be the same as that of the type of x. For example, reinterpret(Float32,

UInt32(7)) interprets the 4 bytes corresponding to UInt32(7) as a Float32.

julia> reinterpret(Float32, UInt32(7))

1.0f-44

julia> reinterpret(NTuple{2, UInt8}, 0x1234)

(0x34, 0x12)

julia> reinterpret(UInt16, (0x34, 0x12))

0x1234

julia> reinterpret(Tuple{UInt16, UInt8}, (0x01, 0x0203))

(0x0301, 0x02)

Warning

Use caution if some combinations of bits in Out are not considered valid and would otherwise

be prevented by the type's constructors and methods. Unexpected behavior may result

without additional validation.

source

reinterpret(T::DataType, A::AbstractArray)

Construct a view of the array with the same binary data as the given array, but with T as element type.

This function also works on "lazy" array whose elements are not computed until they are explic-

itly retrieved. For instance, reinterpret on the range 1:6 works similarly as on the dense vector

collect(1:6):

julia> reinterpret(Float32, UInt32[1 2 3 4 5])

1×5 reinterpret(Float32, ::Matrix{UInt32}):

1.0f-45 3.0f-45 4.0f-45 6.0f-45 7.0f-45

julia> reinterpret(Complex{Int}, 1:6)

3-element reinterpret(Complex{Int64}, ::UnitRange{Int64}):

1 + 2im

3 + 4im

5 + 6im

source

reinterpret(reshape, T, A::AbstractArray{S}) -> B

Change the type-interpretation of A while consuming or adding a "channel dimension."

If sizeof(T) = n*sizeof(S) for n>1, A's first dimension must be of size n and B lacks A's first dimen-

sion. Conversely, if sizeof(S) = n*sizeof(T) for n>1, B gets a new first dimension of size n. The

dimensionality is unchanged if sizeof(T) == sizeof(S).

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/essentials.jl#L550-L578
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reinterpretarray.jl#L29-L49

CHAPTER 46. ARRAYS 898

Julia 1.6

This method requires at least Julia 1.6.

Examples

julia> A = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> reinterpret(reshape, Complex{Int}, A) # the result is a vector

2-element reinterpret(reshape, Complex{Int64}, ::Matrix{Int64}) with eltype Complex{Int64}:

1 + 3im

2 + 4im

julia> a = [(1,2,3), (4,5,6)]

2-element Vector{Tuple{Int64, Int64, Int64}}:

(1, 2, 3)

(4, 5, 6)

julia> reinterpret(reshape, Int, a) # the result is a matrix

3×2 reinterpret(reshape, Int64, ::Vector{Tuple{Int64, Int64, Int64}}) with eltype Int64:

1 4

2 5

3 6

source

Base.reshape – Function.

reshape(A, dims...) -> AbstractArray

reshape(A, dims) -> AbstractArray

Return an array with the same data as A, but with different dimension sizes or number of dimensions.

The two arrays share the same underlying data, so that the result is mutable if and only if A is mutable,

and setting elements of one alters the values of the other.

The new dimensions may be specified either as a list of arguments or as a shape tuple. At most one

dimension may be specified with a :, in which case its length is computed such that its product with

all the specified dimensions is equal to the length of the original array A. The total number of elements

must not change.

Examples

julia> A = Vector(1:16)

16-element Vector{Int64}:

1

2

3

4

5

6

7

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reinterpretarray.jl#L120-L156

CHAPTER 46. ARRAYS 899

8

9

10

11

12

13

14

15

16

julia> reshape(A, (4, 4))

4×4 Matrix{Int64}:

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

julia> reshape(A, 2, :)

2×8 Matrix{Int64}:

1 3 5 7 9 11 13 15

2 4 6 8 10 12 14 16

julia> reshape(1:6, 2, 3)

2×3 reshape(::UnitRange{Int64}, 2, 3) with eltype Int64:

1 3 5

2 4 6

source

Base.dropdims – Function.

dropdims(A; dims)

Return an array with the same data as A, but with the dimensions specified by dims removed. size(A,d)

must equal 1 for every d in dims, and repeated dimensions or numbers outside 1:ndims(A) are forbid-

den.

The result shares the same underlying data as A, such that the result is mutable if and only if A is

mutable, and setting elements of one alters the values of the other.

See also: reshape, vec.

Examples

julia> a = reshape(Vector(1:4),(2,2,1,1))

2×2×1×1 Array{Int64, 4}:

[:, :, 1, 1] =

1 3

2 4

julia> b = dropdims(a; dims=3)

2×2×1 Array{Int64, 3}:

[:, :, 1] =

1 3

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/reshapedarray.jl#L54-L107

CHAPTER 46. ARRAYS 900

2 4

julia> b[1,1,1] = 5; a

2×2×1×1 Array{Int64, 4}:

[:, :, 1, 1] =

5 3

2 4

source

Base.vec – Function.

vec(a::AbstractArray) -> AbstractVector

Reshape the array a as a one-dimensional column vector. Return a if it is already an AbstractVector.

The resulting array shares the same underlying data as a, so it will only be mutable if a is mutable, in

which case modifying one will also modify the other.

Examples

julia> a = [1 2 3; 4 5 6]

2×3 Matrix{Int64}:

1 2 3

4 5 6

julia> vec(a)

6-element Vector{Int64}:

1

4

2

5

3

6

julia> vec(1:3)

1:3

See also reshape, dropdims.

source

Base.SubArray – Type.

SubArray{T,N,P,I,L} <: AbstractArray{T,N}

N-dimensional view into a parent array (of type P) with an element type T, restricted by a tuple of

indices (of type I). L is true for types that support fast linear indexing, and false otherwise.

Construct SubArrays using the view function.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarraymath.jl#L48-L81
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarraymath.jl#L11-L40
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/subarray.jl#L7-L13

CHAPTER 46. ARRAYS 901

46.6 Concatenation and permutation

Base.cat – Function.

cat(A...; dims)

Concatenate the input arrays along the dimensions specified in dims.

Along a dimension d in dims, the size of the output array is sum(size(a,d) for a in A). Along other

dimensions, all input arrays should have the same size, which will also be the size of the output array

along those dimensions.

If dims is a single number, the different arrays are tightly packed along that dimension. If dims is an

iterable containing several dimensions, the positions along these dimensions are increased simulta-

neously for each input array, filling with zero elsewhere. This allows one to construct block-diagonal

matrices as cat(matrices...; dims=(1,2)), and their higher-dimensional analogues.

The special case dims=1 is vcat, and dims=2 is hcat. See also hvcat, hvncat, stack, repeat.

The keyword also accepts Val(dims).

Julia 1.8

For multiple dimensions dims = Val(::Tuple) was added in Julia 1.8.

Examples

julia> cat([1 2; 3 4], [pi, pi], fill(10, 2,3,1); dims=2) # same as hcat

2×6×1 Array{Float64, 3}:

[:, :, 1] =

1.0 2.0 3.14159 10.0 10.0 10.0

3.0 4.0 3.14159 10.0 10.0 10.0

julia> cat(true, trues(2,2), trues(4)', dims=(1,2)) # block-diagonal

4×7 Matrix{Bool}:

1 0 0 0 0 0 0

0 1 1 0 0 0 0

0 1 1 0 0 0 0

0 0 0 1 1 1 1

julia> cat(1, [2], [3;;]; dims=Val(2))

1×3 Matrix{Int64}:

1 2 3

source

Base.vcat – Function.

vcat(A...)

Concatenate arrays or numbers vertically. Equivalent to cat(A...; dims=1), and to the syntax [a;

b; c].

To concatenate a large vector of arrays, reduce(vcat, A) calls an efficientmethodwhen A isa AbstractVector{<:AbstractVecOrMat},

rather than working pairwise.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L1949-L1992

CHAPTER 46. ARRAYS 902

See also hcat, Iterators.flatten, stack.

Examples

julia> v = vcat([1,2], [3,4])

4-element Vector{Int64}:

1

2

3

4

julia> v == vcat(1, 2, [3,4]) # accepts numbers

true

julia> v == [1; 2; [3,4]] # syntax for the same operation

true

julia> summary(ComplexF64[1; 2; [3,4]]) # syntax for supplying the element type

"4-element Vector{ComplexF64}"

julia> vcat(range(1, 2, length=3)) # collects lazy ranges

3-element Vector{Float64}:

1.0

1.5

2.0

julia> two = ([10, 20, 30]', Float64[4 5 6; 7 8 9]) # row vector and a matrix

([10 20 30], [4.0 5.0 6.0; 7.0 8.0 9.0])

julia> vcat(two...)

3×3 Matrix{Float64}:

10.0 20.0 30.0

4.0 5.0 6.0

7.0 8.0 9.0

julia> vs = [[1, 2], [3, 4], [5, 6]];

julia> reduce(vcat, vs) # more efficient than vcat(vs...)

6-element Vector{Int64}:

1

2

3

4

5

6

julia> ans == collect(Iterators.flatten(vs))

true

source

Base.hcat – Function.

hcat(A...)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L1835-L1893

CHAPTER 46. ARRAYS 903

Concatenate arrays or numbers horizontally. Equivalent to cat(A...; dims=2), and to the syntax [a

b c] or [a;; b;; c].

For a large vector of arrays, reduce(hcat, A) calls an efficientmethodwhen A isa AbstractVector{<:AbstractVecOrMat}.

For a vector of vectors, this can also be written stack(A).

See also vcat, hvcat.

Examples

julia> hcat([1,2], [3,4], [5,6])

2×3 Matrix{Int64}:

1 3 5

2 4 6

julia> hcat(1, 2, [30 40], [5, 6, 7]') # accepts numbers

1×7 Matrix{Int64}:

1 2 30 40 5 6 7

julia> ans == [1 2 [30 40] [5, 6, 7]'] # syntax for the same operation

true

julia> Float32[1 2 [30 40] [5, 6, 7]'] # syntax for supplying the eltype

1×7 Matrix{Float32}:

1.0 2.0 30.0 40.0 5.0 6.0 7.0

julia> ms = [zeros(2,2), [1 2; 3 4], [50 60; 70 80]];

julia> reduce(hcat, ms) # more efficient than hcat(ms...)

2×6 Matrix{Float64}:

0.0 0.0 1.0 2.0 50.0 60.0

0.0 0.0 3.0 4.0 70.0 80.0

julia> stack(ms) |> summary # disagrees on a vector of matrices

"2×2×3 Array{Float64, 3}"

julia> hcat(Int[], Int[], Int[]) # empty vectors, each of size (0,)

0×3 Matrix{Int64}

julia> hcat([1.1, 9.9], Matrix(undef, 2, 0)) # hcat with empty 2×0 Matrix

2×1 Matrix{Any}:

1.1

9.9

source

Base.hvcat – Function.

hvcat(blocks_per_row::Union{Tuple{Vararg{Int}}, Int}, values...)

Horizontal and vertical concatenation in one call. This function is called for blockmatrix syntax. The first

argument specifies the number of arguments to concatenate in each block row. If the first argument

is a single integer n, then all block rows are assumed to have n block columns.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L1895-L1943

CHAPTER 46. ARRAYS 904

julia> a, b, c, d, e, f = 1, 2, 3, 4, 5, 6

(1, 2, 3, 4, 5, 6)

julia> [a b c; d e f]

2×3 Matrix{Int64}:

1 2 3

4 5 6

julia> hvcat((3,3), a,b,c,d,e,f)

2×3 Matrix{Int64}:

1 2 3

4 5 6

julia> [a b; c d; e f]

3×2 Matrix{Int64}:

1 2

3 4

5 6

julia> hvcat((2,2,2), a,b,c,d,e,f)

3×2 Matrix{Int64}:

1 2

3 4

5 6

julia> hvcat((2,2,2), a,b,c,d,e,f) == hvcat(2, a,b,c,d,e,f)

true

source

Base.hvncat – Function.

hvncat(dim::Int, row_first, values...)

hvncat(dims::Tuple{Vararg{Int}}, row_first, values...)

hvncat(shape::Tuple{Vararg{Tuple}}, row_first, values...)

Horizontal, vertical, and n-dimensional concatenation of many values in one call.

This function is called for block matrix syntax. The first argument either specifies the shape of the

concatenation, similar to hvcat, as a tuple of tuples, or the dimensions that specify the key number

of elements along each axis, and is used to determine the output dimensions. The dims form is more

performant, and is used by default when the concatenation operation has the same number of elements

along each axis (e.g., [a b; c d;;; e f ; g h]). The shape form is used when the number of elements along

each axis is unbalanced (e.g., [a b ; c]). Unbalanced syntax needs additional validation overhead.

The dim form is an optimization for concatenation along just one dimension. row_first indicates how

values are ordered. The meaning of the first and second elements of shape are also swapped based

on row_first.

Examples

julia> a, b, c, d, e, f = 1, 2, 3, 4, 5, 6

(1, 2, 3, 4, 5, 6)

julia> [a b c;;; d e f]

1×3×2 Array{Int64, 3}:

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L2030-L2067

CHAPTER 46. ARRAYS 905

[:, :, 1] =

1 2 3

[:, :, 2] =

4 5 6

julia> hvncat((2,1,3), false, a,b,c,d,e,f)

2×1×3 Array{Int64, 3}:

[:, :, 1] =

1

2

[:, :, 2] =

3

4

[:, :, 3] =

5

6

julia> [a b;;; c d;;; e f]

1×2×3 Array{Int64, 3}:

[:, :, 1] =

1 2

[:, :, 2] =

3 4

[:, :, 3] =

5 6

julia> hvncat(((3, 3), (3, 3), (6,)), true, a, b, c, d, e, f)

1×3×2 Array{Int64, 3}:

[:, :, 1] =

1 2 3

[:, :, 2] =

4 5 6

Examples for construction of the arguments

[a b c ; d e f ;;;

g h i ; j k l ;;;

m n o ; p q r ;;;

s t u ; v w x]⇒

dims = (2, 3, 4)

[a b ; c ;;; d ;;;;]

___ _ _

2 1 1 = elements in each row (2, 1, 1)

_______ _

3 1 = elements in each column (3, 1)

4 = elements in each 3d slice (4,)

CHAPTER 46. ARRAYS 906

4 = elements in each 4d slice (4,)⇒

shape = ((2, 1, 1), (3, 1), (4,), (4,)) with `row_first` = true

source

Base.stack – Function.

stack(iter; [dims])

Combine a collection of arrays (or other iterable objects) of equal size into one larger array, by arranging

them along one or more new dimensions.

By default the axes of the elements are placed first, giving size(result) = (size(first(iter))...,

size(iter)...). This has the same order of elements as Iterators.flatten(iter).

With keyword dims::Integer, instead the ith element of iter becomes the slice selectdim(result,

dims, i), so that size(result, dims) == length(iter). In this case stack reverses the action of

eachslice with the same dims.

The various cat functions also combine arrays. However, these all extend the arrays' existing (possibly

trivial) dimensions, rather than placing the arrays along new dimensions. They also accept arrays as

separate arguments, rather than a single collection.

Julia 1.9

This function requires at least Julia 1.9.

Examples

julia> vecs = (1:2, [30, 40], Float32[500, 600]);

julia> mat = stack(vecs)

2×3 Matrix{Float32}:

1.0 30.0 500.0

2.0 40.0 600.0

julia> mat == hcat(vecs...) == reduce(hcat, collect(vecs))

true

julia> vec(mat) == vcat(vecs...) == reduce(vcat, collect(vecs))

true

julia> stack(zip(1:4, 10:99)) # accepts any iterators of iterators

2×4 Matrix{Int64}:

1 2 3 4

10 11 12 13

julia> vec(ans) == collect(Iterators.flatten(zip(1:4, 10:99)))

true

julia> stack(vecs; dims=1) # unlike any cat function, 1st axis of vecs[1] is 2nd axis of

result↪→

3×2 Matrix{Float32}:

1.0 2.0

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L2183-L2267

CHAPTER 46. ARRAYS 907

30.0 40.0

500.0 600.0

julia> x = rand(3,4);

julia> x == stack(eachcol(x)) == stack(eachrow(x), dims=1) # inverse of eachslice

true

Higher-dimensional examples:

julia> A = rand(5, 7, 11);

julia> E = eachslice(A, dims=2); # a vector of matrices

julia> (element = size(first(E)), container = size(E))

(element = (5, 11), container = (7,))

julia> stack(E) |> size

(5, 11, 7)

julia> stack(E) == stack(E; dims=3) == cat(E...; dims=3)

true

julia> A == stack(E; dims=2)

true

julia> M = (fill(10i+j, 2, 3) for i in 1:5, j in 1:7);

julia> (element = size(first(M)), container = size(M))

(element = (2, 3), container = (5, 7))

julia> stack(M) |> size # keeps all dimensions

(2, 3, 5, 7)

julia> stack(M; dims=1) |> size # vec(container) along dims=1

(35, 2, 3)

julia> hvcat(5, M...) |> size # hvcat puts matrices next to each other

(14, 15)

source

stack(f, args...; [dims])

Apply a function to each element of a collection, and stack the result. Or to several collections, zipped

together.

The function should return arrays (or tuples, or other iterators) all of the same size. These become

slices of the result, each separated along dims (if given) or by default along the last dimensions.

See also mapslices, eachcol.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L2676-L2766

CHAPTER 46. ARRAYS 908

julia> stack(c -> (c, c-32), "julia")

2×5 Matrix{Char}:

'j' 'u' 'l' 'i' 'a'

'J' 'U' 'L' 'I' 'A'

julia> stack(eachrow([1 2 3; 4 5 6]), (10, 100); dims=1) do row, n

vcat(row, row .* n, row ./ n)

end

2×9 Matrix{Float64}:

1.0 2.0 3.0 10.0 20.0 30.0 0.1 0.2 0.3

4.0 5.0 6.0 400.0 500.0 600.0 0.04 0.05 0.06

source

Base.vect – Function.

vect(X...)

Create a Vector with element type computed from the promote_typeof of the argument, containing

the argument list.

Examples

julia> a = Base.vect(UInt8(1), 2.5, 1//2)

3-element Vector{Float64}:

1.0

2.5

0.5

source

Base.circshift – Function.

circshift(A, shifts)

Circularly shift, i.e. rotate, the data in an array. The second argument is a tuple or vector giving the

amount to shift in each dimension, or an integer to shift only in the first dimension.

See also: circshift!, circcopy!, bitrotate, <<.

Examples

julia> b = reshape(Vector(1:16), (4,4))

4×4 Matrix{Int64}:

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

julia> circshift(b, (0,2))

4×4 Matrix{Int64}:

9 13 1 5

10 14 2 6

11 15 3 7

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L2769-L2795
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L170-L184

CHAPTER 46. ARRAYS 909

12 16 4 8

julia> circshift(b, (-1,0))

4×4 Matrix{Int64}:

2 6 10 14

3 7 11 15

4 8 12 16

1 5 9 13

julia> a = BitArray([true, true, false, false, true])

5-element BitVector:

1

1

0

0

1

julia> circshift(a, 1)

5-element BitVector:

1

1

1

0

0

julia> circshift(a, -1)

5-element BitVector:

1

0

0

1

1

source

Base.circshift! – Function.

circshift!(dest, src, shifts)

Circularly shift, i.e. rotate, the data in src, storing the result in dest. shifts specifies the amount to

shift in each dimension.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other

argument.

See also circshift.

source

Base.circcopy! – Function.

circcopy!(dest, src)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarraymath.jl#L264-L320
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/multidimensional.jl#L1176-L1185

CHAPTER 46. ARRAYS 910

Copy src to dest, indexing each dimension modulo its length. src and dest must have the same

size, but can be offset in their indices; any offset results in a (circular) wraparound. If the arrays have

overlapping indices, then on the domain of the overlap dest agrees with src.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other

argument.

See also: circshift.

Examples

julia> src = reshape(Vector(1:16), (4,4))

4×4 Array{Int64,2}:

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

julia> dest = OffsetArray{Int}(undef, (0:3,2:5))

julia> circcopy!(dest, src)

OffsetArrays.OffsetArray{Int64,2,Array{Int64,2}} with indices 0:3×2:5:

8 12 16 4

5 9 13 1

6 10 14 2

7 11 15 3

julia> dest[1:3,2:4] == src[1:3,2:4]

true

source

Base.findall – Method.

findall(A)

Return a vector I of the true indices or keys of A. If there are no such elements of A, return an empty

array. To search for other kinds of values, pass a predicate as the first argument.

Indices or keys are of the same type as those returned by keys(A) and pairs(A).

See also: findfirst, searchsorted.

Examples

julia> A = [true, false, false, true]

4-element Vector{Bool}:

1

0

0

1

julia> findall(A)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/multidimensional.jl#L1231-L1265

CHAPTER 46. ARRAYS 911

2-element Vector{Int64}:

1

4

julia> A = [true false; false true]

2×2 Matrix{Bool}:

1 0

0 1

julia> findall(A)

2-element Vector{CartesianIndex{2}}:

CartesianIndex(1, 1)

CartesianIndex(2, 2)

julia> findall(falses(3))

Int64[]

source

Base.findall – Method.

findall(f::Function, A)

Return a vector I of the indices or keys of A where f(A[I]) returns true. If there are no such elements

of A, return an empty array.

Indices or keys are of the same type as those returned by keys(A) and pairs(A).

Examples

julia> x = [1, 3, 4]

3-element Vector{Int64}:

1

3

4

julia> findall(isodd, x)

2-element Vector{Int64}:

1

2

julia> A = [1 2 0; 3 4 0]

2×3 Matrix{Int64}:

1 2 0

3 4 0

julia> findall(isodd, A)

2-element Vector{CartesianIndex{2}}:

CartesianIndex(1, 1)

CartesianIndex(2, 1)

julia> findall(!iszero, A)

4-element Vector{CartesianIndex{2}}:

CartesianIndex(1, 1)

CartesianIndex(2, 1)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L2449-L2488

CHAPTER 46. ARRAYS 912

CartesianIndex(1, 2)

CartesianIndex(2, 2)

julia> d = Dict(:A => 10, :B => -1, :C => 0)

Dict{Symbol, Int64} with 3 entries:

:A => 10

:B => -1

:C => 0

julia> findall(x -> x >= 0, d)

2-element Vector{Symbol}:

:A

:C

source

Base.findfirst – Method.

findfirst(A)

Return the index or key of the first true value in A. Return nothing if no such value is found. To search

for other kinds of values, pass a predicate as the first argument.

Indices or keys are of the same type as those returned by keys(A) and pairs(A).

See also: findall, findnext, findlast, searchsortedfirst.

Examples

julia> A = [false, false, true, false]

4-element Vector{Bool}:

0

0

1

0

julia> findfirst(A)

3

julia> findfirst(falses(3)) # returns nothing, but not printed in the REPL

julia> A = [false false; true false]

2×2 Matrix{Bool}:

0 0

1 0

julia> findfirst(A)

CartesianIndex(2, 1)

source

Base.findfirst – Method.

findfirst(predicate::Function, A)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L2388-L2438
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L2086-L2120

CHAPTER 46. ARRAYS 913

Return the index or key of the first element of A for which predicate returns true. Return nothing if

there is no such element.

Indices or keys are of the same type as those returned by keys(A) and pairs(A).

Examples

julia> A = [1, 4, 2, 2]

4-element Vector{Int64}:

1

4

2

2

julia> findfirst(iseven, A)

2

julia> findfirst(x -> x>10, A) # returns nothing, but not printed in the REPL

julia> findfirst(isequal(4), A)

2

julia> A = [1 4; 2 2]

2×2 Matrix{Int64}:

1 4

2 2

julia> findfirst(iseven, A)

CartesianIndex(2, 1)

source

Base.findlast – Method.

findlast(A)

Return the index or key of the last true value in A. Return nothing if there is no true value in A.

Indices or keys are of the same type as those returned by keys(A) and pairs(A).

See also: findfirst, findprev, findall.

Examples

julia> A = [true, false, true, false]

4-element Vector{Bool}:

1

0

1

0

julia> findlast(A)

3

julia> A = falses(2,2);

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L2163-L2197

CHAPTER 46. ARRAYS 914

julia> findlast(A) # returns nothing, but not printed in the REPL

julia> A = [true false; true false]

2×2 Matrix{Bool}:

1 0

1 0

julia> findlast(A)

CartesianIndex(2, 1)

source

Base.findlast – Method.

findlast(predicate::Function, A)

Return the index or key of the last element of A for which predicate returns true. Return nothing if

there is no such element.

Indices or keys are of the same type as those returned by keys(A) and pairs(A).

Examples

julia> A = [1, 2, 3, 4]

4-element Vector{Int64}:

1

2

3

4

julia> findlast(isodd, A)

3

julia> findlast(x -> x > 5, A) # returns nothing, but not printed in the REPL

julia> A = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> findlast(isodd, A)

CartesianIndex(2, 1)

source

Base.findnext – Method.

findnext(A, i)

Find the next index after or including i of a true element of A, or nothing if not found.

Indices are of the same type as those returned by keys(A) and pairs(A).

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L2259-L2294
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L2345-L2376

CHAPTER 46. ARRAYS 915

julia> A = [false, false, true, false]

4-element Vector{Bool}:

0

0

1

0

julia> findnext(A, 1)

3

julia> findnext(A, 4) # returns nothing, but not printed in the REPL

julia> A = [false false; true false]

2×2 Matrix{Bool}:

0 0

1 0

julia> findnext(A, CartesianIndex(1, 1))

CartesianIndex(2, 1)

source

Base.findnext – Method.

findnext(predicate::Function, A, i)

Find the next index after or including i of an element of A for which predicate returns true, or nothing

if not found.

Indices are of the same type as those returned by keys(A) and pairs(A).

Examples

julia> A = [1, 4, 2, 2];

julia> findnext(isodd, A, 1)

1

julia> findnext(isodd, A, 2) # returns nothing, but not printed in the REPL

julia> A = [1 4; 2 2];

julia> findnext(isodd, A, CartesianIndex(1, 1))

CartesianIndex(1, 1)

source

Base.findprev – Method.

findprev(A, i)

Find the previous index before or including i of a true element of A, or nothing if not found.

Indices are of the same type as those returned by keys(A) and pairs(A).

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L2052-L2083
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L2126-L2149

CHAPTER 46. ARRAYS 916

See also: findnext, findfirst, findall.

Examples

julia> A = [false, false, true, true]

4-element Vector{Bool}:

0

0

1

1

julia> findprev(A, 3)

3

julia> findprev(A, 1) # returns nothing, but not printed in the REPL

julia> A = [false false; true true]

2×2 Matrix{Bool}:

0 0

1 1

julia> findprev(A, CartesianIndex(2, 1))

CartesianIndex(2, 1)

source

Base.findprev – Method.

findprev(predicate::Function, A, i)

Find the previous index before or including i of an element of A for which predicate returns true, or

nothing if not found.

Indices are of the same type as those returned by keys(A) and pairs(A).

Examples

julia> A = [4, 6, 1, 2]

4-element Vector{Int64}:

4

6

1

2

julia> findprev(isodd, A, 1) # returns nothing, but not printed in the REPL

julia> findprev(isodd, A, 3)

3

julia> A = [4 6; 1 2]

2×2 Matrix{Int64}:

4 6

1 2

julia> findprev(isodd, A, CartesianIndex(1, 2))

CartesianIndex(2, 1)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L2223-L2256

CHAPTER 46. ARRAYS 917

source

Base.permutedims – Function.

permutedims(A::AbstractArray, perm)

Permute the dimensions of array A. perm is a vector or a tuple of length ndims(A) specifying the per-

mutation.

See also permutedims!, PermutedDimsArray, transpose, invperm.

Examples

julia> A = reshape(Vector(1:8), (2,2,2))

2×2×2 Array{Int64, 3}:

[:, :, 1] =

1 3

2 4

[:, :, 2] =

5 7

6 8

julia> perm = (3, 1, 2); # put the last dimension first

julia> B = permutedims(A, perm)

2×2×2 Array{Int64, 3}:

[:, :, 1] =

1 2

5 6

[:, :, 2] =

3 4

7 8

julia> A == permutedims(B, invperm(perm)) # the inverse permutation

true

For each dimension i of B = permutedims(A, perm), its corresponding dimension of Awill be perm[i].

This means the equality size(B, i) == size(A, perm[i]) holds.

julia> A = randn(5, 7, 11, 13);

julia> perm = [4, 1, 3, 2];

julia> B = permutedims(A, perm);

julia> size(B)

(13, 5, 11, 7)

julia> size(A)[perm] == ans

true

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L2300-L2331
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/permuteddimsarray.jl#L90-L142

CHAPTER 46. ARRAYS 918

permutedims(m::AbstractMatrix)

Permute the dimensions of the matrix m, by flipping the elements across the diagonal of the matrix.

Differs from LinearAlgebra's transpose in that the operation is not recursive.

Examples

julia> a = [1 2; 3 4];

julia> b = [5 6; 7 8];

julia> c = [9 10; 11 12];

julia> d = [13 14; 15 16];

julia> X = [[a] [b]; [c] [d]]

2×2 Matrix{Matrix{Int64}}:

[1 2; 3 4] [5 6; 7 8]

[9 10; 11 12] [13 14; 15 16]

julia> permutedims(X)

2×2 Matrix{Matrix{Int64}}:

[1 2; 3 4] [9 10; 11 12]

[5 6; 7 8] [13 14; 15 16]

julia> transpose(X)

2×2 transpose(::Matrix{Matrix{Int64}}) with eltype Transpose{Int64, Matrix{Int64}}:

[1 3; 2 4] [9 11; 10 12]

[5 7; 6 8] [13 15; 14 16]

source

permutedims(v::AbstractVector)

Reshape vector v into a 1 × length(v) row matrix. Differs from LinearAlgebra's transpose in that

the operation is not recursive.

Examples

julia> permutedims([1, 2, 3, 4])

1×4 Matrix{Int64}:

1 2 3 4

julia> V = [[[1 2; 3 4]]; [[5 6; 7 8]]]

2-element Vector{Matrix{Int64}}:

[1 2; 3 4]

[5 6; 7 8]

julia> permutedims(V)

1×2 Matrix{Matrix{Int64}}:

[1 2; 3 4] [5 6; 7 8]

julia> transpose(V)

1×2 transpose(::Vector{Matrix{Int64}}) with eltype Transpose{Int64, Matrix{Int64}}:

[1 3; 2 4] [5 7; 6 8]

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/permuteddimsarray.jl#L148-L180

CHAPTER 46. ARRAYS 919

source

Base.permutedims! – Function.

permutedims!(dest, src, perm)

Permute the dimensions of array src and store the result in the array dest. perm is a vector speci-

fying a permutation of length ndims(src). The preallocated array dest should have size(dest) ==

size(src)[perm] and is completely overwritten. No in-place permutation is supported and unexpected

results will happen if src and dest have overlapping memory regions.

See also permutedims.

source

Base.PermutedDimsArrays.PermutedDimsArray – Type.

PermutedDimsArray(A, perm) -> B

Given an AbstractArray A, create a view B such that the dimensions appear to be permuted. Similar to

permutedims, except that no copying occurs (B shares storage with A).

See also permutedims, invperm.

Examples

julia> A = rand(3,5,4);

julia> B = PermutedDimsArray(A, (3,1,2));

julia> size(B)

(4, 3, 5)

julia> B[3,1,2] == A[1,2,3]

true

source

Base.promote_shape – Function.

promote_shape(s1, s2)

Check two array shapes for compatibility, allowing trailing singleton dimensions, and return whichever

shape has more dimensions.

Examples

julia> a = fill(1, (3,4,1,1,1));

julia> b = fill(1, (3,4));

julia> promote_shape(a,b)

(Base.OneTo(3), Base.OneTo(4), Base.OneTo(1), Base.OneTo(1), Base.OneTo(1))

julia> promote_shape((2,3,1,4), (2, 3, 1, 4, 1))

(2, 3, 1, 4, 1)

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/permuteddimsarray.jl#L183-L209
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/permuteddimsarray.jl#L212-L222
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/permuteddimsarray.jl#L20-L41
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/indices.jl#L132-L150

CHAPTER 46. ARRAYS 920

46.7 Array functions

Base.accumulate – Function.

accumulate(op, A; dims::Integer, [init])

Cumulative operation op along the dimension dims of A (providing dims is optional for vectors). An

initial value init may optionally be provided by a keyword argument. See also accumulate! to use

a preallocated output array, both for performance and to control the precision of the output (e.g. to

avoid overflow).

For common operations there are specialized variants of accumulate, see cumsum, cumprod. For a lazy

version, see Iterators.accumulate.

Julia 1.5

accumulate on a non-array iterator requires at least Julia 1.5.

Examples

julia> accumulate(+, [1,2,3])

3-element Vector{Int64}:

1

3

6

julia> accumulate(min, (1, -2, 3, -4, 5), init=0)

(0, -2, -2, -4, -4)

julia> accumulate(/, (2, 4, Inf), init=100)

(50.0, 12.5, 0.0)

julia> accumulate(=>, i^2 for i in 1:3)

3-element Vector{Any}:

1

1 => 4

(1 => 4) => 9

julia> accumulate(+, fill(1, 3, 4))

3×4 Matrix{Int64}:

1 4 7 10

2 5 8 11

3 6 9 12

julia> accumulate(+, fill(1, 2, 5), dims=2, init=100.0)

2×5 Matrix{Float64}:

101.0 102.0 103.0 104.0 105.0

101.0 102.0 103.0 104.0 105.0

source

Base.accumulate! – Function.

accumulate!(op, B, A; [dims], [init])

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/accumulate.jl#L231-L277

CHAPTER 46. ARRAYS 921

Cumulative operation op on A along the dimension dims, storing the result in B. Providing dims is

optional for vectors. If the keyword argument init is given, its value is used to instantiate the accu-

mulation.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other

argument.

See also accumulate, cumsum!, cumprod!.

Examples

julia> x = [1, 0, 2, 0, 3];

julia> y = rand(5);

julia> accumulate!(+, y, x);

julia> y

5-element Vector{Float64}:

1.0

1.0

3.0

3.0

6.0

julia> A = [1 2 3; 4 5 6];

julia> B = similar(A);

julia> accumulate!(-, B, A, dims=1)

2×3 Matrix{Int64}:

1 2 3

-3 -3 -3

julia> accumulate!(*, B, A, dims=2, init=10)

2×3 Matrix{Int64}:

10 20 60

40 200 1200

source

Base.cumprod – Function.

cumprod(A; dims::Integer)

Cumulative product along the dimension dim. See also cumprod! to use a preallocated output array,

both for performance and to control the precision of the output (e.g. to avoid overflow).

Examples

julia> a = Int8[1 2 3; 4 5 6];

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/accumulate.jl#L303-L344

CHAPTER 46. ARRAYS 922

julia> cumprod(a, dims=1)

2×3 Matrix{Int64}:

1 2 3

4 10 18

julia> cumprod(a, dims=2)

2×3 Matrix{Int64}:

1 2 6

4 20 120

source

cumprod(itr)

Cumulative product of an iterator.

See also cumprod!, accumulate, cumsum.

Julia 1.5

cumprod on a non-array iterator requires at least Julia 1.5.

Examples

julia> cumprod(fill(1//2, 3))

3-element Vector{Rational{Int64}}:

1//2

1//4

1//8

julia> cumprod((1, 2, 1, 3, 1))

(1, 2, 2, 6, 6)

julia> cumprod("julia")

5-element Vector{String}:

"j"

"ju"

"jul"

"juli"

"julia"

source

Base.cumprod! – Function.

cumprod!(B, A; dims::Integer)

Cumulative product of A along the dimension dims, storing the result in B. See also cumprod.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other

argument.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/accumulate.jl#L171-L192
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/accumulate.jl#L197-L226
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/accumulate.jl#L150-L157

CHAPTER 46. ARRAYS 923

cumprod!(y::AbstractVector, x::AbstractVector)

Cumulative product of a vector x, storing the result in y. See also cumprod.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other

argument.

source

Base.cumsum – Function.

cumsum(A; dims::Integer)

Cumulative sum along the dimension dims. See also cumsum! to use a preallocated output array, both

for performance and to control the precision of the output (e.g. to avoid overflow).

Examples

julia> a = [1 2 3; 4 5 6]

2×3 Matrix{Int64}:

1 2 3

4 5 6

julia> cumsum(a, dims=1)

2×3 Matrix{Int64}:

1 2 3

5 7 9

julia> cumsum(a, dims=2)

2×3 Matrix{Int64}:

1 3 6

4 9 15

Note

The return array's eltype is Int for signed integers of less than system word size and UInt

for unsigned integers of less than system word size. To preserve eltype of arrays with small

signed or unsigned integer accumulate(+, A) should be used.

julia> cumsum(Int8[100, 28])

2-element Vector{Int64}:

100

128

julia> accumulate(+,Int8[100, 28])

2-element Vector{Int8}:

100

-128

In the former case, the integers are widened to system word size and therefore the result

is Int64[100, 128]. In the latter case, no such widening happens and integer overflow

results in Int8[100, -128].

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/accumulate.jl#L161-L168
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/accumulate.jl#L66-L112

CHAPTER 46. ARRAYS 924

cumsum(itr)

Cumulative sum of an iterator.

See also accumulate to apply functions other than +.

Julia 1.5

cumsum on a non-array iterator requires at least Julia 1.5.

Examples

julia> cumsum(1:3)

3-element Vector{Int64}:

1

3

6

julia> cumsum((true, false, true, false, true))

(1, 1, 2, 2, 3)

julia> cumsum(fill(1, 2) for i in 1:3)

3-element Vector{Vector{Int64}}:

[1, 1]

[2, 2]

[3, 3]

source

Base.cumsum! – Function.

cumsum!(B, A; dims::Integer)

Cumulative sum of A along the dimension dims, storing the result in B. See also cumsum.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other

argument.

source

Base.diff – Function.

diff(A::AbstractVector)

diff(A::AbstractArray; dims::Integer)

Finite difference operator on a vector or a multidimensional array A. In the latter case the dimension

to operate on needs to be specified with the dims keyword argument.

Julia 1.1

diff for arrays with dimension higher than 2 requires at least Julia 1.1.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/accumulate.jl#L118-L145
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/accumulate.jl#L41-L47

CHAPTER 46. ARRAYS 925

julia> a = [2 4; 6 16]

2×2 Matrix{Int64}:

2 4

6 16

julia> diff(a, dims=2)

2×1 Matrix{Int64}:

2

10

julia> diff(vec(a))

3-element Vector{Int64}:

4

-2

12

source

Base.repeat – Function.

repeat(A::AbstractArray, counts::Integer...)

Construct an array by repeating array A a given number of times in each dimension, specified by

counts.

See also: fill, Iterators.repeated, Iterators.cycle.

Examples

julia> repeat([1, 2, 3], 2)

6-element Vector{Int64}:

1

2

3

1

2

3

julia> repeat([1, 2, 3], 2, 3)

6×3 Matrix{Int64}:

1 1 1

2 2 2

3 3 3

1 1 1

2 2 2

3 3 3

source

repeat(A::AbstractArray; inner=ntuple(Returns(1), ndims(A)), outer=ntuple(Returns(1), ndims(A

)))

Construct an array by repeating the entries of A. The i-th element of inner specifies the number of

times that the individual entries of the i-th dimension of A should be repeated. The i-th element of

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/multidimensional.jl#L981-L1010
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarraymath.jl#L327-L354

CHAPTER 46. ARRAYS 926

outer specifies the number of times that a slice along the i-th dimension of A should be repeated. If

inner or outer are omitted, no repetition is performed.

Examples

julia> repeat(1:2, inner=2)

4-element Vector{Int64}:

1

1

2

2

julia> repeat(1:2, outer=2)

4-element Vector{Int64}:

1

2

1

2

julia> repeat([1 2; 3 4], inner=(2, 1), outer=(1, 3))

4×6 Matrix{Int64}:

1 2 1 2 1 2

1 2 1 2 1 2

3 4 3 4 3 4

3 4 3 4 3 4

source

repeat(s::AbstractString, r::Integer)

Repeat a string r times. This can be written as s^r.

See also ^.

Examples

julia> repeat("ha", 3)

"hahaha"

source

repeat(c::AbstractChar, r::Integer) -> String

Repeat a character r times. This can equivalently be accomplished by calling c^r.

Examples

julia> repeat('A', 3)

"AAA"

source

Base.rot180 – Function.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarraymath.jl#L359-L391
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/basic.jl#L737-L749
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/string.jl#L528-L539

CHAPTER 46. ARRAYS 927

rot180(A)

Rotate matrix A 180 degrees.

Examples

julia> a = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> rot180(a)

2×2 Matrix{Int64}:

4 3

2 1

source

rot180(A, k)

Rotate matrix A 180 degrees an integer k number of times. If k is even, this is equivalent to a copy.

Examples

julia> a = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> rot180(a,1)

2×2 Matrix{Int64}:

4 3

2 1

julia> rot180(a,2)

2×2 Matrix{Int64}:

1 2

3 4

source

Base.rotl90 – Function.

rotl90(A)

Rotate matrix A left 90 degrees.

Examples

julia> a = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/arraymath.jl#L158-L175
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/arraymath.jl#L260-L283

CHAPTER 46. ARRAYS 928

julia> rotl90(a)

2×2 Matrix{Int64}:

2 4

1 3

source

rotl90(A, k)

Left-rotate matrix A 90 degrees counterclockwise an integer k number of times. If k is a multiple of

four (including zero), this is equivalent to a copy.

Examples

julia> a = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> rotl90(a,1)

2×2 Matrix{Int64}:

2 4

1 3

julia> rotl90(a,2)

2×2 Matrix{Int64}:

4 3

2 1

julia> rotl90(a,3)

2×2 Matrix{Int64}:

3 1

4 2

julia> rotl90(a,4)

2×2 Matrix{Int64}:

1 2

3 4

source

Base.rotr90 – Function.

rotr90(A)

Rotate matrix A right 90 degrees.

Examples

julia> a = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/arraymath.jl#L103-L120
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/arraymath.jl#L185-L218

CHAPTER 46. ARRAYS 929

julia> rotr90(a)

2×2 Matrix{Int64}:

3 1

4 2

source

rotr90(A, k)

Right-rotate matrix A 90 degrees clockwise an integer k number of times. If k is a multiple of four

(including zero), this is equivalent to a copy.

Examples

julia> a = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> rotr90(a,1)

2×2 Matrix{Int64}:

3 1

4 2

julia> rotr90(a,2)

2×2 Matrix{Int64}:

4 3

2 1

julia> rotr90(a,3)

2×2 Matrix{Int64}:

2 4

1 3

julia> rotr90(a,4)

2×2 Matrix{Int64}:

1 2

3 4

source

Base.mapslices – Function.

mapslices(f, A; dims)

Transform the given dimensions of array A by applying a function f on each slice of the form A[...,

:, ..., :, ...], with a colon at each d in dims. The results are concatenated along the remaining

dimensions.

For example, if dims = [1,2] and A is 4-dimensional, then f is called on x = A[:,:,i,j] for all i and

j, and f(x) becomes R[:,:,i,j] in the result R.

See also eachcol or eachslice, used with map or stack.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/arraymath.jl#L131-L148
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/arraymath.jl#L225-L258

CHAPTER 46. ARRAYS 930

julia> A = reshape(1:30,(2,5,3))

2×5×3 reshape(::UnitRange{Int64}, 2, 5, 3) with eltype Int64:

[:, :, 1] =

1 3 5 7 9

2 4 6 8 10

[:, :, 2] =

11 13 15 17 19

12 14 16 18 20

[:, :, 3] =

21 23 25 27 29

22 24 26 28 30

julia> f(x::Matrix) = fill(x[1,1], 1,4); # returns a 1×4 matrix

julia> B = mapslices(f, A, dims=(1,2))

1×4×3 Array{Int64, 3}:

[:, :, 1] =

1 1 1 1

[:, :, 2] =

11 11 11 11

[:, :, 3] =

21 21 21 21

julia> f2(x::AbstractMatrix) = fill(x[1,1], 1,4);

julia> B == stack(f2, eachslice(A, dims=3))

true

julia> g(x) = x[begin] // x[end-1]; # returns a number

julia> mapslices(g, A, dims=[1,3])

1×5×1 Array{Rational{Int64}, 3}:

[:, :, 1] =

1//21 3//23 1//5 7//27 9//29

julia> map(g, eachslice(A, dims=2))

5-element Vector{Rational{Int64}}:

1//21

3//23

1//5

7//27

9//29

julia> mapslices(sum, A; dims=(1,3)) == sum(A; dims=(1,3))

true

Notice that in eachslice(A; dims=2), the specified dimension is the one without a colon in the slice.

This is view(A,:,i,:), whereas mapslices(f, A; dims=(1,3)) uses A[:,i,:]. The function f may

mutate values in the slice without affecting A.

CHAPTER 46. ARRAYS 931

source

Base.eachrow – Function.

eachrow(A::AbstractVecOrMat) <: AbstractVector

Create a RowSlices object that is a vector of rows of matrix or vector A. Row slices are returned as

AbstractVector views of A.

For the inverse, see stack(rows; dims=1).

See also eachcol, eachslice and mapslices.

Julia 1.1

This function requires at least Julia 1.1.

Julia 1.9

Prior to Julia 1.9, this returned an iterator.

Example

julia> a = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> s = eachrow(a)

2-element RowSlices{Matrix{Int64}, Tuple{Base.OneTo{Int64}}, SubArray{Int64, 1,

Matrix{Int64}, Tuple{Int64, Base.Slice{Base.OneTo{Int64}}}, true}}:↪→

[1, 2]

[3, 4]

julia> s[1]

2-element view(::Matrix{Int64}, 1, :) with eltype Int64:

1

2

source

Base.eachcol – Function.

eachcol(A::AbstractVecOrMat) <: AbstractVector

Create a ColumnSlices object that is a vector of columns of matrix or vector A. Column slices are

returned as AbstractVector views of A.

For the inverse, see stack(cols) or reduce(hcat, cols).

See also eachrow, eachslice and mapslices.

Julia 1.1

This function requires at least Julia 1.1.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L3105-L3174
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/slicearray.jl#L131-L165

CHAPTER 46. ARRAYS 932

Julia 1.9

Prior to Julia 1.9, this returned an iterator.

Example

julia> a = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> s = eachcol(a)

2-element ColumnSlices{Matrix{Int64}, Tuple{Base.OneTo{Int64}}, SubArray{Int64, 1,

Matrix{Int64}, Tuple{Base.Slice{Base.OneTo{Int64}}, Int64}, true}}:↪→

[1, 3]

[2, 4]

julia> s[1]

2-element view(::Matrix{Int64}, :, 1) with eltype Int64:

1

3

source

Base.eachslice – Function.

eachslice(A::AbstractArray; dims, drop=true)

Create a Slices object that is an array of slices over dimensions dims of A, returning views that select

all the data from the other dimensions in A. dims can either by an integer or a tuple of integers.

If drop = true (the default), the outer Slices will drop the inner dimensions, and the ordering of the

dimensions will match those in dims. If drop = false, then the Slices will have the same dimension-

ality as the underlying array, with inner dimensions having size 1.

See stack(slices; dims) for the inverse of eachslice(A; dims::Integer).

See also eachrow, eachcol, mapslices and selectdim.

Julia 1.1

This function requires at least Julia 1.1.

Julia 1.9

Prior to Julia 1.9, this returned an iterator, and only a single dimension dims was supported.

Example

julia> m = [1 2 3; 4 5 6; 7 8 9]

3×3 Matrix{Int64}:

1 2 3

4 5 6

7 8 9

julia> s = eachslice(m, dims=1)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/slicearray.jl#L169-L203

CHAPTER 46. ARRAYS 933

3-element RowSlices{Matrix{Int64}, Tuple{Base.OneTo{Int64}}, SubArray{Int64, 1,

Matrix{Int64}, Tuple{Int64, Base.Slice{Base.OneTo{Int64}}}, true}}:↪→

[1, 2, 3]

[4, 5, 6]

[7, 8, 9]

julia> s[1]

3-element view(::Matrix{Int64}, 1, :) with eltype Int64:

1

2

3

julia> eachslice(m, dims=1, drop=false)

3×1 Slices{Matrix{Int64}, Tuple{Int64, Colon}, Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}},

SubArray{Int64, 1, Matrix{Int64}, Tuple{Int64, Base.Slice{Base.OneTo{Int64}}}, true}, 2}:↪→

[1, 2, 3]

[4, 5, 6]

[7, 8, 9]

source

46.8 Combinatorics

Base.invperm – Function.

invperm(v)

Return the inverse permutation of v. If B = A[v], then A == B[invperm(v)].

See also sortperm, invpermute!, isperm, permutedims.

Examples

julia> p = (2, 3, 1);

julia> invperm(p)

(3, 1, 2)

julia> v = [2; 4; 3; 1];

julia> invperm(v)

4-element Vector{Int64}:

4

1

3

2

julia> A = ['a','b','c','d'];

julia> B = A[v]

4-element Vector{Char}:

'b': ASCII/Unicode U+0062 (category Ll: Letter, lowercase)

'd': ASCII/Unicode U+0064 (category Ll: Letter, lowercase)

'c': ASCII/Unicode U+0063 (category Ll: Letter, lowercase)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/slicearray.jl#L77-L126

CHAPTER 46. ARRAYS 934

'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)

julia> B[invperm(v)]

4-element Vector{Char}:

'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)

'b': ASCII/Unicode U+0062 (category Ll: Letter, lowercase)

'c': ASCII/Unicode U+0063 (category Ll: Letter, lowercase)

'd': ASCII/Unicode U+0064 (category Ll: Letter, lowercase)

source

Base.isperm – Function.

isperm(v) -> Bool

Return true if v is a valid permutation.

Examples

julia> isperm([1; 2])

true

julia> isperm([1; 3])

false

source

Base.permute! – Method.

permute!(v, p)

Permute vector v in-place, according to permutation p. No checking is done to verify that p is a per-

mutation.

To return a new permutation, use v[p]. This is generally faster than permute!(v, p); it is even faster

to write into a pre-allocated output array with u .= @view v[p]. (Even though permute! overwrites

v in-place, it internally requires some allocation to keep track of which elements have been moved.)

Warning

Behavior can be unexpected when any mutated argument shares memory with any other

argument.

See also invpermute!.

Examples

julia> A = [1, 1, 3, 4];

julia> perm = [2, 4, 3, 1];

julia> permute!(A, perm);

julia> A

4-element Vector{Int64}:

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/combinatorics.jl#L247-L287
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/combinatorics.jl#L55-L68

CHAPTER 46. ARRAYS 935

1

4

3

1

source

Base.invpermute! – Function.

invpermute!(v, p)

Like permute!, but the inverse of the given permutation is applied.

Note that if you have a pre-allocated output array (e.g. u = similar(v)), it is quicker to instead

employ u[p] = v. (invpermute! internally allocates a copy of the data.)

Warning

Behavior can be unexpected when any mutated argument shares memory with any other

argument.

Examples

julia> A = [1, 1, 3, 4];

julia> perm = [2, 4, 3, 1];

julia> invpermute!(A, perm);

julia> A

4-element Vector{Int64}:

4

1

3

1

source

Base.reverse – Method.

reverse(A; dims=:)

Reverse A along dimension dims, which can be an integer (a single dimension), a tuple of integers

(a tuple of dimensions) or : (reverse along all the dimensions, the default). See also reverse! for

in-place reversal.

Examples

julia> b = Int64[1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> reverse(b, dims=2)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/combinatorics.jl#L161-L191
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/combinatorics.jl#L218-L244

CHAPTER 46. ARRAYS 936

2×2 Matrix{Int64}:

2 1

4 3

julia> reverse(b)

2×2 Matrix{Int64}:

4 3

2 1

Julia 1.6

Prior to Julia 1.6, only single-integer dims are supported in reverse.

source

Base.reverseind – Function.

reverseind(v, i)

Given an index i in reverse(v), return the corresponding index in v so that v[reverseind(v,i)] ==

reverse(v)[i]. (This can be nontrivial in cases where v contains non-ASCII characters.)

Examples

julia> s = "Julia"

"Julia"

julia> r = reverse(s)

"ailuJ"

julia> for i in eachindex(s)

print(r[reverseind(r, i)])

end

Julia

source

Base.reverse! – Function.

reverse!(v [, start=firstindex(v) [, stop=lastindex(v)]]) -> v

In-place version of reverse.

Examples

julia> A = Vector(1:5)

5-element Vector{Int64}:

1

2

3

4

5

julia> reverse!(A);

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/arraymath.jl#L30-L58
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/basic.jl#L714-L734

CHAPTER 46. ARRAYS 937

julia> A

5-element Vector{Int64}:

5

4

3

2

1

source

reverse!(A; dims=:)

Like reverse, but operates in-place in A.

Julia 1.6

Multidimensional reverse! requires Julia 1.6.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L1971-L1996
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/arraymath.jl#L62-L69

Chapter 47

Tasks

Core.Task – Type.

Task(func)

Create a Task (i.e. coroutine) to execute the given function func (which must be callable with no

arguments). The task exits when this function returns. The task will run in the "world age" from the

parent at construction when scheduled.

Warning

By default tasks will have the sticky bit set to true t.sticky. This models the historic default

for @async. Sticky tasks can only be run on the worker thread they are first scheduled on.

To obtain the behavior of Threads.@spawn set the sticky bit manually to false.

Examples

julia> a() = sum(i for i in 1:1000);

julia> b = Task(a);

In this example, b is a runnable Task that hasn't started yet.

source

Base.@task – Macro.

@task

Wrap an expression in a Task without executing it, and return the Task. This only creates a task, and

does not run it.

Examples

julia> a1() = sum(i for i in 1:1000);

julia> b = @task a1();

julia> istaskstarted(b)

938

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1740-L1761

CHAPTER 47. TASKS 939

false

julia> schedule(b);

julia> yield();

julia> istaskdone(b)

true

source

Base.@async – Macro.

@async

Wrap an expression in a Task and add it to the local machine's scheduler queue.

Values can be interpolated into @async via $, which copies the value directly into the constructed

underlying closure. This allows you to insert the value of a variable, isolating the asynchronous code

from changes to the variable's value in the current task.

Warning

It is strongly encouraged to favor Threads.@spawn over @async always even when no

parallelism is required especially in publicly distributed libraries. This is because a use

of @async disables the migration of the parent task across worker threads in the current

implementation of Julia. Thus, seemingly innocent use of @async in a library function can

have a large impact on the performance of very different parts of user applications.

Julia 1.4

Interpolating values via $ is available as of Julia 1.4.

source

Base.asyncmap – Function.

asyncmap(f, c...; ntasks=0, batch_size=nothing)

Uses multiple concurrent tasks to map f over a collection (or multiple equal length collections). For

multiple collection arguments, f is applied elementwise.

ntasks specifies the number of tasks to run concurrently. Depending on the length of the collections,

if ntasks is unspecified, up to 100 tasks will be used for concurrent mapping.

ntasks can also be specified as a zero-arg function. In this case, the number of tasks to run in parallel

is checked before processing every element and a new task started if the value of ntasks_func is

greater than the current number of tasks.

If batch_size is specified, the collection is processed in batch mode. f must then be a function that

must accept a Vector of argument tuples and must return a vector of results. The input vector will

have a length of batch_size or less.

The following examples highlight execution in different tasks by returning the objectid of the tasks in

which the mapping function is executed.

First, with ntasks undefined, each element is processed in a different task.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/task.jl#L110-L132
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/task.jl#L488-L507

CHAPTER 47. TASKS 940

julia> tskoid() = objectid(current_task());

julia> asyncmap(x->tskoid(), 1:5)

5-element Array{UInt64,1}:

0x6e15e66c75c75853

0x440f8819a1baa682

0x9fb3eeadd0c83985

0xebd3e35fe90d4050

0x29efc93edce2b961

julia> length(unique(asyncmap(x->tskoid(), 1:5)))

5

With ntasks=2 all elements are processed in 2 tasks.

julia> asyncmap(x->tskoid(), 1:5; ntasks=2)

5-element Array{UInt64,1}:

0x027ab1680df7ae94

0xa23d2f80cd7cf157

0x027ab1680df7ae94

0xa23d2f80cd7cf157

0x027ab1680df7ae94

julia> length(unique(asyncmap(x->tskoid(), 1:5; ntasks=2)))

2

With batch_size defined, the mapping function needs to be changed to accept an array of argument

tuples and return an array of results. map is used in the modified mapping function to achieve this.

julia> batch_func(input) = map(x->string("args_tuple: ", x, ", element_val: ", x[1], ", task:

", tskoid()), input)

batch_func (generic function with 1 method)

julia> asyncmap(batch_func, 1:5; ntasks=2, batch_size=2)

5-element Array{String,1}:

"args_tuple: (1,), element_val: 1, task: 9118321258196414413"

"args_tuple: (2,), element_val: 2, task: 4904288162898683522"

"args_tuple: (3,), element_val: 3, task: 9118321258196414413"

"args_tuple: (4,), element_val: 4, task: 4904288162898683522"

"args_tuple: (5,), element_val: 5, task: 9118321258196414413"

source

Base.asyncmap! – Function.

asyncmap!(f, results, c...; ntasks=0, batch_size=nothing)

Like asyncmap, but stores output in results rather than returning a collection.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other

argument.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/asyncmap.jl#L5-L73
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/asyncmap.jl#L392-L399

CHAPTER 47. TASKS 941

Base.current_task – Function.

current_task()

Get the currently running Task.

source

Base.istaskdone – Function.

istaskdone(t::Task) -> Bool

Determine whether a task has exited.

Examples

julia> a2() = sum(i for i in 1:1000);

julia> b = Task(a2);

julia> istaskdone(b)

false

julia> schedule(b);

julia> yield();

julia> istaskdone(b)

true

source

Base.istaskstarted – Function.

istaskstarted(t::Task) -> Bool

Determine whether a task has started executing.

Examples

julia> a3() = sum(i for i in 1:1000);

julia> b = Task(a3);

julia> istaskstarted(b)

false

source

Base.istaskfailed – Function.

istaskfailed(t::Task) -> Bool

Determine whether a task has exited because an exception was thrown.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/task.jl#L138-L142
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/task.jl#L186-L207
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/task.jl#L210-L224

CHAPTER 47. TASKS 942

julia> a4() = error("task failed");

julia> b = Task(a4);

julia> istaskfailed(b)

false

julia> schedule(b);

julia> yield();

julia> istaskfailed(b)

true

Julia 1.3

This function requires at least Julia 1.3.

source

Base.task_local_storage – Method.

task_local_storage(key)

Look up the value of a key in the current task's task-local storage.

source

Base.task_local_storage – Method.

task_local_storage(key, value)

Assign a value to a key in the current task's task-local storage.

source

Base.task_local_storage – Method.

task_local_storage(body, key, value)

Call the function bodywith amodified task-local storage, in which value is assigned to key; the previous

value of key, or lack thereof, is restored afterwards. Useful for emulating dynamic scoping.

source

47.1 Scheduling

Base.yield – Function.

yield()

Switch to the scheduler to allow another scheduled task to run. A task that calls this function is still

runnable, and will be restarted immediately if there are no other runnable tasks.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/task.jl#L227-L251
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/task.jl#L270-L274
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/task.jl#L277-L281
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/task.jl#L284-L290
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/task.jl#L864-L870

CHAPTER 47. TASKS 943

yield(t::Task, arg = nothing)

A fast, unfair-scheduling version of schedule(t, arg); yield() which immediately yields to t before

calling the scheduler.

source

Base.yieldto – Function.

yieldto(t::Task, arg = nothing)

Switch to the given task. The first time a task is switched to, the task's function is called with no

arguments. On subsequent switches, arg is returned from the task's last call to yieldto. This is

a low-level call that only switches tasks, not considering states or scheduling in any way. Its use is

discouraged.

source

Base.sleep – Function.

sleep(seconds)

Block the current task for a specified number of seconds. The minimum sleep time is 1 millisecond or

input of 0.001.

source

Base.schedule – Function.

schedule(t::Task, [val]; error=false)

Add a Task to the scheduler's queue. This causes the task to run constantly when the system is

otherwise idle, unless the task performs a blocking operation such as wait.

If a second argument val is provided, it will be passed to the task (via the return value of yieldto)

when it runs again. If error is true, the value is raised as an exception in the woken task.

Warning

It is incorrect to use schedule on an arbitrary Task that has already been started. See the

API reference for more information.

Examples

julia> a5() = sum(i for i in 1:1000);

julia> b = Task(a5);

julia> istaskstarted(b)

false

julia> schedule(b);

julia> yield();

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/task.jl#L884-L889
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/task.jl#L898-L905
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/asyncevent.jl#L257-L262

CHAPTER 47. TASKS 944

julia> istaskstarted(b)

true

julia> istaskdone(b)

true

source

47.2 Synchronization

Base.errormonitor – Function.

errormonitor(t::Task)

Print an error log to stderr if task t fails.

Examples

julia> Base._wait(errormonitor(Threads.@spawn error("task failed")))

Unhandled Task ERROR: task failed

Stacktrace:

[...]

source

Base.@sync – Macro.

@sync

Wait until all lexically-enclosed uses of @async, @spawn, @spawnat and @distributed are complete. All

exceptions thrown by enclosed async operations are collected and thrown as a CompositeException.

Examples

julia> Threads.nthreads()

4

julia> @sync begin

Threads.@spawn println("Thread-id $(Threads.threadid()), task 1")

Threads.@spawn println("Thread-id $(Threads.threadid()), task 2")

end;

Thread-id 3, task 1

Thread-id 1, task 2

source

Base.wait – Function.

Special note for Threads.Condition:

The caller must be holding the lock that owns a Threads.Condition before calling this method. The

calling task will be blocked until some other task wakes it, usually by calling notify on the same

Threads.Condition object. The lock will be atomically released when blocking (even if it was locked

recursively), and will be reacquired before returning.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/task.jl#L815-L848
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/task.jl#L560-L572
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/task.jl#L455-L474
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/lock.jl#L318-L326

CHAPTER 47. TASKS 945

wait(r::Future)

Wait for a value to become available for the specified Future.

source

wait(r::RemoteChannel, args...)

Wait for a value to become available on the specified RemoteChannel.

source

wait([x])

Block the current task until some event occurs, depending on the type of the argument:

• Channel: Wait for a value to be appended to the channel.

• Condition: Wait for notify on a condition and return the val parameter passed to notify.

Waiting on a condition additionally allows passing first=true which results in the waiter being

put first in line to wake up on notify instead of the usual first-in-first-out behavior.

• Process: Wait for a process or process chain to exit. The exitcode field of a process can be used

to determine success or failure.

• Task: Wait for a Task to finish. If the task fails with an exception, a TaskFailedException (which

wraps the failed task) is thrown.

• RawFD: Wait for changes on a file descriptor (see the FileWatching package).

If no argument is passed, the task blocks for an undefined period. A task can only be restarted by an

explicit call to schedule or yieldto.

Often wait is called within a while loop to ensure a waited-for condition is met before proceeding.

source

wait(c::Channel)

Blocks until the Channel isready.

julia> c = Channel(1);

julia> isready(c)

false

julia> task = Task(() -> wait(c));

julia> schedule(task);

julia> istaskdone(task) # task is blocked because channel is not ready

false

julia> put!(c, 1);

julia> istaskdone(task) # task is now unblocked

true

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/remotecall.jl#L581-L585
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/remotecall.jl#L588-L592
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/condition.jl#L103-L124

CHAPTER 47. TASKS 946

source

Base.fetch – Method.

fetch(t::Task)

Wait for a Task to finish, then return its result value. If the task fails with an exception, a TaskFailedException

(which wraps the failed task) is thrown.

source

Base.fetch – Method.

fetch(x::Any)

Return x.

source

Base.timedwait – Function.

timedwait(testcb, timeout::Real; pollint::Real=0.1)

Waits until testcb() returns true or timeout seconds have passed, whichever is earlier. The test

function is polled every pollint seconds. The minimum value for pollint is 0.001 seconds, that is, 1

millisecond.

Return :ok or :timed_out.

source

Base.Condition – Type.

Condition()

Create an edge-triggered event source that tasks can wait for. Tasks that call wait on a Condition

are suspended and queued. Tasks are woken up when notify is later called on the Condition. Edge

triggering means that only tasks waiting at the time notify is called can be woken up. For level-

triggered notifications, you must keep extra state to keep track of whether a notification has happened.

The Channel and Threads.Event types do this, and can be used for level-triggered events.

This object is NOT thread-safe. See Threads.Condition for a thread-safe version.

source

Base.Threads.Condition – Type.

Threads.Condition([lock])

A thread-safe version of Base.Condition.

To call wait or notify on a Threads.Condition, you must first call lock on it. When wait is called,

the lock is atomically released during blocking, and will be reacquired before wait returns. Therefore

idiomatic use of a Threads.Condition c looks like the following:

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/channels.jl#L551-L574
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/task.jl#L364-L370
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/task.jl#L357-L361
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/asyncevent.jl#L327-L335
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/condition.jl#L173-L184

CHAPTER 47. TASKS 947

lock(c)

try

while !thing_we_are_waiting_for

wait(c)

end

finally

unlock(c)

end

Julia 1.2

This functionality requires at least Julia 1.2.

source

Base.Event – Type.

Event([autoreset=false])

Create a level-triggered event source. Tasks that call wait on an Event are suspended and queued

until notify is called on the Event. After notify is called, the Event remains in a signaled state and

tasks will no longer block when waiting for it, until reset is called.

If autoreset is true, at most one task will be released from wait for each call to notify.

This provides an acquire & release memory ordering on notify/wait.

Julia 1.1

This functionality requires at least Julia 1.1.

Julia 1.8

The autoreset functionality and memory ordering guarantee requires at least Julia 1.8.

source

Base.notify – Function.

notify(condition, val=nothing; all=true, error=false)

Wake up tasks waiting for a condition, passing them val. If all is true (the default), all waiting tasks

are woken, otherwise only one is. If error is true, the passed value is raised as an exception in the

woken tasks.

Return the count of tasks woken up. Return 0 if no tasks are waiting on condition.

source

Base.reset – Method.

reset(::Event)

Reset an Event back into an un-set state. Then any future calls to wait will block until notify is called

again.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/lock.jl#L292-L315
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/lock.jl#L418-L436
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/condition.jl#L139-L147
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/lock.jl#L481-L486

CHAPTER 47. TASKS 948

Base.Semaphore – Type.

Semaphore(sem_size)

Create a counting semaphore that allows at most sem_size acquires to be in use at any time. Each

acquire must be matched with a release.

This provides a acquire & release memory ordering on acquire/release calls.

source

Base.acquire – Function.

acquire(s::Semaphore)

Wait for one of the sem_size permits to be available, blocking until one can be acquired.

source

acquire(f, s::Semaphore)

Execute f after acquiring from Semaphore s, and release on completion or error.

For example, a do-block form that ensures only 2 calls of foo will be active at the same time:

s = Base.Semaphore(2)

@sync for _ in 1:100

Threads.@spawn begin

Base.acquire(s) do

foo()

end

end

end

Julia 1.8

This method requires at least Julia 1.8.

source

Base.release – Function.

release(s::Semaphore)

Return one permit to the pool, possibly allowing another task to acquire it and resume execution.

source

Base.AbstractLock – Type.

AbstractLock

Abstract supertype describing types that implement the synchronization primitives: lock, trylock,

unlock, and islocked.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/lock.jl#L330-L338
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/lock.jl#L346-L351
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/lock.jl#L365-L388
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/lock.jl#L398-L404
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/condition.jl#L11-L17

CHAPTER 47. TASKS 949

Base.lock – Function.

lock(lock)

Acquire the lock when it becomes available. If the lock is already locked by a different task/thread,

wait for it to become available.

Each lock must be matched by an unlock.

source

lock(f::Function, lock)

Acquire the lock, execute f with the lock held, and release the lock when f returns. If the lock is

already locked by a different task/thread, wait for it to become available.

When this function returns, the lock has been released, so the caller should not attempt to unlock it.

Julia 1.7

Using a Channel as the second argument requires Julia 1.7 or later.

source

Base.unlock – Function.

unlock(lock)

Releases ownership of the lock.

If this is a recursive lock which has been acquired before, decrement an internal counter and return

immediately.

source

Base.trylock – Function.

trylock(lock) -> Success (Boolean)

Acquire the lock if it is available, and return true if successful. If the lock is already locked by a different

task/thread, return false.

Each successful trylock must be matched by an unlock.

Function trylock combined with islocked can be used for writing the test-and-test-and-set or expo-

nential backoff algorithms if it is supported by the typeof(lock) (read its documentation).

source

Base.islocked – Function.

islocked(lock) -> Status (Boolean)

Check whether the lock is held by any task/thread. This function alone should not be used for synchro-

nization. However, islocked combined with trylock can be used for writing the test-and-test-and-set

or exponential backoff algorithms if it is supported by the typeof(lock) (read its documentation).

Extended help

For example, an exponential backoff can be implemented as follows if the lock implementation satisfied

the properties documented below.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/lock.jl#L137-L145
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/lock.jl#L213-L225
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/lock.jl#L166-L173
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/lock.jl#L97-L110

CHAPTER 47. TASKS 950

nspins = 0

while true

while islocked(lock)

GC.safepoint()

nspins += 1

nspins > LIMIT && error("timeout")

end

trylock(lock) && break

backoff()

end

Implementation

A lock implementation is advised to define islocked with the following properties and note it in its

docstring.

• islocked(lock) is data-race-free.

• If islocked(lock) returns false, an immediate invocation of trylock(lock) must succeed (re-

turns true) if there is no interference from other tasks.

source

Base.ReentrantLock – Type.

ReentrantLock()

Creates a re-entrant lock for synchronizing Tasks. The same task can acquire the lock as many times

as required (this is what the "Reentrant" part of the name means). Each lock must be matched with

an unlock.

Calling 'lock' will also inhibit running of finalizers on that thread until the corresponding 'unlock'. Use

of the standard lock pattern illustrated below should naturally be supported, but beware of inverting

the try/lock order or missing the try block entirely (e.g. attempting to return with the lock still held):

This provides a acquire/release memory ordering on lock/unlock calls.

lock(l)

try

<atomic work>

finally

unlock(l)

end

If !islocked(lck::ReentrantLock) holds, trylock(lck) succeeds unless there are other tasks at-

tempting to hold the lock "at the same time."

source

47.3 Channels

Base.AbstractChannel – Type.

AbstractChannel{T}

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/lock.jl#L54-L88
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/lock.jl#L6-L32

CHAPTER 47. TASKS 951

Representation of a channel passing objects of type T.

source

Base.Channel – Type.

Channel{T=Any}(size::Int=0)

Constructs a Channel with an internal buffer that can hold a maximum of size objects of type T. put!

calls on a full channel block until an object is removed with take!.

Channel(0) constructs an unbuffered channel. put! blocks until a matching take! is called. And

vice-versa.

Other constructors:

• Channel(): default constructor, equivalent to Channel{Any}(0)

• Channel(Inf): equivalent to Channel{Any}(typemax(Int))

• Channel(sz): equivalent to Channel{Any}(sz)

Julia 1.3

The default constructor Channel() and default size=0 were added in Julia 1.3.

source

Base.Channel – Method.

Channel{T=Any}(func::Function, size=0; taskref=nothing, spawn=false, threadpool=nothing)

Create a new task from func, bind it to a new channel of type T and size size, and schedule the task,

all in a single call. The channel is automatically closed when the task terminates.

func must accept the bound channel as its only argument.

If you need a reference to the created task, pass a Ref{Task} object via the keyword argument taskref.

If spawn=true, the Task created for func may be scheduled on another thread in parallel, equivalent

to creating a task via Threads.@spawn.

If spawn=true and the threadpool argument is not set, it defaults to :default.

If the threadpool argument is set (to :default or :interactive), this implies that spawn=true and

the new Task is spawned to the specified threadpool.

Return a Channel.

Examples

julia> chnl = Channel() do ch

foreach(i -> put!(ch, i), 1:4)

end;

julia> typeof(chnl)

Channel{Any}

julia> for i in chnl

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/channels.jl#L3-L7
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/channels.jl#L13-L31

CHAPTER 47. TASKS 952

@show i

end;

i = 1

i = 2

i = 3

i = 4

Referencing the created task:

julia> taskref = Ref{Task}();

julia> chnl = Channel(taskref=taskref) do ch

println(take!(ch))

end;

julia> istaskdone(taskref[])

false

julia> put!(chnl, "Hello");

Hello

julia> istaskdone(taskref[])

true

Julia 1.3

The spawn= parameter was added in Julia 1.3. This constructor was added in Julia 1.3. In

earlier versions of Julia, Channel used keyword arguments to set size and T, but those

constructors are deprecated.

Julia 1.9

The threadpool= argument was added in Julia 1.9.

julia> chnl = Channel{Char}(1, spawn=true) do ch

for c in "hello world"

put!(ch, c)

end

end

Channel{Char}(1) (2 items available)

julia> String(collect(chnl))

"hello world"

source

Base.put! – Method.

put!(c::Channel, v)

Append an item v to the channel c. Blocks if the channel is full.

For unbuffered channels, blocks until a take! is performed by a different task.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/channels.jl#L61-L139

CHAPTER 47. TASKS 953

Julia 1.1

v now gets converted to the channel's type with convert as put! is called.

source

Base.take! – Method.

take!(c::Channel)

Removes and returns a value from a Channel in order. Blocks until data is available. For unbuffered

channels, blocks until a put! is performed by a different task.

Examples

Buffered channel:

julia> c = Channel(1);

julia> put!(c, 1);

julia> take!(c)

1

Unbuffered channel:

julia> c = Channel(0);

julia> task = Task(() -> put!(c, 1));

julia> schedule(task);

julia> take!(c)

1

source

Base.isready – Method.

isready(c::Channel)

Determines whether a Channel has a value stored in it. Returns immediately, does not block.

For unbuffered channels returns true if there are tasks waiting on a put!.

Examples

Buffered channel:

julia> c = Channel(1);

julia> isready(c)

false

julia> put!(c, 1);

julia> isready(c)

true

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/channels.jl#L328-L338
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/channels.jl#L441-L470

CHAPTER 47. TASKS 954

Unbuffered channel:

julia> c = Channel();

julia> isready(c) # no tasks waiting to put!

false

julia> task = Task(() -> put!(c, 1));

julia> schedule(task); # schedule a put! task

julia> isready(c)

true

source

Base.fetch – Method.

fetch(c::Channel)

Waits for and returns (without removing) the first available item from the Channel. Note: fetch is

unsupported on an unbuffered (0-size) Channel.

Examples

Buffered channel:

julia> c = Channel(3) do ch

foreach(i -> put!(ch, i), 1:3)

end;

julia> fetch(c)

1

julia> collect(c) # item is not removed

3-element Vector{Any}:

1

2

3

source

Base.close – Method.

close(c::Channel[, excp::Exception])

Close a channel. An exception (optionally given by excp), is thrown by:

• put! on a closed channel.

• take! and fetch on an empty, closed channel.

source

Base.bind – Method.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/channels.jl#L500-L538
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/channels.jl#L401-L424
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/channels.jl#L192-L199

CHAPTER 47. TASKS 955

bind(chnl::Channel, task::Task)

Associate the lifetime of chnl with a task. Channel chnl is automatically closed when the task termi-

nates. Any uncaught exception in the task is propagated to all waiters on chnl.

The chnl object can be explicitly closed independent of task termination. Terminating tasks have no

effect on already closed Channel objects.

When a channel is bound to multiple tasks, the first task to terminate will close the channel. When

multiple channels are bound to the same task, termination of the task will close all of the bound chan-

nels.

Examples

julia> c = Channel(0);

julia> task = @async foreach(i->put!(c, i), 1:4);

julia> bind(c,task);

julia> for i in c

@show i

end;

i = 1

i = 2

i = 3

i = 4

julia> isopen(c)

false

julia> c = Channel(0);

julia> task = @async (put!(c, 1); error("foo"));

julia> bind(c, task);

julia> take!(c)

1

julia> put!(c, 1);

ERROR: TaskFailedException

Stacktrace:

[...]

nested task error: foo

[...]

source

47.4 Low-level synchronization using schedule and wait

The easiest correct use of schedule is on a Task that is not started (scheduled) yet. However, it is possible

to use schedule and wait as a very low-level building block for constructing synchronization interfaces. A

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/channels.jl#L221-L272

CHAPTER 47. TASKS 956

crucial pre-condition of calling schedule(task) is that the callermust "own" the task; i.e., it must know that

the call to wait in the given task is happening at the locations known to the code calling schedule(task).

One strategy for ensuring such pre-condition is to use atomics, as demonstrated in the following example:

@enum OWEState begin

OWE_EMPTY

OWE_WAITING

OWE_NOTIFYING

end

mutable struct OneWayEvent

@atomic state::OWEState

task::Task

OneWayEvent() = new(OWE_EMPTY)

end

function Base.notify(ev::OneWayEvent)

state = @atomic ev.state

while state !== OWE_NOTIFYING

Spin until we successfully update the state to OWE_NOTIFYING:

state, ok = @atomicreplace(ev.state, state => OWE_NOTIFYING)

if ok

if state == OWE_WAITING

OWE_WAITING -> OWE_NOTIFYING transition means that the waiter task is

already waiting or about to call `wait`. The notifier task must wake up

the waiter task.

schedule(ev.task)

else

@assert state == OWE_EMPTY

Since we are assuming that there is only one notifier task (for

simplicity), we know that the other possible case here is OWE_EMPTY.

We do not need to do anything because we know that the waiter task has

not called `wait(ev::OneWayEvent)` yet.

end

break

end

end

return

end

function Base.wait(ev::OneWayEvent)

ev.task = current_task()

state, ok = @atomicreplace(ev.state, OWE_EMPTY => OWE_WAITING)

if ok

OWE_EMPTY -> OWE_WAITING transition means that the notifier task is guaranteed to

invoke OWE_WAITING -> OWE_NOTIFYING transition. The waiter task must call

`wait()` immediately. In particular, it MUST NOT invoke any function that may

yield to the scheduler at this point in code.

wait()

else

@assert state == OWE_NOTIFYING

Otherwise, the `state` must have already been moved to OWE_NOTIFYING by the

notifier task.

CHAPTER 47. TASKS 957

end

return

end

ev = OneWayEvent()

@sync begin

@async begin

wait(ev)

println("done")

end

println("notifying...")

notify(ev)

end

output

notifying...

done

OneWayEvent lets one task to wait for another task's notify. It is a limited communication interface since

wait can only be used once from a single task (note the non-atomic assignment of ev.task)

In this example, notify(ev::OneWayEvent) is allowed to call schedule(ev.task) if and only if it modifies

the state from OWE_WAITING to OWE_NOTIFYING. This lets us know that the task executing wait(ev::OneWayEvent)

is now in the ok branch and that there cannot be other tasks that tries to schedule(ev.task) since their

@atomicreplace(ev.state, state => OWE_NOTIFYING) will fail.

Chapter 48

Multi-Threading

Base.Threads.@threads – Macro.

Threads.@threads [schedule] for ... end

Amacro to execute a for loop in parallel. The iteration space is distributed to coarse-grained tasks. This

policy can be specified by the schedule argument. The execution of the loop waits for the evaluation

of all iterations.

See also: @spawn and pmap in Distributed.

Extended help

Semantics

Unless stronger guarantees are specified by the scheduling option, the loop executed by @threads

macro have the following semantics.

The @threads macro executes the loop body in an unspecified order and potentially concurrently. It

does not specify the exact assignments of the tasks and the worker threads. The assignments can

be different for each execution. The loop body code (including any code transitively called from it)

must not make any assumptions about the distribution of iterations to tasks or the worker thread in

which they are executed. The loop body for each iteration must be able to make forward progress

independent of other iterations and be free from data races. As such, invalid synchronizations across

iterations may deadlock while unsynchronized memory accesses may result in undefined behavior.

For example, the above conditions imply that:

• A lock taken in an iteration must be released within the same iteration.

• Communicating between iterations using blocking primitives like Channels is incorrect.

• Write only to locations not shared across iterations (unless a lock or atomic operation is used).

• Unless the :static schedule is used, the value of threadid() may change even within a single

iteration. See Task Migration.

Schedulers

Without the scheduler argument, the exact scheduling is unspecified and varies across Julia releases.

Currently, :dynamic is used when the scheduler is not specified.

958

CHAPTER 48. MULTI-THREADING 959

Julia 1.5

The schedule argument is available as of Julia 1.5.

:dynamic (default)

:dynamic scheduler executes iterations dynamically to available worker threads. Current implemen-

tation assumes that the workload for each iteration is uniform. However, this assumption may be

removed in the future.

This scheduling option is merely a hint to the underlying execution mechanism. However, a few prop-

erties can be expected. The number of Tasks used by :dynamic scheduler is bounded by a small

constant multiple of the number of available worker threads (Threads.threadpoolsize()). Each task

processes contiguous regions of the iteration space. Thus, @threads :dynamic for x in xs; f(x);

end is typically more efficient than @sync for x in xs; @spawn f(x); end if length(xs) is signifi-

cantly larger than the number of the worker threads and the run-time of f(x) is relatively smaller than

the cost of spawning and synchronizing a task (typically less than 10 microseconds).

Julia 1.8

The :dynamic option for the schedule argument is available and the default as of Julia 1.8.

:static

:static scheduler creates one task per thread and divides the iterations equally among them, assign-

ing each task specifically to each thread. In particular, the value of threadid() is guaranteed to be

constant within one iteration. Specifying :static is an error if used from inside another @threads loop

or from a thread other than 1.

Note

:static scheduling exists for supporting transition of code written before Julia 1.3. In newly

written library functions, :static scheduling is discouraged because the functions using

this option cannot be called from arbitrary worker threads.

Example

To illustrate of the different scheduling strategies, consider the following function busywait containing

a non-yielding timed loop that runs for a given number of seconds.

julia> function busywait(seconds)

tstart = time_ns()

while (time_ns() - tstart) / 1e9 < seconds

end

end

julia> @time begin

Threads.@spawn busywait(5)

Threads.@threads :static for i in 1:Threads.threadpoolsize()

busywait(1)

end

end

6.003001 seconds (16.33 k allocations: 899.255 KiB, 0.25% compilation time)

julia> @time begin

CHAPTER 48. MULTI-THREADING 960

Threads.@spawn busywait(5)

Threads.@threads :dynamic for i in 1:Threads.threadpoolsize()

busywait(1)

end

end

2.012056 seconds (16.05 k allocations: 883.919 KiB, 0.66% compilation time)

The :dynamic example takes 2 seconds since one of the non-occupied threads is able to run two of the

1-second iterations to complete the for loop.

source

Base.Threads.foreach – Function.

Threads.foreach(f, channel::Channel;

schedule::Threads.AbstractSchedule=Threads.FairSchedule(),

ntasks=Threads.threadpoolsize())

Similar to foreach(f, channel), but iteration over channel and calls to f are split across ntasks

tasks spawned by Threads.@spawn. This function will wait for all internally spawned tasks to complete

before returning.

If schedule isa FairSchedule, Threads.foreach will attempt to spawn tasks in a manner that en-

ables Julia's scheduler to more freely load-balance work items across threads. This approach generally

has higher per-item overhead, but may perform better than StaticSchedule in concurrence with other

multithreaded workloads.

If schedule isa StaticSchedule, Threads.foreach will spawn tasks in a manner that incurs lower

per-item overhead than FairSchedule, but is less amenable to load-balancing. This approach thus

may be more suitable for fine-grained, uniform workloads, but may perform worse than FairSchedule

in concurrence with other multithreaded workloads.

Examples

julia> n = 20

julia> c = Channel{Int}(ch -> foreach(i -> put!(ch, i), 1:n), 1)

julia> d = Channel{Int}(n) do ch

f = i -> put!(ch, i^2)

Threads.foreach(f, c)

end

julia> collect(d)

collect(d) = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324,

361, 400]↪→

Julia 1.6

This function requires Julia 1.6 or later.

source

Base.Threads.@spawn – Macro.

Threads.@spawn [:default|:interactive] expr

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/threadingconstructs.jl#L230-L336
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/threads_overloads.jl#L3-L40

CHAPTER 48. MULTI-THREADING 961

Create a Task and schedule it to run on any available thread in the specified threadpool (:default

if unspecified). The task is allocated to a thread once one becomes available. To wait for the task to

finish, call wait on the result of this macro, or call fetch to wait and then obtain its return value.

Values can be interpolated into @spawn via $, which copies the value directly into the constructed

underlying closure. This allows you to insert the value of a variable, isolating the asynchronous code

from changes to the variable's value in the current task.

Note

The thread that the task runs on may change if the task yields, therefore threadid() should

not be treated as constant for a task. See Task Migration, and the broader multi-threading

manual for further important caveats. See also the chapter on threadpools.

Julia 1.3

This macro is available as of Julia 1.3.

Julia 1.4

Interpolating values via $ is available as of Julia 1.4.

Julia 1.9

A threadpool may be specified as of Julia 1.9.

Examples

julia> t() = println("Hello from ", Threads.threadid());

julia> tasks = fetch.([Threads.@spawn t() for i in 1:4]);

Hello from 1

Hello from 1

Hello from 3

Hello from 4

source

Base.Threads.threadid – Function.

Threads.threadid() -> Int

Get the ID number of the current thread of execution. The master thread has ID 1.

Examples

julia> Threads.threadid()

1

julia> Threads.@threads for i in 1:4

println(Threads.threadid())

end

4

2

5

4

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/threadingconstructs.jl#L374-L413

CHAPTER 48. MULTI-THREADING 962

Note

The thread that a task runs on may change if the task yields, which is known as Task

Migration. For this reason in most cases it is not safe to use threadid() to index into,

say, a vector of buffer or stateful objects.

source

Base.Threads.maxthreadid – Function.

Threads.maxthreadid() -> Int

Get a lower bound on the number of threads (across all thread pools) available to the Julia process,

with atomic-acquire semantics. The result will always be greater than or equal to threadid() as well

as threadid(task) for any task you were able to observe before calling maxthreadid.

source

Base.Threads.nthreads – Function.

Threads.nthreads(:default | :interactive) -> Int

Get the current number of threads within the specified thread pool. The threads in :interactive have

id numbers 1:nthreads(:interactive), and the threads in :default have id numbers in nthreads(:interactive)

.+ (1:nthreads(:default)).

See also BLAS.get_num_threads and BLAS.set_num_threads in the LinearAlgebra standard library,

and nprocs() in the Distributed standard library and Threads.maxthreadid().

source

Base.Threads.threadpool – Function.

Threads.threadpool(tid = threadid()) -> Symbol

Returns the specified thread's threadpool; either :default, :interactive, or :foreign.

source

Base.Threads.nthreadpools – Function.

Threads.nthreadpools() -> Int

Returns the number of threadpools currently configured.

source

Base.Threads.threadpoolsize – Function.

Threads.threadpoolsize(pool::Symbol = :default) -> Int

Get the number of threads available to the default thread pool (or to the specified thread pool).

See also: BLAS.get_num_threads and BLAS.set_num_threads in the LinearAlgebra standard library,

and nprocs() in the Distributed standard library.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/threadingconstructs.jl#L6-L30
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/threadingconstructs.jl#L34-L41
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/threadingconstructs.jl#L44-L54
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/threadingconstructs.jl#L86-L90
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/threadingconstructs.jl#L96-L100
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/threadingconstructs.jl#L103-L112

CHAPTER 48. MULTI-THREADING 963

Base.Threads.ngcthreads – Function.

Threads.ngcthreads() -> Int

Returns the number of GC threads currently configured. This includes bothmark threads and concurrent

sweep threads.

source

See also Multi-Threading.

48.1 Atomic operations

atomic – Keyword.

Unsafe pointer operations are compatible with loading and storing pointers declared with _Atomic and

std::atomic type in C11 and C++23 respectively. An error may be thrown if there is not support for

atomically loading the Julia type T.

See also: unsafe_load, unsafe_modify!, unsafe_replace!, unsafe_store!, unsafe_swap!

source

Base.@atomic – Macro.

@atomic var

@atomic order ex

Mark var or ex as being performed atomically, if ex is a supported expression. If no order is specified

it defaults to :sequentially_consistent.

@atomic a.b.x = new

@atomic a.b.x += addend

@atomic :release a.b.x = new

@atomic :acquire_release a.b.x += addend

Perform the store operation expressed on the right atomically and return the new value.

With =, this operation translates to a setproperty!(a.b, :x, new) call. With any operator also, this

operation translates to a modifyproperty!(a.b, :x, +, addend)[2] call.

@atomic a.b.x max arg2

@atomic a.b.x + arg2

@atomic max(a.b.x, arg2)

@atomic :acquire_release max(a.b.x, arg2)

@atomic :acquire_release a.b.x + arg2

@atomic :acquire_release a.b.x max arg2

Perform the binary operation expressed on the right atomically. Store the result into the field in the

first argument and return the values (old, new).

This operation translates to a modifyproperty!(a.b, :x, func, arg2) call.

See Per-field atomics section in the manual for more details.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/threadingconstructs.jl#L140-L145
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L3236-L3242

CHAPTER 48. MULTI-THREADING 964

julia> mutable struct Atomic{T}; @atomic x::T; end

julia> a = Atomic(1)

Atomic{Int64}(1)

julia> @atomic a.x # fetch field x of a, with sequential consistency

1

julia> @atomic :sequentially_consistent a.x = 2 # set field x of a, with sequential

consistency↪→

2

julia> @atomic a.x += 1 # increment field x of a, with sequential consistency

3

julia> @atomic a.x + 1 # increment field x of a, with sequential consistency

3 => 4

julia> @atomic a.x # fetch field x of a, with sequential consistency

4

julia> @atomic max(a.x, 10) # change field x of a to the max value, with sequential

consistency↪→

4 => 10

julia> @atomic a.x max 5 # again change field x of a to the max value, with sequential

consistency↪→

10 => 10

Julia 1.7

This functionality requires at least Julia 1.7.

source

Base.@atomicswap – Macro.

@atomicswap a.b.x = new

@atomicswap :sequentially_consistent a.b.x = new

Stores new into a.b.x and returns the old value of a.b.x.

This operation translates to a swapproperty!(a.b, :x, new) call.

See Per-field atomics section in the manual for more details.

Examples

julia> mutable struct Atomic{T}; @atomic x::T; end

julia> a = Atomic(1)

Atomic{Int64}(1)

julia> @atomicswap a.x = 2+2 # replace field x of a with 4, with sequential consistency

1

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/expr.jl#L1042-L1107

CHAPTER 48. MULTI-THREADING 965

julia> @atomic a.x # fetch field x of a, with sequential consistency

4

Julia 1.7

This functionality requires at least Julia 1.7.

source

Base.@atomicreplace – Macro.

@atomicreplace a.b.x expected => desired

@atomicreplace :sequentially_consistent a.b.x expected => desired

@atomicreplace :sequentially_consistent :monotonic a.b.x expected => desired

Perform the conditional replacement expressed by the pair atomically, returning the values (old,

success::Bool). Where success indicates whether the replacement was completed.

This operation translates to a replaceproperty!(a.b, :x, expected, desired) call.

See Per-field atomics section in the manual for more details.

Examples

julia> mutable struct Atomic{T}; @atomic x::T; end

julia> a = Atomic(1)

Atomic{Int64}(1)

julia> @atomicreplace a.x 1 => 2 # replace field x of a with 2 if it was 1, with sequential

consistency↪→

(old = 1, success = true)

julia> @atomic a.x # fetch field x of a, with sequential consistency

2

julia> @atomicreplace a.x 1 => 2 # replace field x of a with 2 if it was 1, with sequential

consistency↪→

(old = 2, success = false)

julia> xchg = 2 => 0; # replace field x of a with 0 if it was 2, with sequential consistency

julia> @atomicreplace a.x xchg

(old = 2, success = true)

julia> @atomic a.x # fetch field x of a, with sequential consistency

0

Julia 1.7

This functionality requires at least Julia 1.7.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/expr.jl#L1166-L1192
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/expr.jl#L1210-L1250

CHAPTER 48. MULTI-THREADING 966

Note

The following APIs are fairly primitive, and will likely be exposed through an unsafe_*-like

wrapper.

Core.Intrinsics.atomic_pointerref(pointer::Ptr{T}, order::Symbol) --> T

Core.Intrinsics.atomic_pointerset(pointer::Ptr{T}, new::T, order::Symbol) --> pointer

Core.Intrinsics.atomic_pointerswap(pointer::Ptr{T}, new::T, order::Symbol) --> old

Core.Intrinsics.atomic_pointermodify(pointer::Ptr{T}, function::(old::T,arg::S)->T, arg::S, order

::Symbol) --> old

Core.Intrinsics.atomic_pointerreplace(pointer::Ptr{T}, expected::Any, new::T, success_order::

Symbol, failure_order::Symbol) --> (old, cmp)

Warning

The following APIs are deprecated, though support for them is likely to remain for several

releases.

Base.Threads.Atomic – Type.

Threads.Atomic{T}

Holds a reference to an object of type T, ensuring that it is only accessed atomically, i.e. in a thread-safe

manner.

Only certain "simple" types can be used atomically, namely the primitive boolean, integer, and float-

point types. These are Bool, Int8...Int128, UInt8...UInt128, and Float16...Float64.

New atomic objects can be created from a non-atomic values; if none is specified, the atomic object is

initialized with zero.

Atomic objects can be accessed using the [] notation:

Examples

julia> x = Threads.Atomic{Int}(3)

Base.Threads.Atomic{Int64}(3)

julia> x[] = 1

1

julia> x[]

1

Atomic operations use an atomic_ prefix, such as atomic_add!, atomic_xchg!, etc.

source

Base.Threads.atomic_cas! – Function.

Threads.atomic_cas!(x::Atomic{T}, cmp::T, newval::T) where T

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/atomics.jl#L45-L74

CHAPTER 48. MULTI-THREADING 967

Atomically compare-and-set x

Atomically compares the value in x with cmp. If equal, write newval to x. Otherwise, leaves x unmodi-

fied. Returns the old value in x. By comparing the returned value to cmp (via ===) one knows whether

x was modified and now holds the new value newval.

For further details, see LLVM's cmpxchg instruction.

This function can be used to implement transactional semantics. Before the transaction, one records

the value in x. After the transaction, the new value is stored only if x has not been modified in the

mean time.

Examples

julia> x = Threads.Atomic{Int}(3)

Base.Threads.Atomic{Int64}(3)

julia> Threads.atomic_cas!(x, 4, 2);

julia> x

Base.Threads.Atomic{Int64}(3)

julia> Threads.atomic_cas!(x, 3, 2);

julia> x

Base.Threads.Atomic{Int64}(2)

source

Base.Threads.atomic_xchg! – Function.

Threads.atomic_xchg!(x::Atomic{T}, newval::T) where T

Atomically exchange the value in x

Atomically exchanges the value in x with newval. Returns the old value.

For further details, see LLVM's atomicrmw xchg instruction.

Examples

julia> x = Threads.Atomic{Int}(3)

Base.Threads.Atomic{Int64}(3)

julia> Threads.atomic_xchg!(x, 2)

3

julia> x[]

2

source

Base.Threads.atomic_add! – Function.

Threads.atomic_add!(x::Atomic{T}, val::T) where T <: ArithmeticTypes

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/atomics.jl#L83-L115
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/atomics.jl#L118-L139

CHAPTER 48. MULTI-THREADING 968

Atomically add val to x

Performs x[] += val atomically. Returns the old value. Not defined for Atomic{Bool}.

For further details, see LLVM's atomicrmw add instruction.

Examples

julia> x = Threads.Atomic{Int}(3)

Base.Threads.Atomic{Int64}(3)

julia> Threads.atomic_add!(x, 2)

3

julia> x[]

5

source

Base.Threads.atomic_sub! – Function.

Threads.atomic_sub!(x::Atomic{T}, val::T) where T <: ArithmeticTypes

Atomically subtract val from x

Performs x[] -= val atomically. Returns the old value. Not defined for Atomic{Bool}.

For further details, see LLVM's atomicrmw sub instruction.

Examples

julia> x = Threads.Atomic{Int}(3)

Base.Threads.Atomic{Int64}(3)

julia> Threads.atomic_sub!(x, 2)

3

julia> x[]

1

source

Base.Threads.atomic_and! – Function.

Threads.atomic_and!(x::Atomic{T}, val::T) where T

Atomically bitwise-and x with val

Performs x[] &= val atomically. Returns the old value.

For further details, see LLVM's atomicrmw and instruction.

Examples

julia> x = Threads.Atomic{Int}(3)

Base.Threads.Atomic{Int64}(3)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/atomics.jl#L142-L163
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/atomics.jl#L166-L187

CHAPTER 48. MULTI-THREADING 969

julia> Threads.atomic_and!(x, 2)

3

julia> x[]

2

source

Base.Threads.atomic_nand! – Function.

Threads.atomic_nand!(x::Atomic{T}, val::T) where T

Atomically bitwise-nand (not-and) x with val

Performs x[] = ~(x[] & val) atomically. Returns the old value.

For further details, see LLVM's atomicrmw nand instruction.

Examples

julia> x = Threads.Atomic{Int}(3)

Base.Threads.Atomic{Int64}(3)

julia> Threads.atomic_nand!(x, 2)

3

julia> x[]

-3

source

Base.Threads.atomic_or! – Function.

Threads.atomic_or!(x::Atomic{T}, val::T) where T

Atomically bitwise-or x with val

Performs x[] |= val atomically. Returns the old value.

For further details, see LLVM's atomicrmw or instruction.

Examples

julia> x = Threads.Atomic{Int}(5)

Base.Threads.Atomic{Int64}(5)

julia> Threads.atomic_or!(x, 7)

5

julia> x[]

7

source

Base.Threads.atomic_xor! – Function.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/atomics.jl#L190-L210
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/atomics.jl#L213-L233
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/atomics.jl#L236-L256

CHAPTER 48. MULTI-THREADING 970

Threads.atomic_xor!(x::Atomic{T}, val::T) where T

Atomically bitwise-xor (exclusive-or) x with val

Performs x[] $= val atomically. Returns the old value.

For further details, see LLVM's atomicrmw xor instruction.

Examples

julia> x = Threads.Atomic{Int}(5)

Base.Threads.Atomic{Int64}(5)

julia> Threads.atomic_xor!(x, 7)

5

julia> x[]

2

source

Base.Threads.atomic_max! – Function.

Threads.atomic_max!(x::Atomic{T}, val::T) where T

Atomically store the maximum of x and val in x

Performs x[] = max(x[], val) atomically. Returns the old value.

For further details, see LLVM's atomicrmw max instruction.

Examples

julia> x = Threads.Atomic{Int}(5)

Base.Threads.Atomic{Int64}(5)

julia> Threads.atomic_max!(x, 7)

5

julia> x[]

7

source

Base.Threads.atomic_min! – Function.

Threads.atomic_min!(x::Atomic{T}, val::T) where T

Atomically store the minimum of x and val in x

Performs x[] = min(x[], val) atomically. Returns the old value.

For further details, see LLVM's atomicrmw min instruction.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/atomics.jl#L259-L279
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/atomics.jl#L282-L302

CHAPTER 48. MULTI-THREADING 971

julia> x = Threads.Atomic{Int}(7)

Base.Threads.Atomic{Int64}(7)

julia> Threads.atomic_min!(x, 5)

7

julia> x[]

5

source

Base.Threads.atomic_fence – Function.

Threads.atomic_fence()

Insert a sequential-consistency memory fence

Inserts a memory fence with sequentially-consistent ordering semantics. There are algorithms where

this is needed, i.e. where an acquire/release ordering is insufficient.

This is likely a very expensive operation. Given that all other atomic operations in Julia already have

acquire/release semantics, explicit fences should not be necessary in most cases.

For further details, see LLVM's fence instruction.

source

48.2 ccall using a libuv threadpool (Experimental)

Base.@threadcall – Macro.

@threadcall((cfunc, clib), rettype, (argtypes...), argvals...)

The @threadcall macro is called in the same way as ccall but does the work in a different thread.

This is useful when you want to call a blocking C function without causing the current julia thread to

become blocked. Concurrency is limited by size of the libuv thread pool, which defaults to 4 threads but

can be increased by setting the UV_THREADPOOL_SIZE environment variable and restarting the julia

process.

Note that the called function should never call back into Julia.

source

48.3 Low-level synchronization primitives

These building blocks are used to create the regular synchronization objects.

Base.Threads.SpinLock – Type.

SpinLock()

Create a non-reentrant, test-and-test-and-set spin lock. Recursive use will result in a deadlock. This

kind of lock should only be used around code that takes little time to execute and does not block (e.g.

perform I/O). In general, ReentrantLock should be used instead.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/atomics.jl#L305-L325
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/atomics.jl#L443-L457
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/threadcall.jl#L7-L18

CHAPTER 48. MULTI-THREADING 972

Each lock must be matched with an unlock. If !islocked(lck::SpinLock) holds, trylock(lck)

succeeds unless there are other tasks attempting to hold the lock "at the same time."

Test-and-test-and-set spin locks are quickest up to about 30ish contending threads. If you have more

contention than that, different synchronization approaches should be considered.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/locks-mt.jl#L14-L30

Chapter 49

Constants

Core.nothing – Constant.

nothing

The singleton instance of type Nothing, used by convention when there is no value to return (as in a

C void function) or when a variable or field holds no value.

See also: isnothing, something, missing.

source

Base.PROGRAM_FILE – Constant.

PROGRAM_FILE

A string containing the script name passed to Julia from the command line. Note that the script name

remains unchanged from within included files. Alternatively see @__FILE__.

source

Base.ARGS – Constant.

ARGS

An array of the command line arguments passed to Julia, as strings.

source

Base.C_NULL – Constant.

C_NULL

The C null pointer constant, sometimes used when calling external code.

source

Base.VERSION – Constant.

VERSION

973

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1496-L1503
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/initdefs.jl#L5-L11
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/initdefs.jl#L14-L18
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/pointer.jl#L13-L17

CHAPTER 49. CONSTANTS 974

A VersionNumber object describing which version of Julia is in use. See also Version Number Literals.

source

Base.DEPOT_PATH – Constant.

DEPOT_PATH

A stack of "depot" locations where the package manager, as well as Julia's code loading mechanisms,

look for package registries, installed packages, named environments, repo clones, cached compiled

package images, and configuration files. By default it includes:

1. ~/.julia where ~ is the user home as appropriate on the system;

2. an architecture-specific shared system directory, e.g. /usr/local/share/julia;

3. an architecture-independent shared system directory, e.g. /usr/share/julia.

So DEPOT_PATH might be:

[joinpath(homedir(), ".julia"), "/usr/local/share/julia", "/usr/share/julia"]

The first entry is the "user depot" and should be writable by and owned by the current user. The

user depot is where: registries are cloned, new package versions are installed, named environments

are created and updated, package repos are cloned, newly compiled package image files are saved,

log files are written, development packages are checked out by default, and global configuration data

is saved. Later entries in the depot path are treated as read-only and are appropriate for registries,

packages, etc. installed and managed by system administrators.

DEPOT_PATH is populated based on the JULIA_DEPOT_PATH environment variable if set.

DEPOT_PATH contents

Each entry in DEPOT_PATH is a path to a directory which contains subdirectories used by Julia for various

purposes. Here is an overview of some of the subdirectories that may exist in a depot:

• artifacts: Contains content that packages use for which Pkg manages the installation of.

• clones: Contains full clones of package repos. Maintained by Pkg.jl and used as a cache.

• config: Contains julia-level configuration such as a startup.jl

• compiled: Contains precompiled *.ji files for packages. Maintained by Julia.

• dev: Default directory for Pkg.develop. Maintained by Pkg.jl and the user.

• environments: Default package environments. For instance the global environment for a specific

julia version. Maintained by Pkg.jl.

• logs: Contains logs of Pkg and REPL operations. Maintained by Pkg.jl and Julia.

• packages: Contains packages, some of which were explicitly installed and some which are implicit

dependencies. Maintained by Pkg.jl.

• registries: Contains package registries. By default only General. Maintained by Pkg.jl.

• scratchspaces: Contains content that a package itself installs via the Scratch.jl package.

Pkg.gc() will delete content that is known to be unused.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/version.jl#L236-L241
https://github.com/JuliaPackaging/Scratch.jl

CHAPTER 49. CONSTANTS 975

Note

Packages that want to store content should use the scratchspaces subdirectory via Scratch.jl

instead of creating new subdirectories in the depot root.

See also JULIA_DEPOT_PATH, and Code Loading.

source

Base.LOAD_PATH – Constant.

LOAD_PATH

An array of paths for using and import statements to consider as project environments or package

directories when loading code. It is populated based on the JULIA_LOAD_PATH environment variable if

set; otherwise it defaults to ["@", "@v#.#", "@stdlib"]. Entries starting with @ have special mean-

ings:

• @ refers to the "current active environment", the initial value of which is initially determined by

the JULIA_PROJECT environment variable or the --project command-line option.

• @stdlib expands to the absolute path of the current Julia installation's standard library directory.

• @name refers to a named environment, which are stored in depots (see JULIA_DEPOT_PATH) under

the environments subdirectory. The user's named environments are stored in ~/.julia/environments

so @name would refer to the environment in ~/.julia/environments/name if it exists and con-

tains a Project.toml file. If name contains # characters, then they are replaced with the major,

minor and patch components of the Julia version number. For example, if you are running Julia

1.2 then @v#.# expands to @v1.2 and will look for an environment by that name, typically at

~/.julia/environments/v1.2.

The fully expanded value of LOAD_PATH that is searched for projects and packages can be seen by

calling the Base.load_path() function.

See also JULIA_LOAD_PATH, JULIA_PROJECT, JULIA_DEPOT_PATH, and Code Loading.

source

Base.Sys.BINDIR – Constant.

Sys.BINDIR::String

A string containing the full path to the directory containing the julia executable.

source

Base.Sys.CPU_THREADS – Constant.

Sys.CPU_THREADS::Int

The number of logical CPU cores available in the system, i.e. the number of threads that the CPU

can run concurrently. Note that this is not necessarily the number of CPU cores, for example, in the

presence of hyper-threading.

See Hwloc.jl or CpuId.jl for extended information, including number of physical cores.

source

https://github.com/JuliaPackaging/Scratch.jl
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/initdefs.jl#L44-L94
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/initdefs.jl#L144-L178
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sysinfo.jl#L40-L44
https://en.wikipedia.org/wiki/Hyper-threading
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sysinfo.jl#L59-L68

CHAPTER 49. CONSTANTS 976

Base.Sys.WORD_SIZE – Constant.

Sys.WORD_SIZE::Int

Standard word size on the current machine, in bits.

source

Base.Sys.KERNEL – Constant.

Sys.KERNEL::Symbol

A symbol representing the name of the operating system, as returned by uname of the build configura-

tion.

source

Base.Sys.ARCH – Constant.

Sys.ARCH::Symbol

A symbol representing the architecture of the build configuration.

source

Base.Sys.MACHINE – Constant.

Sys.MACHINE::String

A string containing the build triple.

source

See also:

• stdin

• stdout

• stderr

• ENV

• ENDIAN_BOM

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sysinfo.jl#L93-L97
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sysinfo.jl#L79-L83
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sysinfo.jl#L71-L75
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sysinfo.jl#L86-L90

Chapter 50

Filesystem

Base.Filesystem.pwd – Function.

pwd() -> String

Get the current working directory.

See also: cd, tempdir.

Examples

julia> pwd()

"/home/JuliaUser"

julia> cd("/home/JuliaUser/Projects/julia")

julia> pwd()

"/home/JuliaUser/Projects/julia"

source

Base.Filesystem.cd – Method.

cd(dir::AbstractString=homedir())

Set the current working directory.

See also: pwd, mkdir, mkpath, mktempdir.

Examples

julia> cd("/home/JuliaUser/Projects/julia")

julia> pwd()

"/home/JuliaUser/Projects/julia"

julia> cd()

julia> pwd()

"/home/JuliaUser"

977

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/file.jl#L34-L51

CHAPTER 50. FILESYSTEM 978

source

Base.Filesystem.cd – Method.

cd(f::Function, dir::AbstractString=homedir())

Temporarily change the current working directory to dir, apply function f and finally return to the

original directory.

Examples

julia> pwd()

"/home/JuliaUser"

julia> cd(readdir, "/home/JuliaUser/Projects/julia")

34-element Array{String,1}:

".circleci"

".freebsdci.sh"

".git"

".gitattributes"

".github"

"test"

"ui"

"usr"

"usr-staging"

julia> pwd()

"/home/JuliaUser"

source

Base.Filesystem.readdir – Function.

readdir(dir::AbstractString=pwd();

join::Bool = false,

sort::Bool = true,

) -> Vector{String}

Return the names in the directory dir or the current working directory if not given. When join is false,

readdir returns just the names in the directory as is; when join is true, it returns joinpath(dir,

name) for each name so that the returned strings are full paths. If you want to get absolute paths back,

call readdir with an absolute directory path and join set to true.

By default, readdir sorts the list of names it returns. If you want to skip sorting the names and get

them in the order that the file system lists them, you can use readdir(dir, sort=false) to opt out

of sorting.

See also: walkdir.

Julia 1.4

The join and sort keyword arguments require at least Julia 1.4.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/file.jl#L69-L88
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/file.jl#L119-L146

CHAPTER 50. FILESYSTEM 979

julia> cd("/home/JuliaUser/dev/julia")

julia> readdir()

30-element Array{String,1}:

".appveyor.yml"

".git"

".gitattributes"

"ui"

"usr"

"usr-staging"

julia> readdir(join=true)

30-element Array{String,1}:

"/home/JuliaUser/dev/julia/.appveyor.yml"

"/home/JuliaUser/dev/julia/.git"

"/home/JuliaUser/dev/julia/.gitattributes"

"/home/JuliaUser/dev/julia/ui"

"/home/JuliaUser/dev/julia/usr"

"/home/JuliaUser/dev/julia/usr-staging"

julia> readdir("base")

145-element Array{String,1}:

".gitignore"

"Base.jl"

"Enums.jl"

"version_git.sh"

"views.jl"

"weakkeydict.jl"

julia> readdir("base", join=true)

145-element Array{String,1}:

"base/.gitignore"

"base/Base.jl"

"base/Enums.jl"

"base/version_git.sh"

"base/views.jl"

"base/weakkeydict.jl"

julia> readdir(abspath("base"), join=true)

145-element Array{String,1}:

"/home/JuliaUser/dev/julia/base/.gitignore"

"/home/JuliaUser/dev/julia/base/Base.jl"

"/home/JuliaUser/dev/julia/base/Enums.jl"

"/home/JuliaUser/dev/julia/base/version_git.sh"

"/home/JuliaUser/dev/julia/base/views.jl"

"/home/JuliaUser/dev/julia/base/weakkeydict.jl"

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/file.jl#L786-L861

CHAPTER 50. FILESYSTEM 980

Base.Filesystem.walkdir – Function.

walkdir(dir; topdown=true, follow_symlinks=false, onerror=throw)

Return an iterator that walks the directory tree of a directory. The iterator returns a tuple containing

(rootpath, dirs, files). The directory tree can be traversed top-down or bottom-up. If walkdir

or stat encounters a IOError it will rethrow the error by default. A custom error handling function can

be provided through onerror keyword argument. onerror is called with a IOError as argument.

See also: readdir.

Examples

for (root, dirs, files) in walkdir(".")

println("Directories in $root")

for dir in dirs

println(joinpath(root, dir)) # path to directories

end

println("Files in $root")

for file in files

println(joinpath(root, file)) # path to files

end

end

julia> mkpath("my/test/dir");

julia> itr = walkdir("my");

julia> (root, dirs, files) = first(itr)

("my", ["test"], String[])

julia> (root, dirs, files) = first(itr)

("my/test", ["dir"], String[])

julia> (root, dirs, files) = first(itr)

("my/test/dir", String[], String[])

source

Base.Filesystem.mkdir – Function.

mkdir(path::AbstractString; mode::Unsigned = 0o777)

Make a new directory with name path and permissions mode. mode defaults to 0o777, modified by the

current file creation mask. This function never creates more than one directory. If the directory already

exists, or some intermediate directories do not exist, this function throws an error. See mkpath for a

function which creates all required intermediate directories. Return path.

Examples

julia> mkdir("testingdir")

"testingdir"

julia> cd("testingdir")

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/file.jl#L893-L933

CHAPTER 50. FILESYSTEM 981

julia> pwd()

"/home/JuliaUser/testingdir"

source

Base.Filesystem.mkpath – Function.

mkpath(path::AbstractString; mode::Unsigned = 0o777)

Create all intermediate directories in the path as required. Directories are created with the permissions

mode which defaults to 0o777 and is modified by the current file creation mask. Unlike mkdir, mkpath

does not error if path (or parts of it) already exists. However, an error will be thrown if path (or parts

of it) points to an existing file. Return path.

If path includes a filename you will probably want to use mkpath(dirname(path)) to avoid creating a

directory using the filename.

Examples

julia> cd(mktempdir())

julia> mkpath("my/test/dir") # creates three directories

"my/test/dir"

julia> readdir()

1-element Array{String,1}:

"my"

julia> cd("my")

julia> readdir()

1-element Array{String,1}:

"test"

julia> readdir("test")

1-element Array{String,1}:

"dir"

julia> mkpath("intermediate_dir/actually_a_directory.txt") # creates two directories

"intermediate_dir/actually_a_directory.txt"

julia> isdir("intermediate_dir/actually_a_directory.txt")

true

source

Base.Filesystem.hardlink – Function.

hardlink(src::AbstractString, dst::AbstractString)

Creates a hard link to an existing source file src with the name dst. The destination, dst, must not

exist.

See also: symlink.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/file.jl#L156-L176
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/file.jl#L194-L234

CHAPTER 50. FILESYSTEM 982

Julia 1.8

This method was added in Julia 1.8.

source

Base.Filesystem.symlink – Function.

symlink(target::AbstractString, link::AbstractString; dir_target = false)

Creates a symbolic link to target with the name link.

On Windows, symlinks must be explicitly declared as referring to a directory or not. If target already

exists, by default the type of link will be auto- detected, however if target does not exist, this func-

tion defaults to creating a file symlink unless dir_target is set to true. Note that if the user sets

dir_target but target exists and is a file, a directory symlink will still be created, but dereferencing

the symlink will fail, just as if the user creates a file symlink (by calling symlink() with dir_target set

to false before the directory is created) and tries to dereference it to a directory.

Additionally, there are two methods of making a link on Windows; symbolic links and junction points.

Junction points are slightly more efficient, but do not support relative paths, so if a relative directory

symlink is requested (as denoted by isabspath(target) returning false) a symlink will be used, else

a junction point will be used. Best practice for creating symlinks on Windows is to create them only

after the files/directories they reference are already created.

See also: hardlink.

Note

This function raises an error under operating systems that do not support soft symbolic

links, such as Windows XP.

Julia 1.6

The dir_target keyword argument was added in Julia 1.6. Prior to this, symlinks to nonex-

istent paths on windows would always be file symlinks, and relative symlinks to directories

were not supported.

source

Base.Filesystem.readlink – Function.

readlink(path::AbstractString) -> String

Return the target location a symbolic link path points to.

source

Base.Filesystem.chmod – Function.

chmod(path::AbstractString, mode::Integer; recursive::Bool=false)

Change the permissions mode of path to mode. Only integer modes (e.g. 0o777) are currently sup-

ported. If recursive=true and the path is a directory all permissions in that directory will be recursively

changed. Return path.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/file.jl#L1021-L1031
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/file.jl#L1041-L1073
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/file.jl#L1117-L1121

CHAPTER 50. FILESYSTEM 983

Note

Prior to Julia 1.6, this did not correctly manipulate filesystem ACLs on Windows, therefore it

would only set read-only bits on files. It now is able to manipulate ACLs.

source

Base.Filesystem.chown – Function.

chown(path::AbstractString, owner::Integer, group::Integer=-1)

Change the owner and/or group of path to owner and/or group. If the value entered for owner or group

is -1 the corresponding ID will not change. Only integer owners and groups are currently supported.

Return path.

source

Base.Libc.RawFD – Type.

RawFD

Primitive type which wraps the native OS file descriptor. RawFDs can be passed to methods like stat to

discover information about the underlying file, and can also be used to open streams, with the RawFD

describing the OS file backing the stream.

source

Base.stat – Function.

stat(file)

Return a structure whose fields contain information about the file. The fields of the structure are:

Name Description

desc The path or OS file descriptor

size The size (in bytes) of the file

device ID of the device that contains the file

inode The inode number of the file

mode The protection mode of the file

nlink The number of hard links to the file

uid The user id of the owner of the file

gid The group id of the file owner

rdev If this file refers to a device, the ID of the device it refers to

blksize The file-system preferred block size for the file

blocks The number of such blocks allocated

mtime Unix timestamp of when the file was last modified

ctime Unix timestamp of when the file's metadata was changed

source

Base.Filesystem.diskstat – Function.

diskstat(path=pwd())

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/file.jl#L1141-L1153
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/file.jl#L1167-L1173
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libc.jl#L25-L33
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stat.jl#L170-L192

CHAPTER 50. FILESYSTEM 984

Returns statistics in bytes about the disk that contains the file or directory pointed at by path. If no

argument is passed, statistics about the disk that contains the current working directory are returned.

Julia 1.8

This method was added in Julia 1.8.

source

Base.Filesystem.lstat – Function.

lstat(file)

Like stat, but for symbolic links gets the info for the link itself rather than the file it refers to. This

function must be called on a file path rather than a file object or a file descriptor.

source

Base.Filesystem.ctime – Function.

ctime(file)

Equivalent to stat(file).ctime.

source

Base.Filesystem.mtime – Function.

mtime(file)

Equivalent to stat(file).mtime.

source

Base.Filesystem.filemode – Function.

filemode(file)

Equivalent to stat(file).mode.

source

Base.filesize – Function.

filesize(path...)

Equivalent to stat(file).size.

source

Base.Filesystem.uperm – Function.

uperm(file)

Get the permissions of the owner of the file as a bitfield of

For allowed arguments, see stat.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/file.jl#L1214-L1223
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stat.jl#L195-L202
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stat.jl#L289-L293
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stat.jl#L282-L286
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stat.jl#L252-L256
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stat.jl#L275-L279
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stat.jl#L410-L422

CHAPTER 50. FILESYSTEM 985

Value Description

01 Execute Permission

02 Write Permission

04 Read Permission

Base.Filesystem.gperm – Function.

gperm(file)

Like uperm but gets the permissions of the group owning the file.

source

Base.Filesystem.operm – Function.

operm(file)

Like uperm but gets the permissions for people who neither own the file nor are a member of the group

owning the file

source

Base.Filesystem.cp – Function.

cp(src::AbstractString, dst::AbstractString; force::Bool=false, follow_symlinks::Bool=false)

Copy the file, link, or directory from src to dst. force=true will first remove an existing dst.

If follow_symlinks=false, and src is a symbolic link, dst will be created as a symbolic link. If

follow_symlinks=true and src is a symbolic link, dst will be a copy of the file or directory src refers

to. Return dst.

Note

The cp function is different from the cp command. The cp function always operates on

the assumption that dst is a file, while the command does different things depending on

whether dst is a directory or a file. Using force=true when dst is a directory will result in

loss of all the contents present in the dst directory, and dst will become a file that has the

contents of src instead.

source

Base.download – Function.

download(url::AbstractString, [path::AbstractString = tempname()]) -> path

Download a file from the given url, saving it to the location path, or if not specified, a temporary path.

Returns the path of the downloaded file.

Note

Since Julia 1.6, this function is deprecated and is just a thin wrapper around Downloads.download.

In new code, you should use that function directly instead of calling this.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stat.jl#L425-L429
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stat.jl#L432-L437
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/file.jl#L360-L377

CHAPTER 50. FILESYSTEM 986

source

Base.Filesystem.mv – Function.

mv(src::AbstractString, dst::AbstractString; force::Bool=false)

Move the file, link, or directory from src to dst. force=true will first remove an existing dst. Return

dst.

Examples

julia> write("hello.txt", "world");

julia> mv("hello.txt", "goodbye.txt")

"goodbye.txt"

julia> "hello.txt" in readdir()

false

julia> readline("goodbye.txt")

"world"

julia> write("hello.txt", "world2");

julia> mv("hello.txt", "goodbye.txt")

ERROR: ArgumentError: 'goodbye.txt' exists. `force=true` is required to remove 'goodbye.txt'

before moving.↪→

Stacktrace:

[1] #checkfor_mv_cp_cptree#10(::Bool, ::Function, ::String, ::String, ::String) at

./file.jl:293↪→

[...]

julia> mv("hello.txt", "goodbye.txt", force=true)

"goodbye.txt"

julia> rm("goodbye.txt");

source

Base.Filesystem.rm – Function.

rm(path::AbstractString; force::Bool=false, recursive::Bool=false)

Delete the file, link, or empty directory at the given path. If force=true is passed, a non-existing path

is not treated as error. If recursive=true is passed and the path is a directory, then all contents are

removed recursively.

Examples

julia> mkpath("my/test/dir");

julia> rm("my", recursive=true)

julia> rm("this_file_does_not_exist", force=true)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/download.jl#L8-L18
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/file.jl#L391-L425

CHAPTER 50. FILESYSTEM 987

julia> rm("this_file_does_not_exist")

ERROR: IOError: unlink("this_file_does_not_exist"): no such file or directory (ENOENT)

Stacktrace:

[...]

source

Base.Filesystem.touch – Function.

Base.touch(::Pidfile.LockMonitor)

Update the mtime on the lock, to indicate it is still fresh.

See also the refresh keyword in the mkpidlock constructor.

touch(path::AbstractString)

touch(fd::File)

Update the last-modified timestamp on a file to the current time.

If the file does not exist a new file is created.

Return path.

Examples

julia> write("my_little_file", 2);

julia> mtime("my_little_file")

1.5273815391135583e9

julia> touch("my_little_file");

julia> mtime("my_little_file")

1.527381559163435e9

We can see the mtime has been modified by touch.

source

Base.Filesystem.tempname – Function.

tempname(parent=tempdir(); cleanup=true) -> String

Generate a temporary file path. This function only returns a path; no file is created. The path is likely to

be unique, but this cannot be guaranteed due to the very remote possibility of two simultaneous calls

to tempname generating the same file name. The name is guaranteed to differ from all files already

existing at the time of the call to tempname.

When called with no arguments, the temporary name will be an absolute path to a temporary name in

the system temporary directory as given by tempdir(). If a parent directory argument is given, the

temporary path will be in that directory instead.

The cleanup option controls whether the process attempts to delete the returned path automatically

when the process exits. Note that the tempname function does not create any file or directory at the

returned location, so there is nothing to cleanup unless you create a file or directory there. If you do

and clean is true it will be deleted upon process termination.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/file.jl#L252-L272
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/file.jl#L432-L456

CHAPTER 50. FILESYSTEM 988

Julia 1.4

The parent and cleanup arguments were added in 1.4. Prior to Julia 1.4 the path tempname

would never be cleaned up at process termination.

Warning

This can lead to security holes if another process obtains the same file name and creates

the file before you are able to. Open the file with JL_O_EXCL if this is a concern. Using

mktemp() is also recommended instead.

source

Base.Filesystem.tempdir – Function.

tempdir()

Gets the path of the temporary directory. On Windows, tempdir() uses the first environment variable

found in the ordered list TMP, TEMP, USERPROFILE. On all other operating systems, tempdir() uses the

first environment variable found in the ordered list TMPDIR, TMP, TEMP, and TEMPDIR. If none of these

are found, the path "/tmp" is used.

source

Base.Filesystem.mktemp – Method.

mktemp(parent=tempdir(); cleanup=true) -> (path, io)

Return (path, io), where path is the path of a new temporary file in parent and io is an open file

object for this path. The cleanup option controls whether the temporary file is automatically deleted

when the process exits.

Julia 1.3

The cleanup keyword argument was added in Julia 1.3. Relatedly, starting from 1.3, Julia

will remove the temporary paths created by mktemp when the Julia process exits, unless

cleanup is explicitly set to false.

source

Base.Filesystem.mktemp – Method.

mktemp(f::Function, parent=tempdir())

Apply the function f to the result of mktemp(parent) and remove the temporary file upon completion.

See also: mktempdir.

source

Base.Filesystem.mktempdir – Method.

mktempdir(parent=tempdir(); prefix="jl_", cleanup=true) -> path

Create a temporary directory in the parent directory with a name constructed from the given prefix

and a random suffix, and return its path. Additionally, on some platforms, any trailing 'X' characters in

prefixmay be replaced with random characters. If parent does not exist, throw an error. The cleanup

option controls whether the temporary directory is automatically deleted when the process exits.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/file.jl#L632-L662
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/file.jl#L468-L475
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/file.jl#L665-L676
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/file.jl#L727-L734

CHAPTER 50. FILESYSTEM 989

Julia 1.2

The prefix keyword argument was added in Julia 1.2.

Julia 1.3

The cleanup keyword argument was added in Julia 1.3. Relatedly, starting from 1.3, Julia

will remove the temporary paths created by mktempdir when the Julia process exits, unless

cleanup is explicitly set to false.

See also: mktemp, mkdir.

source

Base.Filesystem.mktempdir – Method.

mktempdir(f::Function, parent=tempdir(); prefix="jl_")

Apply the function f to the result of mktempdir(parent; prefix) and remove the temporary directory

all of its contents upon completion.

See also: mktemp, mkdir.

Julia 1.2

The prefix keyword argument was added in Julia 1.2.

source

Base.Filesystem.isblockdev – Function.

isblockdev(path) -> Bool

Return true if path is a block device, false otherwise.

source

Base.Filesystem.ischardev – Function.

ischardev(path) -> Bool

Return true if path is a character device, false otherwise.

source

Base.Filesystem.isdir – Function.

isdir(path) -> Bool

Return true if path is a directory, false otherwise.

Examples

julia> isdir(homedir())

true

julia> isdir("not/a/directory")

false

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/file.jl#L679-L698
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/file.jl#L751-L761
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stat.jl#L339-L343
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stat.jl#L314-L318

CHAPTER 50. FILESYSTEM 990

See also isfile and ispath.

source

Base.Filesystem.isfifo – Function.

isfifo(path) -> Bool

Return true if path is a FIFO, false otherwise.

source

Base.Filesystem.isfile – Function.

isfile(path) -> Bool

Return true if path is a regular file, false otherwise.

Examples

julia> isfile(homedir())

false

julia> filename = "test_file.txt";

julia> write(filename, "Hello world!");

julia> isfile(filename)

true

julia> rm(filename);

julia> isfile(filename)

false

See also isdir and ispath.

source

Base.Filesystem.islink – Function.

islink(path) -> Bool

Return true if path is a symbolic link, false otherwise.

source

Base.Filesystem.ismount – Function.

ismount(path) -> Bool

Return true if path is a mount point, false otherwise.

source

Base.Filesystem.ispath – Function.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stat.jl#L321-L336
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stat.jl#L307-L311
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stat.jl#L346-L370
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stat.jl#L373-L377
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stat.jl#L478-L482

CHAPTER 50. FILESYSTEM 991

ispath(path) -> Bool

Return true if a valid filesystem entity exists at path, otherwise returns false. This is the generalization

of isfile, isdir etc.

source

Base.Filesystem.issetgid – Function.

issetgid(path) -> Bool

Return true if path has the setgid flag set, false otherwise.

source

Base.Filesystem.issetuid – Function.

issetuid(path) -> Bool

Return true if path has the setuid flag set, false otherwise.

source

Base.Filesystem.issocket – Function.

issocket(path) -> Bool

Return true if path is a socket, false otherwise.

source

Base.Filesystem.issticky – Function.

issticky(path) -> Bool

Return true if path has the sticky bit set, false otherwise.

source

Base.Filesystem.homedir – Function.

homedir() -> String

Return the current user's home directory.

Note

homedir determines the home directory via libuv's uv_os_homedir. For details (for exam-

ple on how to specify the home directory via environment variables), see the uv_os_homedir

documentation.

source

Base.Filesystem.dirname – Function.

dirname(path::AbstractString) -> String

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stat.jl#L298-L304
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stat.jl#L396-L400
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stat.jl#L389-L393
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stat.jl#L380-L384
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stat.jl#L403-L407
http://docs.libuv.org/en/v1.x/misc.html#c.uv_os_homedir
http://docs.libuv.org/en/v1.x/misc.html#c.uv_os_homedir
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/path.jl#L54-L63

CHAPTER 50. FILESYSTEM 992

Get the directory part of a path. Trailing characters ('/' or '\') in the path are counted as part of the

path.

Examples

julia> dirname("/home/myuser")

"/home"

julia> dirname("/home/myuser/")

"/home/myuser"

See also basename.

source

Base.Filesystem.basename – Function.

basename(path::AbstractString) -> String

Get the file name part of a path.

Note

This function differs slightly from the Unix basename program, where trailing slashes are

ignored, i.e. $ basename /foo/bar/ returns bar, whereas basename in Julia returns an

empty string "".

Examples

julia> basename("/home/myuser/example.jl")

"example.jl"

julia> basename("/home/myuser/")

""

See also dirname.

source

Base.Filesystem.isabspath – Function.

isabspath(path::AbstractString) -> Bool

Determine whether a path is absolute (begins at the root directory).

Examples

julia> isabspath("/home")

true

julia> isabspath("home")

false

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/path.jl#L147-L163
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/path.jl#L166-L185
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/path.jl#L87-L100

CHAPTER 50. FILESYSTEM 993

Base.Filesystem.isdirpath – Function.

isdirpath(path::AbstractString) -> Bool

Determine whether a path refers to a directory (for example, ends with a path separator).

Examples

julia> isdirpath("/home")

false

julia> isdirpath("/home/")

true

source

Base.Filesystem.joinpath – Function.

joinpath(parts::AbstractString...) -> String

joinpath(parts::Vector{AbstractString}) -> String

joinpath(parts::Tuple{AbstractString}) -> String

Join path components into a full path. If some argument is an absolute path or (on Windows) has a

drive specification that doesn't match the drive computed for the join of the preceding paths, then prior

components are dropped.

Note on Windows since there is a current directory for each drive, joinpath("c:", "foo") repre-

sents a path relative to the current directory on drive "c:" so this is equal to "c:foo", not "c:\foo".

Furthermore, joinpath treats this as a non-absolute path and ignores the drive letter casing, hence

joinpath("C:\A","c:b") = "C:\A\b".

Examples

julia> joinpath("/home/myuser", "example.jl")

"/home/myuser/example.jl"

julia> joinpath(["/home/myuser", "example.jl"])

"/home/myuser/example.jl"

source

Base.Filesystem.abspath – Function.

abspath(path::AbstractString) -> String

Convert a path to an absolute path by adding the current directory if necessary. Also normalizes the

path as in normpath.

Example

If you are in a directory called JuliaExample and the data you are using is two levels up relative to the

JuliaExample directory, you could write:

abspath("../../data")

Which gives a path like "/home/JuliaUser/data/".

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/path.jl#L103-L116
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/path.jl#L329-L353

CHAPTER 50. FILESYSTEM 994

See also joinpath, pwd, expanduser.

source

abspath(path::AbstractString, paths::AbstractString...) -> String

Convert a set of paths to an absolute path by joining them together and adding the current directory

if necessary. Equivalent to abspath(joinpath(path, paths...)).

source

Base.Filesystem.normpath – Function.

normpath(path::AbstractString) -> String

Normalize a path, removing "." and ".." entries and changing "/" to the canonical path separator for the

system.

Examples

julia> normpath("/home/myuser/../example.jl")

"/home/example.jl"

julia> normpath("Documents/Julia") == joinpath("Documents", "Julia")

true

source

normpath(path::AbstractString, paths::AbstractString...) -> String

Convert a set of paths to a normalized path by joining them together and removing "." and ".." entries.

Equivalent to normpath(joinpath(path, paths...)).

source

Base.Filesystem.realpath – Function.

realpath(path::AbstractString) -> String

Canonicalize a path by expanding symbolic links and removing "." and ".." entries. On case-insensitive

case-preserving filesystems (typically Mac and Windows), the filesystem's stored case for the path is

returned.

(This function throws an exception if path does not exist in the filesystem.)

source

Base.Filesystem.relpath – Function.

relpath(path::AbstractString, startpath::AbstractString = ".") -> String

Return a relative filepath to path either from the current directory or from an optional start directory.

This is a path computation: the filesystem is not accessed to confirm the existence or nature of path

or startpath.

On Windows, case sensitivity is applied to every part of the path except drive letters. If path and

startpath refer to different drives, the absolute path of path is returned.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/path.jl#L413-L428
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/path.jl#L443-L448
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/path.jl#L356-L370
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/path.jl#L405-L410
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/path.jl#L470-L478
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/path.jl#L544-L553

CHAPTER 50. FILESYSTEM 995

Base.Filesystem.expanduser – Function.

expanduser(path::AbstractString) -> AbstractString

On Unix systems, replace a tilde character at the start of a path with the current user's home directory.

See also: contractuser.

source

Base.Filesystem.contractuser – Function.

contractuser(path::AbstractString) -> AbstractString

On Unix systems, if the path starts with homedir(), replace it with a tilde character.

See also: expanduser.

source

Base.Filesystem.samefile – Function.

samefile(path_a::AbstractString, path_b::AbstractString)

Check if the paths path_a and path_b refer to the same existing file or directory.

source

Base.Filesystem.splitdir – Function.

splitdir(path::AbstractString) -> (AbstractString, AbstractString)

Split a path into a tuple of the directory name and file name.

Examples

julia> splitdir("/home/myuser")

("/home", "myuser")

source

Base.Filesystem.splitdrive – Function.

splitdrive(path::AbstractString) -> (AbstractString, AbstractString)

On Windows, split a path into the drive letter part and the path part. On Unix systems, the first com-

ponent is always the empty string.

source

Base.Filesystem.splitext – Function.

splitext(path::AbstractString) -> (String, String)

If the last component of a path contains one or more dots, split the path into everything before the last

dot and everything including and after the dot. Otherwise, return a tuple of the argument unmodified

and the empty string. "splitext" is short for "split extension".

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/path.jl#L525-L531
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/path.jl#L534-L540
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stat.jl#L471-L475
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/path.jl#L119-L129
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/path.jl#L46-L51

CHAPTER 50. FILESYSTEM 996

julia> splitext("/home/myuser/example.jl")

("/home/myuser/example", ".jl")

julia> splitext("/home/myuser/example.tar.gz")

("/home/myuser/example.tar", ".gz")

julia> splitext("/home/my.user/example")

("/home/my.user/example", "")

source

Base.Filesystem.splitpath – Function.

splitpath(path::AbstractString) -> Vector{String}

Split a file path into all its path components. This is the opposite of joinpath. Returns an array of

substrings, one for each directory or file in the path, including the root directory if present.

Julia 1.1

This function requires at least Julia 1.1.

Examples

julia> splitpath("/home/myuser/example.jl")

4-element Vector{String}:

"/"

"home"

"myuser"

"example.jl"

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/path.jl#L188-L206
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/path.jl#L217-L236

Chapter 51

I/O and Network

51.1 General I/O

Base.stdout – Constant.

stdout::IO

Global variable referring to the standard out stream.

source

Base.stderr – Constant.

stderr::IO

Global variable referring to the standard error stream.

source

Base.stdin – Constant.

stdin::IO

Global variable referring to the standard input stream.

source

Base.open – Function.

open(f::Function, args...; kwargs...)

Apply the function f to the result of open(args...; kwargs...) and close the resulting file descriptor

upon completion.

Examples

julia> write("myfile.txt", "Hello world!");

julia> open(io->read(io, String), "myfile.txt")

"Hello world!"

julia> rm("myfile.txt")

997

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libuv.jl#L154-L158
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libuv.jl#L161-L165
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libuv.jl#L147-L151

CHAPTER 51. I/O AND NETWORK 998

source

open(filename::AbstractString; lock = true, keywords...) -> IOStream

Open a file in a mode specified by five boolean keyword arguments:

Keyword Description Default

read open for reading !write

write open for writing truncate | append

create create if non-existent !read & write | truncate | append

truncate truncate to zero size !read & write

append seek to end false

The default when no keywords are passed is to open files for reading only. Returns a stream for ac-

cessing the opened file.

The lock keyword argument controls whether operations will be locked for safe multi-threaded access.

Julia 1.5

The lock argument is available as of Julia 1.5.

source

open(filename::AbstractString, [mode::AbstractString]; lock = true) -> IOStream

Alternate syntax for open, where a string-based mode specifier is used instead of the five booleans.

The values of mode correspond to those from fopen(3) or Perl open, and are equivalent to setting the

following boolean groups:

Mode Description Keywords

r read none

w write, create, truncate write = true

a write, create, append append = true

r+ read, write read = true, write = true

w+ read, write, create, truncate truncate = true, read = true

a+ read, write, create, append append = true, read = true

The lock keyword argument controls whether operations will be locked for safe multi-threaded access.

Examples

julia> io = open("myfile.txt", "w");

julia> write(io, "Hello world!");

julia> close(io);

julia> io = open("myfile.txt", "r");

julia> read(io, String)

"Hello world!"

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L377-L392
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iostream.jl#L253-L274

CHAPTER 51. I/O AND NETWORK 999

julia> write(io, "This file is read only")

ERROR: ArgumentError: write failed, IOStream is not writeable

[...]

julia> close(io)

julia> io = open("myfile.txt", "a");

julia> write(io, "This stream is not read only")

28

julia> close(io)

julia> rm("myfile.txt")

Julia 1.5

The lock argument is available as of Julia 1.5.

source

open(fd::OS_HANDLE) -> IO

Take a raw file descriptor wrap it in a Julia-aware IO type, and take ownership of the fd handle. Call

open(Libc.dup(fd)) to avoid the ownership capture of the original handle.

Warning

Do not call this on a handle that's already owned by some other part of the system.

source

open(command, mode::AbstractString, stdio=devnull)

Run command asynchronously. Like open(command, stdio; read, write) except specifying the read

and write flags via a mode string instead of keyword arguments. Possible mode strings are:

Mode Description Keywords

r read none

w write write = true

r+ read, write read = true, write = true

w+ read, write read = true, write = true

source

open(command, stdio=devnull; write::Bool = false, read::Bool = !write)

Start running command asynchronously, and return a process::IO object. If read is true, then reads

from the process come from the process's standard output and stdio optionally specifies the process's

standard input stream. If write is true, then writes go to the process's standard input and stdio option-

ally specifies the process's standard output stream. The process's standard error stream is connected

to the current global stderr.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iostream.jl#L304-L354
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stream.jl#L318-L329
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/process.jl#L346-L359
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/process.jl#L373-L382

CHAPTER 51. I/O AND NETWORK 1000

open(f::Function, command, args...; kwargs...)

Similar to open(command, args...; kwargs...), but calls f(stream) on the resulting process stream,

then closes the input stream and waits for the process to complete. Return the value returned by f on

success. Throw an error if the process failed, or if the process attempts to print anything to stdout.

source

Base.IOStream – Type.

IOStream

A buffered IO stream wrapping an OS file descriptor. Mostly used to represent files returned by open.

source

Base.IOBuffer – Type.

IOBuffer([data::AbstractVector{UInt8}]; keywords...) -> IOBuffer

Create an in-memory I/O stream, which may optionally operate on a pre-existing array.

It may take optional keyword arguments:

• read, write, append: restricts operations to the buffer; see open for details.

• truncate: truncates the buffer size to zero length.

• maxsize: specifies a size beyond which the buffer may not be grown.

• sizehint: suggests a capacity of the buffer (data must implement sizehint!(data, size)).

When data is not given, the buffer will be both readable and writable by default.

Examples

julia> io = IOBuffer();

julia> write(io, "JuliaLang is a GitHub organization.", " It has many members.")

56

julia> String(take!(io))

"JuliaLang is a GitHub organization. It has many members."

julia> io = IOBuffer(b"JuliaLang is a GitHub organization.")

IOBuffer(data=UInt8[...], readable=true, writable=false, seekable=true, append=false,

size=35, maxsize=Inf, ptr=1, mark=-1)↪→

julia> read(io, String)

"JuliaLang is a GitHub organization."

julia> write(io, "This isn't writable.")

ERROR: ArgumentError: ensureroom failed, IOBuffer is not writeable

julia> io = IOBuffer(UInt8[], read=true, write=true, maxsize=34)

IOBuffer(data=UInt8[...], readable=true, writable=true, seekable=true, append=false, size=0,

maxsize=34, ptr=1, mark=-1)↪→

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/process.jl#L406-L413
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iostream.jl#L7-L12

CHAPTER 51. I/O AND NETWORK 1001

julia> write(io, "JuliaLang is a GitHub organization.")

34

julia> String(take!(io))

"JuliaLang is a GitHub organization"

julia> length(read(IOBuffer(b"data", read=true, truncate=false)))

4

julia> length(read(IOBuffer(b"data", read=true, truncate=true)))

0

source

IOBuffer(string::String)

Create a read-only IOBuffer on the data underlying the given string.

Examples

julia> io = IOBuffer("Haho");

julia> String(take!(io))

"Haho"

julia> String(take!(io))

"Haho"

source

Base.take! – Method.

take!(b::IOBuffer)

Obtain the contents of an IOBuffer as an array. Afterwards, the IOBuffer is reset to its initial state.

Examples

julia> io = IOBuffer();

julia> write(io, "JuliaLang is a GitHub organization.", " It has many members.")

56

julia> String(take!(io))

"JuliaLang is a GitHub organization. It has many members."

source

Base.fdio – Function.

fdio([name::AbstractString,]fd::Integer[, own::Bool=false]) -> IOStream

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iobuffer.jl#L36-L83
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/io.jl#L292-L307
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iobuffer.jl#L372-L387

CHAPTER 51. I/O AND NETWORK 1002

Create an IOStream object from an integer file descriptor. If own is true, closing this object will close

the underlying descriptor. By default, an IOStream is closed when it is garbage collected. name allows

you to associate the descriptor with a named file.

source

Base.flush – Function.

flush(stream)

Commit all currently buffered writes to the given stream.

source

Base.close – Function.

close(stream)

Close an I/O stream. Performs a flush first.

source

Base.closewrite – Function.

closewrite(stream)

Shutdown the write half of a full-duplex I/O stream. Performs a flush first. Notify the other end that

no more data will be written to the underlying file. This is not supported by all IO types.

Examples

julia> io = Base.BufferStream(); # this never blocks, so we can read and write on the same

Task↪→

julia> write(io, "request");

julia> # calling `read(io)` here would block forever

julia> closewrite(io);

julia> read(io, String)

"request"

source

Base.write – Function.

write(io::IO, x)

Write the canonical binary representation of a value to the given I/O stream or file. Return the number

of bytes written into the stream. See also print to write a text representation (with an encoding that

may depend upon io).

The endianness of the written value depends on the endianness of the host system. Convert to/from

a fixed endianness when writing/reading (e.g. using htol and ltoh) to get results that are consistent

across platforms.

You can write multiple values with the same write call. i.e. the following are equivalent:

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iostream.jl#L238-L244
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L87-L91
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L57-L61
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L64-L84

CHAPTER 51. I/O AND NETWORK 1003

write(io, x, y...)

write(io, x) + write(io, y...)

Examples

Consistent serialization:

julia> fname = tempname(); # random temporary filename

julia> open(fname,"w") do f

Make sure we write 64bit integer in little-endian byte order

write(f,htol(Int64(42)))

end

8

julia> open(fname,"r") do f

Convert back to host byte order and host integer type

Int(ltoh(read(f,Int64)))

end

42

Merging write calls:

julia> io = IOBuffer();

julia> write(io, "JuliaLang is a GitHub organization.", " It has many members.")

56

julia> String(take!(io))

"JuliaLang is a GitHub organization. It has many members."

julia> write(io, "Sometimes those members") + write(io, " write documentation.")

44

julia> String(take!(io))

"Sometimes those members write documentation."

User-defined plain-data types without write methods can be written when wrapped in a Ref:

julia> struct MyStruct; x::Float64; end

julia> io = IOBuffer()

IOBuffer(data=UInt8[...], readable=true, writable=true, seekable=true, append=false, size=0,

maxsize=Inf, ptr=1, mark=-1)↪→

julia> write(io, Ref(MyStruct(42.0)))

8

julia> seekstart(io); read!(io, Ref(MyStruct(NaN)))

Base.RefValue{MyStruct}(MyStruct(42.0))

source

Base.read – Function.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L225-L288

CHAPTER 51. I/O AND NETWORK 1004

read(io::IO, T)

Read a single value of type T from io, in canonical binary representation.

Note that Julia does not convert the endianness for you. Use ntoh or ltoh for this purpose.

read(io::IO, String)

Read the entirety of io, as a String (see also readchomp).

Examples

julia> io = IOBuffer("JuliaLang is a GitHub organization");

julia> read(io, Char)

'J': ASCII/Unicode U+004A (category Lu: Letter, uppercase)

julia> io = IOBuffer("JuliaLang is a GitHub organization");

julia> read(io, String)

"JuliaLang is a GitHub organization"

source

read(filename::AbstractString)

Read the entire contents of a file as a Vector{UInt8}.

read(filename::AbstractString, String)

Read the entire contents of a file as a string.

read(filename::AbstractString, args...)

Open a file and read its contents. args is passed to read: this is equivalent to open(io->read(io,

args...), filename).

source

read(s::IO, nb=typemax(Int))

Read at most nb bytes from s, returning a Vector{UInt8} of the bytes read.

source

read(s::IOStream, nb::Integer; all=true)

Read at most nb bytes from s, returning a Vector{UInt8} of the bytes read.

If all is true (the default), this function will block repeatedly trying to read all requested bytes, until

an error or end-of-file occurs. If all is false, at most one read call is performed, and the amount of

data returned is device-dependent. Note that not all stream types support the all option.

source

read(command::Cmd)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L196-L220
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L470-L483
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L1004-L1008
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iostream.jl#L550-L559

CHAPTER 51. I/O AND NETWORK 1005

Run command and return the resulting output as an array of bytes.

source

read(command::Cmd, String)

Run command and return the resulting output as a String.

source

Base.read! – Function.

read!(stream::IO, array::AbstractArray)

read!(filename::AbstractString, array::AbstractArray)

Read binary data from an I/O stream or file, filling in array.

source

Base.readbytes! – Function.

readbytes!(stream::IO, b::AbstractVector{UInt8}, nb=length(b))

Read at most nb bytes from stream into b, returning the number of bytes read. The size of b will be

increased if needed (i.e. if nb is greater than length(b) and enough bytes could be read), but it will

never be decreased.

source

readbytes!(stream::IOStream, b::AbstractVector{UInt8}, nb=length(b); all::Bool=true)

Read at most nb bytes from stream into b, returning the number of bytes read. The size of b will be

increased if needed (i.e. if nb is greater than length(b) and enough bytes could be read), but it will

never be decreased.

If all is true (the default), this function will block repeatedly trying to read all requested bytes, until

an error or end-of-file occurs. If all is false, at most one read call is performed, and the amount of

data returned is device-dependent. Note that not all stream types support the all option.

source

Base.unsafe_read – Function.

unsafe_read(io::IO, ref, nbytes::UInt)

Copy nbytes from the IO stream object into ref (converted to a pointer).

It is recommended that subtypes T<:IO override the following method signature to provide more effi-

cient implementations: unsafe_read(s::T, p::Ptr{UInt8}, n::UInt)

source

Base.unsafe_write – Function.

unsafe_write(io::IO, ref, nbytes::UInt)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/process.jl#L441-L445
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/process.jl#L453-L457
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L488-L493
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L978-L984
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iostream.jl#L500-L511
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L311-L319

CHAPTER 51. I/O AND NETWORK 1006

Copy nbytes from ref (converted to a pointer) into the IO object.

It is recommended that subtypes T<:IO override the following method signature to provide more effi-

cient implementations: unsafe_write(s::T, p::Ptr{UInt8}, n::UInt)

source

Base.readeach – Function.

readeach(io::IO, T)

Return an iterable object yielding read(io, T).

See also skipchars, eachline, readuntil.

Julia 1.6

readeach requires Julia 1.6 or later.

Examples

julia> io = IOBuffer("JuliaLang is a GitHub organization.\n It has many members.\n");

julia> for c in readeach(io, Char)

c == '\n' && break

print(c)

end

JuliaLang is a GitHub organization.

source

Base.peek – Function.

peek(stream[, T=UInt8])

Read and return a value of type T from a stream without advancing the current position in the stream.

See also startswith(stream, char_or_string).

Examples

julia> b = IOBuffer("julia");

julia> peek(b)

0x6a

julia> position(b)

0

julia> peek(b, Char)

'j': ASCII/Unicode U+006A (category Ll: Letter, lowercase)

Julia 1.5

The method which accepts a type requires Julia 1.5 or later.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L294-L302
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L1196-L1216
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/essentials.jl#L1014-L1037

CHAPTER 51. I/O AND NETWORK 1007

Base.position – Function.

position(l::Lexer)

Returns the current position.

position(s)

Get the current position of a stream.

Examples

julia> io = IOBuffer("JuliaLang is a GitHub organization.");

julia> seek(io, 5);

julia> position(io)

5

julia> skip(io, 10);

julia> position(io)

15

julia> seekend(io);

julia> position(io)

35

source

Base.seek – Function.

seek(s, pos)

Seek a stream to the given position.

Examples

julia> io = IOBuffer("JuliaLang is a GitHub organization.");

julia> seek(io, 5);

julia> read(io, Char)

'L': ASCII/Unicode U+004C (category Lu: Letter, uppercase)

source

Base.seekstart – Function.

seekstart(s)

Seek a stream to its beginning.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iostream.jl#L191-L215
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iostream.jl#L112-L126

CHAPTER 51. I/O AND NETWORK 1008

julia> io = IOBuffer("JuliaLang is a GitHub organization.");

julia> seek(io, 5);

julia> read(io, Char)

'L': ASCII/Unicode U+004C (category Lu: Letter, uppercase)

julia> seekstart(io);

julia> read(io, Char)

'J': ASCII/Unicode U+004A (category Lu: Letter, uppercase)

source

Base.seekend – Function.

seekend(s)

Seek a stream to its end.

source

Base.skip – Function.

skip(s, offset)

Seek a stream relative to the current position.

Examples

julia> io = IOBuffer("JuliaLang is a GitHub organization.");

julia> seek(io, 5);

julia> skip(io, 10);

julia> read(io, Char)

'G': ASCII/Unicode U+0047 (category Lu: Letter, uppercase)

source

Base.mark – Function.

mark(s::IO)

Add a mark at the current position of stream s. Return the marked position.

See also unmark, reset, ismarked.

source

Base.unmark – Function.

unmark(s::IO)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iostream.jl#L134-L153
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iostream.jl#L156-L160
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iostream.jl#L167-L183
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L1233-L1239

CHAPTER 51. I/O AND NETWORK 1009

Remove a mark from stream s. Return true if the stream was marked, false otherwise.

See also mark, reset, ismarked.

source

Base.reset – Method.

reset(s::IO)

Reset a stream s to a previously marked position, and remove the mark. Return the previously marked

position. Throw an error if the stream is not marked.

See also mark, unmark, ismarked.

source

Base.ismarked – Function.

ismarked(s::IO)

Return true if stream s is marked.

See also mark, unmark, reset.

source

Base.eof – Function.

eof(stream) -> Bool

Test whether an I/O stream is at end-of-file. If the stream is not yet exhausted, this function will block

to wait for more data if necessary, and then return false. Therefore it is always safe to read one byte

after seeing eof return false. eof will return false as long as buffered data is still available, even if

the remote end of a connection is closed.

Examples

julia> b = IOBuffer("my buffer");

julia> eof(b)

false

julia> seekend(b);

julia> eof(b)

true

source

Base.isreadonly – Function.

isreadonly(io) -> Bool

Determine whether a stream is read-only.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L1244-L1250
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L1257-L1264
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L1273-L1279
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L168-L189

CHAPTER 51. I/O AND NETWORK 1010

julia> io = IOBuffer("JuliaLang is a GitHub organization");

julia> isreadonly(io)

true

julia> io = IOBuffer();

julia> isreadonly(io)

false

source

Base.iswritable – Function.

iswritable(io) -> Bool

Return false if the specified IO object is not writable.

Examples

julia> open("myfile.txt", "w") do io

print(io, "Hello world!");

iswritable(io)

end

true

julia> open("myfile.txt", "r") do io

iswritable(io)

end

false

julia> rm("myfile.txt")

source

Base.isreadable – Function.

isreadable(io) -> Bool

Return false if the specified IO object is not readable.

Examples

julia> open("myfile.txt", "w") do io

print(io, "Hello world!");

isreadable(io)

end

false

julia> open("myfile.txt", "r") do io

isreadable(io)

end

true

julia> rm("myfile.txt")

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L665-L682
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L145-L165

CHAPTER 51. I/O AND NETWORK 1011

source

Base.isopen – Function.

isopen(object) -> Bool

Determine whether an object - such as a stream or timer – is not yet closed. Once an object is closed,

it will never produce a new event. However, since a closed stream may still have data to read in its

buffer, use eof to check for the ability to read data. Use the FileWatching package to be notified

when a stream might be writable or readable.

Examples

julia> io = open("my_file.txt", "w+");

julia> isopen(io)

true

julia> close(io)

julia> isopen(io)

false

source

Base.fd – Function.

fd(stream)

Return the file descriptor backing the stream or file. Note that this function only applies to synchronous

File's and IOStream's not to any of the asynchronous streams.

source

Base.redirect_stdio – Function.

redirect_stdio(;stdin=stdin, stderr=stderr, stdout=stdout)

Redirect a subset of the streams stdin, stderr, stdout. Each argument must be an IOStream, TTY,

Pipe, socket, or devnull.

Julia 1.7

redirect_stdio requires Julia 1.7 or later.

source

redirect_stdio(f; stdin=nothing, stderr=nothing, stdout=nothing)

Redirect a subset of the streams stdin, stderr, stdout, call f() and restore each stream.

Possible values for each stream are:

• nothing indicating the stream should not be redirected.

• path::AbstractString redirecting the stream to the file at path.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L122-L142
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L33-L54
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iostream.jl#L49-L54
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stream.jl#L1309-L1317

CHAPTER 51. I/O AND NETWORK 1012

• io an IOStream, TTY, Pipe, socket, or devnull.

Examples

julia> redirect_stdio(stdout="stdout.txt", stderr="stderr.txt") do

print("hello stdout")

print(stderr, "hello stderr")

end

julia> read("stdout.txt", String)

"hello stdout"

julia> read("stderr.txt", String)

"hello stderr"

Edge cases

It is possible to pass the same argument to stdout and stderr:

julia> redirect_stdio(stdout="log.txt", stderr="log.txt", stdin=devnull) do

...

end

However it is not supported to pass two distinct descriptors of the same file.

julia> io1 = open("same/path", "w")

julia> io2 = open("same/path", "w")

julia> redirect_stdio(f, stdout=io1, stderr=io2) # not supported

Also the stdin argument may not be the same descriptor as stdout or stderr.

julia> io = open(...)

julia> redirect_stdio(f, stdout=io, stdin=io) # not supported

Julia 1.7

redirect_stdio requires Julia 1.7 or later.

source

Base.redirect_stdout – Function.

redirect_stdout([stream]) -> stream

Create a pipe to which all C and Julia level stdout output will be redirected. Return a stream repre-

senting the pipe ends. Data written to stdout may now be read from the rd end of the pipe.

Note

stream must be a compatible objects, such as an IOStream, TTY, Pipe, socket, or devnull.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stream.jl#L1324-L1375

CHAPTER 51. I/O AND NETWORK 1013

See also redirect_stdio.

source

Base.redirect_stdout – Method.

redirect_stdout(f::Function, stream)

Run the function f while redirecting stdout to stream. Upon completion, stdout is restored to its prior

setting.

source

Base.redirect_stderr – Function.

redirect_stderr([stream]) -> stream

Like redirect_stdout, but for stderr.

Note

stream must be a compatible objects, such as an IOStream, TTY, Pipe, socket, or devnull.

See also redirect_stdio.

source

Base.redirect_stderr – Method.

redirect_stderr(f::Function, stream)

Run the function f while redirecting stderr to stream. Upon completion, stderr is restored to its prior

setting.

source

Base.redirect_stdin – Function.

redirect_stdin([stream]) -> stream

Like redirect_stdout, but for stdin. Note that the direction of the stream is reversed.

Note

stream must be a compatible objects, such as an IOStream, TTY, Pipe, socket, or devnull.

See also redirect_stdio.

source

Base.redirect_stdin – Method.

redirect_stdin(f::Function, stream)

Run the function f while redirecting stdin to stream. Upon completion, stdin is restored to its prior

setting.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stream.jl#L1266-L1279
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stream.jl#L1436-L1441
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stream.jl#L1282-L1292
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stream.jl#L1444-L1449
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stream.jl#L1295-L1306
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stream.jl#L1452-L1457

CHAPTER 51. I/O AND NETWORK 1014

Base.readchomp – Function.

readchomp(x)

Read the entirety of x as a string and remove a single trailing newline if there is one. Equivalent to

chomp(read(x, String)).

Examples

julia> write("my_file.txt", "JuliaLang is a GitHub organization.\nIt has many members.\n");

julia> readchomp("my_file.txt")

"JuliaLang is a GitHub organization.\nIt has many members."

julia> rm("my_file.txt");

source

Base.truncate – Function.

truncate(file, n)

Resize the file or buffer given by the first argument to exactly n bytes, filling previously unallocated

space with '\0' if the file or buffer is grown.

Examples

julia> io = IOBuffer();

julia> write(io, "JuliaLang is a GitHub organization.")

35

julia> truncate(io, 15)

IOBuffer(data=UInt8[...], readable=true, writable=true, seekable=true, append=false, size=15,

maxsize=Inf, ptr=16, mark=-1)↪→

julia> String(take!(io))

"JuliaLang is a "

julia> io = IOBuffer();

julia> write(io, "JuliaLang is a GitHub organization.");

julia> truncate(io, 40);

julia> String(take!(io))

"JuliaLang is a GitHub organization.\0\0\0\0\0"

source

Base.skipchars – Function.

skipchars(predicate, io::IO; linecomment=nothing)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L958-L973
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iostream.jl#L77-L105

CHAPTER 51. I/O AND NETWORK 1015

Advance the stream io such that the next-read character will be the first remaining for which predicate

returns false. If the keyword argument linecomment is specified, all characters from that character

until the start of the next line are ignored.

Examples

julia> buf = IOBuffer(" text")

IOBuffer(data=UInt8[...], readable=true, writable=false, seekable=true, append=false, size=8,

maxsize=Inf, ptr=1, mark=-1)↪→

julia> skipchars(isspace, buf)

IOBuffer(data=UInt8[...], readable=true, writable=false, seekable=true, append=false, size=8,

maxsize=Inf, ptr=5, mark=-1)↪→

julia> String(readavailable(buf))

"text"

source

Base.countlines – Function.

countlines(io::IO; eol::AbstractChar = '\n')

countlines(filename::AbstractString; eol::AbstractChar = '\n')

Read io until the end of the stream/file and count the number of lines. To specify a file pass the

filename as the first argument. EOL markers other than '\n' are supported by passing them as the

second argument. The last non-empty line of io is counted even if it does not end with the EOL,

matching the length returned by eachline and readlines.

To count lines of a String, countlines(IOBuffer(str)) can be used.

Examples

julia> io = IOBuffer("JuliaLang is a GitHub organization.\n");

julia> countlines(io)

1

julia> io = IOBuffer("JuliaLang is a GitHub organization.");

julia> countlines(io)

1

julia> eof(io) # counting lines moves the file pointer

true

julia> io = IOBuffer("JuliaLang is a GitHub organization.");

julia> countlines(io, eol = '.')

1

julia> write("my_file.txt", "JuliaLang is a GitHub organization.\n")

36

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L1287-L1305

CHAPTER 51. I/O AND NETWORK 1016

julia> countlines("my_file.txt")

1

julia> countlines("my_file.txt", eol = 'n')

4

julia> rm("my_file.txt")

source

Base.PipeBuffer – Function.

PipeBuffer(data::Vector{UInt8}=UInt8[]; maxsize::Integer = typemax(Int))

An IOBuffer that allows reading and performs writes by appending. Seeking and truncating are not

supported. See IOBuffer for the available constructors. If data is given, creates a PipeBuffer to

operate on a data vector, optionally specifying a size beyond which the underlying Array may not be

grown.

source

Base.readavailable – Function.

readavailable(stream)

Read available buffered data from a stream. Actual I/O is performed only if no data has already been

buffered. The result is a Vector{UInt8}.

Warning

The amount of data returned is implementation-dependent; for example it can depend on

the internal choice of buffer size. Other functions such as read should generally be used

instead.

source

Base.IOContext – Type.

IOContext

IOContext provides a mechanism for passing output configuration settings among show methods.

In short, it is an immutable dictionary that is a subclass of IO. It supports standard dictionary operations

such as getindex, and can also be used as an I/O stream.

source

Base.IOContext – Method.

IOContext(io::IO, KV::Pair...)

Create an IOContext that wraps a given stream, adding the specified key=>value pairs to the proper-

ties of that stream (note that io can itself be an IOContext).

• use (key => value) in io to see if this particular combination is in the properties set

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L1318-L1362
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iobuffer.jl#L128-L136
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L109-L119
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/show.jl#L282-L289

CHAPTER 51. I/O AND NETWORK 1017

• use get(io, key, default) to retrieve the most recent value for a particular key

The following properties are in common use:

• :compact: Boolean specifying that values should be printed more compactly, e.g. that numbers

should be printed with fewer digits. This is set when printing array elements. :compact output

should not contain line breaks.

• :limit: Boolean specifying that containers should be truncated, e.g. showing … in place of most

elements.

• :displaysize: A Tuple{Int,Int} giving the size in rows and columns to use for text output.

This can be used to override the display size for called functions, but to get the size of the screen

use the displaysize function.

• :typeinfo: a Type characterizing the information already printed concerning the type of the

object about to be displayed. This is mainly useful when displaying a collection of objects of the

same type, so that redundant type information can be avoided (e.g. [Float16(0)] can be shown

as "Float16[0.0]" instead of "Float16[Float16(0.0)]" : while displaying the elements of the array,

the :typeinfo property will be set to Float16).

• :color: Boolean specifying whether ANSI color/escape codes are supported/expected. By de-

fault, this is determined by whether io is a compatible terminal and by any --color command-

line flag when julia was launched.

Examples

julia> io = IOBuffer();

julia> printstyled(IOContext(io, :color => true), "string", color=:red)

julia> String(take!(io))

"\e[31mstring\e[39m"

julia> printstyled(io, "string", color=:red)

julia> String(take!(io))

"string"

julia> print(IOContext(stdout, :compact => false), 1.12341234)

1.12341234

julia> print(IOContext(stdout, :compact => true), 1.12341234)

1.12341

julia> function f(io::IO)

if get(io, :short, false)

print(io, "short")

else

print(io, "loooooong")

end

end

f (generic function with 1 method)

julia> f(stdout)

CHAPTER 51. I/O AND NETWORK 1018

loooooong

julia> f(IOContext(stdout, :short => true))

short

source

Base.IOContext – Method.

IOContext(io::IO, context::IOContext)

Create an IOContext that wraps an alternate IO but inherits the properties of context.

source

51.2 Text I/O

Base.show – Method.

show([io::IO = stdout], x)

Write a text representation of a value x to the output stream io. New types T should overload show(io::IO,

x::T). The representation used by show generally includes Julia-specific formatting and type informa-

tion, and should be parseable Julia code when possible.

repr returns the output of show as a string.

For amore verbose human-readable text output for objects of type T, define show(io::IO, ::MIME"text/plain",

::T) in addition. Checking the :compact IOContext key (often checked as get(io, :compact, false)::Bool)

of io in such methods is recommended, since some containers show their elements by calling this

method with :compact => true.

See also print, which writes un-decorated representations.

Examples

julia> show("Hello World!")

"Hello World!"

julia> print("Hello World!")

Hello World!

source

Base.summary – Function.

summary(io::IO, x)

str = summary(x)

Print to a stream io, or return a string str, giving a brief description of a value. By default returns

string(typeof(x)), e.g. Int64.

For arrays, returns a string of size and type info, e.g. 10-element Array{Int64,1}.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/show.jl#L325-L392
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/show.jl#L318-L322
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/show.jl#L430-L456

CHAPTER 51. I/O AND NETWORK 1019

julia> summary(1)

"Int64"

julia> summary(zeros(2))

"2-element Vector{Float64}"

source

Base.print – Function.

print([io::IO], xs...)

Write to io (or to the default output stream stdout if io is not given) a canonical (un-decorated) text

representation. The representation used by print includes minimal formatting and tries to avoid Julia-

specific details.

print falls back to calling show, so most types should just define show. Define print if your type has

a separate "plain" representation. For example, show displays strings with quotes, and print displays

strings without quotes.

See also println, string, printstyled.

Examples

julia> print("Hello World!")

Hello World!

julia> io = IOBuffer();

julia> print(io, "Hello", ' ', :World!)

julia> String(take!(io))

"Hello World!"

source

Base.println – Function.

println([io::IO], xs...)

Print (using print) xs to io followed by a newline. If io is not supplied, prints to the default output

stream stdout.

See also printstyled to add colors etc.

Examples

julia> println("Hello, world")

Hello, world

julia> io = IOBuffer();

julia> println(io, "Hello", ',', " world.")

julia> String(take!(io))

"Hello, world.\n"

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/show.jl#L3061-L3079
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/io.jl#L5-L31

CHAPTER 51. I/O AND NETWORK 1020

source

Base.printstyled – Function.

printstyled([io], xs...; bold::Bool=false, italic::Bool=false, underline::Bool=false,

blink::Bool=false, reverse::Bool=false, hidden::Bool=false,

color::Union{Symbol,Int}=:normal)

↪→

↪→

Print xs in a color specified as a symbol or integer, optionally in bold.

Keyword color may take any of the values :normal, :italic, :default, :bold, :black, :blink,

:blue, :cyan, :green, :hidden, :light_black, :light_blue, :light_cyan, :light_green, :light_magenta,

:light_red, :light_white, :light_yellow, :magenta, :nothing, :red, :reverse, :underline, :white,

or :yellow or an integer between 0 and 255 inclusive. Note that not all terminals support 256 colors.

Keywords bold=true, italic=true, underline=true, blink=true are self-explanatory. Keyword reverse=true

prints with foreground and background colors exchanged, and hidden=true should be invisible in the

terminal but can still be copied. These properties can be used in any combination.

See also print, println, show.

Note

Not all terminals support italic output. Some terminals interpret italic as reverse or blink.

Julia 1.7

Keywords except color and bold were added in Julia 1.7.

Julia 1.10

Support for italic output was added in Julia 1.10.

source

Base.sprint – Function.

sprint(f::Function, args...; context=nothing, sizehint=0)

Call the given function with an I/O stream and the supplied extra arguments. Everything written to this

I/O stream is returned as a string. context can be an IOContext whose properties will be used, a Pair

specifying a property and its value, or a tuple of Pair specifying multiple properties and their values.

sizehint suggests the capacity of the buffer (in bytes).

The optional keyword argument context can be set to a :key=>value pair, a tuple of :key=>value

pairs, or an IO or IOContext object whose attributes are used for the I/O stream passed to f. The

optional sizehint is a suggested size (in bytes) to allocate for the buffer used to write the string.

Julia 1.7

Passing a tuple to keyword context requires Julia 1.7 or later.

Examples

julia> sprint(show, 66.66666; context=:compact => true)

"66.6667"

julia> sprint(showerror, BoundsError([1], 100))

"BoundsError: attempt to access 1-element Vector{Int64} at index [100]"

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/io.jl#L54-L74
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/util.jl#L117-L140

CHAPTER 51. I/O AND NETWORK 1021

source

Base.showerror – Function.

showerror(io, e)

Show a descriptive representation of an exception object e. Thismethod is used to display the exception

after a call to throw.

Examples

julia> struct MyException <: Exception

msg::String

end

julia> function Base.showerror(io::IO, err::MyException)

print(io, "MyException: ")

print(io, err.msg)

end

julia> err = MyException("test exception")

MyException("test exception")

julia> sprint(showerror, err)

"MyException: test exception"

julia> throw(MyException("test exception"))

ERROR: MyException: test exception

source

Base.dump – Function.

dump(x; maxdepth=8)

Show every part of the representation of a value. The depth of the output is truncated at maxdepth.

Examples

julia> struct MyStruct

x

y

end

julia> x = MyStruct(1, (2,3));

julia> dump(x)

MyStruct

x: Int64 1

y: Tuple{Int64, Int64}

1: Int64 2

2: Int64 3

julia> dump(x; maxdepth = 1)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/strings/io.jl#L79-L106
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/errorshow.jl#L3-L29

CHAPTER 51. I/O AND NETWORK 1022

MyStruct

x: Int64 1

y: Tuple{Int64, Int64}

source

Base.Meta.@dump – Macro.

@dump expr

Show every part of the representation of the given expression. Equivalent to dump(:(expr)).

source

Base.readline – Function.

readline(io::IO=stdin; keep::Bool=false)

readline(filename::AbstractString; keep::Bool=false)

Read a single line of text from the given I/O stream or file (defaults to stdin). When reading from a file,

the text is assumed to be encoded in UTF-8. Lines in the input end with '\n' or "\r\n" or the end of

an input stream. When keep is false (as it is by default), these trailing newline characters are removed

from the line before it is returned. When keep is true, they are returned as part of the line.

Examples

julia> write("my_file.txt", "JuliaLang is a GitHub organization.\nIt has many members.\n");

julia> readline("my_file.txt")

"JuliaLang is a GitHub organization."

julia> readline("my_file.txt", keep=true)

"JuliaLang is a GitHub organization.\n"

julia> rm("my_file.txt")

julia> print("Enter your name: ")

Enter your name:

julia> your_name = readline()

Logan

"Logan"

source

Base.readuntil – Function.

readuntil(stream::IO, delim; keep::Bool = false)

readuntil(filename::AbstractString, delim; keep::Bool = false)

Read a string from an I/O stream or a file, up to the given delimiter. The delimiter can be a UInt8,

AbstractChar, string, or vector. Keyword argument keep controls whether the delimiter is included in

the result. The text is assumed to be encoded in UTF-8.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/show.jl#L2968-L2995
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/meta.jl#L146-L151
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L522-L553

CHAPTER 51. I/O AND NETWORK 1023

julia> write("my_file.txt", "JuliaLang is a GitHub organization.\nIt has many members.\n");

julia> readuntil("my_file.txt", 'L')

"Julia"

julia> readuntil("my_file.txt", '.', keep = true)

"JuliaLang is a GitHub organization."

julia> rm("my_file.txt")

source

Base.readlines – Function.

readlines(io::IO=stdin; keep::Bool=false)

readlines(filename::AbstractString; keep::Bool=false)

Read all lines of an I/O stream or a file as a vector of strings. Behavior is equivalent to saving the result

of reading readline repeatedly with the same arguments and saving the resulting lines as a vector of

strings. See also eachline to iterate over the lines without reading them all at once.

Examples

julia> write("my_file.txt", "JuliaLang is a GitHub organization.\nIt has many members.\n");

julia> readlines("my_file.txt")

2-element Vector{String}:

"JuliaLang is a GitHub organization."

"It has many members."

julia> readlines("my_file.txt", keep=true)

2-element Vector{String}:

"JuliaLang is a GitHub organization.\n"

"It has many members.\n"

julia> rm("my_file.txt")

source

Base.eachline – Function.

eachline(io::IO=stdin; keep::Bool=false)

eachline(filename::AbstractString; keep::Bool=false)

Create an iterable EachLine object that will yield each line from an I/O stream or a file. Iteration

calls readline on the stream argument repeatedly with keep passed through, determining whether

trailing end-of-line characters are retained. When called with a file name, the file is opened once at the

beginning of iteration and closed at the end. If iteration is interrupted, the file will be closed when the

EachLine object is garbage collected.

To iterate over each line of a String, eachline(IOBuffer(str)) can be used.

Iterators.reverse can be used on an EachLine object to read the lines in reverse order (for files,

buffers, and other I/O streams supporting seek), and first or last can be used to extract the initial

or final lines, respectively.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L498-L519
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L572-L597

CHAPTER 51. I/O AND NETWORK 1024

Examples

julia> write("my_file.txt", "JuliaLang is a GitHub organization.\n It has many members.\n");

julia> for line in eachline("my_file.txt")

print(line)

end

JuliaLang is a GitHub organization. It has many members.

julia> rm("my_file.txt");

Julia 1.8

Julia 1.8 is required to use Iterators.reverse or last with eachline iterators.

source

Base.displaysize – Function.

displaysize([io::IO]) -> (lines, columns)

Return the nominal size of the screen that may be used for rendering output to this IO object. If no

input is provided, the environment variables LINES and COLUMNS are read. If those are not set, a default

size of (24, 80) is returned.

Examples

julia> withenv("LINES" => 30, "COLUMNS" => 100) do

displaysize()

end

(30, 100)

To get your TTY size,

julia> displaysize(stdout)

(34, 147)

source

51.3 Multimedia I/O

Just as text output is performed by print and user-defined types can indicate their textual representation

by overloading show, Julia provides a standardized mechanism for rich multimedia output (such as images,

formatted text, or even audio and video), consisting of three parts:

• A function display(x) to request the richest available multimedia display of a Julia object x (with a

plain-text fallback).

• Overloading show allows one to indicate arbitrary multimedia representations (keyed by standard

MIME types) of user-defined types.

• Multimedia-capable display backends may be registered by subclassing a generic AbstractDisplay

type and pushing them onto a stack of display backends via pushdisplay.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L1030-L1062
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stream.jl#L540-L562

CHAPTER 51. I/O AND NETWORK 1025

The base Julia runtime provides only plain-text display, but richer displays may be enabled by loading

external modules or by using graphical Julia environments (such as the IPython-based IJulia notebook).

Base.Multimedia.AbstractDisplay – Type.

AbstractDisplay

Abstract supertype for rich display output devices. TextDisplay is a subtype of this.

source

Base.Multimedia.display – Function.

display(x)

display(d::AbstractDisplay, x)

display(mime, x)

display(d::AbstractDisplay, mime, x)

Display x using the topmost applicable display in the display stack, typically using the richest supported

multimedia output for x, with plain-text stdout output as a fallback. The display(d, x) variant at-

tempts to display x on the given display d only, throwing a MethodError if d cannot display objects of

this type.

In general, you cannot assume that display output goes to stdout (unlike print(x) or show(x)). For

example, display(x) may open up a separate window with an image. display(x) means "show x

in the best way you can for the current output device(s)." If you want REPL-like text output that is

guaranteed to go to stdout, use show(stdout, "text/plain", x) instead.

There are also two variants with a mime argument (a MIME type string, such as "image/png"), which

attempt to display x using the requested MIME type only, throwing a MethodError if this type is not

supported by either the display(s) or by x. With these variants, one can also supply the "raw" data

in the requested MIME type by passing x::AbstractString (for MIME types with text-based storage,

such as text/html or application/postscript) or x::Vector{UInt8} (for binary MIME types).

To customize how instances of a type are displayed, overload show rather than display, as explained

in the manual section on custom pretty-printing.

source

Base.Multimedia.redisplay – Function.

redisplay(x)

redisplay(d::AbstractDisplay, x)

redisplay(mime, x)

redisplay(d::AbstractDisplay, mime, x)

By default, the redisplay functions simply call display. However, some display backends may over-

ride redisplay to modify an existing display of x (if any). Using redisplay is also a hint to the backend

that x may be redisplayed several times, and the backend may choose to defer the display until (for

example) the next interactive prompt.

source

Base.Multimedia.displayable – Function.

displayable(mime) -> Bool

displayable(d::AbstractDisplay, mime) -> Bool

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/multimedia.jl#L219-L224
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/multimedia.jl#L309-L335
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/multimedia.jl#L382-L394

CHAPTER 51. I/O AND NETWORK 1026

Return a boolean value indicating whether the given mime type (string) is displayable by any of the

displays in the current display stack, or specifically by the display d in the second variant.

source

Base.show – Method.

show(io::IO, mime, x)

The display functions ultimately call show in order to write an object x as a given mime type to a given

I/O stream io (usually a memory buffer), if possible. In order to provide a rich multimedia represen-

tation of a user-defined type T, it is only necessary to define a new show method for T, via: show(io,

::MIME"mime", x::T) = ..., where mime is a MIME-type string and the function body calls write (or

similar) to write that representation of x to io. (Note that the MIME"" notation only supports literal

strings; to construct MIME types in a more flexible manner use MIME{Symbol("")}.)

For example, if you define a MyImage type and know how to write it to a PNG file, you could define a

function show(io, ::MIME"image/png", x::MyImage) = ... to allow your images to be displayed

on any PNG-capable AbstractDisplay (such as IJulia). As usual, be sure to import Base.show in order

to add new methods to the built-in Julia function show.

Technically, the MIME"mime" macro defines a singleton type for the given mime string, which allows us

to exploit Julia's dispatch mechanisms in determining how to display objects of any given type.

The default MIME type is MIME"text/plain". There is a fallback definition for text/plain output

that calls show with 2 arguments, so it is not always necessary to add a method for that case. If a

type benefits from custom human-readable output though, show(::IO, ::MIME"text/plain", ::T)

should be defined. For example, the Day type uses 1 day as the output for the text/plain MIME type,

and Day(1) as the output of 2-argument show.

Examples

julia> struct Day

n::Int

end

julia> Base.show(io::IO, ::MIME"text/plain", d::Day) = print(io, d.n, " day")

julia> Day(1)

1 day

Container types generally implement 3-argument show by calling show(io, MIME"text/plain"(), x)

for elements x, with :compact => true set in an IOContext passed as the first argument.

source

Base.Multimedia.showable – Function.

showable(mime, x)

Return a boolean value indicating whether or not the object x can be written as the given mime type.

(By default, this is determined automatically by the existence of the corresponding show method for

typeof(x). Some types provide custom showablemethods; for example, if the available MIME formats

depend on the value of x.)

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/multimedia.jl#L231-L238
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/multimedia.jl#L79-L121

CHAPTER 51. I/O AND NETWORK 1027

julia> showable(MIME("text/plain"), rand(5))

true

julia> showable("image/png", rand(5))

false

source

Base.repr – Method.

repr(mime, x; context=nothing)

Return an AbstractString or Vector{UInt8} containing the representation of x in the requested mime

type, as written by show(io, mime, x) (throwing a MethodError if no appropriate show is available).

An AbstractString is returned for MIME types with textual representations (such as "text/html"

or "application/postscript"), whereas binary data is returned as Vector{UInt8}. (The function

istextmime(mime) returns whether or not Julia treats a given mime type as text.)

The optional keyword argument context can be set to :key=>value pair or an IO or IOContext object

whose attributes are used for the I/O stream passed to show.

As a special case, if x is an AbstractString (for textual MIME types) or a Vector{UInt8} (for binary

MIME types), the repr function assumes that x is already in the requested mime format and simply

returns x. This special case does not apply to the "text/plain" MIME type. This is useful so that raw

data can be passed to display(m::MIME, x).

In particular, repr("text/plain", x) is typically a "pretty-printed" version of x designed for human

consumption. See also repr(x) to instead return a string corresponding to show(x) that may be closer

to how the value of x would be entered in Julia.

Examples

julia> A = [1 2; 3 4];

julia> repr("text/plain", A)

"2×2 Matrix{Int64}:\n 1 2\n 3 4"

source

Base.Multimedia.MIME – Type.

MIME

A type representing a standard internet data format. "MIME" stands for "Multipurpose Internet Mail

Extensions", since the standard was originally used to describe multimedia attachments to email mes-

sages.

A MIME object can be passed as the second argument to show to request output in that format.

Examples

julia> show(stdout, MIME("text/plain"), "hi")

"hi"

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/multimedia.jl#L57-L75
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/multimedia.jl#L125-L158
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/multimedia.jl#L16-L31

CHAPTER 51. I/O AND NETWORK 1028

Base.Multimedia.@MIME_str – Macro.

@MIME_str

A convenience macro for writing MIME types, typically used when adding methods to show. For example

the syntax show(io::IO, ::MIME"text/html", x::MyType) = ... could be used to define how to

write an HTML representation of MyType.

source

As mentioned above, one can also define new display backends. For example, a module that can display

PNG images in a window can register this capability with Julia, so that calling display(x) on types with

PNG representations will automatically display the image using the module's window.

In order to define a new display backend, one should first create a subtype D of the abstract class AbstractDisplay.

Then, for eachMIME type (mime string) that can be displayed on D, one should define a function display(d::D,

::MIME"mime", x) = ... that displays x as that MIME type, usually by calling show(io, mime, x) or

repr(io, mime, x). A MethodError should be thrown if x cannot be displayed as that MIME type; this is

automatic if one calls show or repr. Finally, one should define a function display(d::D, x) that queries

showable(mime, x) for the mime types supported by D and displays the "best" one; a MethodError should

be thrown if no supported MIME types are found for x. Similarly, some subtypes may wish to override

redisplay(d::D, ...). (Again, one should import Base.display to add new methods to display.) The

return values of these functions are up to the implementation (since in some cases it may be useful to re-

turn a display "handle" of some type). The display functions for D can then be called directly, but they can

also be invoked automatically from display(x) simply by pushing a new display onto the display-backend

stack with:

Base.Multimedia.pushdisplay – Function.

pushdisplay(d::AbstractDisplay)

Pushes a new display d on top of the global display-backend stack. Calling display(x) or display(mime,

x) will display x on the topmost compatible backend in the stack (i.e., the topmost backend that does

not throw a MethodError).

source

Base.Multimedia.popdisplay – Function.

popdisplay()

popdisplay(d::AbstractDisplay)

Pop the topmost backend off of the display-backend stack, or the topmost copy of d in the second

variant.

source

Base.Multimedia.TextDisplay – Type.

TextDisplay(io::IO)

Return a TextDisplay <: AbstractDisplay, which displays any object as the text/plain MIME type

(by default), writing the text representation to the given I/O stream. (This is how objects are printed in

the Julia REPL.)

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/multimedia.jl#L34-L41
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/multimedia.jl#L274-L280
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/multimedia.jl#L286-L292
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/multimedia.jl#L244-L250

CHAPTER 51. I/O AND NETWORK 1029

Base.Multimedia.istextmime – Function.

istextmime(m::MIME)

Determine whether a MIME type is text data. MIME types are assumed to be binary data except for a

set of types known to be text data (possibly Unicode).

Examples

julia> istextmime(MIME("text/plain"))

true

julia> istextmime(MIME("image/png"))

false

source

51.4 Network I/O

Base.bytesavailable – Function.

bytesavailable(io)

Return the number of bytes available for reading before a read from this stream or buffer will block.

Examples

julia> io = IOBuffer("JuliaLang is a GitHub organization");

julia> bytesavailable(io)

34

source

Base.ntoh – Function.

ntoh(x)

Convert the endianness of a value from Network byte order (big-endian) to that used by the Host.

source

Base.hton – Function.

hton(x)

Convert the endianness of a value from that used by the Host to Network byte order (big-endian).

source

Base.ltoh – Function.

ltoh(x)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/multimedia.jl#L180-L194
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L94-L106
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L636-L640
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L643-L647

CHAPTER 51. I/O AND NETWORK 1030

Convert the endianness of a value from Little-endian to that used by the Host.

source

Base.htol – Function.

htol(x)

Convert the endianness of a value from that used by the Host to Little-endian.

source

Base.ENDIAN_BOM – Constant.

ENDIAN_BOM

The 32-bit byte-order-mark indicates the native byte order of the host machine. Little-endian machines

will contain the value 0x04030201. Big-endian machines will contain the value 0x01020304.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L650-L654
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L657-L661
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/io.jl#L627-L633

Chapter 52

Punctuation

Extended documentation for mathematical symbols & functions is here.

1031

CHAPTER 52. PUNCTUATION 1032

sym-

bol

meaning

@ the at-sign marks a macro invocation; optionally followed by an argument list

! an exclamation mark is a prefix operator for logical negation ("not")

a! function names that end with an exclamation mark modify one or more of their arguments by

convention

the number sign (or hash or pound) character begins single line comments

#= when followed by an equals sign, it begins a multi-line comment (these are nestable)

=# end a multi-line comment by immediately preceding the number sign with an equals sign

$ the dollar sign is used for string and expression interpolation

% the percent symbol is the remainder operator

^ the caret is the exponentiation operator

& single ampersand is bitwise and

&& double ampersands is short-circuiting boolean and

| single pipe character is bitwise or

|| double pipe characters is short-circuiting boolean or

⊻ the unicode xor character is bitwise exclusive or

~ the tilde is an operator for bitwise not

' a trailing apostrophe is the adjoint (that is, the complex transpose) operator Aᴴ

* the asterisk is used for multiplication, including matrix multiplication and string

concatenation

/ forward slash divides the argument on its left by the one on its right

\ backslash operator divides the argument on its right by the one on its left, commonly used to

solve matrix equations

() parentheses with no arguments constructs an empty Tuple

(a,...) parentheses with comma-separated arguments constructs a tuple containing its arguments

(a=1,...)parentheses with comma-separated assignments constructs a NamedTuple

(x;y) parentheses can also be used to group one or more semicolon separated expressions

a[] array indexing (calling getindex or setindex!)

[,] vector literal constructor (calling vect)

[;] vertical concatenation (calling vcat or hvcat)

[] with space-separated expressions, horizontal concatenation (calling hcat or hvcat)

T{ } curly braces following a type list that type's parameters

{} curly braces can also be used to group multiple where expressions in function declarations

; semicolons separate statements, begin a list of keyword arguments in function declarations

or calls, or are used to separate array literals for vertical concatenation

, commas separate function arguments or tuple or array components

? the question mark delimits the ternary conditional operator (used like: conditional ?

if_true : if_false)

" " the single double-quote character delimits String literals

"""

"""

three double-quote characters delimits string literals that may contain " and ignore leading

indentation

' ' the single-quote character delimits Char (that is, character) literals

` ` the backtick character delimits external process (Cmd) literals

A... triple periods are a postfix operator that "splat" their arguments' contents into many

arguments of a function call or declare a varargs function that "slurps" up many arguments

into a single tuple

a.b single periods access named fields in objects/modules (calling getproperty or

setproperty!)

f.() periods may also prefix parentheses (like f.(...)) or infix operators (like .+) to perform the

function element-wise (calling broadcast)

a:b colons (:) used as a binary infix operator construct a range from a to b (inclusive) with fixed

step size 1

a:s:b colons (:) used as a ternary infix operator construct a range from a to b (inclusive) with step

size s

: when used by themselves, Colons represent all indices within a dimension, frequently

combined with indexing

:: double-colons represent a type annotation or typeassert, depending on context, frequently

used when declaring function arguments

:() quoted expression

:a Symbol a

<: subtype operator

>: supertype operator (reverse of subtype operator)

= single equals sign is assignment

== double equals sign is value equality comparison

=== triple equals sign is programmatically identical equality comparison

=> right arrow using an equals sign defines a Pair typically used to populate dictionaries

-> right arrow using a hyphen defines an anonymous function on a single line

|> pipe operator passes output from the left argument to input of the right argument, usually a

function

∘ function composition operator (typed with \circ{tab}) combines two functions as though they

are a single larger function

_ underscores may be assigned values which will not be saved, often used to ignore multiple

return values or create repetitive comprehensions

Chapter 53

Sorting and Related Functions

Julia has an extensive, flexible API for sorting and interacting with already-sorted arrays of values. By

default, Julia picks reasonable algorithms and sorts in ascending order:

julia> sort([2,3,1])

3-element Vector{Int64}:

1

2

3

You can sort in reverse order as well:

julia> sort([2,3,1], rev=true)

3-element Vector{Int64}:

3

2

1

sort constructs a sorted copy leaving its input unchanged. Use the "bang" version of the sort function to

mutate an existing array:

julia> a = [2,3,1];

julia> sort!(a);

julia> a

3-element Vector{Int64}:

1

2

3

Instead of directly sorting an array, you can compute a permutation of the array's indices that puts the

array into sorted order:

1033

CHAPTER 53. SORTING AND RELATED FUNCTIONS 1034

julia> v = randn(5)

5-element Array{Float64,1}:

0.297288

0.382396

-0.597634

-0.0104452

-0.839027

julia> p = sortperm(v)

5-element Array{Int64,1}:

5

3

4

1

2

julia> v[p]

5-element Array{Float64,1}:

-0.839027

-0.597634

-0.0104452

0.297288

0.382396

Arrays can be sorted according to an arbitrary transformation of their values:

julia> sort(v, by=abs)

5-element Array{Float64,1}:

-0.0104452

0.297288

0.382396

-0.597634

-0.839027

Or in reverse order by a transformation:

julia> sort(v, by=abs, rev=true)

5-element Array{Float64,1}:

-0.839027

-0.597634

0.382396

0.297288

-0.0104452

If needed, the sorting algorithm can be chosen:

julia> sort(v, alg=InsertionSort)

5-element Array{Float64,1}:

-0.839027

-0.597634

-0.0104452

CHAPTER 53. SORTING AND RELATED FUNCTIONS 1035

0.297288

0.382396

All the sorting and order related functions rely on a "less than" relation defining a strict weak order on the

values to be manipulated. The isless function is invoked by default, but the relation can be specified via

the lt keyword, a function that takes two array elements and returns true if and only if the first argument

is "less than" the second. See sort! and Alternate Orderings for more information.

53.1 Sorting Functions

Base.sort! – Function.

sort!(v; alg::Algorithm=defalg(v), lt=isless, by=identity, rev::Bool=false,

order::Ordering=Forward)↪→

Sort the vector v in place. A stable algorithm is used by default: the ordering of elements that compare

equal is preserved. A specific algorithm can be selected via the alg keyword (see Sorting Algorithms

for available algorithms).

Elements are first transformed with the function by and then compared according to either the function

lt or the ordering order. Finally, the resulting order is reversed if rev=true (this preserves forward

stability: elements that compare equal are not reversed). The current implemention applies the by

transformation before each comparison rather than once per element.

Passing an lt other than isless alongwith an order other than Base.Order.Forward or Base.Order.Reverse

is not permitted, otherwise all options are independent and can be used together in all possible com-

binations. Note that order can also include a "by" transformation, in which case it is applied after

that defined with the by keyword. For more information on order values see the documentation on

Alternate Orderings.

Relations between two elements are defined as follows (with "less" and "greater" exchanged when

rev=true):

• x is less than y if lt(by(x), by(y)) (or Base.Order.lt(order, by(x), by(y))) yields true.

• x is greater than y if y is less than x.

• x and y are equivalent if neither is less than the other ("incomparable" is sometimes used as a

synonym for "equivalent").

The result of sort! is sorted in the sense that every element is greater than or equivalent to the

previous one.

The lt function must define a strict weak order, that is, it must be

• irreflexive: lt(x, x) always yields false,

• asymmetric: if lt(x, y) yields true then lt(y, x) yields false,

• transitive: lt(x, y) && lt(y, z) implies lt(x, z),

• transitive in equivalence: !lt(x, y) && !lt(y, x) and !lt(y, z) && !lt(z, y) together im-

ply !lt(x, z) && !lt(z, x). In words: if x and y are equivalent and y and z are equivalent then

x and z must be equivalent.

https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings

CHAPTER 53. SORTING AND RELATED FUNCTIONS 1036

For example < is a valid lt function for Int values but ≤ is not: it violates irreflexivity. For Float64

values even < is invalid as it violates the fourth condition: 1.0 and NaN are equivalent and so are NaN

and 2.0 but 1.0 and 2.0 are not equivalent.

See also sort, sortperm, sortslices, partialsort!, partialsortperm, issorted, searchsorted,

insorted, Base.Order.ord.

Examples

julia> v = [3, 1, 2]; sort!(v); v

3-element Vector{Int64}:

1

2

3

julia> v = [3, 1, 2]; sort!(v, rev = true); v

3-element Vector{Int64}:

3

2

1

julia> v = [(1, "c"), (3, "a"), (2, "b")]; sort!(v, by = x -> x[1]); v

3-element Vector{Tuple{Int64, String}}:

(1, "c")

(2, "b")

(3, "a")

julia> v = [(1, "c"), (3, "a"), (2, "b")]; sort!(v, by = x -> x[2]); v

3-element Vector{Tuple{Int64, String}}:

(3, "a")

(2, "b")

(1, "c")

julia> sort(0:3, by=x->x-2, order=Base.Order.By(abs)) # same as sort(0:3, by=abs(x->x-2))

4-element Vector{Int64}:

2

1

3

0

julia> sort([2, NaN, 1, NaN, 3]) # correct sort with default lt=isless

5-element Vector{Float64}:

1.0

2.0

3.0

NaN

NaN

julia> sort([2, NaN, 1, NaN, 3], lt=<) # wrong sort due to invalid lt. This behavior is

undefined.↪→

5-element Vector{Float64}:

2.0

NaN

1.0

CHAPTER 53. SORTING AND RELATED FUNCTIONS 1037

NaN

3.0

source

sort!(A; dims::Integer, alg::Algorithm=defalg(A), lt=isless, by=identity, rev::Bool=false,

order::Ordering=Forward)

Sort the multidimensional array A along dimension dims. See the one-dimensional version of sort! for

a description of possible keyword arguments.

To sort slices of an array, refer to sortslices.

Julia 1.1

This function requires at least Julia 1.1.

Examples

julia> A = [4 3; 1 2]

2×2 Matrix{Int64}:

4 3

1 2

julia> sort!(A, dims = 1); A

2×2 Matrix{Int64}:

1 2

4 3

julia> sort!(A, dims = 2); A

2×2 Matrix{Int64}:

1 2

3 4

source

Base.sort – Function.

sort(v; alg::Algorithm=defalg(v), lt=isless, by=identity, rev::Bool=false,

order::Ordering=Forward)↪→

Variant of sort! that returns a sorted copy of v leaving v itself unmodified.

Examples

julia> v = [3, 1, 2];

julia> sort(v)

3-element Vector{Int64}:

1

2

3

julia> v

3-element Vector{Int64}:

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sort.jl#L1354-L1455
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sort.jl#L1828-L1857

CHAPTER 53. SORTING AND RELATED FUNCTIONS 1038

3

1

2

source

sort(A; dims::Integer, alg::Algorithm=defalg(A), lt=isless, by=identity, rev::Bool=false,

order::Ordering=Forward)

Sort a multidimensional array A along the given dimension. See sort! for a description of possible

keyword arguments.

To sort slices of an array, refer to sortslices.

Examples

julia> A = [4 3; 1 2]

2×2 Matrix{Int64}:

4 3

1 2

julia> sort(A, dims = 1)

2×2 Matrix{Int64}:

1 2

4 3

julia> sort(A, dims = 2)

2×2 Matrix{Int64}:

3 4

1 2

source

Base.sortperm – Function.

sortperm(A; alg::Algorithm=DEFAULT_UNSTABLE, lt=isless, by=identity, rev::Bool=false,

order::Ordering=Forward, [dims::Integer])↪→

Return a permutation vector or array I that puts A[I] in sorted order along the given dimension. If

A has more than one dimension, then the dims keyword argument must be specified. The order is

specified using the same keywords as sort!. The permutation is guaranteed to be stable even if the

sorting algorithm is unstable: the indices of equal elements will appear in ascending order.

See also sortperm!, partialsortperm, invperm, indexin. To sort slices of an array, refer to sortslices.

Julia 1.9

The method accepting dims requires at least Julia 1.9.

Examples

julia> v = [3, 1, 2];

julia> p = sortperm(v)

3-element Vector{Int64}:

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sort.jl#L1467-L1488
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sort.jl#L1756-L1782

CHAPTER 53. SORTING AND RELATED FUNCTIONS 1039

2

3

1

julia> v[p]

3-element Vector{Int64}:

1

2

3

julia> A = [8 7; 5 6]

2×2 Matrix{Int64}:

8 7

5 6

julia> sortperm(A, dims = 1)

2×2 Matrix{Int64}:

2 4

1 3

julia> sortperm(A, dims = 2)

2×2 Matrix{Int64}:

3 1

2 4

source

Base.Sort.InsertionSort – Constant.

InsertionSort

Use the insertion sort algorithm.

Insertion sort traverses the collection one element at a time, inserting each element into its correct,

sorted position in the output vector.

Characteristics:

• stable: preserves the ordering of elements that compare equal

(e.g. "a" and "A" in a sort of letters that ignores case).

• in-place in memory.

• quadratic performance in the number of elements to be sorted:

it is well-suited to small collections but should not be used for large ones.

source

Base.Sort.MergeSort – Constant.

MergeSort

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sort.jl#L1590-L1636
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sort.jl#L759-L773

CHAPTER 53. SORTING AND RELATED FUNCTIONS 1040

Indicate that a sorting function should use the merge sort algorithm. Merge sort divides the collection

into subcollections and repeatedly merges them, sorting each subcollection at each step, until the

entire collection has been recombined in sorted form.

Characteristics:

• stable: preserves the ordering of elements that compare equal (e.g. "a" and "A" in a sort of letters

that ignores case).

• not in-place in memory.

• divide-and-conquer sort strategy.

• good performance for large collections but typically not quite as fast as QuickSort.

source

Base.Sort.QuickSort – Constant.

QuickSort

Indicate that a sorting function should use the quick sort algorithm, which is not stable.

Characteristics:

• not stable: does not preserve the ordering of elements that compare equal (e.g. "a" and "A" in a

sort of letters that ignores case).

• in-place in memory.

• divide-and-conquer: sort strategy similar to MergeSort.

• good performance for large collections.

source

Base.Sort.PartialQuickSort – Type.

PartialQuickSort{T <: Union{Integer,OrdinalRange}}

Indicate that a sorting function should use the partial quick sort algorithm. PartialQuickSort(k) is

like QuickSort, but is only required to find and sort the elements that would end up in v[k] were v

fully sorted.

Characteristics:

• not stable: does not preserve the ordering of elements that compare equal (e.g. "a" and "A" in a

sort of letters that ignores case).

• in-place in memory.

• divide-and-conquer: sort strategy similar to MergeSort.

Note that PartialQuickSort(k) does not necessarily sort the whole array. For example,

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sort.jl#L2034-L2051
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sort.jl#L2018-L2031

CHAPTER 53. SORTING AND RELATED FUNCTIONS 1041

julia> x = rand(100);

julia> k = 50:100;

julia> s1 = sort(x; alg=QuickSort);

julia> s2 = sort(x; alg=PartialQuickSort(k));

julia> map(issorted, (s1, s2))

(true, false)

julia> map(x->issorted(x[k]), (s1, s2))

(true, true)

julia> s1[k] == s2[k]

true

source

Base.Sort.sortperm! – Function.

sortperm!(ix, A; alg::Algorithm=DEFAULT_UNSTABLE, lt=isless, by=identity, rev::Bool=false,

order::Ordering=Forward, [dims::Integer])↪→

Like sortperm, but accepts a preallocated index vector or array ix with the same axes as A. ix is

initialized to contain the values LinearIndices(A).

Warning

Behavior can be unexpected when any mutated argument shares memory with any other

argument.

Julia 1.9

The method accepting dims requires at least Julia 1.9.

Examples

julia> v = [3, 1, 2]; p = zeros(Int, 3);

julia> sortperm!(p, v); p

3-element Vector{Int64}:

2

3

1

julia> v[p]

3-element Vector{Int64}:

1

2

3

julia> A = [8 7; 5 6]; p = zeros(Int,2, 2);

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sort.jl#L1979-L2013

CHAPTER 53. SORTING AND RELATED FUNCTIONS 1042

julia> sortperm!(p, A; dims=1); p

2×2 Matrix{Int64}:

2 4

1 3

julia> sortperm!(p, A; dims=2); p

2×2 Matrix{Int64}:

3 1

2 4

source

Base.sortslices – Function.

sortslices(A; dims, alg::Algorithm=DEFAULT_UNSTABLE, lt=isless, by=identity, rev::Bool=false,

order::Ordering=Forward)↪→

Sort slices of an array A. The required keyword argument dims must be either an integer or a tuple of

integers. It specifies the dimension(s) over which the slices are sorted.

E.g., if A is a matrix, dims=1 will sort rows, dims=2 will sort columns. Note that the default comparison

function on one dimensional slices sorts lexicographically.

For the remaining keyword arguments, see the documentation of sort!.

Examples

julia> sortslices([7 3 5; -1 6 4; 9 -2 8], dims=1) # Sort rows

3×3 Matrix{Int64}:

-1 6 4

7 3 5

9 -2 8

julia> sortslices([7 3 5; -1 6 4; 9 -2 8], dims=1, lt=(x,y)->isless(x[2],y[2]))

3×3 Matrix{Int64}:

9 -2 8

7 3 5

-1 6 4

julia> sortslices([7 3 5; -1 6 4; 9 -2 8], dims=1, rev=true)

3×3 Matrix{Int64}:

9 -2 8

7 3 5

-1 6 4

julia> sortslices([7 3 5; 6 -1 -4; 9 -2 8], dims=2) # Sort columns

3×3 Matrix{Int64}:

3 5 7

-1 -4 6

-2 8 9

julia> sortslices([7 3 5; 6 -1 -4; 9 -2 8], dims=2, alg=InsertionSort,

lt=(x,y)->isless(x[2],y[2]))↪→

3×3 Matrix{Int64}:

5 3 7

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sort.jl#L1668-L1707

CHAPTER 53. SORTING AND RELATED FUNCTIONS 1043

-4 -1 6

8 -2 9

julia> sortslices([7 3 5; 6 -1 -4; 9 -2 8], dims=2, rev=true)

3×3 Matrix{Int64}:

7 5 3

6 -4 -1

9 8 -2

Higher dimensions

sortslices extends naturally to higher dimensions. E.g., if A is a a 2x2x2 array, sortslices(A,

dims=3) will sort slices within the 3rd dimension, passing the 2x2 slices A[:, :, 1] and A[:, :, 2]

to the comparison function. Note that while there is no default order on higher-dimensional slices, you

may use the by or lt keyword argument to specify such an order.

If dims is a tuple, the order of the dimensions in dims is relevant and specifies the linear order of the

slices. E.g., if A is three dimensional and dims is (1, 2), the orderings of the first two dimensions

are re-arranged such that the slices (of the remaining third dimension) are sorted. If dims is (2, 1)

instead, the same slices will be taken, but the result order will be row-major instead.

Higher dimensional examples

julia> A = permutedims(reshape([4 3; 2 1; 'A' 'B'; 'C' 'D'], (2, 2, 2)), (1, 3, 2))

2×2×2 Array{Any, 3}:

[:, :, 1] =

4 3

2 1

[:, :, 2] =

'A' 'B'

'C' 'D'

julia> sortslices(A, dims=(1,2))

2×2×2 Array{Any, 3}:

[:, :, 1] =

1 3

2 4

[:, :, 2] =

'D' 'B'

'C' 'A'

julia> sortslices(A, dims=(2,1))

2×2×2 Array{Any, 3}:

[:, :, 1] =

1 2

3 4

[:, :, 2] =

'D' 'C'

'B' 'A'

julia> sortslices(reshape([5; 4; 3; 2; 1], (1,1,5)), dims=3, by=x->x[1,1])

1×1×5 Array{Int64, 3}:

CHAPTER 53. SORTING AND RELATED FUNCTIONS 1044

[:, :, 1] =

1

[:, :, 2] =

2

[:, :, 3] =

3

[:, :, 4] =

4

[:, :, 5] =

5

source

53.2 Order-Related Functions

Base.issorted – Function.

issorted(v, lt=isless, by=identity, rev::Bool=false, order::Ordering=Forward)

Test whether a collection is in sorted order. The keywords modify what order is considered sorted, as

described in the sort! documentation.

Examples

julia> issorted([1, 2, 3])

true

julia> issorted([(1, "b"), (2, "a")], by = x -> x[1])

true

julia> issorted([(1, "b"), (2, "a")], by = x -> x[2])

false

julia> issorted([(1, "b"), (2, "a")], by = x -> x[2], rev=true)

true

julia> issorted([1, 2, -2, 3], by=abs)

true

source

Base.Sort.searchsorted – Function.

searchsorted(v, x; by=identity, lt=isless, rev=false)

Return the range of indices in v where values are equivalent to x, or an empty range located at the

insertion point if v does not contain values equivalent to x. The vector v must be sorted according to

the order defined by the keywords. Refer to sort! for the meaning of the keywords and the definition

of equivalence. Note that the by function is applied to the searched value x as well as the values in v.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/multidimensional.jl#L1778-L1894
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sort.jl#L64-L87

CHAPTER 53. SORTING AND RELATED FUNCTIONS 1045

The range is generally found using binary search, but there are optimized implementations for some

inputs.

See also: searchsortedfirst, sort!, insorted, findall.

Examples

julia> searchsorted([1, 2, 4, 5, 5, 7], 4) # single match

3:3

julia> searchsorted([1, 2, 4, 5, 5, 7], 5) # multiple matches

4:5

julia> searchsorted([1, 2, 4, 5, 5, 7], 3) # no match, insert in the middle

3:2

julia> searchsorted([1, 2, 4, 5, 5, 7], 9) # no match, insert at end

7:6

julia> searchsorted([1, 2, 4, 5, 5, 7], 0) # no match, insert at start

1:0

julia> searchsorted([1=>"one", 2=>"two", 2=>"two", 4=>"four"], 2=>"two", by=first) # compare

the keys of the pairs↪→

2:3

source

Base.Sort.searchsortedfirst – Function.

searchsortedfirst(v, x; by=identity, lt=isless, rev=false)

Return the index of the first value in v greater than or equivalent to x. If x is greater than all values in

v, return lastindex(v) + 1.

The vector v must be sorted according to the order defined by the keywords. insert!ing x at the

returned index will maintain the sorted order. Refer to sort! for the meaning of the keywords and the

definition of "greater than" and equivalence. Note that the by function is applied to the searched value

x as well as the values in v.

The index is generally found using binary search, but there are optimized implementations for some

inputs.

See also: searchsortedlast, searchsorted, findfirst.

Examples

julia> searchsortedfirst([1, 2, 4, 5, 5, 7], 4) # single match

3

julia> searchsortedfirst([1, 2, 4, 5, 5, 7], 5) # multiple matches

4

julia> searchsortedfirst([1, 2, 4, 5, 5, 7], 3) # no match, insert in the middle

3

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sort.jl#L297-L332

CHAPTER 53. SORTING AND RELATED FUNCTIONS 1046

julia> searchsortedfirst([1, 2, 4, 5, 5, 7], 9) # no match, insert at end

7

julia> searchsortedfirst([1, 2, 4, 5, 5, 7], 0) # no match, insert at start

1

julia> searchsortedfirst([1=>"one", 2=>"two", 4=>"four"], 3=>"three", by=first) # compare the

keys of the pairs↪→

3

source

Base.Sort.searchsortedlast – Function.

searchsortedlast(v, x; by=identity, lt=isless, rev=false)

Return the index of the last value in v less than or equivalent to x. If x is less than all values in v the

function returns firstindex(v) - 1.

The vector v must be sorted according to the order defined by the keywords. Refer to sort! for the

meaning of the keywords and the definition of "less than" and equivalence. Note that the by function

is applied to the searched value x as well as the values in v.

The index is generally found using binary search, but there are optimized implementations for some

inputs

Examples

julia> searchsortedlast([1, 2, 4, 5, 5, 7], 4) # single match

3

julia> searchsortedlast([1, 2, 4, 5, 5, 7], 5) # multiple matches

5

julia> searchsortedlast([1, 2, 4, 5, 5, 7], 3) # no match, insert in the middle

2

julia> searchsortedlast([1, 2, 4, 5, 5, 7], 9) # no match, insert at end

6

julia> searchsortedlast([1, 2, 4, 5, 5, 7], 0) # no match, insert at start

0

julia> searchsortedlast([1=>"one", 2=>"two", 4=>"four"], 3=>"three", by=first) # compare the

keys of the pairs↪→

2

source

Base.Sort.insorted – Function.

insorted(x, v; by=identity, lt=isless, rev=false) -> Bool

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sort.jl#L334-L371
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sort.jl#L373-L407

CHAPTER 53. SORTING AND RELATED FUNCTIONS 1047

Determine whether a vector v contains any value equivalent to x. The vector vmust be sorted accord-

ing to the order defined by the keywords. Refer to sort! for the meaning of the keywords and the

definition of equivalence. Note that the by function is applied to the searched value x as well as the

values in v.

The check is generally done using binary search, but there are optimized implementations for some

inputs.

See also in.

Examples

julia> insorted(4, [1, 2, 4, 5, 5, 7]) # single match

true

julia> insorted(5, [1, 2, 4, 5, 5, 7]) # multiple matches

true

julia> insorted(3, [1, 2, 4, 5, 5, 7]) # no match

false

julia> insorted(9, [1, 2, 4, 5, 5, 7]) # no match

false

julia> insorted(0, [1, 2, 4, 5, 5, 7]) # no match

false

julia> insorted(2=>"TWO", [1=>"one", 2=>"two", 4=>"four"], by=first) # compare the keys of

the pairs↪→

true

Julia 1.6

insorted was added in Julia 1.6.

source

Base.Sort.partialsort! – Function.

partialsort!(v, k; by=identity, lt=isless, rev=false)

Partially sort the vector v in place so that the value at index k (or range of adjacent values if k is

a range) occurs at the position where it would appear if the array were fully sorted. If k is a single

index, that value is returned; if k is a range, an array of values at those indices is returned. Note that

partialsort! may not fully sort the input array.

For the keyword arguments, see the documentation of sort!.

Examples

julia> a = [1, 2, 4, 3, 4]

5-element Vector{Int64}:

1

2

4

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sort.jl#L409-L446

CHAPTER 53. SORTING AND RELATED FUNCTIONS 1048

3

4

julia> partialsort!(a, 4)

4

julia> a

5-element Vector{Int64}:

1

2

3

4

4

julia> a = [1, 2, 4, 3, 4]

5-element Vector{Int64}:

1

2

4

3

4

julia> partialsort!(a, 4, rev=true)

2

julia> a

5-element Vector{Int64}:

4

4

3

2

1

source

Base.Sort.partialsort – Function.

partialsort(v, k, by=identity, lt=isless, rev=false)

Variant of partialsort! that copies v before partially sorting it, thereby returning the same thing as

partialsort! but leaving v unmodified.

source

Base.Sort.partialsortperm – Function.

partialsortperm(v, k; by=ientity, lt=isless, rev=false)

Return a partial permutation I of the vector v, so that v[I] returns values of a fully sorted version of v

at index k. If k is a range, a vector of indices is returned; if k is an integer, a single index is returned.

The order is specified using the same keywords as sort!. The permutation is stable: the indices of

equal elements will appear in ascending order.

This function is equivalent to, but more efficient than, calling sortperm(...)[k].

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sort.jl#L100-L152
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sort.jl#L157-L162

CHAPTER 53. SORTING AND RELATED FUNCTIONS 1049

julia> v = [3, 1, 2, 1];

julia> v[partialsortperm(v, 1)]

1

julia> p = partialsortperm(v, 1:3)

3-element view(::Vector{Int64}, 1:3) with eltype Int64:

2

4

3

julia> v[p]

3-element Vector{Int64}:

1

1

2

source

Base.Sort.partialsortperm! – Function.

partialsortperm!(ix, v, k; by=identity, lt=isless, rev=false)

Like partialsortperm, but accepts a preallocated index vector ix the same size as v, which is used

to store (a permutation of) the indices of v.

ix is initialized to contain the indices of v.

(Typically, the indices of v will be 1:length(v), although if v has an alternative array type with non-

one-based indices, such as an OffsetArray, ix must share those same indices)

Upon return, ix is guaranteed to have the indices k in their sorted positions, such that

partialsortperm!(ix, v, k);

v[ix[k]] == partialsort(v, k)

The return value is the kth element of ix if k is an integer, or view into ix if k is a range.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other

argument.

Examples

julia> v = [3, 1, 2, 1];

julia> ix = Vector{Int}(undef, 4);

julia> partialsortperm!(ix, v, 1)

2

julia> ix = [1:4;];

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sort.jl#L1493-L1523

CHAPTER 53. SORTING AND RELATED FUNCTIONS 1050

julia> partialsortperm!(ix, v, 2:3)

2-element view(::Vector{Int64}, 2:3) with eltype Int64:

4

3

source

53.3 Sorting Algorithms

There are currently four sorting algorithms publicly available in base Julia:

• InsertionSort

• QuickSort

• PartialQuickSort(k)

• MergeSort

By default, the sort family of functions uses stable sorting algorithms that are fast on most inputs. The

exact algorithm choice is an implementation detail to allow for future performance improvements. Cur-

rently, a hybrid of RadixSort, ScratchQuickSort, InsertionSort, and CountingSort is used based on

input type, size, and composition. Implementation details are subject to change but currently available

in the extended help of ??Base.DEFAULT_STABLE and the docstrings of internal sorting algorithms listed

there.

You can explicitly specify your preferred algorithmwith the alg keyword (e.g. sort!(v, alg=PartialQuickSort(10:20)))

or reconfigure the default sorting algorithm for custom types by adding a specialized method to the

Base.Sort.defalg function. For example, InlineStrings.jl defines the following method:

Base.Sort.defalg(::AbstractArray{<:Union{SmallInlineStrings, Missing}}) = InlineStringSort

Julia 1.9

The default sorting algorithm (returned by Base.Sort.defalg) is guaranteed to be stable since

Julia 1.9. Previous versions had unstable edge cases when sorting numeric arrays.

53.4 Alternate Orderings

By default, sort, searchsorted, and related functions use isless to compare two elements in order to

determine which should come first. The Base.Order.Ordering abstract type provides a mechanism for

defining alternate orderings on the same set of elements: when calling a sorting function like sort!, an

instance of Ordering can be provided with the keyword argument order.

Instances of Ordering define an order through the Base.Order.lt function, which works as a generaliza-

tion of isless. This function's behavior on custom Orderings must satisfy all the conditions of a strict

weak order. See sort! for details and examples of valid and invalid lt functions.

Base.Order.Ordering – Type.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/sort.jl#L1527-L1566
https://github.com/JuliaStrings/InlineStrings.jl/blob/v1.3.2/src/InlineStrings.jl#L903
https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings
https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings

CHAPTER 53. SORTING AND RELATED FUNCTIONS 1051

Base.Order.Ordering

Abstract type which represents a total order on some set of elements.

Use Base.Order.lt to compare two elements according to the ordering.

source

Base.Order.lt – Function.

lt(o::Ordering, a, b)

Test whether a is less than b according to the ordering o.

source

Base.Order.ord – Function.

ord(lt, by, rev::Union{Bool, Nothing}, order::Ordering=Forward)

Construct an Ordering object from the same arguments used by sort!. Elements are first transformed

by the function by (which may be identity) and are then compared according to either the function

lt or an existing ordering order. lt should be isless or a function that obeys the same rules as the

lt parameter of sort!. Finally, the resulting order is reversed if rev=true.

Passing an lt other than isless alongwith an order other than Base.Order.Forward or Base.Order.Reverse

is not permitted, otherwise all options are independent and can be used together in all possible com-

binations.

source

Base.Order.Forward – Constant.

Base.Order.Forward

Default ordering according to isless.

source

Base.Order.ReverseOrdering – Type.

ReverseOrdering(fwd::Ordering=Forward)

A wrapper which reverses an ordering.

For a given Ordering o, the following holds for all a, b:

lt(ReverseOrdering(o), a, b) == lt(o, b, a)

source

Base.Order.Reverse – Constant.

Base.Order.Reverse

Reverse ordering according to isless.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/ordering.jl#L21-L27
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/ordering.jl#L112-L116
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/ordering.jl#L141-L156
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/ordering.jl#L59-L63
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/ordering.jl#L32-L40
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/ordering.jl#L66-L70

CHAPTER 53. SORTING AND RELATED FUNCTIONS 1052

Base.Order.By – Type.

By(by, order::Ordering=Forward)

Ordering which applies order to elements after they have been transformed by the function by.

source

Base.Order.Lt – Type.

Lt(lt)

Ordering that calls lt(a, b) to compare elements. ltmust obey the same rules as the lt parameter

of sort!.

source

Base.Order.Perm – Type.

Perm(order::Ordering, data::AbstractVector)

Ordering on the indices of data where i is less than j if data[i] is less than data[j] according to

order. In the case that data[i] and data[j] are equal, i and j are compared by numeric value.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/ordering.jl#L73-L78
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/ordering.jl#L87-L92
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/ordering.jl#L97-L103

Chapter 54

Iteration utilities

Base.Iterators.Stateful – Type.

Stateful(itr)

There are several different ways to think about this iterator wrapper:

1. It provides a mutable wrapper around an iterator and its iteration state.

2. It turns an iterator-like abstraction into a Channel-like abstraction.

3. It's an iterator that mutates to become its own rest iterator whenever an item is produced.

Stateful provides the regular iterator interface. Like other mutable iterators (e.g. Base.Channel), if

iteration is stopped early (e.g. by a break in a for loop), iteration can be resumed from the same spot

by continuing to iterate over the same iterator object (in contrast, an immutable iterator would restart

from the beginning).

Examples

julia> a = Iterators.Stateful("abcdef");

julia> isempty(a)

false

julia> popfirst!(a)

'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)

julia> collect(Iterators.take(a, 3))

3-element Vector{Char}:

'b': ASCII/Unicode U+0062 (category Ll: Letter, lowercase)

'c': ASCII/Unicode U+0063 (category Ll: Letter, lowercase)

'd': ASCII/Unicode U+0064 (category Ll: Letter, lowercase)

julia> collect(a)

2-element Vector{Char}:

'e': ASCII/Unicode U+0065 (category Ll: Letter, lowercase)

'f': ASCII/Unicode U+0066 (category Ll: Letter, lowercase)

julia> Iterators.reset!(a); popfirst!(a)

1053

CHAPTER 54. ITERATION UTILITIES 1054

'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)

julia> Iterators.reset!(a, "hello"); popfirst!(a)

'h': ASCII/Unicode U+0068 (category Ll: Letter, lowercase)

julia> a = Iterators.Stateful([1,1,1,2,3,4]);

julia> for x in a; x == 1 || break; end

julia> peek(a)

3

julia> sum(a) # Sum the remaining elements

7

source

Base.Iterators.zip – Function.

zip(iters...)

Run multiple iterators at the same time, until any of them is exhausted. The value type of the zip

iterator is a tuple of values of its subiterators.

Note

zip orders the calls to its subiterators in such a way that stateful iterators will not advance

when another iterator finishes in the current iteration.

Note

zip() with no arguments yields an infinite iterator of empty tuples.

See also: enumerate, Base.splat.

Examples

julia> a = 1:5

1:5

julia> b = ["e","d","b","c","a"]

5-element Vector{String}:

"e"

"d"

"b"

"c"

"a"

julia> c = zip(a,b)

zip(1:5, ["e", "d", "b", "c", "a"])

julia> length(c)

5

julia> first(c)

(1, "e")

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iterators.jl#L1337-L1394

CHAPTER 54. ITERATION UTILITIES 1055

source

Base.Iterators.enumerate – Function.

enumerate(iter)

An iterator that yields (i, x) where i is a counter starting at 1, and x is the ith value from the given

iterator. It's useful when you need not only the values x over which you are iterating, but also the

number of iterations so far.

Note that i may not be valid for indexing iter, or may index a different element. This will happen

if iter has indices that do not start at 1, and may happen for strings, dictionaries, etc. See the

pairs(IndexLinear(), iter) method if you want to ensure that i is an index.

Examples

julia> a = ["a", "b", "c"];

julia> for (index, value) in enumerate(a)

println("$index $value")

end

1 a

2 b

3 c

julia> str = "naïve";

julia> for (i, val) in enumerate(str)

print("i = ", i, ", val = ", val, ", ")

try @show(str[i]) catch e println(e) end

end

i = 1, val = n, str[i] = 'n'

i = 2, val = a, str[i] = 'a'

i = 3, val = ï, str[i] = 'ï'

i = 4, val = v, StringIndexError("naïve", 4)

i = 5, val = e, str[i] = 'v'

source

Base.Iterators.rest – Function.

rest(iter, state)

An iterator that yields the same elements as iter, but starting at the given state.

See also: Iterators.drop, Iterators.peel, Base.rest.

Examples

julia> collect(Iterators.rest([1,2,3,4], 2))

3-element Vector{Int64}:

2

3

4

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iterators.jl#L335-L373
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iterators.jl#L163-L199

CHAPTER 54. ITERATION UTILITIES 1056

source

Base.Iterators.countfrom – Function.

countfrom(start=1, step=1)

An iterator that counts forever, starting at start and incrementing by step.

Examples

julia> for v in Iterators.countfrom(5, 2)

v > 10 && break

println(v)

end

5

7

9

source

Base.Iterators.take – Function.

take(iter, n)

An iterator that generates at most the first n elements of iter.

See also: drop, peel, first, Base.take!.

Examples

julia> a = 1:2:11

1:2:11

julia> collect(a)

6-element Vector{Int64}:

1

3

5

7

9

11

julia> collect(Iterators.take(a,3))

3-element Vector{Int64}:

1

3

5

source

Base.Iterators.takewhile – Function.

takewhile(pred, iter)

An iterator that generates element from iter as long as predicate pred is true, afterwards, drops every

element.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iterators.jl#L606-L621
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iterators.jl#L674-L689
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iterators.jl#L713-L740

CHAPTER 54. ITERATION UTILITIES 1057

Julia 1.4

This function requires at least Julia 1.4.

Examples

julia> s = collect(1:5)

5-element Vector{Int64}:

1

2

3

4

5

julia> collect(Iterators.takewhile(<(3),s))

2-element Vector{Int64}:

1

2

source

Base.Iterators.drop – Function.

drop(iter, n)

An iterator that generates all but the first n elements of iter.

Examples

julia> a = 1:2:11

1:2:11

julia> collect(a)

6-element Vector{Int64}:

1

3

5

7

9

11

julia> collect(Iterators.drop(a,4))

2-element Vector{Int64}:

9

11

source

Base.Iterators.dropwhile – Function.

dropwhile(pred, iter)

An iterator that drops element from iter as long as predicate pred is true, afterwards, returns every

element.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iterators.jl#L828-L853
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iterators.jl#L772-L796

CHAPTER 54. ITERATION UTILITIES 1058

Julia 1.4

This function requires at least Julia 1.4.

Examples

julia> s = collect(1:5)

5-element Vector{Int64}:

1

2

3

4

5

julia> collect(Iterators.dropwhile(<(3),s))

3-element Vector{Int64}:

3

4

5

source

Base.Iterators.cycle – Function.

cycle(iter)

An iterator that cycles through iter forever. If iter is empty, so is cycle(iter).

See also: Iterators.repeated, Base.repeat.

Examples

julia> for (i, v) in enumerate(Iterators.cycle("hello"))

print(v)

i > 10 && break

end

hellohelloh

source

Base.Iterators.repeated – Function.

repeated(x[, n::Int])

An iterator that generates the value x forever. If n is specified, generates x that many times (equivalent

to take(repeated(x), n)).

See also: Iterators.cycle, Base.repeat.

Examples

julia> a = Iterators.repeated([1 2], 4);

julia> collect(a)

4-element Vector{Matrix{Int64}}:

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iterators.jl#L875-L901
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iterators.jl#L925-L941

CHAPTER 54. ITERATION UTILITIES 1059

[1 2]

[1 2]

[1 2]

[1 2]

source

Base.Iterators.product – Function.

product(iters...)

Return an iterator over the product of several iterators. Each generated element is a tuple whose ith

element comes from the ith argument iterator. The first iterator changes the fastest.

See also: zip, Iterators.flatten.

Examples

julia> collect(Iterators.product(1:2, 3:5))

2×3 Matrix{Tuple{Int64, Int64}}:

(1, 3) (1, 4) (1, 5)

(2, 3) (2, 4) (2, 5)

julia> ans == [(x,y) for x in 1:2, y in 3:5] # collects a generator involving

Iterators.product↪→

true

source

Base.Iterators.flatten – Function.

flatten(iter)

Given an iterator that yields iterators, return an iterator that yields the elements of those iterators. Put

differently, the elements of the argument iterator are concatenated.

Examples

julia> collect(Iterators.flatten((1:2, 8:9)))

4-element Vector{Int64}:

1

2

8

9

julia> [(x,y) for x in 0:1 for y in 'a':'c'] # collects generators involving

Iterators.flatten↪→

6-element Vector{Tuple{Int64, Char}}:

(0, 'a')

(0, 'b')

(0, 'c')

(1, 'a')

(1, 'b')

(1, 'c')

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iterators.jl#L967-L986
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iterators.jl#L1004-L1023

CHAPTER 54. ITERATION UTILITIES 1060

source

Base.Iterators.flatmap – Function.

Iterators.flatmap(f, iterators...)

Equivalent to flatten(map(f, iterators...)).

See also Iterators.flatten, Iterators.map.

Julia 1.9

This function was added in Julia 1.9.

Examples

julia> Iterators.flatmap(n -> -n:2:n, 1:3) |> collect

9-element Vector{Int64}:

-1

1

-2

0

2

-3

-1

1

3

julia> stack(n -> -n:2:n, 1:3)

ERROR: DimensionMismatch: stack expects uniform slices, got axes(x) == (1:3,) while first had

(1:2,)↪→

[...]

julia> Iterators.flatmap(n -> (-n, 10n), 1:2) |> collect

4-element Vector{Int64}:

-1

10

-2

20

julia> ans == vec(stack(n -> (-n, 10n), 1:2))

true

source

Base.Iterators.partition – Function.

partition(collection, n)

Iterate over a collection n elements at a time.

Examples

julia> collect(Iterators.partition([1,2,3,4,5], 2))

3-element Vector{SubArray{Int64, 1, Vector{Int64}, Tuple{UnitRange{Int64}}, true}}:

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iterators.jl#L1138-L1163
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iterators.jl#L1214-L1252

CHAPTER 54. ITERATION UTILITIES 1061

[1, 2]

[3, 4]

[5]

source

Base.Iterators.map – Function.

Iterators.map(f, iterators...)

Create a lazymapping. This is another syntax for writing (f(args...) for args in zip(iterators...)).

Julia 1.6

This function requires at least Julia 1.6.

Examples

julia> collect(Iterators.map(x -> x^2, 1:3))

3-element Vector{Int64}:

1

4

9

source

Base.Iterators.filter – Function.

Iterators.filter(flt, itr)

Given a predicate function flt and an iterable object itr, return an iterable object which upon iteration

yields the elements x of itr that satisfy flt(x). The order of the original iterator is preserved.

This function is lazy; that is, it is guaranteed to return in (1) time and use (1) additional space, and
flt will not be called by an invocation of filter. Calls to flt will be made when iterating over the

returned iterable object. These calls are not cached and repeated calls will be made when reiterating.

See Base.filter for an eager implementation of filtering for arrays.

Examples

julia> f = Iterators.filter(isodd, [1, 2, 3, 4, 5])

Base.Iterators.Filter{typeof(isodd), Vector{Int64}}(isodd, [1, 2, 3, 4, 5])

julia> foreach(println, f)

1

3

5

julia> [x for x in [1, 2, 3, 4, 5] if isodd(x)] # collects a generator over Iterators.filter

3-element Vector{Int64}:

1

3

5

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iterators.jl#L1256-L1269
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iterators.jl#L44-L61

CHAPTER 54. ITERATION UTILITIES 1062

source

Base.Iterators.accumulate – Function.

Iterators.accumulate(f, itr; [init])

Given a 2-argument function f and an iterator itr, return a new iterator that successively applies f to

the previous value and the next element of itr.

This is effectively a lazy version of Base.accumulate.

Julia 1.5

Keyword argument init is added in Julia 1.5.

Examples

julia> a = Iterators.accumulate(+, [1,2,3,4]);

julia> foreach(println, a)

1

3

6

10

julia> b = Iterators.accumulate(/, (2, 5, 2, 5); init = 100);

julia> collect(b)

4-element Vector{Float64}:

50.0

10.0

5.0

1.0

source

Base.Iterators.reverse – Function.

Iterators.reverse(itr)

Given an iterator itr, then reverse(itr) is an iterator over the same collection but in the reverse

order. This iterator is "lazy" in that it does not make a copy of the collection in order to reverse it; see

Base.reverse for an eager implementation.

(By default, this returns an Iterators.Reverse object wrapping itr, which is iterable if the correspond-

ing iteratemethods are defined, but some itr typesmay implementmore specialized Iterators.reverse

behaviors.)

Not all iterator types T support reverse-order iteration. If T doesn't, then iterating over Iterators.reverse(itr::T)

will throw a MethodError because of the missing iteratemethods for Iterators.Reverse{T}. (To im-

plement thesemethods, the original iterator itr::T can be obtained from an r::Iterators.Reverse{T}

object by r.itr; more generally, one can use Iterators.reverse(r).)

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iterators.jl#L481-L512
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iterators.jl#L541-L572

CHAPTER 54. ITERATION UTILITIES 1063

julia> foreach(println, Iterators.reverse(1:5))

5

4

3

2

1

source

Base.Iterators.only – Function.

only(x)

Return the one and only element of collection x, or throw an ArgumentError if the collection has zero

or multiple elements.

See also first, last.

Julia 1.4

This method requires at least Julia 1.4.

Examples

julia> only(["a"])

"a"

julia> only("a")

'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)

julia> only(())

ERROR: ArgumentError: Tuple contains 0 elements, must contain exactly 1 element

Stacktrace:

[...]

julia> only(('a', 'b'))

ERROR: ArgumentError: Tuple contains 2 elements, must contain exactly 1 element

Stacktrace:

[...]

source

Base.Iterators.peel – Function.

peel(iter)

Returns the first element and an iterator over the remaining elements.

If the iterator is empty return nothing (like iterate).

Julia 1.7

Prior versions throw a BoundsError if the iterator is empty.

See also: Iterators.drop, Iterators.take.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iterators.jl#L90-L119
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iterators.jl#L1490-L1519

CHAPTER 54. ITERATION UTILITIES 1064

julia> (a, rest) = Iterators.peel("abc");

julia> a

'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)

julia> collect(rest)

2-element Vector{Char}:

'b': ASCII/Unicode U+0062 (category Ll: Letter, lowercase)

'c': ASCII/Unicode U+0063 (category Ll: Letter, lowercase)

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/iterators.jl#L626-L650

Chapter 55

Reflection and introspection

Julia provides a variety of runtime reflection capabilities.

55.1 Module bindings

The exported names for a Module are available using names(m::Module), which will return an array of

Symbol elements representing the exported bindings. names(m::Module, all = true) returns symbols

for all bindings in m, regardless of export status.

55.2 DataType fields

The names of DataType fields may be interrogated using fieldnames. For example, given the following

type, fieldnames(Point) returns a tuple of Symbols representing the field names:

julia> struct Point

x::Int

y

end

julia> fieldnames(Point)

(:x, :y)

The type of each field in a Point object is stored in the types field of the Point variable itself:

julia> Point.types

svec(Int64, Any)

While x is annotated as an Int, y was unannotated in the type definition, therefore y defaults to the Any

type.

Types are themselves represented as a structure called DataType:

julia> typeof(Point)

DataType

Note that fieldnames(DataType) gives the names for each field of DataType itself, and one of these fields

is the types field observed in the example above.

1065

CHAPTER 55. REFLECTION AND INTROSPECTION 1066

55.3 Subtypes

The direct subtypes of any DataType may be listed using subtypes. For example, the abstract DataType

AbstractFloat has four (concrete) subtypes:

julia> subtypes(AbstractFloat)

4-element Vector{Any}:

BigFloat

Float16

Float32

Float64

Any abstract subtype will also be included in this list, but further subtypes thereof will not; recursive appli-

cation of subtypes may be used to inspect the full type tree.

55.4 DataType layout

The internal representation of a DataType is critically important when interfacing with C code and several

functions are available to inspect these details. isbitstype(T::DataType) returns true if T is stored with

C-compatible alignment. fieldoffset(T::DataType, i::Integer) returns the (byte) offset for field i

relative to the start of the type.

55.5 Function methods

The methods of any generic function may be listed using methods. The method dispatch table may be

searched for methods accepting a given type using methodswith.

55.6 Expansion and lowering

As discussed in the Metaprogramming section, the macroexpand function gives the unquoted and inter-

polated expression (Expr) form for a given macro. To use macroexpand, quote the expression block itself

(otherwise, the macro will be evaluated and the result will be passed instead!). For example:

julia> macroexpand(@__MODULE__, :(@edit println("")))

:(InteractiveUtils.edit(println, (Base.typesof)("")))

The functions Base.Meta.show_sexpr and dump are used to display S-expr style views and depth-nested

detail views for any expression.

Finally, the Meta.lower function gives the lowered form of any expression and is of particular interest for

understanding how language constructs map to primitive operations such as assignments, branches, and

calls:

julia> Meta.lower(@__MODULE__, :([1+2, sin(0.5)]))

:($(Expr(:thunk, CodeInfo(

@ none within `top-level scope`

1 ─ %1 = 1 + 2

│ %2 = sin(0.5)

│ %3 = Base.vect(%1, %2)

└── return %3

))))

CHAPTER 55. REFLECTION AND INTROSPECTION 1067

55.7 Intermediate and compiled representations

Inspecting the lowered form for functions requires selection of the specific method to display, because

generic functionsmay havemanymethods with different type signatures. For this purpose, method-specific

code-lowering is available using code_lowered, and the type-inferred form is available using code_typed.

code_warntype adds highlighting to the output of code_typed.

Closer to themachine, the LLVM intermediate representation of a functionmay be printed using by code_llvm,

and finally the compiled machine code is available using code_native (this will trigger JIT compilation/code

generation for any function which has not previously been called).

For convenience, there are macro versions of the above functions which take standard function calls and

expand argument types automatically:

julia> @code_llvm +(1,1)

; @ int.jl:87 within `+`

; Function Attrs: sspstrong uwtable

define i64 @"julia_+_476"(i64 signext %0, i64 signext %1) #0 {

top:

%2 = add i64 %1, %0

ret i64 %2

}

Formore information see @code_lowered, @code_typed, @code_warntype, @code_llvm, and @code_native.

Printing of debug information

The aforementioned functions and macros take the keyword argument debuginfo that controls the level

debug information printed.

julia> @code_typed debuginfo=:source +(1,1)

CodeInfo(

@ int.jl:53 within `+'

1 ─ %1 = Base.add_int(x, y)::Int64

└── return %1

) => Int64

Possible values for debuginfo are: :none, :source, and :default. Per default debug information is not

printed, but that can be changed by setting Base.IRShow.default_debuginfo[] = :source.

Chapter 56

C Interface

Base.@ccall – Macro.

@ccall library.function_name(argvalue1::argtype1, ...)::returntype

@ccall function_name(argvalue1::argtype1, ...)::returntype

@ccall $function_pointer(argvalue1::argtype1, ...)::returntype

Call a function in a C-exported shared library, specified by library.function_name, where library is

a string constant or literal. The library may be omitted, in which case the function_name is resolved in

the current process. Alternatively, @ccallmay also be used to call a function pointer $function_pointer,

such as one returned by dlsym.

Each argvalue to @ccall is converted to the corresponding argtype, by automatic insertion of calls

to unsafe_convert(argtype, cconvert(argtype, argvalue)). (See also the documentation for

unsafe_convert and cconvert for further details.) In most cases, this simply results in a call to

convert(argtype, argvalue).

Examples

@ccall strlen(s::Cstring)::Csize_t

This calls the C standard library function:

size_t strlen(char *)

with a Julia variable named s. See also ccall.

Varargs are supported with the following convention:

@ccall printf("%s = %d"::Cstring ; "foo"::Cstring, foo::Cint)::Cint

The semicolon is used to separate required arguments (of which there must be at least one) from

variadic arguments.

Example using an external library:

C signature of g_uri_escape_string:

char *g_uri_escape_string(const char *unescaped, const char *reserved_chars_allowed,

gboolean allow_utf8);

const glib = "libglib-2.0"

@ccall glib.g_uri_escape_string(my_uri::Cstring, ":/"::Cstring, true::Cint)::Cstring

1068

CHAPTER 56. C INTERFACE 1069

The string literal could also be used directly before the function name, if desired "libglib-2.0".g_uri_escape_string(...

source

ccall – Keyword.

ccall((function_name, library), returntype, (argtype1, ...), argvalue1, ...)

ccall(function_name, returntype, (argtype1, ...), argvalue1, ...)

ccall(function_pointer, returntype, (argtype1, ...), argvalue1, ...)

Call a function in a C-exported shared library, specified by the tuple (function_name, library),

where each component is either a string or symbol. Instead of specifying a library, one can also use

a function_name symbol or string, which is resolved in the current process. Alternatively, ccall may

also be used to call a function pointer function_pointer, such as one returned by dlsym.

Note that the argument type tuple must be a literal tuple, and not a tuple-valued variable or expression.

Each argvalue to the ccall will be converted to the corresponding argtype, by automatic insertion of

calls to unsafe_convert(argtype, cconvert(argtype, argvalue)). (See also the documentation

for unsafe_convert and cconvert for further details.) In most cases, this simply results in a call to

convert(argtype, argvalue).

source

Core.Intrinsics.cglobal – Function.

cglobal((symbol, library) [, type=Cvoid])

Obtain a pointer to a global variable in a C-exported shared library, specified exactly as in ccall.

Returns a Ptr{Type}, defaulting to Ptr{Cvoid} if no Type argument is supplied. The values can be

read or written by unsafe_load or unsafe_store!, respectively.

source

Base.@cfunction – Macro.

@cfunction(callable, ReturnType, (ArgumentTypes...,)) -> Ptr{Cvoid}

@cfunction($callable, ReturnType, (ArgumentTypes...,)) -> CFunction

Generate a C-callable function pointer from the Julia function callable for the given type signature.

To pass the return value to a ccall, use the argument type Ptr{Cvoid} in the signature.

Note that the argument type tuple must be a literal tuple, and not a tuple-valued variable or expression

(although it can include a splat expression). And that these arguments will be evaluated in global scope

during compile-time (not deferred until runtime). Adding a '$' in front of the function argument changes

this to instead create a runtime closure over the local variable callable (this is not supported on all

architectures).

See manual section on ccall and cfunction usage.

Examples

julia> function foo(x::Int, y::Int)

return x + y

end

julia> @cfunction(foo, Int, (Int, Int))

Ptr{Cvoid} @0x000000001b82fcd0

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/c.jl#L666-L713
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1278-L1296
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/c.jl#L7-L16

CHAPTER 56. C INTERFACE 1070

source

Base.CFunction – Type.

CFunction struct

Garbage-collection handle for the return value from @cfunction when the first argument is annotated

with '$'. Like all cfunction handles, it should be passed to ccall as a Ptr{Cvoid}, and will be con-

verted automatically at the call site to the appropriate type.

See @cfunction.

source

Base.unsafe_convert – Function.

unsafe_convert(T, x)

Convert x to a C argument of type T where the input xmust be the return value of cconvert(T, ...).

In cases where convert would need to take a Julia object and turn it into a Ptr, this function should be

used to define and perform that conversion.

Be careful to ensure that a Julia reference to x exists as long as the result of this function will be used.

Accordingly, the argument x to this function should never be an expression, only a variable name or

field reference. For example, x=a.b.c is acceptable, but x=[a,b,c] is not.

The unsafe prefix on this function indicates that using the result of this function after the x argument to

this function is no longer accessible to the program may cause undefined behavior, including program

corruption or segfaults, at any later time.

See also cconvert

source

Base.cconvert – Function.

cconvert(T,x)

Convert x to a value to be passed to C code as type T, typically by calling convert(T, x).

In cases where x cannot be safely converted to T, unlike convert, cconvert may return an object of

a type different from T, which however is suitable for unsafe_convert to handle. The result of this

function should be kept valid (for the GC) until the result of unsafe_convert is not needed anymore.

This can be used to allocate memory that will be accessed by the ccall. If multiple objects need to be

allocated, a tuple of the objects can be used as return value.

Neither convert nor cconvert should take a Julia object and turn it into a Ptr.

source

Base.unsafe_load – Function.

unsafe_load(p::Ptr{T}, i::Integer=1)

unsafe_load(p::Ptr{T}, order::Symbol)

unsafe_load(p::Ptr{T}, i::Integer, order::Symbol)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/c.jl#L38-L63
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/c.jl#L19-L28
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/pointer.jl#L34-L54
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/essentials.jl#L527-L540

CHAPTER 56. C INTERFACE 1071

Load a value of type T from the address of the ith element (1-indexed) starting at p. This is equivalent

to the C expression p[i-1]. Optionally, an atomic memory ordering can be provided.

The unsafe prefix on this function indicates that no validation is performed on the pointer p to ensure

that it is valid. Like C, the programmer is responsible for ensuring that referenced memory is not freed

or garbage collected while invoking this function. Incorrect usage may segfault your program or return

garbage answers. Unlike C, dereferencing memory region allocated as different type may be valid

provided that the types are compatible.

Julia 1.10

The order argument is available as of Julia 1.10.

See also: atomic

source

Base.unsafe_store! – Function.

unsafe_store!(p::Ptr{T}, x, i::Integer=1)

unsafe_store!(p::Ptr{T}, x, order::Symbol)

unsafe_store!(p::Ptr{T}, x, i::Integer, order::Symbol)

Store a value of type T to the address of the ith element (1-indexed) starting at p. This is equivalent

to the C expression p[i-1] = x. Optionally, an atomic memory ordering can be provided.

The unsafe prefix on this function indicates that no validation is performed on the pointer p to ensure

that it is valid. Like C, the programmer is responsible for ensuring that referenced memory is not freed

or garbage collected while invoking this function. Incorrect usage may segfault your program. Unlike

C, storing memory region allocated as different type may be valid provided that that the types are

compatible.

Julia 1.10

The order argument is available as of Julia 1.10.

See also: atomic

source

Base.unsafe_modify! – Function.

unsafe_modify!(p::Ptr{T}, op, x, [order::Symbol]) -> Pair

These atomically perform the operations to get and set a memory address after applying the func-

tion op. If supported by the hardware (for example, atomic increment), this may be optimized to the

appropriate hardware instruction, otherwise its execution will be similar to:

y = unsafe_load(p)

z = op(y, x)

unsafe_store!(p, z)

return y => z

The unsafe prefix on this function indicates that no validation is performed on the pointer p to ensure

that it is valid. Like C, the programmer is responsible for ensuring that referenced memory is not freed

or garbage collected while invoking this function. Incorrect usage may segfault your program.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/pointer.jl#L99-L118
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/pointer.jl#L125-L144

CHAPTER 56. C INTERFACE 1072

Julia 1.10

This function requires at least Julia 1.10.

See also: modifyproperty!, atomic

source

Base.unsafe_replace! – Function.

unsafe_replace!(p::Ptr{T}, expected, desired,

[success_order::Symbol[, fail_order::Symbol=success_order]]) -> (; old,

success::Bool)↪→

These atomically perform the operations to get and conditionally set a memory address to a given

value. If supported by the hardware, this may be optimized to the appropriate hardware instruction,

otherwise its execution will be similar to:

y = unsafe_load(p, fail_order)

ok = y === expected

if ok

unsafe_store!(p, desired, success_order)

end

return (; old = y, success = ok)

The unsafe prefix on this function indicates that no validation is performed on the pointer p to ensure

that it is valid. Like C, the programmer is responsible for ensuring that referenced memory is not freed

or garbage collected while invoking this function. Incorrect usage may segfault your program.

Julia 1.10

This function requires at least Julia 1.10.

See also: replaceproperty!, atomic

source

Base.unsafe_swap! – Function.

unsafe_swap!(p::Ptr{T}, x, [order::Symbol])

These atomically perform the operations to simultaneously get and set a memory address. If supported

by the hardware, this may be optimized to the appropriate hardware instruction, otherwise its execution

will be similar to:

y = unsafe_load(p)

unsafe_store!(p, x)

return y

The unsafe prefix on this function indicates that no validation is performed on the pointer p to ensure

that it is valid. Like C, the programmer is responsible for ensuring that referenced memory is not freed

or garbage collected while invoking this function. Incorrect usage may segfault your program.

Julia 1.10

This function requires at least Julia 1.10.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/pointer.jl#L152-L174
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/pointer.jl#L179-L203

CHAPTER 56. C INTERFACE 1073

See also: swapproperty!, atomic

source

Base.unsafe_copyto! – Method.

unsafe_copyto!(dest::Ptr{T}, src::Ptr{T}, N)

Copy N elements from a source pointer to a destination, with no checking. The size of an element is

determined by the type of the pointers.

The unsafe prefix on this function indicates that no validation is performed on the pointers dest and

src to ensure that they are valid. Incorrect usage may corrupt or segfault your program, in the same

manner as C.

source

Base.unsafe_copyto! – Method.

unsafe_copyto!(dest::Array, do, src::Array, so, N)

Copy N elements from a source array to a destination, starting at the linear index so in the source and

do in the destination (1-indexed).

The unsafe prefix on this function indicates that no validation is performed to ensure that N is inbounds

on either array. Incorrect usage may corrupt or segfault your program, in the same manner as C.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other

argument.

source

Base.copyto! – Function.

copyto!(dest::AbstractMatrix, src::UniformScaling)

Copies a UniformScaling onto a matrix.

Julia 1.1

In Julia 1.0 this method only supported a square destination matrix. Julia 1.1. added support

for a rectangular matrix.

copyto!(dest, do, src, so, N)

Copy N elements from collection src starting at the linear index so, to array dest starting at the index

do. Return dest.

source

copyto!(dest::AbstractArray, src) -> dest

Copy all elements from collection src to array dest, whose length must be greater than or equal to the

length n of src. The first n elements of dest are overwritten, the other elements are left untouched.

See also copy!, copy.

Examples

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/pointer.jl#L213-L233
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L275-L284
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L316-L327
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/array.jl#L356-L361

CHAPTER 56. C INTERFACE 1074

julia> x = [1., 0., 3., 0., 5.];

julia> y = zeros(7);

julia> copyto!(y, x);

julia> y

7-element Vector{Float64}:

1.0

0.0

3.0

0.0

5.0

0.0

0.0

source

copyto!(dest, Rdest::CartesianIndices, src, Rsrc::CartesianIndices) -> dest

Copy the block of src in the range of Rsrc to the block of dest in the range of Rdest. The sizes of the

two regions must match.

Examples

julia> A = zeros(5, 5);

julia> B = [1 2; 3 4];

julia> Ainds = CartesianIndices((2:3, 2:3));

julia> Binds = CartesianIndices(B);

julia> copyto!(A, Ainds, B, Binds)

5×5 Matrix{Float64}:

0.0 0.0 0.0 0.0 0.0

0.0 1.0 2.0 0.0 0.0

0.0 3.0 4.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

source

Base.pointer – Function.

pointer(array [, index])

Get the native address of an array or string, optionally at a given location index.

This function is "unsafe". Be careful to ensure that a Julia reference to array exists as long as this

pointer will be used. The GC.@preserve macro should be used to protect the array argument from

garbage collection within a given block of code.

Calling Ref(array[, index]) is generally preferable to this function as it guarantees validity.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/abstractarray.jl#L1033-L1060
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/multidimensional.jl#L1147-L1171
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/c.jl#L172-L183

CHAPTER 56. C INTERFACE 1075

Base.unsafe_wrap – Method.

unsafe_wrap(Array, pointer::Ptr{T}, dims; own = false)

Wrap a Julia Array object around the data at the address given by pointer, without making a copy. The

pointer element type T determines the array element type. dims is either an integer (for a 1d array)

or a tuple of the array dimensions. own optionally specifies whether Julia should take ownership of the

memory, calling free on the pointer when the array is no longer referenced.

This function is labeled "unsafe" because it will crash if pointer is not a valid memory address to data

of the requested length. Unlike unsafe_load and unsafe_store!, the programmer is responsible also

for ensuring that the underlying data is not accessed through two arrays of different element type,

similar to the strict aliasing rule in C.

source

Base.pointer_from_objref – Function.

pointer_from_objref(x)

Get the memory address of a Julia object as a Ptr. The existence of the resulting Ptrwill not protect the

object from garbage collection, so you must ensure that the object remains referenced for the whole

time that the Ptr will be used.

This functionmay not be called on immutable objects, since they do not have stablememory addresses.

See also unsafe_pointer_to_objref.

source

Base.unsafe_pointer_to_objref – Function.

unsafe_pointer_to_objref(p::Ptr)

Convert a Ptr to an object reference. Assumes the pointer refers to a valid heap-allocated Julia object.

If this is not the case, undefined behavior results, hence this function is considered "unsafe" and should

be used with care.

See also pointer_from_objref.

source

Base.disable_sigint – Function.

disable_sigint(f::Function)

Disable Ctrl-C handler during execution of a function on the current task, for calling external code that

may call julia code that is not interrupt safe. Intended to be called using do block syntax as follows:

disable_sigint() do

interrupt-unsafe code

...

end

This is not needed on worker threads (Threads.threadid() != 1) since the InterruptException will

only be delivered to the master thread. External functions that do not call julia code or julia runtime

automatically disable sigint during their execution.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/pointer.jl#L70-L84
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/pointer.jl#L255-L266
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/pointer.jl#L244-L252
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/c.jl#L454-L470

CHAPTER 56. C INTERFACE 1076

Base.reenable_sigint – Function.

reenable_sigint(f::Function)

Re-enable Ctrl-C handler during execution of a function. Temporarily reverses the effect of disable_sigint.

source

Base.exit_on_sigint – Function.

exit_on_sigint(on::Bool)

Set exit_on_sigint flag of the julia runtime. If false, Ctrl-C (SIGINT) is capturable as InterruptException

in try block. This is the default behavior in REPL, any code run via -e and -E and in Julia script run

with -i option.

If true, InterruptException is not thrown by Ctrl-C. Running code upon such event requires atexit.

This is the default behavior in Julia script run without -i option.

Julia 1.5

Function exit_on_sigint requires at least Julia 1.5.

source

Base.systemerror – Function.

systemerror(sysfunc[, errno::Cint=Libc.errno()])

systemerror(sysfunc, iftrue::Bool)

Raises a SystemError for errno with the descriptive string sysfunc if iftrue is true

source

Base.windowserror – Function.

windowserror(sysfunc[, code::UInt32=Libc.GetLastError()])

windowserror(sysfunc, iftrue::Bool)

Like systemerror, but for Windows API functions that use GetLastError to return an error code instead

of setting errno.

source

Core.Ptr – Type.

Ptr{T}

A memory address referring to data of type T. However, there is no guarantee that the memory is

actually valid, or that it actually represents data of the specified type.

source

Core.Ref – Type.

Ref{T}

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/c.jl#L479-L484
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/c.jl#L493-L507
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/error.jl#L169-L174
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/error.jl#L183-L189
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/pointer.jl#L3-L8

CHAPTER 56. C INTERFACE 1077

An object that safely references data of type T. This type is guaranteed to point to valid, Julia-allocated

memory of the correct type. The underlying data is protected from freeing by the garbage collector as

long as the Ref itself is referenced.

In Julia, Ref objects are dereferenced (loaded or stored) with [].

Creation of a Ref to a value x of type T is usually written Ref(x). Additionally, for creating interior

pointers to containers (such as Array or Ptr), it can be written Ref(a, i) for creating a reference to

the i-th element of a.

Ref{T}() creates a reference to a value of type T without initialization. For a bitstype T, the value

will be whatever currently resides in the memory allocated. For a non-bitstype T, the reference will be

undefined and attempting to dereference it will result in an error, "UndefRefError: access to undefined

reference".

To check if a Ref is an undefined reference, use isassigned(ref::RefValue). For example, isassigned(Ref{T}())

is false if T is not a bitstype. If T is a bitstype, isassigned(Ref{T}()) will always be true.

When passed as a ccall argument (either as a Ptr or Ref type), a Ref object will be converted to

a native pointer to the data it references. For most T, or when converted to a Ptr{Cvoid}, this is a

pointer to the object data. When T is an isbits type, this value may be safely mutated, otherwise

mutation is strictly undefined behavior.

As a special case, setting T = Any will instead cause the creation of a pointer to the reference itself

when converted to a Ptr{Any} (a jl_value_t const* const* if T is immutable, else a jl_value_t

*const *). When converted to a Ptr{Cvoid}, it will still return a pointer to the data region as for any

other T.

A C_NULL instance of Ptr can be passed to a ccall Ref argument to initialize it.

Use in broadcasting

Ref is sometimes used in broadcasting in order to treat the referenced values as a scalar.

Examples

julia> Ref(5)

Base.RefValue{Int64}(5)

julia> isa.(Ref([1,2,3]), [Array, Dict, Int]) # Treat reference values as scalar during

broadcasting↪→

3-element BitVector:

1

0

0

julia> Ref{Function}() # Undefined reference to a non-bitstype, Function

Base.RefValue{Function}(#undef)

julia> try

Ref{Function}()[] # Dereferencing an undefined reference will result in an error

catch e

println(e)

end

UndefRefError()

CHAPTER 56. C INTERFACE 1078

julia> Ref{Int64}()[]; # A reference to a bitstype refers to an undetermined value if not

given↪→

julia> isassigned(Ref{Int64}()) # A reference to a bitstype is always assigned

true

julia> Ref{Int64}(0)[] == 0 # Explicitly give a value for a bitstype reference

true

source

Base.isassigned – Method.

isassigned(ref::RefValue) -> Bool

Test whether the given Ref is associated with a value. This is always true for a Ref of a bitstype object.

Return false if the reference is undefined.

Examples

julia> ref = Ref{Function}()

Base.RefValue{Function}(#undef)

julia> isassigned(ref)

false

julia> ref[] = (foobar(x) = x)

foobar (generic function with 1 method)

julia> isassigned(ref)

true

julia> isassigned(Ref{Int}())

true

source

Base.Cchar – Type.

Cchar

Equivalent to the native char c-type.

source

Base.Cuchar – Type.

Cuchar

Equivalent to the native unsigned char c-type (UInt8).

source

Base.Cshort – Type.

Cshort

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/refpointer.jl#L3-L72
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/refvalue.jl#L11-L35
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/c.jl#L86-L90
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/ctypes.jl#L6-L10

CHAPTER 56. C INTERFACE 1079

Equivalent to the native signed short c-type (Int16).

source

Base.Cstring – Type.

Cstring

A C-style string composed of the native character type Cchars. Cstrings are NUL-terminated. For

C-style strings composed of the native wide character type, see Cwstring. For more information about

string interoperability with C, see the manual.

source

Base.Cushort – Type.

Cushort

Equivalent to the native unsigned short c-type (UInt16).

source

Base.Cint – Type.

Cint

Equivalent to the native signed int c-type (Int32).

source

Base.Cuint – Type.

Cuint

Equivalent to the native unsigned int c-type (UInt32).

source

Base.Clong – Type.

Clong

Equivalent to the native signed long c-type.

source

Base.Culong – Type.

Culong

Equivalent to the native unsigned long c-type.

source

Base.Clonglong – Type.

Clonglong

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/ctypes.jl#L14-L18
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/c.jl#L138-L147
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/ctypes.jl#L22-L26
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/ctypes.jl#L30-L34
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/ctypes.jl#L38-L42
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/c.jl#L104-L108
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/c.jl#L111-L115

CHAPTER 56. C INTERFACE 1080

Equivalent to the native signed long long c-type (Int64).

source

Base.Culonglong – Type.

Culonglong

Equivalent to the native unsigned long long c-type (UInt64).

source

Base.Cintmax_t – Type.

Cintmax_t

Equivalent to the native intmax_t c-type (Int64).

source

Base.Cuintmax_t – Type.

Cuintmax_t

Equivalent to the native uintmax_t c-type (UInt64).

source

Base.Csize_t – Type.

Csize_t

Equivalent to the native size_t c-type (UInt).

source

Base.Cssize_t – Type.

Cssize_t

Equivalent to the native ssize_t c-type.

source

Base.Cptrdiff_t – Type.

Cptrdiff_t

Equivalent to the native ptrdiff_t c-type (Int).

source

Base.Cwchar_t – Type.

Cwchar_t

Equivalent to the native wchar_t c-type (Int32).

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/ctypes.jl#L86-L90
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/ctypes.jl#L94-L98
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/ctypes.jl#L70-L74
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/ctypes.jl#L78-L82
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/ctypes.jl#L54-L58
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/ctypes.jl#L62-L66
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/ctypes.jl#L46-L50
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/c.jl#L118-L122

CHAPTER 56. C INTERFACE 1081

Base.Cwstring – Type.

Cwstring

A C-style string composed of the native wide character type Cwchar_ts. Cwstrings are NUL-terminated.

For C-style strings composed of the native character type, see Cstring. For more information about

string interoperability with C, see the manual.

source

Base.Cfloat – Type.

Cfloat

Equivalent to the native float c-type (Float32).

source

Base.Cdouble – Type.

Cdouble

Equivalent to the native double c-type (Float64).

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/c.jl#L125-L135
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/ctypes.jl#L102-L106
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/ctypes.jl#L110-L114

Chapter 57

LLVM Interface

Core.Intrinsics.llvmcall – Function.

llvmcall(fun_ir::String, returntype, Tuple{argtype1, ...}, argvalue1, ...)

llvmcall((mod_ir::String, entry_fn::String), returntype, Tuple{argtype1, ...}, argvalue1,

...)↪→

llvmcall((mod_bc::Vector{UInt8}, entry_fn::String), returntype, Tuple{argtype1, ...},

argvalue1, ...)↪→

Call the LLVM code provided in the first argument. There are several ways to specify this first argument:

• as a literal string, representing function-level IR (similar to an LLVM define block), with arguments

are available as consecutive unnamed SSA variables (%0, %1, etc.);

• as a 2-element tuple, containing a string of module IR and a string representing the name of the

entry-point function to call;

• as a 2-element tuple, but with the module provided as an Vector{UInt8} with bitcode.

Note that contrary to ccall, the argument types must be specified as a tuple type, and not a tuple

of types. All types, as well as the LLVM code, should be specified as literals, and not as variables or

expressions (it may be necessary to use @eval to generate these literals).

See test/llvmcall.jl for usage examples.

source

1082

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/docs/basedocs.jl#L1299-L1319

Chapter 58

C Standard Library

Base.Libc.malloc – Function.

malloc(size::Integer) -> Ptr{Cvoid}

Call malloc from the C standard library.

source

Base.Libc.calloc – Function.

calloc(num::Integer, size::Integer) -> Ptr{Cvoid}

Call calloc from the C standard library.

source

Base.Libc.realloc – Function.

realloc(addr::Ptr, size::Integer) -> Ptr{Cvoid}

Call realloc from the C standard library.

See warning in the documentation for free regarding only using this on memory originally obtained

from malloc.

source

Base.memcpy – Function.

memcpy(dst::Ptr, src::Ptr, n::Integer) -> Ptr{Cvoid}

Call memcpy from the C standard library.

Julia 1.10

Support for memcpy requires at least Julia 1.10.

source

Base.memmove – Function.

1083

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libc.jl#L354-L358
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libc.jl#L371-L375
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libc.jl#L361-L368
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/cmem.jl#L3-L11

CHAPTER 58. C STANDARD LIBRARY 1084

memmove(dst::Ptr, src::Ptr, n::Integer) -> Ptr{Cvoid}

Call memmove from the C standard library.

Julia 1.10

Support for memmove requires at least Julia 1.10.

source

Base.memset – Function.

memset(dst::Ptr, val, n::Integer) -> Ptr{Cvoid}

Call memset from the C standard library.

Julia 1.10

Support for memset requires at least Julia 1.10.

source

Base.memcmp – Function.

memcmp(a::Ptr, b::Ptr, n::Integer) -> Int

Call memcmp from the C standard library.

Julia 1.10

Support for memcmp requires at least Julia 1.9.

source

Base.Libc.free – Function.

free(addr::Ptr)

Call free from the C standard library. Only use this on memory obtained from malloc, not on pointers

retrieved from other C libraries. Ptr objects obtained from C libraries should be freed by the free

functions defined in that library, to avoid assertion failures if multiple libc libraries exist on the system.

source

Base.Libc.errno – Function.

errno([code])

Get the value of the C library's errno. If an argument is specified, it is used to set the value of errno.

The value of errno is only valid immediately after a ccall to a C library routine that sets it. Specifically,

you cannot call errno at the next prompt in a REPL, because lots of code is executed between prompts.

source

Base.Libc.strerror – Function.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/cmem.jl#L16-L24
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/cmem.jl#L29-L37
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/cmem.jl#L42-L50
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libc.jl#L342-L349
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libc.jl#L283-L292

CHAPTER 58. C STANDARD LIBRARY 1085

strerror(n=errno())

Convert a system call error code to a descriptive string

source

Base.Libc.GetLastError – Function.

GetLastError()

Call the Win32 GetLastError function [only available on Windows].

source

Base.Libc.FormatMessage – Function.

FormatMessage(n=GetLastError())

Convert a Win32 system call error code to a descriptive string [only available on Windows].

source

Base.Libc.time – Method.

time(t::TmStruct) -> Float64

Converts a TmStruct struct to a number of seconds since the epoch.

source

Base.Libc.strftime – Function.

strftime([format], time)

Convert time, given as a number of seconds since the epoch or a TmStruct, to a formatted string using

the given format. Supported formats are the same as those in the standard C library.

source

Base.Libc.strptime – Function.

strptime([format], timestr)

Parse a formatted time string into a TmStruct giving the seconds, minute, hour, date, etc. Supported

formats are the same as those in the standard C library. On some platforms, timezones will not be

parsed correctly. If the result of this function will be passed to time to convert it to seconds since the

epoch, the isdst field should be filled in manually. Setting it to -1 will tell the C library to use the

current system settings to determine the timezone.

source

Base.Libc.TmStruct – Type.

TmStruct([seconds])

Convert a number of seconds since the epoch to broken-down format, with fields sec, min, hour, mday,

month, year, wday, yday, and isdst.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libc.jl#L296-L300
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libc.jl#L304-L308
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libc.jl#L311-L315
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libc.jl#L240-L244
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libc.jl#L188-L194
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libc.jl#L206-L215
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libc.jl#L153-L158

CHAPTER 58. C STANDARD LIBRARY 1086

Base.Libc.flush_cstdio – Function.

flush_cstdio()

Flushes the C stdout and stderr streams (which may have been written to by external C code).

source

Base.Libc.systemsleep – Function.

systemsleep(s::Real)

Suspends execution for s seconds. This function does not yield to Julia's scheduler and therefore blocks

the Julia thread that it is running on for the duration of the sleep time.

See also sleep.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libc.jl#L110-L114
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libc.jl#L130-L138

Chapter 59

StackTraces

Base.StackTraces.StackFrame – Type.

StackFrame

Stack information representing execution context, with the following fields:

• func::Symbol

The name of the function containing the execution context.

• linfo::Union{Core.MethodInstance, Method, Module, Core.CodeInfo, Nothing}

The MethodInstance or CodeInfo containing the execution context (if it could be found), or Module

(for macro expansions)"

• file::Symbol

The path to the file containing the execution context.

• line::Int

The line number in the file containing the execution context.

• from_c::Bool

True if the code is from C.

• inlined::Bool

True if the code is from an inlined frame.

• pointer::UInt64

Representation of the pointer to the execution context as returned by backtrace.

source

Base.StackTraces.StackTrace – Type.

StackTrace

An alias for Vector{StackFrame} provided for convenience; returned by calls to stacktrace.

source

Base.StackTraces.stacktrace – Function.

1087

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stacktraces.jl#L14-L47
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stacktraces.jl#L70-L75

CHAPTER 59. STACKTRACES 1088

stacktrace([trace::Vector{Ptr{Cvoid}},] [c_funcs::Bool=false]) -> StackTrace

Return a stack trace in the form of a vector of StackFrames. (By default stacktrace doesn't return

C functions, but this can be enabled.) When called without specifying a trace, stacktrace first calls

backtrace.

source

The following methods and types in Base.StackTraces are not exported and need to be called e.g. as

StackTraces.lookup(ptr).

Base.StackTraces.lookup – Function.

lookup(pointer::Ptr{Cvoid}) -> Vector{StackFrame}

Given a pointer to an execution context (usually generated by a call to backtrace), looks up stack

frame context information. Returns an array of frame information for all functions inlined at that point,

innermost function first.

source

Base.StackTraces.remove_frames! – Function.

remove_frames!(stack::StackTrace, name::Symbol)

Takes a StackTrace (a vector of StackFrames) and a function name (a Symbol) and removes the

StackFrame specified by the function name from the StackTrace (also removing all frames above

the specified function). Primarily used to remove StackTraces functions from the StackTrace prior to

returning it.

source

remove_frames!(stack::StackTrace, m::Module)

Return the StackTrace with all StackFrames from the provided Module removed.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stacktraces.jl#L154-L160
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stacktraces.jl#L100-L106
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stacktraces.jl#L183-L190
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/stacktraces.jl#L201-L205

Chapter 60

SIMD Support

Type VecElement{T} is intended for building libraries of SIMD operations. Practical use of it requires using

llvmcall. The type is defined as:

struct VecElement{T}

value::T

end

It has a special compilation rule: a homogeneous tuple of VecElement{T} maps to an LLVM vector type

when T is a primitive bits type.

At -O3, the compiler might automatically vectorize operations on such tuples. For example, the following

program, when compiled with julia -O3 generates two SIMD addition instructions (addps) on x86 systems:

const m128 = NTuple{4,VecElement{Float32}}

function add(a::m128, b::m128)

(VecElement(a[1].value+b[1].value),

VecElement(a[2].value+b[2].value),

VecElement(a[3].value+b[3].value),

VecElement(a[4].value+b[4].value))

end

triple(c::m128) = add(add(c,c),c)

code_native(triple,(m128,))

However, since the automatic vectorization cannot be relied upon, future use will mostly be via libraries

that use llvmcall.

1089

Part III

Standard Library

1090

Chapter 61

ArgTools

61.1 Argument Handling

ArgTools.ArgRead – Type.

ArgRead = Union{AbstractString, AbstractCmd, IO}

The ArgRead types is a union of the types that the arg_read function knows how to convert into read-

able IO handles. See arg_read for details.

ArgTools.ArgWrite – Type.

ArgWrite = Union{AbstractString, AbstractCmd, IO}

The ArgWrite types is a union of the types that the arg_write function knows how to convert into

writeable IO handles, except for Nothing which arg_write handles by generating a temporary file.

See arg_write for details.

ArgTools.arg_read – Function.

arg_read(f::Function, arg::ArgRead) -> f(arg_io)

The arg_read function accepts an argument arg that can be any of these:

• AbstractString: a file path to be opened for reading

• AbstractCmd: a command to be run, reading from its standard output

• IO: an open IO handle to be read from

Whether the body returns normally or throws an error, a path which is opened will be closed before re-

turning from arg_read and an IO handle will be flushed but not closed before returning from arg_read.

Note: when opening a file, ArgTools will pass lock = false to the file open(...) call. Therefore, the

object returned by this function should not be used from multiple threads. This restriction may be

relaxed in the future, which would not break any working code.

ArgTools.arg_write – Function.

arg_write(f::Function, arg::ArgWrite) -> arg

arg_write(f::Function, arg::Nothing) -> tempname()

1091

CHAPTER 61. ARGTOOLS 1092

The arg_read function accepts an argument arg that can be any of these:

• AbstractString: a file path to be opened for writing

• AbstractCmd: a command to be run, writing to its standard input

• IO: an open IO handle to be written to

• Nothing: a temporary path should be written to

If the body returns normally, a path that is opened will be closed upon completion; an IO handle ar-

gument is left open but flushed before return. If the argument is nothing then a temporary path is

opened for writing and closed open completion and the path is returned from arg_write. In all other

cases, arg itself is returned. This is a useful pattern since you can consistently return whatever was

written, whether an argument was passed or not.

If there is an error during the evaluation of the body, a path that is opened by arg_write for writing

will be deleted, whether it's passed in as a string or a temporary path generated when arg is nothing.

Note: when opening a file, ArgTools will pass lock = false to the file open(...) call. Therefore, the

object returned by this function should not be used from multiple threads. This restriction may be

relaxed in the future, which would not break any working code.

ArgTools.arg_isdir – Function.

arg_isdir(f::Function, arg::AbstractString) -> f(arg)

The arg_isdir function takes arg which must be the path to an existing directory (an error is raised

otherwise) and passes that path to f finally returning the result of f(arg). This is definitely the least

useful tool offered by ArgTools and mostly exists for symmetry with arg_mkdir and to give consistent

error messages.

ArgTools.arg_mkdir – Function.

arg_mkdir(f::Function, arg::AbstractString) -> arg

arg_mkdir(f::Function, arg::Nothing) -> mktempdir()

The arg_mkdir function takes arg which must either be one of:

• a path to an already existing empty directory,

• a non-existent path which can be created as a directory, or

• nothing in which case a temporary directory is created.

In all cases the path to the directory is returned. If an error occurs during f(arg), the directory is

returned to its original state: if it already existed but was empty, it will be emptied; if it did not exist it

will be deleted.

61.2 Function Testing

ArgTools.arg_readers – Function.

CHAPTER 61. ARGTOOLS 1093

arg_readers(arg :: AbstractString, [type = ArgRead]) do arg::Function

pre-test setup

@arg_test arg begin

arg :: ArgRead

test using `arg`

end

post-test cleanup

end

The arg_readers function takes a path to be read and a single-argument do block, which is invoked

once for each test reader type that arg_read can handle. If the optional type argument is given then

the do block is only invoked for readers that produce arguments of that type.

The arg passed to the do block is not the argument value itself, because some of test argument types

need to be initialized and finalized for each test case. Consider an open file handle argument: once

you've used it for one test, you can't use it again; you need to close it and open the file again for the

next test. This function arg can be converted into an ArgRead instance using @arg_test arg begin

... end.

ArgTools.arg_writers – Function.

arg_writers([type = ArgWrite]) do path::String, arg::Function

pre-test setup

@arg_test arg begin

arg :: ArgWrite

test using `arg`

end

post-test cleanup

end

The arg_writers function takes a do block, which is invoked once for each test writer type that

arg_write can handle with a temporary (non-existent) path and arg which can be converted into

various writable argument types which write to path. If the optional type argument is given then the

do block is only invoked for writers that produce arguments of that type.

The arg passed to the do block is not the argument value itself, because some of test argument types

need to be initialized and finalized for each test case. Consider an open file handle argument: once

you've used it for one test, you can't use it again; you need to close it and open the file again for the

next test. This function arg can be converted into an ArgWrite instance using @arg_test arg begin

... end.

There is also an arg_writers method that takes a path name like arg_readers:

arg_writers(path::AbstractString, [type = ArgWrite]) do arg::Function

pre-test setup

@arg_test arg begin

here `arg :: ArgWrite`

test using `arg`

end

post-test cleanup

end

This method is useful if you need to specify path instead of using path name generated by tempname().

Since path is passed from outside of arg_writers, the path is not an argument to the do block in this

form.

CHAPTER 61. ARGTOOLS 1094

ArgTools.@arg_test – Macro.

@arg_test arg1 arg2 ... body

The @arg_testmacro is used to convert arg functions provided by arg_readers and arg_writers into

actual argument values. When you write @arg_test arg body it is equivalent to arg(arg -> body).

Chapter 62

Artifacts

Starting with Julia 1.6, the artifacts support has moved from Pkg.jl to Julia itself. Until proper docu-

mentation can be added here, you can learn more about artifacts in the Pkg.jl manual at https://ju-

lialang.github.io/Pkg.jl/v1/artifacts/.

Julia 1.6

Julia's artifacts API requires at least Julia 1.6. In Julia versions 1.3 to 1.5, you can use Pkg.Artifacts

instead.

Artifacts.artifact_meta – Function.

artifact_meta(name::String, artifacts_toml::String;

platform::AbstractPlatform = HostPlatform(),

pkg_uuid::Union{Base.UUID,Nothing}=nothing)

Getmetadata about a given artifact (identified by name) storedwithin the given (Julia)Artifacts.toml

file. If the artifact is platform-specific, use platform to choose the most appropriate mapping. If none

is found, return nothing.

Julia 1.3

This function requires at least Julia 1.3.

Artifacts.artifact_hash – Function.

artifact_hash(name::String, artifacts_toml::String;

platform::AbstractPlatform = HostPlatform())

Thin wrapper around artifact_meta() to return the hash of the specified, platform- collapsed artifact.

Returns nothing if no mapping can be found.

Julia 1.3

This function requires at least Julia 1.3.

Artifacts.find_artifacts_toml – Function.

find_artifacts_toml(path::String)

1095

https://julialang.github.io/Pkg.jl/v1/artifacts/
https://julialang.github.io/Pkg.jl/v1/artifacts/

CHAPTER 62. ARTIFACTS 1096

Given the path to a .jl file, (such as the one returned by __source__.file in a macro context), find

the (Julia)Artifacts.toml that is contained within the containing project (if it exists), otherwise

return nothing.

Julia 1.3

This function requires at least Julia 1.3.

Artifacts.@artifact_str – Macro.

macro artifact_str(name)

Return the on-disk path to an artifact. Automatically looks the artifact up by name in the project's

(Julia)Artifacts.toml file. Throws an error on if the requested artifact is not present. If run in the

REPL, searches for the toml file starting in the current directory, see find_artifacts_toml() for more.

If the artifact is marked "lazy" and the package has using LazyArtifacts defined, the artifact will be

downloaded on-demand with Pkg the first time this macro tries to compute the path. The files will then

be left installed locally for later.

If name contains a forward or backward slash, all elements after the first slash will be taken to be path

names indexing into the artifact, allowing for an easy one-liner to access a single file/directory within

an artifact. Example:

ffmpeg_path = @artifact"FFMPEG/bin/ffmpeg"

Julia 1.3

This macro requires at least Julia 1.3.

Julia 1.6

Slash-indexing requires at least Julia 1.6.

Chapter 63

Base64

Base64.Base64 – Module.

Base64

Functionality for base64 encoding and decoding, amethod to represent binary data using text, common

on the web.

Base64.Base64EncodePipe – Type.

Base64EncodePipe(ostream)

Return a new write-only I/O stream, which converts any bytes written to it into base64-encoded ASCII

bytes written to ostream. Calling close on the Base64EncodePipe stream is necessary to complete

the encoding (but does not close ostream).

Examples

julia> io = IOBuffer();

julia> iob64_encode = Base64EncodePipe(io);

julia> write(iob64_encode, "Hello!")

6

julia> close(iob64_encode);

julia> str = String(take!(io))

"SGVsbG8h"

julia> String(base64decode(str))

"Hello!"

Base64.base64encode – Function.

base64encode(writefunc, args...; context=nothing)

base64encode(args...; context=nothing)

1097

https://en.wikipedia.org/wiki/Base64

CHAPTER 63. BASE64 1098

Given a write-like function writefunc, which takes an I/O stream as its first argument, base64encode(writefunc,

args...) calls writefunc to write args... to a base64-encoded string, and returns the string.

base64encode(args...) is equivalent to base64encode(write, args...): it converts its arguments

into bytes using the standard write functions and returns the base64-encoded string.

The optional keyword argument context can be set to :key=>value pair or an IO or IOContext object

whose attributes are used for the I/O stream passed to writefunc or write.

See also base64decode.

Base64.Base64DecodePipe – Type.

Base64DecodePipe(istream)

Return a new read-only I/O stream, which decodes base64-encoded data read from istream.

Examples

julia> io = IOBuffer();

julia> iob64_decode = Base64DecodePipe(io);

julia> write(io, "SGVsbG8h")

8

julia> seekstart(io);

julia> String(read(iob64_decode))

"Hello!"

Base64.base64decode – Function.

base64decode(string)

Decode the base64-encoded string and returns a Vector{UInt8} of the decoded bytes.

See also base64encode.

Examples

julia> b = base64decode("SGVsbG8h")

6-element Vector{UInt8}:

0x48

0x65

0x6c

0x6c

0x6f

0x21

julia> String(b)

"Hello!"

Base64.stringmime – Function.

stringmime(mime, x; context=nothing)

CHAPTER 63. BASE64 1099

Return an AbstractString containing the representation of x in the requested mime type. This is similar

to repr(mime, x) except that binary data is base64-encoded as an ASCII string.

The optional keyword argument context can be set to :key=>value pair or an IO or IOContext object

whose attributes are used for the I/O stream passed to show.

Chapter 64

CRC32c

Standard library module for computing the CRC-32c checksum.

CRC32c.crc32c – Function.

crc32c(data, crc::UInt32=0x00000000)

Compute the CRC-32c checksum of the given data, which can be an Array{UInt8}, a contiguous subar-

ray thereof, or a String. Optionally, you can pass a starting crc integer to be mixed in with the check-

sum. The crc parameter can be used to compute a checksum on data divided into chunks: performing

crc32c(data2, crc32c(data1)) is equivalent to the checksum of [data1; data2]. (Technically, a

little-endian checksum is computed.)

There is also a method crc32c(io, nb, crc) to checksum nb bytes from a stream io, or crc32c(io,

crc) to checksum all the remaining bytes. Hence you can do open(crc32c, filename) to checksum

an entire file, or crc32c(seekstart(buf)) to checksum an IOBuffer without calling take!.

For a String, note that the result is specific to the UTF-8 encoding (a different checksum would be

obtained from a different Unicode encoding). To checksum an a::Array of some other bitstype, you

can do crc32c(reinterpret(UInt8,a)), but note that the result may be endian-dependent.

CRC32c.crc32c – Method.

crc32c(io::IO, [nb::Integer,] crc::UInt32=0x00000000)

Read up to nb bytes from io and return the CRC-32c checksum, optionally mixed with a starting crc

integer. If nb is not supplied, then io will be read until the end of the stream.

1100

Chapter 65

Dates

The Dates module provides two types for working with dates: Date and DateTime, representing day and

millisecond precision, respectively; both are subtypes of the abstract TimeType. The motivation for distinct

types is simple: some operations are much simpler, both in terms of code and mental reasoning, when the

complexities of greater precision don't have to be dealt with. For example, since the Date type only resolves

to the precision of a single date (i.e. no hours, minutes, or seconds), normal considerations for time zones,

daylight savings/summer time, and leap seconds are unnecessary and avoided.

Both Date and DateTime are basically immutable Int64 wrappers. The single instant field of either type

is actually a UTInstant{P} type, which represents a continuously increasing machine timeline based on

the UT second 1. The DateTime type is not aware of time zones (naive, in Python parlance), analogous

to a LocalDateTime in Java 8. Additional time zone functionality can be added through the TimeZones.jl

package, which compiles the IANA time zone database. Both Date and DateTime are based on the ISO

8601 standard, which follows the proleptic Gregorian calendar. One note is that the ISO 8601 standard is

particular about BC/BCE dates. In general, the last day of the BC/BCE era, 1-12-31 BC/BCE, was followed

by 1-1-1 AD/CE, thus no year zero exists. The ISO standard, however, states that 1 BC/BCE is year zero,

so 0000-12-31 is the day before 0001-01-01, and year -0001 (yes, negative one for the year) is 2 BC/BCE,

year -0002 is 3 BC/BCE, etc.

65.1 Constructors

Date and DateTime types can be constructed by integer or Period types, by parsing, or through adjusters

(more on those later):

julia> DateTime(2013)

2013-01-01T00:00:00

julia> DateTime(2013,7)

2013-07-01T00:00:00

1The notion of the UT second is actually quite fundamental. There are basically two different notions of time generally accepted,

one based on the physical rotation of the earth (one full rotation = 1 day), the other based on the SI second (a fixed, constant value).

These are radically different! Think about it, a "UT second", as defined relative to the rotation of the earth, may have a different

absolute length depending on the day! Anyway, the fact that Date and DateTime are based on UT seconds is a simplifying, yet honest

assumption so that things like leap seconds and all their complexity can be avoided. This basis of time is formally called UT or UT1.

Basing types on the UT second basically means that every minute has 60 seconds and every day has 24 hours and leads to more

natural calculations when working with calendar dates.

1101

https://github.com/JuliaTime/TimeZones.jl/
https://github.com/JuliaTime/TimeZones.jl/
http://www.iana.org/time-zones
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/Universal_Time

CHAPTER 65. DATES 1102

julia> DateTime(2013,7,1)

2013-07-01T00:00:00

julia> DateTime(2013,7,1,12)

2013-07-01T12:00:00

julia> DateTime(2013,7,1,12,30)

2013-07-01T12:30:00

julia> DateTime(2013,7,1,12,30,59)

2013-07-01T12:30:59

julia> DateTime(2013,7,1,12,30,59,1)

2013-07-01T12:30:59.001

julia> Date(2013)

2013-01-01

julia> Date(2013,7)

2013-07-01

julia> Date(2013,7,1)

2013-07-01

julia> Date(Dates.Year(2013),Dates.Month(7),Dates.Day(1))

2013-07-01

julia> Date(Dates.Month(7),Dates.Year(2013))

2013-07-01

Date or DateTime parsing is accomplished by the use of format strings. Format strings work by the notion

of defining delimited or fixed-width "slots" that contain a period to parse and passing the text to parse and

format string to a Date or DateTime constructor, of the form Date("2015-01-01",dateformat"y-m-d") or

DateTime("20150101",dateformat"yyyymmdd").

Delimited slots are marked by specifying the delimiter the parser should expect between two subsequent

periods; so "y-m-d" lets the parser know that between the first and second slots in a date string like

"2014-07-16", it should find the - character. The y, m, and d characters let the parser know which periods

to parse in each slot.

As in the case of constructors above such as Date(2013), delimited DateFormats allow for missing parts

of dates and times so long as the preceding parts are given. The other parts are given the usual default

values. For example, Date("1981-03", dateformat"y-m-d") returns 1981-03-01, whilst Date("31/12",

dateformat"d/m/y") gives 0001-12-31. (Note that the default year is 1 AD/CE.) An empty string, however,

always throws an ArgumentError.

Fixed-width slots are specified by repeating the period character the number of times corresponding to

the width with no delimiter between characters. So dateformat"yyyymmdd" would correspond to a date

string like "20140716". The parser distinguishes a fixed-width slot by the absence of a delimiter, noting

the transition "yyyymm" from one period character to the next.

Support for text-form month parsing is also supported through the u and U characters, for abbreviated and

full-length month names, respectively. By default, only English month names are supported, so u corre-

CHAPTER 65. DATES 1103

sponds to "Jan", "Feb", "Mar", etc. And U corresponds to "January", "February", "March", etc. Similar to other

name=>value mapping functions dayname and monthname, custom locales can be loaded by passing in the

locale=>Dict{String,Int} mapping to the MONTHTOVALUEABBR and MONTHTOVALUE dicts for abbreviated

and full-name month names, respectively.

The above examples used the dateformat"" string macro. This macro creates a DateFormat object once

when the macro is expanded and uses the same DateFormat object even if a code snippet is run multiple

times.

julia> for i = 1:10^5

Date("2015-01-01", dateformat"y-m-d")

end

Or you can create the DateFormat object explicitly:

julia> df = DateFormat("y-m-d");

julia> dt = Date("2015-01-01",df)

2015-01-01

julia> dt2 = Date("2015-01-02",df)

2015-01-02

Alternatively, use broadcasting:

julia> years = ["2015", "2016"];

julia> Date.(years, DateFormat("yyyy"))

2-element Vector{Date}:

2015-01-01

2016-01-01

For convenience, you may pass the format string directly (e.g., Date("2015-01-01","y-m-d")), although

this form incurs performance costs if you are parsing the same format repeatedly, as it internally creates

a new DateFormat object each time.

As well as via the constructors, a Date or DateTime can be constructed from strings using the parse and

tryparse functions, but with an optional third argument of type DateFormat specifying the format; for ex-

ample, parse(Date, "06.23.2013", dateformat"m.d.y"), or tryparse(DateTime, "1999-12-31T23:59:59")

which uses the default format. The notable difference between the functions is that with tryparse, an error

is not thrown if the string is empty or in an invalid format; instead nothing is returned.

Julia 1.9

Before Julia 1.9, empty strings could be passed to constructors and parse without error, re-

turning as appropriate DateTime(1), Date(1) or Time(0). Likewise, tryparse did not return

nothing.

A full suite of parsing and formatting tests and examples is available in stdlib/Dates/test/io.jl.

https://github.com/JuliaLang/julia/blob/master/stdlib/Dates/test/io.jl

CHAPTER 65. DATES 1104

65.2 Durations/Comparisons

Finding the length of time between two Date or DateTime is straightforward given their underlying repre-

sentation as UTInstant{Day} and UTInstant{Millisecond}, respectively. The difference between Date

is returned in the number of Day, and DateTime in the number of Millisecond. Similarly, comparing

TimeType is a simple matter of comparing the underlying machine instants (which in turn compares the

internal Int64 values).

julia> dt = Date(2012,2,29)

2012-02-29

julia> dt2 = Date(2000,2,1)

2000-02-01

julia> dump(dt)

Date

instant: Dates.UTInstant{Day}

periods: Day

value: Int64 734562

julia> dump(dt2)

Date

instant: Dates.UTInstant{Day}

periods: Day

value: Int64 730151

julia> dt > dt2

true

julia> dt != dt2

true

julia> dt + dt2

ERROR: MethodError: no method matching +(::Date, ::Date)

[...]

julia> dt * dt2

ERROR: MethodError: no method matching *(::Date, ::Date)

[...]

julia> dt / dt2

ERROR: MethodError: no method matching /(::Date, ::Date)

julia> dt - dt2

4411 days

julia> dt2 - dt

-4411 days

julia> dt = DateTime(2012,2,29)

2012-02-29T00:00:00

julia> dt2 = DateTime(2000,2,1)

CHAPTER 65. DATES 1105

2000-02-01T00:00:00

julia> dt - dt2

381110400000 milliseconds

65.3 Accessor Functions

Because the Date and DateTime types are stored as single Int64 values, date parts or fields can be re-

trieved through accessor functions. The lowercase accessors return the field as an integer:

julia> t = Date(2014, 1, 31)

2014-01-31

julia> Dates.year(t)

2014

julia> Dates.month(t)

1

julia> Dates.week(t)

5

julia> Dates.day(t)

31

While propercase return the same value in the corresponding Period type:

julia> Dates.Year(t)

2014 years

julia> Dates.Day(t)

31 days

Compound methods are provided because it is more efficient to access multiple fields at the same time

than individually:

julia> Dates.yearmonth(t)

(2014, 1)

julia> Dates.monthday(t)

(1, 31)

julia> Dates.yearmonthday(t)

(2014, 1, 31)

One may also access the underlying UTInstant or integer value:

julia> dump(t)

Date

CHAPTER 65. DATES 1106

instant: Dates.UTInstant{Day}

periods: Day

value: Int64 735264

julia> t.instant

Dates.UTInstant{Day}(Day(735264))

julia> Dates.value(t)

735264

65.4 Query Functions

Query functions provide calendrical information about a TimeType. They include information about the day

of the week:

julia> t = Date(2014, 1, 31)

2014-01-31

julia> Dates.dayofweek(t)

5

julia> Dates.dayname(t)

"Friday"

julia> Dates.dayofweekofmonth(t) # 5th Friday of January

5

Month of the year:

julia> Dates.monthname(t)

"January"

julia> Dates.daysinmonth(t)

31

As well as information about the TimeType's year and quarter:

julia> Dates.isleapyear(t)

false

julia> Dates.dayofyear(t)

31

julia> Dates.quarterofyear(t)

1

julia> Dates.dayofquarter(t)

31

CHAPTER 65. DATES 1107

The dayname and monthnamemethods can also take an optional locale keyword that can be used to return

the name of the day or month of the year for other languages/locales. There are also versions of these

functions returning the abbreviated names, namely dayabbr and monthabbr. First the mapping is loaded

into the LOCALES variable:

julia> french_months = ["janvier", "février", "mars", "avril", "mai", "juin",

"juillet", "août", "septembre", "octobre", "novembre", "décembre"];

julia> french_monts_abbrev = ["janv","févr","mars","avril","mai","juin",

"juil","août","sept","oct","nov","déc"];

julia> french_days = ["lundi","mardi","mercredi","jeudi","vendredi","samedi","dimanche"];

julia> Dates.LOCALES["french"] = Dates.DateLocale(french_months, french_monts_abbrev,

french_days, [""]);↪→

The above mentioned functions can then be used to perform the queries:

julia> Dates.dayname(t;locale="french")

"vendredi"

julia> Dates.monthname(t;locale="french")

"janvier"

julia> Dates.monthabbr(t;locale="french")

"janv"

Since the abbreviated versions of the days are not loaded, trying to use the function dayabbr will throw an

error.

julia> Dates.dayabbr(t;locale="french")

ERROR: BoundsError: attempt to access 1-element Vector{String} at index [5]

Stacktrace:

[...]

65.5 TimeType-Period Arithmetic

It's good practice when using any language/date framework to be familiar with how date-period arithmetic

is handled as there are some tricky issues to deal with (though much less so for day-precision types).

The Datesmodule approach tries to follow the simple principle of trying to change as little as possible when

doing Period arithmetic. This approach is also often known as calendrical arithmetic or what you would

probably guess if someone were to ask you the same calculation in a conversation. Why all the fuss about

this? Let's take a classic example: add 1 month to January 31st, 2014. What's the answer? Javascript will

say March 3 (assumes 31 days). PHP says March 2 (assumes 30 days). The fact is, there is no right answer.

In the Dates module, it gives the result of February 28th. How does it figure that out? Consider the classic

7-7-7 gambling game in casinos.

Now just imagine that instead of 7-7-7, the slots are Year-Month-Day, or in our example, 2014-01-31. When

you ask to add 1 month to this date, the month slot is incremented, so now we have 2014-02-31. Then the

https://codeblog.jonskeet.uk/2010/12/01/the-joys-of-date-time-arithmetic/
https://markhneedham.com/blog/2009/01/07/javascript-add-a-month-to-a-date/
https://stackoverflow.com/questions/5760262/php-adding-months-to-a-date-while-not-exceeding-the-last-day-of-the-month

CHAPTER 65. DATES 1108

day number is checked if it is greater than the last valid day of the new month; if it is (as in the case above),

the day number is adjusted down to the last valid day (28). What are the ramifications with this approach?

Go ahead and add another month to our date, 2014-02-28 + Month(1) == 2014-03-28. What? Were

you expecting the last day of March? Nope, sorry, remember the 7-7-7 slots. As few slots as possible are

going to change, so we first increment the month slot by 1, 2014-03-28, and boom, we're done because

that's a valid date. On the other hand, if we were to add 2 months to our original date, 2014-01-31, then

we end up with 2014-03-31, as expected. The other ramification of this approach is a loss in associativity

when a specific ordering is forced (i.e. adding things in different orders results in different outcomes). For

example:

julia> (Date(2014,1,29)+Dates.Day(1)) + Dates.Month(1)

2014-02-28

julia> (Date(2014,1,29)+Dates.Month(1)) + Dates.Day(1)

2014-03-01

What's going on there? In the first line, we're adding 1 day to January 29th, which results in 2014-01-

30; then we add 1 month, so we get 2014-02-30, which then adjusts down to 2014-02-28. In the second

example, we add 1 month first, where we get 2014-02-29, which adjusts down to 2014-02-28, and then

add 1 day, which results in 2014-03-01. One design principle that helps in this case is that, in the presence

of multiple Periods, the operations will be ordered by the Periods' types, not their value or positional order;

this means Year will always be added first, then Month, then Week, etc. Hence the following does result in

associativity and Just Works:

julia> Date(2014,1,29) + Dates.Day(1) + Dates.Month(1)

2014-03-01

julia> Date(2014,1,29) + Dates.Month(1) + Dates.Day(1)

2014-03-01

Tricky? Perhaps. What is an innocent Dates user to do? The bottom line is to be aware that explicitly forcing

a certain associativity, when dealing with months, may lead to some unexpected results, but otherwise,

everything should work as expected. Thankfully, that's pretty much the extent of the odd cases in date-

period arithmetic when dealing with time in UT (avoiding the "joys" of dealing with daylight savings, leap

seconds, etc.).

As a bonus, all period arithmetic objects work directly with ranges:

julia> dr = Date(2014,1,29):Day(1):Date(2014,2,3)

Date("2014-01-29"):Day(1):Date("2014-02-03")

julia> collect(dr)

6-element Vector{Date}:

2014-01-29

2014-01-30

2014-01-31

2014-02-01

2014-02-02

2014-02-03

CHAPTER 65. DATES 1109

julia> dr = Date(2014,1,29):Dates.Month(1):Date(2014,07,29)

Date("2014-01-29"):Month(1):Date("2014-07-29")

julia> collect(dr)

7-element Vector{Date}:

2014-01-29

2014-02-28

2014-03-29

2014-04-29

2014-05-29

2014-06-29

2014-07-29

65.6 Adjuster Functions

As convenient as date-period arithmetic is, often the kinds of calculations needed on dates take on a

calendrical or temporal nature rather than a fixed number of periods. Holidays are a perfect example;

most follow rules such as "Memorial Day = Last Monday of May", or "Thanksgiving = 4th Thursday of

November". These kinds of temporal expressions deal with rules relative to the calendar, like first or last

of the month, next Tuesday, or the first and third Wednesdays, etc.

The Dates module provides the adjuster API through several convenient methods that aid in simply and

succinctly expressing temporal rules. The first group of adjuster methods deal with the first and last of

weeks, months, quarters, and years. They each take a single TimeType as input and return or adjust to the

first or last of the desired period relative to the input.

julia> Dates.firstdayofweek(Date(2014,7,16)) # Adjusts the input to the Monday of the input's

week↪→

2014-07-14

julia> Dates.lastdayofmonth(Date(2014,7,16)) # Adjusts to the last day of the input's month

2014-07-31

julia> Dates.lastdayofquarter(Date(2014,7,16)) # Adjusts to the last day of the input's quarter

2014-09-30

The next two higher-order methods, tonext, and toprev, generalize working with temporal expressions

by taking a DateFunction as first argument, along with a starting TimeType. A DateFunction is just a

function, usually anonymous, that takes a single TimeType as input and returns a Bool, true indicating a

satisfied adjustment criterion. For example:

julia> istuesday = x->Dates.dayofweek(x) == Dates.Tuesday; # Returns true if the day of the week

of x is Tuesday↪→

julia> Dates.tonext(istuesday, Date(2014,7,13)) # 2014-07-13 is a Sunday

2014-07-15

julia> Dates.tonext(Date(2014,7,13), Dates.Tuesday) # Convenience method provided for day of the

week adjustments↪→

2014-07-15

CHAPTER 65. DATES 1110

This is useful with the do-block syntax for more complex temporal expressions:

julia> Dates.tonext(Date(2014,7,13)) do x

Return true on the 4th Thursday of November (Thanksgiving)

Dates.dayofweek(x) == Dates.Thursday &&

Dates.dayofweekofmonth(x) == 4 &&

Dates.month(x) == Dates.November

end

2014-11-27

The Base.filter method can be used to obtain all valid dates/moments in a specified range:

Pittsburgh street cleaning; Every 2nd Tuesday from April to November

Date range from January 1st, 2014 to January 1st, 2015

julia> dr = Dates.Date(2014):Day(1):Dates.Date(2015);

julia> filter(dr) do x

Dates.dayofweek(x) == Dates.Tue &&

Dates.April <= Dates.month(x) <= Dates.Nov &&

Dates.dayofweekofmonth(x) == 2

end

8-element Vector{Date}:

2014-04-08

2014-05-13

2014-06-10

2014-07-08

2014-08-12

2014-09-09

2014-10-14

2014-11-11

Additional examples and tests are available in stdlib/Dates/test/adjusters.jl.

65.7 Period Types

Periods are a human view of discrete, sometimes irregular durations of time. Consider 1 month; it could

represent, in days, a value of 28, 29, 30, or 31 depending on the year and month context. Or a year could

represent 365 or 366 days in the case of a leap year. Period types are simple Int64 wrappers and are

constructed by wrapping any Int64 convertible type, i.e. Year(1) or Month(3.0). Arithmetic between

Period of the same type behave like integers, and limited Period-Real arithmetic is available. You can

extract the underlying integer with Dates.value.

julia> y1 = Dates.Year(1)

1 year

julia> y2 = Dates.Year(2)

2 years

julia> y3 = Dates.Year(10)

10 years

https://github.com/JuliaLang/julia/blob/master/stdlib/Dates/test/adjusters.jl

CHAPTER 65. DATES 1111

julia> y1 + y2

3 years

julia> div(y3,y2)

5

julia> y3 - y2

8 years

julia> y3 % y2

0 years

julia> div(y3,3) # mirrors integer division

3 years

julia> Dates.value(Dates.Millisecond(10))

10

Representing periods or durations that are not integer multiples of the basic types can be achieved with the

Dates.CompoundPeriod type. Compound periods may be constructed manually from simple Period types.

Additionally, the canonicalize function can be used to break down a period into a Dates.CompoundPeriod.

This is particularly useful to convert a duration, e.g., a difference of two DateTime, into a more convenient

representation.

julia> cp = Dates.CompoundPeriod(Day(1),Minute(1))

1 day, 1 minute

julia> t1 = DateTime(2018,8,8,16,58,00)

2018-08-08T16:58:00

julia> t2 = DateTime(2021,6,23,10,00,00)

2021-06-23T10:00:00

julia> canonicalize(t2-t1) # creates a CompoundPeriod

149 weeks, 6 days, 17 hours, 2 minutes

65.8 Rounding

Date and DateTime values can be rounded to a specified resolution (e.g., 1 month or 15 minutes) with

floor, ceil, or round:

julia> floor(Date(1985, 8, 16), Dates.Month)

1985-08-01

julia> ceil(DateTime(2013, 2, 13, 0, 31, 20), Dates.Minute(15))

2013-02-13T00:45:00

julia> round(DateTime(2016, 8, 6, 20, 15), Dates.Day)

2016-08-07T00:00:00

CHAPTER 65. DATES 1112

Unlike the numeric roundmethod, which breaks ties toward the even number by default, the TimeTyperound

method uses the RoundNearestTiesUp rounding mode. (It's difficult to guess what breaking ties to nearest

"even" TimeType would entail.) Further details on the available RoundingMode s can be found in the API

reference.

Rounding should generally behave as expected, but there are a few cases in which the expected behaviour

is not obvious.

Rounding Epoch

In many cases, the resolution specified for rounding (e.g., Dates.Second(30)) divides evenly into the next

largest period (in this case, Dates.Minute(1)). But rounding behaviour in cases in which this is not true

may lead to confusion. What is the expected result of rounding a DateTime to the nearest 10 hours?

julia> round(DateTime(2016, 7, 17, 11, 55), Dates.Hour(10))

2016-07-17T12:00:00

That may seem confusing, given that the hour (12) is not divisible by 10. The reason that 2016-07-

17T12:00:00 was chosen is that it is 17,676,660 hours after 0000-01-01T00:00:00, and 17,676,660 is

divisible by 10.

As Julia Date and DateTime values are represented according to the ISO 8601 standard, 0000-01-01T00:00:00

was chosen as base (or "rounding epoch") from which to begin the count of days (and milliseconds) used in

rounding calculations. (Note that this differs slightly from Julia's internal representation of Date s using Rata

Die notation; but since the ISO 8601 standard is most visible to the end user, 0000-01-01T00:00:00 was

chosen as the rounding epoch instead of the 0000-12-31T00:00:00 used internally to minimize confusion.)

The only exception to the use of 0000-01-01T00:00:00 as the rounding epoch is when rounding to weeks.

Rounding to the nearest week will always return a Monday (the first day of the week as specified by ISO

8601). For this reason, we use 0000-01-03T00:00:00 (the first day of the first week of year 0000, as

defined by ISO 8601) as the base when rounding to a number of weeks.

Here is a related case in which the expected behaviour is not necessarily obvious: What happens when we

round to the nearest P(2), where P is a Period type? In some cases (specifically, when P <: Dates.TimePeriod)

the answer is clear:

julia> round(DateTime(2016, 7, 17, 8, 55, 30), Dates.Hour(2))

2016-07-17T08:00:00

julia> round(DateTime(2016, 7, 17, 8, 55, 30), Dates.Minute(2))

2016-07-17T08:56:00

This seems obvious, because two of each of these periods still divides evenly into the next larger order

period. But in the case of two months (which still divides evenly into one year), the answer may be sur-

prising:

julia> round(DateTime(2016, 7, 17, 8, 55, 30), Dates.Month(2))

2016-07-01T00:00:00

https://en.wikipedia.org/wiki/Rata_Die
https://en.wikipedia.org/wiki/Rata_Die

CHAPTER 65. DATES 1113

Why round to the first day in July, even though it is month 7 (an odd number)? The key is that months

are 1-indexed (the first month is assigned 1), unlike hours, minutes, seconds, and milliseconds (the first of

which are assigned 0).

This means that rounding a DateTime to an even multiple of seconds, minutes, hours, or years (because

the ISO 8601 specification includes a year zero) will result in a DateTime with an even value in that field,

while rounding a DateTime to an even multiple of months will result in the months field having an odd

value. Because both months and years may contain an irregular number of days, whether rounding to an

even number of days will result in an even value in the days field is uncertain.

See the API reference for additional information on methods exported from the Dates module.

Chapter 66

API reference

66.1 Dates and Time Types

Dates.Period – Type.

Period

Year

Quarter

Month

Week

Day

Hour

Minute

Second

Millisecond

Microsecond

Nanosecond

Period types represent discrete, human representations of time.

Dates.CompoundPeriod – Type.

CompoundPeriod

A CompoundPeriod is useful for expressing time periods that are not a fixed multiple of smaller peri-

ods. For example, "a year and a day" is not a fixed number of days, but can be expressed using a

CompoundPeriod. In fact, a CompoundPeriod is automatically generated by addition of different period

types, e.g. Year(1) + Day(1) produces a CompoundPeriod result.

Dates.Instant – Type.

Instant

Instant types represent integer-based, machine representations of time as continuous timelines start-

ing from an epoch.

Dates.UTInstant – Type.

UTInstant{T}

1114

CHAPTER 66. API REFERENCE 1115

The UTInstant represents a machine timeline based on UT time (1 day = one revolution of the earth).

The T is a Period parameter that indicates the resolution or precision of the instant.

Dates.TimeType – Type.

TimeType

TimeType types wrap Instant machine instances to provide human representations of the machine

instant. Time, DateTime and Date are subtypes of TimeType.

Dates.DateTime – Type.

DateTime

DateTime wraps a UTInstant{Millisecond} and interprets it according to the proleptic Gregorian

calendar.

Dates.Date – Type.

Date

Date wraps a UTInstant{Day} and interprets it according to the proleptic Gregorian calendar.

Dates.Time – Type.

Time

Time wraps a Nanosecond and represents a specific moment in a 24-hour day.

Dates.TimeZone – Type.

TimeZone

Geographic zone generally based on longitude determining what the time is at a certain location. Some

time zones observe daylight savings (eg EST -> EDT). For implementations and more support, see the

TimeZones.jl package

Dates.UTC – Type.

UTC

UTC, or Coordinated Universal Time, is the TimeZone fromwhich all others aremeasured. It is associated

with the time at 0° longitude. It is not adjusted for daylight savings.

66.2 Dates Functions

Dates.DateTime – Method.

DateTime(y, [m, d, h, mi, s, ms]) -> DateTime

Construct a DateTime type by parts. Arguments must be convertible to Int64.

Dates.DateTime – Method.

https://github.com/JuliaTime/TimeZones.jl

CHAPTER 66. API REFERENCE 1116

DateTime(periods::Period...) -> DateTime

Construct a DateTime type by Period type parts. Arguments may be in any order. DateTime parts not

provided will default to the value of Dates.default(period).

Dates.DateTime – Method.

DateTime(f::Function, y[, m, d, h, mi, s]; step=Day(1), limit=10000) -> DateTime

Create a DateTime through the adjuster API. The starting point will be constructed from the provided y,

m, d... arguments, and will be adjusted until f::Function returns true. The step size in adjusting

can be provided manually through the step keyword. limit provides a limit to the max number of

iterations the adjustment API will pursue before throwing an error (in the case that f::Function is

never satisfied).

Examples

julia> DateTime(dt -> second(dt) == 40, 2010, 10, 20, 10; step = Second(1))

2010-10-20T10:00:40

julia> DateTime(dt -> hour(dt) == 20, 2010, 10, 20, 10; step = Hour(1), limit = 5)

ERROR: ArgumentError: Adjustment limit reached: 5 iterations

Stacktrace:

[...]

Dates.DateTime – Method.

DateTime(dt::Date) -> DateTime

Convert a Date to a DateTime. The hour, minute, second, and millisecond parts of the new DateTime

are assumed to be zero.

Dates.DateTime – Method.

DateTime(dt::AbstractString, format::AbstractString; locale="english") -> DateTime

Construct a DateTime by parsing the dt date time string following the pattern given in the format

string (see DateFormat for syntax).

Note

This method creates a DateFormat object each time it is called. It is recommended that

you create a DateFormat object instead and use that as the second argument to avoid

performance loss when using the same format repeatedly.

Example

julia> DateTime("2020-01-01", "yyyy-mm-dd")

2020-01-01T00:00:00

julia> a = ("2020-01-01", "2020-01-02");

julia> [DateTime(d, dateformat"yyyy-mm-dd") for d ∈ a] # preferred

2-element Vector{DateTime}:

2020-01-01T00:00:00

2020-01-02T00:00:00

CHAPTER 66. API REFERENCE 1117

Dates.format – Method.

format(dt::TimeType, format::AbstractString; locale="english") -> AbstractString

Construct a string by using a TimeType object and applying the provided format. The following char-

acter codes can be used to construct the format string:

Code Examples Comment

y 6 Numeric year with a fixed width

Y 1996 Numeric year with a minimum width

m 1, 12 Numeric month with a minimum width

u Jan Month name shortened to 3-chars according to the locale

U January Full month name according to the locale keyword

d 1, 31 Day of the month with a minimum width

H 0, 23 Hour (24-hour clock) with a minimum width

M 0, 59 Minute with a minimum width

S 0, 59 Second with a minimum width

s 000, 500 Millisecond with a minimum width of 3

e Mon, Tue Abbreviated days of the week

E Monday Full day of week name

The number of sequential code characters indicate the width of the code. A format of yyyy-mm specifies

that the code y should have a width of four while m a width of two. Codes that yield numeric digits have

an associated mode: fixed-width or minimum-width. The fixed-width mode left-pads the value with

zeros when it is shorter than the specified width and truncates the value when longer. Minimum-width

mode works the same as fixed-width except that it does not truncate values longer than the width.

When creating a format you can use any non-code characters as a separator. For example to generate

the string "1996-01-15T00:00:00" you could use format: "yyyy-mm-ddTHH:MM:SS". Note that if you

need to use a code character as a literal you can use the escape character backslash. The string

"1996y01m" can be produced with the format "yyyy\ymm\m".

Dates.DateFormat – Type.

DateFormat(format::AbstractString, locale="english") -> DateFormat

Construct a date formatting object that can be used for parsing date strings or formatting a date object

as a string. The following character codes can be used to construct the format string:

Characters not listed above are normally treated as delimiters between date and time slots. For ex-

ample a dt string of "1996-01-15T00:00:00.0" would have a format string like "y-m-dTH:M:S.s". If you

need to use a code character as a delimiter you can escape it using backslash. The date "1995y01m"

would have the format "y\ym\m".

Note that 12:00AM corresponds 00:00 (midnight), and 12:00PM corresponds to 12:00 (noon). When

parsing a time with a p specifier, any hour (either H or I) is interpreted as as a 12-hour clock, so the I

code is mainly useful for output.

Creating a DateFormat object is expensive. Whenever possible, create it once and use it many times

or try the dateformat"" string macro. Using this macro creates the DateFormat object once at macro

expansion time and reuses it later. There are also several pre-defined formatters, listed later.

See DateTime and format for how to use a DateFormat object to parse and write Date strings respec-

tively.

CHAPTER 66. API REFERENCE 1118

Code Matches Comment

Y 1996, 96 Returns year of 1996, 0096

y 1996, 96 Same as Y on parse but discards excess digits on format

m 1, 01 Matches 1 or 2-digit months

u Jan Matches abbreviated months according to the locale keyword

U January Matches full month names according to the locale keyword

d 1, 01 Matches 1 or 2-digit days

H 00 Matches hours (24-hour clock)

I 00 For outputting hours with 12-hour clock

M 00 Matches minutes

S 00 Matches seconds

s .500 Matches milliseconds

e Mon, Tues Matches abbreviated days of the week

E Monday Matches full name days of the week

p AM Matches AM/PM (case-insensitive)

yyyymmdd 19960101 Matches fixed-width year, month, and day

Dates.@dateformat_str – Macro.

dateformat"Y-m-d H:M:S"

Create a DateFormat object. Similar to DateFormat("Y-m-d H:M:S") but creates the DateFormat ob-

ject once during macro expansion.

See DateFormat for details about format specifiers.

Dates.DateTime – Method.

DateTime(dt::AbstractString, df::DateFormat=ISODateTimeFormat) -> DateTime

Construct a DateTime by parsing the dt date time string following the pattern given in the DateFormat

object, or dateformat"yyyy-mm-dd\THH:MM:SS.s" if omitted.

Similar to DateTime(::AbstractString, ::AbstractString) butmore efficient when repeatedly pars-

ing similarly formatted date time strings with a pre-created DateFormat object.

Dates.Date – Method.

Date(y, [m, d]) -> Date

Construct a Date type by parts. Arguments must be convertible to Int64.

Dates.Date – Method.

Date(period::Period...) -> Date

Construct a Date type by Period type parts. Arguments may be in any order. Date parts not provided

will default to the value of Dates.default(period).

Dates.Date – Method.

Date(f::Function, y[, m, d]; step=Day(1), limit=10000) -> Date

CHAPTER 66. API REFERENCE 1119

Create a Date through the adjuster API. The starting point will be constructed from the provided y, m,

d arguments, and will be adjusted until f::Function returns true. The step size in adjusting can be

provided manually through the step keyword. limit provides a limit to the max number of iterations

the adjustment API will pursue before throwing an error (given that f::Function is never satisfied).

Examples

julia> Date(date -> week(date) == 20, 2010, 01, 01)

2010-05-17

julia> Date(date -> year(date) == 2010, 2000, 01, 01)

2010-01-01

julia> Date(date -> month(date) == 10, 2000, 01, 01; limit = 5)

ERROR: ArgumentError: Adjustment limit reached: 5 iterations

Stacktrace:

[...]

Dates.Date – Method.

Date(dt::DateTime) -> Date

Convert a DateTime to a Date. The hour, minute, second, and millisecond parts of the DateTime are

truncated, so only the year, month and day parts are used in construction.

Dates.Date – Method.

Date(d::AbstractString, format::AbstractString; locale="english") -> Date

Construct a Date by parsing the d date string following the pattern given in the format string (see

DateFormat for syntax).

Note

This method creates a DateFormat object each time it is called. It is recommended that

you create a DateFormat object instead and use that as the second argument to avoid

performance loss when using the same format repeatedly.

Example

julia> Date("2020-01-01", "yyyy-mm-dd")

2020-01-01

julia> a = ("2020-01-01", "2020-01-02");

julia> [Date(d, dateformat"yyyy-mm-dd") for d ∈ a] # preferred

2-element Vector{Date}:

2020-01-01

2020-01-02

Dates.Date – Method.

Date(d::AbstractString, df::DateFormat=ISODateFormat) -> Date

CHAPTER 66. API REFERENCE 1120

Construct a Date by parsing the d date string following the pattern given in the DateFormat object, or

dateformat"yyyy-mm-dd" if omitted.

Similar to Date(::AbstractString, ::AbstractString) but more efficient when repeatedly parsing

similarly formatted date strings with a pre-created DateFormat object.

Dates.Time – Method.

Time(h, [mi, s, ms, us, ns]) -> Time

Construct a Time type by parts. Arguments must be convertible to Int64.

Dates.Time – Method.

Time(period::TimePeriod...) -> Time

Construct a Time type by Period type parts. Arguments may be in any order. Time parts not provided

will default to the value of Dates.default(period).

Dates.Time – Method.

Time(f::Function, h, mi=0; step::Period=Second(1), limit::Int=10000)

Time(f::Function, h, mi, s; step::Period=Millisecond(1), limit::Int=10000)

Time(f::Function, h, mi, s, ms; step::Period=Microsecond(1), limit::Int=10000)

Time(f::Function, h, mi, s, ms, us; step::Period=Nanosecond(1), limit::Int=10000)

Create a Time through the adjuster API. The starting point will be constructed from the provided h, mi,

s, ms, us arguments, and will be adjusted until f::Function returns true. The step size in adjusting

can be provided manually through the step keyword. limit provides a limit to the max number of

iterations the adjustment API will pursue before throwing an error (in the case that f::Function is never

satisfied). Note that the default step will adjust to allow for greater precision for the given arguments;

i.e. if hour, minute, and second arguments are provided, the default step will be Millisecond(1)

instead of Second(1).

Examples

julia> Time(t -> minute(t) == 30, 20)

20:30:00

julia> Time(t -> minute(t) == 0, 20)

20:00:00

julia> Time(t -> hour(t) == 10, 3; limit = 5)

ERROR: ArgumentError: Adjustment limit reached: 5 iterations

Stacktrace:

[...]

Dates.Time – Method.

Time(dt::DateTime) -> Time

Convert a DateTime to a Time. The hour, minute, second, and millisecond parts of the DateTime are

used to create the new Time. Microsecond and nanoseconds are zero by default.

CHAPTER 66. API REFERENCE 1121

Dates.Time – Method.

Time(t::AbstractString, format::AbstractString; locale="english") -> Time

Construct a Time by parsing the t time string following the pattern given in the format string (see

DateFormat for syntax).

Note

This method creates a DateFormat object each time it is called. It is recommended that

you create a DateFormat object instead and use that as the second argument to avoid

performance loss when using the same format repeatedly.

Example

julia> Time("12:34pm", "HH:MMp")

12:34:00

julia> a = ("12:34pm", "2:34am");

julia> [Time(d, dateformat"HH:MMp") for d ∈ a] # preferred

2-element Vector{Time}:

12:34:00

02:34:00

Dates.Time – Method.

Time(t::AbstractString, df::DateFormat=ISOTimeFormat) -> Time

Construct a Time by parsing the t date time string following the pattern given in the DateFormat object,

or dateformat"HH:MM:SS.s" if omitted.

Similar to Time(::AbstractString, ::AbstractString) but more efficient when repeatedly parsing

similarly formatted time strings with a pre-created DateFormat object.

Dates.now – Method.

now() -> DateTime

Return a DateTime corresponding to the user's system time including the system timezone locale.

Dates.now – Method.

now(::Type{UTC}) -> DateTime

Return a DateTime corresponding to the user's system time as UTC/GMT. For other time zones, see the

TimeZones.jl package.

Example

julia> now(UTC)

2023-01-04T10:52:24.864

Base.eps – Method.

CHAPTER 66. API REFERENCE 1122

eps(::Type{DateTime}) -> Millisecond

eps(::Type{Date}) -> Day

eps(::Type{Time}) -> Nanosecond

eps(::TimeType) -> Period

Return the smallest unit value supported by the TimeType.

Examples

julia> eps(DateTime)

1 millisecond

julia> eps(Date)

1 day

julia> eps(Time)

1 nanosecond

Accessor Functions

Dates.year – Function.

year(dt::TimeType) -> Int64

The year of a Date or DateTime as an Int64.

Dates.month – Function.

month(dt::TimeType) -> Int64

The month of a Date or DateTime as an Int64.

Dates.week – Function.

week(dt::TimeType) -> Int64

Return the ISO week date of a Date or DateTime as an Int64. Note that the first week of a year is the

week that contains the first Thursday of the year, which can result in dates prior to January 4th being in

the last week of the previous year. For example, week(Date(2005, 1, 1)) is the 53rd week of 2004.

Examples

julia> week(Date(1989, 6, 22))

25

julia> week(Date(2005, 1, 1))

53

julia> week(Date(2004, 12, 31))

53

Dates.day – Function.

day(dt::TimeType) -> Int64

https://en.wikipedia.org/wiki/ISO_week_date

CHAPTER 66. API REFERENCE 1123

The day of month of a Date or DateTime as an Int64.

Dates.hour – Function.

hour(dt::DateTime) -> Int64

The hour of day of a DateTime as an Int64.

hour(t::Time) -> Int64

The hour of a Time as an Int64.

Dates.minute – Function.

minute(dt::DateTime) -> Int64

The minute of a DateTime as an Int64.

minute(t::Time) -> Int64

The minute of a Time as an Int64.

Dates.second – Function.

second(dt::DateTime) -> Int64

The second of a DateTime as an Int64.

second(t::Time) -> Int64

The second of a Time as an Int64.

Dates.millisecond – Function.

millisecond(dt::DateTime) -> Int64

The millisecond of a DateTime as an Int64.

millisecond(t::Time) -> Int64

The millisecond of a Time as an Int64.

Dates.microsecond – Function.

microsecond(t::Time) -> Int64

The microsecond of a Time as an Int64.

Dates.nanosecond – Function.

nanosecond(t::Time) -> Int64

The nanosecond of a Time as an Int64.

Dates.Year – Method.

Year(v)

CHAPTER 66. API REFERENCE 1124

Construct a Year object with the given v value. Input must be losslessly convertible to an Int64.

Dates.Month – Method.

Month(v)

Construct a Month object with the given v value. Input must be losslessly convertible to an Int64.

Dates.Week – Method.

Week(v)

Construct a Week object with the given v value. Input must be losslessly convertible to an Int64.

Dates.Day – Method.

Day(v)

Construct a Day object with the given v value. Input must be losslessly convertible to an Int64.

Dates.Hour – Method.

Hour(dt::DateTime) -> Hour

The hour part of a DateTime as a Hour.

Dates.Minute – Method.

Minute(dt::DateTime) -> Minute

The minute part of a DateTime as a Minute.

Dates.Second – Method.

Second(dt::DateTime) -> Second

The second part of a DateTime as a Second.

Dates.Millisecond – Method.

Millisecond(dt::DateTime) -> Millisecond

The millisecond part of a DateTime as a Millisecond.

Dates.Microsecond – Method.

Microsecond(dt::Time) -> Microsecond

The microsecond part of a Time as a Microsecond.

Dates.Nanosecond – Method.

Nanosecond(dt::Time) -> Nanosecond

The nanosecond part of a Time as a Nanosecond.

CHAPTER 66. API REFERENCE 1125

Dates.yearmonth – Function.

yearmonth(dt::TimeType) -> (Int64, Int64)

Simultaneously return the year and month parts of a Date or DateTime.

Dates.monthday – Function.

monthday(dt::TimeType) -> (Int64, Int64)

Simultaneously return the month and day parts of a Date or DateTime.

Dates.yearmonthday – Function.

yearmonthday(dt::TimeType) -> (Int64, Int64, Int64)

Simultaneously return the year, month and day parts of a Date or DateTime.

Query Functions

Dates.dayname – Function.

dayname(dt::TimeType; locale="english") -> String

dayname(day::Integer; locale="english") -> String

Return the full day name corresponding to the day of the week of the Date or DateTime in the given

locale. Also accepts Integer.

Examples

julia> dayname(Date("2000-01-01"))

"Saturday"

julia> dayname(4)

"Thursday"

Dates.dayabbr – Function.

dayabbr(dt::TimeType; locale="english") -> String

dayabbr(day::Integer; locale="english") -> String

Return the abbreviated name corresponding to the day of the week of the Date or DateTime in the

given locale. Also accepts Integer.

Examples

julia> dayabbr(Date("2000-01-01"))

"Sat"

julia> dayabbr(3)

"Wed"

Dates.dayofweek – Function.

CHAPTER 66. API REFERENCE 1126

dayofweek(dt::TimeType) -> Int64

Return the day of the week as an Int64 with 1 = Monday, 2 = Tuesday, etc..

Examples

julia> dayofweek(Date("2000-01-01"))

6

Dates.dayofmonth – Function.

dayofmonth(dt::TimeType) -> Int64

The day of month of a Date or DateTime as an Int64.

Dates.dayofweekofmonth – Function.

dayofweekofmonth(dt::TimeType) -> Int

For the day of week of dt, return which number it is in dt's month. So if the day of the week of dt is

Monday, then 1 = First Monday of the month, 2 = Second Monday of the month, etc. In the

range 1:5.

Examples

julia> dayofweekofmonth(Date("2000-02-01"))

1

julia> dayofweekofmonth(Date("2000-02-08"))

2

julia> dayofweekofmonth(Date("2000-02-15"))

3

Dates.daysofweekinmonth – Function.

daysofweekinmonth(dt::TimeType) -> Int

For the day of week of dt, return the total number of that day of the week in dt's month. Returns

4 or 5. Useful in temporal expressions for specifying the last day of a week in a month by including

dayofweekofmonth(dt) == daysofweekinmonth(dt) in the adjuster function.

Examples

julia> daysofweekinmonth(Date("2005-01-01"))

5

julia> daysofweekinmonth(Date("2005-01-04"))

4

Dates.monthname – Function.

monthname(dt::TimeType; locale="english") -> String

monthname(month::Integer, locale="english") -> String

CHAPTER 66. API REFERENCE 1127

Return the full name of the month of the Date or DateTime or Integer in the given locale.

Examples

julia> monthname(Date("2005-01-04"))

"January"

julia> monthname(2)

"February"

Dates.monthabbr – Function.

monthabbr(dt::TimeType; locale="english") -> String

monthabbr(month::Integer, locale="english") -> String

Return the abbreviated month name of the Date or DateTime or Integer in the given locale.

Examples

julia> monthabbr(Date("2005-01-04"))

"Jan"

julia> monthabbr(2)

"Feb"

Dates.daysinmonth – Function.

daysinmonth(dt::TimeType) -> Int

Return the number of days in the month of dt. Value will be 28, 29, 30, or 31.

Examples

julia> daysinmonth(Date("2000-01"))

31

julia> daysinmonth(Date("2001-02"))

28

julia> daysinmonth(Date("2000-02"))

29

Dates.isleapyear – Function.

isleapyear(dt::TimeType) -> Bool

Return true if the year of dt is a leap year.

Examples

julia> isleapyear(Date("2004"))

true

julia> isleapyear(Date("2005"))

false

CHAPTER 66. API REFERENCE 1128

Dates.dayofyear – Function.

dayofyear(dt::TimeType) -> Int

Return the day of the year for dt with January 1st being day 1.

Dates.daysinyear – Function.

daysinyear(dt::TimeType) -> Int

Return 366 if the year of dt is a leap year, otherwise return 365.

Examples

julia> daysinyear(1999)

365

julia> daysinyear(2000)

366

Dates.quarterofyear – Function.

quarterofyear(dt::TimeType) -> Int

Return the quarter that dt resides in. Range of value is 1:4.

Dates.dayofquarter – Function.

dayofquarter(dt::TimeType) -> Int

Return the day of the current quarter of dt. Range of value is 1:92.

Adjuster Functions

Base.trunc – Method.

trunc(dt::TimeType, ::Type{Period}) -> TimeType

Truncates the value of dt according to the provided Period type.

Examples

julia> trunc(DateTime("1996-01-01T12:30:00"), Day)

1996-01-01T00:00:00

Dates.firstdayofweek – Function.

firstdayofweek(dt::TimeType) -> TimeType

Adjusts dt to the Monday of its week.

Examples

julia> firstdayofweek(DateTime("1996-01-05T12:30:00"))

1996-01-01T00:00:00

CHAPTER 66. API REFERENCE 1129

Dates.lastdayofweek – Function.

lastdayofweek(dt::TimeType) -> TimeType

Adjusts dt to the Sunday of its week.

Examples

julia> lastdayofweek(DateTime("1996-01-05T12:30:00"))

1996-01-07T00:00:00

Dates.firstdayofmonth – Function.

firstdayofmonth(dt::TimeType) -> TimeType

Adjusts dt to the first day of its month.

Examples

julia> firstdayofmonth(DateTime("1996-05-20"))

1996-05-01T00:00:00

Dates.lastdayofmonth – Function.

lastdayofmonth(dt::TimeType) -> TimeType

Adjusts dt to the last day of its month.

Examples

julia> lastdayofmonth(DateTime("1996-05-20"))

1996-05-31T00:00:00

Dates.firstdayofyear – Function.

firstdayofyear(dt::TimeType) -> TimeType

Adjusts dt to the first day of its year.

Examples

julia> firstdayofyear(DateTime("1996-05-20"))

1996-01-01T00:00:00

Dates.lastdayofyear – Function.

lastdayofyear(dt::TimeType) -> TimeType

Adjusts dt to the last day of its year.

Examples

julia> lastdayofyear(DateTime("1996-05-20"))

1996-12-31T00:00:00

CHAPTER 66. API REFERENCE 1130

Dates.firstdayofquarter – Function.

firstdayofquarter(dt::TimeType) -> TimeType

Adjusts dt to the first day of its quarter.

Examples

julia> firstdayofquarter(DateTime("1996-05-20"))

1996-04-01T00:00:00

julia> firstdayofquarter(DateTime("1996-08-20"))

1996-07-01T00:00:00

Dates.lastdayofquarter – Function.

lastdayofquarter(dt::TimeType) -> TimeType

Adjusts dt to the last day of its quarter.

Examples

julia> lastdayofquarter(DateTime("1996-05-20"))

1996-06-30T00:00:00

julia> lastdayofquarter(DateTime("1996-08-20"))

1996-09-30T00:00:00

Dates.tonext – Method.

tonext(dt::TimeType, dow::Int; same::Bool=false) -> TimeType

Adjusts dt to the next day of week corresponding to dowwith 1 = Monday, 2 = Tuesday, etc. Setting

same=true allows the current dt to be considered as the next dow, allowing for no adjustment to occur.

Dates.toprev – Method.

toprev(dt::TimeType, dow::Int; same::Bool=false) -> TimeType

Adjusts dt to the previous day of week corresponding to dow with 1 = Monday, 2 = Tuesday, etc.

Setting same=true allows the current dt to be considered as the previous dow, allowing for no adjust-

ment to occur.

Dates.tofirst – Function.

tofirst(dt::TimeType, dow::Int; of=Month) -> TimeType

Adjusts dt to the first dow of its month. Alternatively, of=Year will adjust to the first dow of the year.

Dates.tolast – Function.

tolast(dt::TimeType, dow::Int; of=Month) -> TimeType

Adjusts dt to the last dow of its month. Alternatively, of=Year will adjust to the last dow of the year.

CHAPTER 66. API REFERENCE 1131

Dates.tonext – Method.

tonext(func::Function, dt::TimeType; step=Day(1), limit=10000, same=false) -> TimeType

Adjusts dt by iterating at most limit iterations by step increments until func returns true. funcmust

take a single TimeType argument and return a Bool. same allows dt to be considered in satisfying func.

Dates.toprev – Method.

toprev(func::Function, dt::TimeType; step=Day(-1), limit=10000, same=false) -> TimeType

Adjusts dt by iterating at most limit iterations by step increments until func returns true. funcmust

take a single TimeType argument and return a Bool. same allows dt to be considered in satisfying func.

Periods

Dates.Period – Method.

Year(v)

Quarter(v)

Month(v)

Week(v)

Day(v)

Hour(v)

Minute(v)

Second(v)

Millisecond(v)

Microsecond(v)

Nanosecond(v)

Construct a Period type with the given v value. Input must be losslessly convertible to an Int64.

Dates.CompoundPeriod – Method.

CompoundPeriod(periods) -> CompoundPeriod

Construct a CompoundPeriod from a Vector of Periods. All Periods of the same type will be added

together.

Examples

julia> Dates.CompoundPeriod(Dates.Hour(12), Dates.Hour(13))

25 hours

julia> Dates.CompoundPeriod(Dates.Hour(-1), Dates.Minute(1))

-1 hour, 1 minute

julia> Dates.CompoundPeriod(Dates.Month(1), Dates.Week(-2))

1 month, -2 weeks

julia> Dates.CompoundPeriod(Dates.Minute(50000))

50000 minutes

Dates.canonicalize – Function.

CHAPTER 66. API REFERENCE 1132

canonicalize(::CompoundPeriod) -> CompoundPeriod

Reduces the CompoundPeriod into its canonical form by applying the following rules:

• Any Period large enough be partially representable by a coarser Period will be broken into mul-

tiple Periods (eg. Hour(30) becomes Day(1) + Hour(6))

• Periods with opposite signs will be combined when possible (eg. Hour(1) - Day(1) becomes

-Hour(23))

Examples

julia> canonicalize(Dates.CompoundPeriod(Dates.Hour(12), Dates.Hour(13)))

1 day, 1 hour

julia> canonicalize(Dates.CompoundPeriod(Dates.Hour(-1), Dates.Minute(1)))

-59 minutes

julia> canonicalize(Dates.CompoundPeriod(Dates.Month(1), Dates.Week(-2)))

1 month, -2 weeks

julia> canonicalize(Dates.CompoundPeriod(Dates.Minute(50000)))

4 weeks, 6 days, 17 hours, 20 minutes

Dates.value – Function.

Dates.value(x::Period) -> Int64

For a given period, return the value associated with that period. For example, value(Millisecond(10))

returns 10 as an integer.

Dates.default – Function.

default(p::Period) -> Period

Return a sensible "default" value for the input Period by returning T(1) for Year, Month, and Day, and

T(0) for Hour, Minute, Second, and Millisecond.

Dates.periods – Function.

Dates.periods(::CompoundPeriod) -> Vector{Period}

Return the Vector of Periods that comprise the given CompoundPeriod.

Julia 1.7

This function requires Julia 1.7 or later.

Rounding Functions

Date and DateTime values can be rounded to a specified resolution (e.g., 1 month or 15 minutes) with

floor, ceil, or round.

Base.floor – Method.

CHAPTER 66. API REFERENCE 1133

floor(dt::TimeType, p::Period) -> TimeType

Return the nearest Date or DateTime less than or equal to dt at resolution p.

For convenience, p may be a type instead of a value: floor(dt, Dates.Hour) is a shortcut for

floor(dt, Dates.Hour(1)).

julia> floor(Date(1985, 8, 16), Month)

1985-08-01

julia> floor(DateTime(2013, 2, 13, 0, 31, 20), Minute(15))

2013-02-13T00:30:00

julia> floor(DateTime(2016, 8, 6, 12, 0, 0), Day)

2016-08-06T00:00:00

Base.ceil – Method.

ceil(dt::TimeType, p::Period) -> TimeType

Return the nearest Date or DateTime greater than or equal to dt at resolution p.

For convenience, pmay be a type instead of a value: ceil(dt, Dates.Hour) is a shortcut for ceil(dt,

Dates.Hour(1)).

julia> ceil(Date(1985, 8, 16), Month)

1985-09-01

julia> ceil(DateTime(2013, 2, 13, 0, 31, 20), Minute(15))

2013-02-13T00:45:00

julia> ceil(DateTime(2016, 8, 6, 12, 0, 0), Day)

2016-08-07T00:00:00

Base.round – Method.

round(dt::TimeType, p::Period, [r::RoundingMode]) -> TimeType

Return the Date or DateTime nearest to dt at resolution p. By default (RoundNearestTiesUp), ties (e.g.,

rounding 9:30 to the nearest hour) will be rounded up.

For convenience, p may be a type instead of a value: round(dt, Dates.Hour) is a shortcut for

round(dt, Dates.Hour(1)).

julia> round(Date(1985, 8, 16), Month)

1985-08-01

julia> round(DateTime(2013, 2, 13, 0, 31, 20), Minute(15))

2013-02-13T00:30:00

julia> round(DateTime(2016, 8, 6, 12, 0, 0), Day)

2016-08-07T00:00:00

CHAPTER 66. API REFERENCE 1134

Valid roundingmodes for round(::TimeType, ::Period, ::RoundingMode) are RoundNearestTiesUp

(default), RoundDown (floor), and RoundUp (ceil).

Most Period values can also be rounded to a specified resolution:

Base.floor – Method.

floor(x::Period, precision::T) where T <: Union{TimePeriod, Week, Day} -> T

Round x down to the nearest multiple of precision. If x and precision are different subtypes of

Period, the return value will have the same type as precision.

For convenience, precision may be a type instead of a value: floor(x, Dates.Hour) is a shortcut

for floor(x, Dates.Hour(1)).

julia> floor(Day(16), Week)

2 weeks

julia> floor(Minute(44), Minute(15))

30 minutes

julia> floor(Hour(36), Day)

1 day

Rounding to a precision of Months or Years is not supported, as these Periods are of inconsistent

length.

Base.ceil – Method.

ceil(x::Period, precision::T) where T <: Union{TimePeriod, Week, Day} -> T

Round x up to the nearest multiple of precision. If x and precision are different subtypes of Period,

the return value will have the same type as precision.

For convenience, precisionmay be a type instead of a value: ceil(x, Dates.Hour) is a shortcut for

ceil(x, Dates.Hour(1)).

julia> ceil(Day(16), Week)

3 weeks

julia> ceil(Minute(44), Minute(15))

45 minutes

julia> ceil(Hour(36), Day)

2 days

Rounding to a precision of Months or Years is not supported, as these Periods are of inconsistent

length.

Base.round – Method.

round(x::Period, precision::T, [r::RoundingMode]) where T <: Union{TimePeriod, Week, Day} ->

T↪→

CHAPTER 66. API REFERENCE 1135

Round x to the nearest multiple of precision. If x and precision are different subtypes of Period,

the return value will have the same type as precision. By default (RoundNearestTiesUp), ties (e.g.,

rounding 90 minutes to the nearest hour) will be rounded up.

For convenience, precision may be a type instead of a value: round(x, Dates.Hour) is a shortcut

for round(x, Dates.Hour(1)).

julia> round(Day(16), Week)

2 weeks

julia> round(Minute(44), Minute(15))

45 minutes

julia> round(Hour(36), Day)

2 days

Valid rounding modes for round(::Period, ::T, ::RoundingMode) are RoundNearestTiesUp (de-

fault), RoundDown (floor), and RoundUp (ceil).

Rounding to a precision of Months or Years is not supported, as these Periods are of inconsistent

length.

The following functions are not exported:

Dates.floorceil – Function.

floorceil(dt::TimeType, p::Period) -> (TimeType, TimeType)

Simultaneously return the floor and ceil of a Date or DateTime at resolution p. More efficient than

calling both floor and ceil individually.

floorceil(x::Period, precision::T) where T <: Union{TimePeriod, Week, Day} -> (T, T)

Simultaneously return the floor and ceil of Period at resolution p. More efficient than calling both

floor and ceil individually.

Dates.epochdays2date – Function.

epochdays2date(days) -> Date

Take the number of days since the rounding epoch (0000-01-01T00:00:00) and return the correspond-

ing Date.

Dates.epochms2datetime – Function.

epochms2datetime(milliseconds) -> DateTime

Take the number of milliseconds since the rounding epoch (0000-01-01T00:00:00) and return the

corresponding DateTime.

Dates.date2epochdays – Function.

date2epochdays(dt::Date) -> Int64

Take the given Date and return the number of days since the rounding epoch (0000-01-01T00:00:00)

as an Int64.

CHAPTER 66. API REFERENCE 1136

Dates.datetime2epochms – Function.

datetime2epochms(dt::DateTime) -> Int64

Take the given DateTime and return the number of milliseconds since the rounding epoch (0000-01-

01T00:00:00) as an Int64.

Conversion Functions

Dates.today – Function.

today() -> Date

Return the date portion of now().

Dates.unix2datetime – Function.

unix2datetime(x) -> DateTime

Take the number of seconds since unix epoch 1970-01-01T00:00:00 and convert to the corresponding

DateTime.

Dates.datetime2unix – Function.

datetime2unix(dt::DateTime) -> Float64

Take the given DateTime and return the number of seconds since the unix epoch 1970-01-01T00:00:00

as a Float64.

Dates.julian2datetime – Function.

julian2datetime(julian_days) -> DateTime

Take the number of Julian calendar days since epoch -4713-11-24T12:00:00 and return the corre-

sponding DateTime.

Dates.datetime2julian – Function.

datetime2julian(dt::DateTime) -> Float64

Take the given DateTime and return the number of Julian calendar days since the julian epoch -4713-

11-24T12:00:00 as a Float64.

Dates.rata2datetime – Function.

rata2datetime(days) -> DateTime

Take the number of Rata Die days since epoch 0000-12-31T00:00:00 and return the corresponding

DateTime.

Dates.datetime2rata – Function.

datetime2rata(dt::TimeType) -> Int64

Return the number of Rata Die days since epoch from the given Date or DateTime.

CHAPTER 66. API REFERENCE 1137

Variable Abbr. Value (Int)

Monday Mon 1

Tuesday Tue 2

Wednesday Wed 3

Thursday Thu 4

Friday Fri 5

Saturday Sat 6

Sunday Sun 7

Constants

Days of the Week:

Months of the Year:

Variable Abbr. Value (Int)

January Jan 1

February Feb 2

March Mar 3

April Apr 4

May May 5

June Jun 6

July Jul 7

August Aug 8

September Sep 9

October Oct 10

November Nov 11

December Dec 12

Common Date Formatters

Dates.ISODateTimeFormat – Constant.

Dates.ISODateTimeFormat

Describes the ISO8601 formatting for a date and time. This is the default value for Dates.format of a

DateTime.

Example

julia> Dates.format(DateTime(2018, 8, 8, 12, 0, 43, 1), ISODateTimeFormat)

"2018-08-08T12:00:43.001"

Dates.ISODateFormat – Constant.

Dates.ISODateFormat

Describes the ISO8601 formatting for a date. This is the default value for Dates.format of a Date.

Example

CHAPTER 66. API REFERENCE 1138

julia> Dates.format(Date(2018, 8, 8), ISODateFormat)

"2018-08-08"

Dates.ISOTimeFormat – Constant.

Dates.ISOTimeFormat

Describes the ISO8601 formatting for a time. This is the default value for Dates.format of a Time.

Example

julia> Dates.format(Time(12, 0, 43, 1), ISOTimeFormat)

"12:00:43.001"

Dates.RFC1123Format – Constant.

Dates.RFC1123Format

Describes the RFC1123 formatting for a date and time.

Example

julia> Dates.format(DateTime(2018, 8, 8, 12, 0, 43, 1), RFC1123Format)

"Wed, 08 Aug 2018 12:00:43"

Chapter 67

Delimited Files

DelimitedFiles.readdlm – Method.

readdlm(source, delim::AbstractChar, T::Type, eol::AbstractChar; header=false, skipstart=0,

skipblanks=true, use_mmap, quotes=true, dims, comments=false, comment_char='#')↪→

Read a matrix from the source where each line (separated by eol) gives one row, with elements sepa-

rated by the given delimiter. The source can be a text file, stream or byte array. Memory mapped files

can be used by passing the byte array representation of the mapped segment as source.

If T is a numeric type, the result is an array of that type, with any non-numeric elements as NaN for

floating-point types, or zero. Other useful values of T include String, AbstractString, and Any.

If header is true, the first row of data will be read as header and the tuple (data_cells, header_cells)

is returned instead of only data_cells.

Specifying skipstart will ignore the corresponding number of initial lines from the input.

If skipblanks is true, blank lines in the input will be ignored.

If use_mmap is true, the file specified by source is memory mapped for potential speedups if the file is

large. Default is false. On a Windows filesystem, use_mmap should not be set to true unless the file

is only read once and is also not written to. Some edge cases exist where an OS is Unix-like but the

filesystem is Windows-like.

If quotes is true, columns enclosed within double-quote (") characters are allowed to contain new lines

and column delimiters. Double-quote characters within a quoted field must be escaped with another

double-quote. Specifying dims as a tuple of the expected rows and columns (including header, if any)

may speed up reading of large files. If comments is true, lines beginning with comment_char and text

following comment_char in any line are ignored.

Examples

julia> using DelimitedFiles

julia> x = [1; 2; 3; 4];

julia> y = [5; 6; 7; 8];

julia> open("delim_file.txt", "w") do io

writedlm(io, [x y])

1139

CHAPTER 67. DELIMITED FILES 1140

end

julia> readdlm("delim_file.txt", '\t', Int, '\n')

4×2 Matrix{Int64}:

1 5

2 6

3 7

4 8

julia> rm("delim_file.txt")

source

DelimitedFiles.readdlm – Method.

readdlm(source, delim::AbstractChar, eol::AbstractChar; options...)

If all data is numeric, the result will be a numeric array. If some elements cannot be parsed as numbers,

a heterogeneous array of numbers and strings is returned.

source

DelimitedFiles.readdlm – Method.

readdlm(source, delim::AbstractChar, T::Type; options...)

The end of line delimiter is taken as \n.

Examples

julia> using DelimitedFiles

julia> x = [1; 2; 3; 4];

julia> y = [1.1; 2.2; 3.3; 4.4];

julia> open("delim_file.txt", "w") do io

writedlm(io, [x y], ',')

end;

julia> readdlm("delim_file.txt", ',', Float64)

4×2 Matrix{Float64}:

1.0 1.1

2.0 2.2

3.0 3.3

4.0 4.4

julia> rm("delim_file.txt")

source

DelimitedFiles.readdlm – Method.

readdlm(source, delim::AbstractChar; options...)

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/DelimitedFiles/src/DelimitedFiles.jl#L173-L225
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/DelimitedFiles/src/DelimitedFiles.jl#L164-L169
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/DelimitedFiles/src/DelimitedFiles.jl#L59-L85

CHAPTER 67. DELIMITED FILES 1141

The end of line delimiter is taken as \n. If all data is numeric, the result will be a numeric array. If some

elements cannot be parsed as numbers, a heterogeneous array of numbers and strings is returned.

Examples

julia> using DelimitedFiles

julia> x = [1; 2; 3; 4];

julia> y = [1.1; 2.2; 3.3; 4.4];

julia> open("delim_file.txt", "w") do io

writedlm(io, [x y], ',')

end;

julia> readdlm("delim_file.txt", ',')

4×2 Matrix{Float64}:

1.0 1.1

2.0 2.2

3.0 3.3

4.0 4.4

julia> z = ["a"; "b"; "c"; "d"];

julia> open("delim_file.txt", "w") do io

writedlm(io, [x z], ',')

end;

julia> readdlm("delim_file.txt", ',')

4×2 Matrix{Any}:

1 "a"

2 "b"

3 "c"

4 "d"

julia> rm("delim_file.txt")

source

DelimitedFiles.readdlm – Method.

readdlm(source, T::Type; options...)

The columns are assumed to be separated by one or more whitespaces. The end of line delimiter is

taken as \n.

Examples

julia> using DelimitedFiles

julia> x = [1; 2; 3; 4];

julia> y = [5; 6; 7; 8];

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/DelimitedFiles/src/DelimitedFiles.jl#L120-L161

CHAPTER 67. DELIMITED FILES 1142

julia> open("delim_file.txt", "w") do io

writedlm(io, [x y])

end;

julia> readdlm("delim_file.txt", Int64)

4×2 Matrix{Int64}:

1 5

2 6

3 7

4 8

julia> readdlm("delim_file.txt", Float64)

4×2 Matrix{Float64}:

1.0 5.0

2.0 6.0

3.0 7.0

4.0 8.0

julia> rm("delim_file.txt")

source

DelimitedFiles.readdlm – Method.

readdlm(source; options...)

The columns are assumed to be separated by one or more whitespaces. The end of line delimiter is

taken as \n. If all data is numeric, the result will be a numeric array. If some elements cannot be parsed

as numbers, a heterogeneous array of numbers and strings is returned.

Examples

julia> using DelimitedFiles

julia> x = [1; 2; 3; 4];

julia> y = ["a"; "b"; "c"; "d"];

julia> open("delim_file.txt", "w") do io

writedlm(io, [x y])

end;

julia> readdlm("delim_file.txt")

4×2 Matrix{Any}:

1 "a"

2 "b"

3 "c"

4 "d"

julia> rm("delim_file.txt")

source

DelimitedFiles.writedlm – Function.

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/DelimitedFiles/src/DelimitedFiles.jl#L22-L56
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/DelimitedFiles/src/DelimitedFiles.jl#L88-L117

CHAPTER 67. DELIMITED FILES 1143

writedlm(f, A, delim='\t'; opts)

Write A (a vector, matrix, or an iterable collection of iterable rows) as text to f (either a filename string

or an IO stream) using the given delimiter delim (which defaults to tab, but can be any printable Julia

object, typically a Char or AbstractString).

For example, two vectors x and y of the same length can be written as two columns of tab-delimited

text to f by either writedlm(f, [x y]) or by writedlm(f, zip(x, y)).

Examples

julia> using DelimitedFiles

julia> x = [1; 2; 3; 4];

julia> y = [5; 6; 7; 8];

julia> open("delim_file.txt", "w") do io

writedlm(io, [x y])

end

julia> readdlm("delim_file.txt", '\t', Int, '\n')

4×2 Matrix{Int64}:

1 5

2 6

3 7

4 8

julia> rm("delim_file.txt")

source

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/DelimitedFiles/src/DelimitedFiles.jl#L799-L831

Chapter 68

Distributed Computing

Tools for distributed parallel processing.

Distributed.addprocs – Function.

addprocs(manager::ClusterManager; kwargs...) -> List of process identifiers

Launches worker processes via the specified cluster manager.

For example, Beowulf clusters are supported via a custom cluster manager implemented in the package

ClusterManagers.jl.

The number of seconds a newly launched worker waits for connection establishment from the master

can be specified via variable JULIA_WORKER_TIMEOUT in the worker process's environment. Relevant

only when using TCP/IP as transport.

To launch workers without blocking the REPL, or the containing function if launching workers program-

matically, execute addprocs in its own task.

Examples

On busy clusters, call `addprocs` asynchronously

t = @async addprocs(...)

Utilize workers as and when they come online

if nprocs() > 1 # Ensure at least one new worker is available

.... # perform distributed execution

end

Retrieve newly launched worker IDs, or any error messages

if istaskdone(t) # Check if `addprocs` has completed to ensure `fetch` doesn't block

if nworkers() == N

new_pids = fetch(t)

else

fetch(t)

end

end

source

1144

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/cluster.jl#L403-L442

CHAPTER 68. DISTRIBUTED COMPUTING 1145

addprocs(machines; tunnel=false, sshflags=``, max_parallel=10, kwargs...) -> List of process

identifiers

Add worker processes on remote machines via SSH. Configuration is done with keyword arguments

(see below). In particular, the exename keyword can be used to specify the path to the julia binary

on the remote machine(s).

machines is a vector of "machine specifications" which are given as strings of the form [user@]host[:port]

[bind_addr[:port]]. user defaults to current user and port to the standard SSH port. If [bind_addr[:port]]

is specified, other workers will connect to this worker at the specified bind_addr and port.

It is possible to launch multiple processes on a remote host by using a tuple in the machines vector

or the form (machine_spec, count), where count is the number of workers to be launched on the

specified host. Passing :auto as the worker count will launch as many workers as the number of CPU

threads on the remote host.

Examples:

addprocs([

"remote1", # one worker on 'remote1' logging in with the current username

"user@remote2", # one worker on 'remote2' logging in with the 'user' username

"user@remote3:2222", # specifying SSH port to '2222' for 'remote3'

("user@remote4", 4), # launch 4 workers on 'remote4'

("user@remote5", :auto), # launch as many workers as CPU threads on 'remote5'

])

Keyword arguments:

• tunnel: if true then SSH tunneling will be used to connect to the worker from the master process.

Default is false.

• multiplex: if true then SSH multiplexing is used for SSH tunneling. Default is false.

• ssh: the name or path of the SSH client executable used to start the workers. Default is "ssh".

• sshflags: specifies additional ssh options, e.g. sshflags=`-i /home/foo/bar.pem`

• max_parallel: specifies the maximum number of workers connected to in parallel at a host.

Defaults to 10.

• shell: specifies the type of shell to which ssh connects on the workers.

– shell=:posix: a POSIX-compatible Unix/Linux shell (sh, ksh, bash, dash, zsh, etc.). The

default.

– shell=:csh: a Unix C shell (csh, tcsh).

– shell=:wincmd: Microsoft Windows cmd.exe.

• dir: specifies the working directory on the workers. Defaults to the host's current directory (as

found by pwd())

• enable_threaded_blas: if true then BLAS will run on multiple threads in added processes. De-

fault is false.

• exename: name of the julia executable. Defaults to "$(Sys.BINDIR)/julia" or "$(Sys.BINDIR)/julia-debug"

as the case may be. It is recommended that a common Julia version is used on all remote ma-

chines because serialization and code distribution might fail otherwise.

• exeflags: additional flags passed to the worker processes.

CHAPTER 68. DISTRIBUTED COMPUTING 1146

• topology: Specifies how the workers connect to each other. Sending a message between uncon-

nected workers results in an error.

– topology=:all_to_all: All processes are connected to each other. The default.

– topology=:master_worker: Only the driver process, i.e. pid 1 connects to the workers. The

workers do not connect to each other.

– topology=:custom: The launch method of the cluster manager specifies the connection

topology via fields ident and connect_idents in WorkerConfig. A worker with a cluster

manager identity ident will connect to all workers specified in connect_idents.

• lazy: Applicable only with topology=:all_to_all. If true, worker-worker connections are setup

lazily, i.e. they are setup at the first instance of a remote call between workers. Default is true.

• env: provide an array of string pairs such as env=["JULIA_DEPOT_PATH"=>"/depot"] to request

that environment variables are set on the remote machine. By default only the environment vari-

able JULIA_WORKER_TIMEOUT is passed automatically from the local to the remote environment.

• cmdline_cookie: pass the authentication cookie via the --worker commandline option. The

(more secure) default behaviour of passing the cookie via ssh stdio may hang with Windows work-

ers that use older (pre-ConPTY) Julia or Windows versions, in which case cmdline_cookie=true

offers a work-around.

Julia 1.6

The keyword arguments ssh, shell, env and cmdline_cookie were added in Julia 1.6.

Environment variables:

If the master process fails to establish a connection with a newly launched worker within 60.0 seconds,

the worker treats it as a fatal situation and terminates. This timeout can be controlled via environment

variable JULIA_WORKER_TIMEOUT. The value of JULIA_WORKER_TIMEOUT on the master process specifies

the number of seconds a newly launched worker waits for connection establishment.

source

addprocs(np::Integer=Sys.CPU_THREADS; restrict=true, kwargs...) -> List of process

identifiers

Launch np workers on the local host using the in-built LocalManager.

Local workers inherit the current package environment (i.e., active project, LOAD_PATH, and DEPOT_PATH)

from the main process.

Keyword arguments:

• restrict::Bool: if true (default) binding is restricted to 127.0.0.1.

• dir, exename, exeflags, env, topology, lazy, enable_threaded_blas: same effect as for SSHManager,

see documentation for addprocs(machines::AbstractVector).

Julia 1.9

The inheriting of the package environment and the env keyword argument were added in

Julia 1.9.

source

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/managers.jl#L51-L155
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/managers.jl#L445-L461

CHAPTER 68. DISTRIBUTED COMPUTING 1147

Distributed.nprocs – Function.

nprocs()

Get the number of available processes.

Examples

julia> nprocs()

3

julia> workers()

2-element Array{Int64,1}:

2

3

source

Distributed.nworkers – Function.

nworkers()

Get the number of available worker processes. This is one less than nprocs(). Equal to nprocs() if

nprocs() == 1.

Examples

$ julia -p 2

julia> nprocs()

3

julia> nworkers()

2

source

Distributed.procs – Method.

procs()

Return a list of all process identifiers, including pid 1 (which is not included by workers()).

Examples

$ julia -p 2

julia> procs()

3-element Array{Int64,1}:

1

2

3

source

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/cluster.jl#L852-L867
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/cluster.jl#L883-L899
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/cluster.jl#L905-L920

CHAPTER 68. DISTRIBUTED COMPUTING 1148

Distributed.procs – Method.

procs(pid::Integer)

Return a list of all process identifiers on the same physical node. Specifically all workers bound to the

same ip-address as pid are returned.

source

Distributed.workers – Function.

workers()

Return a list of all worker process identifiers.

Examples

$ julia -p 2

julia> workers()

2-element Array{Int64,1}:

2

3

source

Distributed.rmprocs – Function.

rmprocs(pids...; waitfor=typemax(Int))

Remove the specified workers. Note that only process 1 can add or remove workers.

Argument waitfor specifies how long to wait for the workers to shut down:

• If unspecified, rmprocs will wait until all requested pids are removed.

• An ErrorException is raised if all workers cannot be terminated before the requested waitfor

seconds.

• With a waitfor value of 0, the call returns immediately with the workers scheduled for removal

in a different task. The scheduled Task object is returned. The user should call wait on the task

before invoking any other parallel calls.

Examples

$ julia -p 5

julia> t = rmprocs(2, 3, waitfor=0)

Task (runnable) @0x0000000107c718d0

julia> wait(t)

julia> workers()

3-element Array{Int64,1}:

4

5

6

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/cluster.jl#L947-L952
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/cluster.jl#L967-L981

CHAPTER 68. DISTRIBUTED COMPUTING 1149

source

Distributed.interrupt – Function.

interrupt(pids::Integer...)

Interrupt the current executing task on the specified workers. This is equivalent to pressing Ctrl-C on

the local machine. If no arguments are given, all workers are interrupted.

source

interrupt(pids::AbstractVector=workers())

Interrupt the current executing task on the specified workers. This is equivalent to pressing Ctrl-C on

the local machine. If no arguments are given, all workers are interrupted.

source

Distributed.myid – Function.

myid()

Get the id of the current process.

Examples

julia> myid()

1

julia> remotecall_fetch(() -> myid(), 4)

4

source

Distributed.pmap – Function.

pmap(f, [::AbstractWorkerPool], c...; distributed=true, batch_size=1, on_error=nothing,

retry_delays=[], retry_check=nothing) -> collection↪→

Transform collection c by applying f to each element using available workers and tasks.

For multiple collection arguments, apply f elementwise.

Note that fmust bemade available to all worker processes; see Code Availability and Loading Packages

for details.

If a worker pool is not specified, all available workers, i.e., the default worker pool is used.

By default, pmap distributes the computation over all specified workers. To use only the local process

and distribute over tasks, specify distributed=false. This is equivalent to using asyncmap. For ex-

ample, pmap(f, c; distributed=false) is equivalent to asyncmap(f,c; ntasks=()->nworkers())

pmap can also use a mix of processes and tasks via the batch_size argument. For batch sizes greater

than 1, the collection is processed in multiple batches, each of length batch_size or less. A batch is

sent as a single request to a free worker, where a local asyncmap processes elements from the batch

using multiple concurrent tasks.

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/cluster.jl#L997-L1027
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/cluster.jl#L1204-L1209
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/cluster.jl#L1212-L1217
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/cluster.jl#L836-L849

CHAPTER 68. DISTRIBUTED COMPUTING 1150

Any error stops pmap from processing the remainder of the collection. To override this behavior you can

specify an error handling function via argument on_error which takes in a single argument, i.e., the

exception. The function can stop the processing by rethrowing the error, or, to continue, return any

value which is then returned inline with the results to the caller.

Consider the following two examples. The first one returns the exception object inline, the second a 0

in place of any exception:

julia> pmap(x->iseven(x) ? error("foo") : x, 1:4; on_error=identity)

4-element Array{Any,1}:

1

ErrorException("foo")

3

ErrorException("foo")

julia> pmap(x->iseven(x) ? error("foo") : x, 1:4; on_error=ex->0)

4-element Array{Int64,1}:

1

0

3

0

Errors can also be handled by retrying failed computations. Keyword arguments retry_delays and

retry_check are passed through to retry as keyword arguments delays and check respectively. If

batching is specified, and an entire batch fails, all items in the batch are retried.

Note that if both on_error and retry_delays are specified, the on_error hook is called before retrying.

If on_error does not throw (or rethrow) an exception, the element will not be retried.

Example: On errors, retry f on an element a maximum of 3 times without any delay between retries.

pmap(f, c; retry_delays = zeros(3))

Example: Retry f only if the exception is not of type InexactError, with exponentially increasing

delays up to 3 times. Return a NaN in place for all InexactError occurrences.

pmap(f, c; on_error = e->(isa(e, InexactError) ? NaN : rethrow()), retry_delays =

ExponentialBackOff(n = 3))↪→

source

Distributed.RemoteException – Type.

RemoteException(captured)

Exceptions on remote computations are captured and rethrown locally. A RemoteException wraps the

pid of the worker and a captured exception. A CapturedException captures the remote exception and

a serializable form of the call stack when the exception was raised.

source

Distributed.ProcessExitedException – Type.

ProcessExitedException(worker_id::Int)

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/pmap.jl#L32-L98
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/process_messages.jl#L54-L60

CHAPTER 68. DISTRIBUTED COMPUTING 1151

After a client Julia process has exited, further attempts to reference the dead child will throw this

exception.

source

Distributed.Future – Type.

Future(w::Int, rrid::RRID, v::Union{Some, Nothing}=nothing)

A Future is a placeholder for a single computation of unknown termination status and time. For multiple

potential computations, see RemoteChannel. See remoteref_id for identifying an AbstractRemoteRef.

source

Distributed.RemoteChannel – Type.

RemoteChannel(pid::Integer=myid())

Make a reference to a Channel{Any}(1) on process pid. The default pid is the current process.

RemoteChannel(f::Function, pid::Integer=myid())

Create references to remote channels of a specific size and type. f is a function that when executed

on pid must return an implementation of an AbstractChannel.

For example, RemoteChannel(()->Channel{Int}(10), pid), will return a reference to a channel of

type Int and size 10 on pid.

The default pid is the current process.

source

Base.fetch – Method.

fetch(x::Future)

Wait for and get the value of a Future. The fetched value is cached locally. Further calls to fetch on the

same reference return the cached value. If the remote value is an exception, throws a RemoteException

which captures the remote exception and backtrace.

source

Base.fetch – Method.

fetch(c::RemoteChannel)

Wait for and get a value from a RemoteChannel. Exceptions raised are the same as for a Future. Does

not remove the item fetched.

source

fetch(x::Any)

Return x.

source

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/cluster.jl#L1077-L1082
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/remotecall.jl#L17-L24
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/remotecall.jl#L38-L53
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/remotecall.jl#L595-L601
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/remotecall.jl#L650-L655
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/task.jl#L357-L361

CHAPTER 68. DISTRIBUTED COMPUTING 1152

Distributed.remotecall – Method.

remotecall(f, id::Integer, args...; kwargs...) -> Future

Call a function f asynchronously on the given arguments on the specified process. Return a Future.

Keyword arguments, if any, are passed through to f.

source

Distributed.remotecall_wait – Method.

remotecall_wait(f, id::Integer, args...; kwargs...)

Perform a faster wait(remotecall(...)) in one message on the Worker specified by worker id id.

Keyword arguments, if any, are passed through to f.

See also wait and remotecall.

source

Distributed.remotecall_fetch – Method.

remotecall_fetch(f, id::Integer, args...; kwargs...)

Perform fetch(remotecall(...)) in one message. Keyword arguments, if any, are passed through

to f. Any remote exceptions are captured in a RemoteException and thrown.

See also fetch and remotecall.

Examples

$ julia -p 2

julia> remotecall_fetch(sqrt, 2, 4)

2.0

julia> remotecall_fetch(sqrt, 2, -4)

ERROR: On worker 2:

DomainError with -4.0:

sqrt was called with a negative real argument but will only return a complex result if called

with a complex argument. Try sqrt(Complex(x)).↪→

...

source

Distributed.remote_do – Method.

remote_do(f, id::Integer, args...; kwargs...) -> nothing

Executes f onworker id asynchronously. Unlike remotecall, it does not store the result of computation,

nor is there a way to wait for its completion.

A successful invocation indicates that the request has been accepted for execution on the remote node.

While consecutive remotecalls to the same worker are serialized in the order they are invoked, the or-

der of executions on the remote worker is undetermined. For example, remote_do(f1, 2); remotecall(f2,

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/remotecall.jl#L440-L446
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/remotecall.jl#L511-L518
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/remotecall.jl#L468-L491

CHAPTER 68. DISTRIBUTED COMPUTING 1153

2); remote_do(f3, 2) will serialize the call to f1, followed by f2 and f3 in that order. However, it is

not guaranteed that f1 is executed before f3 on worker 2.

Any exceptions thrown by f are printed to stderr on the remote worker.

Keyword arguments, if any, are passed through to f.

source

Base.put! – Method.

put!(rr::RemoteChannel, args...)

Store a set of values to the RemoteChannel. If the channel is full, blocks until space is available. Return

the first argument.

source

Base.put! – Method.

put!(rr::Future, v)

Store a value to a Future rr. Futures are write-once remote references. A put! on an already set

Future throws an Exception. All asynchronous remote calls return Futures and set the value to the

return value of the call upon completion.

source

Base.take! – Method.

take!(rr::RemoteChannel, args...)

Fetch value(s) from a RemoteChannel rr, removing the value(s) in the process.

source

Base.isready – Method.

isready(rr::RemoteChannel, args...)

Determine whether a RemoteChannel has a value stored to it. Note that this function can cause race

conditions, since by the time you receive its result it may no longer be true. However, it can be safely

used on a Future since they are assigned only once.

source

Base.isready – Method.

isready(rr::Future)

Determine whether a Future has a value stored to it.

If the argument Future is owned by a different node, this call will block to wait for the answer. It is

recommended to wait for rr in a separate task instead or to use a local Channel as a proxy:

p = 1

f = Future(p)

errormonitor(@async put!(f, remotecall_fetch(long_computation, p)))

isready(f) # will not block

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/remotecall.jl#L537-L556
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/remotecall.jl#L715-L721
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/remotecall.jl#L660-L668
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/remotecall.jl#L755-L760
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/remotecall.jl#L224-L231

CHAPTER 68. DISTRIBUTED COMPUTING 1154

source

Distributed.AbstractWorkerPool – Type.

AbstractWorkerPool

Supertype for worker pools such as WorkerPool and CachingPool. An AbstractWorkerPool should

implement:

• push! - add a new worker to the overall pool (available + busy)

• put! - put back a worker to the available pool

• take! - take a worker from the available pool (to be used for remote function execution)

• length - number of workers available in the overall pool

• isready - return false if a take! on the pool would block, else true

The default implementations of the above (on a AbstractWorkerPool) require fields

• channel::Channel{Int}

• workers::Set{Int}

where channel contains free worker pids and workers is the set of all workers associated with this

pool.

source

Distributed.WorkerPool – Type.

WorkerPool(workers::Union{Vector{Int},AbstractRange{Int}})

Create a WorkerPool from a vector or range of worker ids.

Examples

$ julia -p 3

julia> WorkerPool([2, 3])

WorkerPool(Channel{Int64}(sz_max:9223372036854775807,sz_curr:2), Set([2, 3]),

RemoteChannel{Channel{Any}}(1, 1, 6))↪→

julia> WorkerPool(2:4)

WorkerPool(Channel{Int64}(sz_max:9223372036854775807,sz_curr:2), Set([4, 2, 3]),

RemoteChannel{Channel{Any}}(1, 1, 7))↪→

source

Distributed.CachingPool – Type.

CachingPool(workers::Vector{Int})

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/remotecall.jl#L196-L211
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/workerpool.jl#L3-L18
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/workerpool.jl#L35-L50

CHAPTER 68. DISTRIBUTED COMPUTING 1155

An implementation of an AbstractWorkerPool. remote, remotecall_fetch, pmap (and other remote

calls which execute functions remotely) benefit from caching the serialized/deserialized functions on

the worker nodes, especially closures (which may capture large amounts of data).

The remote cache is maintained for the lifetime of the returned CachingPool object. To clear the cache

earlier, use clear!(pool).

For global variables, only the bindings are captured in a closure, not the data. let blocks can be used

to capture global data.

Examples

const foo = rand(10^8);

wp = CachingPool(workers())

let foo = foo

pmap(i -> sum(foo) + i, wp, 1:100);

end

The above would transfer foo only once to each worker.

source

Distributed.default_worker_pool – Function.

default_worker_pool()

AbstractWorkerPool containing idle workers - used by remote(f) and pmap (by default). Unless one is

explicitly set via default_worker_pool!(pool), the default worker pool is initialized to a WorkerPool.

Examples

$ julia -p 3

julia> default_worker_pool()

WorkerPool(Channel{Int64}(sz_max:9223372036854775807,sz_curr:3), Set([4, 2, 3]),

RemoteChannel{Channel{Any}}(1, 1, 4))↪→

source

Distributed.clear! – Method.

clear!(pool::CachingPool) -> pool

Removes all cached functions from all participating workers.

source

Distributed.remote – Function.

remote([p::AbstractWorkerPool], f) -> Function

Return an anonymous function that executes function f on an available worker (drawn from WorkerPool

p if provided) using remotecall_fetch.

source

Distributed.remotecall – Method.

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/workerpool.jl#L306-L332
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/workerpool.jl#L244-L258
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/workerpool.jl#L341-L345
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/workerpool.jl#L281-L286

CHAPTER 68. DISTRIBUTED COMPUTING 1156

remotecall(f, pool::AbstractWorkerPool, args...; kwargs...) -> Future

WorkerPool variant of remotecall(f, pid,). Wait for and take a free worker from pool and

perform a remotecall on it.

Examples

$ julia -p 3

julia> wp = WorkerPool([2, 3]);

julia> A = rand(3000);

julia> f = remotecall(maximum, wp, A)

Future(2, 1, 6, nothing)

In this example, the task ran on pid 2, called from pid 1.

source

Distributed.remotecall_wait – Method.

remotecall_wait(f, pool::AbstractWorkerPool, args...; kwargs...) -> Future

WorkerPool variant of remotecall_wait(f, pid,). Wait for and take a free worker from pool

and perform a remotecall_wait on it.

Examples

$ julia -p 3

julia> wp = WorkerPool([2, 3]);

julia> A = rand(3000);

julia> f = remotecall_wait(maximum, wp, A)

Future(3, 1, 9, nothing)

julia> fetch(f)

0.9995177101692958

source

Distributed.remotecall_fetch – Method.

remotecall_fetch(f, pool::AbstractWorkerPool, args...; kwargs...) -> result

WorkerPool variant of remotecall_fetch(f, pid,). Waits for and takes a free worker from

pool and performs a remotecall_fetch on it.

Examples

$ julia -p 3

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/workerpool.jl#L169-L186
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/workerpool.jl#L190-L210

CHAPTER 68. DISTRIBUTED COMPUTING 1157

julia> wp = WorkerPool([2, 3]);

julia> A = rand(3000);

julia> remotecall_fetch(maximum, wp, A)

0.9995177101692958

source

Distributed.remote_do – Method.

remote_do(f, pool::AbstractWorkerPool, args...; kwargs...) -> nothing

WorkerPool variant of remote_do(f, pid,). Wait for and take a free worker from pool and

perform a remote_do on it.

source

Distributed.@spawnat – Macro.

@spawnat p expr

Create a closure around an expression and run the closure asynchronously on process p. Return a

Future to the result. If p is the quoted literal symbol :any, then the system will pick a processor to use

automatically.

Examples

julia> addprocs(3);

julia> f = @spawnat 2 myid()

Future(2, 1, 3, nothing)

julia> fetch(f)

2

julia> f = @spawnat :any myid()

Future(3, 1, 7, nothing)

julia> fetch(f)

3

Julia 1.3

The :any argument is available as of Julia 1.3.

source

Distributed.@fetch – Macro.

@fetch expr

Equivalent to fetch(@spawnat :any expr). See fetch and @spawnat.

Examples

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/workerpool.jl#L214-L231
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/workerpool.jl#L234-L239
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/macros.jl#L54-L81

CHAPTER 68. DISTRIBUTED COMPUTING 1158

julia> addprocs(3);

julia> @fetch myid()

2

julia> @fetch myid()

3

julia> @fetch myid()

4

julia> @fetch myid()

2

source

Distributed.@fetchfrom – Macro.

@fetchfrom

Equivalent to fetch(@spawnat p expr). See fetch and @spawnat.

Examples

julia> addprocs(3);

julia> @fetchfrom 2 myid()

2

julia> @fetchfrom 4 myid()

4

source

Distributed.@distributed – Macro.

@distributed

A distributed memory, parallel for loop of the form :

@distributed [reducer] for var = range

body

end

The specified range is partitioned and locally executed across all workers. In case an optional reducer

function is specified, @distributed performs local reductions on each worker with a final reduction on

the calling process.

Note that without a reducer function, @distributed executes asynchronously, i.e. it spawns indepen-

dent tasks on all available workers and returns immediately without waiting for completion. To wait for

completion, prefix the call with @sync, like :

@sync @distributed for var = range

body

end

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/macros.jl#L99-L121
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/macros.jl#L127-L143

CHAPTER 68. DISTRIBUTED COMPUTING 1159

source

Distributed.@everywhere – Macro.

@everywhere [procs()] expr

Execute an expression under Main on all procs. Errors on any of the processes are collected into a

CompositeException and thrown. For example:

@everywhere bar = 1

will define Main.bar on all current processes. Any processes added later (say with addprocs()) will

not have the expression defined.

Unlike @spawnat, @everywhere does not capture any local variables. Instead, local variables can be

broadcast using interpolation:

foo = 1

@everywhere bar = $foo

The optional argument procs allows specifying a subset of all processes to have execute the expression.

Similar to calling remotecall_eval(Main, procs, expr), but with two extra features:

- `using` and `import` statements run on the calling process first, to ensure

packages are precompiled.

- The current source file path used by `include` is propagated to other processes.

source

Distributed.clear! – Method.

clear!(syms, pids=workers(); mod=Main)

Clears global bindings in modules by initializing them to nothing. syms should be of type Symbol or a

collection of Symbols . pids and mod identify the processes and the module in which global variables

are to be reinitialized. Only those names found to be defined under mod are cleared.

An exception is raised if a global constant is requested to be cleared.

source

Distributed.remoteref_id – Function.

remoteref_id(r::AbstractRemoteRef) -> RRID

Futures and RemoteChannels are identified by fields:

• where - refers to the node where the underlying object/storage referred to by the reference actu-

ally exists.

• whence - refers to the node the remote reference was created from. Note that this is differ-

ent from the node where the underlying object referred to actually exists. For example calling

RemoteChannel(2) from the master process would result in a where value of 2 and a whence

value of 1.

• id is unique across all references created from the worker specified by whence.

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/macros.jl#L309-L329
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/macros.jl#L165-L191
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/clusterserialize.jl#L234-L243

CHAPTER 68. DISTRIBUTED COMPUTING 1160

Taken together, whence and id uniquely identify a reference across all workers.

remoteref_id is a low-level API which returns a RRID object that wraps whence and id values of a

remote reference.

source

Distributed.channel_from_id – Function.

channel_from_id(id) -> c

A low-level API which returns the backing AbstractChannel for an id returned by remoteref_id. The

call is valid only on the node where the backing channel exists.

source

Distributed.worker_id_from_socket – Function.

worker_id_from_socket(s) -> pid

A low-level API which, given a IO connection or a Worker, returns the pid of the worker it is connected

to. This is useful when writing custom serializemethods for a type, which optimizes the data written

out depending on the receiving process id.

source

Distributed.cluster_cookie – Method.

cluster_cookie() -> cookie

Return the cluster cookie.

source

Distributed.cluster_cookie – Method.

cluster_cookie(cookie) -> cookie

Set the passed cookie as the cluster cookie, then returns it.

source

68.1 Cluster Manager Interface

This interface provides a mechanism to launch and manage Julia workers on different cluster environments.

There are two types of managers present in Base: LocalManager, for launching additional workers on the

same host, and SSHManager, for launching on remote hosts via ssh. TCP/IP sockets are used to connect and

transport messages between processes. It is possible for Cluster Managers to provide a different transport.

Distributed.ClusterManager – Type.

ClusterManager

Supertype for cluster managers, which control workers processes as a cluster. Cluster managers imple-

ment how workers can be added, removed and communicated with. SSHManager and LocalManager

are subtypes of this.

source

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/remotecall.jl#L142-L162
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/remotecall.jl#L165-L171
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/cluster.jl#L1108-L1115
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/cluster.jl#L752-L756
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/cluster.jl#L759-L763
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/cluster.jl#L3-L9

CHAPTER 68. DISTRIBUTED COMPUTING 1161

Distributed.WorkerConfig – Type.

WorkerConfig

Type used by ClusterManagers to control workers added to their clusters. Some fields are used by all

cluster managers to access a host:

• io – the connection used to access the worker (a subtype of IO or Nothing)

• host – the host address (either a String or Nothing)

• port – the port on the host used to connect to the worker (either an Int or Nothing)

Some are used by the cluster manager to add workers to an already-initialized host:

• count – the number of workers to be launched on the host

• exename – the path to the Julia executable on the host, defaults to "$(Sys.BINDIR)/julia" or

"$(Sys.BINDIR)/julia-debug"

• exeflags – flags to use when launching Julia remotely

The userdata field is used to store information for each worker by external managers.

Some fields are used by SSHManager and similar managers:

• tunnel – true (use tunneling), false (do not use tunneling), or nothing (use default for the

manager)

• multiplex – true (use SSH multiplexing for tunneling) or false

• forward – the forwarding option used for -L option of ssh

• bind_addr – the address on the remote host to bind to

• sshflags – flags to use in establishing the SSH connection

• max_parallel – the maximum number of workers to connect to in parallel on the host

Some fields are used by both LocalManagers and SSHManagers:

• connect_at – determines whether this is a worker-to-worker or driver-to-worker setup call

• process – the process which will be connected (usually the manager will assign this during

addprocs)

• ospid – the process ID according to the host OS, used to interrupt worker processes

• environ – private dictionary used to store temporary information by Local/SSH managers

• ident – worker as identified by the ClusterManager

• connect_idents – list of worker ids the worker must connect to if using a custom topology

• enable_threaded_blas – true, false, or nothing, whether to use threaded BLAS or not on the

workers

source

Distributed.launch – Function.

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/cluster.jl#L12-L45

CHAPTER 68. DISTRIBUTED COMPUTING 1162

launch(manager::ClusterManager, params::Dict, launched::Array, launch_ntfy::Condition)

Implemented by cluster managers. For every Julia worker launched by this function, it should append

a WorkerConfig entry to launched and notify launch_ntfy. The function MUST exit once all workers,

requested by manager have been launched. params is a dictionary of all keyword arguments addprocs

was called with.

source

Distributed.manage – Function.

manage(manager::ClusterManager, id::Integer, config::WorkerConfig. op::Symbol)

Implemented by cluster managers. It is called on the master process, during a worker's lifetime, with

appropriate op values:

• with :register/:deregister when a worker is added / removed from the Julia worker pool.

• with :interrupt when interrupt(workers) is called. The ClusterManager should signal the

appropriate worker with an interrupt signal.

• with :finalize for cleanup purposes.

source

Base.kill – Method.

kill(manager::ClusterManager, pid::Int, config::WorkerConfig)

Implemented by cluster managers. It is called on the master process, by rmprocs. It should cause the

remote worker specified by pid to exit. kill(manager::ClusterManager.....) executes a remote

exit() on pid.

source

Sockets.connect – Method.

connect(manager::ClusterManager, pid::Int, config::WorkerConfig) -> (instrm::IO, outstrm::IO)

Implemented by cluster managers using custom transports. It should establish a logical connection to

worker with id pid, specified by config and return a pair of IO objects. Messages from pid to current

process will be read off instrm, while messages to be sent to pid will be written to outstrm. The cus-

tom transport implementation must ensure that messages are delivered and received completely and

in order. connect(manager::ClusterManager.....) sets up TCP/IP socket connections in-between

workers.

source

Distributed.init_worker – Function.

init_worker(cookie::AbstractString, manager::ClusterManager=DefaultClusterManager())

Called by cluster managers implementing custom transports. It initializes a newly launched process as

a worker. Command line argument --worker[=<cookie>] has the effect of initializing a process as a

worker using TCP/IP sockets for transport. cookie is a cluster_cookie.

source

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/managers.jl#L526-L533
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/managers.jl#L536-L546
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/managers.jl#L716-L724
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/managers.jl#L556-L566
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/cluster.jl#L364-L371

CHAPTER 68. DISTRIBUTED COMPUTING 1163

Distributed.start_worker – Function.

start_worker([out::IO=stdout], cookie::AbstractString=readline(stdin);

close_stdin::Bool=true, stderr_to_stdout::Bool=true)↪→

start_worker is an internal function which is the default entry point for worker processes connecting

via TCP/IP. It sets up the process as a Julia cluster worker.

host:port information is written to stream out (defaults to stdout).

The function reads the cookie from stdin if required, and listens on a free port (or if specified, the port

in the --bind-to command line option) and schedules tasks to process incoming TCP connections and

requests. It also (optionally) closes stdin and redirects stderr to stdout.

It does not return.

source

Distributed.process_messages – Function.

process_messages(r_stream::IO, w_stream::IO, incoming::Bool=true)

Called by cluster managers using custom transports. It should be called when the custom transport

implementation receives the first message from a remote worker. The custom transport must manage

a logical connection to the remote worker and provide two IO objects, one for incoming messages and

the other for messages addressed to the remote worker. If incoming is true, the remote peer initiated

the connection. Whichever of the pair initiates the connection sends the cluster cookie and its Julia

version number to perform the authentication handshake.

See also cluster_cookie.

source

Distributed.default_addprocs_params – Function.

default_addprocs_params(mgr::ClusterManager) -> Dict{Symbol, Any}

Implemented by clustermanagers. The default keyword parameters passedwhen calling addprocs(mgr).

The minimal set of options is available by calling default_addprocs_params()

source

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/cluster.jl#L215-L230
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/process_messages.jl#L136-L149
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Distributed/src/cluster.jl#L526-L532

Chapter 69

Downloads

Downloads.download – Function.

download(url, [output = tempname()];

[method = "GET",]

[headers = <none>,]

[timeout = <none>,]

[progress = <none>,]

[verbose = false,]

[debug = <none>,]

[downloader = <default>,]

) -> output

url :: AbstractString

output :: Union{AbstractString, AbstractCmd, IO}

method :: AbstractString

headers :: Union{AbstractVector, AbstractDict}

timeout :: Real

progress :: (total::Integer, now::Integer) --> Any

verbose :: Bool

debug :: (type, message) --> Any

downloader :: Downloader

Download a file from the given url, saving it to output or if not specified, a temporary path. The output

can also be an IO handle, in which case the body of the response is streamed to that handle and the

handle is returned. If output is a command, the command is run and output is sent to it on stdin.

If the downloader keyword argument is provided, it must be a Downloader object. Resources and

connections will be shared between downloads performed by the same Downloader and cleaned up

automatically when the object is garbage collected or there have been no downloads performed with

it for a grace period. See Downloader for more info about configuration and usage.

If the headers keyword argument is provided, it must be a vector or dictionary whose elements are

all pairs of strings. These pairs are passed as headers when downloading URLs with protocols that

supports them, such as HTTP/S.

The timeout keyword argument specifies a timeout for the download to complete in seconds, with

a resolution of milliseconds. By default no timeout is set, but this can also be explicitly requested

by passing a timeout value of Inf. Separately, if 20 seconds elapse without receiving any data, the

download will timeout. See extended help for how to disable this timeout.

1164

CHAPTER 69. DOWNLOADS 1165

If the progress keyword argument is provided, it must be a callback function which will be called

whenever there are updates about the size and status of the ongoing download. The callback must

take two integer arguments: total and now which are the total size of the download in bytes, and the

number of bytes which have been downloaded so far. Note that total starts out as zero and remains

zero until the server gives an indication of the total size of the download (e.g. with a Content-Length

header), which may never happen. So a well-behaved progress callback should handle a total size of

zero gracefully.

If the verbose option is set to true, libcurl, which is used to implement the download functionality will

print debugging information to stderr. If the debug option is set to a function accepting two String

arguments, then the verbose option is ignored and instead the data that would have been printed

to stderr is passed to the debug callback with type and message arguments. The type argument

indicates what kind of event has occurred, and is one of: TEXT, HEADER IN, HEADER OUT, DATA IN, DATA

OUT, SSL DATA IN or SSL DATA OUT. The message argument is the description of the debug event.

Extended Help

For further customization, use a Downloader and easy_hooks. For example, to disable the 20 second

timeout when no data is received, you may use the following:

downloader = Downloads.Downloader()

downloader.easy_hook = (easy, info) -> Downloads.Curl.setopt(easy, Downloads.Curl.

CURLOPT_LOW_SPEED_TIME, 0)

Downloads.download("https://httpbingo.julialang.org/delay/30"; downloader)

Downloads.request – Function.

request(url;

[input = <none>,]

[output = <none>,]

[method = input ? "PUT" : output ? "GET" : "HEAD",]

[headers = <none>,]

[timeout = <none>,]

[progress = <none>,]

[verbose = false,]

[debug = <none>,]

[throw = true,]

[downloader = <default>,]

) -> Union{Response, RequestError}

url :: AbstractString

input :: Union{AbstractString, AbstractCmd, IO}

output :: Union{AbstractString, AbstractCmd, IO}

method :: AbstractString

headers :: Union{AbstractVector, AbstractDict}

timeout :: Real

progress :: (dl_total, dl_now, ul_total, ul_now) --> Any

verbose :: Bool

debug :: (type, message) --> Any

throw :: Bool

downloader :: Downloader

Make a request to the given url, returning a Response object capturing the status, headers and other

information about the response. The body of the response is written to output if specified and discarded

https://github.com/JuliaLang/Downloads.jl#mutual-tls-using-downloads

CHAPTER 69. DOWNLOADS 1166

otherwise. For HTTP/S requests, if an input stream is given, a PUT request is made; otherwise if an

output stream is given, a GET request is made; if neither is given a HEAD request is made. For other

protocols, appropriate default methods are used based on what combination of input and output are

requested. The following options differ from the download function:

• input allows providing a request body; if provided default to PUT request

• progress is a callback taking four integers for upload and download progress

• throw controls whether to throw or return a RequestError on request error

Note that unlike download which throws an error if the requested URL could not be downloaded (indi-

cated by non-2xx status code), request returns a Response object no matter what the status code of

the response is. If there is an error with getting a response at all, then a RequestError is thrown or

returned.

Downloads.Response – Type.

struct Response

proto :: String

url :: String

status :: Int

message :: String

headers :: Vector{Pair{String,String}}

end

Response is a type capturing the properties of a successful response to a request as an object. It has

the following fields:

• proto: the protocol that was used to get the response

• url: the URL that was ultimately requested after following redirects

• status: the status code of the response, indicating success, failure, etc.

• message: a textual message describing the nature of the response

• headers: any headers that were returned with the response

The meaning and availability of some of these responses depends on the protocol used for the request.

For many protocols, including HTTP/S and S/FTP, a 2xx status code indicates a successful response. For

responses in protocols that do not support headers, the headers vector will be empty. HTTP/2 does not

include a status message, only a status code, so the message will be empty.

Downloads.RequestError – Type.

struct RequestError <: ErrorException

url :: String

code :: Int

message :: String

response :: Response

end

RequestError is a type capturing the properties of a failed response to a request as an exception

object:

CHAPTER 69. DOWNLOADS 1167

• url: the original URL that was requested without any redirects

• code: the libcurl error code; 0 if a protocol-only error occurred

• message: the libcurl error message indicating what went wrong

• response: response object capturing what response info is available

The same RequestError type is thrown by download if the request was successful but there was a

protocol-level error indicated by a status code that is not in the 2xx range, in which case code will be

zero and the message field will be the empty string. The request API only throws a RequestError if

the libcurl error code is non-zero, in which case the included response object is likely to have a status

of zero and an empty message. There are, however, situations where a curl-level error is thrown due

to a protocol error, in which case both the inner and outer code and message may be of interest.

Downloads.Downloader – Type.

Downloader(; [grace::Real = 30])

Downloader objects are used to perform individual download operations. Connections, name lookups

and other resources are shared within a Downloader. These connections and resources are cleaned

up after a configurable grace period (default: 30 seconds) since anything was downloaded with it, or

when it is garbage collected, whichever comes first. If the grace period is set to zero, all resources will

be cleaned up immediately as soon as there are no more ongoing downloads in progress. If the grace

period is set to Inf then resources are not cleaned up until Downloader is garbage collected.

Chapter 70

File Events

FileWatching.poll_fd – Function.

poll_fd(fd, timeout_s::Real=-1; readable=false, writable=false)

Monitor a file descriptor fd for changes in the read or write availability, and with a timeout given by

timeout_s seconds.

The keyword arguments determine which of read and/or write status should be monitored; at least one

of them must be set to true.

The returned value is an object with boolean fields readable, writable, and timedout, giving the

result of the polling.

FileWatching.poll_file – Function.

poll_file(path::AbstractString, interval_s::Real=5.007, timeout_s::Real=-1) ->

(previous::StatStruct, current)↪→

Monitor a file for changes by polling every interval_s seconds until a change occurs or timeout_s

seconds have elapsed. The interval_s should be a long period; the default is 5.007 seconds.

Returns a pair of status objects (previous, current)when a change is detected. The previous status

is always a StatStruct, but it may have all of the fields zeroed (indicating the file didn't previously

exist, or wasn't previously accessible).

The current status object may be a StatStruct, an EOFError (indicating the timeout elapsed), or

some other Exception subtype (if the stat operation failed - for example, if the path does not exist).

To determinewhen a file wasmodified, compare current isa StatStruct && mtime(prev) != mtime(current)

to detect notification of changes. However, using watch_file for this operation is preferred, since it is

more reliable and efficient, although in some situations it may not be available.

FileWatching.watch_file – Function.

watch_file(path::AbstractString, timeout_s::Real=-1)

Watch file or directory path for changes until a change occurs or timeout_s seconds have elapsed.

This function does not poll the file system and instead uses platform-specific functionality to receive

notifications from the operating system (e.g. via inotify on Linux). See the NodeJS documentation

linked below for details.

1168

CHAPTER 70. FILE EVENTS 1169

The returned value is an object with boolean fields renamed, changed, and timedout, giving the result

of watching the file.

This behavior of this function varies slightly across platforms. See https://nodejs.org/api/fs.html#fs_caveats

for more detailed information.

FileWatching.watch_folder – Function.

watch_folder(path::AbstractString, timeout_s::Real=-1)

Watches a file or directory path for changes until a change has occurred or timeout_s seconds have

elapsed. This function does not poll the file system and instead uses platform-specific functionality to

receive notifications from the operating system (e.g. via inotify on Linux). See the NodeJS documen-

tation linked below for details.

This will continuing tracking changes for path in the background until unwatch_folder is called on the

same path.

The returned value is an pair where the first field is the name of the changed file (if available) and the

second field is an object with boolean fields renamed, changed, and timedout, giving the event.

This behavior of this function varies slightly across platforms. See https://nodejs.org/api/fs.html#fs_caveats

for more detailed information.

FileWatching.unwatch_folder – Function.

unwatch_folder(path::AbstractString)

Stop background tracking of changes for path. It is not recommended to do this while another task is

waiting for watch_folder to return on the same path, as the result may be unpredictable.

https://nodejs.org/api/fs.html#fs_caveats
https://nodejs.org/api/fs.html#fs_caveats

Chapter 71

Pidfile

A simple utility tool for creating advisory pidfiles (lock files).

71.1 Primary Functions

FileWatching.Pidfile.mkpidlock – Function.

mkpidlock([f::Function], at::String, [pid::Cint, proc::Process]; kwopts...)

Create a pidfile lock for the path "at" for the current process or the process identified by pid or proc. Can

take a function to execute once locked, for usage in do blocks, after which the lock will be automatically

closed. If the lock fails and wait is false, then an error is thrown.

The lock will be released by either close, a finalizer, or shortly after proc exits. Make sure the return

value is live through the end of the critical section of your program, so the finalizer does not reclaim

it early.

Optional keyword arguments:

• mode: file access mode (modified by the process umask). Defaults to world-readable.

• poll_interval: Specify the maximum time to between attempts (if watch_file doesn't work)

• stale_age: Delete an existing pidfile (ignoring the lock) if it is older than this many seconds,

based on its mtime. The file won't be deleted until 5x longer than this if the pid in the file appears

that it may be valid. Or 25x longer if refresh is overridden to 0 to disable lock refreshing. By

default this is disabled (stale_age = 0), but a typical recommended value would be about 3-5x

an estimated normal completion time.

• refresh: Keeps a lock from becoming stale by updating the mtime every interval of time that

passes. By default, this is set to stale_age/2, which is the recommended value.

• wait: If true, block until we get the lock, if false, raise error if lock fails.

FileWatching.Pidfile.trymkpidlock – Function.

trymkpidlock([f::Function], at::String, [pid::Cint, proc::Process]; kwopts...)

Like mkpidlock except returns false instead of waiting if the file is already locked.

1170

CHAPTER 71. PIDFILE 1171

Julia 1.10

This function requires at least Julia 1.10.

Base.close – Method.

close(lock::LockMonitor)

Release a pidfile lock.

71.2 Helper Functions

FileWatching.Pidfile.open_exclusive – Function.

open_exclusive(path::String; mode, poll_interval, wait, stale_age, refresh) :: File

Create a new a file for read-write advisory-exclusive access. If wait is false then error out if the lock

files exist otherwise block until we get the lock.

For a description of the keyword arguments, see mkpidlock.

FileWatching.Pidfile.tryopen_exclusive – Function.

tryopen_exclusive(path::String, mode::Integer = 0o444) :: Union{Void, File}

Try to create a new file for read-write advisory-exclusive access, return nothing if it already exists.

FileWatching.Pidfile.write_pidfile – Function.

write_pidfile(io, pid)

Write our pidfile format to an open IO descriptor.

FileWatching.Pidfile.parse_pidfile – Function.

parse_pidfile(file::Union{IO, String}) => (pid, hostname, age)

Attempt to parse our pidfile format, replaced an element with (0, "", 0.0), respectively, for any read

that failed.

FileWatching.Pidfile.stale_pidfile – Function.

stale_pidfile(path::String, stale_age::Real, refresh::Real) :: Bool

Helper function for open_exclusive for deciding if a pidfile is stale.

FileWatching.Pidfile.isvalidpid – Function.

isvalidpid(hostname::String, pid::Cuint) :: Bool

Attempt to conservatively estimate whether pid is a valid process id.

Base.Filesystem.touch – Method.

Base.touch(::Pidfile.LockMonitor)

Update the mtime on the lock, to indicate it is still fresh.

See also the refresh keyword in the mkpidlock constructor.

Chapter 72

Future

The Futuremodule implements future behavior of already existing functions, which will replace the current

version in a future release of Julia.

Future.copy! – Function.

Future.copy!(dst, src) -> dst

Copy src into dst.

Julia 1.1

This function has moved to Base with Julia 1.1, consider using copy!(dst, src) instead.

Future.copy! will be deprecated in the future.

Future.randjump – Function.

randjump(r::MersenneTwister, steps::Integer) -> MersenneTwister

Create an initialized MersenneTwister object, whose state is moved forward (without generating num-

bers) from r by steps steps. One such step corresponds to the generation of two Float64 numbers.

For each different value of steps, a large polynomial has to be generated internally. One is already

pre-computed for steps=big(10)^20.

1172

Chapter 73

Interactive Utilities

This module is intended for interactive work. It is loaded automatically in interactive mode.

Base.Docs.apropos – Function.

apropos([io::IO=stdout], pattern::Union{AbstractString,Regex})

Search available docstrings for entries containing pattern.

When pattern is a string, case is ignored. Results are printed to io.

apropos can be called from the help mode in the REPL by wrapping the query in double quotes:

help?> "pattern"

InteractiveUtils.varinfo – Function.

varinfo(m::Module=Main, pattern::Regex=r""; all=false, imported=false, recursive=false,

sortby::Symbol=:name, minsize::Int=0)↪→

Return a markdown table giving information about exported global variables in a module, optionally

restricted to those matching pattern.

The memory consumption estimate is an approximate lower bound on the size of the internal structure

of the object.

• all : also list non-exported objects defined in the module, deprecated objects, and compiler-

generated objects.

• imported : also list objects explicitly imported from other modules.

• recursive : recursively include objects in sub-modules, observing the same settings in each.

• sortby : the column to sort results by. Options are :name (default), :size, and :summary.

• minsize : only includes objects with size at least minsize bytes. Defaults to 0.

The output of varinfo is intended for display purposes only. See also names to get an array of symbols

defined in a module, which is suitable for more general manipulations.

InteractiveUtils.versioninfo – Function.

versioninfo(io::IO=stdout; verbose::Bool=false)

1173

CHAPTER 73. INTERACTIVE UTILITIES 1174

Print information about the version of Julia in use. The output is controlled with boolean keyword

arguments:

• verbose: print all additional information

Warning

The output of this function may contain sensitive information. Before sharing the output,

please review the output and remove any data that should not be shared publicly.

See also: VERSION.

InteractiveUtils.methodswith – Function.

methodswith(typ[, module or function]; supertypes::Bool=false])

Return an array of methods with an argument of type typ.

The optional second argument restricts the search to a particular module or function (the default is all

top-level modules).

If keyword supertypes is true, also return arguments with a parent type of typ, excluding type Any.

InteractiveUtils.subtypes – Function.

subtypes(T::DataType)

Return a list of immediate subtypes of DataType T. Note that all currently loaded subtypes are included,

including those not visible in the current module.

See also supertype, supertypes, methodswith.

Examples

julia> subtypes(Integer)

3-element Vector{Any}:

Bool

Signed

Unsigned

InteractiveUtils.supertypes – Function.

supertypes(T::Type)

Return a tuple (T, ..., Any) of T and all its supertypes, as determined by successive calls to the

supertype function, listed in order of <: and terminated by Any.

See also subtypes.

Examples

julia> supertypes(Int)

(Int64, Signed, Integer, Real, Number, Any)

InteractiveUtils.edit – Method.

CHAPTER 73. INTERACTIVE UTILITIES 1175

edit(path::AbstractString, line::Integer=0, column::Integer=0)

Edit a file or directory optionally providing a line number to edit the file at. Return to the julia prompt

when you quit the editor. The editor can be changed by setting JULIA_EDITOR, VISUAL or EDITOR as

an environment variable.

See also define_editor.

InteractiveUtils.edit – Method.

edit(function, [types])

edit(module)

Edit the definition of a function, optionally specifying a tuple of types to indicate which method to edit.

For modules, open the main source file. The module needs to be loaded with using or import first.

Julia 1.1

edit on modules requires at least Julia 1.1.

To ensure that the file can be opened at the given line, you may need to call define_editor first.

InteractiveUtils.@edit – Macro.

@edit

Evaluates the arguments to the function or macro call, determines their types, and calls the edit

function on the resulting expression.

See also: @less, @which.

InteractiveUtils.define_editor – Function.

define_editor(fn, pattern; wait=false)

Define a new editor matching pattern that can be used to open a file (possibly at a given line number)

using fn.

The fn argument is a function that determines how to open a file with the given editor. It should take

four arguments, as follows:

• cmd - a base command object for the editor

• path - the path to the source file to open

• line - the line number to open the editor at

• column - the column number to open the editor at

Editors which cannot open to a specific line with a command or a specific column may ignore the line

and/or column argument. The fn callback must return either an appropriate Cmd object to open a file

or nothing to indicate that they cannot edit this file. Use nothing to indicate that this editor is not

appropriate for the current environment and another editor should be attempted. It is possible to add

more general editing hooks that need not spawn external commands by pushing a callback directly to

the vector EDITOR_CALLBACKS.

CHAPTER 73. INTERACTIVE UTILITIES 1176

The pattern argument is a string, regular expression, or an array of strings and regular expressions. For

the fn to be called, one of the patterns must match the value of EDITOR, VISUAL or JULIA_EDITOR. For

strings, the string must equal the basename of the first word of the editor command, with its extension,

if any, removed. E.g. "vi" doesn't match "vim -g" but matches "/usr/bin/vi -m"; it also matches vi.exe.

If pattern is a regex it is matched against all of the editor command as a shell-escaped string. An

array pattern matches if any of its items match. If multiple editors match, the one added most recently

is used.

By default julia does not wait for the editor to close, running it in the background. However, if the

editor is terminal based, you will probably want to set wait=true and julia will wait for the editor to

close before resuming.

If one of the editor environment variables is set, but no editor entry matches it, the default editor entry

is invoked:

(cmd, path, line, column) -> `$cmd $path`

Note that many editors are already defined. All of the following commands should already work:

• emacs

• emacsclient

• vim

• nvim

• nano

• micro

• kak

• helix

• textmate

• mate

• kate

• subl

• atom

• notepad++

• Visual Studio Code

• open

• pycharm

• bbedit

Example:

The following defines the usage of terminal-based emacs:

define_editor(

r"\bemacs\b.*\s(-nw|--no-window-system)\b", wait=true) do cmd, path, line

`$cmd +$line $path`

end

CHAPTER 73. INTERACTIVE UTILITIES 1177

Julia 1.4

define_editor was introduced in Julia 1.4.

InteractiveUtils.less – Method.

less(file::AbstractString, [line::Integer])

Show a file using the default pager, optionally providing a starting line number. Returns to the julia

prompt when you quit the pager.

InteractiveUtils.less – Method.

less(function, [types])

Show the definition of a function using the default pager, optionally specifying a tuple of types to

indicate which method to see.

InteractiveUtils.@less – Macro.

@less

Evaluates the arguments to the function or macro call, determines their types, and calls the less

function on the resulting expression.

See also: @edit, @which, @code_lowered.

InteractiveUtils.@which – Macro.

@which

Applied to a function or macro call, it evaluates the arguments to the specified call, and returns the

Method object for the method that would be called for those arguments. Applied to a variable, it returns

the module in which the variable was bound. It calls out to the which function.

See also: @less, @edit.

InteractiveUtils.@functionloc – Macro.

@functionloc

Applied to a function or macro call, it evaluates the arguments to the specified call, and returns a tuple

(filename,line) giving the location for the method that would be called for those arguments. It calls

out to the functionloc function.

InteractiveUtils.@code_lowered – Macro.

@code_lowered

Evaluates the arguments to the function or macro call, determines their types, and calls code_lowered

on the resulting expression.

InteractiveUtils.@code_typed – Macro.

@code_typed

CHAPTER 73. INTERACTIVE UTILITIES 1178

Evaluates the arguments to the function or macro call, determines their types, and calls code_typed

on the resulting expression. Use the optional argument optimize with

@code_typed optimize=true foo(x)

to control whether additional optimizations, such as inlining, are also applied.

InteractiveUtils.code_warntype – Function.

code_warntype([io::IO], f, types; debuginfo=:default)

Prints lowered and type-inferred ASTs for the methods matching the given generic function and type

signature to io which defaults to stdout. The ASTs are annotated in such a way as to cause "non-leaf"

types which may be problematic for performance to be emphasized (if color is available, displayed in

red). This serves as a warning of potential type instability.

Not all non-leaf types are particularly problematic for performance, and the performance characteristics

of a particular type is an implementation detail of the compiler. code_warntype will err on the side of

coloring types red if they might be a performance concern, so some types may be colored red even if

they do not impact performance. Small unions of concrete types are usually not a concern, so these

are highlighted in yellow.

Keyword argument debuginfo may be one of :source or :none (default), to specify the verbosity of

code comments.

See the @code_warntype section in the Performance Tips page of the manual for more information.

InteractiveUtils.@code_warntype – Macro.

@code_warntype

Evaluates the arguments to the function or macro call, determines their types, and calls code_warntype

on the resulting expression.

InteractiveUtils.code_llvm – Function.

code_llvm([io=stdout,], f, types; raw=false, dump_module=false, optimize=true,

debuginfo=:default)↪→

Prints the LLVM bitcodes generated for running the method matching the given generic function and

type signature to io.

If the optimize keyword is unset, the code will be shown before LLVM optimizations. All metadata and

dbg.* calls are removed from the printed bitcode. For the full IR, set the raw keyword to true. To dump

the entire module that encapsulates the function (with declarations), set the dump_module keyword to

true. Keyword argument debuginfo may be one of source (default) or none, to specify the verbosity

of code comments.

InteractiveUtils.@code_llvm – Macro.

@code_llvm

Evaluates the arguments to the function or macro call, determines their types, and calls code_llvm on

the resulting expression. Set the optional keyword arguments raw, dump_module, debuginfo, optimize

by putting them and their value before the function call, like this:

CHAPTER 73. INTERACTIVE UTILITIES 1179

@code_llvm raw=true dump_module=true debuginfo=:default f(x)

@code_llvm optimize=false f(x)

optimize controls whether additional optimizations, such as inlining, are also applied. raw makes all

metadata and dbg.* calls visible. debuginfo may be one of :source (default) or :none, to specify the

verbosity of code comments. dump_module prints the entire module that encapsulates the function.

InteractiveUtils.code_native – Function.

code_native([io=stdout,], f, types; syntax=:intel, debuginfo=:default, binary=false,

dump_module=true)↪→

Prints the native assembly instructions generated for running the method matching the given generic

function and type signature to io.

• Set assembly syntax by setting syntax to :intel (default) for intel syntax or :att for AT&T

syntax.

• Specify verbosity of code comments by setting debuginfo to :source (default) or :none.

• If binary is true, also print the binary machine code for each instruction precedented by an

abbreviated address.

• If dump_module is false, do not print metadata such as rodata or directives.

• If raw is false, uninteresting instructions (like the safepoint function prologue) are elided.

See also: @code_native, code_llvm, code_typed and code_lowered

InteractiveUtils.@code_native – Macro.

@code_native

Evaluates the arguments to the function or macro call, determines their types, and calls code_native

on the resulting expression.

Set any of the optional keyword arguments syntax, debuginfo, binary or dump_module by putting it

before the function call, like this:

@code_native syntax=:intel debuginfo=:default binary=true dump_module=false f(x)

• Set assembly syntax by setting syntax to :intel (default) for Intel syntax or :att for AT&T

syntax.

• Specify verbosity of code comments by setting debuginfo to :source (default) or :none.

• If binary is true, also print the binary machine code for each instruction precedented by an

abbreviated address.

• If dump_module is false, do not print metadata such as rodata or directives.

See also: code_native, @code_llvm, @code_typed and @code_lowered

InteractiveUtils.@time_imports – Macro.

@time_imports

CHAPTER 73. INTERACTIVE UTILITIES 1180

A macro to execute an expression and produce a report of any time spent importing packages and their

dependencies. Any compilation time will be reported as a percentage, and how much of which was

recompilation, if any.

One line is printed per package or package extension. The duration shown is the time to import that

package itself, not including the time to load any of its dependencies.

On Julia 1.9+ package extensions will show as Parent → Extension.

Note

During the load process a package sequentially imports all of its dependencies, not just its

direct dependencies.

julia> @time_imports using CSV

50.7 ms Parsers 17.52% compilation time

0.2 ms DataValueInterfaces

1.6 ms DataAPI

0.1 ms IteratorInterfaceExtensions

0.1 ms TableTraits

17.5 ms Tables

26.8 ms PooledArrays

193.7 ms SentinelArrays 75.12% compilation time

8.6 ms InlineStrings

20.3 ms WeakRefStrings

2.0 ms TranscodingStreams

1.4 ms Zlib_jll

1.8 ms CodecZlib

0.8 ms Compat

13.1 ms FilePathsBase 28.39% compilation time

1681.2 ms CSV 92.40% compilation time

Julia 1.8

This macro requires at least Julia 1.8

InteractiveUtils.clipboard – Function.

clipboard(x)

Send a printed form of x to the operating system clipboard ("copy").

clipboard() -> String

Return a string with the contents of the operating system clipboard ("paste").

Chapter 74

Lazy Artifacts

In order for a package to download artifacts lazily, LazyArtifactsmust be explicitly listed as a dependency

of that package.

For further information on artifacts, see Artifacts.

1181

Chapter 75

LibCURL

This is a simple Julia wrapper around http://curl.haxx.se/libcurl/ generated using Clang.jl. Please see the

libcurl API documentation for help on how to use this package.

1182

https://github.com/ihnorton/Clang.jl
https://curl.haxx.se/libcurl/c/

Chapter 76

LibGit2

The LibGit2 module provides bindings to libgit2, a portable C library that implements core functionality for

the Git version control system. These bindings are currently used to power Julia's package manager. It is

expected that this module will eventually be moved into a separate package.

Functionality

Some of this documentation assumes some prior knowledge of the libgit2 API. For more information on

some of the objects and methods referenced here, consult the upstream libgit2 API reference.

LibGit2.Buffer – Type.

LibGit2.Buffer

A data buffer for exporting data from libgit2. Matches the git_buf struct.

When fetching data from LibGit2, a typical usage would look like:

buf_ref = Ref(Buffer())

@check ccall(..., (Ptr{Buffer},), buf_ref)

operation on buf_ref

free(buf_ref)

In particular, note that LibGit2.free should be called afterward on the Ref object.

LibGit2.CheckoutOptions – Type.

LibGit2.CheckoutOptions

Matches the git_checkout_options struct.

The fields represent:

• version: version of the struct in use, in case this changes later. For now, always 1.

• checkout_strategy: determine how to handle conflicts and whether to force the checkout/recre-

ate missing files.

• disable_filters: if nonzero, do not apply filters like CLRF (to convert file newlines between

UNIX and DOS).

1183

https://libgit2.org/
https://git-scm.com/
https://libgit2.org/libgit2/#v1.0.0
https://libgit2.org/libgit2/#HEAD/type/git_buf
https://libgit2.org/libgit2/#HEAD/type/git_checkout_options

CHAPTER 76. LIBGIT2 1184

• dir_mode: read/write/access mode for any directories involved in the checkout. Default is 0755.

• file_mode: read/write/access mode for any files involved in the checkout. Default is 0755 or

0644, depending on the blob.

• file_open_flags: bitflags used to open any files during the checkout.

• notify_flags: Flags for what sort of conflicts the user should be notified about.

• notify_cb: An optional callback function to notify the user if a checkout conflict occurs. If this

function returns a non-zero value, the checkout will be cancelled.

• notify_payload: Payload for the notify callback function.

• progress_cb: An optional callback function to display checkout progress.

• progress_payload: Payload for the progress callback.

• paths: If not empty, describes which paths to search during the checkout. If empty, the checkout

will occur over all files in the repository.

• baseline: Expected content of the workdir, captured in a (pointer to a) GitTree. Defaults to

the state of the tree at HEAD.

• baseline_index: Expected content of the workdir, captured in a (pointer to a) GitIndex. De-

faults to the state of the index at HEAD.

• target_directory: If not empty, checkout to this directory instead of the workdir.

• ancestor_label: In case of conflicts, the name of the common ancestor side.

• our_label: In case of conflicts, the name of "our" side.

• their_label: In case of conflicts, the name of "their" side.

• perfdata_cb: An optional callback function to display performance data.

• perfdata_payload: Payload for the performance callback.

LibGit2.CloneOptions – Type.

LibGit2.CloneOptions

Matches the git_clone_options struct.

The fields represent:

• version: version of the struct in use, in case this changes later. For now, always 1.

• checkout_opts: The options for performing the checkout of the remote as part of the clone.

• fetch_opts: The options for performing the pre-checkout fetch of the remote as part of the clone.

• bare: If 0, clone the full remote repository. If non-zero, perform a bare clone, in which there is no

local copy of the source files in the repository and the gitdir and workdir are the same.

• localclone: Flag whether to clone a local object database or do a fetch. The default is to let git

decide. It will not use the git-aware transport for a local clone, but will use it for URLs which begin

with file://.

• checkout_branch: The name of the branch to checkout. If an empty string, the default branch

of the remote will be checked out.

• repository_cb: An optional callback which will be used to create the new repository into which

the clone is made.

https://libgit2.org/libgit2/#HEAD/type/git_clone_options

CHAPTER 76. LIBGIT2 1185

• repository_cb_payload: The payload for the repository callback.

• remote_cb: An optional callback used to create the GitRemote before making the clone from it.

• remote_cb_payload: The payload for the remote callback.

LibGit2.DescribeOptions – Type.

LibGit2.DescribeOptions

Matches the git_describe_options struct.

The fields represent:

• version: version of the struct in use, in case this changes later. For now, always 1.

• max_candidates_tags: consider this many most recent tags in refs/tags to describe a commit.

Defaults to 10 (so that the 10 most recent tags would be examined to see if they describe a

commit).

• describe_strategy: whether to consider all entries in refs/tags (equivalent to git-describe

--tags) or all entries in refs/ (equivalent to git-describe --all). The default is to only show

annotated tags. If Consts.DESCRIBE_TAGS is passed, all tags, annotated or not, will be consid-

ered. If Consts.DESCRIBE_ALL is passed, any ref in refs/ will be considered.

• pattern: only consider tags which match pattern. Supports glob expansion.

• only_follow_first_parent: when finding the distance from a matching reference to the de-

scribed object, only consider the distance from the first parent.

• show_commit_oid_as_fallback: if no matching reference can be found which describes a com-

mit, show the commit's GitHash instead of throwing an error (the default behavior).

LibGit2.DescribeFormatOptions – Type.

LibGit2.DescribeFormatOptions

Matches the git_describe_format_options struct.

The fields represent:

• version: version of the struct in use, in case this changes later. For now, always 1.

• abbreviated_size: lower bound on the size of the abbreviated GitHash to use, defaulting to 7.

• always_use_long_format: set to 1 to use the long format for strings even if a short format can

be used.

• dirty_suffix: if set, this will be appended to the end of the description string if the workdir is

dirty.

LibGit2.DiffDelta – Type.

LibGit2.DiffDelta

Description of changes to one entry. Matches the git_diff_delta struct.

The fields represent:

https://libgit2.org/libgit2/#HEAD/type/git_describe_options
https://libgit2.org/libgit2/#HEAD/type/git_describe_format_options
https://libgit2.org/libgit2/#HEAD/type/git_diff_delta

CHAPTER 76. LIBGIT2 1186

• status: One of Consts.DELTA_STATUS, indicating whether the file has been added/modified/deleted.

• flags: Flags for the delta and the objects on each side. Determines whether to treat the file(s)

as binary/text, whether they exist on each side of the diff, and whether the object ids are known

to be correct.

• similarity: Used to indicate if a file has been renamed or copied.

• nfiles: The number of files in the delta (for instance, if the delta was run on a submodule commit

id, it may contain more than one file).

• old_file: A DiffFile containing information about the file(s) before the changes.

• new_file: A DiffFile containing information about the file(s) after the changes.

LibGit2.DiffFile – Type.

LibGit2.DiffFile

Description of one side of a delta. Matches the git_diff_file struct.

The fields represent:

• id: the GitHash of the item in the diff. If the item is empty on this side of the diff (for instance,

if the diff is of the removal of a file), this will be GitHash(0).

• path: a NULL terminated path to the item relative to the working directory of the repository.

• size: the size of the item in bytes.

• flags: a combination of the git_diff_flag_t flags. The ith bit of this integer sets the ith flag.

• mode: the stat mode for the item.

• id_abbrev: only present in LibGit2 versions newer than or equal to 0.25.0. The length of the id

field when converted using string. Usually equal to OID_HEXSZ (40).

LibGit2.DiffOptionsStruct – Type.

LibGit2.DiffOptionsStruct

Matches the git_diff_options struct.

The fields represent:

• version: version of the struct in use, in case this changes later. For now, always 1.

• flags: flags controlling which files will appear in the diff. Defaults to DIFF_NORMAL.

• ignore_submodules: whether to look at files in submodules or not. Defaults to SUBMODULE_IGNORE_UNSPECIFIED,

which means the submodule's configuration will control whether it appears in the diff or not.

• pathspec: path to files to include in the diff. Default is to use all files in the repository.

• notify_cb: optional callback which will notify the user of changes to the diff as file deltas are

added to it.

• progress_cb: optional callback which will display diff progress. Only relevant on libgit2 versions

at least as new as 0.24.0.

• payload: the payload to pass to notify_cb and progress_cb.

https://libgit2.org/libgit2/#HEAD/type/git_diff_file
https://libgit2.org/libgit2/#HEAD/type/git_diff_flag_t
https://libgit2.org/libgit2/#HEAD/type/git_diff_options

CHAPTER 76. LIBGIT2 1187

• context_lines: the number of unchanged lines used to define the edges of a hunk. This is also

the number of lines which will be shown before/after a hunk to provide context. Default is 3.

• interhunk_lines: the maximum number of unchanged lines between two separate hunks al-

lowed before the hunks will be combined. Default is 0.

• id_abbrev: sets the length of the abbreviated GitHash to print. Default is 7.

• max_size: the maximum file size of a blob. Above this size, it will be treated as a binary blob.

The default is 512 MB.

• old_prefix: the virtual file directory in which to place old files on one side of the diff. Default is

"a".

• new_prefix: the virtual file directory in which to place new files on one side of the diff. Default

is "b".

LibGit2.FetchHead – Type.

LibGit2.FetchHead

Contains the information about HEAD during a fetch, including the name and URL of the branch fetched

from, the oid of the HEAD, and whether the fetched HEAD has been merged locally.

The fields represent:

• name: The name in the local reference database of the fetch head, for example, "refs/heads/master".

• url: The URL of the fetch head.

• oid: The GitHash of the tip of the fetch head.

• ismerge: Boolean flag indicating whether the changes at the remote have been merged into the

local copy yet or not. If true, the local copy is up to date with the remote fetch head.

LibGit2.FetchOptions – Type.

LibGit2.FetchOptions

Matches the git_fetch_options struct.

The fields represent:

• version: version of the struct in use, in case this changes later. For now, always 1.

• callbacks: remote callbacks to use during the fetch.

• prune: whether to perform a prune after the fetch or not. The default is to use the setting from

the GitConfig.

• update_fetchhead: whether to update the FetchHead after the fetch. The default is to perform

the update, which is the normal git behavior.

• download_tags: whether to download tags present at the remote or not. The default is to request

the tags for objects which are being downloaded anyway from the server.

• proxy_opts: options for connecting to the remote through a proxy. See ProxyOptions. Only

present on libgit2 versions newer than or equal to 0.25.0.

• custom_headers: any extra headers needed for the fetch. Only present on libgit2 versions newer

than or equal to 0.24.0.

https://libgit2.org/libgit2/#HEAD/type/git_fetch_options

CHAPTER 76. LIBGIT2 1188

LibGit2.GitAnnotated – Type.

GitAnnotated(repo::GitRepo, commit_id::GitHash)

GitAnnotated(repo::GitRepo, ref::GitReference)

GitAnnotated(repo::GitRepo, fh::FetchHead)

GitAnnotated(repo::GitRepo, committish::AbstractString)

An annotated git commit carries with it information about how it was looked up and why, so that

rebase or merge operations have more information about the context of the commit. Conflict files

contain information about the source/target branches in the merge which are conflicting, for instance.

An annotated commit can refer to the tip of a remote branch, for instance when a FetchHead is passed,

or to a branch head described using GitReference.

LibGit2.GitBlame – Type.

GitBlame(repo::GitRepo, path::AbstractString; options::BlameOptions=BlameOptions())

Construct a GitBlame object for the file at path, using change information gleaned from the history

of repo. The GitBlame object records who changed which chunks of the file when, and how. options

controls how to separate the contents of the file and which commits to probe - see BlameOptions for

more information.

LibGit2.GitBlob – Type.

GitBlob(repo::GitRepo, hash::AbstractGitHash)

GitBlob(repo::GitRepo, spec::AbstractString)

Return a GitBlob object from repo specified by hash/spec.

• hash is a full (GitHash) or partial (GitShortHash) hash.

• spec is a textual specification: see the git docs for a full list.

LibGit2.GitCommit – Type.

GitCommit(repo::GitRepo, hash::AbstractGitHash)

GitCommit(repo::GitRepo, spec::AbstractString)

Return a GitCommit object from repo specified by hash/spec.

• hash is a full (GitHash) or partial (GitShortHash) hash.

• spec is a textual specification: see the git docs for a full list.

LibGit2.GitConfig – Type.

GitConfig(path::AbstractString, level::Consts.GIT_CONFIG=Consts.CONFIG_LEVEL_APP,

force::Bool=false)↪→

Create a new GitConfig by loading configuration information from the file at path. See addfile for

more information about the level, repo and force options.

GitConfig(repo::GitRepo)

https://git-scm.com/docs/git-rev-parse.html#_specifying_revisions
https://git-scm.com/docs/git-rev-parse.html#_specifying_revisions

CHAPTER 76. LIBGIT2 1189

Get the stored configuration for the git repository repo. If repo does not have a specific configuration

file set, the default git configuration will be used.

GitConfig(level::Consts.GIT_CONFIG=Consts.CONFIG_LEVEL_DEFAULT)

Get the default git configuration by loading the global and system configuration files into a prioritized

configuration. This can be used to access default configuration options outside a specific git repository.

LibGit2.GitHash – Type.

GitHash

A git object identifier, based on the sha-1 hash. It is a 20 byte string (40 hex digits) used to identify a

GitObject in a repository.

LibGit2.GitObject – Type.

GitObject(repo::GitRepo, hash::AbstractGitHash)

GitObject(repo::GitRepo, spec::AbstractString)

Return the specified object (GitCommit, GitBlob, GitTree or GitTag) from repo specified by hash/spec.

• hash is a full (GitHash) or partial (GitShortHash) hash.

• spec is a textual specification: see the git docs for a full list.

LibGit2.GitRemote – Type.

GitRemote(repo::GitRepo, rmt_name::AbstractString, rmt_url::AbstractString) -> GitRemote

Look up a remote git repository using its name and URL. Uses the default fetch refspec.

Examples

repo = LibGit2.init(repo_path)

remote = LibGit2.GitRemote(repo, "upstream", repo_url)

GitRemote(repo::GitRepo, rmt_name::AbstractString, rmt_url::AbstractString, fetch_spec::

AbstractString) -> GitRemote

Look up a remote git repository using the repository's name and URL, as well as specifications for how

to fetch from the remote (e.g. which remote branch to fetch from).

Examples

repo = LibGit2.init(repo_path)

refspec = "+refs/heads/mybranch:refs/remotes/origin/mybranch"

remote = LibGit2.GitRemote(repo, "upstream", repo_url, refspec)

LibGit2.GitRemoteAnon – Function.

GitRemoteAnon(repo::GitRepo, url::AbstractString) -> GitRemote

Look up a remote git repository using only its URL, not its name.

Examples

https://git-scm.com/docs/git-rev-parse.html#_specifying_revisions

CHAPTER 76. LIBGIT2 1190

repo = LibGit2.init(repo_path)

remote = LibGit2.GitRemoteAnon(repo, repo_url)

LibGit2.GitRepo – Type.

LibGit2.GitRepo(path::AbstractString)

Open a git repository at path.

LibGit2.GitRepoExt – Function.

LibGit2.GitRepoExt(path::AbstractString, flags::Cuint =

Cuint(Consts.REPOSITORY_OPEN_DEFAULT))↪→

Open a git repository at pathwith extended controls (for instance, if the current user must be amember

of a special access group to read path).

LibGit2.GitRevWalker – Type.

GitRevWalker(repo::GitRepo)

A GitRevWalker walks through the revisions (i.e. commits) of a git repository repo. It is a collection

of the commits in the repository, and supports iteration and calls to LibGit2.map and LibGit2.count

(for instance, LibGit2.count could be used to determine what percentage of commits in a repository

were made by a certain author).

cnt = LibGit2.with(LibGit2.GitRevWalker(repo)) do walker

LibGit2.count((oid,repo)->(oid == commit_oid1), walker, oid=commit_oid1,

by=LibGit2.Consts.SORT_TIME)↪→

end

Here, LibGit2.count finds the number of commits along the walk with a certain GitHash. Since the

GitHash is unique to a commit, cnt will be 1.

LibGit2.GitShortHash – Type.

GitShortHash(hash::GitHash, len::Integer)

A shortened git object identifier, which can be used to identify a git object when it is unique, consisting

of the initial len hexadecimal digits of hash (the remaining digits are ignored).

LibGit2.GitSignature – Type.

LibGit2.GitSignature

This is a Julia wrapper around a pointer to a git_signature object.

LibGit2.GitStatus – Type.

LibGit2.GitStatus(repo::GitRepo; status_opts=StatusOptions())

Collect information about the status of each file in the git repository repo (e.g. is the file modified,

staged, etc.). status_opts can be used to set various options, for instance whether or not to look at

untracked files or whether to include submodules or not. See StatusOptions for more information.

https://libgit2.org/libgit2/#HEAD/type/git_signature

CHAPTER 76. LIBGIT2 1191

LibGit2.GitTag – Type.

GitTag(repo::GitRepo, hash::AbstractGitHash)

GitTag(repo::GitRepo, spec::AbstractString)

Return a GitTag object from repo specified by hash/spec.

• hash is a full (GitHash) or partial (GitShortHash) hash.

• spec is a textual specification: see the git docs for a full list.

LibGit2.GitTree – Type.

GitTree(repo::GitRepo, hash::AbstractGitHash)

GitTree(repo::GitRepo, spec::AbstractString)

Return a GitTree object from repo specified by hash/spec.

• hash is a full (GitHash) or partial (GitShortHash) hash.

• spec is a textual specification: see the git docs for a full list.

LibGit2.IndexEntry – Type.

LibGit2.IndexEntry

In-memory representation of a file entry in the index. Matches the git_index_entry struct.

LibGit2.IndexTime – Type.

LibGit2.IndexTime

Matches the git_index_time struct.

LibGit2.BlameOptions – Type.

LibGit2.BlameOptions

Matches the git_blame_options struct.

The fields represent:

• version: version of the struct in use, in case this changes later. For now, always 1.

• flags: one of Consts.BLAME_NORMAL or Consts.BLAME_FIRST_PARENT (the other blame flags are

not yet implemented by libgit2).

• min_match_characters: the minimum number of alphanumeric characters which much change

in a commit in order for the change to be associated with that commit. The default is 20. Only

takes effect if one of the Consts.BLAME_*_COPIES flags are used, which libgit2 does not imple-

ment yet.

• newest_commit: the GitHash of the newest commit from which to look at changes.

• oldest_commit: the GitHash of the oldest commit from which to look at changes.

• min_line: the first line of the file from which to starting blaming. The default is 1.

https://git-scm.com/docs/git-rev-parse.html#_specifying_revisions
https://git-scm.com/docs/git-rev-parse.html#_specifying_revisions
https://libgit2.org/libgit2/#HEAD/type/git_index_entry
https://libgit2.org/libgit2/#HEAD/type/git_index_time
https://libgit2.org/libgit2/#HEAD/type/git_blame_options

CHAPTER 76. LIBGIT2 1192

• max_line: the last line of the file to which to blame. The default is 0, meaning the last line of the

file.

LibGit2.MergeOptions – Type.

LibGit2.MergeOptions

Matches the git_merge_options struct.

The fields represent:

• version: version of the struct in use, in case this changes later. For now, always 1.

• flags: an enum for flags describing merge behavior. Defined in git_merge_flag_t. The corre-

sponding Julia enum is GIT_MERGE and has values:

– MERGE_FIND_RENAMES: detect if a file has been renamed between the common ancestor and

the "ours" or "theirs" side of the merge. Allows merges where a file has been renamed.

– MERGE_FAIL_ON_CONFLICT: exit immediately if a conflict is found rather than trying to resolve

it.

– MERGE_SKIP_REUC: do not write the REUC extension on the index resulting from the merge.

– MERGE_NO_RECURSIVE: if the commits being merged have multiple merge bases, use the first

one, rather than trying to recursively merge the bases.

• rename_threshold: how similar two files must to consider one a rename of the other. This is an

integer that sets the percentage similarity. The default is 50.

• target_limit: the maximum number of files to compare with to look for renames. The default

is 200.

• metric: optional custom function to use to determine the similarity between two files for rename

detection.

• recursion_limit: the upper limit on the number of merges of common ancestors to perform

to try to build a new virtual merge base for the merge. The default is no limit. This field is only

present on libgit2 versions newer than 0.24.0.

• default_driver: the merge driver to use if both sides have changed. This field is only present

on libgit2 versions newer than 0.25.0.

• file_favor: how to handle conflicting file contents for the text driver.

– MERGE_FILE_FAVOR_NORMAL: if both sides of the merge have changes to a section, make a

note of the conflict in the index which git checkout will use to create a merge file, which

the user can then reference to resolve the conflicts. This is the default.

– MERGE_FILE_FAVOR_OURS: if both sides of the merge have changes to a section, use the

version in the "ours" side of the merge in the index.

– MERGE_FILE_FAVOR_THEIRS: if both sides of the merge have changes to a section, use the

version in the "theirs" side of the merge in the index.

– MERGE_FILE_FAVOR_UNION: if both sides of the merge have changes to a section, include

each unique line from both sides in the file which is put into the index.

• file_flags: guidelines for merging files.

LibGit2.ProxyOptions – Type.

https://libgit2.org/libgit2/#HEAD/type/git_merge_options
https://github.com/libgit2/libgit2/blob/HEAD/include/git2/merge.h#L95

CHAPTER 76. LIBGIT2 1193

LibGit2.ProxyOptions

Options for connecting through a proxy.

Matches the git_proxy_options struct.

The fields represent:

• version: version of the struct in use, in case this changes later. For now, always 1.

• proxytype: an enum for the type of proxy to use. Defined in git_proxy_t. The corresponding

Julia enum is GIT_PROXY and has values:

– PROXY_NONE: do not attempt the connection through a proxy.

– PROXY_AUTO: attempt to figure out the proxy configuration from the git configuration.

– PROXY_SPECIFIED: connect using the URL given in the url field of this struct.

Default is to auto-detect the proxy type.

• url: the URL of the proxy.

• credential_cb: a pointer to a callback function which will be called if the remote requires au-

thentication to connect.

• certificate_cb: a pointer to a callback function which will be called if certificate verification

fails. This lets the user decide whether or not to keep connecting. If the function returns 1,

connecting will be allowed. If it returns 0, the connection will not be allowed. A negative value

can be used to return errors.

• payload: the payload to be provided to the two callback functions.

Examples

julia> fo = LibGit2.FetchOptions(

proxy_opts = LibGit2.ProxyOptions(url = Cstring("https://my_proxy_url.com")))

julia> fetch(remote, "master", options=fo)

LibGit2.PushOptions – Type.

LibGit2.PushOptions

Matches the git_push_options struct.

The fields represent:

• version: version of the struct in use, in case this changes later. For now, always 1.

• parallelism: if a pack filemust be created, this variable sets the number of worker threads which

will be spawned by the packbuilder. If 0, the packbuilder will auto-set the number of threads to

use. The default is 1.

• callbacks: the callbacks (e.g. for authentication with the remote) to use for the push.

• proxy_opts: only relevant if the LibGit2 version is greater than or equal to 0.25.0. Sets options

for using a proxy to communicate with a remote. See ProxyOptions for more information.

• custom_headers: only relevant if the LibGit2 version is greater than or equal to 0.24.0. Extra

headers needed for the push operation.

https://libgit2.org/libgit2/#HEAD/type/git_proxy_options
https://libgit2.org/libgit2/#HEAD/type/git_proxy_t
https://libgit2.org/libgit2/#HEAD/type/git_push_options

CHAPTER 76. LIBGIT2 1194

LibGit2.RebaseOperation – Type.

LibGit2.RebaseOperation

Describes a single instruction/operation to be performed during the rebase. Matches the git_rebase_operation

struct.

The fields represent:

• optype: the type of rebase operation currently being performed. The options are:

– REBASE_OPERATION_PICK: cherry-pick the commit in question.

– REBASE_OPERATION_REWORD: cherry-pick the commit in question, but rewrite its message

using the prompt.

– REBASE_OPERATION_EDIT: cherry-pick the commit in question, but allow the user to edit the

commit's contents and its message.

– REBASE_OPERATION_SQUASH: squash the commit in question into the previous commit. The

commit messages of the two commits will be merged.

– REBASE_OPERATION_FIXUP: squash the commit in question into the previous commit. Only

the commit message of the previous commit will be used.

– REBASE_OPERATION_EXEC: do not cherry-pick a commit. Run a command and continue if the

command exits successfully.

• id: the GitHash of the commit being worked on during this rebase step.

• exec: in case REBASE_OPERATION_EXEC is used, the command to run during this step (for instance,

running the test suite after each commit).

LibGit2.RebaseOptions – Type.

LibGit2.RebaseOptions

Matches the git_rebase_options struct.

The fields represent:

• version: version of the struct in use, in case this changes later. For now, always 1.

• quiet: inform other git clients helping with/working on the rebase that the rebase should be done

"quietly". Used for interoperability. The default is 1.

• inmemory: start an in-memory rebase. Callers working on the rebase can go through its steps

and commit any changes, but cannot rewind HEAD or update the repository. The workdir will not

be modified. Only present on libgit2 versions newer than or equal to 0.24.0.

• rewrite_notes_ref: name of the reference to notes to use to rewrite the commit notes as the

rebase is finished.

• merge_opts: merge options controlling how the trees will be merged at each rebase step. Only

present on libgit2 versions newer than or equal to 0.24.0.

• checkout_opts: checkout options for writing files when initializing the rebase, stepping through

it, and aborting it. See CheckoutOptions for more information.

LibGit2.RemoteCallbacks – Type.

https://libgit2.org/libgit2/#HEAD/type/git_rebase_operation_t

CHAPTER 76. LIBGIT2 1195

LibGit2.RemoteCallbacks

Callback settings. Matches the git_remote_callbacks struct.

LibGit2.SignatureStruct – Type.

LibGit2.SignatureStruct

An action signature (e.g. for committers, taggers, etc). Matches the git_signature struct.

The fields represent:

• name: The full name of the committer or author of the commit.

• email: The email at which the committer/author can be contacted.

• when: a TimeStruct indicating when the commit was authored/committed into the repository.

LibGit2.StatusEntry – Type.

LibGit2.StatusEntry

Providing the differences between the file as it exists in HEAD and the index, and providing the differ-

ences between the index and the working directory. Matches the git_status_entry struct.

The fields represent:

• status: contains the status flags for the file, indicating if it is current, or has been changed in

some way in the index or work tree.

• head_to_index: a pointer to a DiffDelta which encapsulates the difference(s) between the file

as it exists in HEAD and in the index.

• index_to_workdir: a pointer to a DiffDelta which encapsulates the difference(s) between the

file as it exists in the index and in the workdir.

LibGit2.StatusOptions – Type.

LibGit2.StatusOptions

Options to control how git_status_foreach_ext()will issue callbacks. Matches the git_status_opt_t

struct.

The fields represent:

• version: version of the struct in use, in case this changes later. For now, always 1.

• show: a flag for which files to examine and in which order. The default is Consts.STATUS_SHOW_INDEX_AND_WORKDIR.

• flags: flags for controlling any callbacks used in a status call.

• pathspec: an array of paths to use for path-matching. The behavior of the path-matching will

vary depending on the values of show and flags.

• The baseline is the tree to be used for comparison to the working directory and index; defaults

to HEAD.

LibGit2.StrArrayStruct – Type.

https://libgit2.org/libgit2/#HEAD/type/git_remote_callbacks
https://libgit2.org/libgit2/#HEAD/type/git_signature
https://libgit2.org/libgit2/#HEAD/type/git_status_opt_t

CHAPTER 76. LIBGIT2 1196

LibGit2.StrArrayStruct

A LibGit2 representation of an array of strings. Matches the git_strarray struct.

When fetching data from LibGit2, a typical usage would look like:

sa_ref = Ref(StrArrayStruct())

@check ccall(..., (Ptr{StrArrayStruct},), sa_ref)

res = convert(Vector{String}, sa_ref[])

free(sa_ref)

In particular, note that LibGit2.free should be called afterward on the Ref object.

Conversely, when passing a vector of strings to LibGit2, it is generally simplest to rely on implicit

conversion:

strs = String[...]

@check ccall(..., (Ptr{StrArrayStruct},), strs)

Note that no call to free is required as the data is allocated by Julia.

LibGit2.TimeStruct – Type.

LibGit2.TimeStruct

Time in a signature. Matches the git_time struct.

LibGit2.addfile – Function.

addfile(cfg::GitConfig, path::AbstractString,

level::Consts.GIT_CONFIG=Consts.CONFIG_LEVEL_APP,

repo::Union{GitRepo, Nothing} = nothing,

force::Bool=false)

Add an existing git configuration file located at path to the current GitConfig cfg. If the file does not

exist, it will be created.

• level sets the git configuration priority level and is determined by

Consts.GIT_CONFIG.

• repo is an optional repository to allow parsing of conditional includes.

• If force is false and a configuration for the given priority level already exists,

addfile will error. If force is true, the existing configuration will be replaced by the one in the file at

path.

LibGit2.add! – Function.

add!(repo::GitRepo, files::AbstractString...; flags::Cuint = Consts.INDEX_ADD_DEFAULT)

add!(idx::GitIndex, files::AbstractString...; flags::Cuint = Consts.INDEX_ADD_DEFAULT)

https://libgit2.org/libgit2/#HEAD/type/git_strarray
https://libgit2.org/libgit2/#HEAD/type/git_time

CHAPTER 76. LIBGIT2 1197

Add all the files with paths specified by files to the index idx (or the index of the repo). If the file

already exists, the index entry will be updated. If the file does not exist already, it will be newly added

into the index. files may contain glob patterns which will be expanded and any matching files will

be added (unless INDEX_ADD_DISABLE_PATHSPEC_MATCH is set, see below). If a file has been ignored

(in .gitignore or in the config), it will not be added, unless it is already being tracked in the index,

in which case it will be updated. The keyword argument flags is a set of bit-flags which control the

behavior with respect to ignored files:

• Consts.INDEX_ADD_DEFAULT - default, described above.

• Consts.INDEX_ADD_FORCE - disregard the existing ignore rules and force addition of the file to

the index even if it is already ignored.

• Consts.INDEX_ADD_CHECK_PATHSPEC - cannot be used at the same time as INDEX_ADD_FORCE.

Check that each file in files which exists on disk is not in the ignore list. If one of the files is

ignored, the function will return EINVALIDSPEC.

• Consts.INDEX_ADD_DISABLE_PATHSPEC_MATCH - turn off glob matching, and only add files to the

index which exactly match the paths specified in files.

LibGit2.add_fetch! – Function.

add_fetch!(repo::GitRepo, rmt::GitRemote, fetch_spec::String)

Add a fetch refspec for the specified rmt. This refspec will contain information about which branch(es)

to fetch from.

Examples

julia> LibGit2.add_fetch!(repo, remote, "upstream");

julia> LibGit2.fetch_refspecs(remote)

String["+refs/heads/*:refs/remotes/upstream/*"]

LibGit2.add_push! – Function.

add_push!(repo::GitRepo, rmt::GitRemote, push_spec::String)

Add a push refspec for the specified rmt. This refspec will contain information about which branch(es)

to push to.

Examples

julia> LibGit2.add_push!(repo, remote, "refs/heads/master");

julia> remote = LibGit2.get(LibGit2.GitRemote, repo, branch);

julia> LibGit2.push_refspecs(remote)

String["refs/heads/master"]

Note

You may need to close and reopen the GitRemote in question after updating its push ref-

specs in order for the change to take effect and for calls to push to work.

CHAPTER 76. LIBGIT2 1198

LibGit2.addblob! – Function.

LibGit2.addblob!(repo::GitRepo, path::AbstractString)

Read the file at path and adds it to the object database of repo as a loose blob. Return the GitHash of

the resulting blob.

Examples

hash_str = string(commit_oid)

blob_file = joinpath(repo_path, ".git", "objects", hash_str[1:2], hash_str[3:end])

id = LibGit2.addblob!(repo, blob_file)

LibGit2.author – Function.

author(c::GitCommit)

Return the Signature of the author of the commit c. The author is the person who made changes to

the relevant file(s). See also committer.

LibGit2.authors – Function.

authors(repo::GitRepo) -> Vector{Signature}

Return all authors of commits to the repo repository.

Examples

repo = LibGit2.GitRepo(repo_path)

repo_file = open(joinpath(repo_path, test_file), "a")

println(repo_file, commit_msg)

flush(repo_file)

LibGit2.add!(repo, test_file)

sig = LibGit2.Signature("TEST", "TEST@TEST.COM", round(time(), 0), 0)

commit_oid1 = LibGit2.commit(repo, "commit1"; author=sig, committer=sig)

println(repo_file, randstring(10))

flush(repo_file)

LibGit2.add!(repo, test_file)

commit_oid2 = LibGit2.commit(repo, "commit2"; author=sig, committer=sig)

will be a Vector of [sig, sig]

auths = LibGit2.authors(repo)

LibGit2.branch – Function.

branch(repo::GitRepo)

Equivalent to git branch. Create a new branch from the current HEAD.

LibGit2.branch! – Function.

branch!(repo::GitRepo, branch_name::AbstractString, commit::AbstractString=""; kwargs...)

CHAPTER 76. LIBGIT2 1199

Checkout a new git branch in the repo repository. commit is the GitHash, in string form, which will be

the start of the new branch. If commit is an empty string, the current HEAD will be used.

The keyword arguments are:

• track::AbstractString="": the name of the remote branch this new branch should track, if

any. If empty (the default), no remote branch will be tracked.

• force::Bool=false: if true, branch creation will be forced.

• set_head::Bool=true: if true, after the branch creation finishes the branch head will be set as

the HEAD of repo.

Equivalent to git checkout [-b|-B] <branch_name> [<commit>] [--track <track>].

Examples

repo = LibGit2.GitRepo(repo_path)

LibGit2.branch!(repo, "new_branch", set_head=false)

LibGit2.checkout! – Function.

checkout!(repo::GitRepo, commit::AbstractString=""; force::Bool=true)

Equivalent to git checkout [-f] --detach <commit>. Checkout the git commit commit (a GitHash

in string form) in repo. If force is true, force the checkout and discard any current changes. Note that

this detaches the current HEAD.

Examples

repo = LibGit2.GitRepo(repo_path)

open(joinpath(LibGit2.path(repo), "file1"), "w") do f

write(f, "111

")

end

LibGit2.add!(repo, "file1")

commit_oid = LibGit2.commit(repo, "add file1")

open(joinpath(LibGit2.path(repo), "file1"), "w") do f

write(f, "112

")

end

would fail without the force=true

since there are modifications to the file

LibGit2.checkout!(repo, string(commit_oid), force=true)

LibGit2.clone – Function.

clone(repo_url::AbstractString, repo_path::AbstractString, clone_opts::CloneOptions)

Clone the remote repository at repo_url (which can be a remote URL or a path on the local filesystem)

to repo_path (which must be a path on the local filesystem). Options for the clone, such as whether

to perform a bare clone or not, are set by CloneOptions.

Examples

CHAPTER 76. LIBGIT2 1200

repo_url = "https://github.com/JuliaLang/Example.jl"

repo = LibGit2.clone(repo_url, "/home/me/projects/Example")

clone(repo_url::AbstractString, repo_path::AbstractString; kwargs...)

Clone a remote repository located at repo_url to the local filesystem location repo_path.

The keyword arguments are:

• branch::AbstractString="": which branch of the remote to clone, if not the default repository

branch (usually master).

• isbare::Bool=false: if true, clone the remote as a bare repository, which will make repo_path

itself the git directory instead of repo_path/.git. This means that a working tree cannot be

checked out. Plays the role of the git CLI argument --bare.

• remote_cb::Ptr{Cvoid}=C_NULL: a callback which will be used to create the remote before it is

cloned. If C_NULL (the default), no attempt will be made to create the remote - it will be assumed

to already exist.

• credentials::Creds=nothing: provides credentials and/or settings when authenticating against

a private repository.

• callbacks::Callbacks=Callbacks(): user provided callbacks and payloads.

Equivalent to git clone [-b <branch>] [--bare] <repo_url> <repo_path>.

Examples

repo_url = "https://github.com/JuliaLang/Example.jl"

repo1 = LibGit2.clone(repo_url, "test_path")

repo2 = LibGit2.clone(repo_url, "test_path", isbare=true)

julia_url = "https://github.com/JuliaLang/julia"

julia_repo = LibGit2.clone(julia_url, "julia_path", branch="release-0.6")

LibGit2.commit – Function.

commit(repo::GitRepo, msg::AbstractString; kwargs...) -> GitHash

Wrapper around git_commit_create. Create a commit in the repository repo. msg is the commit

message. Return the OID of the new commit.

The keyword arguments are:

• refname::AbstractString=Consts.HEAD_FILE: if not NULL, the name of the reference to update

to point to the new commit. For example, "HEAD" will update the HEAD of the current branch. If

the reference does not yet exist, it will be created.

• author::Signature = Signature(repo) is a Signature containing information about the per-

son who authored the commit.

• committer::Signature = Signature(repo) is a Signature containing information about the

person who committed the commit to the repository. Not necessarily the same as author, for

instance if author emailed a patch to committer who committed it.

• tree_id::GitHash = GitHash() is a git tree to use to create the commit, showing its ancestry

and relationship with any other history. tree must belong to repo.

https://libgit2.org/libgit2/#HEAD/group/commit/git_commit_create

CHAPTER 76. LIBGIT2 1201

• parent_ids::Vector{GitHash}=GitHash[] is a list of commits by GitHash to use as parent

commits for the new one, and may be empty. A commit might have multiple parents if it is a

merge commit, for example.

LibGit2.commit(rb::GitRebase, sig::GitSignature)

Commit the current patch to the rebase rb, using sig as the committer. Is silent if the commit has

already been applied.

LibGit2.committer – Function.

committer(c::GitCommit)

Return the Signature of the committer of the commit c. The committer is the person who committed

the changes originally authored by the author, but need not be the same as the author, for example,

if the author emailed a patch to a committer who committed it.

LibGit2.count – Function.

LibGit2.count(f::Function, walker::GitRevWalker; oid::GitHash=GitHash(),

by::Cint=Consts.SORT_NONE, rev::Bool=false)↪→

Using the GitRevWalker walker to "walk" over every commit in the repository's history, find the num-

ber of commits which return true when f is applied to them. The keyword arguments are: * oid:

The GitHash of the commit to begin the walk from. The default is to use push_head! and there-

fore the HEAD commit and all its ancestors. * by: The sorting method. The default is not to sort.

Other options are to sort by topology (LibGit2.Consts.SORT_TOPOLOGICAL), to sort forwards in time

(LibGit2.Consts.SORT_TIME, most ancient first) or to sort backwards in time (LibGit2.Consts.SORT_REVERSE,

most recent first). * rev: Whether to reverse the sorted order (for instance, if topological sorting is

used).

Examples

cnt = LibGit2.with(LibGit2.GitRevWalker(repo)) do walker

LibGit2.count((oid, repo)->(oid == commit_oid1), walker, oid=commit_oid1,

by=LibGit2.Consts.SORT_TIME)↪→

end

LibGit2.count finds the number of commits along the walk with a certain GitHash commit_oid1,

starting the walk from that commit and moving forwards in time from it. Since the GitHash is unique

to a commit, cnt will be 1.

LibGit2.counthunks – Function.

counthunks(blame::GitBlame)

Return the number of distinct "hunks" with a file. A hunk may contain multiple lines. A hunk is usually

a piece of a file that was added/changed/removed together, for example, a function added to a source

file or an inner loop that was optimized out of that function later.

LibGit2.create_branch – Function.

LibGit2.create_branch(repo::GitRepo, bname::AbstractString, commit_obj::GitCommit;

force::Bool=false)↪→

CHAPTER 76. LIBGIT2 1202

Create a new branch in the repository repo with name bname, which points to commit commit_obj

(which has to be part of repo). If force is true, overwrite an existing branch named bname if it exists.

If force is false and a branch already exists named bname, this function will throw an error.

LibGit2.credentials_callback – Function.

credential_callback(...) -> Cint

A LibGit2 credential callback function which provides different credential acquisition functionality w.r.t.

a connection protocol. The payload_ptr is required to contain a LibGit2.CredentialPayload object

which will keep track of state and settings.

The allowed_types contains a bitmask of LibGit2.Consts.GIT_CREDTYPE values specifying which

authentication methods should be attempted.

Credential authentication is done in the following order (if supported):

• SSH agent

• SSH private/public key pair

• Username/password plain text

If a user is presented with a credential prompt they can abort the prompt by typing ^D (pressing the

control key together with the d key).

Note: Due to the specifics of the libgit2 authentication procedure, when authentication fails, this

function is called again without any indication whether authentication was successful or not. To avoid

an infinite loop from repeatedly using the same faulty credentials, we will keep track of state using the

payload.

For addition details see the LibGit2 guide on authenticating against a server.

LibGit2.credentials_cb – Function.

C function pointer for credentials_callback

LibGit2.default_signature – Function.

Return signature object. Free it after use.

LibGit2.delete_branch – Function.

LibGit2.delete_branch(branch::GitReference)

Delete the branch pointed to by branch.

LibGit2.diff_files – Function.

diff_files(repo::GitRepo, branch1::AbstractString, branch2::AbstractString; kwarg...) ->

Vector{AbstractString}↪→

Show which files have changed in the git repository repo between branches branch1 and branch2.

The keyword argument is:

• filter::Set{Consts.DELTA_STATUS}=Set([Consts.DELTA_ADDED, Consts.DELTA_MODIFIED, Consts.DELTA_DELETED])),

and it sets options for the diff. The default is to show files added, modified, or deleted.

https://libgit2.org/docs/guides/authentication/

CHAPTER 76. LIBGIT2 1203

Return only the names of the files which have changed, not their contents.

Examples

LibGit2.branch!(repo, "branch/a")

LibGit2.branch!(repo, "branch/b")

add a file to repo

open(joinpath(LibGit2.path(repo),"file"),"w") do f

write(f, "hello repo

")

end

LibGit2.add!(repo, "file")

LibGit2.commit(repo, "add file")

returns ["file"]

filt = Set([LibGit2.Consts.DELTA_ADDED])

files = LibGit2.diff_files(repo, "branch/a", "branch/b", filter=filt)

returns [] because existing files weren't modified

filt = Set([LibGit2.Consts.DELTA_MODIFIED])

files = LibGit2.diff_files(repo, "branch/a", "branch/b", filter=filt)

Equivalent to git diff --name-only --diff-filter=<filter> <branch1> <branch2>.

LibGit2.entryid – Function.

entryid(te::GitTreeEntry)

Return the GitHash of the object to which te refers.

LibGit2.entrytype – Function.

entrytype(te::GitTreeEntry)

Return the type of the object to which te refers. The result will be one of the types which objtype

returns, e.g. a GitTree or GitBlob.

LibGit2.fetch – Function.

fetch(rmt::GitRemote, refspecs; options::FetchOptions=FetchOptions(), msg="")

Fetch from the specified rmt remote git repository, using refspecs to determinewhich remote branch(es)

to fetch. The keyword arguments are:

• options: determines the options for the fetch, e.g. whether to prune afterwards. See FetchOptions

for more information.

• msg: a message to insert into the reflogs.

fetch(repo::GitRepo; kwargs...)

Fetches updates from an upstream of the repository repo.

The keyword arguments are:

• remote::AbstractString="origin": which remote, specified by name, of repo to fetch from. If

this is empty, the URL will be used to construct an anonymous remote.

CHAPTER 76. LIBGIT2 1204

• remoteurl::AbstractString="": the URL of remote. If not specified, will be assumed based on

the given name of remote.

• refspecs=AbstractString[]: determines properties of the fetch.

• credentials=nothing: provides credentials and/or settings when authenticating against a pri-

vate remote.

• callbacks=Callbacks(): user provided callbacks and payloads.

Equivalent to git fetch [<remoteurl>|<repo>] [<refspecs>].

LibGit2.fetchheads – Function.

fetchheads(repo::GitRepo) -> Vector{FetchHead}

Return the list of all the fetch heads for repo, each represented as a FetchHead, including their names,

URLs, and merge statuses.

Examples

julia> fetch_heads = LibGit2.fetchheads(repo);

julia> fetch_heads[1].name

"refs/heads/master"

julia> fetch_heads[1].ismerge

true

julia> fetch_heads[2].name

"refs/heads/test_branch"

julia> fetch_heads[2].ismerge

false

LibGit2.fetch_refspecs – Function.

fetch_refspecs(rmt::GitRemote) -> Vector{String}

Get the fetch refspecs for the specified rmt. These refspecs contain information about which branch(es)

to fetch from.

Examples

julia> remote = LibGit2.get(LibGit2.GitRemote, repo, "upstream");

julia> LibGit2.add_fetch!(repo, remote, "upstream");

julia> LibGit2.fetch_refspecs(remote)

String["+refs/heads/*:refs/remotes/upstream/*"]

LibGit2.fetchhead_foreach_cb – Function.

C function pointer for fetchhead_foreach_callback

LibGit2.merge_base – Function.

CHAPTER 76. LIBGIT2 1205

merge_base(repo::GitRepo, one::AbstractString, two::AbstractString) -> GitHash

Find a merge base (a common ancestor) between the commits one and two. one and two may both be

in string form. Return the GitHash of the merge base.

LibGit2.merge! – Method.

merge!(repo::GitRepo; kwargs...) -> Bool

Perform a git merge on the repository repo, merging commits with diverging history into the current

branch. Return true if the merge succeeded, false if not.

The keyword arguments are:

• committish::AbstractString="": Merge the named commit(s) in committish.

• branch::AbstractString="": Merge the branch branch and all its commits since it diverged

from the current branch.

• fastforward::Bool=false: If fastforward is true, only merge if the merge is a fast-forward

(the current branch head is an ancestor of the commits to be merged), otherwise refuse to merge

and return false. This is equivalent to the git CLI option --ff-only.

• merge_opts::MergeOptions=MergeOptions(): merge_opts specifies options for themerge, such

as merge strategy in case of conflicts.

• checkout_opts::CheckoutOptions=CheckoutOptions(): checkout_opts specifies options for

the checkout step.

Equivalent to git merge [--ff-only] [<committish> | <branch>].

Note

If you specify a branch, this must be done in reference format, since the string will be turned

into a GitReference. For example, if you wanted to merge branch branch_a, you would

call merge!(repo, branch="refs/heads/branch_a").

LibGit2.merge! – Method.

merge!(repo::GitRepo, anns::Vector{GitAnnotated}; kwargs...) -> Bool

Merge changes from the annotated commits (captured as GitAnnotated objects) anns into the HEAD

of the repository repo. The keyword arguments are:

• merge_opts::MergeOptions = MergeOptions(): options for how to perform the merge, includ-

ing whether fastforwarding is allowed. See MergeOptions for more information.

• checkout_opts::CheckoutOptions = CheckoutOptions(): options for how to perform the check-

out. See CheckoutOptions for more information.

anns may refer to remote or local branch heads. Return true if the merge is successful, otherwise

return false (for instance, if no merge is possible because the branches have no common ancestor).

Examples

CHAPTER 76. LIBGIT2 1206

upst_ann = LibGit2.GitAnnotated(repo, "branch/a")

merge the branch in

LibGit2.merge!(repo, [upst_ann])

LibGit2.merge! – Method.

merge!(repo::GitRepo, anns::Vector{GitAnnotated}, fastforward::Bool; kwargs...) -> Bool

Merge changes from the annotated commits (captured as GitAnnotated objects) anns into the HEAD

of the repository repo. If fastforward is true, only a fastforward merge is allowed. In this case, if

conflicts occur, the merge will fail. Otherwise, if fastforward is false, the merge may produce a

conflict file which the user will need to resolve.

The keyword arguments are:

• merge_opts::MergeOptions = MergeOptions(): options for how to perform the merge, includ-

ing whether fastforwarding is allowed. See MergeOptions for more information.

• checkout_opts::CheckoutOptions = CheckoutOptions(): options for how to perform the check-

out. See CheckoutOptions for more information.

anns may refer to remote or local branch heads. Return true if the merge is successful, otherwise

return false (for instance, if no merge is possible because the branches have no common ancestor).

Examples

upst_ann_1 = LibGit2.GitAnnotated(repo, "branch/a")

merge the branch in, fastforward

LibGit2.merge!(repo, [upst_ann_1], true)

merge conflicts!

upst_ann_2 = LibGit2.GitAnnotated(repo, "branch/b")

merge the branch in, try to fastforward

LibGit2.merge!(repo, [upst_ann_2], true) # will return false

LibGit2.merge!(repo, [upst_ann_2], false) # will return true

LibGit2.ffmerge! – Function.

ffmerge!(repo::GitRepo, ann::GitAnnotated)

Fastforward merge changes into current HEAD. This is only possible if the commit referred to by ann is

descended from the current HEAD (e.g. if pulling changes from a remote branch which is simply ahead

of the local branch tip).

LibGit2.fullname – Function.

LibGit2.fullname(ref::GitReference)

Return the name of the reference pointed to by the symbolic reference ref. If ref is not a symbolic

reference, return an empty string.

LibGit2.features – Function.

CHAPTER 76. LIBGIT2 1207

features()

Return a list of git features the current version of libgit2 supports, such as threading or using HTTPS or

SSH.

LibGit2.filename – Function.

filename(te::GitTreeEntry)

Return the filename of the object on disk to which te refers.

LibGit2.filemode – Function.

filemode(te::GitTreeEntry) -> Cint

Return the UNIX filemode of the object on disk to which te refers as an integer.

LibGit2.gitdir – Function.

LibGit2.gitdir(repo::GitRepo)

Return the location of the "git" files of repo:

• for normal repositories, this is the location of the .git folder.

• for bare repositories, this is the location of the repository itself.

See also workdir, path.

LibGit2.git_url – Function.

LibGit2.git_url(; kwargs...) -> String

Create a string based upon the URL components provided. When the scheme keyword is not provided

the URL produced will use the alternative scp-like syntax.

Keywords

• scheme::AbstractString="": the URL scheme which identifies the protocol to be used. For

HTTP use "http", SSH use "ssh", etc. When scheme is not provided the output format will be "ssh"

but using the scp-like syntax.

• username::AbstractString="": the username to use in the output if provided.

• password::AbstractString="": the password to use in the output if provided.

• host::AbstractString="": the hostname to use in the output. A hostname is required to be

specified.

• port::Union{AbstractString,Integer}="": the port number to use in the output if provided.

Cannot be specified when using the scp-like syntax.

• path::AbstractString="": the path to use in the output if provided.

Warning

Avoid using passwords in URLs. Unlike the credential objects, Julia is not able to securely zero

or destroy the sensitive data after use and the password may remain in memory; possibly

to be exposed by an uninitialized memory.

https://git-scm.com/docs/git-clone#_git_urls_a_id_urls_a

CHAPTER 76. LIBGIT2 1208

Examples

julia> LibGit2.git_url(username="git", host="github.com", path="JuliaLang/julia.git")

"git@github.com:JuliaLang/julia.git"

julia> LibGit2.git_url(scheme="https", host="github.com", path="/JuliaLang/julia.git")

"https://github.com/JuliaLang/julia.git"

julia> LibGit2.git_url(scheme="ssh", username="git", host="github.com", port=2222,

path="JuliaLang/julia.git")↪→

"ssh://git@github.com:2222/JuliaLang/julia.git"

LibGit2.@githash_str – Macro.

@githash_str -> AbstractGitHash

Construct a git hash object from the given string, returning a GitShortHash if the string is shorter than

40 hexadecimal digits, otherwise a GitHash.

Examples

julia> LibGit2.githash"d114feb74ce633"

GitShortHash("d114feb74ce633")

julia> LibGit2.githash"d114feb74ce63307afe878a5228ad014e0289a85"

GitHash("d114feb74ce63307afe878a5228ad014e0289a85")

LibGit2.head – Function.

LibGit2.head(repo::GitRepo) -> GitReference

Return a GitReference to the current HEAD of repo.

head(pkg::AbstractString) -> String

Return current HEAD GitHash of the pkg repo as a string.

LibGit2.head! – Function.

LibGit2.head!(repo::GitRepo, ref::GitReference) -> GitReference

Set the HEAD of repo to the object pointed to by ref.

LibGit2.head_oid – Function.

LibGit2.head_oid(repo::GitRepo) -> GitHash

Lookup the object id of the current HEAD of git repository repo.

LibGit2.headname – Function.

LibGit2.headname(repo::GitRepo)

Lookup the name of the current HEAD of git repository repo. If repo is currently detached, return the

name of the HEAD it's detached from.

CHAPTER 76. LIBGIT2 1209

LibGit2.init – Function.

LibGit2.init(path::AbstractString, bare::Bool=false) -> GitRepo

Open a new git repository at path. If bare is false, the working tree will be created in path/.git. If

bare is true, no working directory will be created.

LibGit2.is_ancestor_of – Function.

is_ancestor_of(a::AbstractString, b::AbstractString, repo::GitRepo) -> Bool

Return true if a, a GitHash in string form, is an ancestor of b, a GitHash in string form.

Examples

julia> repo = GitRepo(repo_path);

julia> LibGit2.add!(repo, test_file1);

julia> commit_oid1 = LibGit2.commit(repo, "commit1");

julia> LibGit2.add!(repo, test_file2);

julia> commit_oid2 = LibGit2.commit(repo, "commit2");

julia> LibGit2.is_ancestor_of(string(commit_oid1), string(commit_oid2), repo)

true

LibGit2.isbinary – Function.

isbinary(blob::GitBlob) -> Bool

Use a heuristic to guess if a file is binary: searching for NULL bytes and looking for a reasonable ratio

of printable to non-printable characters among the first 8000 bytes.

LibGit2.iscommit – Function.

iscommit(id::AbstractString, repo::GitRepo) -> Bool

Check if commit id (which is a GitHash in string form) is in the repository.

Examples

julia> repo = GitRepo(repo_path);

julia> LibGit2.add!(repo, test_file);

julia> commit_oid = LibGit2.commit(repo, "add test_file");

julia> LibGit2.iscommit(string(commit_oid), repo)

true

LibGit2.isdiff – Function.

CHAPTER 76. LIBGIT2 1210

LibGit2.isdiff(repo::GitRepo, treeish::AbstractString, pathspecs::AbstractString="";

cached::Bool=false)↪→

Checks if there are any differences between the tree specified by treeish and the tracked files in the

working tree (if cached=false) or the index (if cached=true). pathspecs are the specifications for

options for the diff.

Examples

repo = LibGit2.GitRepo(repo_path)

LibGit2.isdiff(repo, "HEAD") # should be false

open(joinpath(repo_path, new_file), "a") do f

println(f, "here's my cool new file")

end

LibGit2.isdiff(repo, "HEAD") # now true

Equivalent to git diff-index <treeish> [-- <pathspecs>].

LibGit2.isdirty – Function.

LibGit2.isdirty(repo::GitRepo, pathspecs::AbstractString=""; cached::Bool=false) -> Bool

Check if there have been any changes to tracked files in the working tree (if cached=false) or the

index (if cached=true). pathspecs are the specifications for options for the diff.

Examples

repo = LibGit2.GitRepo(repo_path)

LibGit2.isdirty(repo) # should be false

open(joinpath(repo_path, new_file), "a") do f

println(f, "here's my cool new file")

end

LibGit2.isdirty(repo) # now true

LibGit2.isdirty(repo, new_file) # now true

Equivalent to git diff-index HEAD [-- <pathspecs>].

LibGit2.isorphan – Function.

LibGit2.isorphan(repo::GitRepo)

Check if the current branch is an "orphan" branch, i.e. has no commits. The first commit to this branch

will have no parents.

LibGit2.isset – Function.

isset(val::Integer, flag::Integer)

Test whether the bits of val indexed by flag are set (1) or unset (0).

LibGit2.iszero – Function.

iszero(id::GitHash) -> Bool

Determine whether all hexadecimal digits of the given GitHash are zero.

CHAPTER 76. LIBGIT2 1211

LibGit2.lookup_branch – Function.

lookup_branch(repo::GitRepo, branch_name::AbstractString, remote::Bool=false) ->

Union{GitReference, Nothing}↪→

Determine if the branch specified by branch_name exists in the repository repo. If remote is true, repo

is assumed to be a remote git repository. Otherwise, it is part of the local filesystem.

Return either a GitReference to the requested branch if it exists, or nothing if not.

LibGit2.map – Function.

LibGit2.map(f::Function, walker::GitRevWalker; oid::GitHash=GitHash(),

range::AbstractString="", by::Cint=Consts.SORT_NONE, rev::Bool=false)↪→

Using the GitRevWalker walker to "walk" over every commit in the repository's history, apply f to

each commit in the walk. The keyword arguments are: * oid: The GitHash of the commit to begin

the walk from. The default is to use push_head! and therefore the HEAD commit and all its ancestors.

* range: A range of GitHashs in the format oid1..oid2. f will be applied to all commits between

the two. * by: The sorting method. The default is not to sort. Other options are to sort by topology

(LibGit2.Consts.SORT_TOPOLOGICAL), to sort forwards in time (LibGit2.Consts.SORT_TIME, most

ancient first) or to sort backwards in time (LibGit2.Consts.SORT_REVERSE, most recent first). * rev:

Whether to reverse the sorted order (for instance, if topological sorting is used).

Examples

oids = LibGit2.with(LibGit2.GitRevWalker(repo)) do walker

LibGit2.map((oid, repo)->string(oid), walker, by=LibGit2.Consts.SORT_TIME)

end

Here, LibGit2.map visits each commit using the GitRevWalker and finds its GitHash.

LibGit2.mirror_callback – Function.

Mirror callback function

Function sets +refs/*:refs/* refspecs and mirror flag for remote reference.

LibGit2.mirror_cb – Function.

C function pointer for mirror_callback

LibGit2.message – Function.

message(c::GitCommit, raw::Bool=false)

Return the commit message describing the changes made in commit c. If raw is false, return a slightly

"cleaned up" message (which has any leading newlines removed). If raw is true, the message is not

stripped of any such newlines.

LibGit2.merge_analysis – Function.

merge_analysis(repo::GitRepo, anns::Vector{GitAnnotated}) -> analysis, preference

CHAPTER 76. LIBGIT2 1212

Run analysis on the branches pointed to by the annotated branch tips anns and determine under what

circumstances they can be merged. For instance, if anns[1] is simply an ancestor of ann[2], then

merge_analysis will report that a fast-forward merge is possible.

Return two outputs, analysis and preference. analysis has several possible values: * MERGE_ANALYSIS_NONE:

it is not possible to merge the elements of anns. * MERGE_ANALYSIS_NORMAL: a regular merge, when

HEAD and the commits that the user wishes to merge have all diverged from a common ancestor. In

this case the changes have to be resolved and conflicts may occur. * MERGE_ANALYSIS_UP_TO_DATE:

all the input commits the user wishes to merge can be reached from HEAD, so no merge needs to

be performed. * MERGE_ANALYSIS_FASTFORWARD: the input commit is a descendant of HEAD and so

no merge needs to be performed - instead, the user can simply checkout the input commit(s). *

MERGE_ANALYSIS_UNBORN: the HEAD of the repository refers to a commit which does not exist. It is not

possible to merge, but it may be possible to checkout the input commits. preference also has several

possible values: * MERGE_PREFERENCE_NONE: the user has no preference. * MERGE_PREFERENCE_NO_FASTFORWARD:

do not allow any fast-forwardmerges. * MERGE_PREFERENCE_FASTFORWARD_ONLY: allow only fast-forward

merges and no other type (which may introduce conflicts). preference can be controlled through the

repository or global git configuration.

LibGit2.name – Function.

LibGit2.name(ref::GitReference)

Return the full name of ref.

name(rmt::GitRemote)

Get the name of a remote repository, for instance "origin". If the remote is anonymous (see GitRemoteAnon)

the name will be an empty string "".

Examples

julia> repo_url = "https://github.com/JuliaLang/Example.jl";

julia> repo = LibGit2.clone(cache_repo, "test_directory");

julia> remote = LibGit2.GitRemote(repo, "origin", repo_url);

julia> name(remote)

"origin"

LibGit2.name(tag::GitTag)

The name of tag (e.g. "v0.5").

LibGit2.need_update – Function.

need_update(repo::GitRepo)

Equivalent to git update-index. Return true if repo needs updating.

LibGit2.objtype – Function.

objtype(obj_type::Consts.OBJECT)

CHAPTER 76. LIBGIT2 1213

Return the type corresponding to the enum value.

LibGit2.path – Function.

LibGit2.path(repo::GitRepo)

Return the base file path of the repository repo.

• for normal repositories, this will typically be the parent directory of the ".git" directory (note: this

may be different than the working directory, see workdir for more details).

• for bare repositories, this is the location of the "git" files.

See also gitdir, workdir.

LibGit2.peel – Function.

peel([T,] ref::GitReference)

Recursively peel ref until an object of type T is obtained. If no T is provided, then ref will be peeled

until an object other than a GitTag is obtained.

• A GitTag will be peeled to the object it references.

• A GitCommit will be peeled to a GitTree.

Note

Only annotated tags can be peeled to GitTag objects. Lightweight tags (the default) are

references under refs/tags/ which point directly to GitCommit objects.

peel([T,] obj::GitObject)

Recursively peel obj until an object of type T is obtained. If no T is provided, then obj will be peeled

until the type changes.

• A GitTag will be peeled to the object it references.

• A GitCommit will be peeled to a GitTree.

LibGit2.posixpath – Function.

LibGit2.posixpath(path)

Standardise the path string path to use POSIX separators.

LibGit2.push – Function.

push(rmt::GitRemote, refspecs; force::Bool=false, options::PushOptions=PushOptions())

Push to the specified rmt remote git repository, using refspecs to determine which remote branch(es)

to push to. The keyword arguments are:

• force: if true, a force-push will occur, disregarding conflicts.

CHAPTER 76. LIBGIT2 1214

• options: determines the options for the push, e.g. which proxy headers to use. See PushOptions

for more information.

Note

You can add information about the push refspecs in two other ways: by setting an option in

the repository's GitConfig (with push.default as the key) or by calling add_push!. Other-

wise you will need to explicitly specify a push refspec in the call to push for it to have any

effect, like so: LibGit2.push(repo, refspecs=["refs/heads/master"]).

push(repo::GitRepo; kwargs...)

Pushes updates to an upstream of repo.

The keyword arguments are:

• remote::AbstractString="origin": the name of the upstream remote to push to.

• remoteurl::AbstractString="": the URL of remote.

• refspecs=AbstractString[]: determines properties of the push.

• force::Bool=false: determines if the push will be a force push, overwriting the remote branch.

• credentials=nothing: provides credentials and/or settings when authenticating against a pri-

vate remote.

• callbacks=Callbacks(): user provided callbacks and payloads.

Equivalent to git push [<remoteurl>|<repo>] [<refspecs>].

LibGit2.push! – Method.

LibGit2.push!(w::GitRevWalker, cid::GitHash)

Start the GitRevWalker walker at commit cid. This function can be used to apply a function to all

commits since a certain year, by passing the first commit of that year as cid and then passing the

resulting w to LibGit2.map.

LibGit2.push_head! – Function.

LibGit2.push_head!(w::GitRevWalker)

Push the HEAD commit and its ancestors onto the GitRevWalker w. This ensures that HEAD and all its

ancestor commits will be encountered during the walk.

LibGit2.push_refspecs – Function.

push_refspecs(rmt::GitRemote) -> Vector{String}

Get the push refspecs for the specified rmt. These refspecs contain information about which branch(es)

to push to.

Examples

CHAPTER 76. LIBGIT2 1215

julia> remote = LibGit2.get(LibGit2.GitRemote, repo, "upstream");

julia> LibGit2.add_push!(repo, remote, "refs/heads/master");

julia> close(remote);

julia> remote = LibGit2.get(LibGit2.GitRemote, repo, "upstream");

julia> LibGit2.push_refspecs(remote)

String["refs/heads/master"]

LibGit2.raw – Function.

raw(id::GitHash) -> Vector{UInt8}

Obtain the raw bytes of the GitHash as a vector of length 20.

LibGit2.read_tree! – Function.

LibGit2.read_tree!(idx::GitIndex, tree::GitTree)

LibGit2.read_tree!(idx::GitIndex, treehash::AbstractGitHash)

Read the tree tree (or the tree pointed to by treehash in the repository owned by idx) into the index

idx. The current index contents will be replaced.

LibGit2.rebase! – Function.

LibGit2.rebase!(repo::GitRepo, upstream::AbstractString="", newbase::AbstractString="")

Attempt an automatic merge rebase of the current branch, from upstream if provided, or otherwise

from the upstream tracking branch. newbase is the branch to rebase onto. By default this is upstream.

If any conflicts arise which cannot be automatically resolved, the rebase will abort, leaving the repos-

itory and working tree in its original state, and the function will throw a GitError. This is roughly

equivalent to the following command line statement:

git rebase --merge [<upstream>]

if [-d ".git/rebase-merge"]; then

git rebase --abort

fi

LibGit2.ref_list – Function.

LibGit2.ref_list(repo::GitRepo) -> Vector{String}

Get a list of all reference names in the repo repository.

LibGit2.reftype – Function.

LibGit2.reftype(ref::GitReference) -> Cint

Return a Cint corresponding to the type of ref:

• 0 if the reference is invalid

CHAPTER 76. LIBGIT2 1216

• 1 if the reference is an object id

• 2 if the reference is symbolic

LibGit2.remotes – Function.

LibGit2.remotes(repo::GitRepo)

Return a vector of the names of the remotes of repo.

LibGit2.remove! – Function.

remove!(repo::GitRepo, files::AbstractString...)

remove!(idx::GitIndex, files::AbstractString...)

Remove all the files with paths specified by files in the index idx (or the index of the repo).

LibGit2.reset – Function.

reset(val::Integer, flag::Integer)

Unset the bits of val indexed by flag, returning them to 0.

LibGit2.reset! – Function.

reset!(payload, [config]) -> CredentialPayload

Reset the payload state back to the initial values so that it can be used again within the credential

callback. If a config is provided the configuration will also be updated.

Updates some entries, determined by the pathspecs, in the index from the target commit tree.

Sets the current head to the specified commit oid and optionally resets the index and working tree to

match.

git reset [<committish>] [–] <pathspecs>...

reset!(repo::GitRepo, id::GitHash, mode::Cint=Consts.RESET_MIXED)

Reset the repository repo to its state at id, using one of three modes set by mode:

1. Consts.RESET_SOFT - move HEAD to id.

2. Consts.RESET_MIXED - default, move HEAD to id and reset the index to id.

3. Consts.RESET_HARD - move HEAD to id, reset the index to id, and discard all working changes.

Examples

fetch changes

LibGit2.fetch(repo)

isfile(joinpath(repo_path, our_file)) # will be false

fastforward merge the changes

LibGit2.merge!(repo, fastforward=true)

because there was not any file locally, but there is

a file remotely, we need to reset the branch

head_oid = LibGit2.head_oid(repo)

new_head = LibGit2.reset!(repo, head_oid, LibGit2.Consts.RESET_HARD)

CHAPTER 76. LIBGIT2 1217

In this example, the remote which is being fetched from does have a file called our_file in its index,

which is why we must reset.

Equivalent to git reset [--soft | --mixed | --hard] <id>.

Examples

repo = LibGit2.GitRepo(repo_path)

head_oid = LibGit2.head_oid(repo)

open(joinpath(repo_path, "file1"), "w") do f

write(f, "111

")

end

LibGit2.add!(repo, "file1")

mode = LibGit2.Consts.RESET_HARD

will discard the changes to file1

and unstage it

new_head = LibGit2.reset!(repo, head_oid, mode)

LibGit2.restore – Function.

restore(s::State, repo::GitRepo)

Return a repository repo to a previous State s, for example the HEAD of a branch before a merge

attempt. s can be generated using the snapshot function.

LibGit2.revcount – Function.

LibGit2.revcount(repo::GitRepo, commit1::AbstractString, commit2::AbstractString)

List the number of revisions between commit1 and commit2 (committish OIDs in string form). Since

commit1 and commit2may be on different branches, revcount performs a "left-right" revision list (and

count), returning a tuple of Ints - the number of left and right commits, respectively. A left (or right)

commit refers to which side of a symmetric difference in a tree the commit is reachable from.

Equivalent to git rev-list --left-right --count <commit1> <commit2>.

Examples

repo = LibGit2.GitRepo(repo_path)

repo_file = open(joinpath(repo_path, test_file), "a")

println(repo_file, "hello world")

flush(repo_file)

LibGit2.add!(repo, test_file)

commit_oid1 = LibGit2.commit(repo, "commit 1")

println(repo_file, "hello world again")

flush(repo_file)

LibGit2.add!(repo, test_file)

commit_oid2 = LibGit2.commit(repo, "commit 2")

LibGit2.revcount(repo, string(commit_oid1), string(commit_oid2))

This will return (-1, 0).

LibGit2.set_remote_url – Function.

CHAPTER 76. LIBGIT2 1218

set_remote_url(repo::GitRepo, remote_name, url)

set_remote_url(repo::String, remote_name, url)

Set both the fetch and push url for remote_name for the GitRepo or the git repository located at path.

Typically git repos use "origin" as the remote name.

Examples

repo_path = joinpath(tempdir(), "Example")

repo = LibGit2.init(repo_path)

LibGit2.set_remote_url(repo, "upstream", "https://github.com/JuliaLang/Example.jl")

LibGit2.set_remote_url(repo_path, "upstream2", "https://github.com/JuliaLang/Example2.jl")

LibGit2.shortname – Function.

LibGit2.shortname(ref::GitReference)

Return a shortened version of the name of ref that's "human-readable".

julia> repo = GitRepo(path_to_repo);

julia> branch_ref = LibGit2.head(repo);

julia> LibGit2.name(branch_ref)

"refs/heads/master"

julia> LibGit2.shortname(branch_ref)

"master"

LibGit2.snapshot – Function.

snapshot(repo::GitRepo) -> State

Take a snapshot of the current state of the repository repo, storing the current HEAD, index, and any

uncommitted work. The output State can be used later during a call to restore to return the repository

to the snapshotted state.

LibGit2.split_cfg_entry – Function.

LibGit2.split_cfg_entry(ce::LibGit2.ConfigEntry) -> Tuple{String,String,String,String}

Break the ConfigEntry up to the following pieces: section, subsection, name, and value.

Examples

Given the git configuration file containing:

[credential "https://example.com"]

username = me

The ConfigEntry would look like the following:

julia> entry

ConfigEntry("credential.https://example.com.username", "me")

julia> LibGit2.split_cfg_entry(entry)

("credential", "https://example.com", "username", "me")

CHAPTER 76. LIBGIT2 1219

Refer to the git config syntax documentation for more details.

LibGit2.status – Function.

LibGit2.status(repo::GitRepo, path::String) -> Union{Cuint, Cvoid}

Lookup the status of the file at path in the git repository repo. For instance, this can be used to check

if the file at path has been modified and needs to be staged and committed.

LibGit2.stage – Function.

stage(ie::IndexEntry) -> Cint

Get the stage number of ie. The stage number 0 represents the current state of the working tree, but

other numbers can be used in the case of a merge conflict. In such a case, the various stage numbers

on an IndexEntry describe which side(s) of the conflict the current state of the file belongs to. Stage 0

is the state before the attempted merge, stage 1 is the changes which have been made locally, stages

2 and larger are for changes from other branches (for instance, in the case of a multi-branch "octopus"

merge, stages 2, 3, and 4 might be used).

LibGit2.tag_create – Function.

LibGit2.tag_create(repo::GitRepo, tag::AbstractString, commit; kwargs...)

Create a new git tag tag (e.g. "v0.5") in the repository repo, at the commit commit.

The keyword arguments are:

• msg::AbstractString="": the message for the tag.

• force::Bool=false: if true, existing references will be overwritten.

• sig::Signature=Signature(repo): the tagger's signature.

LibGit2.tag_delete – Function.

LibGit2.tag_delete(repo::GitRepo, tag::AbstractString)

Remove the git tag tag from the repository repo.

LibGit2.tag_list – Function.

LibGit2.tag_list(repo::GitRepo) -> Vector{String}

Get a list of all tags in the git repository repo.

LibGit2.target – Function.

LibGit2.target(tag::GitTag)

The GitHash of the target object of tag.

LibGit2.toggle – Function.

toggle(val::Integer, flag::Integer)

https://git-scm.com/docs/git-config#_syntax

CHAPTER 76. LIBGIT2 1220

Flip the bits of val indexed by flag, so that if a bit is 0 it will be 1 after the toggle, and vice-versa.

LibGit2.transact – Function.

transact(f::Function, repo::GitRepo)

Apply function f to the git repository repo, taking a snapshot before applying f. If an error occurs

within f, repo will be returned to its snapshot state using restore. The error which occurred will be

rethrown, but the state of repo will not be corrupted.

LibGit2.treewalk – Function.

treewalk(f, tree::GitTree, post::Bool=false)

Traverse the entries in tree and its subtrees in post or pre order. Preorder means beginning at the

root and then traversing the leftmost subtree (and recursively on down through that subtree's leftmost

subtrees) and moving right through the subtrees. Postorder means beginning at the bottom of the

leftmost subtree, traversing upwards through it, then traversing the next right subtree (again beginning

at the bottom) and finally visiting the tree root last of all.

The function parameter f should have following signature:

(String, GitTreeEntry) -> Cint

A negative value returned from f stops the tree walk. A positive value means that the entry will be

skipped if post is false.

LibGit2.upstream – Function.

upstream(ref::GitReference) -> Union{GitReference, Nothing}

Determine if the branch containing ref has a specified upstream branch.

Return either a GitReference to the upstream branch if it exists, or nothing if the requested branch

does not have an upstream counterpart.

LibGit2.update! – Function.

update!(repo::GitRepo, files::AbstractString...)

update!(idx::GitIndex, files::AbstractString...)

Update all the files with paths specified by files in the index idx (or the index of the repo). Match

the state of each file in the index with the current state on disk, removing it if it has been removed on

disk, or updating its entry in the object database.

LibGit2.url – Function.

url(rmt::GitRemote)

Get the fetch URL of a remote git repository.

Examples

CHAPTER 76. LIBGIT2 1221

julia> repo_url = "https://github.com/JuliaLang/Example.jl";

julia> repo = LibGit2.init(mktempdir());

julia> remote = LibGit2.GitRemote(repo, "origin", repo_url);

julia> LibGit2.url(remote)

"https://github.com/JuliaLang/Example.jl"

LibGit2.version – Function.

version() -> VersionNumber

Return the version of libgit2 in use, as a VersionNumber.

LibGit2.with – Function.

with(f::Function, obj)

Resource management helper function. Applies f to obj, making sure to call close on obj after f

successfully returns or throws an error. Ensures that allocated git resources are finalized as soon as

they are no longer needed.

LibGit2.with_warn – Function.

with_warn(f::Function, ::Type{T}, args...)

Resource management helper function. Apply f to args, first constructing an instance of type T from

args. Makes sure to call close on the resulting object after f successfully returns or throws an error.

Ensures that allocated git resources are finalized as soon as they are no longer needed. If an error is

thrown by f, a warning is shown containing the error.

LibGit2.workdir – Function.

LibGit2.workdir(repo::GitRepo)

Return the location of the working directory of repo. This will throw an error for bare repositories.

Note

This will typically be the parent directory of gitdir(repo), but can be different in some

cases: e.g. if either the core.worktree configuration variable or the GIT_WORK_TREE envi-

ronment variable is set.

See also gitdir, path.

LibGit2.GitObject – Method.

(::Type{T})(te::GitTreeEntry) where T<:GitObject

Get the git object to which te refers and return it as its actual type (the type entrytype would show),

for instance a GitBlob or GitTag.

Examples

CHAPTER 76. LIBGIT2 1222

tree = LibGit2.GitTree(repo, "HEAD^{tree}")

tree_entry = tree[1]

blob = LibGit2.GitBlob(tree_entry)

LibGit2.UserPasswordCredential – Type.

Credential that support only user and password parameters

LibGit2.SSHCredential – Type.

SSH credential type

LibGit2.isfilled – Function.

isfilled(cred::AbstractCredential) -> Bool

Verifies that a credential is ready for use in authentication.

LibGit2.CachedCredentials – Type.

Caches credential information for re-use

LibGit2.CredentialPayload – Type.

LibGit2.CredentialPayload

Retains the state betweenmultiple calls to the credential callback for the sameURL. A CredentialPayload

instance is expected to be reset! whenever it will be used with a different URL.

LibGit2.approve – Function.

approve(payload::CredentialPayload; shred::Bool=true) -> Nothing

Store the payload credential for re-use in a future authentication. Should only be called when authen-

tication was successful.

The shred keyword controls whether sensitive information in the payload credential field should be

destroyed. Should only be set to false during testing.

LibGit2.reject – Function.

reject(payload::CredentialPayload; shred::Bool=true) -> Nothing

Discard the payload credential from begin re-used in future authentication. Should only be called when

authentication was unsuccessful.

The shred keyword controls whether sensitive information in the payload credential field should be

destroyed. Should only be set to false during testing.

LibGit2.Consts.GIT_CONFIG – Type.

Priority level of a config file.

These priority levels correspond to the natural escalation logic (from higher to lower) when searching

for config entries in git.

CHAPTER 76. LIBGIT2 1223

• CONFIG_LEVEL_DEFAULT - Open the global, XDG and system configuration files if any available.

• CONFIG_LEVEL_PROGRAMDATA - System-wide on Windows, for compatibility with portable git

• CONFIG_LEVEL_SYSTEM - System-wide configuration file; /etc/gitconfig on Linux systems

• CONFIG_LEVEL_XDG - XDG compatible configuration file; typically ~/.config/git/config

• CONFIG_LEVEL_GLOBAL - User-specific configuration file (also called Global configuration file); typ-

ically ~/.gitconfig

• CONFIG_LEVEL_LOCAL - Repository specific configuration file; $WORK_DIR/.git/config on non-

bare repos

• CONFIG_LEVEL_APP - Application specific configuration file; freely defined by applications

• CONFIG_HIGHEST_LEVEL - Represents the highest level available config file (i.e. the most specific

config file available that actually is loaded)

Chapter 77

Dynamic Linker

Base.Libc.Libdl.dlopen – Function.

dlopen(libfile::AbstractString [, flags::Integer]; throw_error:Bool = true)

Load a shared library, returning an opaque handle.

The extension given by the constant dlext (.so, .dll, or .dylib) can be omitted from the libfile

string, as it is automatically appended if needed. If libfile is not an absolute path name, then the

paths in the array DL_LOAD_PATH are searched for libfile, followed by the system load path.

The optional flags argument is a bitwise-or of zero or more of RTLD_LOCAL, RTLD_GLOBAL, RTLD_LAZY,

RTLD_NOW, RTLD_NODELETE, RTLD_NOLOAD, RTLD_DEEPBIND, and RTLD_FIRST. These are converted to

the corresponding flags of the POSIX (and/or GNU libc and/or MacOS) dlopen command, if possible,

or are ignored if the specified functionality is not available on the current platform. The default flags

are platform specific. OnMacOS the default dlopen flags are RTLD_LAZY|RTLD_DEEPBIND|RTLD_GLOBAL

while on other platforms the defaults are RTLD_LAZY|RTLD_DEEPBIND|RTLD_LOCAL. An important usage

of these flags is to specify non default behavior for when the dynamic library loader binds library

references to exported symbols and if the bound references are put into process local or global scope.

For instance RTLD_LAZY|RTLD_DEEPBIND|RTLD_GLOBAL allows the library's symbols to be available for

usage in other shared libraries, addressing situations where there are dependencies between shared

libraries.

If the library cannot be found, this method throws an error, unless the keyword argument throw_error

is set to false, in which case this method returns nothing.

Note

From Julia 1.6 on, this method replaces paths starting with @executable_path/ with the

path to the Julia executable, allowing for relocatable relative-path loads. In Julia 1.5 and

earlier, this only worked on macOS.

source

Base.Libc.Libdl.dlopen_e – Function.

dlopen_e(libfile::AbstractString [, flags::Integer])

Similar to dlopen, except returns C_NULL instead of raising errors. This method is now deprecated in

favor of dlopen(libfile::AbstractString [, flags::Integer]; throw_error=false).

1224

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libdl.jl#L79-L110

CHAPTER 77. DYNAMIC LINKER 1225

source

Base.Libc.Libdl.RTLD_NOW – Constant.

RTLD_DEEPBIND

RTLD_FIRST

RTLD_GLOBAL

RTLD_LAZY

RTLD_LOCAL

RTLD_NODELETE

RTLD_NOLOAD

RTLD_NOW

Enum constant for dlopen. See your platform man page for details, if applicable.

source

Base.Libc.Libdl.dlsym – Function.

dlsym(handle, sym; throw_error::Bool = true)

Look up a symbol from a shared library handle, return callable function pointer on success.

If the symbol cannot be found, this method throws an error, unless the keyword argument throw_error

is set to false, in which case this method returns nothing.

source

Base.Libc.Libdl.dlsym_e – Function.

dlsym_e(handle, sym)

Look up a symbol from a shared library handle, silently return C_NULL on lookup failure. This method

is now deprecated in favor of dlsym(handle, sym; throw_error=false).

source

Base.Libc.Libdl.dlclose – Function.

dlclose(handle)

Close shared library referenced by handle.

source

dlclose(::Nothing)

For the very common pattern usage pattern of

try

hdl = dlopen(library_name)

... do something

finally

dlclose(hdl)

end

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libdl.jl#L151-L156
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libdl.jl#L33-L45
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libdl.jl#L48-L55
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libdl.jl#L69-L74
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libdl.jl#L159-L163

CHAPTER 77. DYNAMIC LINKER 1226

We define a dlclose() method that accepts a parameter of type Nothing, so that user code does not

have to change its behavior for the case that library_name was not found.

source

Base.Libc.Libdl.dlext – Constant.

dlext

File extension for dynamic libraries (e.g. dll, dylib, so) on the current platform.

source

Base.Libc.Libdl.dllist – Function.

dllist()

Return the paths of dynamic libraries currently loaded in a Vector{String}.

source

Base.Libc.Libdl.dlpath – Function.

dlpath(handle::Ptr{Cvoid})

Given a library handle from dlopen, return the full path.

source

dlpath(libname::Union{AbstractString, Symbol})

Get the full path of the library libname.

Example

julia> dlpath("libjulia")

source

Base.Libc.Libdl.find_library – Function.

find_library(names [, locations])

Searches for the first library in names in the paths in the locations list, DL_LOAD_PATH, or system

library paths (in that order) which can successfully be dlopen'd. On success, the return value will be

one of the names (potentially prefixed by one of the paths in locations). This string can be assigned to

a global const and used as the library name in future ccall's. On failure, it returns the empty string.

source

Base.DL_LOAD_PATH – Constant.

DL_LOAD_PATH

When calling dlopen, the paths in this list will be searched first, in order, before searching the system

locations for a valid library handle.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libdl.jl#L168-L183
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libdl.jl#L255-L259
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libdl.jl#L286-L290
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libdl.jl#L217-L221
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libdl.jl#L229-L238
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libdl.jl#L187-L195
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/libdl.jl#L14-L19

Chapter 78

Linear Algebra

In addition to (and as part of) its support for multi-dimensional arrays, Julia provides native implementations

of many common and useful linear algebra operations which can be loaded with using LinearAlgebra.

Basic operations, such as tr, det, and inv are all supported:

julia> A = [1 2 3; 4 1 6; 7 8 1]

3×3 Matrix{Int64}:

1 2 3

4 1 6

7 8 1

julia> tr(A)

3

julia> det(A)

104.0

julia> inv(A)

3×3 Matrix{Float64}:

-0.451923 0.211538 0.0865385

0.365385 -0.192308 0.0576923

0.240385 0.0576923 -0.0673077

As well as other useful operations, such as finding eigenvalues or eigenvectors:

julia> A = [-4. -17.; 2. 2.]

2×2 Matrix{Float64}:

-4.0 -17.0

2.0 2.0

julia> eigvals(A)

2-element Vector{ComplexF64}:

-1.0 - 5.0im

-1.0 + 5.0im

julia> eigvecs(A)

2×2 Matrix{ComplexF64}:

1227

CHAPTER 78. LINEAR ALGEBRA 1228

0.945905-0.0im 0.945905+0.0im

-0.166924+0.278207im -0.166924-0.278207im

In addition, Julia provides many factorizations which can be used to speed up problems such as linear

solve or matrix exponentiation by pre-factorizing a matrix into a form more amenable (for performance

or memory reasons) to the problem. See the documentation on factorize for more information. As an

example:

julia> A = [1.5 2 -4; 3 -1 -6; -10 2.3 4]

3×3 Matrix{Float64}:

1.5 2.0 -4.0

3.0 -1.0 -6.0

-10.0 2.3 4.0

julia> factorize(A)

LU{Float64, Matrix{Float64}, Vector{Int64}}

L factor:

3×3 Matrix{Float64}:

1.0 0.0 0.0

-0.15 1.0 0.0

-0.3 -0.132196 1.0

U factor:

3×3 Matrix{Float64}:

-10.0 2.3 4.0

0.0 2.345 -3.4

0.0 0.0 -5.24947

Since A is not Hermitian, symmetric, triangular, tridiagonal, or bidiagonal, an LU factorization may be the

best we can do. Compare with:

julia> B = [1.5 2 -4; 2 -1 -3; -4 -3 5]

3×3 Matrix{Float64}:

1.5 2.0 -4.0

2.0 -1.0 -3.0

-4.0 -3.0 5.0

julia> factorize(B)

BunchKaufman{Float64, Matrix{Float64}, Vector{Int64}}

D factor:

3×3 Tridiagonal{Float64, Vector{Float64}}:

-1.64286 0.0 ⋅

0.0 -2.8 0.0

⋅ 0.0 5.0

U factor:

3×3 UnitUpperTriangular{Float64, Matrix{Float64}}:

1.0 0.142857 -0.8

⋅ 1.0 -0.6

⋅ ⋅ 1.0

permutation:

3-element Vector{Int64}:

1

CHAPTER 78. LINEAR ALGEBRA 1229

2

3

Here, Julia was able to detect that B is in fact symmetric, and used a more appropriate factorization. Often

it's possible to write more efficient code for a matrix that is known to have certain properties e.g. it is

symmetric, or tridiagonal. Julia provides some special types so that you can "tag" matrices as having

these properties. For instance:

julia> B = [1.5 2 -4; 2 -1 -3; -4 -3 5]

3×3 Matrix{Float64}:

1.5 2.0 -4.0

2.0 -1.0 -3.0

-4.0 -3.0 5.0

julia> sB = Symmetric(B)

3×3 Symmetric{Float64, Matrix{Float64}}:

1.5 2.0 -4.0

2.0 -1.0 -3.0

-4.0 -3.0 5.0

sB has been tagged as a matrix that's (real) symmetric, so for later operations we might perform on it, such

as eigenfactorization or computing matrix-vector products, efficiencies can be found by only referencing

half of it. For example:

julia> B = [1.5 2 -4; 2 -1 -3; -4 -3 5]

3×3 Matrix{Float64}:

1.5 2.0 -4.0

2.0 -1.0 -3.0

-4.0 -3.0 5.0

julia> sB = Symmetric(B)

3×3 Symmetric{Float64, Matrix{Float64}}:

1.5 2.0 -4.0

2.0 -1.0 -3.0

-4.0 -3.0 5.0

julia> x = [1; 2; 3]

3-element Vector{Int64}:

1

2

3

julia> sB\x

3-element Vector{Float64}:

-1.7391304347826084

-1.1086956521739126

-1.4565217391304346

The \ operation here performs the linear solution. The left-division operator is pretty powerful and it's easy

to write compact, readable code that is flexible enough to solve all sorts of systems of linear equations.

CHAPTER 78. LINEAR ALGEBRA 1230

78.1 Special matrices

Matrices with special symmetries and structures arise often in linear algebra and are frequently associated

with various matrix factorizations. Julia features a rich collection of special matrix types, which allow for

fast computation with specialized routines that are specially developed for particular matrix types.

The following tables summarize the types of special matrices that have been implemented in Julia, as well

as whether hooks to various optimized methods for them in LAPACK are available.

Type Description

Symmetric Symmetric matrix

Hermitian Hermitian matrix

UpperTriangular Upper triangular matrix

UnitUpperTriangular Upper triangular matrix with unit diagonal

LowerTriangular Lower triangular matrix

UnitLowerTriangular Lower triangular matrix with unit diagonal

UpperHessenberg Upper Hessenberg matrix

Tridiagonal Tridiagonal matrix

SymTridiagonal Symmetric tridiagonal matrix

Bidiagonal Upper/lower bidiagonal matrix

Diagonal Diagonal matrix

UniformScaling Uniform scaling operator

Elementary operations

Matrix type + - * \ Other functions with optimized methods

Symmetric MV inv, sqrt, exp

Hermitian MV inv, sqrt, exp

UpperTriangular MV MV inv, det, logdet

UnitUpperTriangular MV MV inv, det, logdet

LowerTriangular MV MV inv, det, logdet

UnitLowerTriangular MV MV inv, det, logdet

UpperHessenberg MM inv, det

SymTridiagonal M M MS MV eigmax, eigmin

Tridiagonal M M MS MV

Bidiagonal M M MS MV

Diagonal M M MV MV inv, det, logdet, /

UniformScaling M M MVS MVS /

Legend:

Key Description

M (matrix) An optimized method for matrix-matrix operations is available

V (vector) An optimized method for matrix-vector operations is available

S (scalar) An optimized method for matrix-scalar operations is available

http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3274
https://en.wikipedia.org/wiki/Symmetric_matrix
https://en.wikipedia.org/wiki/Hermitian_matrix
https://en.wikipedia.org/wiki/Triangular_matrix
https://en.wikipedia.org/wiki/Triangular_matrix
https://en.wikipedia.org/wiki/Triangular_matrix
https://en.wikipedia.org/wiki/Triangular_matrix
https://en.wikipedia.org/wiki/Hessenberg_matrix
https://en.wikipedia.org/wiki/Tridiagonal_matrix
https://en.wikipedia.org/wiki/Bidiagonal_matrix
https://en.wikipedia.org/wiki/Diagonal_matrix
https://en.wikipedia.org/wiki/Uniform_scaling

CHAPTER 78. LINEAR ALGEBRA 1231

Matrix type LAPACK eigen eigvals eigvecs svd svdvals

Symmetric SY ARI

Hermitian HE ARI

UpperTriangular TR A A A

UnitUpperTriangular TR A A A

LowerTriangular TR A A A

UnitLowerTriangular TR A A A

SymTridiagonal ST A ARI AV

Tridiagonal GT

Bidiagonal BD A A

Diagonal DI A

Matrix factorizations

Legend:

Key Description Example

A (all) An optimized method to find all the characteristic values and/or vectors is

available

e.g.

eigvals(M)

R

(range)

An optimized method to find the ilth through the ihth characteristic values

are available

eigvals(M,

il, ih)

I (in-

terval)

An optimized method to find the characteristic values in the interval [vl, vh]

is available

eigvals(M,

vl, vh)

V

(vec-

tors)

An optimized method to find the characteristic vectors corresponding to the

characteristic values x=[x1, x2,...] is available

eigvecs(M,

x)

The uniform scaling operator

A UniformScaling operator represents a scalar times the identity operator, λ*I. The identity operator I is

defined as a constant and is an instance of UniformScaling. The size of these operators are generic and

match the other matrix in the binary operations +, -, * and \. For A+I and A-I this means that A must be

square. Multiplication with the identity operator I is a noop (except for checking that the scaling factor is

one) and therefore almost without overhead.

To see the UniformScaling operator in action:

julia> U = UniformScaling(2);

julia> a = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> a + U

2×2 Matrix{Int64}:

3 2

3 6

CHAPTER 78. LINEAR ALGEBRA 1232

julia> a * U

2×2 Matrix{Int64}:

2 4

6 8

julia> [a U]

2×4 Matrix{Int64}:

1 2 2 0

3 4 0 2

julia> b = [1 2 3; 4 5 6]

2×3 Matrix{Int64}:

1 2 3

4 5 6

julia> b - U

ERROR: DimensionMismatch: matrix is not square: dimensions are (2, 3)

Stacktrace:

[...]

If you need to solve many systems of the form (A+μI)x = b for the same A and different μ, it might be

beneficial to first compute the Hessenberg factorization F of A via the hessenberg function. Given F, Julia

employs an efficient algorithm for (F+μ*I) \ b (equivalent to (A+μ*I)x \ b) and related operations like

determinants.

78.2 Matrix factorizations

Matrix factorizations (a.k.a. matrix decompositions) compute the factorization of a matrix into a product

of matrices, and are one of the central concepts in (numerical) linear algebra.

The following table summarizes the types of matrix factorizations that have been implemented in Julia.

Details of their associated methods can be found in the Standard functions section of the Linear Algebra

documentation.

Adjoints and transposes of Factorization objects are lazily wrapped in AdjointFactorization and TransposeFactorization

objects, respectively. Generically, transpose of real Factorizations are wrapped as AdjointFactorization.

78.3 Orthogonal matrices (AbstractQ)

Some matrix factorizations generate orthogonal/unitary "matrix" factors. These factorizations include QR-

related factorizations obtained from calls to qr, i.e., QR, QRCompactWY and QRPivoted, the Hessenberg

factorization obtained from calls to hessenberg, and the LQ factorization obtained from lq. While these

orthogonal/unitary factors admit a matrix representation, their internal representation is, for performance

and memory reasons, different. Hence, they should be rather viewed as matrix-backed, function-based

linear operators. In particular, reading, for instance, a column of its matrix representation requires running

"matrix"-vector multiplication code, rather than simply reading out data frommemory (possibly filling parts

of the vector with structural zeros). Another clear distinction from other, non-triangular matrix types is

that the underlying multiplication code allows for in-place modification during multiplication. Furthermore,

objects of specific AbstractQ subtypes as those created via qr, hessenberg and lq can behave like a

square or a rectangular matrix depending on context:

https://en.wikipedia.org/wiki/Matrix_decomposition

CHAPTER 78. LINEAR ALGEBRA 1233

Type Description

BunchKaufman Bunch-Kaufman factorization

Cholesky Cholesky factorization

CholeskyPivoted Pivoted Cholesky factorization

LDLt LDL(T) factorization

LU LU factorization

QR QR factorization

QRCompactWY Compact WY form of the QR factorization

QRPivoted Pivoted QR factorization

LQ QR factorization of transpose(A)

Hessenberg Hessenberg decomposition

Eigen Spectral decomposition

GeneralizedEigen Generalized spectral decomposition

SVD Singular value decomposition

GeneralizedSVD Generalized SVD

Schur Schur decomposition

GeneralizedSchur Generalized Schur decomposition

julia> using LinearAlgebra

julia> Q = qr(rand(3,2)).Q

3×3 LinearAlgebra.QRCompactWYQ{Float64, Matrix{Float64}, Matrix{Float64}}

julia> Matrix(Q)

3×2 Matrix{Float64}:

-0.320597 0.865734

-0.765834 -0.475694

-0.557419 0.155628

julia> Q*I

3×3 Matrix{Float64}:

-0.320597 0.865734 -0.384346

-0.765834 -0.475694 -0.432683

-0.557419 0.155628 0.815514

julia> Q*ones(2)

3-element Vector{Float64}:

0.5451367118802273

-1.241527373086654

-0.40179067589600226

julia> Q*ones(3)

3-element Vector{Float64}:

0.16079054743832022

-1.674209978965636

0.41372375588835797

julia> ones(1,2) * Q'

1×3 Matrix{Float64}:

0.545137 -1.24153 -0.401791

https://en.wikipedia.org/wiki/Cholesky_decomposition
https://en.wikipedia.org/wiki/Pivot_element
https://en.wikipedia.org/wiki/Cholesky_decomposition#LDL_decomposition
https://en.wikipedia.org/wiki/LU_decomposition
https://en.wikipedia.org/wiki/QR_decomposition
https://en.wikipedia.org/wiki/QR_decomposition
https://en.wikipedia.org/wiki/QR_decomposition
http://mathworld.wolfram.com/HessenbergDecomposition.html
https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix
https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix#Generalized_eigenvalue_problem
https://en.wikipedia.org/wiki/Singular_value_decomposition
https://en.wikipedia.org/wiki/Generalized_singular_value_decomposition#Higher_order_version
https://en.wikipedia.org/wiki/Schur_decomposition
https://en.wikipedia.org/wiki/Schur_decomposition#Generalized_Schur_decomposition

CHAPTER 78. LINEAR ALGEBRA 1234

julia> ones(1,3) * Q'

1×3 Matrix{Float64}:

0.160791 -1.67421 0.413724

Due to this distinction from dense or structured matrices, the abstract AbstractQ type does not subtype

AbstractMatrix, but instead has its own type hierarchy. Custom types that subtype AbstractQ can rely

on generic fallbacks if the following interface is satisfied. For example, for

struct MyQ{T} <: LinearAlgebra.AbstractQ{T}

required fields

end

provide overloads for

Base.size(Q::MyQ) # size of corresponding square matrix representation

Base.convert(::Type{AbstractQ{T}}, Q::MyQ) # eltype promotion [optional]

LinearAlgebra.lmul!(Q::MyQ, x::AbstractVecOrMat) # left-multiplication

LinearAlgebra.rmul!(A::AbstractMatrix, Q::MyQ) # right-multiplication

If eltype promotion is not of interest, the convertmethod is unnecessary, since by default convert(::Type{AbstractQ{T}},

Q::AbstractQ{T}) returns Q itself. Adjoints of AbstractQ-typed objects are lazily wrapped in an AdjointQ

wrapper type, which requires its own LinearAlgebra.lmul! and LinearAlgebra.rmul! methods. Given

this set of methods, any Q::MyQ can be used like a matrix, preferably in a multiplicative context: multi-

plication via * with scalars, vectors and matrices from left and right, obtaining a matrix representation of

Q via Matrix(Q) (or Q*I) and indexing into the matrix representation all work. In contrast, addition and

subtraction as well as more generally broadcasting over elements in the matrix representation fail because

that would be highly inefficient. For such use cases, consider computing the matrix representation up front

and cache it for future reuse.

78.4 Standard functions

Linear algebra functions in Julia are largely implemented by calling functions from LAPACK. Sparse matrix

factorizations call functions from SuiteSparse. Other sparse solvers are available as Julia packages.

Base.:* – Method.

*(A::AbstractMatrix, B::AbstractMatrix)

Matrix multiplication.

Examples

julia> [1 1; 0 1] * [1 0; 1 1]

2×2 Matrix{Int64}:

2 1

1 1

Base.:\ – Method.

http://www.netlib.org/lapack/
http://suitesparse.com

CHAPTER 78. LINEAR ALGEBRA 1235

\(A, B)

Matrix division using a polyalgorithm. For input matrices A and B, the result X is such that A*X ==

B when A is square. The solver that is used depends upon the structure of A. If A is upper or lower

triangular (or diagonal), no factorization of A is required and the system is solved with either forward

or backward substitution. For non-triangular square matrices, an LU factorization is used.

For rectangular A the result is the minimum-norm least squares solution computed by a pivoted QR

factorization of A and a rank estimate of A based on the R factor.

When A is sparse, a similar polyalgorithm is used. For indefinite matrices, the LDLt factorization does

not use pivoting during the numerical factorization and therefore the procedure can fail even for in-

vertible matrices.

See also: factorize, pinv.

Examples

julia> A = [1 0; 1 -2]; B = [32; -4];

julia> X = A \ B

2-element Vector{Float64}:

32.0

18.0

julia> A * X == B

true

Base.:/ – Method.

A / B

Matrix right-division: A / B is equivalent to (B' \ A')'where \ is the left-division operator. For square

matrices, the result X is such that A == X*B.

See also: rdiv!.

Examples

julia> A = Float64[1 4 5; 3 9 2]; B = Float64[1 4 2; 3 4 2; 8 7 1];

julia> X = A / B

2×3 Matrix{Float64}:

-0.65 3.75 -1.2

3.25 -2.75 1.0

julia> isapprox(A, X*B)

true

julia> isapprox(X, A*pinv(B))

true

LinearAlgebra.SingularException – Type.

SingularException

CHAPTER 78. LINEAR ALGEBRA 1236

Exception thrown when the input matrix has one or more zero-valued eigenvalues, and is not invertible.

A linear solve involving such a matrix cannot be computed. The info field indicates the location of (one

of) the singular value(s).

LinearAlgebra.PosDefException – Type.

PosDefException

Exception thrown when the input matrix was not positive definite. Some linear algebra functions and

factorizations are only applicable to positive definite matrices. The info field indicates the location of

(one of) the eigenvalue(s) which is (are) less than/equal to 0.

LinearAlgebra.ZeroPivotException – Type.

ZeroPivotException <: Exception

Exception thrown when a matrix factorization/solve encounters a zero in a pivot (diagonal) position

and cannot proceed. This may not mean that the matrix is singular: it may be fruitful to switch to a

different factorization such as pivoted LU that can re-order variables to eliminate spurious zero pivots.

The info field indicates the location of (one of) the zero pivot(s).

LinearAlgebra.dot – Function.

dot(x, y)

x ⋅ y

Compute the dot product between two vectors. For complex vectors, the first vector is conjugated.

dot also works on arbitrary iterable objects, including arrays of any dimension, as long as dot is defined

on the elements.

dot is semantically equivalent to sum(dot(vx,vy) for (vx,vy) in zip(x, y)), with the added re-

striction that the arguments must have equal lengths.

x ⋅ y (where ⋅ can be typed by tab-completing \cdot in the REPL) is a synonym for dot(x, y).

Examples

julia> dot([1; 1], [2; 3])

5

julia> dot([im; im], [1; 1])

0 - 2im

julia> dot(1:5, 2:6)

70

julia> x = fill(2., (5,5));

julia> y = fill(3., (5,5));

julia> dot(x, y)

150.0

LinearAlgebra.dot – Method.

https://en.wikipedia.org/wiki/Definiteness_of_a_matrix

CHAPTER 78. LINEAR ALGEBRA 1237

dot(x, A, y)

Compute the generalized dot product dot(x, A*y) between two vectors x and y, without storing the

intermediate result of A*y. As for the two-argument dot(_,_), this acts recursively. Moreover, for

complex vectors, the first vector is conjugated.

Julia 1.4

Three-argument dot requires at least Julia 1.4.

Examples

julia> dot([1; 1], [1 2; 3 4], [2; 3])

26

julia> dot(1:5, reshape(1:25, 5, 5), 2:6)

4850

julia> ⋅(1:5, reshape(1:25, 5, 5), 2:6) == dot(1:5, reshape(1:25, 5, 5), 2:6)

true

LinearAlgebra.cross – Function.

cross(x, y)

×(x,y)

Compute the cross product of two 3-vectors.

Examples

julia> a = [0;1;0]

3-element Vector{Int64}:

0

1

0

julia> b = [0;0;1]

3-element Vector{Int64}:

0

0

1

julia> cross(a,b)

3-element Vector{Int64}:

1

0

0

LinearAlgebra.axpy! – Function.

axpy!(α, x::AbstractArray, y::AbstractArray)

Overwrite y with x * α + y and return y. If x and y have the same axes, it's equivalent with y .+= x

.* a.

Examples

CHAPTER 78. LINEAR ALGEBRA 1238

julia> x = [1; 2; 3];

julia> y = [4; 5; 6];

julia> axpy!(2, x, y)

3-element Vector{Int64}:

6

9

12

LinearAlgebra.axpby! – Function.

axpby!(α, x::AbstractArray, β, y::AbstractArray)

Overwrite y with x * α + y * β and return y. If x and y have the same axes, it's equivalent with y .=

x .* a .+ y .* β.

Examples

julia> x = [1; 2; 3];

julia> y = [4; 5; 6];

julia> axpby!(2, x, 2, y)

3-element Vector{Int64}:

10

14

18

LinearAlgebra.rotate! – Function.

rotate!(x, y, c, s)

Overwrite x with c*x + s*y and y with -conj(s)*x + c*y. Returns x and y.

Julia 1.5

rotate! requires at least Julia 1.5.

LinearAlgebra.reflect! – Function.

reflect!(x, y, c, s)

Overwrite x with c*x + s*y and y with conj(s)*x - c*y. Returns x and y.

Julia 1.5

reflect! requires at least Julia 1.5.

LinearAlgebra.factorize – Function.

factorize(A)

CHAPTER 78. LINEAR ALGEBRA 1239

Properties of A type of factorization

Positive-definite Cholesky (see cholesky)

Dense Symmetric/Hermitian Bunch-Kaufman (see bunchkaufman)

Sparse Symmetric/Hermitian LDLt (see ldlt)

Triangular Triangular

Diagonal Diagonal

Bidiagonal Bidiagonal

Tridiagonal LU (see lu)

Symmetric real tridiagonal LDLt (see ldlt)

General square LU (see lu)

General non-square QR (see qr)

Compute a convenient factorization of A, based upon the type of the input matrix. factorize checks

A to see if it is symmetric/triangular/etc. if A is passed as a generic matrix. factorize checks every

element of A to verify/rule out each property. It will short-circuit as soon as it can rule out symme-

try/triangular structure. The return value can be reused for efficient solving of multiple systems. For

example: A=factorize(A); x=A\b; y=A\C.

If factorize is called on a Hermitian positive-definite matrix, for instance, then factorize will return

a Cholesky factorization.

Examples

julia> A = Array(Bidiagonal(fill(1.0, (5, 5)), :U))

5×5 Matrix{Float64}:

1.0 1.0 0.0 0.0 0.0

0.0 1.0 1.0 0.0 0.0

0.0 0.0 1.0 1.0 0.0

0.0 0.0 0.0 1.0 1.0

0.0 0.0 0.0 0.0 1.0

julia> factorize(A) # factorize will check to see that A is already factorized

5×5 Bidiagonal{Float64, Vector{Float64}}:

1.0 1.0 ⋅ ⋅ ⋅

⋅ 1.0 1.0 ⋅ ⋅

⋅ ⋅ 1.0 1.0 ⋅

⋅ ⋅ ⋅ 1.0 1.0

⋅ ⋅ ⋅ ⋅ 1.0

This returns a 5×5 Bidiagonal{Float64}, which can now be passed to other linear algebra functions

(e.g. eigensolvers) which will use specialized methods for Bidiagonal types.

LinearAlgebra.Diagonal – Type.

Diagonal(V::AbstractVector)

Construct a lazy matrix with V as its diagonal.

See also UniformScaling for the lazy identity matrix I, diagm to make a dense matrix, and diag to

extract diagonal elements.

Examples

CHAPTER 78. LINEAR ALGEBRA 1240

julia> d = Diagonal([1, 10, 100])

3×3 Diagonal{Int64, Vector{Int64}}:

1 ⋅ ⋅

⋅ 10 ⋅

⋅ ⋅ 100

julia> diagm([7, 13])

2×2 Matrix{Int64}:

7 0

0 13

julia> ans + I

2×2 Matrix{Int64}:

8 0

0 14

julia> I(2)

2×2 Diagonal{Bool, Vector{Bool}}:

1 ⋅

⋅ 1

Note that a one-columnmatrix is not treated like a vector, but instead calls themethod Diagonal(A::AbstractMatrix)

which extracts 1-element diag(A):

julia> A = transpose([7.0 13.0])

2×1 transpose(::Matrix{Float64}) with eltype Float64:

7.0

13.0

julia> Diagonal(A)

1×1 Diagonal{Float64, Vector{Float64}}:

7.0

Diagonal(A::AbstractMatrix)

Construct a matrix from the diagonal of A.

Examples

julia> A = permutedims(reshape(1:15, 5, 3))

3×5 Matrix{Int64}:

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

julia> Diagonal(A)

3×3 Diagonal{Int64, Vector{Int64}}:

1 ⋅ ⋅

⋅ 7 ⋅

⋅ ⋅ 13

julia> diag(A, 2)

3-element Vector{Int64}:

CHAPTER 78. LINEAR ALGEBRA 1241

3

9

15

Diagonal{T}(undef, n)

Construct an uninitialized Diagonal{T} of length n. See undef.

LinearAlgebra.Bidiagonal – Type.

Bidiagonal(dv::V, ev::V, uplo::Symbol) where V <: AbstractVector

Constructs an upper (uplo=:U) or lower (uplo=:L) bidiagonal matrix using the given diagonal (dv) and

off-diagonal (ev) vectors. The result is of type Bidiagonal and provides efficient specialized linear

solvers, but may be converted into a regular matrix with convert(Array, _) (or Array(_) for short).

The length of ev must be one less than the length of dv.

Examples

julia> dv = [1, 2, 3, 4]

4-element Vector{Int64}:

1

2

3

4

julia> ev = [7, 8, 9]

3-element Vector{Int64}:

7

8

9

julia> Bu = Bidiagonal(dv, ev, :U) # ev is on the first superdiagonal

4×4 Bidiagonal{Int64, Vector{Int64}}:

1 7 ⋅ ⋅

⋅ 2 8 ⋅

⋅ ⋅ 3 9

⋅ ⋅ ⋅ 4

julia> Bl = Bidiagonal(dv, ev, :L) # ev is on the first subdiagonal

4×4 Bidiagonal{Int64, Vector{Int64}}:

1 ⋅ ⋅ ⋅

7 2 ⋅ ⋅

⋅ 8 3 ⋅

⋅ ⋅ 9 4

Bidiagonal(A, uplo::Symbol)

Construct a Bidiagonal matrix from the main diagonal of A and its first super- (if uplo=:U) or sub-

diagonal (if uplo=:L).

Examples

CHAPTER 78. LINEAR ALGEBRA 1242

julia> A = [1 1 1 1; 2 2 2 2; 3 3 3 3; 4 4 4 4]

4×4 Matrix{Int64}:

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

julia> Bidiagonal(A, :U) # contains the main diagonal and first superdiagonal of A

4×4 Bidiagonal{Int64, Vector{Int64}}:

1 1 ⋅ ⋅

⋅ 2 2 ⋅

⋅ ⋅ 3 3

⋅ ⋅ ⋅ 4

julia> Bidiagonal(A, :L) # contains the main diagonal and first subdiagonal of A

4×4 Bidiagonal{Int64, Vector{Int64}}:

1 ⋅ ⋅ ⋅

2 2 ⋅ ⋅

⋅ 3 3 ⋅

⋅ ⋅ 4 4

LinearAlgebra.SymTridiagonal – Type.

SymTridiagonal(dv::V, ev::V) where V <: AbstractVector

Construct a symmetric tridiagonal matrix from the diagonal (dv) and first sub/super-diagonal (ev), re-

spectively. The result is of type SymTridiagonal and provides efficient specialized eigensolvers, but

may be converted into a regular matrix with convert(Array, _) (or Array(_) for short).

For SymTridiagonal block matrices, the elements of dv are symmetrized. The argument ev is inter-

preted as the superdiagonal. Blocks from the subdiagonal are (materialized) transpose of the corre-

sponding superdiagonal blocks.

Examples

julia> dv = [1, 2, 3, 4]

4-element Vector{Int64}:

1

2

3

4

julia> ev = [7, 8, 9]

3-element Vector{Int64}:

7

8

9

julia> SymTridiagonal(dv, ev)

4×4 SymTridiagonal{Int64, Vector{Int64}}:

1 7 ⋅ ⋅

7 2 8 ⋅

⋅ 8 3 9

⋅ ⋅ 9 4

CHAPTER 78. LINEAR ALGEBRA 1243

julia> A = SymTridiagonal(fill([1 2; 3 4], 3), fill([1 2; 3 4], 2));

julia> A[1,1]

2×2 Symmetric{Int64, Matrix{Int64}}:

1 2

2 4

julia> A[1,2]

2×2 Matrix{Int64}:

1 2

3 4

julia> A[2,1]

2×2 Matrix{Int64}:

1 3

2 4

SymTridiagonal(A::AbstractMatrix)

Construct a symmetric tridiagonal matrix from the diagonal and first superdiagonal of the symmetric

matrix A.

Examples

julia> A = [1 2 3; 2 4 5; 3 5 6]

3×3 Matrix{Int64}:

1 2 3

2 4 5

3 5 6

julia> SymTridiagonal(A)

3×3 SymTridiagonal{Int64, Vector{Int64}}:

1 2 ⋅

2 4 5

⋅ 5 6

julia> B = reshape([[1 2; 2 3], [1 2; 3 4], [1 3; 2 4], [1 2; 2 3]], 2, 2);

julia> SymTridiagonal(B)

2×2 SymTridiagonal{Matrix{Int64}, Vector{Matrix{Int64}}}:

[1 2; 2 3] [1 3; 2 4]

[1 2; 3 4] [1 2; 2 3]

LinearAlgebra.Tridiagonal – Type.

Tridiagonal(dl::V, d::V, du::V) where V <: AbstractVector

Construct a tridiagonal matrix from the first subdiagonal, diagonal, and first superdiagonal, respec-

tively. The result is of type Tridiagonal and provides efficient specialized linear solvers, but may be

converted into a regular matrix with convert(Array, _) (or Array(_) for short). The lengths of dl

and du must be one less than the length of d.

Examples

CHAPTER 78. LINEAR ALGEBRA 1244

julia> dl = [1, 2, 3];

julia> du = [4, 5, 6];

julia> d = [7, 8, 9, 0];

julia> Tridiagonal(dl, d, du)

4×4 Tridiagonal{Int64, Vector{Int64}}:

7 4 ⋅ ⋅

1 8 5 ⋅

⋅ 2 9 6

⋅ ⋅ 3 0

Tridiagonal(A)

Construct a tridiagonal matrix from the first sub-diagonal, diagonal and first super-diagonal of the

matrix A.

Examples

julia> A = [1 2 3 4; 1 2 3 4; 1 2 3 4; 1 2 3 4]

4×4 Matrix{Int64}:

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

julia> Tridiagonal(A)

4×4 Tridiagonal{Int64, Vector{Int64}}:

1 2 ⋅ ⋅

1 2 3 ⋅

⋅ 2 3 4

⋅ ⋅ 3 4

LinearAlgebra.Symmetric – Type.

Symmetric(A, uplo=:U)

Construct a Symmetric view of the upper (if uplo = :U) or lower (if uplo = :L) triangle of the matrix

A.

Symmetric views are mainly useful for real-symmetric matrices, for which specialized algorithms (e.g.

for eigenproblems) are enabled for Symmetric types. More generally, see also Hermitian(A) for Her-

mitian matrices A == A', which is effectively equivalent to Symmetric for real matrices but is also

useful for complex matrices. (Whereas complex Symmetricmatrices are supported but have few if any

specialized algorithms.)

To compute the symmetric part of a real matrix, or more generally the Hermitian part (A + A') / 2

of a real or complex matrix A, use hermitianpart.

Examples

julia> A = [1 2 3; 4 5 6; 7 8 9]

3×3 Matrix{Int64}:

CHAPTER 78. LINEAR ALGEBRA 1245

1 2 3

4 5 6

7 8 9

julia> Supper = Symmetric(A)

3×3 Symmetric{Int64, Matrix{Int64}}:

1 2 3

2 5 6

3 6 9

julia> Slower = Symmetric(A, :L)

3×3 Symmetric{Int64, Matrix{Int64}}:

1 4 7

4 5 8

7 8 9

julia> hermitianpart(A)

3×3 Hermitian{Float64, Matrix{Float64}}:

1.0 3.0 5.0

3.0 5.0 7.0

5.0 7.0 9.0

Note that Supper will not be equal to Slower unless A is itself symmetric (e.g. if A == transpose(A)).

LinearAlgebra.Hermitian – Type.

Hermitian(A, uplo=:U)

Construct a Hermitian view of the upper (if uplo = :U) or lower (if uplo = :L) triangle of the matrix

A.

To compute the Hermitian part of A, use hermitianpart.

Examples

julia> A = [1 2+2im 3-3im; 4 5 6-6im; 7 8+8im 9]

3×3 Matrix{Complex{Int64}}:

1+0im 2+2im 3-3im

4+0im 5+0im 6-6im

7+0im 8+8im 9+0im

julia> Hupper = Hermitian(A)

3×3 Hermitian{Complex{Int64}, Matrix{Complex{Int64}}}:

1+0im 2+2im 3-3im

2-2im 5+0im 6-6im

3+3im 6+6im 9+0im

julia> Hlower = Hermitian(A, :L)

3×3 Hermitian{Complex{Int64}, Matrix{Complex{Int64}}}:

1+0im 4+0im 7+0im

4+0im 5+0im 8-8im

7+0im 8+8im 9+0im

julia> hermitianpart(A)

CHAPTER 78. LINEAR ALGEBRA 1246

3×3 Hermitian{ComplexF64, Matrix{ComplexF64}}:

1.0+0.0im 3.0+1.0im 5.0-1.5im

3.0-1.0im 5.0+0.0im 7.0-7.0im

5.0+1.5im 7.0+7.0im 9.0+0.0im

Note that Hupper will not be equal to Hlower unless A is itself Hermitian (e.g. if A == adjoint(A)).

All non-real parts of the diagonal will be ignored.

Hermitian(fill(complex(1,1), 1, 1)) == fill(1, 1, 1)

LinearAlgebra.LowerTriangular – Type.

LowerTriangular(A::AbstractMatrix)

Construct a LowerTriangular view of the matrix A.

Examples

julia> A = [1.0 2.0 3.0; 4.0 5.0 6.0; 7.0 8.0 9.0]

3×3 Matrix{Float64}:

1.0 2.0 3.0

4.0 5.0 6.0

7.0 8.0 9.0

julia> LowerTriangular(A)

3×3 LowerTriangular{Float64, Matrix{Float64}}:

1.0 ⋅ ⋅

4.0 5.0 ⋅

7.0 8.0 9.0

LinearAlgebra.UpperTriangular – Type.

UpperTriangular(A::AbstractMatrix)

Construct an UpperTriangular view of the matrix A.

Examples

julia> A = [1.0 2.0 3.0; 4.0 5.0 6.0; 7.0 8.0 9.0]

3×3 Matrix{Float64}:

1.0 2.0 3.0

4.0 5.0 6.0

7.0 8.0 9.0

julia> UpperTriangular(A)

3×3 UpperTriangular{Float64, Matrix{Float64}}:

1.0 2.0 3.0

⋅ 5.0 6.0

⋅ ⋅ 9.0

LinearAlgebra.UnitLowerTriangular – Type.

UnitLowerTriangular(A::AbstractMatrix)

CHAPTER 78. LINEAR ALGEBRA 1247

Construct a UnitLowerTriangular view of the matrix A. Such a view has the oneunit of the eltype of

A on its diagonal.

Examples

julia> A = [1.0 2.0 3.0; 4.0 5.0 6.0; 7.0 8.0 9.0]

3×3 Matrix{Float64}:

1.0 2.0 3.0

4.0 5.0 6.0

7.0 8.0 9.0

julia> UnitLowerTriangular(A)

3×3 UnitLowerTriangular{Float64, Matrix{Float64}}:

1.0 ⋅ ⋅

4.0 1.0 ⋅

7.0 8.0 1.0

LinearAlgebra.UnitUpperTriangular – Type.

UnitUpperTriangular(A::AbstractMatrix)

Construct an UnitUpperTriangular view of the matrix A. Such a view has the oneunit of the eltype

of A on its diagonal.

Examples

julia> A = [1.0 2.0 3.0; 4.0 5.0 6.0; 7.0 8.0 9.0]

3×3 Matrix{Float64}:

1.0 2.0 3.0

4.0 5.0 6.0

7.0 8.0 9.0

julia> UnitUpperTriangular(A)

3×3 UnitUpperTriangular{Float64, Matrix{Float64}}:

1.0 2.0 3.0

⋅ 1.0 6.0

⋅ ⋅ 1.0

LinearAlgebra.UpperHessenberg – Type.

UpperHessenberg(A::AbstractMatrix)

Construct an UpperHessenberg view of thematrix A. Entries of A below the first subdiagonal are ignored.

Julia 1.3

This type was added in Julia 1.3.

Efficient algorithms are implemented for H \ b, det(H), and similar.

See also the hessenberg function to factor any matrix into a similar upper-Hessenberg matrix.

If F::Hessenberg is the factorization object, the unitary matrix can be accessed with F.Q and the

Hessenberg matrix with F.H. When Q is extracted, the resulting type is the HessenbergQ object, and

may be converted to a regular matrix with convert(Array, _) (or Array(_) for short).

CHAPTER 78. LINEAR ALGEBRA 1248

Iterating the decomposition produces the factors F.Q and F.H.

Examples

julia> A = [1 2 3 4; 5 6 7 8; 9 10 11 12; 13 14 15 16]

4×4 Matrix{Int64}:

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

julia> UpperHessenberg(A)

4×4 UpperHessenberg{Int64, Matrix{Int64}}:

1 2 3 4

5 6 7 8

⋅ 10 11 12

⋅ ⋅ 15 16

LinearAlgebra.UniformScaling – Type.

UniformScaling{T<:Number}

Generically sized uniform scaling operator defined as a scalar times the identity operator, λ*I. Although

without an explicit size, it acts similarly to a matrix in many cases and includes support for some

indexing. See also I.

Julia 1.6

Indexing using ranges is available as of Julia 1.6.

Examples

julia> J = UniformScaling(2.)

UniformScaling{Float64}

2.0*I

julia> A = [1. 2.; 3. 4.]

2×2 Matrix{Float64}:

1.0 2.0

3.0 4.0

julia> J*A

2×2 Matrix{Float64}:

2.0 4.0

6.0 8.0

julia> J[1:2, 1:2]

2×2 Matrix{Float64}:

2.0 0.0

0.0 2.0

LinearAlgebra.I – Constant.

I

CHAPTER 78. LINEAR ALGEBRA 1249

An object of type UniformScaling, representing an identity matrix of any size.

Examples

julia> fill(1, (5,6)) * I == fill(1, (5,6))

true

julia> [1 2im 3; 1im 2 3] * I

2×3 Matrix{Complex{Int64}}:

1+0im 0+2im 3+0im

0+1im 2+0im 3+0im

LinearAlgebra.UniformScaling – Method.

(I::UniformScaling)(n::Integer)

Construct a Diagonal matrix from a UniformScaling.

Julia 1.2

This method is available as of Julia 1.2.

Examples

julia> I(3)

3×3 Diagonal{Bool, Vector{Bool}}:

1 ⋅ ⋅

⋅ 1 ⋅

⋅ ⋅ 1

julia> (0.7*I)(3)

3×3 Diagonal{Float64, Vector{Float64}}:

0.7 ⋅ ⋅

⋅ 0.7 ⋅

⋅ ⋅ 0.7

LinearAlgebra.Factorization – Type.

LinearAlgebra.Factorization

Abstract type for matrix factorizations a.k.a. matrix decompositions. See online documentation for a

list of available matrix factorizations.

LinearAlgebra.LU – Type.

LU <: Factorization

Matrix factorization type of the LU factorization of a square matrix A. This is the return type of lu, the

corresponding matrix factorization function.

The individual components of the factorization F::LU can be accessed via getproperty:

Iterating the factorization produces the components F.L, F.U, and F.p.

Examples

https://en.wikipedia.org/wiki/Matrix_decomposition

CHAPTER 78. LINEAR ALGEBRA 1250

Component Description

F.L L (unit lower triangular) part of LU

F.U U (upper triangular) part of LU

F.p (right) permutation Vector

F.P (right) permutation Matrix

julia> A = [4 3; 6 3]

2×2 Matrix{Int64}:

4 3

6 3

julia> F = lu(A)

LU{Float64, Matrix{Float64}, Vector{Int64}}

L factor:

2×2 Matrix{Float64}:

1.0 0.0

0.666667 1.0

U factor:

2×2 Matrix{Float64}:

6.0 3.0

0.0 1.0

julia> F.L * F.U == A[F.p, :]

true

julia> l, u, p = lu(A); # destructuring via iteration

julia> l == F.L && u == F.U && p == F.p

true

LinearAlgebra.lu – Function.

lu(A::AbstractSparseMatrixCSC; check = true, q = nothing, control = get_umfpack_control()) ->

F::UmfpackLU↪→

Compute the LU factorization of a sparse matrix A.

For sparse A with real or complex element type, the return type of F is UmfpackLU{Tv, Ti}, with Tv =

Float64 or ComplexF64 respectively and Ti is an integer type (Int32 or Int64).

When check = true, an error is thrown if the decomposition fails. When check = false, responsibility

for checking the decomposition's validity (via issuccess) lies with the user.

The permutation q can either be a permutation vector or nothing. If no permutation vector is provided

or q is nothing, UMFPACK's default is used. If the permutation is not zero-based, a zero-based copy is

made.

The control vector defaults to the package's default configuration for UMFPACK, but can be changed

by passing a vector of length UMFPACK_CONTROL. See the UMFPACK manual for possible configurations.

The corresponding variables are named JL_UMFPACK_ since Julia uses one-based indexing.

The individual components of the factorization F can be accessed by indexing:

The relation between F and A is

CHAPTER 78. LINEAR ALGEBRA 1251

Component Description

L L (lower triangular) part of LU

U U (upper triangular) part of LU

p right permutation Vector

q left permutation Vector

Rs Vector of scaling factors

: (L,U,p,q,Rs) components

F.L*F.U == (F.Rs .* A)[F.p, F.q]

F further supports the following functions:

• \

• det

See also lu!

Note

lu(A::AbstractSparseMatrixCSC) uses the UMFPACK1 library that is part of SuiteSparse.

As this library only supports sparse matrices with Float64 or ComplexF64 elements, lu con-

verts A into a copy that is of type SparseMatrixCSC{Float64} or SparseMatrixCSC{ComplexF64}

as appropriate.

source

lu(A, pivot = RowMaximum(); check = true) -> F::LU

Compute the LU factorization of A.

When check = true, an error is thrown if the decomposition fails. When check = false, responsibility

for checking the decomposition's validity (via issuccess) lies with the user.

In most cases, if A is a subtype S of AbstractMatrix{T} with an element type T supporting +, -, * and

/, the return type is LU{T,S{T}}.

In general, LU factorization involves a permutation of the rows of the matrix (corresponding to the F.p

output described below), known as "pivoting" (because it corresponds to choosing which row contains

the "pivot", the diagonal entry of F.U). One of the following pivoting strategies can be selected via the

optional pivot argument:

• RowMaximum() (default): the standard pivoting strategy; the pivot corresponds to the element

of maximum absolute value among the remaining, to be factorized rows. This pivoting strategy

requires the element type to also support abs and <. (This is generally the only numerically stable

option for floating-point matrices.)

• RowNonZero(): the pivot corresponds to the first non-zero element among the remaining, to be

factorized rows. (This corresponds to the typical choice in hand calculations, and is also useful

for more general algebraic number types that support iszero but not abs or <.)

1Davis, Timothy A. (2004b). Algorithm 832: UMFPACK V4.3–-an Unsymmetric-Pattern Multifrontal Method. ACM Trans. Math.

Softw., 30(2), 196–199. doi:10.1145/992200.992206

https://github.com/DrTimothyAldenDavis/SuiteSparse
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/solvers/umfpack.jl#L323-L374
https://doi.org/10.1145/992200.992206

CHAPTER 78. LINEAR ALGEBRA 1252

• NoPivot(): pivoting turned off (may fail if a zero entry is encountered).

The individual components of the factorization F can be accessed via getproperty:

Component Description

F.L L (lower triangular) part of LU

F.U U (upper triangular) part of LU

F.p (right) permutation Vector

F.P (right) permutation Matrix

Iterating the factorization produces the components F.L, F.U, and F.p.

The relationship between F and A is

F.L*F.U == A[F.p, :]

F further supports the following functions:

Supported function LU LU{T,Tridiagonal{T}}

/ ✓

\ ✓ ✓

inv ✓ ✓

det ✓ ✓

logdet ✓ ✓

logabsdet ✓ ✓

size ✓ ✓

Examples

julia> A = [4 3; 6 3]

2×2 Matrix{Int64}:

4 3

6 3

julia> F = lu(A)

LU{Float64, Matrix{Float64}, Vector{Int64}}

L factor:

2×2 Matrix{Float64}:

1.0 0.0

0.666667 1.0

U factor:

2×2 Matrix{Float64}:

6.0 3.0

0.0 1.0

julia> F.L * F.U == A[F.p, :]

true

julia> l, u, p = lu(A); # destructuring via iteration

julia> l == F.L && u == F.U && p == F.p

true

CHAPTER 78. LINEAR ALGEBRA 1253

LinearAlgebra.lu! – Function.

lu!(F::UmfpackLU, A::AbstractSparseMatrixCSC; check=true, reuse_symbolic=true, q=nothing) ->

F::UmfpackLU↪→

Compute the LU factorization of a sparse matrix A, reusing the symbolic factorization of an already

existing LU factorization stored in F. Unless reuse_symbolic is set to false, the sparse matrix A must

have an identical nonzero pattern as the matrix used to create the LU factorization F, otherwise an

error is thrown. If the size of A and F differ, all vectors will be resized accordingly.

When check = true, an error is thrown if the decomposition fails. When check = false, responsibility

for checking the decomposition's validity (via issuccess) lies with the user.

The permutation q can either be a permutation vector or nothing. If no permutation vector is provided

or q is nothing, UMFPACK's default is used. If the permutation is not zero based, a zero based copy is

made.

See also lu

Note

lu!(F::UmfpackLU, A::AbstractSparseMatrixCSC) uses the UMFPACK library that is part

of SuiteSparse. As this library only supports sparse matrices with Float64 or ComplexF64

elements, lu! will automatically convert the types to those set by the LU factorization or

SparseMatrixCSC{ComplexF64} as appropriate.

Julia 1.5

lu! for UmfpackLU requires at least Julia 1.5.

Examples

julia> A = sparse(Float64[1.0 2.0; 0.0 3.0]);

julia> F = lu(A);

julia> B = sparse(Float64[1.0 1.0; 0.0 1.0]);

julia> lu!(F, B);

julia> F \ ones(2)

2-element Vector{Float64}:

0.0

1.0

source

lu!(A, pivot = RowMaximum(); check = true) -> LU

lu! is the same as lu, but saves space by overwriting the input A, instead of creating a copy. An

InexactError exception is thrown if the factorization produces a number not representable by the

element type of A, e.g. for integer types.

Examples

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/solvers/umfpack.jl#L401-L445

CHAPTER 78. LINEAR ALGEBRA 1254

julia> A = [4. 3.; 6. 3.]

2×2 Matrix{Float64}:

4.0 3.0

6.0 3.0

julia> F = lu!(A)

LU{Float64, Matrix{Float64}, Vector{Int64}}

L factor:

2×2 Matrix{Float64}:

1.0 0.0

0.666667 1.0

U factor:

2×2 Matrix{Float64}:

6.0 3.0

0.0 1.0

julia> iA = [4 3; 6 3]

2×2 Matrix{Int64}:

4 3

6 3

julia> lu!(iA)

ERROR: InexactError: Int64(0.6666666666666666)

Stacktrace:

[...]

LinearAlgebra.Cholesky – Type.

Cholesky <: Factorization

Matrix factorization type of the Cholesky factorization of a dense symmetric/Hermitian positive definite

matrix A. This is the return type of cholesky, the corresponding matrix factorization function.

The triangular Cholesky factor can be obtained from the factorization F::Cholesky via F.L and F.U,

where A ≈ F.U' * F.U ≈ F.L * F.L'.

The following functions are available for Cholesky objects: size, \, inv, det, logdet and isposdef.

Iterating the decomposition produces the components L and U.

Examples

julia> A = [4. 12. -16.; 12. 37. -43.; -16. -43. 98.]

3×3 Matrix{Float64}:

4.0 12.0 -16.0

12.0 37.0 -43.0

-16.0 -43.0 98.0

julia> C = cholesky(A)

Cholesky{Float64, Matrix{Float64}}

U factor:

3×3 UpperTriangular{Float64, Matrix{Float64}}:

2.0 6.0 -8.0

⋅ 1.0 5.0

⋅ ⋅ 3.0

CHAPTER 78. LINEAR ALGEBRA 1255

julia> C.U

3×3 UpperTriangular{Float64, Matrix{Float64}}:

2.0 6.0 -8.0

⋅ 1.0 5.0

⋅ ⋅ 3.0

julia> C.L

3×3 LowerTriangular{Float64, Matrix{Float64}}:

2.0 ⋅ ⋅

6.0 1.0 ⋅

-8.0 5.0 3.0

julia> C.L * C.U == A

true

julia> l, u = C; # destructuring via iteration

julia> l == C.L && u == C.U

true

LinearAlgebra.CholeskyPivoted – Type.

CholeskyPivoted

Matrix factorization type of the pivoted Cholesky factorization of a dense symmetric/Hermitian posi-

tive semi-definite matrix A. This is the return type of cholesky(_, ::RowMaximum), the corresponding

matrix factorization function.

The triangular Cholesky factor can be obtained from the factorization F::CholeskyPivoted via F.L and

F.U, and the permutation via F.p, where A[F.p, F.p] ≈ Ur' * Ur ≈ Lr * Lr'with Ur = F.U[1:F.rank,

:] and Lr = F.L[:, 1:F.rank], or alternatively A ≈ Up' * Up ≈ Lp * Lp'with Up = F.U[1:F.rank,

invperm(F.p)] and Lp = F.L[invperm(F.p), 1:F.rank].

The following functions are available for CholeskyPivoted objects: size, \, inv, det, and rank.

Iterating the decomposition produces the components L and U.

Examples

julia> X = [1.0, 2.0, 3.0, 4.0];

julia> A = X * X';

julia> C = cholesky(A, RowMaximum(), check = false)

CholeskyPivoted{Float64, Matrix{Float64}, Vector{Int64}}

U factor with rank 1:

4×4 UpperTriangular{Float64, Matrix{Float64}}:

4.0 2.0 3.0 1.0

⋅ 0.0 6.0 2.0

⋅ ⋅ 9.0 3.0

⋅ ⋅ ⋅ 1.0

permutation:

4-element Vector{Int64}:

4

CHAPTER 78. LINEAR ALGEBRA 1256

2

3

1

julia> C.U[1:C.rank, :]' * C.U[1:C.rank, :] ≈ A[C.p, C.p]

true

julia> l, u = C; # destructuring via iteration

julia> l == C.L && u == C.U

true

LinearAlgebra.cholesky – Function.

cholesky(A, NoPivot(); check = true) -> Cholesky

Compute the Cholesky factorization of a dense symmetric positive definite matrix A and return a

Cholesky factorization. The matrix A can either be a Symmetric or Hermitian AbstractMatrix or

a perfectly symmetric or Hermitian AbstractMatrix.

The triangular Cholesky factor can be obtained from the factorization F via F.L and F.U, where A ≈

F.U' * F.U ≈ F.L * F.L'.

The following functions are available for Cholesky objects: size, \, inv, det, logdet and isposdef.

If you have a matrix A that is slightly non-Hermitian due to roundoff errors in its construction, wrap it

in Hermitian(A) before passing it to cholesky in order to treat it as perfectly Hermitian.

When check = true, an error is thrown if the decomposition fails. When check = false, responsibility

for checking the decomposition's validity (via issuccess) lies with the user.

Examples

julia> A = [4. 12. -16.; 12. 37. -43.; -16. -43. 98.]

3×3 Matrix{Float64}:

4.0 12.0 -16.0

12.0 37.0 -43.0

-16.0 -43.0 98.0

julia> C = cholesky(A)

Cholesky{Float64, Matrix{Float64}}

U factor:

3×3 UpperTriangular{Float64, Matrix{Float64}}:

2.0 6.0 -8.0

⋅ 1.0 5.0

⋅ ⋅ 3.0

julia> C.U

3×3 UpperTriangular{Float64, Matrix{Float64}}:

2.0 6.0 -8.0

⋅ 1.0 5.0

⋅ ⋅ 3.0

julia> C.L

3×3 LowerTriangular{Float64, Matrix{Float64}}:

CHAPTER 78. LINEAR ALGEBRA 1257

2.0 ⋅ ⋅

6.0 1.0 ⋅

-8.0 5.0 3.0

julia> C.L * C.U == A

true

cholesky(A, RowMaximum(); tol = 0.0, check = true) -> CholeskyPivoted

Compute the pivoted Cholesky factorization of a dense symmetric positive semi-definite matrix A

and return a CholeskyPivoted factorization. The matrix A can either be a Symmetric or Hermitian

AbstractMatrix or a perfectly symmetric or Hermitian AbstractMatrix.

The triangular Cholesky factor can be obtained from the factorization F via F.L and F.U, and the permu-

tation via F.p, where A[F.p, F.p] ≈ Ur' * Ur ≈ Lr * Lr' with Ur = F.U[1:F.rank, :] and Lr =

F.L[:, 1:F.rank], or alternatively A ≈ Up' * Up ≈ Lp * Lp'with Up = F.U[1:F.rank, invperm(F.p)]

and Lp = F.L[invperm(F.p), 1:F.rank].

The following functions are available for CholeskyPivoted objects: size, \, inv, det, and rank.

The argument tol determines the tolerance for determining the rank. For negative values, the toler-

ance is the machine precision.

If you have a matrix A that is slightly non-Hermitian due to roundoff errors in its construction, wrap it

in Hermitian(A) before passing it to cholesky in order to treat it as perfectly Hermitian.

When check = true, an error is thrown if the decomposition fails. When check = false, responsibility

for checking the decomposition's validity (via issuccess) lies with the user.

Examples

julia> X = [1.0, 2.0, 3.0, 4.0];

julia> A = X * X';

julia> C = cholesky(A, RowMaximum(), check = false)

CholeskyPivoted{Float64, Matrix{Float64}, Vector{Int64}}

U factor with rank 1:

4×4 UpperTriangular{Float64, Matrix{Float64}}:

4.0 2.0 3.0 1.0

⋅ 0.0 6.0 2.0

⋅ ⋅ 9.0 3.0

⋅ ⋅ ⋅ 1.0

permutation:

4-element Vector{Int64}:

4

2

3

1

julia> C.U[1:C.rank, :]' * C.U[1:C.rank, :] ≈ A[C.p, C.p]

true

julia> l, u = C; # destructuring via iteration

CHAPTER 78. LINEAR ALGEBRA 1258

julia> l == C.L && u == C.U

true

cholesky(A::SparseMatrixCSC; shift = 0.0, check = true, perm = nothing) -> CHOLMOD.Factor

Compute the Cholesky factorization of a sparse positive definitematrix A. Amust be a SparseMatrixCSC

or a Symmetric/Hermitian view of a SparseMatrixCSC. Note that even if A doesn't have the type tag,

it must still be symmetric or Hermitian. If perm is not given, a fill-reducing permutation is used. F =

cholesky(A) is most frequently used to solve systems of equations with F\b, but also the methods

diag, det, and logdet are defined for F. You can also extract individual factors from F, using F.L.

However, since pivoting is on by default, the factorization is internally represented as A == P'*L*L'*P

with a permutation matrix P; using just Lwithout accounting for Pwill give incorrect answers. To include

the effects of permutation, it's typically preferable to extract "combined" factors like PtL = F.PtL (the

equivalent of P'*L) and LtP = F.UP (the equivalent of L'*P).

When check = true, an error is thrown if the decomposition fails. When check = false, responsibility

for checking the decomposition's validity (via issuccess) lies with the user.

Setting the optional shift keyword argument computes the factorization of A+shift*I instead of A. If

the perm argument is provided, it should be a permutation of 1:size(A,1) giving the ordering to use

(instead of CHOLMOD's default AMD ordering).

Examples

In the following example, the fill-reducing permutation used is [3, 2, 1]. If perm is set to 1:3 to

enforce no permutation, the number of nonzero elements in the factor is 6.

julia> A = [2 1 1; 1 2 0; 1 0 2]

3×3 Matrix{Int64}:

2 1 1

1 2 0

1 0 2

julia> C = cholesky(sparse(A))

SparseArrays.CHOLMOD.Factor{Float64, Int64}

type: LLt

method: simplicial

maxnnz: 5

nnz: 5

success: true

julia> C.p

3-element Vector{Int64}:

3

2

1

julia> L = sparse(C.L);

julia> Matrix(L)

3×3 Matrix{Float64}:

1.41421 0.0 0.0

0.0 1.41421 0.0

0.707107 0.707107 1.0

CHAPTER 78. LINEAR ALGEBRA 1259

julia> L * L' ≈ A[C.p, C.p]

true

julia> P = sparse(1:3, C.p, ones(3))

3×3 SparseMatrixCSC{Float64, Int64} with 3 stored entries:

⋅ ⋅ 1.0

⋅ 1.0 ⋅

1.0 ⋅ ⋅

julia> P' * L * L' * P ≈ A

true

julia> C = cholesky(sparse(A), perm=1:3)

SparseArrays.CHOLMOD.Factor{Float64, Int64}

type: LLt

method: simplicial

maxnnz: 6

nnz: 6

success: true

julia> L = sparse(C.L);

julia> Matrix(L)

3×3 Matrix{Float64}:

1.41421 0.0 0.0

0.707107 1.22474 0.0

0.707107 -0.408248 1.1547

julia> L * L' ≈ A

true

Note

This method uses the CHOLMOD2,3 library from SuiteSparse. CHOLMOD only supports dou-

ble or complex double element types. Input matrices not of those element types will be

converted to SparseMatrixCSC{Float64} or SparseMatrixCSC{ComplexF64} as appropri-

ate.

Many other functions fromCHOLMOD are wrapped but not exported from the Base.SparseArrays.CHOLMOD

module.

source

LinearAlgebra.cholesky! – Function.

cholesky!(A::AbstractMatrix, NoPivot(); check = true) -> Cholesky

2Chen, Y., Davis, T. A., Hager, W. W., & Rajamanickam, S. (2008). Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky

Factorization and Update/Downdate. ACM Trans. Math. Softw., 35(3). doi:10.1145/1391989.1391995

3Davis, Timothy A., & Hager, W. W. (2009). Dynamic Supernodes in Sparse Cholesky Update/Downdate and Triangular Solves.

ACM Trans. Math. Softw., 35(4). doi:10.1145/1462173.1462176

https://github.com/DrTimothyAldenDavis/SuiteSparse
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/solvers/cholmod.jl#L1329-L1436
https://doi.org/10.1145/1391989.1391995
https://doi.org/10.1145/1462173.1462176

CHAPTER 78. LINEAR ALGEBRA 1260

The same as cholesky, but saves space by overwriting the input A, instead of creating a copy. An

InexactError exception is thrown if the factorization produces a number not representable by the

element type of A, e.g. for integer types.

Examples

julia> A = [1 2; 2 50]

2×2 Matrix{Int64}:

1 2

2 50

julia> cholesky!(A)

ERROR: InexactError: Int64(6.782329983125268)

Stacktrace:

[...]

cholesky!(A::AbstractMatrix, RowMaximum(); tol = 0.0, check = true) -> CholeskyPivoted

The same as cholesky, but saves space by overwriting the input A, instead of creating a copy. An

InexactError exception is thrown if the factorization produces a number not representable by the

element type of A, e.g. for integer types.

cholesky!(F::CHOLMOD.Factor, A::SparseMatrixCSC; shift = 0.0, check = true) -> CHOLMOD.Factor

Compute the Cholesky (LL′) factorization of A, reusing the symbolic factorization F. A must be a

SparseMatrixCSC or a Symmetric/ Hermitian view of a SparseMatrixCSC. Note that even if A doesn't

have the type tag, it must still be symmetric or Hermitian.

See also cholesky.

Note

This method uses the CHOLMOD library from SuiteSparse, which only supports doubles or

complex doubles. Inputmatrices not of those element types will be converted to SparseMatrixCSC{Float64}

or SparseMatrixCSC{ComplexF64} as appropriate.

source

LinearAlgebra.lowrankupdate – Function.

lowrankupdate(C::Cholesky, v::AbstractVector) -> CC::Cholesky

Update a Cholesky factorization C with the vector v. If A = C.U'C.U then CC = cholesky(C.U'C.U +

v*v') but the computation of CC only uses O(n^2) operations.

lowrankupdate(F::CHOLMOD.Factor, C::AbstractArray) -> FF::CHOLMOD.Factor

Get an LDLt Factorization of A + C*C' given an LDLt or LLt factorization F of A.

The returned factor is always an LDLt factorization.

See also lowrankupdate!, lowrankdowndate, lowrankdowndate!.

source

LinearAlgebra.lowrankdowndate – Function.

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/solvers/cholmod.jl#L1293-L1308
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/solvers/cholmod.jl#L1589-L1597

CHAPTER 78. LINEAR ALGEBRA 1261

lowrankdowndate(C::Cholesky, v::AbstractVector) -> CC::Cholesky

Downdate a Cholesky factorization C with the vector v. If A = C.U'C.U then CC = cholesky(C.U'C.U

- v*v') but the computation of CC only uses O(n^2) operations.

lowrankdowndate(F::CHOLMOD.Factor, C::AbstractArray) -> FF::CHOLMOD.Factor

Get an LDLt Factorization of A + C*C' given an LDLt or LLt factorization F of A.

The returned factor is always an LDLt factorization.

See also lowrankdowndate!, lowrankupdate, lowrankupdate!.

source

LinearAlgebra.lowrankupdate! – Function.

lowrankupdate!(C::Cholesky, v::AbstractVector) -> CC::Cholesky

Update a Cholesky factorization C with the vector v. If A = C.U'C.U then CC = cholesky(C.U'C.U +

v*v') but the computation of CC only uses O(n^2) operations. The input factorization C is updated in

place such that on exit C == CC. The vector v is destroyed during the computation.

lowrankupdate!(F::CHOLMOD.Factor, C::AbstractArray)

Update an LDLt or LLt Factorization F of A to a factorization of A + C*C'.

LLt factorizations are converted to LDLt.

See also lowrankupdate, lowrankdowndate, lowrankdowndate!.

source

LinearAlgebra.lowrankdowndate! – Function.

lowrankdowndate!(C::Cholesky, v::AbstractVector) -> CC::Cholesky

Downdate a Cholesky factorization C with the vector v. If A = C.U'C.U then CC = cholesky(C.U'C.U

- v*v') but the computation of CC only uses O(n^2) operations. The input factorization C is updated

in place such that on exit C == CC. The vector v is destroyed during the computation.

lowrankdowndate!(F::CHOLMOD.Factor, C::AbstractArray)

Update an LDLt or LLt Factorization F of A to a factorization of A - C*C'.

LLt factorizations are converted to LDLt.

See also lowrankdowndate, lowrankupdate, lowrankupdate!.

source

LinearAlgebra.LDLt – Type.

LDLt <: Factorization

Matrix factorization type of the LDLt factorization of a real SymTridiagonal matrix S such that S =

L*Diagonal(d)*L', where L is a UnitLowerTriangular matrix and d is a vector. The main use of an

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/solvers/cholmod.jl#L1601-L1609
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/solvers/cholmod.jl#L1559-L1567
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/solvers/cholmod.jl#L1574-L1582

CHAPTER 78. LINEAR ALGEBRA 1262

Component Description

F.L L (unit lower triangular) part of LDLt

F.D D (diagonal) part of LDLt

F.Lt Lt (unit upper triangular) part of LDLt

F.d diagonal values of D as a Vector

LDLt factorization F = ldlt(S) is to solve the linear system of equations Sx = b with F\b. This is the

return type of ldlt, the corresponding matrix factorization function.

The individual components of the factorization F::LDLt can be accessed via getproperty:

Examples

julia> S = SymTridiagonal([3., 4., 5.], [1., 2.])

3×3 SymTridiagonal{Float64, Vector{Float64}}:

3.0 1.0 ⋅

1.0 4.0 2.0

⋅ 2.0 5.0

julia> F = ldlt(S)

LDLt{Float64, SymTridiagonal{Float64, Vector{Float64}}}

L factor:

3×3 UnitLowerTriangular{Float64, SymTridiagonal{Float64, Vector{Float64}}}:

1.0 ⋅ ⋅

0.333333 1.0 ⋅

0.0 0.545455 1.0

D factor:

3×3 Diagonal{Float64, Vector{Float64}}:

3.0 ⋅ ⋅

⋅ 3.66667 ⋅

⋅ ⋅ 3.90909

LinearAlgebra.ldlt – Function.

ldlt(S::SymTridiagonal) -> LDLt

Compute an LDLt (i.e., LDLT) factorization of the real symmetric tridiagonal matrix S such that S =

L*Diagonal(d)*L' where L is a unit lower triangular matrix and d is a vector. The main use of an LDLt

factorization F = ldlt(S) is to solve the linear system of equations Sx = b with F\b.

See also bunchkaufman for a similar, but pivoted, factorization of arbitrary symmetric or Hermitian

matrices.

Examples

julia> S = SymTridiagonal([3., 4., 5.], [1., 2.])

3×3 SymTridiagonal{Float64, Vector{Float64}}:

3.0 1.0 ⋅

1.0 4.0 2.0

⋅ 2.0 5.0

julia> ldltS = ldlt(S);

CHAPTER 78. LINEAR ALGEBRA 1263

julia> b = [6., 7., 8.];

julia> ldltS \ b

3-element Vector{Float64}:

1.7906976744186047

0.627906976744186

1.3488372093023255

julia> S \ b

3-element Vector{Float64}:

1.7906976744186047

0.627906976744186

1.3488372093023255

ldlt(A::SparseMatrixCSC; shift = 0.0, check = true, perm=nothing) -> CHOLMOD.Factor

Compute theLDL′ factorization of a sparsematrix A. Amust be a SparseMatrixCSC or a Symmetric/Hermitian

view of a SparseMatrixCSC. Note that even if A doesn't have the type tag, it must still be symmetric or

Hermitian. A fill-reducing permutation is used. F = ldlt(A) is most frequently used to solve systems

of equations A*x = b with F\b. The returned factorization object F also supports the methods diag,

det, logdet, and inv. You can extract individual factors from F using F.L. However, since pivoting

is on by default, the factorization is internally represented as A == P'*L*D*L'*P with a permutation

matrix P; using just L without accounting for P will give incorrect answers. To include the effects of

permutation, it is typically preferable to extract "combined" factors like PtL = F.PtL (the equivalent

of P'*L) and LtP = F.UP (the equivalent of L'*P). The complete list of supported factors is :L, :PtL,

:D, :UP, :U, :LD, :DU, :PtLD, :DUP.

When check = true, an error is thrown if the decomposition fails. When check = false, responsibility

for checking the decomposition's validity (via issuccess) lies with the user.

Setting the optional shift keyword argument computes the factorization of A+shift*I instead of A. If

the perm argument is provided, it should be a permutation of 1:size(A,1) giving the ordering to use

(instead of CHOLMOD's default AMD ordering).

Note

This method uses the CHOLMOD2,3 library from SuiteSparse. CHOLMOD only supports dou-

ble or complex double element types. Input matrices not of those element types will be

converted to SparseMatrixCSC{Float64} or SparseMatrixCSC{ComplexF64} as appropri-

ate.

Many other functions fromCHOLMOD are wrapped but not exported from the Base.SparseArrays.CHOLMOD

module.

source

LinearAlgebra.ldlt! – Function.

ldlt!(S::SymTridiagonal) -> LDLt

Same as ldlt, but saves space by overwriting the input S, instead of creating a copy.

Examples

https://github.com/DrTimothyAldenDavis/SuiteSparse
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/solvers/cholmod.jl#L1497-L1534

CHAPTER 78. LINEAR ALGEBRA 1264

julia> S = SymTridiagonal([3., 4., 5.], [1., 2.])

3×3 SymTridiagonal{Float64, Vector{Float64}}:

3.0 1.0 ⋅

1.0 4.0 2.0

⋅ 2.0 5.0

julia> ldltS = ldlt!(S);

julia> ldltS === S

false

julia> S

3×3 SymTridiagonal{Float64, Vector{Float64}}:

3.0 0.333333 ⋅

0.333333 3.66667 0.545455

⋅ 0.545455 3.90909

ldlt!(F::CHOLMOD.Factor, A::SparseMatrixCSC; shift = 0.0, check = true) -> CHOLMOD.Factor

Compute theLDL′ factorization of A, reusing the symbolic factorization F. Amust be a SparseMatrixCSC

or a Symmetric/Hermitian view of a SparseMatrixCSC. Note that even if A doesn't have the type tag,

it must still be symmetric or Hermitian.

See also ldlt.

Note

This method uses the CHOLMOD library from SuiteSparse, which only supports doubles or

complex doubles. Inputmatrices not of those element types will be converted to SparseMatrixCSC{Float64}

or SparseMatrixCSC{ComplexF64} as appropriate.

source

LinearAlgebra.QR – Type.

QR <: Factorization

A QR matrix factorization stored in a packed format, typically obtained from qr. If A is an m×n matrix,

then

A = QR

whereQ is an orthogonal/unitarymatrix andR is upper triangular. ThematrixQ is stored as a sequence

of Householder reflectors vi and coefficients τi where:

Q =

min(m,n)∏
i=1

(I − τiviv
T
i).

Iterating the decomposition produces the components Q and R.

The object has two fields:

https://github.com/DrTimothyAldenDavis/SuiteSparse
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/solvers/cholmod.jl#L1455-L1470

CHAPTER 78. LINEAR ALGEBRA 1265

• factors is an m×n matrix.

– The upper triangular part contains the elements ofR, that is R = triu(F.factors) for a QR

object F.

– The subdiagonal part contains the reflectors vi stored in a packed format where vi is the ith
column of the matrix V = I + tril(F.factors, -1).

• τ is a vector of length min(m,n) containing the coefficients aui.

LinearAlgebra.QRCompactWY – Type.

QRCompactWY <: Factorization

A QR matrix factorization stored in a compact blocked format, typically obtained from qr. If A is an

m×n matrix, then

A = QR

whereQ is an orthogonal/unitary matrix andR is upper triangular. It is similar to the QR format except

that the orthogonal/unitary matrix Q is stored in Compact WY format 4. For the block size nb, it is

stored as a m×n lower trapezoidal matrix V and a matrix T = (T1 T2 ... Tb−1 T ′
b) composed of

b = dmin(m,n)/nbe upper triangular matrices Tj of size nb×nb (j = 1, ..., b − 1) and an upper
trapezoidal nb×min(m,n) − (b − 1)nb matrix T

′
b (j = b) whose upper square part denoted with Tb

satisfying

Q =

min(m,n)∏
i=1

(I − τiviv
T
i) =

b∏
j=1

(I − VjTjV
T
j)

such that vi is the ith column of V , τi is the ith element of [diag(T_1); diag(T_2); …; diag(T_b)],

and (V1 V2 ... Vb) is the left m×min(m, n) block of V . When constructed using qr, the block size is

given by nb = min(m,n, 36).

Iterating the decomposition produces the components Q and R.

The object has two fields:

• factors, as in the QR type, is an m×n matrix.

– The upper triangular part contains the elements ofR, that is R = triu(F.factors) for a QR

object F.

– The subdiagonal part contains the reflectors vi stored in a packed format such that V = I +

tril(F.factors, -1).

• T is a nb-by-min(m,n)matrix as described above. The subdiagonal elements for each triangular
matrix Tj are ignored.

Note

This format should not to be confused with the older WY representation 5.

CHAPTER 78. LINEAR ALGEBRA 1266

LinearAlgebra.QRPivoted – Type.

QRPivoted <: Factorization

A QR matrix factorization with column pivoting in a packed format, typically obtained from qr. If A is

an m×n matrix, then

AP = QR

where P is a permutation matrix, Q is an orthogonal/unitary matrix and R is upper triangular. The

matrix Q is stored as a sequence of Householder reflectors:

Q =

min(m,n)∏
i=1

(I − τiviv
T
i).

Iterating the decomposition produces the components Q, R, and p.

The object has three fields:

• factors is an m×n matrix.

– The upper triangular part contains the elements ofR, that is R = triu(F.factors) for a QR

object F.

– The subdiagonal part contains the reflectors vi stored in a packed format where vi is the ith
column of the matrix V = I + tril(F.factors, -1).

• τ is a vector of length min(m,n) containing the coefficients aui.

• jpvt is an integer vector of length n corresponding to the permutation P .

LinearAlgebra.qr – Function.

qr(A::SparseMatrixCSC; tol=_default_tol(A), ordering=ORDERING_DEFAULT) -> QRSparse

Compute the QR factorization of a sparse matrix A. Fill-reducing row and column permutations are used

such that F.R = F.Q'*A[F.prow,F.pcol]. The main application of this type is to solve least squares

or underdetermined problems with \. The function calls the C library SPQR6.

Note

qr(A::SparseMatrixCSC) uses the SPQR library that is part of SuiteSparse. As this library

only supports sparse matrices with Float64 or ComplexF64 elements, as of Julia v1.4 qr con-

verts A into a copy that is of type SparseMatrixCSC{Float64} or SparseMatrixCSC{ComplexF64}

as appropriate.

5C Bischof and C Van Loan, "The WY representation for products of Householder matrices", SIAM J Sci Stat Comput 8 (1987),

s2-s13. doi:10.1137/0908009

4R Schreiber and C Van Loan, "A storage-efficient WY representation for products of Householder transformations", SIAM J Sci

Stat Comput 10 (1989), 53-57. doi:10.1137/0910005

https://github.com/DrTimothyAldenDavis/SuiteSparse
https://doi.org/10.1137/0908009
https://doi.org/10.1137/0910005

CHAPTER 78. LINEAR ALGEBRA 1267

Examples

julia> A = sparse([1,2,3,4], [1,1,2,2], [1.0,1.0,1.0,1.0])

4×2 SparseMatrixCSC{Float64, Int64} with 4 stored entries:

1.0 ⋅

1.0 ⋅

⋅ 1.0

⋅ 1.0

julia> qr(A)

SparseArrays.SPQR.QRSparse{Float64, Int64}

Q factor:

4×4 SparseArrays.SPQR.QRSparseQ{Float64, Int64}

R factor:

2×2 SparseMatrixCSC{Float64, Int64} with 2 stored entries:

-1.41421 ⋅

⋅ -1.41421

Row permutation:

4-element Vector{Int64}:

1

3

4

2

Column permutation:

2-element Vector{Int64}:

1

2

source

qr(A, pivot = NoPivot(); blocksize) -> F

Compute the QR factorization of the matrix A: an orthogonal (or unitary if A is complex-valued) matrix

Q, and an upper triangular matrix R such that

A = QR

The returned object F stores the factorization in a packed format:

• if pivot == ColumnNorm() then F is a QRPivoted object,

• otherwise if the element type of A is a BLAS type (Float32, Float64, ComplexF32 or ComplexF64),

then F is a QRCompactWY object,

• otherwise F is a QR object.

The individual components of the decomposition F can be retrieved via property accessors:

• F.Q: the orthogonal/unitary matrix Q

6Foster, L. V., & Davis, T. A. (2013). Algorithm 933: Reliable Calculation of Numerical Rank, Null Space Bases, Pseudoinverse

Solutions, and Basic Solutions Using SuitesparseQR. ACM Trans. Math. Softw., 40(1). doi:10.1145/2513109.2513116

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/solvers/spqr.jl#L151-L194
https://doi.org/10.1145/2513109.2513116

CHAPTER 78. LINEAR ALGEBRA 1268

• F.R: the upper triangular matrix R

• F.p: the permutation vector of the pivot (QRPivoted only)

• F.P: the permutation matrix of the pivot (QRPivoted only)

Iterating the decomposition produces the components Q, R, and if extant p.

The following functions are available for the QR objects: inv, size, and \. When A is rectangular, \ will

return a least squares solution and if the solution is not unique, the one with smallest norm is returned.

When A is not full rank, factorization with (column) pivoting is required to obtain a minimum norm

solution.

Multiplication with respect to either full/square or non-full/square Q is allowed, i.e. both F.Q*F.R and

F.Q*A are supported. A Q matrix can be converted into a regular matrix with Matrix. This opera-

tion returns the "thin" Q factor, i.e., if A is m×n with m>=n, then Matrix(F.Q) yields an m×n matrix

with orthonormal columns. To retrieve the "full" Q factor, an m×m orthogonal matrix, use F.Q*I or

collect(F.Q). If m<=n, then Matrix(F.Q) yields an m×m orthogonal matrix.

The block size for QR decomposition can be specified by keyword argument blocksize :: Integer

when pivot == NoPivot() and A isa StridedMatrix{<:BlasFloat}. It is ignored when blocksize

> minimum(size(A)). See QRCompactWY.

Julia 1.4

The blocksize keyword argument requires Julia 1.4 or later.

Examples

julia> A = [3.0 -6.0; 4.0 -8.0; 0.0 1.0]

3×2 Matrix{Float64}:

3.0 -6.0

4.0 -8.0

0.0 1.0

julia> F = qr(A)

LinearAlgebra.QRCompactWY{Float64, Matrix{Float64}, Matrix{Float64}}

Q factor: 3×3 LinearAlgebra.QRCompactWYQ{Float64, Matrix{Float64}, Matrix{Float64}}

R factor:

2×2 Matrix{Float64}:

-5.0 10.0

0.0 -1.0

julia> F.Q * F.R == A

true

Note

qr returns multiple types because LAPACK uses several representations that minimize the

memory storage requirements of products of Householder elementary reflectors, so that

the Q and R matrices can be stored compactly rather as two separate dense matrices.

LinearAlgebra.qr! – Function.

qr!(A, pivot = NoPivot(); blocksize)

CHAPTER 78. LINEAR ALGEBRA 1269

qr! is the same as qr when A is a subtype of AbstractMatrix, but saves space by overwriting the

input A, instead of creating a copy. An InexactError exception is thrown if the factorization produces

a number not representable by the element type of A, e.g. for integer types.

Julia 1.4

The blocksize keyword argument requires Julia 1.4 or later.

Examples

julia> a = [1. 2.; 3. 4.]

2×2 Matrix{Float64}:

1.0 2.0

3.0 4.0

julia> qr!(a)

LinearAlgebra.QRCompactWY{Float64, Matrix{Float64}, Matrix{Float64}}

Q factor: 2×2 LinearAlgebra.QRCompactWYQ{Float64, Matrix{Float64}, Matrix{Float64}}

R factor:

2×2 Matrix{Float64}:

-3.16228 -4.42719

0.0 -0.632456

julia> a = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> qr!(a)

ERROR: InexactError: Int64(3.1622776601683795)

Stacktrace:

[...]

LinearAlgebra.LQ – Type.

LQ <: Factorization

Matrix factorization type of the LQ factorization of a matrix A. The LQ decomposition is the QR decompo-

sition of transpose(A). This is the return type of lq, the corresponding matrix factorization function.

If S::LQ is the factorization object, the lower triangular component can be obtained via S.L, and the

orthogonal/unitary component via S.Q, such that A ≈ S.L*S.Q.

Iterating the decomposition produces the components S.L and S.Q.

Examples

julia> A = [5. 7.; -2. -4.]

2×2 Matrix{Float64}:

5.0 7.0

-2.0 -4.0

julia> S = lq(A)

LQ{Float64, Matrix{Float64}, Vector{Float64}}

CHAPTER 78. LINEAR ALGEBRA 1270

L factor:

2×2 Matrix{Float64}:

-8.60233 0.0

4.41741 -0.697486

Q factor: 2×2 LinearAlgebra.LQPackedQ{Float64, Matrix{Float64}, Vector{Float64}}

julia> S.L * S.Q

2×2 Matrix{Float64}:

5.0 7.0

-2.0 -4.0

julia> l, q = S; # destructuring via iteration

julia> l == S.L && q == S.Q

true

LinearAlgebra.lq – Function.

lq(A) -> S::LQ

Compute the LQ decomposition of A. The decomposition's lower triangular component can be obtained

from the LQ object S via S.L, and the orthogonal/unitary component via S.Q, such that A ≈ S.L*S.Q.

Iterating the decomposition produces the components S.L and S.Q.

The LQ decomposition is the QR decomposition of transpose(A), and it is useful in order to compute the

minimum-norm solution lq(A) \ b to an underdetermined system of equations (A has more columns

than rows, but has full row rank).

Examples

julia> A = [5. 7.; -2. -4.]

2×2 Matrix{Float64}:

5.0 7.0

-2.0 -4.0

julia> S = lq(A)

LQ{Float64, Matrix{Float64}, Vector{Float64}}

L factor:

2×2 Matrix{Float64}:

-8.60233 0.0

4.41741 -0.697486

Q factor: 2×2 LinearAlgebra.LQPackedQ{Float64, Matrix{Float64}, Vector{Float64}}

julia> S.L * S.Q

2×2 Matrix{Float64}:

5.0 7.0

-2.0 -4.0

julia> l, q = S; # destructuring via iteration

julia> l == S.L && q == S.Q

true

LinearAlgebra.lq! – Function.

CHAPTER 78. LINEAR ALGEBRA 1271

lq!(A) -> LQ

Compute the LQ factorization of A, using the input matrix as a workspace. See also lq.

LinearAlgebra.BunchKaufman – Type.

BunchKaufman <: Factorization

Matrix factorization type of the Bunch-Kaufman factorization of a symmetric or Hermitian matrix A as

P'UDU'P or P'LDL'P, depending on whether the upper (the default) or the lower triangle is stored in

A. If A is complex symmetric then U' and L' denote the unconjugated transposes, i.e. transpose(U)

and transpose(L), respectively. This is the return type of bunchkaufman, the corresponding matrix

factorization function.

If S::BunchKaufman is the factorization object, the components can be obtained via S.D, S.U or S.L as

appropriate given S.uplo, and S.p.

Iterating the decomposition produces the components S.D, S.U or S.L as appropriate given S.uplo,

and S.p.

Examples

julia> A = [1 2; 2 3]

2×2 Matrix{Int64}:

1 2

2 3

julia> S = bunchkaufman(A) # A gets wrapped internally by Symmetric(A)

BunchKaufman{Float64, Matrix{Float64}, Vector{Int64}}

D factor:

2×2 Tridiagonal{Float64, Vector{Float64}}:

-0.333333 0.0

0.0 3.0

U factor:

2×2 UnitUpperTriangular{Float64, Matrix{Float64}}:

1.0 0.666667

⋅ 1.0

permutation:

2-element Vector{Int64}:

1

2

julia> d, u, p = S; # destructuring via iteration

julia> d == S.D && u == S.U && p == S.p

true

julia> S = bunchkaufman(Symmetric(A, :L))

BunchKaufman{Float64, Matrix{Float64}, Vector{Int64}}

D factor:

2×2 Tridiagonal{Float64, Vector{Float64}}:

3.0 0.0

0.0 -0.333333

L factor:

CHAPTER 78. LINEAR ALGEBRA 1272

2×2 UnitLowerTriangular{Float64, Matrix{Float64}}:

1.0 ⋅

0.666667 1.0

permutation:

2-element Vector{Int64}:

2

1

LinearAlgebra.bunchkaufman – Function.

bunchkaufman(A, rook::Bool=false; check = true) -> S::BunchKaufman

Compute the Bunch-Kaufman 7 factorization of a symmetric or Hermitian matrix A as P'*U*D*U'*P or

P'*L*D*L'*P, depending on which triangle is stored in A, and return a BunchKaufman object. Note that

if A is complex symmetric then U' and L' denote the unconjugated transposes, i.e. transpose(U) and

transpose(L).

Iterating the decomposition produces the components S.D, S.U or S.L as appropriate given S.uplo,

and S.p.

If rook is true, rook pivoting is used. If rook is false, rook pivoting is not used.

When check = true, an error is thrown if the decomposition fails. When check = false, responsibility

for checking the decomposition's validity (via issuccess) lies with the user.

The following functions are available for BunchKaufman objects: size, \, inv, issymmetric, ishermitian,

getindex.

Examples

julia> A = [1 2; 2 3]

2×2 Matrix{Int64}:

1 2

2 3

julia> S = bunchkaufman(A) # A gets wrapped internally by Symmetric(A)

BunchKaufman{Float64, Matrix{Float64}, Vector{Int64}}

D factor:

2×2 Tridiagonal{Float64, Vector{Float64}}:

-0.333333 0.0

0.0 3.0

U factor:

2×2 UnitUpperTriangular{Float64, Matrix{Float64}}:

1.0 0.666667

⋅ 1.0

permutation:

2-element Vector{Int64}:

1

2

julia> d, u, p = S; # destructuring via iteration

7J R Bunch and L Kaufman, Some stable methods for calculating inertia and solving symmetric linear systems, Mathematics of

Computation 31:137 (1977), 163-179. url.

http://www.ams.org/journals/mcom/1977-31-137/S0025-5718-1977-0428694-0/

CHAPTER 78. LINEAR ALGEBRA 1273

julia> d == S.D && u == S.U && p == S.p

true

julia> S.U*S.D*S.U' - S.P*A*S.P'

2×2 Matrix{Float64}:

0.0 0.0

0.0 0.0

julia> S = bunchkaufman(Symmetric(A, :L))

BunchKaufman{Float64, Matrix{Float64}, Vector{Int64}}

D factor:

2×2 Tridiagonal{Float64, Vector{Float64}}:

3.0 0.0

0.0 -0.333333

L factor:

2×2 UnitLowerTriangular{Float64, Matrix{Float64}}:

1.0 ⋅

0.666667 1.0

permutation:

2-element Vector{Int64}:

2

1

julia> S.L*S.D*S.L' - A[S.p, S.p]

2×2 Matrix{Float64}:

0.0 0.0

0.0 0.0

LinearAlgebra.bunchkaufman! – Function.

bunchkaufman!(A, rook::Bool=false; check = true) -> BunchKaufman

bunchkaufman! is the same as bunchkaufman, but saves space by overwriting the input A, instead of

creating a copy.

LinearAlgebra.Eigen – Type.

Eigen <: Factorization

Matrix factorization type of the eigenvalue/spectral decomposition of a square matrix A. This is the

return type of eigen, the corresponding matrix factorization function.

If F::Eigen is the factorization object, the eigenvalues can be obtained via F.values and the eigen-

vectors as the columns of the matrix F.vectors. (The kth eigenvector can be obtained from the slice

F.vectors[:, k].)

Iterating the decomposition produces the components F.values and F.vectors.

Examples

julia> F = eigen([1.0 0.0 0.0; 0.0 3.0 0.0; 0.0 0.0 18.0])

Eigen{Float64, Float64, Matrix{Float64}, Vector{Float64}}

values:

CHAPTER 78. LINEAR ALGEBRA 1274

3-element Vector{Float64}:

1.0

3.0

18.0

vectors:

3×3 Matrix{Float64}:

1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

julia> F.values

3-element Vector{Float64}:

1.0

3.0

18.0

julia> F.vectors

3×3 Matrix{Float64}:

1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

julia> vals, vecs = F; # destructuring via iteration

julia> vals == F.values && vecs == F.vectors

true

LinearAlgebra.GeneralizedEigen – Type.

GeneralizedEigen <: Factorization

Matrix factorization type of the generalized eigenvalue/spectral decomposition of A and B. This is the

return type of eigen, the corresponding matrix factorization function, when called with two matrix

arguments.

If F::GeneralizedEigen is the factorization object, the eigenvalues can be obtained via F.values and

the eigenvectors as the columns of the matrix F.vectors. (The kth eigenvector can be obtained from

the slice F.vectors[:, k].)

Iterating the decomposition produces the components F.values and F.vectors.

Examples

julia> A = [1 0; 0 -1]

2×2 Matrix{Int64}:

1 0

0 -1

julia> B = [0 1; 1 0]

2×2 Matrix{Int64}:

0 1

1 0

julia> F = eigen(A, B)

CHAPTER 78. LINEAR ALGEBRA 1275

GeneralizedEigen{ComplexF64, ComplexF64, Matrix{ComplexF64}, Vector{ComplexF64}}

values:

2-element Vector{ComplexF64}:

0.0 - 1.0im

0.0 + 1.0im

vectors:

2×2 Matrix{ComplexF64}:

0.0+1.0im 0.0-1.0im

-1.0+0.0im -1.0-0.0im

julia> F.values

2-element Vector{ComplexF64}:

0.0 - 1.0im

0.0 + 1.0im

julia> F.vectors

2×2 Matrix{ComplexF64}:

0.0+1.0im 0.0-1.0im

-1.0+0.0im -1.0-0.0im

julia> vals, vecs = F; # destructuring via iteration

julia> vals == F.values && vecs == F.vectors

true

LinearAlgebra.eigvals – Function.

eigvals(A; permute::Bool=true, scale::Bool=true, sortby) -> values

Return the eigenvalues of A.

For general non-symmetric matrices it is possible to specify how the matrix is balanced before the

eigenvalue calculation. The permute, scale, and sortby keywords are the same as for eigen.

Examples

julia> diag_matrix = [1 0; 0 4]

2×2 Matrix{Int64}:

1 0

0 4

julia> eigvals(diag_matrix)

2-element Vector{Float64}:

1.0

4.0

For a scalar input, eigvals will return a scalar.

Example

julia> eigvals(-2)

-2

eigvals(A, B) -> values

CHAPTER 78. LINEAR ALGEBRA 1276

Compute the generalized eigenvalues of A and B.

Examples

julia> A = [1 0; 0 -1]

2×2 Matrix{Int64}:

1 0

0 -1

julia> B = [0 1; 1 0]

2×2 Matrix{Int64}:

0 1

1 0

julia> eigvals(A,B)

2-element Vector{ComplexF64}:

0.0 - 1.0im

0.0 + 1.0im

eigvals(A::Union{SymTridiagonal, Hermitian, Symmetric}, irange::UnitRange) -> values

Return the eigenvalues of A. It is possible to calculate only a subset of the eigenvalues by specifying a

UnitRange irange covering indices of the sorted eigenvalues, e.g. the 2nd to 8th eigenvalues.

Examples

julia> A = SymTridiagonal([1.; 2.; 1.], [2.; 3.])

3×3 SymTridiagonal{Float64, Vector{Float64}}:

1.0 2.0 ⋅

2.0 2.0 3.0

⋅ 3.0 1.0

julia> eigvals(A, 2:2)

1-element Vector{Float64}:

0.9999999999999996

julia> eigvals(A)

3-element Vector{Float64}:

-2.1400549446402604

1.0000000000000002

5.140054944640259

eigvals(A::Union{SymTridiagonal, Hermitian, Symmetric}, vl::Real, vu::Real) -> values

Return the eigenvalues of A. It is possible to calculate only a subset of the eigenvalues by specifying a

pair vl and vu for the lower and upper boundaries of the eigenvalues.

Examples

julia> A = SymTridiagonal([1.; 2.; 1.], [2.; 3.])

3×3 SymTridiagonal{Float64, Vector{Float64}}:

1.0 2.0 ⋅

2.0 2.0 3.0

⋅ 3.0 1.0

CHAPTER 78. LINEAR ALGEBRA 1277

julia> eigvals(A, -1, 2)

1-element Vector{Float64}:

1.0000000000000009

julia> eigvals(A)

3-element Vector{Float64}:

-2.1400549446402604

1.0000000000000002

5.140054944640259

LinearAlgebra.eigvals! – Function.

eigvals!(A; permute::Bool=true, scale::Bool=true, sortby) -> values

Same as eigvals, but saves space by overwriting the input A, instead of creating a copy. The permute,

scale, and sortby keywords are the same as for eigen.

Note

The input matrix A will not contain its eigenvalues after eigvals! is called on it - A is used

as a workspace.

Examples

julia> A = [1. 2.; 3. 4.]

2×2 Matrix{Float64}:

1.0 2.0

3.0 4.0

julia> eigvals!(A)

2-element Vector{Float64}:

-0.3722813232690143

5.372281323269014

julia> A

2×2 Matrix{Float64}:

-0.372281 -1.0

0.0 5.37228

eigvals!(A, B; sortby) -> values

Same as eigvals, but saves space by overwriting the input A (and B), instead of creating copies.

Note

The input matrices A and B will not contain their eigenvalues after eigvals! is called. They

are used as workspaces.

Examples

julia> A = [1. 0.; 0. -1.]

2×2 Matrix{Float64}:

1.0 0.0

CHAPTER 78. LINEAR ALGEBRA 1278

0.0 -1.0

julia> B = [0. 1.; 1. 0.]

2×2 Matrix{Float64}:

0.0 1.0

1.0 0.0

julia> eigvals!(A, B)

2-element Vector{ComplexF64}:

0.0 - 1.0im

0.0 + 1.0im

julia> A

2×2 Matrix{Float64}:

-0.0 -1.0

1.0 -0.0

julia> B

2×2 Matrix{Float64}:

1.0 0.0

0.0 1.0

eigvals!(A::Union{SymTridiagonal, Hermitian, Symmetric}, irange::UnitRange) -> values

Same as eigvals, but saves space by overwriting the input A, instead of creating a copy. irange is a

range of eigenvalue indices to search for - for instance, the 2nd to 8th eigenvalues.

eigvals!(A::Union{SymTridiagonal, Hermitian, Symmetric}, vl::Real, vu::Real) -> values

Same as eigvals, but saves space by overwriting the input A, instead of creating a copy. vl is the

lower bound of the interval to search for eigenvalues, and vu is the upper bound.

LinearAlgebra.eigmax – Function.

eigmax(A; permute::Bool=true, scale::Bool=true)

Return the largest eigenvalue of A. The option permute=true permutes the matrix to become closer

to upper triangular, and scale=true scales the matrix by its diagonal elements to make rows and

columns more equal in norm. Note that if the eigenvalues of A are complex, this method will fail, since

complex numbers cannot be sorted.

Examples

julia> A = [0 im; -im 0]

2×2 Matrix{Complex{Int64}}:

0+0im 0+1im

0-1im 0+0im

julia> eigmax(A)

1.0

julia> A = [0 im; -1 0]

2×2 Matrix{Complex{Int64}}:

0+0im 0+1im

CHAPTER 78. LINEAR ALGEBRA 1279

-1+0im 0+0im

julia> eigmax(A)

ERROR: DomainError with Complex{Int64}[0+0im 0+1im; -1+0im 0+0im]:

`A` cannot have complex eigenvalues.

Stacktrace:

[...]

LinearAlgebra.eigmin – Function.

eigmin(A; permute::Bool=true, scale::Bool=true)

Return the smallest eigenvalue of A. The option permute=true permutes the matrix to become closer

to upper triangular, and scale=true scales the matrix by its diagonal elements to make rows and

columns more equal in norm. Note that if the eigenvalues of A are complex, this method will fail, since

complex numbers cannot be sorted.

Examples

julia> A = [0 im; -im 0]

2×2 Matrix{Complex{Int64}}:

0+0im 0+1im

0-1im 0+0im

julia> eigmin(A)

-1.0

julia> A = [0 im; -1 0]

2×2 Matrix{Complex{Int64}}:

0+0im 0+1im

-1+0im 0+0im

julia> eigmin(A)

ERROR: DomainError with Complex{Int64}[0+0im 0+1im; -1+0im 0+0im]:

`A` cannot have complex eigenvalues.

Stacktrace:

[...]

LinearAlgebra.eigvecs – Function.

eigvecs(A::SymTridiagonal[, eigvals]) -> Matrix

Return a matrix M whose columns are the eigenvectors of A. (The kth eigenvector can be obtained from

the slice M[:, k].)

If the optional vector of eigenvalues eigvals is specified, eigvecs returns the specific corresponding

eigenvectors.

Examples

julia> A = SymTridiagonal([1.; 2.; 1.], [2.; 3.])

3×3 SymTridiagonal{Float64, Vector{Float64}}:

1.0 2.0 ⋅

2.0 2.0 3.0

CHAPTER 78. LINEAR ALGEBRA 1280

⋅ 3.0 1.0

julia> eigvals(A)

3-element Vector{Float64}:

-2.1400549446402604

1.0000000000000002

5.140054944640259

julia> eigvecs(A)

3×3 Matrix{Float64}:

0.418304 -0.83205 0.364299

-0.656749 -7.39009e-16 0.754109

0.627457 0.5547 0.546448

julia> eigvecs(A, [1.])

3×1 Matrix{Float64}:

0.8320502943378438

4.263514128092366e-17

-0.5547001962252291

eigvecs(A; permute::Bool=true, scale::Bool=true, `sortby`) -> Matrix

Return a matrix M whose columns are the eigenvectors of A. (The kth eigenvector can be obtained from

the slice M[:, k].) The permute, scale, and sortby keywords are the same as for eigen.

Examples

julia> eigvecs([1.0 0.0 0.0; 0.0 3.0 0.0; 0.0 0.0 18.0])

3×3 Matrix{Float64}:

1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

eigvecs(A, B) -> Matrix

Return a matrix M whose columns are the generalized eigenvectors of A and B. (The kth eigenvector

can be obtained from the slice M[:, k].)

Examples

julia> A = [1 0; 0 -1]

2×2 Matrix{Int64}:

1 0

0 -1

julia> B = [0 1; 1 0]

2×2 Matrix{Int64}:

0 1

1 0

julia> eigvecs(A, B)

2×2 Matrix{ComplexF64}:

0.0+1.0im 0.0-1.0im

-1.0+0.0im -1.0-0.0im

CHAPTER 78. LINEAR ALGEBRA 1281

LinearAlgebra.eigen – Function.

eigen(A; permute::Bool=true, scale::Bool=true, sortby) -> Eigen

Compute the eigenvalue decomposition of A, returning an Eigen factorization object F which contains

the eigenvalues in F.values and the eigenvectors in the columns of the matrix F.vectors. This corre-

sponds to solving an eigenvalue problem of the form Ax = λx, where A is a matrix, x is an eigenvector,

and λ is an eigenvalue. (The kth eigenvector can be obtained from the slice F.vectors[:, k].)

Iterating the decomposition produces the components F.values and F.vectors.

The following functions are available for Eigen objects: inv, det, and isposdef.

For general nonsymmetric matrices it is possible to specify how the matrix is balanced before the

eigenvector calculation. The option permute=true permutes the matrix to become closer to upper

triangular, and scale=true scales the matrix by its diagonal elements to make rows and columns

more equal in norm. The default is true for both options.

By default, the eigenvalues and vectors are sorted lexicographically by (real(λ),imag(λ)). A different

comparison function by(λ) can be passed to sortby, or you can pass sortby=nothing to leave the

eigenvalues in an arbitrary order. Some special matrix types (e.g. Diagonal or SymTridiagonal) may

implement their own sorting convention and not accept a sortby keyword.

Examples

julia> F = eigen([1.0 0.0 0.0; 0.0 3.0 0.0; 0.0 0.0 18.0])

Eigen{Float64, Float64, Matrix{Float64}, Vector{Float64}}

values:

3-element Vector{Float64}:

1.0

3.0

18.0

vectors:

3×3 Matrix{Float64}:

1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

julia> F.values

3-element Vector{Float64}:

1.0

3.0

18.0

julia> F.vectors

3×3 Matrix{Float64}:

1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

julia> vals, vecs = F; # destructuring via iteration

julia> vals == F.values && vecs == F.vectors

true

CHAPTER 78. LINEAR ALGEBRA 1282

eigen(A, B; sortby) -> GeneralizedEigen

Compute the generalized eigenvalue decomposition of A and B, returning a GeneralizedEigen factor-

ization object F which contains the generalized eigenvalues in F.values and the generalized eigen-

vectors in the columns of the matrix F.vectors. This corresponds to solving a generalized eigenvalue

problem of the form Ax = λBx, where A, B are matrices, x is an eigenvector, and λ is an eigenvalue.

(The kth generalized eigenvector can be obtained from the slice F.vectors[:, k].)

Iterating the decomposition produces the components F.values and F.vectors.

By default, the eigenvalues and vectors are sorted lexicographically by (real(λ),imag(λ)). A different

comparison function by(λ) can be passed to sortby, or you can pass sortby=nothing to leave the

eigenvalues in an arbitrary order.

Examples

julia> A = [1 0; 0 -1]

2×2 Matrix{Int64}:

1 0

0 -1

julia> B = [0 1; 1 0]

2×2 Matrix{Int64}:

0 1

1 0

julia> F = eigen(A, B);

julia> F.values

2-element Vector{ComplexF64}:

0.0 - 1.0im

0.0 + 1.0im

julia> F.vectors

2×2 Matrix{ComplexF64}:

0.0+1.0im 0.0-1.0im

-1.0+0.0im -1.0-0.0im

julia> vals, vecs = F; # destructuring via iteration

julia> vals == F.values && vecs == F.vectors

true

eigen(A::Union{SymTridiagonal, Hermitian, Symmetric}, irange::UnitRange) -> Eigen

Compute the eigenvalue decomposition of A, returning an Eigen factorization object F which contains

the eigenvalues in F.values and the eigenvectors in the columns of the matrix F.vectors. (The kth

eigenvector can be obtained from the slice F.vectors[:, k].)

Iterating the decomposition produces the components F.values and F.vectors.

The following functions are available for Eigen objects: inv, det, and isposdef.

The UnitRange irange specifies indices of the sorted eigenvalues to search for.

CHAPTER 78. LINEAR ALGEBRA 1283

Note

If irange is not 1:n, where n is the dimension of A, then the returned factorization will be a

truncated factorization.

eigen(A::Union{SymTridiagonal, Hermitian, Symmetric}, vl::Real, vu::Real) -> Eigen

Compute the eigenvalue decomposition of A, returning an Eigen factorization object F which contains

the eigenvalues in F.values and the eigenvectors in the columns of the matrix F.vectors. (The kth

eigenvector can be obtained from the slice F.vectors[:, k].)

Iterating the decomposition produces the components F.values and F.vectors.

The following functions are available for Eigen objects: inv, det, and isposdef.

vl is the lower bound of the window of eigenvalues to search for, and vu is the upper bound.

Note

If [vl, vu] does not contain all eigenvalues of A, then the returned factorization will be a

truncated factorization.

LinearAlgebra.eigen! – Function.

eigen!(A; permute, scale, sortby)

eigen!(A, B; sortby)

Same as eigen, but saves space by overwriting the input A (and B), instead of creating a copy.

LinearAlgebra.Hessenberg – Type.

Hessenberg <: Factorization

A Hessenberg object represents the Hessenberg factorization QHQ' of a squarematrix, or a shift Q(H+μI)Q'

thereof, which is produced by the hessenberg function.

LinearAlgebra.hessenberg – Function.

hessenberg(A) -> Hessenberg

Compute the Hessenberg decomposition of A and return a Hessenberg object. If F is the factorization

object, the unitary matrix can be accessed with F.Q (of type LinearAlgebra.HessenbergQ) and the

Hessenberg matrix with F.H (of type UpperHessenberg), either of which may be converted to a regular

matrix with Matrix(F.H) or Matrix(F.Q).

If A is Hermitian or real-Symmetric, then the Hessenberg decomposition produces a real-symmetric

tridiagonal matrix and F.H is of type SymTridiagonal.

Note that the shifted factorization A+μI = Q (H+μI) Q' can be constructed efficiently by F + μ*I

using the UniformScaling object I, which creates a new Hessenberg object with shared storage and a

modified shift. The shift of a given F is obtained by F.μ. This is useful because multiple shifted solves

(F + μ*I) \ b (for different μ and/or b) can be performed efficiently once F is created.

Iterating the decomposition produces the factors F.Q, F.H, F.μ.

Examples

CHAPTER 78. LINEAR ALGEBRA 1284

julia> A = [4. 9. 7.; 4. 4. 1.; 4. 3. 2.]

3×3 Matrix{Float64}:

4.0 9.0 7.0

4.0 4.0 1.0

4.0 3.0 2.0

julia> F = hessenberg(A)

Hessenberg{Float64, UpperHessenberg{Float64, Matrix{Float64}}, Matrix{Float64},

Vector{Float64}, Bool}↪→

Q factor: 3×3 LinearAlgebra.HessenbergQ{Float64, Matrix{Float64}, Vector{Float64}, false}

H factor:

3×3 UpperHessenberg{Float64, Matrix{Float64}}:

4.0 -11.3137 -1.41421

-5.65685 5.0 2.0

⋅ -8.88178e-16 1.0

julia> F.Q * F.H * F.Q'

3×3 Matrix{Float64}:

4.0 9.0 7.0

4.0 4.0 1.0

4.0 3.0 2.0

julia> q, h = F; # destructuring via iteration

julia> q == F.Q && h == F.H

true

LinearAlgebra.hessenberg! – Function.

hessenberg!(A) -> Hessenberg

hessenberg! is the same as hessenberg, but saves space by overwriting the input A, instead of cre-

ating a copy.

LinearAlgebra.Schur – Type.

Schur <: Factorization

Matrix factorization type of the Schur factorization of a matrix A. This is the return type of schur(_),

the corresponding matrix factorization function.

If F::Schur is the factorization object, the (quasi) triangular Schur factor can be obtained via ei-

ther F.Schur or F.T and the orthogonal/unitary Schur vectors via F.vectors or F.Z such that A =

F.vectors * F.Schur * F.vectors'. The eigenvalues of A can be obtained with F.values.

Iterating the decomposition produces the components F.T, F.Z, and F.values.

Examples

julia> A = [5. 7.; -2. -4.]

2×2 Matrix{Float64}:

5.0 7.0

-2.0 -4.0

CHAPTER 78. LINEAR ALGEBRA 1285

julia> F = schur(A)

Schur{Float64, Matrix{Float64}, Vector{Float64}}

T factor:

2×2 Matrix{Float64}:

3.0 9.0

0.0 -2.0

Z factor:

2×2 Matrix{Float64}:

0.961524 0.274721

-0.274721 0.961524

eigenvalues:

2-element Vector{Float64}:

3.0

-2.0

julia> F.vectors * F.Schur * F.vectors'

2×2 Matrix{Float64}:

5.0 7.0

-2.0 -4.0

julia> t, z, vals = F; # destructuring via iteration

julia> t == F.T && z == F.Z && vals == F.values

true

LinearAlgebra.GeneralizedSchur – Type.

GeneralizedSchur <: Factorization

Matrix factorization type of the generalized Schur factorization of two matrices A and B. This is the

return type of schur(_, _), the corresponding matrix factorization function.

If F::GeneralizedSchur is the factorization object, the (quasi) triangular Schur factors can be ob-

tained via F.S and F.T, the left unitary/orthogonal Schur vectors via F.left or F.Q, and the right uni-

tary/orthogonal Schur vectors can be obtained with F.right or F.Z such that A=F.left*F.S*F.right'

and B=F.left*F.T*F.right'. The generalized eigenvalues of A and B can be obtained with F.α./F.β.

Iterating the decomposition produces the components F.S, F.T, F.Q, F.Z, F.α, and F.β.

LinearAlgebra.schur – Function.

schur(A) -> F::Schur

Computes the Schur factorization of the matrix A. The (quasi) triangular Schur factor can be obtained

from the Schur object F with either F.Schur or F.T and the orthogonal/unitary Schur vectors can be ob-

tained with F.vectors or F.Z such that A = F.vectors * F.Schur * F.vectors'. The eigenvalues

of A can be obtained with F.values.

For real A, the Schur factorization is "quasitriangular", which means that it is upper-triangular except

with 2×2 diagonal blocks for any conjugate pair of complex eigenvalues; this allows the factorization

to be purely real even when there are complex eigenvalues. To obtain the (complex) purely upper-

triangular Schur factorization from a real quasitriangular factorization, you can use Schur{Complex}(schur(A)).

Iterating the decomposition produces the components F.T, F.Z, and F.values.

Examples

CHAPTER 78. LINEAR ALGEBRA 1286

julia> A = [5. 7.; -2. -4.]

2×2 Matrix{Float64}:

5.0 7.0

-2.0 -4.0

julia> F = schur(A)

Schur{Float64, Matrix{Float64}, Vector{Float64}}

T factor:

2×2 Matrix{Float64}:

3.0 9.0

0.0 -2.0

Z factor:

2×2 Matrix{Float64}:

0.961524 0.274721

-0.274721 0.961524

eigenvalues:

2-element Vector{Float64}:

3.0

-2.0

julia> F.vectors * F.Schur * F.vectors'

2×2 Matrix{Float64}:

5.0 7.0

-2.0 -4.0

julia> t, z, vals = F; # destructuring via iteration

julia> t == F.T && z == F.Z && vals == F.values

true

schur(A, B) -> F::GeneralizedSchur

Computes the Generalized Schur (or QZ) factorization of the matrices A and B. The (quasi) triangular

Schur factors can be obtained from the Schur object F with F.S and F.T, the left unitary/orthogonal

Schur vectors can be obtained with F.left or F.Q and the right unitary/orthogonal Schur vectors can

be obtained with F.right or F.Z such that A=F.left*F.S*F.right' and B=F.left*F.T*F.right'.

The generalized eigenvalues of A and B can be obtained with F.α./F.β.

Iterating the decomposition produces the components F.S, F.T, F.Q, F.Z, F.α, and F.β.

LinearAlgebra.schur! – Function.

schur!(A) -> F::Schur

Same as schur but uses the input argument A as workspace.

Examples

julia> A = [5. 7.; -2. -4.]

2×2 Matrix{Float64}:

5.0 7.0

-2.0 -4.0

julia> F = schur!(A)

CHAPTER 78. LINEAR ALGEBRA 1287

Schur{Float64, Matrix{Float64}, Vector{Float64}}

T factor:

2×2 Matrix{Float64}:

3.0 9.0

0.0 -2.0

Z factor:

2×2 Matrix{Float64}:

0.961524 0.274721

-0.274721 0.961524

eigenvalues:

2-element Vector{Float64}:

3.0

-2.0

julia> A

2×2 Matrix{Float64}:

3.0 9.0

0.0 -2.0

schur!(A::StridedMatrix, B::StridedMatrix) -> F::GeneralizedSchur

Same as schur but uses the input matrices A and B as workspace.

LinearAlgebra.ordschur – Function.

ordschur(F::Schur, select::Union{Vector{Bool},BitVector}) -> F::Schur

Reorders the Schur factorization F of a matrix A = Z*T*Z' according to the logical array select re-

turning the reordered factorization F object. The selected eigenvalues appear in the leading diagonal

of F.Schur and the corresponding leading columns of F.vectors form an orthogonal/unitary basis of

the corresponding right invariant subspace. In the real case, a complex conjugate pair of eigenvalues

must be either both included or both excluded via select.

ordschur(F::GeneralizedSchur, select::Union{Vector{Bool},BitVector}) -> F::GeneralizedSchur

Reorders the Generalized Schur factorization F of a matrix pair (A, B) = (Q*S*Z', Q*T*Z') according

to the logical array select and returns a GeneralizedSchur object F. The selected eigenvalues appear

in the leading diagonal of both F.S and F.T, and the left and right orthogonal/unitary Schur vectors are

also reordered such that (A, B) = F.Q*(F.S, F.T)*F.Z' still holds and the generalized eigenvalues

of A and B can still be obtained with F.α./F.β.

LinearAlgebra.ordschur! – Function.

ordschur!(F::Schur, select::Union{Vector{Bool},BitVector}) -> F::Schur

Same as ordschur but overwrites the factorization F.

ordschur!(F::GeneralizedSchur, select::Union{Vector{Bool},BitVector}) -> F::GeneralizedSchur

Same as ordschur but overwrites the factorization F.

LinearAlgebra.SVD – Type.

SVD <: Factorization

CHAPTER 78. LINEAR ALGEBRA 1288

Matrix factorization type of the singular value decomposition (SVD) of a matrix A. This is the return type

of svd(_), the corresponding matrix factorization function.

If F::SVD is the factorization object, U, S, V and Vt can be obtained via F.U, F.S, F.V and F.Vt, such

that A = U * Diagonal(S) * Vt. The singular values in S are sorted in descending order.

Iterating the decomposition produces the components U, S, and V.

Examples

julia> A = [1. 0. 0. 0. 2.; 0. 0. 3. 0. 0.; 0. 0. 0. 0. 0.; 0. 2. 0. 0. 0.]

4×5 Matrix{Float64}:

1.0 0.0 0.0 0.0 2.0

0.0 0.0 3.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 2.0 0.0 0.0 0.0

julia> F = svd(A)

SVD{Float64, Float64, Matrix{Float64}, Vector{Float64}}

U factor:

4×4 Matrix{Float64}:

0.0 1.0 0.0 0.0

1.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0

0.0 0.0 -1.0 0.0

singular values:

4-element Vector{Float64}:

3.0

2.23606797749979

2.0

0.0

Vt factor:

4×5 Matrix{Float64}:

-0.0 0.0 1.0 -0.0 0.0

0.447214 0.0 0.0 0.0 0.894427

0.0 -1.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.0

julia> F.U * Diagonal(F.S) * F.Vt

4×5 Matrix{Float64}:

1.0 0.0 0.0 0.0 2.0

0.0 0.0 3.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 2.0 0.0 0.0 0.0

julia> u, s, v = F; # destructuring via iteration

julia> u == F.U && s == F.S && v == F.V

true

LinearAlgebra.GeneralizedSVD – Type.

GeneralizedSVD <: Factorization

CHAPTER 78. LINEAR ALGEBRA 1289

Matrix factorization type of the generalized singular value decomposition (SVD) of twomatrices A and B,

such that A = F.U*F.D1*F.R0*F.Q' and B = F.V*F.D2*F.R0*F.Q'. This is the return type of svd(_,

_), the corresponding matrix factorization function.

For an M-by-N matrix A and P-by-N matrix B,

• U is a M-by-M orthogonal matrix,

• V is a P-by-P orthogonal matrix,

• Q is a N-by-N orthogonal matrix,

• D1 is a M-by-(K+L) diagonal matrix with 1s in the first K entries,

• D2 is a P-by-(K+L) matrix whose top right L-by-L block is diagonal,

• R0 is a (K+L)-by-N matrix whose rightmost (K+L)-by-(K+L) block is nonsingular upper block trian-

gular,

K+L is the effective numerical rank of the matrix [A; B].

Iterating the decomposition produces the components U, V, Q, D1, D2, and R0.

The entries of F.D1 and F.D2 are related, as explained in the LAPACK documentation for the generalized

SVD and the xGGSVD3 routine which is called underneath (in LAPACK 3.6.0 and newer).

Examples

julia> A = [1. 0.; 0. -1.]

2×2 Matrix{Float64}:

1.0 0.0

0.0 -1.0

julia> B = [0. 1.; 1. 0.]

2×2 Matrix{Float64}:

0.0 1.0

1.0 0.0

julia> F = svd(A, B)

GeneralizedSVD{Float64, Matrix{Float64}, Float64, Vector{Float64}}

U factor:

2×2 Matrix{Float64}:

1.0 0.0

0.0 1.0

V factor:

2×2 Matrix{Float64}:

-0.0 -1.0

1.0 0.0

Q factor:

2×2 Matrix{Float64}:

1.0 0.0

0.0 1.0

D1 factor:

2×2 Matrix{Float64}:

0.707107 0.0

0.0 0.707107

D2 factor:

http://www.netlib.org/lapack/lug/node36.html
http://www.netlib.org/lapack/lug/node36.html
http://www.netlib.org/lapack/explore-html/d6/db3/dggsvd3_8f.html

CHAPTER 78. LINEAR ALGEBRA 1290

2×2 Matrix{Float64}:

0.707107 0.0

0.0 0.707107

R0 factor:

2×2 Matrix{Float64}:

1.41421 0.0

0.0 -1.41421

julia> F.U*F.D1*F.R0*F.Q'

2×2 Matrix{Float64}:

1.0 0.0

0.0 -1.0

julia> F.V*F.D2*F.R0*F.Q'

2×2 Matrix{Float64}:

-0.0 1.0

1.0 0.0

LinearAlgebra.svd – Function.

svd(A; full::Bool = false, alg::Algorithm = default_svd_alg(A)) -> SVD

Compute the singular value decomposition (SVD) of A and return an SVD object.

U, S, V and Vt can be obtained from the factorization F with F.U, F.S, F.V and F.Vt, such that A = U *

Diagonal(S) * Vt. The algorithm produces Vt and hence Vt is more efficient to extract than V. The

singular values in S are sorted in descending order.

Iterating the decomposition produces the components U, S, and V.

If full = false (default), a "thin" SVD is returned. For anM × N matrix A, in the full factorization

U is M × M and V is N × N , while in the thin factorization U is M × K and V is N × K, where
K = min(M,N) is the number of singular values.

If alg = DivideAndConquer() a divide-and-conquer algorithm is used to calculate the SVD. Another

(typically slower but more accurate) option is alg = QRIteration().

Julia 1.3

The alg keyword argument requires Julia 1.3 or later.

Examples

julia> A = rand(4,3);

julia> F = svd(A); # Store the Factorization Object

julia> A ≈ F.U * Diagonal(F.S) * F.Vt

true

julia> U, S, V = F; # destructuring via iteration

julia> A ≈ U * Diagonal(S) * V'

true

CHAPTER 78. LINEAR ALGEBRA 1291

julia> Uonly, = svd(A); # Store U only

julia> Uonly == U

true

svd(A, B) -> GeneralizedSVD

Compute the generalized SVD of A and B, returning a GeneralizedSVD factorization object F such that

[A;B] = [F.U * F.D1; F.V * F.D2] * F.R0 * F.Q'

• U is a M-by-M orthogonal matrix,

• V is a P-by-P orthogonal matrix,

• Q is a N-by-N orthogonal matrix,

• D1 is a M-by-(K+L) diagonal matrix with 1s in the first K entries,

• D2 is a P-by-(K+L) matrix whose top right L-by-L block is diagonal,

• R0 is a (K+L)-by-N matrix whose rightmost (K+L)-by-(K+L) block is nonsingular upper block trian-

gular,

K+L is the effective numerical rank of the matrix [A; B].

Iterating the decomposition produces the components U, V, Q, D1, D2, and R0.

The generalized SVD is used in applications such as when one wants to compare how much belongs to

A vs. how much belongs to B, as in human vs yeast genome, or signal vs noise, or between clusters vs

within clusters. (See Edelman and Wang for discussion: https://arxiv.org/abs/1901.00485)

It decomposes [A; B] into [UC; VS]H, where [UC; VS] is a natural orthogonal basis for the column

space of [A; B], and H = RQ' is a natural non-orthogonal basis for the rowspace of [A;B], where

the top rows are most closely attributed to the A matrix, and the bottom to the B matrix. The multi-

cosine/sine matrices C and S provide a multi-measure of how much A vs how much B, and U and V

provide directions in which these are measured.

Examples

julia> A = randn(3,2); B=randn(4,2);

julia> F = svd(A, B);

julia> U,V,Q,C,S,R = F;

julia> H = R*Q';

julia> [A; B] ≈ [U*C; V*S]*H

true

julia> [A; B] ≈ [F.U*F.D1; F.V*F.D2]*F.R0*F.Q'

true

julia> Uonly, = svd(A,B);

julia> U == Uonly

true

CHAPTER 78. LINEAR ALGEBRA 1292

LinearAlgebra.svd! – Function.

svd!(A; full::Bool = false, alg::Algorithm = default_svd_alg(A)) -> SVD

svd! is the same as svd, but saves space by overwriting the input A, instead of creating a copy. See

documentation of svd for details.

svd!(A, B) -> GeneralizedSVD

svd! is the same as svd, but modifies the arguments A and B in-place, instead of making copies. See

documentation of svd for details.

LinearAlgebra.svdvals – Function.

svdvals(A)

Return the singular values of A in descending order.

Examples

julia> A = [1. 0. 0. 0. 2.; 0. 0. 3. 0. 0.; 0. 0. 0. 0. 0.; 0. 2. 0. 0. 0.]

4×5 Matrix{Float64}:

1.0 0.0 0.0 0.0 2.0

0.0 0.0 3.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 2.0 0.0 0.0 0.0

julia> svdvals(A)

4-element Vector{Float64}:

3.0

2.23606797749979

2.0

0.0

svdvals(A, B)

Return the generalized singular values from the generalized singular value decomposition of A and B.

See also svd.

Examples

julia> A = [1. 0.; 0. -1.]

2×2 Matrix{Float64}:

1.0 0.0

0.0 -1.0

julia> B = [0. 1.; 1. 0.]

2×2 Matrix{Float64}:

0.0 1.0

1.0 0.0

julia> svdvals(A, B)

2-element Vector{Float64}:

1.0

1.0

CHAPTER 78. LINEAR ALGEBRA 1293

LinearAlgebra.svdvals! – Function.

svdvals!(A)

Return the singular values of A, saving space by overwriting the input. See also svdvals and svd.

svdvals!(A, B)

Return the generalized singular values from the generalized singular value decomposition of A and B,

saving space by overwriting A and B. See also svd and svdvals.

LinearAlgebra.Givens – Type.

LinearAlgebra.Givens(i1,i2,c,s) -> G

A Givens rotation linear operator. The fields c and s represent the cosine and sine of the rotation

angle, respectively. The Givens type supports left multiplication G*A and conjugated transpose right

multiplication A*G'. The type doesn't have a size and can therefore be multiplied with matrices of

arbitrary size as long as i2<=size(A,2) for G*A or i2<=size(A,1) for A*G'.

See also givens.

LinearAlgebra.givens – Function.

givens(f::T, g::T, i1::Integer, i2::Integer) where {T} -> (G::Givens, r::T)

Computes the Givens rotation G and scalar r such that for any vector x where

x[i1] = f

x[i2] = g

the result of the multiplication

y = G*x

has the property that

y[i1] = r

y[i2] = 0

See also LinearAlgebra.Givens.

givens(A::AbstractArray, i1::Integer, i2::Integer, j::Integer) -> (G::Givens, r)

Computes the Givens rotation G and scalar r such that the result of the multiplication

B = G*A

has the property that

B[i1,j] = r

B[i2,j] = 0

See also LinearAlgebra.Givens.

givens(x::AbstractVector, i1::Integer, i2::Integer) -> (G::Givens, r)

CHAPTER 78. LINEAR ALGEBRA 1294

Computes the Givens rotation G and scalar r such that the result of the multiplication

B = G*x

has the property that

B[i1] = r

B[i2] = 0

See also LinearAlgebra.Givens.

LinearAlgebra.triu – Function.

triu(M)

Upper triangle of a matrix.

Examples

julia> a = fill(1.0, (4,4))

4×4 Matrix{Float64}:

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

julia> triu(a)

4×4 Matrix{Float64}:

1.0 1.0 1.0 1.0

0.0 1.0 1.0 1.0

0.0 0.0 1.0 1.0

0.0 0.0 0.0 1.0

triu(M, k::Integer)

Return the upper triangle of M starting from the kth superdiagonal.

Examples

julia> a = fill(1.0, (4,4))

4×4 Matrix{Float64}:

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

julia> triu(a,3)

4×4 Matrix{Float64}:

0.0 0.0 0.0 1.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

julia> triu(a,-3)

4×4 Matrix{Float64}:

CHAPTER 78. LINEAR ALGEBRA 1295

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

LinearAlgebra.triu! – Function.

triu!(M)

Upper triangle of a matrix, overwriting M in the process. See also triu.

triu!(M, k::Integer)

Return the upper triangle of M starting from the kth superdiagonal, overwriting M in the process.

Examples

julia> M = [1 2 3 4 5; 1 2 3 4 5; 1 2 3 4 5; 1 2 3 4 5; 1 2 3 4 5]

5×5 Matrix{Int64}:

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

julia> triu!(M, 1)

5×5 Matrix{Int64}:

0 2 3 4 5

0 0 3 4 5

0 0 0 4 5

0 0 0 0 5

0 0 0 0 0

LinearAlgebra.tril – Function.

tril(M)

Lower triangle of a matrix.

Examples

julia> a = fill(1.0, (4,4))

4×4 Matrix{Float64}:

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

julia> tril(a)

4×4 Matrix{Float64}:

1.0 0.0 0.0 0.0

1.0 1.0 0.0 0.0

1.0 1.0 1.0 0.0

1.0 1.0 1.0 1.0

CHAPTER 78. LINEAR ALGEBRA 1296

tril(M, k::Integer)

Return the lower triangle of M starting from the kth superdiagonal.

Examples

julia> a = fill(1.0, (4,4))

4×4 Matrix{Float64}:

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

julia> tril(a,3)

4×4 Matrix{Float64}:

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

julia> tril(a,-3)

4×4 Matrix{Float64}:

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

1.0 0.0 0.0 0.0

LinearAlgebra.tril! – Function.

tril!(M)

Lower triangle of a matrix, overwriting M in the process. See also tril.

tril!(M, k::Integer)

Return the lower triangle of M starting from the kth superdiagonal, overwriting M in the process.

Examples

julia> M = [1 2 3 4 5; 1 2 3 4 5; 1 2 3 4 5; 1 2 3 4 5; 1 2 3 4 5]

5×5 Matrix{Int64}:

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

julia> tril!(M, 2)

5×5 Matrix{Int64}:

1 2 3 0 0

1 2 3 4 0

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

CHAPTER 78. LINEAR ALGEBRA 1297

LinearAlgebra.diagind – Function.

diagind(M, k::Integer=0)

An AbstractRange giving the indices of the kth diagonal of the matrix M.

See also: diag, diagm, Diagonal.

Examples

julia> A = [1 2 3; 4 5 6; 7 8 9]

3×3 Matrix{Int64}:

1 2 3

4 5 6

7 8 9

julia> diagind(A,-1)

2:4:6

LinearAlgebra.diag – Function.

diag(M, k::Integer=0)

The kth diagonal of a matrix, as a vector.

See also diagm, diagind, Diagonal, isdiag.

Examples

julia> A = [1 2 3; 4 5 6; 7 8 9]

3×3 Matrix{Int64}:

1 2 3

4 5 6

7 8 9

julia> diag(A,1)

2-element Vector{Int64}:

2

6

LinearAlgebra.diagm – Function.

diagm(kv::Pair{<:Integer,<:AbstractVector}...)

diagm(m::Integer, n::Integer, kv::Pair{<:Integer,<:AbstractVector}...)

Construct a matrix from Pairs of diagonals and vectors. Vector kv.second will be placed on the

kv.first diagonal. By default the matrix is square and its size is inferred from kv, but a non-square

size m×n (padded with zeros as needed) can be specified by passing m,n as the first arguments. For

repeated diagonal indices kv.first the values in the corresponding vectors kv.second will be added.

diagm constructs a full matrix; if you want storage-efficient versions with fast arithmetic, see Diagonal,

Bidiagonal Tridiagonal and SymTridiagonal.

Examples

CHAPTER 78. LINEAR ALGEBRA 1298

julia> diagm(1 => [1,2,3])

4×4 Matrix{Int64}:

0 1 0 0

0 0 2 0

0 0 0 3

0 0 0 0

julia> diagm(1 => [1,2,3], -1 => [4,5])

4×4 Matrix{Int64}:

0 1 0 0

4 0 2 0

0 5 0 3

0 0 0 0

julia> diagm(1 => [1,2,3], 1 => [1,2,3])

4×4 Matrix{Int64}:

0 2 0 0

0 0 4 0

0 0 0 6

0 0 0 0

diagm(v::AbstractVector)

diagm(m::Integer, n::Integer, v::AbstractVector)

Construct a matrix with elements of the vector as diagonal elements. By default, the matrix is square

and its size is given by length(v), but a non-square size m×n can be specified by passing m,n as the

first arguments.

Examples

julia> diagm([1,2,3])

3×3 Matrix{Int64}:

1 0 0

0 2 0

0 0 3

LinearAlgebra.rank – Function.

rank(::QRSparse{Tv,Ti}) -> Ti

Return the rank of the QR factorization

source

rank(S::SparseMatrixCSC{Tv,Ti}; [tol::Real]) -> Ti

Calculate rank of S by calculating its QR factorization. Values smaller than tol are considered as zero.

See SPQR's manual.

source

rank(A::AbstractMatrix; atol::Real=0, rtol::Real=atol>0 ? 0 : nϵ*)

rank(A::AbstractMatrix, rtol::Real)

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/solvers/spqr.jl#L364-L368
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/solvers/spqr.jl#L371-L375

CHAPTER 78. LINEAR ALGEBRA 1299

Compute the numerical rank of a matrix by counting how many outputs of svdvals(A) are greater

than max(atol, rtol*σ₁) where σ₁ is A's largest calculated singular value. atol and rtol are the

absolute and relative tolerances, respectively. The default relative tolerance is n*ϵ, where n is the size

of the smallest dimension of A, and ϵ is the eps of the element type of A.

Note

Numerical rank can be a sensitive and imprecise characterization of ill-conditioned matrices

with singular values that are close to the threshold tolerance max(atol, rtol*σ₁). In such

cases, slight perturbations to the singular-value computation or to the matrix can change

the result of rank by pushing one or more singular values across the threshold. These

variations can even occur due to changes in floating-point errors between different Julia

versions, architectures, compilers, or operating systems.

Julia 1.1

The atol and rtol keyword arguments requires at least Julia 1.1. In Julia 1.0 rtol is avail-

able as a positional argument, but this will be deprecated in Julia 2.0.

Examples

julia> rank(Matrix(I, 3, 3))

3

julia> rank(diagm(0 => [1, 0, 2]))

2

julia> rank(diagm(0 => [1, 0.001, 2]), rtol=0.1)

2

julia> rank(diagm(0 => [1, 0.001, 2]), rtol=0.00001)

3

julia> rank(diagm(0 => [1, 0.001, 2]), atol=1.5)

1

LinearAlgebra.norm – Function.

norm(A, p::Real=2)

For any iterable container A (including arrays of any dimension) of numbers (or any element type for

which norm is defined), compute the p-norm (defaulting to p=2) as if Awere a vector of the corresponding

length.

The p-norm is defined as

‖A‖p =

(
n∑

i=1

|ai|p
)1/p

with ai the entries ofA, |ai| the norm of ai, and n the length ofA. Since the p-norm is computed using
the norms of the entries of A, the p-norm of a vector of vectors is not compatible with the interpretation

of it as a block vector in general if p != 2.

CHAPTER 78. LINEAR ALGEBRA 1300

p can assume any numeric value (even though not all values produce a mathematically valid vector

norm). In particular, norm(A, Inf) returns the largest value in abs.(A), whereas norm(A, -Inf)

returns the smallest. If A is a matrix and p=2, then this is equivalent to the Frobenius norm.

The second argument p is not necessarily a part of the interface for norm, i.e. a custom type may only

implement norm(A) without second argument.

Use opnorm to compute the operator norm of a matrix.

Examples

julia> v = [3, -2, 6]

3-element Vector{Int64}:

3

-2

6

julia> norm(v)

7.0

julia> norm(v, 1)

11.0

julia> norm(v, Inf)

6.0

julia> norm([1 2 3; 4 5 6; 7 8 9])

16.881943016134134

julia> norm([1 2 3 4 5 6 7 8 9])

16.881943016134134

julia> norm(1:9)

16.881943016134134

julia> norm(hcat(v,v), 1) == norm(vcat(v,v), 1) != norm([v,v], 1)

true

julia> norm(hcat(v,v), 2) == norm(vcat(v,v), 2) == norm([v,v], 2)

true

julia> norm(hcat(v,v), Inf) == norm(vcat(v,v), Inf) != norm([v,v], Inf)

true

norm(x::Number, p::Real=2)

For numbers, return (|x|p)1/p.

Examples

julia> norm(2, 1)

2.0

julia> norm(-2, 1)

CHAPTER 78. LINEAR ALGEBRA 1301

2.0

julia> norm(2, 2)

2.0

julia> norm(-2, 2)

2.0

julia> norm(2, Inf)

2.0

julia> norm(-2, Inf)

2.0

LinearAlgebra.opnorm – Function.

opnorm(A::AbstractMatrix, p::Real=2)

Compute the operator norm (or matrix norm) induced by the vector p-norm, where valid values of p are

1, 2, or Inf. (Note that for sparse matrices, p=2 is currently not implemented.) Use norm to compute

the Frobenius norm.

When p=1, the operator norm is the maximum absolute column sum of A:

‖A‖1 = max
1jn

m∑
i=1

|aij |

with aij the entries of A, andm and n its dimensions.

When p=2, the operator norm is the spectral norm, equal to the largest singular value of A.

When p=Inf, the operator norm is the maximum absolute row sum of A:

‖A‖∞ = max
1im

n∑
j=1

|aij |

Examples

julia> A = [1 -2 -3; 2 3 -1]

2×3 Matrix{Int64}:

1 -2 -3

2 3 -1

julia> opnorm(A, Inf)

6.0

julia> opnorm(A, 1)

5.0

opnorm(x::Number, p::Real=2)

CHAPTER 78. LINEAR ALGEBRA 1302

For numbers, return (|x|p)1/p. This is equivalent to norm.
opnorm(A::Adjoint{<:Any,<:AbstracVector}, q::Real=2)

opnorm(A::Transpose{<:Any,<:AbstracVector}, q::Real=2)

For Adjoint/Transpose-wrapped vectors, return the operator q-norm of A, which is equivalent to the p-

norm with value p = q/(q-1). They coincide at p = q = 2. Use norm to compute the p norm of A as

a vector.

The difference in norm between a vector space and its dual arises to preserve the relationship between

duality and the dot product, and the result is consistent with the operator p-norm of a 1 × n matrix.

Examples

julia> v = [1; im];

julia> vc = v';

julia> opnorm(vc, 1)

1.0

julia> norm(vc, 1)

2.0

julia> norm(v, 1)

2.0

julia> opnorm(vc, 2)

1.4142135623730951

julia> norm(vc, 2)

1.4142135623730951

julia> norm(v, 2)

1.4142135623730951

julia> opnorm(vc, Inf)

2.0

julia> norm(vc, Inf)

1.0

julia> norm(v, Inf)

1.0

LinearAlgebra.normalize! – Function.

normalize!(a::AbstractArray, p::Real=2)

Normalize the array a in-place so that its p-norm equals unity, i.e. norm(a, p) == 1. See also normalize

and norm.

LinearAlgebra.normalize – Function.

normalize(a, p::Real=2)

CHAPTER 78. LINEAR ALGEBRA 1303

Normalize a so that its p-norm equals unity, i.e. norm(a, p) == 1. For scalars, this is similar to sign(a),

except normalize(0) = NaN. See also normalize!, norm, and sign.

Examples

julia> a = [1,2,4];

julia> b = normalize(a)

3-element Vector{Float64}:

0.2182178902359924

0.4364357804719848

0.8728715609439696

julia> norm(b)

1.0

julia> c = normalize(a, 1)

3-element Vector{Float64}:

0.14285714285714285

0.2857142857142857

0.5714285714285714

julia> norm(c, 1)

1.0

julia> a = [1 2 4 ; 1 2 4]

2×3 Matrix{Int64}:

1 2 4

1 2 4

julia> norm(a)

6.48074069840786

julia> normalize(a)

2×3 Matrix{Float64}:

0.154303 0.308607 0.617213

0.154303 0.308607 0.617213

julia> normalize(3, 1)

1.0

julia> normalize(-8, 1)

-1.0

julia> normalize(0, 1)

NaN

LinearAlgebra.cond – Function.

cond(M, p::Real=2)

Condition number of the matrix M, computed using the operator p-norm. Valid values for p are 1, 2

(default), or Inf.

CHAPTER 78. LINEAR ALGEBRA 1304

LinearAlgebra.condskeel – Function.

condskeel(M, [x, p::Real=Inf])

κS(M,p) =
∥∥|M |

∣∣M−1
∣∣∥∥

p

κS(M,x, p) =

∥∥|M |
∣∣M−1

∣∣ |x|∥∥
p

‖x‖p

Skeel condition number κS of the matrix M, optionally with respect to the vector x, as computed using

the operator p-norm. |M | denotes the matrix of (entry wise) absolute values ofM ; |M |ij = |Mij |.
Valid values for p are 1, 2 and Inf (default).

This quantity is also known in the literature as the Bauer condition number, relative condition number,

or componentwise relative condition number.

LinearAlgebra.tr – Function.

tr(M)

Matrix trace. Sums the diagonal elements of M.

Examples

julia> A = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> tr(A)

5

LinearAlgebra.det – Function.

det(M)

Matrix determinant.

See also: logdet and logabsdet.

Examples

julia> M = [1 0; 2 2]

2×2 Matrix{Int64}:

1 0

2 2

julia> det(M)

2.0

LinearAlgebra.logdet – Function.

logdet(M)

CHAPTER 78. LINEAR ALGEBRA 1305

Log of matrix determinant. Equivalent to log(det(M)), but may provide increased accuracy and/or

speed.

Examples

julia> M = [1 0; 2 2]

2×2 Matrix{Int64}:

1 0

2 2

julia> logdet(M)

0.6931471805599453

julia> logdet(Matrix(I, 3, 3))

0.0

LinearAlgebra.logabsdet – Function.

logabsdet(M)

Log of absolute value of matrix determinant. Equivalent to (log(abs(det(M))), sign(det(M))), but

may provide increased accuracy and/or speed.

Examples

julia> A = [-1. 0.; 0. 1.]

2×2 Matrix{Float64}:

-1.0 0.0

0.0 1.0

julia> det(A)

-1.0

julia> logabsdet(A)

(0.0, -1.0)

julia> B = [2. 0.; 0. 1.]

2×2 Matrix{Float64}:

2.0 0.0

0.0 1.0

julia> det(B)

2.0

julia> logabsdet(B)

(0.6931471805599453, 1.0)

Base.inv – Method.

inv(M)

Matrix inverse. Computes matrix N such that M * N = I, where I is the identity matrix. Computed by

solving the left-division N = M \ I.

Examples

CHAPTER 78. LINEAR ALGEBRA 1306

julia> M = [2 5; 1 3]

2×2 Matrix{Int64}:

2 5

1 3

julia> N = inv(M)

2×2 Matrix{Float64}:

3.0 -5.0

-1.0 2.0

julia> M*N == N*M == Matrix(I, 2, 2)

true

LinearAlgebra.pinv – Function.

pinv(M; atol::Real=0, rtol::Real=atol>0 ? 0 : n*ϵ)

pinv(M, rtol::Real) = pinv(M; rtol=rtol) # to be deprecated in Julia 2.0

Computes the Moore-Penrose pseudoinverse.

For matrices M with floating point elements, it is convenient to compute the pseudoinverse by inverting

only singular values greater than max(atol, rtol*σ₁) where σ₁ is the largest singular value of M.

The optimal choice of absolute (atol) and relative tolerance (rtol) varies both with the value of M and

the intended application of the pseudoinverse. The default relative tolerance is n*ϵ, where n is the size

of the smallest dimension of M, and ϵ is the eps of the element type of M.

For inverting dense ill-conditionedmatrices in a least-squares sense, rtol = sqrt(eps(real(float(oneunit(eltype(M))))))

is recommended.

For more information, see 8, 9, 10, 11.

Examples

julia> M = [1.5 1.3; 1.2 1.9]

2×2 Matrix{Float64}:

1.5 1.3

1.2 1.9

julia> N = pinv(M)

2×2 Matrix{Float64}:

1.47287 -1.00775

-0.930233 1.16279

julia> M * N

2×2 Matrix{Float64}:

1.0 -2.22045e-16

4.44089e-16 1.0

CHAPTER 78. LINEAR ALGEBRA 1307

LinearAlgebra.nullspace – Function.

nullspace(M; atol::Real=0, rtol::Real=atol>0 ? 0 : n*ϵ)

nullspace(M, rtol::Real) = nullspace(M; rtol=rtol) # to be deprecated in Julia 2.0

Computes a basis for the nullspace of M by including the singular vectors of M whose singular values

have magnitudes smaller than max(atol, rtol*σ₁), where σ₁ is M's largest singular value.

By default, the relative tolerance rtol is n*ϵ, where n is the size of the smallest dimension of M, and ϵ

is the eps of the element type of M.

Examples

julia> M = [1 0 0; 0 1 0; 0 0 0]

3×3 Matrix{Int64}:

1 0 0

0 1 0

0 0 0

julia> nullspace(M)

3×1 Matrix{Float64}:

0.0

0.0

1.0

julia> nullspace(M, rtol=3)

3×3 Matrix{Float64}:

0.0 1.0 0.0

1.0 0.0 0.0

0.0 0.0 1.0

julia> nullspace(M, atol=0.95)

3×1 Matrix{Float64}:

0.0

0.0

1.0

Base.kron – Function.

kron(A, B)

Computes the Kronecker product of two vectors, matrices or numbers.

For real vectors v and w, the Kronecker product is related to the outer product by kron(v,w) == vec(w

* transpose(v)) or w * transpose(v) == reshape(kron(v,w), (length(w), length(v))). Note

8Issue 8859, "Fix least squares", https://github.com/JuliaLang/julia/pull/8859

9Åke Björck, "Numerical Methods for Least Squares Problems", SIAM Press, Philadelphia, 1996, "Other Titles in Applied Mathe-

matics", Vol. 51. doi:10.1137/1.9781611971484

10G. W. Stewart, "Rank Degeneracy", SIAM Journal on Scientific and Statistical Computing, 5(2), 1984, 403-413.

doi:10.1137/0905030

11Konstantinos Konstantinides and Kung Yao, "Statistical analysis of effective singular values in matrix rank determination", IEEE

Transactions on Acoustics, Speech and Signal Processing, 36(5), 1988, 757-763. doi:10.1109/29.1585

https://github.com/JuliaLang/julia/pull/8859
http://epubs.siam.org/doi/book/10.1137/1.9781611971484
http://epubs.siam.org/doi/abs/10.1137/0905030
https://doi.org/10.1109/29.1585

CHAPTER 78. LINEAR ALGEBRA 1308

how the ordering of v and w differs on the left and right of these expressions (due to column-major

storage). For complex vectors, the outer product w * v' also differs by conjugation of v.

Examples

julia> A = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> B = [im 1; 1 -im]

2×2 Matrix{Complex{Int64}}:

0+1im 1+0im

1+0im 0-1im

julia> kron(A, B)

4×4 Matrix{Complex{Int64}}:

0+1im 1+0im 0+2im 2+0im

1+0im 0-1im 2+0im 0-2im

0+3im 3+0im 0+4im 4+0im

3+0im 0-3im 4+0im 0-4im

julia> v = [1, 2]; w = [3, 4, 5];

julia> w*transpose(v)

3×2 Matrix{Int64}:

3 6

4 8

5 10

julia> reshape(kron(v,w), (length(w), length(v)))

3×2 Matrix{Int64}:

3 6

4 8

5 10

Base.kron! – Function.

kron!(C, A, B)

Computes the Kronecker product of A and B and stores the result in C, overwriting the existing content

of C. This is the in-place version of kron.

Julia 1.6

This function requires Julia 1.6 or later.

Base.exp – Method.

exp(A::AbstractMatrix)

Compute the matrix exponential of A, defined by

CHAPTER 78. LINEAR ALGEBRA 1309

eA =

∞∑
n=0

An

n!
.

For symmetric or Hermitian A, an eigendecomposition (eigen) is used, otherwise the scaling and squar-

ing algorithm (see 12) is chosen.

Examples

julia> A = Matrix(1.0I, 2, 2)

2×2 Matrix{Float64}:

1.0 0.0

0.0 1.0

julia> exp(A)

2×2 Matrix{Float64}:

2.71828 0.0

0.0 2.71828

Base.cis – Method.

cis(A::AbstractMatrix)

More efficient method for exp(im*A) of squarematrix A (especially if A is Hermitian or real-Symmetric).

See also cispi, sincos, exp.

Julia 1.7

Support for using cis with matrices was added in Julia 1.7.

Examples

julia> cis([π 0; 0 π]) ≈ -I

true

Base.:^ – Method.

^(A::AbstractMatrix, p::Number)

Matrix power, equivalent to exp(p log(A))

Examples

julia> [1 2; 0 3]^3

2×2 Matrix{Int64}:

1 26

0 27

Base.:^ – Method.

12Nicholas J. Higham, "The squaring and scaling method for the matrix exponential revisited", SIAM Journal on Matrix Analysis and

Applications, 26(4), 2005, 1179-1193. doi:10.1137/090768539

https://doi.org/10.1137/090768539

CHAPTER 78. LINEAR ALGEBRA 1310

^(b::Number, A::AbstractMatrix)

Matrix exponential, equivalent to exp(log(b)A).

Julia 1.1

Support for raising Irrational numbers (like) to a matrix was added in Julia 1.1.

Examples

julia> 2^[1 2; 0 3]

2×2 Matrix{Float64}:

2.0 6.0

0.0 8.0

julia> ^[1 2; 0 3]

2×2 Matrix{Float64}:

2.71828 17.3673

0.0 20.0855

Base.log – Method.

log(A::AbstractMatrix)

If A has no negative real eigenvalue, compute the principal matrix logarithm of A, i.e. the unique matrix

X such that eX = A and −π < Im(λ) < π for all the eigenvalues λ of X . If A has nonpositive
eigenvalues, a nonprincipal matrix function is returned whenever possible.

If A is symmetric or Hermitian, its eigendecomposition (eigen) is used, if A is triangular an improved

version of the inverse scaling and squaring method is employed (see 13 and 14). If A is real with no

negative eigenvalues, then the real Schur form is computed. Otherwise, the complex Schur form is

computed. Then the upper (quasi-)triangular algorithm in 14 is used on the upper (quasi-)triangular

factor.

Examples

julia> A = Matrix(2.7182818*I, 2, 2)

2×2 Matrix{Float64}:

2.71828 0.0

0.0 2.71828

julia> log(A)

2×2 Matrix{Float64}:

1.0 0.0

0.0 1.0

Base.sqrt – Method.

13Awad H. Al-Mohy and Nicholas J. Higham, "Improved inverse scaling and squaring algorithms for the matrix logarithm", SIAM

Journal on Scientific Computing, 34(4), 2012, C153-C169. doi:10.1137/110852553

14Awad H. Al-Mohy, Nicholas J. Higham and Samuel D. Relton, "Computing the Fréchet derivative of the matrix logarithm and

estimating the condition number", SIAM Journal on Scientific Computing, 35(4), 2013, C394-C410. doi:10.1137/120885991

https://doi.org/10.1137/110852553
https://doi.org/10.1137/120885991

CHAPTER 78. LINEAR ALGEBRA 1311

sqrt(x)

Return
√
x. Throws DomainError for negative Real arguments. Use complex negative arguments

instead. The prefix operator √ is equivalent to sqrt.

See also: hypot.

Examples

julia> sqrt(big(81))

9.0

julia> sqrt(big(-81))

ERROR: DomainError with -81.0:

NaN result for non-NaN input.

Stacktrace:

[1] sqrt(::BigFloat) at ./mpfr.jl:501

[...]

julia> sqrt(big(complex(-81)))

0.0 + 9.0im

julia> .√(1:4)

4-element Vector{Float64}:

1.0

1.4142135623730951

1.7320508075688772

2.0

source

sqrt(A::AbstractMatrix)

If A has no negative real eigenvalues, compute the principal matrix square root of A, that is the unique

matrix X with eigenvalues having positive real part such that X2 = A. Otherwise, a nonprincipal
square root is returned.

If A is real-symmetric or Hermitian, its eigendecomposition (eigen) is used to compute the square root.

For such matrices, eigenvalues λ that appear to be slightly negative due to roundoff errors are treated

as if they were zero. More precisely, matrices with all eigenvalues ≥ -rtol*(max |λ|) are treated

as semidefinite (yielding a Hermitian square root), with negative eigenvalues taken to be zero. rtol

is a keyword argument to sqrt (in the Hermitian/real-symmetric case only) that defaults to machine

precision scaled by size(A,1).

Otherwise, the square root is determined by means of the Björck-Hammarling method 15, which com-

putes the complex Schur form (schur) and then the complex square root of the triangular factor. If

a real square root exists, then an extension of this method 16 that computes the real Schur form and

then the real square root of the quasi-triangular factor is instead used.

15Åke Björck and Sven Hammarling, "A Schur method for the square root of a matrix", Linear Algebra and its Applications, 52-53,

1983, 127-140. doi:10.1016/0024-3795(83)80010-X

16Nicholas J. Higham, "Computing real square roots of a real matrix", Linear Algebra and its Applications, 88-89, 1987, 405-430.

doi:10.1016/0024-3795(87)90118-2

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/math.jl#L690-L720
https://doi.org/10.1016/0024-3795(83)80010-X
https://doi.org/10.1016/0024-3795(87)90118-2

CHAPTER 78. LINEAR ALGEBRA 1312

Examples

julia> A = [4 0; 0 4]

2×2 Matrix{Int64}:

4 0

0 4

julia> sqrt(A)

2×2 Matrix{Float64}:

2.0 0.0

0.0 2.0

Base.cos – Method.

cos(A::AbstractMatrix)

Compute the matrix cosine of a square matrix A.

If A is symmetric or Hermitian, its eigendecomposition (eigen) is used to compute the cosine. Other-

wise, the cosine is determined by calling exp.

Examples

julia> cos(fill(1.0, (2,2)))

2×2 Matrix{Float64}:

0.291927 -0.708073

-0.708073 0.291927

Base.sin – Method.

sin(A::AbstractMatrix)

Compute the matrix sine of a square matrix A.

If A is symmetric or Hermitian, its eigendecomposition (eigen) is used to compute the sine. Otherwise,

the sine is determined by calling exp.

Examples

julia> sin(fill(1.0, (2,2)))

2×2 Matrix{Float64}:

0.454649 0.454649

0.454649 0.454649

Base.Math.sincos – Method.

sincos(A::AbstractMatrix)

Compute the matrix sine and cosine of a square matrix A.

Examples

CHAPTER 78. LINEAR ALGEBRA 1313

julia> S, C = sincos(fill(1.0, (2,2)));

julia> S

2×2 Matrix{Float64}:

0.454649 0.454649

0.454649 0.454649

julia> C

2×2 Matrix{Float64}:

0.291927 -0.708073

-0.708073 0.291927

Base.tan – Method.

tan(A::AbstractMatrix)

Compute the matrix tangent of a square matrix A.

If A is symmetric or Hermitian, its eigendecomposition (eigen) is used to compute the tangent. Other-

wise, the tangent is determined by calling exp.

Examples

julia> tan(fill(1.0, (2,2)))

2×2 Matrix{Float64}:

-1.09252 -1.09252

-1.09252 -1.09252

Base.Math.sec – Method.

sec(A::AbstractMatrix)

Compute the matrix secant of a square matrix A.

Base.Math.csc – Method.

csc(A::AbstractMatrix)

Compute the matrix cosecant of a square matrix A.

Base.Math.cot – Method.

cot(A::AbstractMatrix)

Compute the matrix cotangent of a square matrix A.

Base.cosh – Method.

cosh(A::AbstractMatrix)

Compute the matrix hyperbolic cosine of a square matrix A.

Base.sinh – Method.

sinh(A::AbstractMatrix)

CHAPTER 78. LINEAR ALGEBRA 1314

Compute the matrix hyperbolic sine of a square matrix A.

Base.tanh – Method.

tanh(A::AbstractMatrix)

Compute the matrix hyperbolic tangent of a square matrix A.

Base.Math.sech – Method.

sech(A::AbstractMatrix)

Compute the matrix hyperbolic secant of square matrix A.

Base.Math.csch – Method.

csch(A::AbstractMatrix)

Compute the matrix hyperbolic cosecant of square matrix A.

Base.Math.coth – Method.

coth(A::AbstractMatrix)

Compute the matrix hyperbolic cotangent of square matrix A.

Base.acos – Method.

acos(A::AbstractMatrix)

Compute the inverse matrix cosine of a square matrix A.

If A is symmetric or Hermitian, its eigendecomposition (eigen) is used to compute the inverse cosine.

Otherwise, the inverse cosine is determined by using log and sqrt. For the theory and logarithmic

formulas used to compute this function, see 17.

Examples

julia> acos(cos([0.5 0.1; -0.2 0.3]))

2×2 Matrix{ComplexF64}:

0.5-8.32667e-17im 0.1+0.0im

-0.2+2.63678e-16im 0.3-3.46945e-16im

Base.asin – Method.

asin(A::AbstractMatrix)

Compute the inverse matrix sine of a square matrix A.

If A is symmetric or Hermitian, its eigendecomposition (eigen) is used to compute the inverse sine.

Otherwise, the inverse sine is determined by using log and sqrt. For the theory and logarithmic

formulas used to compute this function, see 18.

Examples

17Mary Aprahamian and Nicholas J. Higham, "Matrix Inverse Trigonometric and Inverse Hyperbolic Functions: Theory and Algo-

rithms", MIMS EPrint: 2016.4. https://doi.org/10.1137/16M1057577

18Mary Aprahamian and Nicholas J. Higham, "Matrix Inverse Trigonometric and Inverse Hyperbolic Functions: Theory and Algo-

rithms", MIMS EPrint: 2016.4. https://doi.org/10.1137/16M1057577

https://doi.org/10.1137/16M1057577
https://doi.org/10.1137/16M1057577

CHAPTER 78. LINEAR ALGEBRA 1315

julia> asin(sin([0.5 0.1; -0.2 0.3]))

2×2 Matrix{ComplexF64}:

0.5-4.16334e-17im 0.1-5.55112e-17im

-0.2+9.71445e-17im 0.3-1.249e-16im

Base.atan – Method.

atan(A::AbstractMatrix)

Compute the inverse matrix tangent of a square matrix A.

If A is symmetric or Hermitian, its eigendecomposition (eigen) is used to compute the inverse tangent.

Otherwise, the inverse tangent is determined by using log. For the theory and logarithmic formulas

used to compute this function, see 19.

Examples

julia> atan(tan([0.5 0.1; -0.2 0.3]))

2×2 Matrix{ComplexF64}:

0.5+1.38778e-17im 0.1-2.77556e-17im

-0.2+6.93889e-17im 0.3-4.16334e-17im

Base.Math.asec – Method.

asec(A::AbstractMatrix)

Compute the inverse matrix secant of A.

Base.Math.acsc – Method.

acsc(A::AbstractMatrix)

Compute the inverse matrix cosecant of A.

Base.Math.acot – Method.

acot(A::AbstractMatrix)

Compute the inverse matrix cotangent of A.

Base.acosh – Method.

acosh(A::AbstractMatrix)

Compute the inverse hyperbolic matrix cosine of a square matrix A. For the theory and logarithmic

formulas used to compute this function, see 20.

Base.asinh – Method.

19Mary Aprahamian and Nicholas J. Higham, "Matrix Inverse Trigonometric and Inverse Hyperbolic Functions: Theory and Algo-

rithms", MIMS EPrint: 2016.4. https://doi.org/10.1137/16M1057577

20Mary Aprahamian and Nicholas J. Higham, "Matrix Inverse Trigonometric and Inverse Hyperbolic Functions: Theory and Algo-

rithms", MIMS EPrint: 2016.4. https://doi.org/10.1137/16M1057577

https://doi.org/10.1137/16M1057577
https://doi.org/10.1137/16M1057577

CHAPTER 78. LINEAR ALGEBRA 1316

asinh(A::AbstractMatrix)

Compute the inverse hyperbolic matrix sine of a square matrix A. For the theory and logarithmic for-

mulas used to compute this function, see 21.

Base.atanh – Method.

atanh(A::AbstractMatrix)

Compute the inverse hyperbolic matrix tangent of a square matrix A. For the theory and logarithmic

formulas used to compute this function, see 22.

Base.Math.asech – Method.

asech(A::AbstractMatrix)

Compute the inverse matrix hyperbolic secant of A.

Base.Math.acsch – Method.

acsch(A::AbstractMatrix)

Compute the inverse matrix hyperbolic cosecant of A.

Base.Math.acoth – Method.

acoth(A::AbstractMatrix)

Compute the inverse matrix hyperbolic cotangent of A.

LinearAlgebra.lyap – Function.

lyap(A, C)

Computes the solution X to the continuous Lyapunov equation AX + XA' + C = 0, where no eigenvalue

of A has a zero real part and no two eigenvalues are negative complex conjugates of each other.

Examples

julia> A = [3. 4.; 5. 6]

2×2 Matrix{Float64}:

3.0 4.0

5.0 6.0

julia> B = [1. 1.; 1. 2.]

2×2 Matrix{Float64}:

1.0 1.0

1.0 2.0

21Mary Aprahamian and Nicholas J. Higham, "Matrix Inverse Trigonometric and Inverse Hyperbolic Functions: Theory and Algo-

rithms", MIMS EPrint: 2016.4. https://doi.org/10.1137/16M1057577

22Mary Aprahamian and Nicholas J. Higham, "Matrix Inverse Trigonometric and Inverse Hyperbolic Functions: Theory and Algo-

rithms", MIMS EPrint: 2016.4. https://doi.org/10.1137/16M1057577

https://doi.org/10.1137/16M1057577
https://doi.org/10.1137/16M1057577

CHAPTER 78. LINEAR ALGEBRA 1317

julia> X = lyap(A, B)

2×2 Matrix{Float64}:

0.5 -0.5

-0.5 0.25

julia> A*X + X*A' ≈ -B

true

LinearAlgebra.sylvester – Function.

sylvester(A, B, C)

Computes the solution X to the Sylvester equation AX + XB + C = 0, where A, B and C have compatible

dimensions and A and -B have no eigenvalues with equal real part.

Examples

julia> A = [3. 4.; 5. 6]

2×2 Matrix{Float64}:

3.0 4.0

5.0 6.0

julia> B = [1. 1.; 1. 2.]

2×2 Matrix{Float64}:

1.0 1.0

1.0 2.0

julia> C = [1. 2.; -2. 1]

2×2 Matrix{Float64}:

1.0 2.0

-2.0 1.0

julia> X = sylvester(A, B, C)

2×2 Matrix{Float64}:

-4.46667 1.93333

3.73333 -1.8

julia> A*X + X*B ≈ -C

true

LinearAlgebra.issuccess – Function.

issuccess(F::Factorization)

Test that a factorization of a matrix succeeded.

Julia 1.6

issuccess(::CholeskyPivoted) requires Julia 1.6 or later.

julia> F = cholesky([1 0; 0 1]);

julia> issuccess(F)

CHAPTER 78. LINEAR ALGEBRA 1318

true

julia> F = lu([1 0; 0 0]; check = false);

julia> issuccess(F)

false

LinearAlgebra.issymmetric – Function.

issymmetric(A) -> Bool

Test whether a matrix is symmetric.

Examples

julia> a = [1 2; 2 -1]

2×2 Matrix{Int64}:

1 2

2 -1

julia> issymmetric(a)

true

julia> b = [1 im; -im 1]

2×2 Matrix{Complex{Int64}}:

1+0im 0+1im

0-1im 1+0im

julia> issymmetric(b)

false

LinearAlgebra.isposdef – Function.

isposdef(A) -> Bool

Test whether a matrix is positive definite (and Hermitian) by trying to perform a Cholesky factorization

of A.

See also isposdef!, cholesky.

Examples

julia> A = [1 2; 2 50]

2×2 Matrix{Int64}:

1 2

2 50

julia> isposdef(A)

true

LinearAlgebra.isposdef! – Function.

isposdef!(A) -> Bool

CHAPTER 78. LINEAR ALGEBRA 1319

Test whether a matrix is positive definite (and Hermitian) by trying to perform a Cholesky factorization

of A, overwriting A in the process. See also isposdef.

Examples

julia> A = [1. 2.; 2. 50.];

julia> isposdef!(A)

true

julia> A

2×2 Matrix{Float64}:

1.0 2.0

2.0 6.78233

LinearAlgebra.istril – Function.

istril(A::AbstractMatrix, k::Integer = 0) -> Bool

Test whether A is lower triangular starting from the kth superdiagonal.

Examples

julia> a = [1 2; 2 -1]

2×2 Matrix{Int64}:

1 2

2 -1

julia> istril(a)

false

julia> istril(a, 1)

true

julia> b = [1 0; -im -1]

2×2 Matrix{Complex{Int64}}:

1+0im 0+0im

0-1im -1+0im

julia> istril(b)

true

julia> istril(b, -1)

false

LinearAlgebra.istriu – Function.

istriu(A::AbstractMatrix, k::Integer = 0) -> Bool

Test whether A is upper triangular starting from the kth superdiagonal.

Examples

CHAPTER 78. LINEAR ALGEBRA 1320

julia> a = [1 2; 2 -1]

2×2 Matrix{Int64}:

1 2

2 -1

julia> istriu(a)

false

julia> istriu(a, -1)

true

julia> b = [1 im; 0 -1]

2×2 Matrix{Complex{Int64}}:

1+0im 0+1im

0+0im -1+0im

julia> istriu(b)

true

julia> istriu(b, 1)

false

LinearAlgebra.isdiag – Function.

isdiag(A) -> Bool

Test whether a matrix is diagonal in the sense that iszero(A[i,j]) is true unless i == j. Note that it

is not necessary for A to be square; if you would also like to check that, you need to check that size(A,

1) == size(A, 2).

Examples

julia> a = [1 2; 2 -1]

2×2 Matrix{Int64}:

1 2

2 -1

julia> isdiag(a)

false

julia> b = [im 0; 0 -im]

2×2 Matrix{Complex{Int64}}:

0+1im 0+0im

0+0im 0-1im

julia> isdiag(b)

true

julia> c = [1 0 0; 0 2 0]

2×3 Matrix{Int64}:

1 0 0

0 2 0

julia> isdiag(c)

CHAPTER 78. LINEAR ALGEBRA 1321

true

julia> d = [1 0 0; 0 2 3]

2×3 Matrix{Int64}:

1 0 0

0 2 3

julia> isdiag(d)

false

LinearAlgebra.ishermitian – Function.

ishermitian(A) -> Bool

Test whether a matrix is Hermitian.

Examples

julia> a = [1 2; 2 -1]

2×2 Matrix{Int64}:

1 2

2 -1

julia> ishermitian(a)

true

julia> b = [1 im; -im 1]

2×2 Matrix{Complex{Int64}}:

1+0im 0+1im

0-1im 1+0im

julia> ishermitian(b)

true

Base.transpose – Function.

transpose(A)

Lazy transpose. Mutating the returned object should appropriately mutate A. Often, but not always,

yields Transpose(A), where Transpose is a lazy transpose wrapper. Note that this operation is recur-

sive.

This operation is intended for linear algebra usage - for general data manipulation see permutedims,

which is non-recursive.

Examples

julia> A = [3 2; 0 0]

2×2 Matrix{Int64}:

3 2

0 0

julia> B = transpose(A)

2×2 transpose(::Matrix{Int64}) with eltype Int64:

CHAPTER 78. LINEAR ALGEBRA 1322

3 0

2 0

julia> B isa Transpose

true

julia> transpose(B) === A # the transpose of a transpose unwraps the parent

true

julia> Transpose(B) # however, the constructor always wraps its argument

2×2 transpose(transpose(::Matrix{Int64})) with eltype Int64:

3 2

0 0

julia> B[1,2] = 4; # modifying B will modify A automatically

julia> A

2×2 Matrix{Int64}:

3 2

4 0

For complex matrices, the adjoint operation is equivalent to a conjugate-transpose.

julia> A = reshape([Complex(x, x) for x in 1:4], 2, 2)

2×2 Matrix{Complex{Int64}}:

1+1im 3+3im

2+2im 4+4im

julia> adjoint(A) == conj(transpose(A))

true

The transpose of an AbstractVector is a row-vector:

julia> v = [1,2,3]

3-element Vector{Int64}:

1

2

3

julia> transpose(v) # returns a row-vector

1×3 transpose(::Vector{Int64}) with eltype Int64:

1 2 3

julia> transpose(v) * v # compute the dot product

14

For a matrix of matrices, the individual blocks are recursively operated on:

julia> C = [1 3; 2 4]

2×2 Matrix{Int64}:

1 3

2 4

CHAPTER 78. LINEAR ALGEBRA 1323

julia> D = reshape([C, 2C, 3C, 4C], 2, 2) # construct a block matrix

2×2 Matrix{Matrix{Int64}}:

[1 3; 2 4] [3 9; 6 12]

[2 6; 4 8] [4 12; 8 16]

julia> transpose(D) # blocks are recursively transposed

2×2 transpose(::Matrix{Matrix{Int64}}) with eltype Transpose{Int64, Matrix{Int64}}:

[1 2; 3 4] [2 4; 6 8]

[3 6; 9 12] [4 8; 12 16]

transpose(F::Factorization)

Lazy transpose of the factorization F. By default, returns a TransposeFactorization, except for Factorizations

with real eltype, in which case returns an AdjointFactorization.

LinearAlgebra.transpose! – Function.

transpose!(X::AbstractSparseMatrixCSC{Tv,Ti}, A::AbstractSparseMatrixCSC{Tv,Ti}) where

{Tv,Ti}↪→

Transpose the matrix A and stores it in the matrix X. size(X) must be equal to size(transpose(A)).

No additional memory is allocated other than resizing the rowval and nzval of X, if needed.

See halfperm!

source

transpose!(dest,src)

Transpose array src and store the result in the preallocated array dest, which should have a size cor-

responding to (size(src,2),size(src,1)). No in-place transposition is supported and unexpected

results will happen if src and dest have overlapping memory regions.

Examples

julia> A = [3+2im 9+2im; 8+7im 4+6im]

2×2 Matrix{Complex{Int64}}:

3+2im 9+2im

8+7im 4+6im

julia> B = zeros(Complex{Int64}, 2, 2)

2×2 Matrix{Complex{Int64}}:

0+0im 0+0im

0+0im 0+0im

julia> transpose!(B, A);

julia> B

2×2 Matrix{Complex{Int64}}:

3+2im 8+7im

9+2im 4+6im

julia> A

2×2 Matrix{Complex{Int64}}:

3+2im 9+2im

8+7im 4+6im

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsematrix.jl#L1416-L1424

CHAPTER 78. LINEAR ALGEBRA 1324

LinearAlgebra.Transpose – Type.

Transpose

Lazy wrapper type for a transpose view of the underlying linear algebra object, usually an AbstractVector/AbstractMatrix.

Usually, the Transpose constructor should not be called directly, use transpose instead. To materialize

the view use copy.

This type is intended for linear algebra usage - for general data manipulation see permutedims.

Examples

julia> A = [2 3; 0 0]

2×2 Matrix{Int64}:

2 3

0 0

julia> Transpose(A)

2×2 transpose(::Matrix{Int64}) with eltype Int64:

2 0

3 0

LinearAlgebra.TransposeFactorization – Type.

TransposeFactorization

Lazy wrapper type for the transpose of the underlying Factorization object. Usually, the TransposeFactorization

constructor should not be called directly, use transpose(:: Factorization) instead.

Base.adjoint – Function.

A'

adjoint(A)

Lazy adjoint (conjugate transposition). Note that adjoint is applied recursively to elements.

For number types, adjoint returns the complex conjugate, and therefore it is equivalent to the identity

function for real numbers.

This operation is intended for linear algebra usage - for general data manipulation see permutedims.

Examples

julia> A = [3+2im 9+2im; 0 0]

2×2 Matrix{Complex{Int64}}:

3+2im 9+2im

0+0im 0+0im

julia> B = A' # equivalently adjoint(A)

2×2 adjoint(::Matrix{Complex{Int64}}) with eltype Complex{Int64}:

3-2im 0+0im

9-2im 0+0im

julia> B isa Adjoint

true

CHAPTER 78. LINEAR ALGEBRA 1325

julia> adjoint(B) === A # the adjoint of an adjoint unwraps the parent

true

julia> Adjoint(B) # however, the constructor always wraps its argument

2×2 adjoint(adjoint(::Matrix{Complex{Int64}})) with eltype Complex{Int64}:

3+2im 9+2im

0+0im 0+0im

julia> B[1,2] = 4 + 5im; # modifying B will modify A automatically

julia> A

2×2 Matrix{Complex{Int64}}:

3+2im 9+2im

4-5im 0+0im

For real matrices, the adjoint operation is equivalent to a transpose.

julia> A = reshape([x for x in 1:4], 2, 2)

2×2 Matrix{Int64}:

1 3

2 4

julia> A'

2×2 adjoint(::Matrix{Int64}) with eltype Int64:

1 2

3 4

julia> adjoint(A) == transpose(A)

true

The adjoint of an AbstractVector is a row-vector:

julia> x = [3, 4im]

2-element Vector{Complex{Int64}}:

3 + 0im

0 + 4im

julia> x'

1×2 adjoint(::Vector{Complex{Int64}}) with eltype Complex{Int64}:

3+0im 0-4im

julia> x'x # compute the dot product, equivalently x' * x

25 + 0im

For a matrix of matrices, the individual blocks are recursively operated on:

julia> A = reshape([x + im*x for x in 1:4], 2, 2)

2×2 Matrix{Complex{Int64}}:

1+1im 3+3im

2+2im 4+4im

julia> C = reshape([A, 2A, 3A, 4A], 2, 2)

CHAPTER 78. LINEAR ALGEBRA 1326

2×2 Matrix{Matrix{Complex{Int64}}}:

[1+1im 3+3im; 2+2im 4+4im] [3+3im 9+9im; 6+6im 12+12im]

[2+2im 6+6im; 4+4im 8+8im] [4+4im 12+12im; 8+8im 16+16im]

julia> C'

2×2 adjoint(::Matrix{Matrix{Complex{Int64}}}) with eltype Adjoint{Complex{Int64},

Matrix{Complex{Int64}}}:↪→

[1-1im 2-2im; 3-3im 4-4im] [2-2im 4-4im; 6-6im 8-8im]

[3-3im 6-6im; 9-9im 12-12im] [4-4im 8-8im; 12-12im 16-16im]

adjoint(F::Factorization)

Lazy adjoint of the factorization F. By default, returns an AdjointFactorization wrapper.

LinearAlgebra.adjoint! – Function.

adjoint!(X::AbstractSparseMatrixCSC{Tv,Ti}, A::AbstractSparseMatrixCSC{Tv,Ti}) where {Tv,Ti}

Transpose the matrix A and stores the adjoint of the elements in the matrix X. size(X) must be equal

to size(transpose(A)). No additional memory is allocated other than resizing the rowval and nzval

of X, if needed.

See halfperm!

source

adjoint!(dest,src)

Conjugate transpose array src and store the result in the preallocated array dest, which should have

a size corresponding to (size(src,2),size(src,1)). No in-place transposition is supported and un-

expected results will happen if src and dest have overlapping memory regions.

Examples

julia> A = [3+2im 9+2im; 8+7im 4+6im]

2×2 Matrix{Complex{Int64}}:

3+2im 9+2im

8+7im 4+6im

julia> B = zeros(Complex{Int64}, 2, 2)

2×2 Matrix{Complex{Int64}}:

0+0im 0+0im

0+0im 0+0im

julia> adjoint!(B, A);

julia> B

2×2 Matrix{Complex{Int64}}:

3-2im 8-7im

9-2im 4-6im

julia> A

2×2 Matrix{Complex{Int64}}:

3+2im 9+2im

8+7im 4+6im

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsematrix.jl#L1427-L1435

CHAPTER 78. LINEAR ALGEBRA 1327

LinearAlgebra.Adjoint – Type.

Adjoint

Lazy wrapper type for an adjoint view of the underlying linear algebra object, usually an AbstractVector/AbstractMatrix.

Usually, the Adjoint constructor should not be called directly, use adjoint instead. To materialize the

view use copy.

This type is intended for linear algebra usage - for general data manipulation see permutedims.

Examples

julia> A = [3+2im 9+2im; 0 0]

2×2 Matrix{Complex{Int64}}:

3+2im 9+2im

0+0im 0+0im

julia> Adjoint(A)

2×2 adjoint(::Matrix{Complex{Int64}}) with eltype Complex{Int64}:

3-2im 0+0im

9-2im 0+0im

LinearAlgebra.AdjointFactorization – Type.

AdjointFactorization

Lazy wrapper type for the adjoint of the underlying Factorization object. Usually, the AdjointFactorization

constructor should not be called directly, use adjoint(:: Factorization) instead.

Base.copy – Method.

copy(A::Transpose)

copy(A::Adjoint)

Eagerly evaluate the lazy matrix transpose/adjoint. Note that the transposition is applied recursively

to elements.

This operation is intended for linear algebra usage - for general data manipulation see permutedims,

which is non-recursive.

Examples

julia> A = [1 2im; -3im 4]

2×2 Matrix{Complex{Int64}}:

1+0im 0+2im

0-3im 4+0im

julia> T = transpose(A)

2×2 transpose(::Matrix{Complex{Int64}}) with eltype Complex{Int64}:

1+0im 0-3im

0+2im 4+0im

julia> copy(T)

2×2 Matrix{Complex{Int64}}:

1+0im 0-3im

0+2im 4+0im

CHAPTER 78. LINEAR ALGEBRA 1328

LinearAlgebra.stride1 – Function.

stride1(A) -> Int

Return the distance between successive array elements in dimension 1 in units of element size.

Examples

julia> A = [1,2,3,4]

4-element Vector{Int64}:

1

2

3

4

julia> LinearAlgebra.stride1(A)

1

julia> B = view(A, 2:2:4)

2-element view(::Vector{Int64}, 2:2:4) with eltype Int64:

2

4

julia> LinearAlgebra.stride1(B)

2

LinearAlgebra.checksquare – Function.

LinearAlgebra.checksquare(A)

Check that a matrix is square, then return its common dimension. For multiple arguments, return a

vector.

Examples

julia> A = fill(1, (4,4)); B = fill(1, (5,5));

julia> LinearAlgebra.checksquare(A, B)

2-element Vector{Int64}:

4

5

LinearAlgebra.peakflops – Function.

LinearAlgebra.peakflops(n::Integer=4096; eltype::DataType=Float64, ntrials::Integer=3,

parallel::Bool=false)↪→

peakflops computes the peak flop rate of the computer by using double precision gemm!. By default,

if no arguments are specified, it multiplies two Float64matrices of size n x n, where n = 4096. If the

underlying BLAS is using multiple threads, higher flop rates are realized. The number of BLAS threads

can be set with BLAS.set_num_threads(n).

If the keyword argument eltype is provided, peakflops will construct matrices with elements of type

eltype for calculating the peak flop rate.

CHAPTER 78. LINEAR ALGEBRA 1329

By default, peakflops will use the best timing from 3 trials. If the ntrials keyword argument is

provided, peakflops will use those many trials for picking the best timing.

If the keyword argument parallel is set to true, peakflops is run in parallel on all the worker proces-

sors. The flop rate of the entire parallel computer is returned. When running in parallel, only 1 BLAS

thread is used. The argument n still refers to the size of the problem that is solved on each processor.

Julia 1.1

This function requires at least Julia 1.1. In Julia 1.0 it is available from the standard library

InteractiveUtils.

LinearAlgebra.hermitianpart – Function.

hermitianpart(A, uplo=:U) -> Hermitian

Return the Hermitian part of the square matrix A, defined as (A + A') / 2, as a Hermitianmatrix. For

real matrices A, this is also known as the symmetric part of A; it is also sometimes called the "operator

real part". The optional argument uplo controls the corresponding argument of the Hermitian view.

For real matrices, the latter is equivalent to a Symmetric view.

See also hermitianpart! for the corresponding in-place operation.

Julia 1.10

This function requires Julia 1.10 or later.

LinearAlgebra.hermitianpart! – Function.

hermitianpart!(A, uplo=:U) -> Hermitian

Overwrite the square matrix A in-place with its Hermitian part (A + A') / 2, and return Hermitian(A,

uplo). For real matrices A, this is also known as the symmetric part of A.

See also hermitianpart for the corresponding out-of-place operation.

Julia 1.10

This function requires Julia 1.10 or later.

78.5 Low-level matrix operations

In many cases there are in-place versions of matrix operations that allow you to supply a pre-allocated

output vector or matrix. This is useful when optimizing critical code in order to avoid the overhead of

repeated allocations. These in-place operations are suffixed with ! below (e.g. mul!) according to the

usual Julia convention.

LinearAlgebra.mul! – Function.

mul!(Y, A, B) -> Y

Calculates the matrix-matrix or matrix-vector product AB and stores the result in Y, overwriting the

existing value of Y. Note that Y must not be aliased with either A or B.

Examples

CHAPTER 78. LINEAR ALGEBRA 1330

julia> A=[1.0 2.0; 3.0 4.0]; B=[1.0 1.0; 1.0 1.0]; Y = similar(B); mul!(Y, A, B);

julia> Y

2×2 Matrix{Float64}:

3.0 3.0

7.0 7.0

Implementation

For custom matrix and vector types, it is recommended to implement 5-argument mul! rather than

implementing 3-argument mul! directly if possible.

mul!(C, A, B, α, β) -> C

Combined inplace matrix-matrix or matrix-vector multiply-add AB + C. The result is stored in C by

overwriting it. Note that C must not be aliased with either A or B.

Julia 1.3

Five-argument mul! requires at least Julia 1.3.

Examples

julia> A=[1.0 2.0; 3.0 4.0]; B=[1.0 1.0; 1.0 1.0]; C=[1.0 2.0; 3.0 4.0];

julia> mul!(C, A, B, 100.0, 10.0) === C

true

julia> C

2×2 Matrix{Float64}:

310.0 320.0

730.0 740.0

LinearAlgebra.lmul! – Function.

lmul!(a::Number, B::AbstractArray)

Scale an array B by a scalar a overwriting B in-place. Use rmul! to multiply scalar from right. The

scaling operation respects the semantics of the multiplication * between a and an element of B. In

particular, this also applies to multiplication involving non-finite numbers such as NaN and ±Inf.

Julia 1.1

Prior to Julia 1.1, NaN and ±Inf entries in B were treated inconsistently.

Examples

julia> B = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> lmul!(2, B)

2×2 Matrix{Int64}:

CHAPTER 78. LINEAR ALGEBRA 1331

2 4

6 8

julia> lmul!(0.0, [Inf])

1-element Vector{Float64}:

NaN

lmul!(A, B)

Calculate thematrix-matrix productAB, overwriting B, and return the result. Here, Amust be of special
matrix type, like, e.g., Diagonal, UpperTriangular or LowerTriangular, or of some orthogonal type,

see QR.

Examples

julia> B = [0 1; 1 0];

julia> A = UpperTriangular([1 2; 0 3]);

julia> lmul!(A, B);

julia> B

2×2 Matrix{Int64}:

2 1

3 0

julia> B = [1.0 2.0; 3.0 4.0];

julia> F = qr([0 1; -1 0]);

julia> lmul!(F.Q, B)

2×2 Matrix{Float64}:

3.0 4.0

1.0 2.0

LinearAlgebra.rmul! – Function.

rmul!(A::AbstractArray, b::Number)

Scale an array A by a scalar b overwriting A in-place. Use lmul! to multiply scalar from left. The scaling

operation respects the semantics of the multiplication * between an element of A and b. In particular,

this also applies to multiplication involving non-finite numbers such as NaN and ±Inf.

Julia 1.1

Prior to Julia 1.1, NaN and ±Inf entries in A were treated inconsistently.

Examples

julia> A = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

CHAPTER 78. LINEAR ALGEBRA 1332

julia> rmul!(A, 2)

2×2 Matrix{Int64}:

2 4

6 8

julia> rmul!([NaN], 0.0)

1-element Vector{Float64}:

NaN

rmul!(A, B)

Calculate thematrix-matrix productAB, overwriting A, and return the result. Here, Bmust be of special
matrix type, like, e.g., Diagonal, UpperTriangular or LowerTriangular, or of some orthogonal type,

see QR.

Examples

julia> A = [0 1; 1 0];

julia> B = UpperTriangular([1 2; 0 3]);

julia> rmul!(A, B);

julia> A

2×2 Matrix{Int64}:

0 3

1 2

julia> A = [1.0 2.0; 3.0 4.0];

julia> F = qr([0 1; -1 0]);

julia> rmul!(A, F.Q)

2×2 Matrix{Float64}:

2.0 1.0

4.0 3.0

LinearAlgebra.ldiv! – Function.

ldiv!(Y, A, B) -> Y

Compute A \ B in-place and store the result in Y, returning the result.

The argument A should not be a matrix. Rather, instead of matrices it should be a factorization ob-

ject (e.g. produced by factorize or cholesky). The reason for this is that factorization itself is both

expensive and typically allocates memory (although it can also be done in-place via, e.g., lu!), and

performance-critical situations requiring ldiv! usually also require fine-grained control over the fac-

torization of A.

Note

Certain structured matrix types, such as Diagonal and UpperTriangular, are permitted,

as these are already in a factorized form

CHAPTER 78. LINEAR ALGEBRA 1333

Examples

julia> A = [1 2.2 4; 3.1 0.2 3; 4 1 2];

julia> X = [1; 2.5; 3];

julia> Y = zero(X);

julia> ldiv!(Y, qr(A), X);

julia> Y

3-element Vector{Float64}:

0.7128099173553719

-0.051652892561983674

0.10020661157024757

julia> A\X

3-element Vector{Float64}:

0.7128099173553719

-0.05165289256198333

0.10020661157024785

ldiv!(A, B)

Compute A \ B in-place and overwriting B to store the result.

The argument A should not be a matrix. Rather, instead of matrices it should be a factorization ob-

ject (e.g. produced by factorize or cholesky). The reason for this is that factorization itself is both

expensive and typically allocates memory (although it can also be done in-place via, e.g., lu!), and

performance-critical situations requiring ldiv! usually also require fine-grained control over the fac-

torization of A.

Note

Certain structured matrix types, such as Diagonal and UpperTriangular, are permitted,

as these are already in a factorized form

Examples

julia> A = [1 2.2 4; 3.1 0.2 3; 4 1 2];

julia> X = [1; 2.5; 3];

julia> Y = copy(X);

julia> ldiv!(qr(A), X);

julia> X

3-element Vector{Float64}:

0.7128099173553719

-0.051652892561983674

0.10020661157024757

julia> A\Y

CHAPTER 78. LINEAR ALGEBRA 1334

3-element Vector{Float64}:

0.7128099173553719

-0.05165289256198333

0.10020661157024785

ldiv!(a::Number, B::AbstractArray)

Divide each entry in an array B by a scalar a overwriting B in-place. Use rdiv! to divide scalar from

right.

Examples

julia> B = [1.0 2.0; 3.0 4.0]

2×2 Matrix{Float64}:

1.0 2.0

3.0 4.0

julia> ldiv!(2.0, B)

2×2 Matrix{Float64}:

0.5 1.0

1.5 2.0

LinearAlgebra.rdiv! – Function.

rdiv!(A, B)

Compute A / B in-place and overwriting A to store the result.

The argument B should not be a matrix. Rather, instead of matrices it should be a factorization ob-

ject (e.g. produced by factorize or cholesky). The reason for this is that factorization itself is both

expensive and typically allocates memory (although it can also be done in-place via, e.g., lu!), and

performance-critical situations requiring rdiv! usually also require fine-grained control over the fac-

torization of B.

Note

Certain structured matrix types, such as Diagonal and UpperTriangular, are permitted,

as these are already in a factorized form

rdiv!(A::AbstractArray, b::Number)

Divide each entry in an array A by a scalar b overwriting A in-place. Use ldiv! to divide scalar from

left.

Examples

julia> A = [1.0 2.0; 3.0 4.0]

2×2 Matrix{Float64}:

1.0 2.0

3.0 4.0

julia> rdiv!(A, 2.0)

2×2 Matrix{Float64}:

0.5 1.0

1.5 2.0

CHAPTER 78. LINEAR ALGEBRA 1335

78.6 BLAS functions

In Julia (as in much of scientific computation), dense linear-algebra operations are based on the LAPACK

library, which in turn is built on top of basic linear-algebra building-blocks known as the BLAS. There are

highly optimized implementations of BLAS available for every computer architecture, and sometimes in

high-performance linear algebra routines it is useful to call the BLAS functions directly.

LinearAlgebra.BLAS provides wrappers for some of the BLAS functions. Those BLAS functions that over-

write one of the input arrays have names ending in '!'. Usually, a BLAS function has four methods defined,

for Float32, Float64, ComplexF32, and ComplexF64 arrays.

BLAS character arguments

Many BLAS functions accept arguments that determine whether to transpose an argument (trans), which

triangle of a matrix to reference (uplo or ul), whether the diagonal of a triangular matrix can be assumed

to be all ones (dA) or which side of a matrix multiplication the input argument belongs on (side). The

possibilities are:

Multiplication order

side Meaning

'L' The argument goes on the left side of a matrix-matrix operation.

'R' The argument goes on the right side of a matrix-matrix operation.

Triangle referencing

uplo/ul Meaning

'U' Only the upper triangle of the matrix will be used.

'L' Only the lower triangle of the matrix will be used.

Transposition operation

trans/tX Meaning

'N' The input matrix X is not transposed or conjugated.

'T' The input matrix X will be transposed.

'C' The input matrix X will be conjugated and transposed.

Unit diagonal

diag/dX Meaning

'N' The diagonal values of the matrix X will be read.

'U' The diagonal of the matrix X is assumed to be all ones.

LinearAlgebra.BLAS – Module.

Interface to BLAS subroutines.

LinearAlgebra.BLAS.set_num_threads – Function.

http://www.netlib.org/lapack/
http://www.netlib.org/lapack/
http://www.netlib.org/blas/

CHAPTER 78. LINEAR ALGEBRA 1336

set_num_threads(n::Integer)

set_num_threads(::Nothing)

Set the number of threads the BLAS library should use equal to n::Integer.

Also accepts nothing, in which case julia tries to guess the default number of threads. Passing nothing

is discouraged and mainly exists for historical reasons.

LinearAlgebra.BLAS.get_num_threads – Function.

get_num_threads()

Get the number of threads the BLAS library is using.

Julia 1.6

get_num_threads requires at least Julia 1.6.

BLAS functions can be divided into three groups, also called three levels, depending on when they were

first proposed, the type of input parameters, and the complexity of the operation.

Level 1 BLAS functions

The level 1 BLAS functions were first proposed in [(Lawson, 1979)][Lawson-1979] and define operations

between scalars and vectors.

[Lawson-1979]: https://dl.acm.org/doi/10.1145/355841.355847

LinearAlgebra.BLAS.rot! – Function.

rot!(n, X, incx, Y, incy, c, s)

Overwrite X with c*X + s*Y and Y with -conj(s)*X + c*Y for the first n elements of array X with stride

incx and first n elements of array Y with stride incy. Returns X and Y.

Julia 1.5

rot! requires at least Julia 1.5.

LinearAlgebra.BLAS.scal! – Function.

scal!(n, a, X, incx)

scal!(a, X)

Overwrite X with a*X for the first n elements of array X with stride incx. Returns X.

If n and incx are not provided, length(X) and stride(X,1) are used.

LinearAlgebra.BLAS.scal – Function.

scal(n, a, X, incx)

scal(a, X)

Return X scaled by a for the first n elements of array X with stride incx.

If n and incx are not provided, length(X) and stride(X,1) are used.

CHAPTER 78. LINEAR ALGEBRA 1337

LinearAlgebra.BLAS.blascopy! – Function.

blascopy!(n, X, incx, Y, incy)

Copy n elements of array X with stride incx to array Y with stride incy. Returns Y.

LinearAlgebra.BLAS.dot – Function.

dot(n, X, incx, Y, incy)

Dot product of two vectors consisting of n elements of array X with stride incx and n elements of array

Y with stride incy.

Examples

julia> BLAS.dot(10, fill(1.0, 10), 1, fill(1.0, 20), 2)

10.0

LinearAlgebra.BLAS.dotu – Function.

dotu(n, X, incx, Y, incy)

Dot function for two complex vectors consisting of n elements of array Xwith stride incx and n elements

of array Y with stride incy.

Examples

julia> BLAS.dotu(10, fill(1.0im, 10), 1, fill(1.0+im, 20), 2)

-10.0 + 10.0im

LinearAlgebra.BLAS.dotc – Function.

dotc(n, X, incx, U, incy)

Dot function for two complex vectors, consisting of n elements of array X with stride incx and n ele-

ments of array U with stride incy, conjugating the first vector.

Examples

julia> BLAS.dotc(10, fill(1.0im, 10), 1, fill(1.0+im, 20), 2)

10.0 - 10.0im

LinearAlgebra.BLAS.nrm2 – Function.

nrm2(n, X, incx)

2-norm of a vector consisting of n elements of array X with stride incx.

Examples

julia> BLAS.nrm2(4, fill(1.0, 8), 2)

2.0

julia> BLAS.nrm2(1, fill(1.0, 8), 2)

1.0

CHAPTER 78. LINEAR ALGEBRA 1338

LinearAlgebra.BLAS.asum – Function.

asum(n, X, incx)

Sum of the magnitudes of the first n elements of array X with stride incx.

For a real array, the magnitude is the absolute value. For a complex array, the magnitude is the sum

of the absolute value of the real part and the absolute value of the imaginary part.

Examples

julia> BLAS.asum(5, fill(1.0im, 10), 2)

5.0

julia> BLAS.asum(2, fill(1.0im, 10), 5)

2.0

LinearAlgebra.BLAS.iamax – Function.

iamax(n, dx, incx)

iamax(dx)

Find the index of the element of dx with the maximum absolute value. n is the length of dx, and

incx is the stride. If n and incx are not provided, they assume default values of n=length(dx) and

incx=stride1(dx).

Level 2 BLAS functions

The level 2 BLAS functions were published in [(Dongarra, 1988)][Dongarra-1988], and define matrix-vector

operations.

[Dongarra-1988]: https://dl.acm.org/doi/10.1145/42288.42291

return a vector

LinearAlgebra.BLAS.gemv! – Function.

gemv!(tA, alpha, A, x, beta, y)

Update the vector y as alpha*A*x + beta*y or alpha*A'x + beta*y according to tA. alpha and beta

are scalars. Return the updated y.

LinearAlgebra.BLAS.gemv – Method.

gemv(tA, alpha, A, x)

Return alpha*A*x or alpha*A'x according to tA. alpha is a scalar.

LinearAlgebra.BLAS.gemv – Method.

gemv(tA, A, x)

Return A*x or A'x according to tA.

LinearAlgebra.BLAS.gbmv! – Function.

CHAPTER 78. LINEAR ALGEBRA 1339

gbmv!(trans, m, kl, ku, alpha, A, x, beta, y)

Update vector y as alpha*A*x + beta*y or alpha*A'*x + beta*y according to trans. The matrix A

is a general band matrix of dimension m by size(A,2) with kl sub-diagonals and ku super-diagonals.

alpha and beta are scalars. Return the updated y.

LinearAlgebra.BLAS.gbmv – Function.

gbmv(trans, m, kl, ku, alpha, A, x)

Return alpha*A*x or alpha*A'*x according to trans. The matrix A is a general band matrix of dimen-

sion m by size(A,2) with kl sub-diagonals and ku super-diagonals, and alpha is a scalar.

LinearAlgebra.BLAS.hemv! – Function.

hemv!(ul, alpha, A, x, beta, y)

Update the vector y as alpha*A*x + beta*y. A is assumed to be Hermitian. Only the ul triangle of A

is used. alpha and beta are scalars. Return the updated y.

LinearAlgebra.BLAS.hemv – Method.

hemv(ul, alpha, A, x)

Return alpha*A*x. A is assumed to be Hermitian. Only the ul triangle of A is used. alpha is a scalar.

LinearAlgebra.BLAS.hemv – Method.

hemv(ul, A, x)

Return A*x. A is assumed to be Hermitian. Only the ul triangle of A is used.

LinearAlgebra.BLAS.hpmv! – Function.

hpmv!(uplo, α, AP, x, β, y)

Update vector y as α*A*x + β*y, where A is a Hermitian matrix provided in packed format AP.

With uplo = 'U', the array AP must contain the upper triangular part of the Hermitian matrix packed

sequentially, column by column, so that AP[1] contains A[1, 1], AP[2] and AP[3] contain A[1, 2]

and A[2, 2] respectively, and so on.

With uplo = 'L', the array AP must contain the lower triangular part of the Hermitian matrix packed

sequentially, column by column, so that AP[1] contains A[1, 1], AP[2] and AP[3] contain A[2, 1]

and A[3, 1] respectively, and so on.

The scalar inputs α and β must be complex or real numbers.

The array inputs x, y and AP must all be of ComplexF32 or ComplexF64 type.

Return the updated y.

Julia 1.5

hpmv! requires at least Julia 1.5.

LinearAlgebra.BLAS.symv! – Function.

CHAPTER 78. LINEAR ALGEBRA 1340

symv!(ul, alpha, A, x, beta, y)

Update the vector y as alpha*A*x + beta*y. A is assumed to be symmetric. Only the ul triangle of A

is used. alpha and beta are scalars. Return the updated y.

LinearAlgebra.BLAS.symv – Method.

symv(ul, alpha, A, x)

Return alpha*A*x. A is assumed to be symmetric. Only the ul triangle of A is used. alpha is a scalar.

LinearAlgebra.BLAS.symv – Method.

symv(ul, A, x)

Return A*x. A is assumed to be symmetric. Only the ul triangle of A is used.

LinearAlgebra.BLAS.sbmv! – Function.

sbmv!(uplo, k, alpha, A, x, beta, y)

Update vector y as alpha*A*x + beta*y where A is a symmetric band matrix of order size(A,2) with

k super-diagonals stored in the argument A. The storage layout for A is described the reference BLAS

module, level-2 BLAS at http://www.netlib.org/lapack/explore-html/. Only the uplo triangle of A is used.

Return the updated y.

LinearAlgebra.BLAS.sbmv – Method.

sbmv(uplo, k, alpha, A, x)

Return alpha*A*x where A is a symmetric band matrix of order size(A,2) with k super-diagonals

stored in the argument A. Only the uplo triangle of A is used.

LinearAlgebra.BLAS.sbmv – Method.

sbmv(uplo, k, A, x)

Return A*x where A is a symmetric band matrix of order size(A,2) with k super-diagonals stored in

the argument A. Only the uplo triangle of A is used.

LinearAlgebra.BLAS.spmv! – Function.

spmv!(uplo, α, AP, x, β, y)

Update vector y as α*A*x + β*y, where A is a symmetric matrix provided in packed format AP.

With uplo = 'U', the array AP must contain the upper triangular part of the symmetric matrix packed

sequentially, column by column, so that AP[1] contains A[1, 1], AP[2] and AP[3] contain A[1, 2]

and A[2, 2] respectively, and so on.

With uplo = 'L', the array AP must contain the lower triangular part of the symmetric matrix packed

sequentially, column by column, so that AP[1] contains A[1, 1], AP[2] and AP[3] contain A[2, 1]

and A[3, 1] respectively, and so on.

The scalar inputs α and β must be real.

The array inputs x, y and AP must all be of Float32 or Float64 type.

Return the updated y.

http://www.netlib.org/lapack/explore-html/

CHAPTER 78. LINEAR ALGEBRA 1341

Julia 1.5

spmv! requires at least Julia 1.5.

LinearAlgebra.BLAS.trmv! – Function.

trmv!(ul, tA, dA, A, b)

Return op(A)*b, where op is determined by tA. Only the ul triangle of A is used. dA determines if the

diagonal values are read or are assumed to be all ones. The multiplication occurs in-place on b.

LinearAlgebra.BLAS.trmv – Function.

trmv(ul, tA, dA, A, b)

Return op(A)*b, where op is determined by tA. Only the ul triangle of A is used. dA determines if the

diagonal values are read or are assumed to be all ones.

LinearAlgebra.BLAS.trsv! – Function.

trsv!(ul, tA, dA, A, b)

Overwrite b with the solution to A*x = b or one of the other two variants determined by tA and ul. dA

determines if the diagonal values are read or are assumed to be all ones. Return the updated b.

LinearAlgebra.BLAS.trsv – Function.

trsv(ul, tA, dA, A, b)

Return the solution to A*x = b or one of the other two variants determined by tA and ul. dA determines

if the diagonal values are read or are assumed to be all ones.

return a matrix

LinearAlgebra.BLAS.ger! – Function.

ger!(alpha, x, y, A)

Rank-1 update of the matrix A with vectors x and y as alpha*x*y' + A.

LinearAlgebra.BLAS.her! – Function.

her!(uplo, alpha, x, A)

Methods for complex arrays only. Rank-1 update of the Hermitian matrix A with vector x as alpha*x*x'

+ A. uplo controls which triangle of A is updated. Returns A.

LinearAlgebra.BLAS.syr! – Function.

syr!(uplo, alpha, x, A)

Rank-1 update of the symmetric matrix A with vector x as alpha*x*transpose(x) + A. uplo controls

which triangle of A is updated. Returns A.

LinearAlgebra.BLAS.spr! – Function.

CHAPTER 78. LINEAR ALGEBRA 1342

spr!(uplo, α, x, AP)

Update matrix A as A+α*x*x', where A is a symmetric matrix provided in packed format AP and x is a

vector.

With uplo = 'U', the array AP must contain the upper triangular part of the symmetric matrix packed

sequentially, column by column, so that AP[1] contains A[1, 1], AP[2] and AP[3] contain A[1, 2]

and A[2, 2] respectively, and so on.

With uplo = 'L', the array AP must contain the lower triangular part of the symmetric matrix packed

sequentially, column by column, so that AP[1] contains A[1, 1], AP[2] and AP[3] contain A[2, 1]

and A[3, 1] respectively, and so on.

The scalar input α must be real.

The array inputs x and AP must all be of Float32 or Float64 type. Return the updated AP.

Julia 1.8

spr! requires at least Julia 1.8.

Level 3 BLAS functions

The level 3 BLAS functions were published in [(Dongarra, 1990)][Dongarra-1990], and define matrix-matrix

operations.

[Dongarra-1990]: https://dl.acm.org/doi/10.1145/77626.79170

LinearAlgebra.BLAS.gemm! – Function.

gemm!(tA, tB, alpha, A, B, beta, C)

Update C as alpha*A*B + beta*C or the other three variants according to tA and tB. Return the up-

dated C.

LinearAlgebra.BLAS.gemm – Method.

gemm(tA, tB, alpha, A, B)

Return alpha*A*B or the other three variants according to tA and tB.

LinearAlgebra.BLAS.gemm – Method.

gemm(tA, tB, A, B)

Return A*B or the other three variants according to tA and tB.

LinearAlgebra.BLAS.symm! – Function.

symm!(side, ul, alpha, A, B, beta, C)

Update C as alpha*A*B + beta*C or alpha*B*A + beta*C according to side. A is assumed to be

symmetric. Only the ul triangle of A is used. Return the updated C.

LinearAlgebra.BLAS.symm – Method.

symm(side, ul, alpha, A, B)

CHAPTER 78. LINEAR ALGEBRA 1343

Return alpha*A*B or alpha*B*A according to side. A is assumed to be symmetric. Only the ul triangle

of A is used.

LinearAlgebra.BLAS.symm – Method.

symm(side, ul, A, B)

Return A*B or B*A according to side. A is assumed to be symmetric. Only the ul triangle of A is used.

LinearAlgebra.BLAS.hemm! – Function.

hemm!(side, ul, alpha, A, B, beta, C)

Update C as alpha*A*B + beta*C or alpha*B*A + beta*C according to side. A is assumed to be

Hermitian. Only the ul triangle of A is used. Return the updated C.

LinearAlgebra.BLAS.hemm – Method.

hemm(side, ul, alpha, A, B)

Return alpha*A*B or alpha*B*A according to side. A is assumed to be Hermitian. Only the ul triangle

of A is used.

LinearAlgebra.BLAS.hemm – Method.

hemm(side, ul, A, B)

Return A*B or B*A according to side. A is assumed to be Hermitian. Only the ul triangle of A is used.

LinearAlgebra.BLAS.syrk! – Function.

syrk!(uplo, trans, alpha, A, beta, C)

Rank-k update of the symmetricmatrix C as alpha*A*transpose(A) + beta*C or alpha*transpose(A)*A

+ beta*C according to trans. Only the uplo triangle of C is used. Return C.

LinearAlgebra.BLAS.syrk – Function.

syrk(uplo, trans, alpha, A)

Return either the upper triangle or the lower triangle of A, according to uplo, of alpha*A*transpose(A)

or alpha*transpose(A)*A, according to trans.

LinearAlgebra.BLAS.herk! – Function.

herk!(uplo, trans, alpha, A, beta, C)

Methods for complex arrays only. Rank-k update of the Hermitian matrix C as alpha*A*A' + beta*C

or alpha*A'*A + beta*C according to trans. Only the uplo triangle of C is updated. Returns C.

LinearAlgebra.BLAS.herk – Function.

herk(uplo, trans, alpha, A)

Methods for complex arrays only. Returns the uplo triangle of alpha*A*A' or alpha*A'*A, according

to trans.

CHAPTER 78. LINEAR ALGEBRA 1344

LinearAlgebra.BLAS.syr2k! – Function.

syr2k!(uplo, trans, alpha, A, B, beta, C)

Rank-2k update of the symmetric matrix C as alpha*A*transpose(B) + alpha*B*transpose(A) +

beta*C or alpha*transpose(A)*B + alpha*transpose(B)*A + beta*C according to trans. Only the

uplo triangle of C is used. Returns C.

LinearAlgebra.BLAS.syr2k – Function.

syr2k(uplo, trans, alpha, A, B)

Returns the uplo triangle of alpha*A*transpose(B) + alpha*B*transpose(A) or alpha*transpose(A)*B

+ alpha*transpose(B)*A, according to trans.

syr2k(uplo, trans, A, B)

Return the uplo triangle of A*transpose(B) + B*transpose(A) or transpose(A)*B + transpose(B)*A,

according to trans.

LinearAlgebra.BLAS.her2k! – Function.

her2k!(uplo, trans, alpha, A, B, beta, C)

Rank-2k update of the Hermitian matrix C as alpha*A*B' + alpha*B*A' + beta*C or alpha*A'*B +

alpha*B'*A + beta*C according to trans. The scalar beta has to be real. Only the uplo triangle of C

is used. Return C.

LinearAlgebra.BLAS.her2k – Function.

her2k(uplo, trans, alpha, A, B)

Return the uplo triangle of alpha*A*B' + alpha*B*A' or alpha*A'*B + alpha*B'*A, according to

trans.

her2k(uplo, trans, A, B)

Return the uplo triangle of A*B' + B*A' or A'*B + B'*A, according to trans.

LinearAlgebra.BLAS.trmm! – Function.

trmm!(side, ul, tA, dA, alpha, A, B)

Update B as alpha*A*B or one of the other three variants determined by side and tA. Only the ul

triangle of A is used. dA determines if the diagonal values are read or are assumed to be all ones.

Return the updated B.

LinearAlgebra.BLAS.trmm – Function.

trmm(side, ul, tA, dA, alpha, A, B)

Return alpha*A*B or one of the other three variants determined by side and tA. Only the ul triangle

of A is used. dA determines if the diagonal values are read or are assumed to be all ones.

LinearAlgebra.BLAS.trsm! – Function.

CHAPTER 78. LINEAR ALGEBRA 1345

trsm!(side, ul, tA, dA, alpha, A, B)

Overwrite B with the solution to A*X = alpha*B or one of the other three variants determined by side

and tA. Only the ul triangle of A is used. dA determines if the diagonal values are read or are assumed

to be all ones. Returns the updated B.

LinearAlgebra.BLAS.trsm – Function.

trsm(side, ul, tA, dA, alpha, A, B)

Return the solution to A*X = alpha*B or one of the other three variants determined by determined by

side and tA. Only the ul triangle of A is used. dA determines if the diagonal values are read or are

assumed to be all ones.

78.7 LAPACK functions

LinearAlgebra.LAPACK provides wrappers for some of the LAPACK functions for linear algebra. Those

functions that overwrite one of the input arrays have names ending in '!'.

Usually a function has 4 methods defined, one each for Float64, Float32, ComplexF64 and ComplexF32

arrays.

Note that the LAPACK API provided by Julia can and will change in the future. Since this API is not user-facing,

there is no commitment to support/deprecate this specific set of functions in future releases.

LinearAlgebra.LAPACK – Module.

Interfaces to LAPACK subroutines.

LinearAlgebra.LAPACK.gbtrf! – Function.

gbtrf!(kl, ku, m, AB) -> (AB, ipiv)

Compute the LU factorization of a banded matrix AB. kl is the first subdiagonal containing a nonzero

band, ku is the last superdiagonal containing one, and m is the first dimension of the matrix AB. Returns

the LU factorization in-place and ipiv, the vector of pivots used.

LinearAlgebra.LAPACK.gbtrs! – Function.

gbtrs!(trans, kl, ku, m, AB, ipiv, B)

Solve the equation AB * X = B. trans determines the orientation of AB. It may be N (no transpose),

T (transpose), or C (conjugate transpose). kl is the first subdiagonal containing a nonzero band, ku is

the last superdiagonal containing one, and m is the first dimension of the matrix AB. ipiv is the vector

of pivots returned from gbtrf!. Returns the vector or matrix X, overwriting B in-place.

LinearAlgebra.LAPACK.gebal! – Function.

gebal!(job, A) -> (ilo, ihi, scale)

Balance the matrix A before computing its eigensystem or Schur factorization. job can be one of N (A

will not be permuted or scaled), P (A will only be permuted), S (A will only be scaled), or B (A will be

both permuted and scaled). Modifies A in-place and returns ilo, ihi, and scale. If permuting was

turned on, A[i,j] = 0 if j > i and 1 < j < ilo or j > ihi. scale contains information about the

scaling/permutations performed.

CHAPTER 78. LINEAR ALGEBRA 1346

LinearAlgebra.LAPACK.gebak! – Function.

gebak!(job, side, ilo, ihi, scale, V)

Transform the eigenvectors V of a matrix balanced using gebal! to the unscaled/unpermuted eigen-

vectors of the original matrix. Modifies V in-place. side can be L (left eigenvectors are transformed)

or R (right eigenvectors are transformed).

LinearAlgebra.LAPACK.gebrd! – Function.

gebrd!(A) -> (A, d, e, tauq, taup)

Reduce A in-place to bidiagonal form A = QBP'. Returns A, containing the bidiagonal matrix B; d, con-

taining the diagonal elements of B; e, containing the off-diagonal elements of B; tauq, containing the

elementary reflectors representing Q; and taup, containing the elementary reflectors representing P.

LinearAlgebra.LAPACK.gelqf! – Function.

gelqf!(A, tau)

Compute the LQ factorization of A, A = LQ. tau contains scalars which parameterize the elementary

reflectors of the factorization. tau must have length greater than or equal to the smallest dimension

of A.

Returns A and tau modified in-place.

gelqf!(A) -> (A, tau)

Compute the LQ factorization of A, A = LQ.

Returns A, modified in-place, and tau, which contains scalars which parameterize the elementary re-

flectors of the factorization.

LinearAlgebra.LAPACK.geqlf! – Function.

geqlf!(A, tau)

Compute the QL factorization of A, A = QL. tau contains scalars which parameterize the elementary

reflectors of the factorization. tau must have length greater than or equal to the smallest dimension

of A.

Returns A and tau modified in-place.

geqlf!(A) -> (A, tau)

Compute the QL factorization of A, A = QL.

Returns A, modified in-place, and tau, which contains scalars which parameterize the elementary re-

flectors of the factorization.

LinearAlgebra.LAPACK.geqrf! – Function.

geqrf!(A, tau)

CHAPTER 78. LINEAR ALGEBRA 1347

Compute the QR factorization of A, A = QR. tau contains scalars which parameterize the elementary

reflectors of the factorization. tau must have length greater than or equal to the smallest dimension

of A.

Returns A and tau modified in-place.

geqrf!(A) -> (A, tau)

Compute the QR factorization of A, A = QR.

Returns A, modified in-place, and tau, which contains scalars which parameterize the elementary re-

flectors of the factorization.

LinearAlgebra.LAPACK.geqp3! – Function.

geqp3!(A, [jpvt, tau]) -> (A, tau, jpvt)

Compute the pivoted QR factorization of A, AP = QR using BLAS level 3. P is a pivoting matrix, repre-

sented by jpvt. tau stores the elementary reflectors. The arguments jpvt and tau are optional and

allow for passing preallocated arrays. When passed, jpvt must have length greater than or equal to n

if A is an (m x n) matrix and tau must have length greater than or equal to the smallest dimension of

A.

A, jpvt, and tau are modified in-place.

LinearAlgebra.LAPACK.gerqf! – Function.

gerqf!(A, tau)

Compute the RQ factorization of A, A = RQ. tau contains scalars which parameterize the elementary

reflectors of the factorization. tau must have length greater than or equal to the smallest dimension

of A.

Returns A and tau modified in-place.

gerqf!(A) -> (A, tau)

Compute the RQ factorization of A, A = RQ.

Returns A, modified in-place, and tau, which contains scalars which parameterize the elementary re-

flectors of the factorization.

LinearAlgebra.LAPACK.geqrt! – Function.

geqrt!(A, T)

Compute the blocked QR factorization of A, A = QR. T contains upper triangular block reflectors which

parameterize the elementary reflectors of the factorization. The first dimension of T sets the block size

and it must be between 1 and n. The second dimension of T must equal the smallest dimension of A.

Returns A and T modified in-place.

geqrt!(A, nb) -> (A, T)

Compute the blocked QR factorization of A, A = QR. nb sets the block size and it must be between 1

and n, the second dimension of A.

Returns A, modified in-place, and T, which contains upper triangular block reflectors which parameterize

the elementary reflectors of the factorization.

CHAPTER 78. LINEAR ALGEBRA 1348

LinearAlgebra.LAPACK.geqrt3! – Function.

geqrt3!(A, T)

Recursively computes the blocked QR factorization of A, A = QR. T contains upper triangular block re-

flectors which parameterize the elementary reflectors of the factorization. The first dimension of T sets

the block size and it must be between 1 and n. The second dimension of T must equal the smallest

dimension of A.

Returns A and T modified in-place.

geqrt3!(A) -> (A, T)

Recursively computes the blocked QR factorization of A, A = QR.

Returns A, modified in-place, and T, which contains upper triangular block reflectors which parameterize

the elementary reflectors of the factorization.

LinearAlgebra.LAPACK.getrf! – Function.

getrf!(A) -> (A, ipiv, info)

Compute the pivoted LU factorization of A, A = LU.

Returns A, modified in-place, ipiv, the pivoting information, and an info code which indicates success

(info = 0), a singular value in U (info = i, in which case U[i,i] is singular), or an error code (info

< 0).

LinearAlgebra.LAPACK.tzrzf! – Function.

tzrzf!(A) -> (A, tau)

Transforms the upper trapezoidal matrix A to upper triangular form in-place. Returns A and tau, the

scalar parameters for the elementary reflectors of the transformation.

LinearAlgebra.LAPACK.ormrz! – Function.

ormrz!(side, trans, A, tau, C)

Multiplies the matrix C by Q from the transformation supplied by tzrzf!. Depending on side or trans

the multiplication can be left-sided (side = L, Q*C) or right-sided (side = R, C*Q) and Q can be un-

modified (trans = N), transposed (trans = T), or conjugate transposed (trans = C). Returns matrix

C which is modified in-place with the result of the multiplication.

LinearAlgebra.LAPACK.gels! – Function.

gels!(trans, A, B) -> (F, B, ssr)

Solves the linear equation A * X = B, transpose(A) * X = B, or adjoint(A) * X = B using a QR or

LQ factorization. Modifies the matrix/vector B in place with the solution. A is overwritten with its QR or

LQ factorization. trans may be one of N (no modification), T (transpose), or C (conjugate transpose).

gels! searches for the minimum norm/least squares solution. A may be under or over determined.

The solution is returned in B.

LinearAlgebra.LAPACK.gesv! – Function.

CHAPTER 78. LINEAR ALGEBRA 1349

gesv!(A, B) -> (B, A, ipiv)

Solves the linear equation A * X = B where A is a square matrix using the LU factorization of A. A is

overwritten with its LU factorization and B is overwritten with the solution X. ipiv contains the pivoting

information for the LU factorization of A.

LinearAlgebra.LAPACK.getrs! – Function.

getrs!(trans, A, ipiv, B)

Solves the linear equation A * X = B, transpose(A) * X = B, or adjoint(A) * X = B for square A.

Modifies the matrix/vector B in place with the solution. A is the LU factorization from getrf!, with

ipiv the pivoting information. trans may be one of N (no modification), T (transpose), or C (conjugate

transpose).

LinearAlgebra.LAPACK.getri! – Function.

getri!(A, ipiv)

Computes the inverse of A, using its LU factorization found by getrf!. ipiv is the pivot information

output and A contains the LU factorization of getrf!. A is overwritten with its inverse.

LinearAlgebra.LAPACK.gesvx! – Function.

gesvx!(fact, trans, A, AF, ipiv, equed, R, C, B) -> (X, equed, R, C, B, rcond, ferr, berr,

work)↪→

Solves the linear equation A * X = B (trans = N), transpose(A) * X = B (trans = T), or adjoint(A)

* X = B (trans = C) using the LU factorization of A. factmay be E, in which case A will be equilibrated

and copied to AF; F, in which case AF and ipiv from a previous LU factorization are inputs; or N, in which

case A will be copied to AF and then factored. If fact = F, equed may be N, meaning A has not been

equilibrated; R, meaning A was multiplied by Diagonal(R) from the left; C, meaning A was multiplied

by Diagonal(C) from the right; or B, meaning A was multiplied by Diagonal(R) from the left and

Diagonal(C) from the right. If fact = F and equed = R or B the elements of R must all be positive. If

fact = F and equed = C or B the elements of C must all be positive.

Returns the solution X; equed, which is an output if fact is not N, and describes the equilibration

that was performed; R, the row equilibration diagonal; C, the column equilibration diagonal; B, which

may be overwritten with its equilibrated form Diagonal(R)*B (if trans = N and equed = R,B) or

Diagonal(C)*B (if trans = T,C and equed = C,B); rcond, the reciprocal condition number of A af-

ter equilbrating; ferr, the forward error bound for each solution vector in X; berr, the forward error

bound for each solution vector in X; and work, the reciprocal pivot growth factor.

gesvx!(A, B)

The no-equilibration, no-transpose simplification of gesvx!.

LinearAlgebra.LAPACK.gelsd! – Function.

gelsd!(A, B, rcond) -> (B, rnk)

Computes the least norm solution of A * X = B by finding the SVD factorization of A, then dividing-

and-conquering the problem. B is overwritten with the solution X. Singular values below rcond will be

treated as zero. Returns the solution in B and the effective rank of A in rnk.

CHAPTER 78. LINEAR ALGEBRA 1350

LinearAlgebra.LAPACK.gelsy! – Function.

gelsy!(A, B, rcond) -> (B, rnk)

Computes the least norm solution of A * X = B by finding the full QR factorization of A, then dividing-

and-conquering the problem. B is overwritten with the solution X. Singular values below rcond will be

treated as zero. Returns the solution in B and the effective rank of A in rnk.

LinearAlgebra.LAPACK.gglse! – Function.

gglse!(A, c, B, d) -> (X,res)

Solves the equation A * x = c where x is subject to the equality constraint B * x = d. Uses the

formula ||c - A*x||^2 = 0 to solve. Returns X and the residual sum-of-squares.

LinearAlgebra.LAPACK.geev! – Function.

geev!(jobvl, jobvr, A) -> (W, VL, VR)

Finds the eigensystem of A. If jobvl = N, the left eigenvectors of A aren't computed. If jobvr = N, the

right eigenvectors of A aren't computed. If jobvl = V or jobvr = V, the corresponding eigenvectors

are computed. Returns the eigenvalues in W, the right eigenvectors in VR, and the left eigenvectors in

VL.

LinearAlgebra.LAPACK.gesdd! – Function.

gesdd!(job, A) -> (U, S, VT)

Finds the singular value decomposition of A, A = U * S * V', using a divide and conquer approach. If

job = A, all the columns of U and the rows of V' are computed. If job = N, no columns of U or rows of

V' are computed. If job = O, A is overwritten with the columns of (thin) U and the rows of (thin) V'. If

job = S, the columns of (thin) U and the rows of (thin) V' are computed and returned separately.

LinearAlgebra.LAPACK.gesvd! – Function.

gesvd!(jobu, jobvt, A) -> (U, S, VT)

Finds the singular value decomposition of A, A = U * S * V'. If jobu = A, all the columns of U are

computed. If jobvt = A all the rows of V' are computed. If jobu = N, no columns of U are computed.

If jobvt = N no rows of V' are computed. If jobu = O, A is overwritten with the columns of (thin)

U. If jobvt = O, A is overwritten with the rows of (thin) V'. If jobu = S, the columns of (thin) U are

computed and returned separately. If jobvt = S the rows of (thin) V' are computed and returned

separately. jobu and jobvt can't both be O.

Returns U, S, and Vt, where S are the singular values of A.

LinearAlgebra.LAPACK.ggsvd! – Function.

ggsvd!(jobu, jobv, jobq, A, B) -> (U, V, Q, alpha, beta, k, l, R)

Finds the generalized singular value decomposition of A and B, U'*A*Q = D1*R and V'*B*Q = D2*R.

D1 has alpha on its diagonal and D2 has beta on its diagonal. If jobu = U, the orthogonal/unitary

matrix U is computed. If jobv = V the orthogonal/unitary matrix V is computed. If jobq = Q, the

orthogonal/unitary matrix Q is computed. If jobu, jobv or jobq is N, that matrix is not computed. This

function is only available in LAPACK versions prior to 3.6.0.

CHAPTER 78. LINEAR ALGEBRA 1351

LinearAlgebra.LAPACK.ggsvd3! – Function.

ggsvd3!(jobu, jobv, jobq, A, B) -> (U, V, Q, alpha, beta, k, l, R)

Finds the generalized singular value decomposition of A and B, U'*A*Q = D1*R and V'*B*Q = D2*R.

D1 has alpha on its diagonal and D2 has beta on its diagonal. If jobu = U, the orthogonal/unitary

matrix U is computed. If jobv = V the orthogonal/unitary matrix V is computed. If jobq = Q, the

orthogonal/unitary matrix Q is computed. If jobu, jobv, or jobq is N, that matrix is not computed. This

function requires LAPACK 3.6.0.

LinearAlgebra.LAPACK.geevx! – Function.

geevx!(balanc, jobvl, jobvr, sense, A) -> (A, w, VL, VR, ilo, ihi, scale, abnrm, rconde,

rcondv)↪→

Finds the eigensystem of A with matrix balancing. If jobvl = N, the left eigenvectors of A aren't com-

puted. If jobvr = N, the right eigenvectors of A aren't computed. If jobvl = V or jobvr = V, the

corresponding eigenvectors are computed. If balanc = N, no balancing is performed. If balanc = P,

A is permuted but not scaled. If balanc = S, A is scaled but not permuted. If balanc = B, A is permuted

and scaled. If sense = N, no reciprocal condition numbers are computed. If sense = E, reciprocal con-

dition numbers are computed for the eigenvalues only. If sense = V, reciprocal condition numbers are

computed for the right eigenvectors only. If sense = B, reciprocal condition numbers are computed

for the right eigenvectors and the eigenvectors. If sense = E,B, the right and left eigenvectors must

be computed.

LinearAlgebra.LAPACK.ggev! – Function.

ggev!(jobvl, jobvr, A, B) -> (alpha, beta, vl, vr)

Finds the generalized eigendecomposition of A and B. If jobvl = N, the left eigenvectors aren't com-

puted. If jobvr = N, the right eigenvectors aren't computed. If jobvl = V or jobvr = V, the corre-

sponding eigenvectors are computed.

LinearAlgebra.LAPACK.ggev3! – Function.

ggev3!(jobvl, jobvr, A, B) -> (alpha, beta, vl, vr)

Finds the generalized eigendecomposition of A and B using a blocked algorithm. If jobvl = N, the left

eigenvectors aren't computed. If jobvr = N, the right eigenvectors aren't computed. If jobvl = V or

jobvr = V, the corresponding eigenvectors are computed. This function requires LAPACK 3.6.0.

LinearAlgebra.LAPACK.gtsv! – Function.

gtsv!(dl, d, du, B)

Solves the equation A * X = B where A is a tridiagonal matrix with dl on the subdiagonal, d on the

diagonal, and du on the superdiagonal.

Overwrites B with the solution X and returns it.

LinearAlgebra.LAPACK.gttrf! – Function.

gttrf!(dl, d, du) -> (dl, d, du, du2, ipiv)

CHAPTER 78. LINEAR ALGEBRA 1352

Finds the LU factorization of a tridiagonal matrix with dl on the subdiagonal, d on the diagonal, and du

on the superdiagonal.

Modifies dl, d, and du in-place and returns them and the second superdiagonal du2 and the pivoting

vector ipiv.

LinearAlgebra.LAPACK.gttrs! – Function.

gttrs!(trans, dl, d, du, du2, ipiv, B)

Solves the equation A * X = B (trans = N), transpose(A) * X = B (trans = T), or adjoint(A) *

X = B (trans = C) using the LU factorization computed by gttrf!. B is overwritten with the solution

X.

LinearAlgebra.LAPACK.orglq! – Function.

orglq!(A, tau, k = length(tau))

Explicitly finds the matrix Q of a LQ factorization after calling gelqf! on A. Uses the output of gelqf!.

A is overwritten by Q.

LinearAlgebra.LAPACK.orgqr! – Function.

orgqr!(A, tau, k = length(tau))

Explicitly finds the matrix Q of a QR factorization after calling geqrf! on A. Uses the output of geqrf!.

A is overwritten by Q.

LinearAlgebra.LAPACK.orgql! – Function.

orgql!(A, tau, k = length(tau))

Explicitly finds the matrix Q of a QL factorization after calling geqlf! on A. Uses the output of geqlf!.

A is overwritten by Q.

LinearAlgebra.LAPACK.orgrq! – Function.

orgrq!(A, tau, k = length(tau))

Explicitly finds the matrix Q of a RQ factorization after calling gerqf! on A. Uses the output of gerqf!.

A is overwritten by Q.

LinearAlgebra.LAPACK.ormlq! – Function.

ormlq!(side, trans, A, tau, C)

Computes Q * C (trans = N), transpose(Q) * C (trans = T), adjoint(Q) * C (trans = C) for side

= L or the equivalent right-sided multiplication for side = R using Q from a LQ factorization of A com-

puted using gelqf!. C is overwritten.

LinearAlgebra.LAPACK.ormqr! – Function.

ormqr!(side, trans, A, tau, C)

CHAPTER 78. LINEAR ALGEBRA 1353

Computes Q * C (trans = N), transpose(Q) * C (trans = T), adjoint(Q) * C (trans = C) for side

= L or the equivalent right-sided multiplication for side = R using Q from a QR factorization of A com-

puted using geqrf!. C is overwritten.

LinearAlgebra.LAPACK.ormql! – Function.

ormql!(side, trans, A, tau, C)

Computes Q * C (trans = N), transpose(Q) * C (trans = T), adjoint(Q) * C (trans = C) for side

= L or the equivalent right-sided multiplication for side = R using Q from a QL factorization of A com-

puted using geqlf!. C is overwritten.

LinearAlgebra.LAPACK.ormrq! – Function.

ormrq!(side, trans, A, tau, C)

Computes Q * C (trans = N), transpose(Q) * C (trans = T), adjoint(Q) * C (trans = C) for side

= L or the equivalent right-sided multiplication for side = R using Q from a RQ factorization of A com-

puted using gerqf!. C is overwritten.

LinearAlgebra.LAPACK.gemqrt! – Function.

gemqrt!(side, trans, V, T, C)

Computes Q * C (trans = N), transpose(Q) * C (trans = T), adjoint(Q) * C (trans = C) for side

= L or the equivalent right-sided multiplication for side = R using Q from a QR factorization of A com-

puted using geqrt!. C is overwritten.

LinearAlgebra.LAPACK.posv! – Function.

posv!(uplo, A, B) -> (A, B)

Finds the solution to A * X = B where A is a symmetric or Hermitian positive definite matrix. If uplo =

U the upper Cholesky decomposition of A is computed. If uplo = L the lower Cholesky decomposition

of A is computed. A is overwritten by its Cholesky decomposition. B is overwritten with the solution X.

LinearAlgebra.LAPACK.potrf! – Function.

potrf!(uplo, A)

Computes the Cholesky (upper if uplo = U, lower if uplo = L) decomposition of positive-definitematrix

A. A is overwritten and returned with an info code.

LinearAlgebra.LAPACK.potri! – Function.

potri!(uplo, A)

Computes the inverse of positive-definite matrix A after calling potrf! to find its (upper if uplo = U,

lower if uplo = L) Cholesky decomposition.

A is overwritten by its inverse and returned.

LinearAlgebra.LAPACK.potrs! – Function.

potrs!(uplo, A, B)

CHAPTER 78. LINEAR ALGEBRA 1354

Finds the solution to A * X = B where A is a symmetric or Hermitian positive definite matrix whose

Cholesky decomposition was computed by potrf!. If uplo = U the upper Cholesky decomposition of

A was computed. If uplo = L the lower Cholesky decomposition of A was computed. B is overwritten

with the solution X.

LinearAlgebra.LAPACK.pstrf! – Function.

pstrf!(uplo, A, tol) -> (A, piv, rank, info)

Computes the (upper if uplo = U, lower if uplo = L) pivoted Cholesky decomposition of positive-

definite matrix A with a user-set tolerance tol. A is overwritten by its Cholesky decomposition.

Returns A, the pivots piv, the rank of A, and an info code. If info = 0, the factorization succeeded.

If info = i > 0, then A is indefinite or rank-deficient.

LinearAlgebra.LAPACK.ptsv! – Function.

ptsv!(D, E, B)

Solves A * X = B for positive-definite tridiagonal A. D is the diagonal of A and E is the off-diagonal. B

is overwritten with the solution X and returned.

LinearAlgebra.LAPACK.pttrf! – Function.

pttrf!(D, E)

Computes the LDLt factorization of a positive-definite tridiagonal matrix with D as diagonal and E as

off-diagonal. D and E are overwritten and returned.

LinearAlgebra.LAPACK.pttrs! – Function.

pttrs!(D, E, B)

Solves A * X = B for positive-definite tridiagonal A with diagonal D and off-diagonal E after computing

A's LDLt factorization using pttrf!. B is overwritten with the solution X.

LinearAlgebra.LAPACK.trtri! – Function.

trtri!(uplo, diag, A)

Finds the inverse of (upper if uplo = U, lower if uplo = L) triangular matrix A. If diag = N, A has

non-unit diagonal elements. If diag = U, all diagonal elements of A are one. A is overwritten with its

inverse.

LinearAlgebra.LAPACK.trtrs! – Function.

trtrs!(uplo, trans, diag, A, B)

Solves A * X = B (trans = N), transpose(A) * X = B (trans = T), or adjoint(A) * X = B (trans

= C) for (upper if uplo = U, lower if uplo = L) triangular matrix A. If diag = N, A has non-unit diagonal

elements. If diag = U, all diagonal elements of A are one. B is overwritten with the solution X.

LinearAlgebra.LAPACK.trcon! – Function.

trcon!(norm, uplo, diag, A)

CHAPTER 78. LINEAR ALGEBRA 1355

Finds the reciprocal condition number of (upper if uplo = U, lower if uplo = L) triangular matrix A. If

diag = N, A has non-unit diagonal elements. If diag = U, all diagonal elements of A are one. If norm =

I, the condition number is found in the infinity norm. If norm = O or 1, the condition number is found

in the one norm.

LinearAlgebra.LAPACK.trevc! – Function.

trevc!(side, howmny, select, T, VL = similar(T), VR = similar(T))

Finds the eigensystem of an upper triangular matrix T. If side = R, the right eigenvectors are com-

puted. If side = L, the left eigenvectors are computed. If side = B, both sets are computed. If howmny

= A, all eigenvectors are found. If howmny = B, all eigenvectors are found and backtransformed using

VL and VR. If howmny = S, only the eigenvectors corresponding to the values in select are computed.

LinearAlgebra.LAPACK.trrfs! – Function.

trrfs!(uplo, trans, diag, A, B, X, Ferr, Berr) -> (Ferr, Berr)

Estimates the error in the solution to A * X = B (trans = N), transpose(A) * X = B (trans = T),

adjoint(A) * X = B (trans = C) for side = L, or the equivalent equations a right-handed side =

R X * A after computing X using trtrs!. If uplo = U, A is upper triangular. If uplo = L, A is lower

triangular. If diag = N, A has non-unit diagonal elements. If diag = U, all diagonal elements of A are

one. Ferr and Berr are optional inputs. Ferr is the forward error and Berr is the backward error, each

component-wise.

LinearAlgebra.LAPACK.stev! – Function.

stev!(job, dv, ev) -> (dv, Zmat)

Computes the eigensystem for a symmetric tridiagonal matrix with dv as diagonal and ev as off-

diagonal. If job = N only the eigenvalues are found and returned in dv. If job = V then the eigenvec-

tors are also found and returned in Zmat.

LinearAlgebra.LAPACK.stebz! – Function.

stebz!(range, order, vl, vu, il, iu, abstol, dv, ev) -> (dv, iblock, isplit)

Computes the eigenvalues for a symmetric tridiagonal matrix with dv as diagonal and ev as off-

diagonal. If range = A, all the eigenvalues are found. If range = V, the eigenvalues in the half-open

interval (vl, vu] are found. If range = I, the eigenvalues with indices between il and iu are found.

If order = B, eigvalues are ordered within a block. If order = E, they are ordered across all the blocks.

abstol can be set as a tolerance for convergence.

LinearAlgebra.LAPACK.stegr! – Function.

stegr!(jobz, range, dv, ev, vl, vu, il, iu) -> (w, Z)

Computes the eigenvalues (jobz = N) or eigenvalues and eigenvectors (jobz = V) for a symmetric

tridiagonal matrix with dv as diagonal and ev as off-diagonal. If range = A, all the eigenvalues are

found. If range = V, the eigenvalues in the half-open interval (vl, vu] are found. If range = I, the

eigenvalues with indices between il and iu are found. The eigenvalues are returned in w and the

eigenvectors in Z.

CHAPTER 78. LINEAR ALGEBRA 1356

LinearAlgebra.LAPACK.stein! – Function.

stein!(dv, ev_in, w_in, iblock_in, isplit_in)

Computes the eigenvectors for a symmetric tridiagonal matrix with dv as diagonal and ev_in as off-

diagonal. w_in specifies the input eigenvalues for which to find corresponding eigenvectors. iblock_in

specifies the submatrices corresponding to the eigenvalues in w_in. isplit_in specifies the splitting

points between the submatrix blocks.

LinearAlgebra.LAPACK.syconv! – Function.

syconv!(uplo, A, ipiv) -> (A, work)

Converts a symmetric matrix A (which has been factorized into a triangular matrix) into two matrices

L and D. If uplo = U, A is upper triangular. If uplo = L, it is lower triangular. ipiv is the pivot vector

from the triangular factorization. A is overwritten by L and D.

LinearAlgebra.LAPACK.sysv! – Function.

sysv!(uplo, A, B) -> (B, A, ipiv)

Finds the solution to A * X = B for symmetric matrix A. If uplo = U, the upper half of A is stored. If uplo

= L, the lower half is stored. B is overwritten by the solution X. A is overwritten by its Bunch-Kaufman

factorization. ipiv contains pivoting information about the factorization.

LinearAlgebra.LAPACK.sytrf! – Function.

sytrf!(uplo, A) -> (A, ipiv, info)

Computes the Bunch-Kaufman factorization of a symmetric matrix A. If uplo = U, the upper half of A

is stored. If uplo = L, the lower half is stored.

Returns A, overwritten by the factorization, a pivot vector ipiv, and the error code info which is a

non-negative integer. If info is positive the matrix is singular and the diagonal part of the factorization

is exactly zero at position info.

LinearAlgebra.LAPACK.sytri! – Function.

sytri!(uplo, A, ipiv)

Computes the inverse of a symmetric matrix A using the results of sytrf!. If uplo = U, the upper half

of A is stored. If uplo = L, the lower half is stored. A is overwritten by its inverse.

LinearAlgebra.LAPACK.sytrs! – Function.

sytrs!(uplo, A, ipiv, B)

Solves the equation A * X = B for a symmetric matrix A using the results of sytrf!. If uplo = U, the

upper half of A is stored. If uplo = L, the lower half is stored. B is overwritten by the solution X.

LinearAlgebra.LAPACK.hesv! – Function.

hesv!(uplo, A, B) -> (B, A, ipiv)

CHAPTER 78. LINEAR ALGEBRA 1357

Finds the solution to A * X = B for Hermitian matrix A. If uplo = U, the upper half of A is stored. If uplo

= L, the lower half is stored. B is overwritten by the solution X. A is overwritten by its Bunch-Kaufman

factorization. ipiv contains pivoting information about the factorization.

LinearAlgebra.LAPACK.hetrf! – Function.

hetrf!(uplo, A) -> (A, ipiv, info)

Computes the Bunch-Kaufman factorization of a Hermitian matrix A. If uplo = U, the upper half of A is

stored. If uplo = L, the lower half is stored.

Returns A, overwritten by the factorization, a pivot vector ipiv, and the error code info which is a

non-negative integer. If info is positive the matrix is singular and the diagonal part of the factorization

is exactly zero at position info.

LinearAlgebra.LAPACK.hetri! – Function.

hetri!(uplo, A, ipiv)

Computes the inverse of a Hermitian matrix A using the results of sytrf!. If uplo = U, the upper half

of A is stored. If uplo = L, the lower half is stored. A is overwritten by its inverse.

LinearAlgebra.LAPACK.hetrs! – Function.

hetrs!(uplo, A, ipiv, B)

Solves the equation A * X = B for a Hermitian matrix A using the results of sytrf!. If uplo = U, the

upper half of A is stored. If uplo = L, the lower half is stored. B is overwritten by the solution X.

LinearAlgebra.LAPACK.syev! – Function.

syev!(jobz, uplo, A)

Finds the eigenvalues (jobz = N) or eigenvalues and eigenvectors (jobz = V) of a symmetric matrix

A. If uplo = U, the upper triangle of A is used. If uplo = L, the lower triangle of A is used.

LinearAlgebra.LAPACK.syevr! – Function.

syevr!(jobz, range, uplo, A, vl, vu, il, iu, abstol) -> (W, Z)

Finds the eigenvalues (jobz = N) or eigenvalues and eigenvectors (jobz = V) of a symmetric matrix

A. If uplo = U, the upper triangle of A is used. If uplo = L, the lower triangle of A is used. If range =

A, all the eigenvalues are found. If range = V, the eigenvalues in the half-open interval (vl, vu] are

found. If range = I, the eigenvalues with indices between il and iu are found. abstol can be set as

a tolerance for convergence.

The eigenvalues are returned in W and the eigenvectors in Z.

LinearAlgebra.LAPACK.syevd! – Function.

syevd!(jobz, uplo, A)

Finds the eigenvalues (jobz = N) or eigenvalues and eigenvectors (jobz = V) of a symmetric matrix

A. If uplo = U, the upper triangle of A is used. If uplo = L, the lower triangle of A is used.

Use the divide-and-conquer method, instead of the QR iteration used by syev! or multiple relatively

robust representations used by syevr!. See James W. Demmel et al, SIAM J. Sci. Comput. 30, 3, 1508

(2008) for a comparison of the accuracy and performatce of different methods.

CHAPTER 78. LINEAR ALGEBRA 1358

LinearAlgebra.LAPACK.sygvd! – Function.

sygvd!(itype, jobz, uplo, A, B) -> (w, A, B)

Finds the generalized eigenvalues (jobz = N) or eigenvalues and eigenvectors (jobz = V) of a sym-

metric matrix A and symmetric positive-definite matrix B. If uplo = U, the upper triangles of A and B

are used. If uplo = L, the lower triangles of A and B are used. If itype = 1, the problem to solve is A

* x = lambda * B * x. If itype = 2, the problem to solve is A * B * x = lambda * x. If itype =

3, the problem to solve is B * A * x = lambda * x.

LinearAlgebra.LAPACK.bdsqr! – Function.

bdsqr!(uplo, d, e_, Vt, U, C) -> (d, Vt, U, C)

Computes the singular value decomposition of a bidiagonal matrix with d on the diagonal and e_ on the

off-diagonal. If uplo = U, e_ is the superdiagonal. If uplo = L, e_ is the subdiagonal. Can optionally

also compute the product Q' * C.

Returns the singular values in d, and the matrix C overwritten with Q' * C.

LinearAlgebra.LAPACK.bdsdc! – Function.

bdsdc!(uplo, compq, d, e_) -> (d, e, u, vt, q, iq)

Computes the singular value decomposition of a bidiagonal matrix with d on the diagonal and e_ on the

off-diagonal using a divide and conqueq method. If uplo = U, e_ is the superdiagonal. If uplo = L, e_

is the subdiagonal. If compq = N, only the singular values are found. If compq = I, the singular values

and vectors are found. If compq = P, the singular values and vectors are found in compact form. Only

works for real types.

Returns the singular values in d, and if compq = P, the compact singular vectors in iq.

LinearAlgebra.LAPACK.gecon! – Function.

gecon!(normtype, A, anorm)

Finds the reciprocal condition number of matrix A. If normtype = I, the condition number is found in

the infinity norm. If normtype = O or 1, the condition number is found in the one norm. A must be the

result of getrf! and anorm is the norm of A in the relevant norm.

LinearAlgebra.LAPACK.gehrd! – Function.

gehrd!(ilo, ihi, A) -> (A, tau)

Converts a matrix A to Hessenberg form. If A is balanced with gebal! then ilo and ihi are the outputs

of gebal!. Otherwise they should be ilo = 1 and ihi = size(A,2). tau contains the elementary

reflectors of the factorization.

LinearAlgebra.LAPACK.orghr! – Function.

orghr!(ilo, ihi, A, tau)

Explicitly finds Q, the orthogonal/unitary matrix from gehrd!. ilo, ihi, A, and tau must correspond to

the input/output to gehrd!.

CHAPTER 78. LINEAR ALGEBRA 1359

LinearAlgebra.LAPACK.gees! – Function.

gees!(jobvs, A) -> (A, vs, w)

Computes the eigenvalues (jobvs = N) or the eigenvalues and Schur vectors (jobvs = V) of matrix A.

A is overwritten by its Schur form.

Returns A, vs containing the Schur vectors, and w, containing the eigenvalues.

LinearAlgebra.LAPACK.gges! – Function.

gges!(jobvsl, jobvsr, A, B) -> (A, B, alpha, beta, vsl, vsr)

Computes the generalized eigenvalues, generalized Schur form, left Schur vectors (jobsvl = V), or

right Schur vectors (jobvsr = V) of A and B.

The generalized eigenvalues are returned in alpha and beta. The left Schur vectors are returned in

vsl and the right Schur vectors are returned in vsr.

LinearAlgebra.LAPACK.gges3! – Function.

gges3!(jobvsl, jobvsr, A, B) -> (A, B, alpha, beta, vsl, vsr)

Computes the generalized eigenvalues, generalized Schur form, left Schur vectors (jobsvl = V), or

right Schur vectors (jobvsr = V) of A and B using a blocked algorithm. This function requires LAPACK

3.6.0.

The generalized eigenvalues are returned in alpha and beta. The left Schur vectors are returned in

vsl and the right Schur vectors are returned in vsr.

LinearAlgebra.LAPACK.trexc! – Function.

trexc!(compq, ifst, ilst, T, Q) -> (T, Q)

trexc!(ifst, ilst, T, Q) -> (T, Q)

Reorder the Schur factorization T of a matrix, such that the diagonal block of T with row index ifst is

moved to row index ilst. If compq = V, the Schur vectors Q are reordered. If compq = N they are not

modified. The 4-arg method calls the 5-arg method with compq = V.

LinearAlgebra.LAPACK.trsen! – Function.

trsen!(job, compq, select, T, Q) -> (T, Q, w, s, sep)

trsen!(select, T, Q) -> (T, Q, w, s, sep)

Reorder the Schur factorization of a matrix and optionally finds reciprocal condition numbers. If job =

N, no condition numbers are found. If job = E, only the condition number for this cluster of eigenvalues

is found. If job = V, only the condition number for the invariant subspace is found. If job = B then

the condition numbers for the cluster and subspace are found. If compq = V the Schur vectors Q are

updated. If compq = N the Schur vectors are not modified. select determines which eigenvalues are

in the cluster. The 3-arg method calls the 5-arg method with job = N and compq = V.

Returns T, Q, reordered eigenvalues in w, the condition number of the cluster of eigenvalues s, and the

condition number of the invariant subspace sep.

LinearAlgebra.LAPACK.tgsen! – Function.

CHAPTER 78. LINEAR ALGEBRA 1360

tgsen!(select, S, T, Q, Z) -> (S, T, alpha, beta, Q, Z)

Reorders the vectors of a generalized Schur decomposition. select specifies the eigenvalues in each

cluster.

LinearAlgebra.LAPACK.trsyl! – Function.

trsyl!(transa, transb, A, B, C, isgn=1) -> (C, scale)

Solves the Sylvester matrix equation A * X +/- X * B = scale*C where A and B are both quasi-

upper triangular. If transa = N, A is not modified. If transa = T, A is transposed. If transa = C, A is

conjugate transposed. Similarly for transb and B. If isgn = 1, the equation A * X + X * B = scale

* C is solved. If isgn = -1, the equation A * X - X * B = scale * C is solved.

Returns X (overwriting C) and scale.

LinearAlgebra.LAPACK.hseqr! – Function.

hseqr!(job, compz, ilo, ihi, H, Z) -> (H, Z, w)

Computes all eigenvalues and (optionally) the Schur factorization of a matrix reduced to Hessenberg

form. If H is balanced with gebal! then ilo and ihi are the outputs of gebal!. Otherwise they should

be ilo = 1 and ihi = size(H,2). tau contains the elementary reflectors of the factorization.

Chapter 79

Logging

The Loggingmodule provides a way to record the history and progress of a computation as a log of events.

Events are created by inserting a logging statement into the source code, for example:

@warn "Abandon printf debugging, all ye who enter here!"

┌ Warning: Abandon printf debugging, all ye who enter here!

└ @ Main REPL[1]:1

The system provides several advantages over peppering your source code with calls to println(). First,

it allows you to control the visibility and presentation of messages without editing the source code. For

example, in contrast to the @warn above

@debug "The sum of some values $(sum(rand(100)))"

will produce no output by default. Furthermore, it's very cheap to leave debug statements like this in

the source code because the system avoids evaluating the message if it would later be ignored. In this

case sum(rand(100)) and the associated string processing will never be executed unless debug logging is

enabled.

Second, the logging tools allow you to attach arbitrary data to each event as a set of key–value pairs. This

allows you to capture local variables and other program state for later analysis. For example, to attach the

local array variable A and the sum of a vector v as the key s you can use

A = ones(Int, 4, 4)

v = ones(100)

@info "Some variables" A s=sum(v)

output

┌ Info: Some variables

│ A =

│ 4×4 Matrix{Int64}:

│ 1 1 1 1

│ 1 1 1 1

│ 1 1 1 1

│ 1 1 1 1

└ s = 100.0

1361

CHAPTER 79. LOGGING 1362

All of the logging macros @debug, @info, @warn and @error share common features that are described in

detail in the documentation for the more general macro @logmsg.

79.1 Log event structure

Each event generates several pieces of data, some provided by the user and some automatically extracted.

Let's examine the user-defined data first:

• The log level is a broad category for the message that is used for early filtering. There are several

standard levels of type LogLevel; user-defined levels are also possible. Each is distinct in purpose:

– Logging.Debug (log level -1000) is information intended for the developer of the program.

These events are disabled by default.

– Logging.Info (log level 0) is for general information to the user. Think of it as an alternative

to using println directly.

– Logging.Warn (log level 1000) means something is wrong and action is likely required but that

for now the program is still working.

– Logging.Error (log level 2000) means something is wrong and it is unlikely to be recovered,

at least by this part of the code. Often this log-level is unneeded as throwing an exception can

convey all the required information.

• Themessage is an object describing the event. By convention AbstractStrings passed asmessages

are assumed to be in markdown format. Other types will be displayed using print(io, obj) or

string(obj) for text-based output and possibly show(io,mime,obj) for other multimedia displays

used in the installed logger.

• Optional key–value pairs allow arbitrary data to be attached to each event. Some keys have con-

ventional meaning that can affect the way an event is interpreted (see @logmsg).

The system also generates some standard information for each event:

• The module in which the logging macro was expanded.

• The file and line where the logging macro occurs in the source code.

• Amessage id that is a unique, fixed identifier for the source code statement where the loggingmacro

appears. This identifier is designed to be fairly stable even if the source code of the file changes, as

long as the logging statement itself remains the same.

• A group for the event, which is set to the base name of the file by default, without extension. This

can be used to group messages into categories more finely than the log level (for example, all

deprecation warnings have group :depwarn), or into logical groupings across or within modules.

Notice that some useful information such as the event time is not included by default. This is because such

information can be expensive to extract and is also dynamically available to the current logger. It's simple

to define a custom logger to augment event data with the time, backtrace, values of global variables and

other useful information as required.

CHAPTER 79. LOGGING 1363

79.2 Processing log events

As you can see in the examples, logging statements make no mention of where log events go or how they

are processed. This is a key design feature that makes the system composable and natural for concurrent

use. It does this by separating two different concerns:

• Creating log events is the concern of the module author who needs to decide where events are

triggered and which information to include.

• Processing of log events — that is, display, filtering, aggregation and recording — is the concern of

the application author who needs to bring multiple modules together into a cooperating application.

Loggers

Processing of events is performed by a logger, which is the first piece of user configurable code to see the

event. All loggers must be subtypes of AbstractLogger.

When an event is triggered, the appropriate logger is found by looking for a task-local logger with the

global logger as fallback. The idea here is that the application code knows how log events should be

processed and exists somewhere at the top of the call stack. So we should look up through the call stack

to discover the logger — that is, the logger should be dynamically scoped. (This is a point of contrast with

logging frameworks where the logger is lexically scoped; provided explicitly by the module author or as a

simple global variable. In such a system it's awkward to control logging while composing functionality from

multiple modules.)

The global logger may be set with global_logger, and task-local loggers controlled using with_logger.

Newly spawned tasks inherit the logger of the parent task.

There are three logger types provided by the library. ConsoleLogger is the default logger you see when

starting the REPL. It displays events in a readable text format and tries to give simple but user friendly

control over formatting and filtering. NullLogger is a convenient way to drop all messages where neces-

sary; it is the logging equivalent of the devnull stream. SimpleLogger is a very simplistic text formatting

logger, mainly useful for debugging the logging system itself.

Custom loggers should come with overloads for the functions described in the reference section.

Early filtering and message handling

When an event occurs, a few steps of early filtering occur to avoid generating messages that will be dis-

carded:

1. The message log level is checked against a global minimum level (set via disable_logging). This

is a crude but extremely cheap global setting.

2. The current logger state is looked up and the message level checked against the logger's cached

minimum level, as found by calling Logging.min_enabled_level. This behavior can be overridden

via environment variables (more on this later).

3. The Logging.shouldlog function is called with the current logger, taking some minimal information

(level, module, group, id) which can be computed statically. Most usefully, shouldlog is passed an

event id which can be used to discard events early based on a cached predicate.

CHAPTER 79. LOGGING 1364

If all these checks pass, the message and key–value pairs are evaluated in full and passed to the current

logger via the Logging.handle_message function. handle_message() may perform additional filtering as

required and display the event to the screen, save it to a file, etc.

Exceptions that occur while generating the log event are captured and logged by default. This pre-

vents individual broken events from crashing the application, which is helpful when enabling little-used

debug events in a production system. This behavior can be customized per logger type by extending

Logging.catch_exceptions.

79.3 Testing log events

Log events are a side effect of running normal code, but you might find yourself wanting to test particular

informational messages and warnings. The Test module provides a @test_logs macro that can be used

to pattern match against the log event stream.

79.4 Environment variables

Message filtering can be influenced through the JULIA_DEBUG environment variable, and serves as an easy

way to enable debug logging for a file or module. Loading julia with JULIA_DEBUG=loading will activate

@debug log messages in loading.jl. For example, in Linux shells:

$ JULIA_DEBUG=loading julia -e 'using OhMyREPL'┌

Debug: Rejecting cache file /home/user/.julia/compiled/v0.7/OhMyREPL.ji due to it containing an

invalid cache header└

@ Base loading.jl:1328

[Info: Recompiling stale cache file /home/user/.julia/compiled/v0.7/OhMyREPL.ji for module

OhMyREPL┌

Debug: Rejecting cache file /home/user/.julia/compiled/v0.7/Tokenize.ji due to it containing an

invalid cache header└

@ Base loading.jl:1328

...

On windows, the same can be achieved in CMD via first running set JULIA_DEBUG="loading" and in

Powershell via $env:JULIA_DEBUG="loading".

Similarly, the environment variable can be used to enable debug logging of modules, such as Pkg, or

module roots (see Base.moduleroot). To enable all debug logging, use the special value all.

To turn debug logging on from the REPL, set ENV["JULIA_DEBUG"] to the name of the module of interest.

Functions defined in the REPL belong to module Main; logging for them can be enabled like this:

julia> foo() = @debug "foo"

foo (generic function with 1 method)

julia> foo()

julia> ENV["JULIA_DEBUG"] = Main

Main

julia> foo()

┌ Debug: foo

└ @ Main REPL[1]:1

CHAPTER 79. LOGGING 1365

Use a comma separator to enable debug for multiple modules: JULIA_DEBUG=loading,Main.

79.5 Examples

Example: Writing log events to a file

Sometimes it can be useful to write log events to a file. Here is an example of how to use a task-local and

global logger to write information to a text file:

Load the logging module

julia> using Logging

Open a textfile for writing

julia> io = open("log.txt", "w+")

IOStream(<file log.txt>)

Create a simple logger

julia> logger = SimpleLogger(io)

SimpleLogger(IOStream(<file log.txt>), Info, Dict{Any,Int64}())

Log a task-specific message

julia> with_logger(logger) do

@info("a context specific log message")

end

Write all buffered messages to the file

julia> flush(io)

Set the global logger to logger

julia> global_logger(logger)

SimpleLogger(IOStream(<file log.txt>), Info, Dict{Any,Int64}())

This message will now also be written to the file

julia> @info("a global log message")

Close the file

julia> close(io)

Example: Enable debug-level messages

Here is an example of creating a ConsoleLogger that lets through any messages with log level higher than,

or equal, to Logging.Debug.

julia> using Logging

Create a ConsoleLogger that prints any log messages with level >= Debug to stderr

julia> debuglogger = ConsoleLogger(stderr, Logging.Debug)

Enable debuglogger for a task

julia> with_logger(debuglogger) do

@debug "a context specific log message"

end

CHAPTER 79. LOGGING 1366

Set the global logger

julia> global_logger(debuglogger)

79.6 Reference

Logging module

Logging.Logging – Module.

Utilities for capturing, filtering and presenting streams of log events. Normally you don't need to import

Logging to create log events; for this the standard logging macros such as @info are already exported

by Base and available by default.

Creating events

Logging.@logmsg – Macro.

@debug message [key=value | value ...]

@info message [key=value | value ...]

@warn message [key=value | value ...]

@error message [key=value | value ...]

@logmsg level message [key=value | value ...]

Create a log record with an informational message. For convenience, four logging macros @debug,

@info, @warn and @error are defined which log at the standard severity levels Debug, Info, Warn and

Error. @logmsg allows level to be set programmatically to any LogLevel or custom log level types.

message should be an expression which evaluates to a string which is a human readable description of

the log event. By convention, this string will be formatted as markdown when presented.

The optional list of key=value pairs supports arbitrary user defined metadata which will be passed

through to the logging backend as part of the log record. If only a value expression is supplied, a

key representing the expression will be generated using Symbol. For example, x becomes x=x, and

foo(10) becomes Symbol("foo(10)")=foo(10). For splatting a list of key value pairs, use the normal

splatting syntax, @info "blah" kws....

There are some keys which allow automatically generated log data to be overridden:

• _module=mod can be used to specify a different originating module from the source location of

the message.

• _group=symbol can be used to override the message group (this is normally derived from the

base name of the source file).

• _id=symbol can be used to override the automatically generated unique message identifier. This

is useful if you need to very closely associate messages generated on different source lines.

• _file=string and _line=integer can be used to override the apparent source location of a log

message.

There's also some key value pairs which have conventional meaning:

CHAPTER 79. LOGGING 1367

• maxlog=integer should be used as a hint to the backend that the message should be displayed

no more than maxlog times.

• exception=ex should be used to transport an exception with a log message, often used with

@error. An associated backtrace bt may be attached using the tuple exception=(ex,bt).

Examples

@debug "Verbose debugging information. Invisible by default"

@info "An informational message"

@warn "Something was odd. You should pay attention"

@error "A non fatal error occurred"

x = 10

@info "Some variables attached to the message" x a=42.0

@debug begin

sA = sum(A)

"sum(A) = $sA is an expensive operation, evaluated only when `shouldlog` returns true"

end

for i=1:10000

@info "With the default backend, you will only see (i = $i) ten times" maxlog=10

@debug "Algorithm1" i progress=i/10000

end

source

Logging.LogLevel – Type.

LogLevel(level)

Severity/verbosity of a log record.

The log level provides a key against which potential log records may be filtered, before any other work

is done to construct the log record data structure itself.

Examples

julia> Logging.LogLevel(0) == Logging.Info

true

source

Logging.Debug – Constant.

Debug

Alias for LogLevel(-1000).

Logging.Info – Constant.

Info

Alias for LogLevel(0).

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/logging.jl#L266-L333
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/logging.jl#L109-L123

CHAPTER 79. LOGGING 1368

Logging.Warn – Constant.

Warn

Alias for LogLevel(1000).

Logging.Error – Constant.

Error

Alias for LogLevel(2000).

Processing events with AbstractLogger

Event processing is controlled by overriding functions associated with AbstractLogger:

Methods to implement Brief description

Logging.handle_message Handle a log event

Logging.shouldlog Early filtering of events

Logging.min_enabled_level Lower bound for log level of accepted events

Optional methods Default definition Brief description

Logging.catch_exceptions true Catch exceptions during event evaluation

Logging.AbstractLogger – Type.

A logger controls how log records are filtered and dispatched. When a log record is generated, the

logger is the first piece of user configurable code which gets to inspect the record and decide what to

do with it.

source

Logging.handle_message – Function.

handle_message(logger, level, message, _module, group, id, file, line; key1=val1, ...)

Log a message to logger at level. The logical location at which the message was generated is given

by module _module and group; the source location by file and line. id is an arbitrary unique value

(typically a Symbol) to be used as a key to identify the log statement when filtering.

source

Logging.shouldlog – Function.

shouldlog(logger, level, _module, group, id)

Return true when logger accepts a message at level, generated for _module, group and with unique

log identifier id.

source

Logging.min_enabled_level – Function.

min_enabled_level(logger)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/logging.jl#L24-L28
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/logging.jl#L31-L39
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/logging.jl#L42-L47

CHAPTER 79. LOGGING 1369

Return the minimum enabled level for logger for early filtering. That is, the log level below or equal

to which all messages are filtered.

source

Logging.catch_exceptions – Function.

catch_exceptions(logger)

Return true if the logger should catch exceptions which happen during log record construction. By

default, messages are caught

By default all exceptions are caught to prevent log message generation from crashing the program.

This lets users confidently toggle little-used functionality - such as debug logging - in a production

system.

If you want to use logging as an audit trail you should disable this for your logger type.

source

Logging.disable_logging – Function.

disable_logging(level)

Disable all log messages at log levels equal to or less than level. This is a global setting, intended to

make debug logging extremely cheap when disabled.

Examples

Logging.disable_logging(Logging.Info) # Disable debug and info

source

Using Loggers

Logger installation and inspection:

Logging.global_logger – Function.

global_logger()

Return the global logger, used to receive messages when no specific logger exists for the current task.

global_logger(logger)

Set the global logger to logger, and return the previous global logger.

source

Logging.with_logger – Function.

with_logger(function, logger)

Execute function, directing all log messages to logger.

Example

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/logging.jl#L50-L55
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/logging.jl#L58-L70
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/logging.jl#L524-L535
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/logging.jl#L590-L599

CHAPTER 79. LOGGING 1370

function test(x)

@info "x = $x"

end

with_logger(logger) do

test(1)

test([1,2])

end

source

Logging.current_logger – Function.

current_logger()

Return the logger for the current task, or the global logger if none is attached to the task.

source

Loggers that are supplied with the system:

Logging.NullLogger – Type.

NullLogger()

Logger which disables all messages and produces no output - the logger equivalent of /dev/null.

source

Logging.ConsoleLogger – Type.

ConsoleLogger([stream,] min_level=Info; meta_formatter=default_metafmt,

show_limited=true, right_justify=0)

Logger with formatting optimized for readability in a text console, for example interactive work with

the Julia REPL.

Log levels less than min_level are filtered out.

Message formatting can be controlled by setting keyword arguments:

• meta_formatter is a function which takes the log event metadata (level, _module, group,

id, file, line) and returns a color (as would be passed to printstyled), prefix and suffix for

the log message. The default is to prefix with the log level and a suffix containing the module,

file and line location.

• show_limited limits the printing of large data structures to something which can fit on the screen

by setting the :limit IOContext key during formatting.

• right_justify is the integer column which log metadata is right justified at. The default is zero

(metadata goes on its own line).

Logging.SimpleLogger – Type.

SimpleLogger([stream,] min_level=Info)

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/logging.jl#L608-L625
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/logging.jl#L630-L635
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/logging.jl#L93-L98

CHAPTER 79. LOGGING 1371

Simplistic logger for logging all messages with level greater than or equal to min_level to stream. If

stream is closed then messages with log level greater or equal to Warn will be logged to stderr and

below to stdout.

source

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/logging.jl#L643-L649

Chapter 80

Markdown

This section describes Julia's markdown syntax, which is enabled by the Markdown standard library. The

following Markdown elements are supported:

80.1 Inline elements

Here "inline" refers to elements that can be found within blocks of text, i.e. paragraphs. These include the

following elements.

Bold

Surround words with two asterisks, **, to display the enclosed text in boldface.

A paragraph containing a **bold** word.

Italics

Surround words with one asterisk, *, to display the enclosed text in italics.

A paragraph containing an *italicized* word.

Literals

Surround text that should be displayed exactly as written with single backticks, ` .

A paragraph containing a `literal` word.

Literals should be used when writing text that refers to names of variables, functions, or other parts of a

Julia program.

Tip

To include a backtick character within literal text use three backticks rather than one to enclose

the text.

A paragraph containing ``` `backtick` characters ```.

By extension any odd number of backticks may be used to enclose a lesser number of back-

ticks.

1372

CHAPTER 80. MARKDOWN 1373

LATEX

Surround text that should be displayed as mathematics using LATEXsyntax with double backticks, `` .

A paragraph containing some ``\LaTeX`` markup.

Tip

As with literals in the previous section, if literal backticks need to be written within double

backticks use an even number greater than two. Note that if a single literal backtick needs to

be included within LATEXmarkup then two enclosing backticks is sufficient.

Note

The \ character should be escaped appropriately if the text is embedded in a Julia source code,

for example, "``\\LaTeX`` syntax in a docstring.", since it is interpreted as a string lit-

eral. Alternatively, in order to avoid escaping, it is possible to use the raw stringmacro together

with the @doc macro:

@doc raw"``\LaTeX`` syntax in a docstring." functionname

Links

Links to either external or internal targets can be written using the following syntax, where the text enclosed

in square brackets, [], is the name of the link and the text enclosed in parentheses, (), is the URL.

A paragraph containing a link to [Julia](http://www.julialang.org).

It's also possible to add cross-references to other documented functions/methods/variables within the Julia

documentation itself. For example:

"""

tryparse(type, str; base)

Like [`parse`](@ref), but returns either a value of the requested type,

or [`nothing`](@ref) if the string does not contain a valid number.

"""

This will create a link in the generated docs to the parse documentation (which has more information about

what this function actually does), and to the nothing documentation. It's good to include cross references

to mutating/non-mutating versions of a function, or to highlight a difference between two similar-seeming

functions.

Note

The above cross referencing is not a Markdown feature, and relies on Documenter.jl, which is

used to build base Julia's documentation.

https://github.com/JuliaDocs/Documenter.jl

CHAPTER 80. MARKDOWN 1374

Footnote references

Named and numbered footnote references can be written using the following syntax. A footnote name

must be a single alphanumeric word containing no punctuation.

A paragraph containing a numbered footnote [^1] and a named one [^named].

Note

The text associated with a footnote can be written anywhere within the same page as the

footnote reference. The syntax used to define the footnote text is discussed in the Footnotes

section below.

80.2 Toplevel elements

The following elements can be written either at the "toplevel" of a document or within another "toplevel"

element.

Paragraphs

A paragraph is a block of plain text, possibly containing any number of inline elements defined in the Inline

elements section above, with one or more blank lines above and below it.

This is a paragraph.

And this is *another* paragraph containing some emphasized text.

A new line, but still part of the same paragraph.

Headers

A document can be split up into different sections using headers. Headers use the following syntax:

Level One

Level Two

Level Three

Level Four

Level Five

Level Six

A header line can contain any inline syntax in the same way as a paragraph can.

Tip

Try to avoid using too many levels of header within a single document. A heavily nested

document may be indicative of a need to restructure it or split it into several pages covering

separate topics.

CHAPTER 80. MARKDOWN 1375

Code blocks

Source code can be displayed as a literal block using an indent of four spaces as shown in the following

example.

This is a paragraph.

function func(x)

...

end

Another paragraph.

Additionally, code blocks can be enclosed using triple backticks with an optional "language" to specify how

a block of code should be highlighted.

A code block without a "language":

```

function func(x)

# ...

end

```

and another one with the "language" specified as `julia`:

```julia

function func(x)

# ...

end

```

Note

"Fenced" code blocks, as shown in the last example, should be preferred over indented code

blocks since there is no way to specify what language an indented code block is written in.

Block quotes

Text from external sources, such as quotations from books or websites, can be quoted using > characters

prepended to each line of the quote as follows.

Here's a quote:

> Julia is a high-level, high-performance dynamic programming language for

> technical computing, with syntax that is familiar to users of other

> technical computing environments.

Note that a single space must appear after the > character on each line. Quoted blocks may themselves

contain other toplevel or inline elements.

Images

The syntax for images is similar to the link syntax mentioned above. Prepending a ! character to a link

will display an image from the specified URL rather than a link to it.

CHAPTER 80. MARKDOWN 1376

![alternative text](link/to/image.png)

Lists

Unordered lists can be written by prepending each item in a list with either *, +, or -.

A list of items:

* item one

* item two

* item three

Note the two spaces before each * and the single space after each one.

Lists can contain other nested toplevel elements such as lists, code blocks, or quoteblocks. A blank line

should be left between each list item when including any toplevel elements within a list.

Another list:

* item one

* item two

```

f(x) = x

```

* And a sublist:

+ sub-item one

+ sub-item two

Note

The contents of each item in the list must line up with the first line of the item. In the above

example the fenced code block must be indented by four spaces to align with the i in item

two.

Ordered lists are written by replacing the "bullet" character, either *, +, or -, with a positive integer followed

by either . or).

Two ordered lists:

1. item one

2. item two

3. item three

5) item five

6) item six

7) item seven

An ordered list may start from a number other than one, as in the second list of the above example, where

it is numbered from five. As with unordered lists, ordered lists can contain nested toplevel elements.

CHAPTER 80. MARKDOWN 1377

Display equations

Large LATEXequations that do not fit inline within a paragraph may be written as display equations using a

fenced code block with the "language" math as in the example below.

```math

f(a) = \frac{1}{2\pi}\int_{0}^{2\pi} (\alpha+R\cos(\theta))d\theta

```

Footnotes

This syntax is paired with the inline syntax for Footnote references. Make sure to read that section as well.

Footnote text is defined using the following syntax, which is similar to footnote reference syntax, aside

from the : character that is appended to the footnote label.

[^1]: Numbered footnote text.

[^note]:

Named footnote text containing several toplevel elements.

* item one

* item two

* item three

```julia

function func(x)

# ...

end

```

Note

No checks are done during parsing to make sure that all footnote references have matching

footnotes.

Horizontal rules

The equivalent of an <hr> HTML tag can be achieved using three hyphens (---). For example:

Text above the line.

And text below the line.

Tables

Basic tables can be written using the syntax described below. Note that markdown tables have limited

features and cannot contain nested toplevel elements unlike other elements discussed above – only inline

elements are allowed. Tables must always contain a header row with column names. Cells cannot span

multiple rows or columns of the table.

CHAPTER 80. MARKDOWN 1378

| Column One | Column Two | Column Three |

|:---------- | ---------- |:------------:|

| Row `1` | Column `2` | |

| *Row* 2 | **Row** 2 | Column ``3`` |

Note

As illustrated in the above example each column of | characters must be aligned vertically.

A : character on either end of a column's header separator (the row containing - characters)

specifies whether the row is left-aligned, right-aligned, or (when : appears on both ends)

center-aligned. Providing no : characters will default to right-aligning the column.

Admonitions

Specially formatted blocks, known as admonitions, can be used to highlight particular remarks. They can

be defined using the following !!! syntax:

!!! note

This is the content of the note.

!!! warning "Beware!"

And this is another one.

This warning admonition has a custom title: `"Beware!"`.

The first word after !!! declares the type of the admonition. There are standard admonition types that

should produce special styling. Namely (in order of decreasing severity): danger, warning, info/note, and

tip.

You can also use your own admonition types, as long as the type name only contains lowercase Latin

characters (a-z). For example, you could have a terminology block like this:

!!! terminology "julia vs Julia"

Strictly speaking, "Julia" refers to the language,

and "julia" to the standard implementation.

However, unless the code rendering the Markdown special-cases that particular admonition type, it will get

the default styling.

A custom title for the box can be provided as a string (in double quotes) after the admonition type. If no

title text is specified after the admonition type, then the type name will be used as the title (e.g. "Note"

for the note admonition).

Admonitions, like most other toplevel elements, can contain other toplevel elements (e.g. lists, images).

80.3 Markdown Syntax Extensions

Julia's markdown supports interpolation in a very similar way to basic string literals, with the difference

that it will store the object itself in the Markdown tree (as opposed to converting it to a string). When

the Markdown content is rendered the usual show methods will be called, and these can be overridden

CHAPTER 80. MARKDOWN 1379

as usual. This design allows the Markdown to be extended with arbitrarily complex features (such as

references) without cluttering the basic syntax.

In principle, the Markdown parser itself can also be arbitrarily extended by packages, or an entirely custom

flavour of Markdown can be used, but this should generally be unnecessary.

Chapter 81

Memory-mapped I/O

Low level module for mmap (memory mapping of files).

Mmap.Anonymous – Type.

Mmap.Anonymous(name::AbstractString="", readonly::Bool=false, create::Bool=true)

Create an IO-like object for creating zeroed-out mmapped-memory that is not tied to a file for use in

mmap. Used by SharedArray for creating shared memory arrays.

Examples

julia> using Mmap

julia> anon = Mmap.Anonymous();

julia> isreadable(anon)

true

julia> iswritable(anon)

true

julia> isopen(anon)

true

Mmap.mmap – Function.

mmap(io::Union{IOStream,AbstractString,Mmap.AnonymousMmap}[, type::Type{Array{T,N}}, dims,

offset]; grow::Bool=true, shared::Bool=true)↪→

mmap(type::Type{Array{T,N}}, dims)

Create an Array whose values are linked to a file, using memory-mapping. This provides a convenient

way of working with data too large to fit in the computer's memory.

The type is an Array{T,N} with a bits-type element of T and dimension N that determines how the

bytes of the array are interpreted. Note that the file must be stored in binary format, and no format

conversions are possible (this is a limitation of operating systems, not Julia).

dims is a tuple or single Integer specifying the size or length of the array.

1380

CHAPTER 81. MEMORY-MAPPED I/O 1381

The file is passed via the stream argument, either as an open IOStream or filename string. When you

initialize the stream, use "r" for a "read-only" array, and "w+" to create a new array used to write

values to disk.

If no type argument is specified, the default is Vector{UInt8}.

Optionally, you can specify an offset (in bytes) if, for example, you want to skip over a header in the

file. The default value for the offset is the current stream position for an IOStream.

The grow keyword argument specifies whether the disk file should be grown to accommodate the

requested size of array (if the total file size is < requested array size). Write privileges are required to

grow the file.

The shared keyword argument specifies whether the resulting Array and changes made to it will be

visible to other processes mapping the same file.

For example, the following code

Create a file for mmapping

(you could alternatively use mmap to do this step, too)

using Mmap

A = rand(1:20, 5, 30)

s = open("/tmp/mmap.bin", "w+")

We'll write the dimensions of the array as the first two Ints in the file

write(s, size(A,1))

write(s, size(A,2))

Now write the data

write(s, A)

close(s)

Test by reading it back in

s = open("/tmp/mmap.bin") # default is read-only

m = read(s, Int)

n = read(s, Int)

A2 = mmap(s, Matrix{Int}, (m,n))

creates a m-by-n Matrix{Int}, linked to the file associated with stream s.

A more portable file would need to encode the word size – 32 bit or 64 bit – and endianness information

in the header. In practice, consider encoding binary data using standard formats like HDF5 (which can

be used with memory-mapping).

mmap(io, BitArray, [dims, offset])

Create a BitArray whose values are linked to a file, using memory-mapping; it has the same purpose,

works in the same way, and has the same arguments, as mmap, but the byte representation is different.

Examples

julia> using Mmap

julia> io = open("mmap.bin", "w+");

julia> B = mmap(io, BitArray, (25,30000));

CHAPTER 81. MEMORY-MAPPED I/O 1382

julia> B[3, 4000] = true;

julia> Mmap.sync!(B);

julia> close(io);

julia> io = open("mmap.bin", "r+");

julia> C = mmap(io, BitArray, (25,30000));

julia> C[3, 4000]

true

julia> C[2, 4000]

false

julia> close(io)

julia> rm("mmap.bin")

This creates a 25-by-30000 BitArray, linked to the file associated with stream io.

Mmap.sync! – Function.

Mmap.sync!(array)

Forces synchronization between the in-memory version of a memory-mapped Array or BitArray and

the on-disk version.

Chapter 82

Network Options

NetworkOptions.ca_roots – Function.

ca_roots() :: Union{Nothing, String}

The ca_roots() function tells the caller where, if anywhere, to find a file or directory of PEM-encoded

certificate authority roots. By default, on systems like Windows and macOS where the built-in TLS

engines know how to verify hosts using the system's built-in certificate verification mechanism, this

function will return nothing. On classic UNIX systems (excluding macOS), root certificates are typically

stored in a file in /etc: the common places for the current UNIX system will be searched and if one of

these paths exists, it will be returned; if none of these typical root certificate paths exist, then the path

to the set of root certificates that are bundled with Julia is returned.

The default value returned by ca_roots()may be overridden by setting the JULIA_SSL_CA_ROOTS_PATH,

SSL_CERT_DIR, or SSL_CERT_FILE environment variables, in which case this function will always return

the value of the first of these variables that is set (whether the path exists or not). If JULIA_SSL_CA_ROOTS_PATH

is set to the empty string, then the other variables are ignored (as if unset); if the other variables are

set to the empty string, they behave is if they are not set.

NetworkOptions.ca_roots_path – Function.

ca_roots_path() :: String

The ca_roots_path() function is similar to the ca_roots() function except that it always returns a

path to a file or directory of PEM-encoded certificate authority roots. When called on a system like

Windows or macOS, where system root certificates are not stored in the file system, it will currently

return the path to the set of root certificates that are bundled with Julia. (In the future, this function

may instead extract the root certificates from the system and save them to a file whose path would be

returned.)

If it is possible to configure a library that uses TLS to use the system certificates that is generally

preferable: i.e. it is better to use ca_roots() which returns nothing to indicate that the system certs

should be used. The ca_roots_path() function should only be used when configuring libraries which

require a path to a file or directory for root certificates.

The default value returned by ca_roots_path()may be overridden by setting the JULIA_SSL_CA_ROOTS_PATH,

SSL_CERT_DIR, or SSL_CERT_FILE environment variables, in which case this function will always return

the value of the first of these variables that is set (whether the path exists or not). If JULIA_SSL_CA_ROOTS_PATH

1383

CHAPTER 82. NETWORK OPTIONS 1384

is set to the empty string, then the other variables are ignored (as if unset); if the other variables are

set to the empty string, they behave is if they are not set.

NetworkOptions.ssh_dir – Function.

ssh_dir() :: String

The ssh_dir() function returns the location of the directory where the ssh program keeps/looks for

configuration files. By default this is ~/.ssh but this can be overridden by setting the environment

variable SSH_DIR.

NetworkOptions.ssh_key_pass – Function.

ssh_key_pass() :: String

The ssh_key_pass() function returns the value of the environment variable SSH_KEY_PASS if it is set

or nothing if it is not set. In the future, this may be able to find a password by other means, such

as secure system storage, so packages that need a password to decrypt an SSH private key should

use this API instead of directly checking the environment variable so that they gain such capabilities

automatically when they are added.

NetworkOptions.ssh_key_name – Function.

ssh_key_name() :: String

The ssh_key_name() function returns the base name of key files that SSH should use for when estab-

lishing a connection. There is usually no reason that this function should be called directly and libraries

should generally use the ssh_key_path and ssh_pub_key_path functions to get full paths. If the en-

vironment variable SSH_KEY_NAME is set then this function returns that; otherwise it returns id_rsa by

default.

NetworkOptions.ssh_key_path – Function.

ssh_key_path() :: String

The ssh_key_path() function returns the path of the SSH private key file that should be used for SSH

connections. If the SSH_KEY_PATH environment variable is set then it will return that value. Otherwise

it defaults to returning

joinpath(ssh_dir(), ssh_key_name())

This default value in turn depends on the SSH_DIR and SSH_KEY_NAME environment variables.

NetworkOptions.ssh_pub_key_path – Function.

ssh_pub_key_path() :: String

The ssh_pub_key_path() function returns the path of the SSH public key file that should be used for

SSH connections. If the SSH_PUB_KEY_PATH environment variable is set then it will return that value. If

that isn't set but SSH_KEY_PATH is set, it will return that path with the .pub suffix appended. If neither

is set, it defaults to returning

joinpath(ssh_dir(), ssh_key_name() * ".pub")

This default value in turn depends on the SSH_DIR and SSH_KEY_NAME environment variables.

CHAPTER 82. NETWORK OPTIONS 1385

NetworkOptions.ssh_known_hosts_files – Function.

ssh_known_hosts_files() :: Vector{String}

The ssh_known_hosts_files() function returns a vector of paths of SSH known hosts files that should

be used when establishing the identities of remote servers for SSH connections. By default this function

returns

[joinpath(ssh_dir(), "known_hosts"), bundled_known_hosts]

where bundled_known_hosts is the path of a copy of a known hosts file that is bundled with this

package (containing known hosts keys for github.com and gitlab.com). If the environment variable

SSH_KNOWN_HOSTS_FILES is set, however, then its value is split into paths on the : character (or on ;

on Windows) and this vector of paths is returned instead. If any component of this vector is empty, it

is expanded to the default known hosts paths.

Packages that use ssh_known_hosts_files() should ideally look for matching entries by comparing

the host name and key types, considering the first entry in any of the files which matches to be the

definitive identity of the host. If the caller cannot compare the key type (e.g. because it has been

hashes) then it must approximate the above algorithm by looking for all matching entries for a host

in each file: if a file has any entries for a host then one of them must match; the caller should only

continue to search further known hosts files if there are no entries for the host in question in an earlier

file.

NetworkOptions.ssh_known_hosts_file – Function.

ssh_known_hosts_file() :: String

The ssh_known_hosts_file() function returns a single path of an SSH known hosts file that should

be used when establishing the identities of remote servers for SSH connections. It returns the first

path returned by ssh_known_hosts_files that actually exists. Callers who can look in more than one

known hosts file should use ssh_known_hosts_files instead and look for host matches in all the files

returned as described in that function's docs.

NetworkOptions.verify_host – Function.

verify_host(url::AbstractString, [transport::AbstractString]) :: Bool

The verify_host function tells the caller whether the identity of a host should be verified when com-

municating over secure transports like TLS or SSH. The url argument may be:

1. a proper URL staring with proto://

2. an ssh-style bare host name or host name prefixed with user@

3. an scp-style host as above, followed by : and a path location

In each case the host name part is parsed out and the decision about whether to verify or not is made

based solely on the host name, not anything else about the input URL. In particular, the protocol of the

URL does not matter (more below).

The transport argument indicates the kind of transport that the query is about. The currently known

values are SSL/ssl (alias TLS/tls) and SSH/ssh. If the transport is omitted, the query will return true

only if the host name should not be verified regardless of transport.

The host name is matched against the host patterns in the relevant environment variables depending

on whether transport is supplied and what its value is:

CHAPTER 82. NETWORK OPTIONS 1386

• JULIA_NO_VERIFY_HOSTS — hosts that should not be verified for any transport

• JULIA_SSL_NO_VERIFY_HOSTS — hosts that should not be verified for SSL/TLS

• JULIA_SSH_NO_VERIFY_HOSTS — hosts that should not be verified for SSH

• JULIA_ALWAYS_VERIFY_HOSTS — hosts that should always be verified

The values of each of these variables is a comma-separated list of host name patterns with the following

syntax — each pattern is split on . into parts and each part must one of:

1. A literal domain name component consisting of one or more ASCII letter, digit, hyphen or under-

score (technically not part of a legal host name, but sometimes used). A literal domain name

component matches only itself.

2. A **, which matches zero or more domain name components.

3. A *, which match any one domain name component.

When matching a host name against a pattern list in one of these variables, the host name is split

on . into components and that sequence of words is matched against the pattern: a literal pattern

matches exactly one host name component with that value; a * pattern matches exactly one host

name component with any value; a ** pattern matches any number of host name components. For

example:

• ** matches any host name

• **.org matches any host name in the .org top-level domain

• example.com matches only the exact host name example.com

• *.example.com matches api.example.com but not example.com or v1.api.example.com

• **.example.commatches any domain under example.com, including example.com itself, api.example.com

and v1.api.example.com

Chapter 83

Pkg

Pkg is Julia's builtin package manager, and handles operations such as installing, updating and removing

packages.

Note

What follows is a very brief introduction to Pkg. For more information on Project.toml files,

Manifest.toml files, package version compatibility ([compat]), environments, registries, etc.,

it is highly recommended to read the full manual, which is available here: https://pkgdocs.ju-

lialang.org.

What follows is a quick overview of the basic features of Pkg. It should help new users become familiar

with basic Pkg features such as adding and removing packages and working with environments.

Note

Some Pkg output is omitted in this section in order to keep this basic guide focused. This will

help maintain a good pace and not get bogged down in details. If you require more details,

refer to subsequent sections of the Pkg manual.

Note

This guide uses the Pkg REPL to execute Pkg commands. For non-interactive use, we recom-

mend the Pkg API. The Pkg API is fully documented in the API Reference section of the Pkg

documentation.

Pkg comes with a REPL. Enter the Pkg REPL by pressing] from the Julia REPL. To get back to the Julia REPL,

press Ctrl+C or backspace (when the REPL cursor is at the beginning of the input).

Upon entering the Pkg REPL, you should see the following prompt:

(@v1.8) pkg>

To add a package, use add:

1387

https://pkgdocs.julialang.org
https://pkgdocs.julialang.org
https://pkgdocs.julialang.org/v1/api/

CHAPTER 83. PKG 1388

(@v1.8) pkg> add Example

Resolving package versions...

Installed Example ─ v0.5.3

Updating `~/.julia/environments/v1.8/Project.toml`

[7876af07] + Example v0.5.3

Updating `~/.julia/environments/v1.8/Manifest.toml`

[7876af07] + Example v0.5.3

After the package is installed, it can be loaded into the Julia session:

julia> import Example

julia> Example.hello("friend")

"Hello, friend"

We can also specify multiple packages at once to install:

(@v1.8) pkg> add JSON StaticArrays

The status command (or the shorter st command) can be used to see installed packages.

(@v1.8) pkg> st

Status `~/.julia/environments/v1.6/Project.toml`

[7876af07] Example v0.5.3

[682c06a0] JSON v0.21.3

[90137ffa] StaticArrays v1.5.9

Note

Some Pkg REPL commands have a short and a long version of the command, for example

status and st.

To remove packages, use rm (or remove):

(@v1.8) pkg> rm JSON StaticArrays

Use up (or update) to update the installed packages

(@v1.8) pkg> up

If you have been following this guide it is likely that the packages installed are at the latest version so up

will not do anything. Below we show the status output in the case where we deliberately have installed an

old version of the Example package and then upgrade it:

CHAPTER 83. PKG 1389

(@v1.8) pkg> st

Status `~/.julia/environments/v1.8/Project.toml`

⌃ [7876af07] Example v0.5.1

Info Packages marked with ⌃ have new versions available and may be upgradable.

(@v1.8) pkg> up

Updating `~/.julia/environments/v1.8/Project.toml`

[7876af07] ↑ Example v0.5.1 ⇒ v0.5.3

We can see that the status output tells us that there is a newer version available and that up upgrades the

package.

For more information about managing packages, see the Managing Packages section of the documentation.

Up to this point, we have covered basic package management: adding, updating, and removing packages.

You may have noticed the (@v1.8) in the REPL prompt. This lets us know that v1.8 is the active envi-

ronment. Different environments can have different totally different packages and versions installed from

another environment. The active environment is the environment that will be modified by Pkg commands

such as add, rm and update.

Let's set up a new environment so we may experiment. To set the active environment, use activate:

(@v1.8) pkg> activate tutorial

[Info: activating new environment at `~/tutorial/Project.toml`.

Pkg lets us know we are creating a new environment and that this environment will be stored in the

~/tutorial directory. The path to the environment is created relative to the current working directory

of the REPL.

Pkg has also updated the REPL prompt in order to reflect the new active environment:

(tutorial) pkg>

We can ask for information about the active environment by using status:

(tutorial) pkg> status

Status `~/tutorial/Project.toml`

(empty environment)

~/tutorial/Project.toml is the location of the active environment's project file. A project file is a

TOML file where Pkg stores the packages that have been explicitly installed. Notice this new environment

is empty. Let us add some packages and observe:

(tutorial) pkg> add Example JSON

...

(tutorial) pkg> status

Status `~/tutorial/Project.toml`

[7876af07] Example v0.5.3

[682c06a0] JSON v0.21.3

https://pkgdocs.julialang.org/v1/managing-packages/
https://toml.io/en/

CHAPTER 83. PKG 1390

We can see that the tutorial environment now contains Example and JSON.

Note

If you have the same package (at the same version) installed in multiple environments, the

package will only be downloaded and stored on the hard drive once. This makes environments

very lightweight and effectively free to create. Only using the default environment with a

huge number of packages in it is a common beginners mistake in Julia. Learning how to use

environments effectively will improve your experience with Julia packages.

For more information about environments, see the Working with Environments section of the documenta-

tion.

If you are ever stuck, you can ask Pkg for help:

(@v1.8) pkg> ?

You should see a list of available commands along with short descriptions. You can ask for more detailed

help by specifying a command:

(@v1.8) pkg> ?develop

This guide should help you get started with Pkg. Pkg has much more to offer in terms of powerful package

management, read the full manual to learn more!

https://pkgdocs.julialang.org/v1/environments/

Chapter 84

Printf

Printf.@printf – Macro.

@printf([io::IO], "%Fmt", args...)

Print args using C printf style format specification string. Optionally, an IO may be passed as the

first argument to redirect output.

Examples

julia> @printf "Hello %s" "world"

Hello world

julia> @printf "Scientific notation %e" 1.234

Scientific notation 1.234000e+00

julia> @printf "Scientific notation three digits %.3e" 1.23456

Scientific notation three digits 1.235e+00

julia> @printf "Decimal two digits %.2f" 1.23456

Decimal two digits 1.23

julia> @printf "Padded to length 5 %5i" 123

Padded to length 5 123

julia> @printf "Padded with zeros to length 6 %06i" 123

Padded with zeros to length 6 000123

julia> @printf "Use shorter of decimal or scientific %g %g" 1.23 12300000.0

Use shorter of decimal or scientific 1.23 1.23e+07

julia> @printf "Use dynamic width and precision %*.*f" 10 2 0.12345

Use dynamic width and precision 0.12

For a systematic specification of the format, see here. See also @sprintf to get the result as a String

instead of it being printed.

Caveats

1391

https://en.cppreference.com/w/c/io/fprintf

CHAPTER 84. PRINTF 1392

Inf and NaN are printed consistently as Inf and NaN for flags %a, %A, %e, %E, %f, %F, %g, and %G. Further-

more, if a floating point number is equally close to the numeric values of two possible output strings,

the output string further away from zero is chosen.

Examples

julia> @printf("%f %F %f %F", Inf, Inf, NaN, NaN)

Inf Inf NaN NaN

julia> @printf "%.0f %.1f %f" 0.5 0.025 -0.0078125

0 0.0 -0.007812

Julia 1.8

Starting in Julia 1.8, %s (string) and %c (character) widths are computed using textwidth,

which e.g. ignores zero-width characters (such as combining characters for diacritical marks)

and treats certain "wide" characters (e.g. emoji) as width 2.

Julia 1.10

Dynamic width specifiers like %*s and %0*.*f require Julia 1.10.

Printf.@sprintf – Macro.

@sprintf("%Fmt", args...)

Return @printf formatted output as string.

Examples

julia> @sprintf "this is a %s %15.1f" "test" 34.567

"this is a test 34.6"

Chapter 85

Profiling

85.1 CPU Profiling

There are two main approaches to CPU profiling julia code:

85.2 Via @profile

Where profiling is enabled for a given call via the @profile macro.

julia> using Profile

julia> @profile foo()

julia> Profile.print()

Overhead ╎ [+additional indent] Count File:Line; Function

===

╎147 @Base/client.jl:506; _start()

╎ 147 @Base/client.jl:318; exec_options(opts::Base.JLOptions)

...

85.3 Triggered During Execution

Tasks that are already running can also be profiled for a fixed time period at any user-triggered time.

To trigger the profiling:

• MacOS & FreeBSD (BSD-based platforms): Use ctrl-t or pass a SIGINFO signal to the julia process

i.e. % kill -INFO $julia_pid

• Linux: Pass a SIGUSR1 signal to the julia process i.e. % kill -USR1 $julia_pid

• Windows: Not currently supported.

First, a single stack trace at the instant that the signal was thrown is shown, then a 1 second profile is

collected, followed by the profile report at the next yield point, which may be at task completion for code

without yield points e.g. tight loops.

1393

CHAPTER 85. PROFILING 1394

Optionally set environment variable JULIA_PROFILE_PEEK_HEAP_SNAPSHOT to 1 to also automatically col-

lect a heap snapshot.

julia> foo()

##== the user sends a trigger while foo is running ==##

load: 2.53 cmd: julia 88903 running 6.16u 0.97s

==

Information request received. A stacktrace will print followed by a 1.0 second profile

==

signal (29): Information request: 29

__psynch_cvwait at /usr/lib/system/libsystem_kernel.dylib (unknown line)

_pthread_cond_wait at /usr/lib/system/libsystem_pthread.dylib (unknown line)

...

==

Profile collected. A report will print if the Profile module is loaded

==

Overhead ╎ [+additional indent] Count File:Line; Function

===

Thread 1 Task 0x000000011687c010 Total snapshots: 572. Utilization: 100%

╎147 @Base/client.jl:506; _start()

╎ 147 @Base/client.jl:318; exec_options(opts::Base.JLOptions)

...

Thread 2 Task 0x0000000116960010 Total snapshots: 572. Utilization: 0%

╎572 @Base/task.jl:587; task_done_hook(t::Task)

╎ 572 @Base/task.jl:879; wait()

...

Customization

The duration of the profiling can be adjusted via Profile.set_peek_duration

The profile report is broken down by thread and task. Pass a no-arg function to Profile.peek_report[]

to override this. i.e. Profile.peek_report[] = () -> Profile.print() to remove any grouping. This

could also be overridden by an external profile data consumer.

85.4 Reference

Profile.@profile – Macro.

@profile

@profile <expression> runs your expression while taking periodic backtraces. These are appended

to an internal buffer of backtraces.

source

The methods in Profile are not exported and need to be called e.g. as Profile.print().

Profile.clear – Function.

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Profile/src/Profile.jl#L17-L22

CHAPTER 85. PROFILING 1395

clear()

Clear any existing backtraces from the internal buffer.

source

Profile.print – Function.

print([io::IO = stdout,] [data::Vector = fetch()], [lidict::Union{LineInfoDict,

LineInfoFlatDict} = getdict(data)]; kwargs...)↪→

Prints profiling results to io (by default, stdout). If you do not supply a data vector, the internal buffer

of accumulated backtraces will be used.

The keyword arguments can be any combination of:

• format – Determines whether backtraces are printed with (default, :tree) or without (:flat)

indentation indicating tree structure.

• C – If true, backtraces from C and Fortran code are shown (normally they are excluded).

• combine – If true (default), instruction pointers are merged that correspond to the same line of

code.

• maxdepth – Limits the depth higher than maxdepth in the :tree format.

• sortedby – Controls the order in :flat format. :filefuncline (default) sorts by the source line,

:count sorts in order of number of collected samples, and :overhead sorts by the number of

samples incurred by each function by itself.

• groupby – Controls grouping over tasks and threads, or no grouping. Options are :none (default),

:thread, :task, [:thread, :task], or [:task, :thread] where the last two provide nested

grouping.

• noisefloor – Limits frames that exceed the heuristic noise floor of the sample (only applies to

format :tree). A suggested value to try for this is 2.0 (the default is 0). This parameter hides

samples for which n <= noisefloor * √N, where n is the number of samples on this line, and N

is the number of samples for the callee.

• mincount – Limits the printout to only those lines with at least mincount occurrences.

• recur – Controls the recursion handling in :tree format. :off (default) prints the tree as normal.

:flat instead compresses any recursion (by ip), showing the approximate effect of converting

any self-recursion into an iterator. :flatc does the same but also includes collapsing of C frames

(may do odd things around jl_apply).

• threads::Union{Int,AbstractVector{Int}} – Specify which threads to include snapshots from

in the report. Note that this does not control which threads samples are collected on (which may

also have been collected on another machine).

• tasks::Union{Int,AbstractVector{Int}} – Specify which tasks to include snapshots from in

the report. Note that this does not control which tasks samples are collected within.

Julia 1.8

The groupby, threads, and tasks keyword arguments were introduced in Julia 1.8.

Note

Profiling on windows is limited to the main thread. Other threads have not been sampled

and will not show in the report.

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Profile/src/Profile.jl#L128-L132

CHAPTER 85. PROFILING 1396

source

print([io::IO = stdout,] data::Vector, lidict::LineInfoDict; kwargs...)

Prints profiling results to io. This variant is used to examine results exported by a previous call to

retrieve. Supply the vector data of backtraces and a dictionary lidict of line information.

See Profile.print([io], data) for an explanation of the valid keyword arguments.

source

Profile.init – Function.

init(; n::Integer, delay::Real)

Configure the delay between backtraces (measured in seconds), and the number n of instruction point-

ers that may be stored per thread. Each instruction pointer corresponds to a single line of code; back-

traces generally consist of a long list of instruction pointers. Note that 6 spaces for instruction pointers

per backtrace are used to store metadata and two NULL end markers. Current settings can be obtained

by calling this function with no arguments, and each can be set independently using keywords or in

the order (n, delay).

source

Profile.fetch – Function.

fetch(;include_meta = true) -> data

Return a copy of the buffer of profile backtraces. Note that the values in data have meaning only

on this machine in the current session, because it depends on the exact memory addresses used in

JIT-compiling. This function is primarily for internal use; retrieve may be a better choice for most

users. By default metadata such as threadid and taskid is included. Set include_meta to false to

strip metadata.

source

Profile.retrieve – Function.

retrieve(; kwargs...) -> data, lidict

"Exports" profiling results in a portable format, returning the set of all backtraces (data) and a dictionary

that maps the (session-specific) instruction pointers in data to LineInfo values that store the file name,

function name, and line number. This function allows you to save profiling results for future analysis.

source

Profile.callers – Function.

callers(funcname, [data, lidict], [filename=<filename>], [linerange=<start:stop>]) ->

Vector{Tuple{count, lineinfo}}↪→

Given a previous profiling run, determine who called a particular function. Supplying the filename

(and optionally, range of line numbers over which the function is defined) allows you to disambiguate

an overloaded method. The returned value is a vector containing a count of the number of calls and

line information about the caller. One can optionally supply backtrace data obtained from retrieve;

otherwise, the current internal profile buffer is used.

source

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Profile/src/Profile.jl#L164-L211
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Profile/src/Profile.jl#L304-L312
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Profile/src/Profile.jl#L63-L71
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Profile/src/Profile.jl#L593-L601
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Profile/src/Profile.jl#L383-L390
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Profile/src/Profile.jl#L513-L522

CHAPTER 85. PROFILING 1397

Profile.clear_malloc_data – Function.

clear_malloc_data()

Clears any stored memory allocation data when running julia with --track-allocation. Execute the

command(s) you want to test (to force JIT-compilation), then call clear_malloc_data. Then execute

your command(s) again, quit Julia, and examine the resulting *.mem files.

source

Profile.get_peek_duration – Function.

get_peek_duration()

Get the duration in seconds of the profile "peek" that is triggered via SIGINFO or SIGUSR1, depending

on platform.

source

Profile.set_peek_duration – Function.

set_peek_duration(t::Float64)

Set the duration in seconds of the profile "peek" that is triggered via SIGINFO or SIGUSR1, depending

on platform.

source

85.5 Memory profiling

Profile.Allocs.@profile – Macro.

Profile.Allocs.@profile [sample_rate=0.1] expr

Profile allocations that happen during expr, returning both the result and and AllocResults struct.

A sample rate of 1.0 will record everything; 0.0 will record nothing.

julia> Profile.Allocs.@profile sample_rate=0.01 peakflops()

1.03733270279065e11

julia> results = Profile.Allocs.fetch()

julia> last(sort(results.allocs, by=x->x.size))

Profile.Allocs.Alloc(Vector{Any}, Base.StackTraces.StackFrame[_new_array_ at array.c:127,

...], 5576)↪→

The best way to visualize these is currently with the PProf.jl package, by invoking PProf.Allocs.pprof.

Note

The current implementation of the Allocations Profiler does not capture types for all allo-

cations. Allocations for which the profiler could not capture the type are represented as

having type Profile.Allocs.UnknownType.

You can readmore about themissing types and the plan to improve this, here: https://github.com/Ju-

liaLang/julia/issues/43688.

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Profile/src/Profile.jl#L554-L561
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Profile/src/Profile.jl#L44-L48
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Profile/src/Profile.jl#L50-L54
https://github.com/JuliaPerf/PProf.jl
https://github.com/JuliaLang/julia/issues/43688
https://github.com/JuliaLang/julia/issues/43688

CHAPTER 85. PROFILING 1398

Julia 1.8

The allocation profiler was added in Julia 1.8.

source

The methods in Profile.Allocs are not exported and need to be called e.g. as Profile.Allocs.fetch().

Profile.Allocs.clear – Function.

Profile.Allocs.clear()

Clear all previously profiled allocation information from memory.

source

Profile.Allocs.fetch – Function.

Profile.Allocs.fetch()

Retrieve the recorded allocations, and decode them into Julia objects which can be analyzed.

source

Profile.Allocs.start – Function.

Profile.Allocs.start(sample_rate::Real)

Begin recording allocations with the given sample rate A sample rate of 1.0 will record everything; 0.0

will record nothing.

source

Profile.Allocs.stop – Function.

Profile.Allocs.stop()

Stop recording allocations.

source

85.6 Heap Snapshots

Profile.take_heap_snapshot – Function.

Profile.take_heap_snapshot(io::IOStream, all_one::Bool=false)

Profile.take_heap_snapshot(filepath::String, all_one::Bool=false)

Profile.take_heap_snapshot(all_one::Bool=false; dir::String)

Write a snapshot of the heap, in the JSON format expected by the Chrome Devtools Heap Snapshot

viewer (.heapsnapshot extension) to a file ($pid_$timestamp.heapsnapshot) in the current directory

by default (or tempdir if the current directory is unwritable), or in dir if given, or the given full file path,

or IO stream.

If all_one is true, then report the size of every object as one so they can be easily counted. Otherwise,

report the actual size.

source

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Profile/src/Allocs.jl#L32-L65
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Profile/src/Allocs.jl#L103-L107
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Profile/src/Allocs.jl#L113-L118
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Profile/src/Allocs.jl#L84-L89
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Profile/src/Allocs.jl#L94-L98
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Profile/src/Profile.jl#L1222-L1235

CHAPTER 85. PROFILING 1399

The methods in Profile are not exported and need to be called e.g. as Profile.take_heap_snapshot().

julia> using Profile

julia> Profile.take_heap_snapshot("snapshot.heapsnapshot")

Traces and records julia objects on the heap. This only records objects known to the Julia garbage collec-

tor. Memory allocated by external libraries not managed by the garbage collector will not show up in the

snapshot.

The resulting heap snapshot file can be uploaded to chrome devtools to be viewed. For more information,

see the chrome devtools docs.

https://developer.chrome.com/docs/devtools/memory-problems/heap-snapshots/#view_snapshots

Chapter 86

The Julia REPL

Julia comes with a full-featured interactive command-line REPL (read-eval-print loop) built into the julia

executable. In addition to allowing quick and easy evaluation of Julia statements, it has a searchable

history, tab-completion, many helpful keybindings, and dedicated help and shell modes. The REPL can be

started by simply calling julia with no arguments or double-clicking on the executable:

$ julia

_

_ _ _(_)_ | Documentation: https://docs.julialang.org

(_) | (_) (_) |

_ _ _| |_ __ _ | Type "?" for help, "]?" for Pkg help.

| | | | | | |/ _` | |

| | |_| | | | (_| | | Version 1.10.4 (2024-06-04)

_/ |__'_|_|_|__'_| | Official https://julialang.org/ release

|__/ |

julia>

To exit the interactive session, type ^D – the control key together with the d key on a blank line – or type

exit() followed by the return or enter key. The REPL greets you with a banner and a julia> prompt.

86.1 The different prompt modes

The Julian mode

The REPL has five main modes of operation. The first and most common is the Julian prompt. It is the

default mode of operation; each new line initially starts with julia>. It is here that you can enter Julia

expressions. Hitting return or enter after a complete expression has been entered will evaluate the entry

and show the result of the last expression.

julia> string(1 + 2)

"3"

There are a number of useful features unique to interactive work. In addition to showing the result, the

REPL also binds the result to the variable ans. A trailing semicolon on the line can be used as a flag to

suppress showing the result.

1400

CHAPTER 86. THE JULIA REPL 1401

julia> string(3 * 4);

julia> ans

"12"

In Julia mode, the REPL supports something called prompt pasting. This activates when pasting text that

starts with julia> into the REPL. In that case, only expressions starting with julia> (as well as the other

REPL mode prompts: shell>, help?>, pkg>) are parsed, but others are removed. This makes it pos-

sible to paste a chunk of text that has been copied from a REPL session without having to scrub away

prompts and outputs. This feature is enabled by default but can be disabled or enabled at will with

REPL.enable_promptpaste(::Bool). If it is enabled, you can try it out by pasting the code block above this

paragraph straight into the REPL. This feature does not work on the standard Windows command prompt

due to its limitation at detecting when a paste occurs.

Objects are printed at the REPL using the show function with a specific IOContext. In particular, the :limit

attribute is set to true. Other attributes can receive in certain show methods a default value if it's not

already set, like :compact. It's possible, as an experimental feature, to specify the attributes used by

the REPL via the Base.active_repl.options.iocontext dictionary (associating values to attributes). For

example:

julia> rand(2, 2)

2×2 Array{Float64,2}:

0.8833 0.329197

0.719708 0.59114

julia> show(IOContext(stdout, :compact => false), "text/plain", rand(2, 2))

0.43540323669187075 0.15759787870609387

0.2540832269192739 0.4597637838786053

julia> Base.active_repl.options.iocontext[:compact] = false;

julia> rand(2, 2)

2×2 Array{Float64,2}:

0.2083967319174056 0.13330606013126012

0.6244375177790158 0.9777957560761545

In order to define automatically the values of this dictionary at startup time, one can use the atreplinit

function in the ~/.julia/config/startup.jl file, for example:

atreplinit() do repl

repl.options.iocontext[:compact] = false

end

Help mode

When the cursor is at the beginning of the line, the prompt can be changed to a help mode by typing ?.

Julia will attempt to print help or documentation for anything entered in help mode:

julia> ? # upon typing ?, the prompt changes (in place) to: help?>

help?> string

CHAPTER 86. THE JULIA REPL 1402

search: string String Cstring Cwstring RevString randstring bytestring SubString

string(xs...)

Create a string from any values using the print function.

Macros, types and variables can also be queried:

help?> @time

@time

A macro to execute an expression, printing the time it took to execute, the number of

allocations,

and the total number of bytes its execution caused to be allocated, before returning the value

of the

expression.

See also @timev, @timed, @elapsed, and @allocated.

help?> Int32

search: Int32 UInt32

Int32 <: Signed

32-bit signed integer type.

A string or regex literal searches all docstrings using apropos:

help?> "aprop"

REPL.stripmd

Base.Docs.apropos

help?> r"ap..p"

Base∘.:

Base.shell_escape_posixly

Distributed.CachingPool

REPL.stripmd

Base.Docs.apropos

Another feature of help mode is the ability to access extended docstrings. You can do this by typing

something like ??Print rather than ?Printwhich will display the # Extended help section from the source

codes documentation.

Help mode can be exited by pressing backspace at the beginning of the line.

Shell mode

Just as help mode is useful for quick access to documentation, another common task is to use the system

shell to execute system commands. Just as ? entered help mode when at the beginning of the line, a

semicolon (;) will enter the shell mode. And it can be exited by pressing backspace at the beginning of

the line.

julia> ; # upon typing ;, the prompt changes (in place) to: shell>

CHAPTER 86. THE JULIA REPL 1403

shell> echo hello

hello

Note

For Windows users, Julia's shell mode does not expose windows shell commands. Hence, this

will fail:

julia> ; # upon typing ;, the prompt changes (in place) to: shell>

shell> dir

ERROR: IOError: could not spawn `dir`: no such file or directory (ENOENT)

Stacktrace!

.......

However, you can get access to PowerShell like this:

julia> ; # upon typing ;, the prompt changes (in place) to: shell>

shell> powershell

Windows PowerShell

Copyright (C) Microsoft Corporation. All rights reserved.

PS C:\Users\elm>

... and to cmd.exe like that (see the dir command):

julia> ; # upon typing ;, the prompt changes (in place) to: shell>

shell> cmd

Microsoft Windows [version 10.0.17763.973]

(c) 2018 Microsoft Corporation. All rights reserved.

C:\Users\elm>dir

Volume in drive C has no label

Volume Serial Number is 1643-0CD7

Directory of C:\Users\elm

29/01/2020 22:15 <DIR> .

29/01/2020 22:15 <DIR> ..

02/02/2020 08:06 <DIR> .atom

Pkg mode

The Package manager mode accepts specialized commands for loading and updating packages. It is en-

tered by pressing the] key at the Julian REPL prompt and exited by pressing CTRL-C or pressing the

backspace key at the beginning of the line. The prompt for this mode is pkg>. It supports its own help-

mode, which is entered by pressing ? at the beginning of the line of the pkg> prompt. The Packagemanager

mode is documented in the Pkg manual, available at https://julialang.github.io/Pkg.jl/v1/.

https://julialang.github.io/Pkg.jl/v1/

CHAPTER 86. THE JULIA REPL 1404

Search modes

In all of the above modes, the executed lines get saved to a history file, which can be searched. To initiate

an incremental search through the previous history, type ^R – the control key together with the r key.

The prompt will change to (reverse-i-search)`':, and as you type the search query will appear in the

quotes. The most recent result that matches the query will dynamically update to the right of the colon as

more is typed. To find an older result using the same query, simply type ^R again.

Just as ^R is a reverse search, ^S is a forward search, with the prompt (i-search)`':. The two may be

used in conjunction with each other to move through the previous or next matching results, respectively.

All executed commands in the Julia REPL are logged into ~/.julia/logs/repl_history.jl along with a

timestamp of when it was executed and the current REPL mode you were in. Search mode queries this log

file in order to find the commands which you previously ran. This can be disabled at startup by passing the

--history-file=no flag to Julia.

86.2 Key bindings

The Julia REPL makes great use of key bindings. Several control-key bindings were already introduced

above (^D to exit, ^R and ^S for searching), but there are many more. In addition to the control-key, there

are also meta-key bindings. These vary more by platform, but most terminals default to using alt- or option-

held down with a key to send the meta-key (or can be configured to do so), or pressing Esc and then the

key.

Customizing keybindings

Julia's REPL keybindingsmay be fully customized to a user's preferences by passing a dictionary to REPL.setup_interface.

The keys of this dictionary may be characters or strings. The key '*' refers to the default action. Control

plus character x bindings are indicated with "^x". Meta plus x can be written "\\M-x" or "\ex", and Con-

trol plus x can be written "\\C-x" or "^x". The values of the custom keymap must be nothing (indicating

that the input should be ignored) or functions that accept the signature (PromptState, AbstractREPL,

Char). The REPL.setup_interface function must be called before the REPL is initialized, by registering

the operation with atreplinit . For example, to bind the up and down arrow keys to move through history

without prefix search, one could put the following code in ~/.julia/config/startup.jl:

import REPL

import REPL.LineEdit

const mykeys = Dict{Any,Any}(

Up Arrow

"\e[A" => (s,o...)->(LineEdit.edit_move_up(s) || LineEdit.history_prev(s,

LineEdit.mode(s).hist)),↪→

Down Arrow

"\e[B" => (s,o...)->(LineEdit.edit_move_down(s) || LineEdit.history_next(s,

LineEdit.mode(s).hist))↪→

)

function customize_keys(repl)

repl.interface = REPL.setup_interface(repl; extra_repl_keymap = mykeys)

end

atreplinit(customize_keys)

CHAPTER 86. THE JULIA REPL 1405

Users should refer to LineEdit.jl to discover the available actions on key input.

86.3 Tab completion

In both the Julian and help modes of the REPL, one can enter the first few characters of a function or type

and then press the tab key to get a list all matches:

julia> x[TAB]

julia> xor

In some cases it only completes part of the name, up to the next ambiguity:

julia> mapf[TAB]

julia> mapfold

If you hit tab again, then you get the list of things that might complete this:

julia> mapfold[TAB]

mapfoldl mapfoldr

Like other components of the REPL, the search is case-sensitive:

julia> stri[TAB]

stride strides string strip

julia> Stri[TAB]

StridedArray StridedMatrix StridedVecOrMat StridedVector String

The tab key can also be used to substitute LaTeX math symbols with their Unicode equivalents, and get a

list of LaTeX matches as well:

julia> \pi[TAB]

julia> π

π = 3.1415926535897...

julia> e_1[TAB] = [1,0]

julia> e₁ = [1,0]

2-element Array{Int64,1}:

1

0

julia> e\^1[TAB] = [1 0]

julia> e¹ = [1 0]

1×2 Array{Int64,2}:

1 0

julia> \sqrt[TAB]2 # √ is equivalent to the sqrt function

julia> √2

CHAPTER 86. THE JULIA REPL 1406

1.4142135623730951

julia> \hbar[TAB](h) = h / 2\pi[TAB]

julia> ħ(h) = h / 2π

ħ (generic function with 1 method)

julia> \h[TAB]

\hat \hermitconjmatrix \hkswarow \hrectangle

\hatapprox \hexagon \hookleftarrow \hrectangleblack

\hbar \hexagonblack \hookrightarrow \hslash

\heartsuit \hksearow \house \hspace

julia> α="\alpha[TAB]" # LaTeX completion also works in strings

julia> α="α"

A full list of tab-completions can be found in the Unicode Input section of the manual.

Completion of paths works for strings and julia's shell mode:

julia> path="/[TAB]"

.dockerenv .juliabox/ boot/ etc/ lib/ media/ opt/ root/

sbin/ sys/ usr/↪→

.dockerinit bin/ dev/ home/ lib64/ mnt/ proc/ run/

srv/ tmp/ var/↪→

shell> /[TAB]

.dockerenv .juliabox/ boot/ etc/ lib/ media/ opt/ root/

sbin/ sys/ usr/↪→

.dockerinit bin/ dev/ home/ lib64/ mnt/ proc/ run/

srv/ tmp/ var/↪→

Dictionary keys can also be tab completed:

julia> foo = Dict("qwer1"=>1, "qwer2"=>2, "asdf"=>3)

Dict{String,Int64} with 3 entries:

"qwer2" => 2

"asdf" => 3

"qwer1" => 1

julia> foo["q[TAB]

"qwer1" "qwer2"

julia> foo["qwer

Tab completion can also help completing fields:

julia> x = 3 + 4im;

julia> x.[TAB][TAB]

im re

julia> import UUIDs

CHAPTER 86. THE JULIA REPL 1407

julia> UUIDs.uuid[TAB][TAB]

uuid1 uuid4 uuid5 uuid_version

Fields for output from functions can also be completed:

julia> split("","")[1].[TAB]

lastindex offset string

The completion of fields for output from functions uses type inference, and it can only suggest fields if the

function is type stable.

Tab completion can help with investigation of the available methods matching the input arguments:

julia> max([TAB] # All methods are displayed, not shown here due to size of the list

julia> max([1, 2], [TAB] # All methods where `Vector{Int}` matches as first argument

max(x, y) in Base at operators.jl:215

max(a, b, c, xs...) in Base at operators.jl:281

julia> max([1, 2], max(1, 2), [TAB] # All methods matching the arguments.

max(x, y) in Base at operators.jl:215

max(a, b, c, xs...) in Base at operators.jl:281

Keywords are also displayed in the suggested methods after ;, see below line where limit and keepempty

are keyword arguments:

julia> split("1 1 1", [TAB]

split(str::AbstractString; limit, keepempty) in Base at strings/util.jl:302

split(str::T, splitter; limit, keepempty) where T<:AbstractString in Base at strings/util.jl:277

The completion of the methods uses type inference and can therefore see if the arguments match even if

the arguments are output from functions. The function needs to be type stable for the completion to be

able to remove non-matching methods.

If you wonder which methods can be used with particular argument types, use ? as the function name.

This shows an example of looking for functions in InteractiveUtils that accept a single string:

julia> InteractiveUtils.?("somefile")[TAB]

edit(path::AbstractString) in InteractiveUtils at InteractiveUtils/src/editless.jl:197

less(file::AbstractString) in InteractiveUtils at InteractiveUtils/src/editless.jl:266

This listed methods in the InteractiveUtils module that can be called on a string. By default, this

excludes methods where all arguments are typed as Any, but you can see those too by holding down

SHIFT-TAB instead of TAB:

CHAPTER 86. THE JULIA REPL 1408

julia> InteractiveUtils.?("somefile")[SHIFT-TAB]

apropos(string) in REPL at REPL/src/docview.jl:796

clipboard(x) in InteractiveUtils at InteractiveUtils/src/clipboard.jl:64

code_llvm(f) in InteractiveUtils at InteractiveUtils/src/codeview.jl:221

code_native(f) in InteractiveUtils at InteractiveUtils/src/codeview.jl:243

edit(path::AbstractString) in InteractiveUtils at InteractiveUtils/src/editless.jl:197

edit(f) in InteractiveUtils at InteractiveUtils/src/editless.jl:225

eval(x) in InteractiveUtils at InteractiveUtils/src/InteractiveUtils.jl:3

include(x) in InteractiveUtils at InteractiveUtils/src/InteractiveUtils.jl:3

less(file::AbstractString) in InteractiveUtils at InteractiveUtils/src/editless.jl:266

less(f) in InteractiveUtils at InteractiveUtils/src/editless.jl:274

report_bug(kind) in InteractiveUtils at InteractiveUtils/src/InteractiveUtils.jl:391

separate_kwargs(args...; kwargs...) in InteractiveUtils at InteractiveUtils/src/macros.jl:7

You can also use ?("somefile")[TAB] and look across all modules, but the method lists can be long.

By omitting the closing parenthesis, you can include functions that might require additional arguments:

julia> using Mmap

help?> Mmap.?("file",[TAB]

Mmap.Anonymous(name::String, readonly::Bool, create::Bool) in Mmap at Mmap/src/Mmap.jl:16

mmap(file::AbstractString) in Mmap at Mmap/src/Mmap.jl:245

mmap(file::AbstractString, ::Type{T}) where T<:Array in Mmap at Mmap/src/Mmap.jl:245

mmap(file::AbstractString, ::Type{T}, dims::Tuple{Vararg{Integer, N}}) where {T<:Array, N} in

Mmap at Mmap/src/Mmap.jl:245↪→

mmap(file::AbstractString, ::Type{T}, dims::Tuple{Vararg{Integer, N}}, offset::Integer; grow,

shared) where {T<:Array, N} in Mmap at Mmap/src/Mmap.jl:245↪→

mmap(file::AbstractString, ::Type{T}, len::Integer) where T<:Array in Mmap at

Mmap/src/Mmap.jl:251↪→

mmap(file::AbstractString, ::Type{T}, len::Integer, offset::Integer; grow, shared) where T<:Array

in Mmap at Mmap/src/Mmap.jl:251↪→

mmap(file::AbstractString, ::Type{T}, dims::Tuple{Vararg{Integer, N}}) where {T<:BitArray, N} in

Mmap at Mmap/src/Mmap.jl:316↪→

mmap(file::AbstractString, ::Type{T}, dims::Tuple{Vararg{Integer, N}}, offset::Integer; grow,

shared) where {T<:BitArray, N} in Mmap at Mmap/src/Mmap.jl:316↪→

mmap(file::AbstractString, ::Type{T}, len::Integer) where T<:BitArray in Mmap at

Mmap/src/Mmap.jl:322↪→

mmap(file::AbstractString, ::Type{T}, len::Integer, offset::Integer; grow, shared) where

T<:BitArray in Mmap at Mmap/src/Mmap.jl:322↪→

86.4 Customizing Colors

The colors used by Julia and the REPL can be customized, as well. To change the color of the Julia prompt

you can add something like the following to your ~/.julia/config/startup.jl file, which is to be placed

inside your home directory:

function customize_colors(repl)

repl.prompt_color = Base.text_colors[:cyan]

end

atreplinit(customize_colors)

CHAPTER 86. THE JULIA REPL 1409

The available color keys can be seen by typing Base.text_colors in the help mode of the REPL. In addition,

the integers 0 to 255 can be used as color keys for terminals with 256 color support.

You can also change the colors for the help and shell prompts and input and answer text by setting the ap-

propriate field of repl in the customize_colors function above (respectively, help_color, shell_color,

input_color, and answer_color). For the latter two, be sure that the envcolors field is also set to false.

It is also possible to apply boldface formatting by using Base.text_colors[:bold] as a color. For instance,

to print answers in boldface font, one can use the following as a ~/.julia/config/startup.jl:

function customize_colors(repl)

repl.envcolors = false

repl.answer_color = Base.text_colors[:bold]

end

atreplinit(customize_colors)

You can also customize the color used to render warning and informational messages by setting the ap-

propriate environment variables. For instance, to render error, warning, and informational messages re-

spectively in magenta, yellow, and cyan you can add the following to your ~/.julia/config/startup.jl

file:

ENV["JULIA_ERROR_COLOR"] = :magenta

ENV["JULIA_WARN_COLOR"] = :yellow

ENV["JULIA_INFO_COLOR"] = :cyan

86.5 Changing the contextual module which is active at the REPL

When entering expressions at the REPL, they are by default evaluated in the Main module;

julia> @__MODULE__

Main

It is possible to change this contextual module via the function REPL.activate(m) where m is a Module or

by typing the module in the REPL and pressing the keybinding Alt-m (the cursor must be on the module

name). The active module is shown in the prompt:

julia> using REPL

julia> REPL.activate(Base)

(Base) julia> @__MODULE__

Base

(Base) julia> using REPL # Need to load REPL into Base module to use it

(Base) julia> REPL.activate(Main)

julia>

CHAPTER 86. THE JULIA REPL 1410

julia> Core<Alt-m> # using the keybinding to change module

(Core) julia>

(Core) julia> Main<Alt-m> # going back to Main via keybinding

julia>

Functions that take an optional module argument often defaults to the REPL context module. As an exam-

ple, calling varinfo() will show the variables of the current active module:

julia> module CustomMod

export var, f

var = 1

f(x) = x^2

end;

julia> REPL.activate(CustomMod)

(Main.CustomMod) julia> varinfo()

name size summary

––––––––– ––––––– ––––––––––––––––––––––––––––––––––

CustomMod Module

f 0 bytes f (generic function with 1 method)

var 8 bytes Int64

86.6 Numbered prompt

It is possible to get an interface which is similar to the IPython REPL and the Mathematica notebook with

numbered input prompts and output prefixes. This is done by calling REPL.numbered_prompt!(). If you

want to have this enabled on startup, add

atreplinit() do repl

@eval import REPL

if !isdefined(repl, :interface)

repl.interface = REPL.setup_interface(repl)

end

REPL.numbered_prompt!(repl)

end

to your startup.jl file. In numbered prompt the variable Out[n] (where n is an integer) can be used to

refer to earlier results:

In [1]: 5 + 3

Out[1]: 8

In [2]: Out[1] + 5

Out[2]: 13

In [3]: Out

CHAPTER 86. THE JULIA REPL 1411

Out[3]: Dict{Int64, Any} with 2 entries:

2 => 13

1 => 8

Note

Since all outputs from previous REPL evaluations are saved in the Out variable, one should be

careful if they are returning many large in-memory objects like arrays, since they will be pro-

tected from garbage collection so long as a reference to them remains in Out. If you need to re-

move references to objects in Out, you can clear the entire history it stores with empty!(Out),

or clear an individual entry with Out[n] = nothing.

86.7 TerminalMenus

TerminalMenus is a submodule of the Julia REPL and enables small, low-profile interactive menus in the

terminal.

Examples

import REPL

using REPL.TerminalMenus

options = ["apple", "orange", "grape", "strawberry",

"blueberry", "peach", "lemon", "lime"]

RadioMenu

The RadioMenu allows the user to select one option from the list. The request function displays the in-

teractive menu and returns the index of the selected choice. If a user presses 'q' or ctrl-c, request will

return a -1.

`pagesize` is the number of items to be displayed at a time.

The UI will scroll if the number of options is greater

than the `pagesize`

menu = RadioMenu(options, pagesize=4)

`request` displays the menu and returns the index after the

user has selected a choice

choice = request("Choose your favorite fruit:", menu)

if choice != -1

println("Your favorite fruit is ", options[choice], "!")

else

println("Menu canceled.")

end

Output:

Choose your favorite fruit:

^ grape

strawberry

> blueberry

CHAPTER 86. THE JULIA REPL 1412

v peach

Your favorite fruit is blueberry!

MultiSelectMenu

The MultiSelectMenu allows users to select many choices from a list.

here we use the default `pagesize` 10

menu = MultiSelectMenu(options)

`request` returns a `Set` of selected indices

if the menu us canceled (ctrl-c or q), return an empty set

choices = request("Select the fruits you like:", menu)

if length(choices) > 0

println("You like the following fruits:")

for i in choices

println(" - ", options[i])

end

else

println("Menu canceled.")

end

Output:

Select the fruits you like:

[press: Enter=toggle, a=all, n=none, d=done, q=abort]

[] apple

> [X] orange

[X] grape

[] strawberry

[] blueberry

[X] peach

[] lemon

[] lime

You like the following fruits:

- orange

- grape

- peach

Customization / Configuration

ConfiguredMenu subtypes

Starting with Julia 1.6, the recommended way to configure menus is via the constructor. For instance, the

default multiple-selection menu

julia> menu = MultiSelectMenu(options, pagesize=5);

julia> request(menu) # ASCII is used by default

[press: Enter=toggle, a=all, n=none, d=done, q=abort]

[] apple

[X] orange

CHAPTER 86. THE JULIA REPL 1413

[] grape

> [X] strawberry

v [] blueberry

can instead be rendered with Unicode selection and navigation characters with

julia> menu = MultiSelectMenu(options, pagesize=5, charset=:unicode);

julia> request(menu)

[press: Enter=toggle, a=all, n=none, d=done, q=abort]

⬚ apple

✓ orange

⬚ grape

→ ✓ strawberry

↓ ⬚ blueberry

More fine-grained configuration is also possible:

julia> menu = MultiSelectMenu(options, pagesize=5, charset=:unicode, checked="YEP!",

unchecked="NOPE", cursor='');↪→

julia> request(menu)

julia> request(menu)

[press: Enter=toggle, a=all, n=none, d=done, q=abort]

NOPE apple

YEP! orange

NOPE grape

YEP! strawberry

↓ NOPE blueberry

Aside from the overall charset option, for RadioMenu the configurable options are:

• cursor::Char='>'|'→': character to use for cursor

• up_arrow::Char='^'|'↑': character to use for up arrow

• down_arrow::Char='v'|'↓': character to use for down arrow

• updown_arrow::Char='I'|'↕': character to use for up/down arrow in one-line page

• scroll_wrap::Bool=false: optionally wrap-around at the beginning/end of a menu

• ctrl_c_interrupt::Bool=true: If false, return empty on ^C, if true throw InterruptException()

on ^C

MultiSelectMenu adds:

• checked::String="[X]"|"✓": string to use for checked

• unchecked::String="[]"|"⬚"): string to use for unchecked

You can create newmenu types of your own. Types that are derived from TerminalMenus.ConfiguredMenu

configure the menu options at construction time.

CHAPTER 86. THE JULIA REPL 1414

Legacy interface

Prior to Julia 1.6, and still supported throughout Julia 1.x, one can also configuremenus by calling TerminalMenus.config().

86.8 References

REPL

Base.atreplinit – Function.

atreplinit(f)

Register a one-argument function to be called before the REPL interface is initialized in interactive

sessions; this is useful to customize the interface. The argument of f is the REPL object. This function

should be called from within the .julia/config/startup.jl initialization file.

source

TerminalMenus

Menus

REPL.TerminalMenus.RadioMenu – Type.

RadioMenu

A menu that allows a user to select a single option from a list.

Sample Output

julia> request(RadioMenu(options, pagesize=4))

Choose your favorite fruit:

^ grape

strawberry

> blueberry

v peach

Your favorite fruit is blueberry!

REPL.TerminalMenus.MultiSelectMenu – Type.

MultiSelectMenu

A menu that allows a user to select a multiple options from a list.

Sample Output

julia> request(MultiSelectMenu(options))

Select the fruits you like:

[press: Enter=toggle, a=all, n=none, d=done, q=abort]

[] apple

> [X] orange

[X] grape

[] strawberry

[] blueberry

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/client.jl#L370-L377

CHAPTER 86. THE JULIA REPL 1415

[X] peach

[] lemon

[] lime

You like the following fruits:

- orange

- grape

- peach

Configuration

REPL.TerminalMenus.Config – Type.

Config(; scroll_wrap=false, ctrl_c_interrupt=true, charset=:ascii, cursor::Char,

up_arrow::Char, down_arrow::Char)↪→

Configure behavior for selection menus via keyword arguments:

• scroll_wrap, if true, causes the menu to wrap around when scrolling above the first or below

the last entry

• ctrl_c_interrupt, if true, throws an InterruptException if the user hits Ctrl-C duringmenu se-

lection. If false, TerminalMenus.requestwill return the default result from TerminalMenus.selected.

• charset affects the default values for cursor, up_arrow, and down_arrow, and can be :ascii or

:unicode

• cursor is the character printed to indicate the option that will be chosen by hitting "Enter." De-

faults are '>' or '→', depending on charset.

• up_arrow is the character printed when the display does not include the first entry. Defaults are

'^' or '↑', depending on charset.

• down_arrow is the character printed when the display does not include the last entry. Defaults

are 'v' or '↓', depending on charset.

Subtypes of ConfiguredMenu will print cursor, up_arrow, and down_arrow automatically as needed,

your writeline method should not print them.

Julia 1.6

Config is available as of Julia 1.6. On older releases use the global CONFIG.

REPL.TerminalMenus.MultiSelectConfig – Type.

MultiSelectConfig(; charset=:ascii, checked::String, unchecked::String, kwargs...)

Configure behavior for a multiple-selection menu via keyword arguments:

• checked is the string to print when an option has been selected. Defaults are "[X]" or "✓", de-

pending on charset.

• unchecked is the string to print when an option has not been selected. Defaults are "[]" or "⬚",

depending on charset.

All other keyword arguments are as described for TerminalMenus.Config. checked and unchecked

are not printed automatically, and should be printed by your writeline method.

CHAPTER 86. THE JULIA REPL 1416

Julia 1.6

MultiSelectConfig is available as of Julia 1.6. On older releases use the global CONFIG.

REPL.TerminalMenus.config – Function.

config(<see arguments>)

Keyword-only function to configure global menu parameters

Arguments

• charset::Symbol=:na: ui characters to use (:ascii or :unicode); overridden by other argu-

ments

• cursor::Char='>'|'→': character to use for cursor

• up_arrow::Char='^'|'↑': character to use for up arrow

• down_arrow::Char='v'|'↓': character to use for down arrow

• checked::String="[X]"|"✓": string to use for checked

• unchecked::String="[]"|"⬚"): string to use for unchecked

• scroll::Symbol=:nowrap: If :wrap wrap cursor around top and bottom, if :nowrap do not wrap

cursor

• supress_output::Bool=false: Ignored legacy argument, pass suppress_output as a keyword

argument to request instead.

• ctrl_c_interrupt::Bool=true: If false, return empty on ^C, if true throw InterruptException()

on ^C

Julia 1.6

As of Julia 1.6, config is deprecated. Use Config or MultiSelectConfig instead.

User interaction

REPL.TerminalMenus.request – Function.

request(m::AbstractMenu; cursor=1)

Display the menu and enter interactive mode. cursor indicates the item number used for the initial

cursor position. cursor can be either an Int or a RefValue{Int}. The latter is useful for observation

and control of the cursor position from the outside.

Returns selected(m).

Julia 1.6

The cursor argument requires Julia 1.6 or later.

request([term,] msg::AbstractString, m::AbstractMenu)

Shorthand for println(msg); request(m).

CHAPTER 86. THE JULIA REPL 1417

AbstractMenu extension interface

Any subtype of AbstractMenumust bemutable, andmust contain the fields pagesize::Int and pageoffset::Int.

Any subtype must also implement the following functions:

REPL.TerminalMenus.pick – Function.

pick(m::AbstractMenu, cursor::Int)

Defines what happens when a user presses the Enter key while the menu is open. If true is returned,

request() will exit. cursor indexes the position of the selection.

REPL.TerminalMenus.cancel – Function.

cancel(m::AbstractMenu)

Define what happens when a user cancels ('q' or ctrl-c) a menu. request() will always exit after calling

this function.

REPL.TerminalMenus.writeline – Function.

writeline(buf::IO, m::AbstractMenu, idx::Int, iscursor::Bool)

Write the option at index idx to buf. iscursor, if true, indicates that this item is at the current cursor

position (the one that will be selected by hitting "Enter").

If m is a ConfiguredMenu, TerminalMenus will print the cursor indicator. Otherwise the callee is ex-

pected to handle such printing.

Julia 1.6

writeline requires Julia 1.6 or higher.

On older versions of Julia, this was writeLine(buf::IO, m::AbstractMenu, idx, iscursor::Bool)

and m is assumed to be unconfigured. The selection and cursor indicators can be obtained

from TerminalMenus.CONFIG.

This older function is supported on all Julia 1.x versions but will be dropped in Julia 2.0.

It must also implement either options or numoptions:

REPL.TerminalMenus.options – Function.

options(m::AbstractMenu)

Return a list of strings to be displayed as options in the current page.

Alternatively, implement numoptions, in which case options is not needed.

REPL.TerminalMenus.numoptions – Function.

numoptions(m::AbstractMenu) -> Int

Return the number of options in menu m. Defaults to length(options(m)).

Julia 1.6

This function requires Julia 1.6 or later.

CHAPTER 86. THE JULIA REPL 1418

If the subtype does not have a field named selected, it must also implement

REPL.TerminalMenus.selected – Function.

selected(m::AbstractMenu)

Return information about the user-selected option. By default it returns m.selected.

The following are optional but can allow additional customization:

REPL.TerminalMenus.header – Function.

header(m::AbstractMenu) -> String

Return a header string to be printed above the menu. Defaults to "".

REPL.TerminalMenus.keypress – Function.

keypress(m::AbstractMenu, i::UInt32) -> Bool

Handle any non-standard keypress event. If true is returned, TerminalMenus.request will exit. De-

faults to false.

CHAPTER 86. THE JULIA REPL 1419

Keybinding Description

Program

control

^D Exit (when buffer is empty)

^C Interrupt or cancel

^L Clear console screen

Return/Enter, ^J New line, executing if it is complete

meta-

Return/Enter

Insert new line without executing it

? or ; Enter help or shell mode (when at start of a line)

^R, ^S Incremental history search, described above

Cursor

movement

Right arrow, ^F Move right one character

Left arrow, ^B Move left one character

ctrl-Right,

meta-F

Move right one word

ctrl-Left, meta-B Move left one word

Home, ^A Move to beginning of line

End, ^E Move to end of line

Up arrow, ^P Move up one line (or change to the previous history entry that matches the text

before the cursor)

Down arrow, ^N Move down one line (or change to the next history entry that matches the text

before the cursor)

Shift-Arrow Key Move cursor according to the direction of the Arrow key, while activating the region

("shift selection")

Page-up,

meta-P

Change to the previous history entry

Page-down,

meta-N

Change to the next history entry

meta-< Change to the first history entry (of the current session if it is before the current

position in history)

meta-> Change to the last history entry

^-Space Set the "mark" in the editing region (and de-activate the region if it's active)

^-Space

^-Space

Set the "mark" in the editing region and make the region "active", i.e. highlighted

^G De-activate the region (i.e. make it not highlighted)

^X^X Exchange the current position with the mark

Editing

Backspace, ^H Delete the previous character, or the whole region when it's active

Delete, ^D Forward delete one character (when buffer has text)

meta-

Backspace

Delete the previous word

meta-d Forward delete the next word

^W Delete previous text up to the nearest whitespace

meta-w Copy the current region in the kill ring

meta-W "Kill" the current region, placing the text in the kill ring

^U "Kill" to beginning of line, placing the text in the kill ring

^K "Kill" to end of line, placing the text in the kill ring

^Y "Yank" insert the text from the kill ring

meta-y Replace a previously yanked text with an older entry from the kill ring

^T Transpose the characters about the cursor

meta-Up arrow Transpose current line with line above

meta-Down

arrow

Transpose current line with line below

meta-u Change the next word to uppercase

meta-c Change the next word to titlecase

meta-l Change the next word to lowercase

^/, ^_ Undo previous editing action

^Q Write a number in REPL and press ^Q to open editor at corresponding stackframe

or method

meta-Left

Arrow

Indent the current line on the left

meta-Right

Arrow

Indent the current line on the right

meta-. Insert last word from previous history entry

meta-e Edit the current input in an editor

Chapter 87

Random Numbers

Random number generation in Julia uses the Xoshiro256++ algorithm by default, with per-Task state. Other

RNG types can be plugged in by inheriting the AbstractRNG type; they can then be used to obtain multiple

streams of random numbers.

The PRNGs (pseudorandom number generators) exported by the Random package are:

• TaskLocalRNG: a token that represents use of the currently active Task-local stream, deterministically

seeded from the parent task, or by RandomDevice (with system randomness) at program start

• Xoshiro: generates a high-quality stream of random numbers with a small state vector and high

performance using the Xoshiro256++ algorithm

• RandomDevice: for OS-provided entropy. This may be used for cryptographically secure random

numbers (CS(P)RNG).

• MersenneTwister: an alternate high-quality PRNG which was the default in older versions of Julia,

and is also quite fast, but requires much more space to store the state vector and generate a random

sequence.

Most functions related to random generation accept an optional AbstractRNG object as first argument.

Some also accept dimension specifications dims... (which can also be given as a tuple) to generate

arrays of random values. In a multi-threaded program, you should generally use different RNG objects

from different threads or tasks in order to be thread-safe. However, the default RNG is thread-safe as of

Julia 1.3 (using a per-thread RNG up to version 1.6, and per-task thereafter).

The provided RNGs can generate uniform random numbers of the following types: Float16, Float32,

Float64, BigFloat, Bool, Int8, UInt8, Int16, UInt16, Int32, UInt32, Int64, UInt64, Int128, UInt128,

BigInt (or complex numbers of those types). Random floating point numbers are generated uniformly in

[0, 1). As BigInt represents unbounded integers, the interval must be specified (e.g. rand(big.(1:6))).

Additionally, normal and exponential distributions are implemented for some AbstractFloat and Complex

types, see randn and randexp for details.

To generate random numbers from other distributions, see the Distributions.jl package.

Warning

1420

https://prng.di.unimi.it/
https://juliastats.org/Distributions.jl/stable/

CHAPTER 87. RANDOM NUMBERS 1421

Because the precise way in which random numbers are generated is considered an implemen-

tation detail, bug fixes and speed improvements may change the stream of numbers that are

generated after a version change. Relying on a specific seed or generated stream of numbers

during unit testing is thus discouraged - consider testing properties of the methods in question

instead.

87.1 Random numbers module

Random.Random – Module.

Random

Support for generating random numbers. Provides rand, randn, AbstractRNG, MersenneTwister, and

RandomDevice.

87.2 Random generation functions

Base.rand – Function.

rand([rng=default_rng()], [S], [dims...])

Pick a random element or array of random elements from the set of values specified by S; S can be

• an indexable collection (for example 1:9 or ('x', "y", :z)),

• an AbstractDict or AbstractSet object,

• a string (considered as a collection of characters), or

• a type: the set of values to pick from is then equivalent to typemin(S):typemax(S) for integers

(this is not applicable to BigInt), to [0, 1) for floating point numbers and to [0, 1) + i[0, 1) for
complex floating point numbers;

S defaults to Float64. When only one argument is passed besides the optional rng and is a Tuple, it

is interpreted as a collection of values (S) and not as dims.

See also randn for normally distributed numbers, and rand! and randn! for the in-place equivalents.

Julia 1.1

Support for S as a tuple requires at least Julia 1.1.

Examples

julia> rand(Int, 2)

2-element Array{Int64,1}:

1339893410598768192

1575814717733606317

julia> using Random

julia> rand(MersenneTwister(0), Dict(1=>2, 3=>4))

1=>2

CHAPTER 87. RANDOM NUMBERS 1422

julia> rand((2, 3))

3

julia> rand(Float64, (2, 3))

2×3 Array{Float64,2}:

0.999717 0.0143835 0.540787

0.696556 0.783855 0.938235

Note

The complexity of rand(rng, s::Union{AbstractDict,AbstractSet}) is linear in the length

of s, unless an optimized method with constant complexity is available, which is the case

for Dict, Set and dense BitSets. For more than a few calls, use rand(rng, collect(s))

instead, or either rand(rng, Dict(s)) or rand(rng, Set(s)) as appropriate.

Random.rand! – Function.

rand!([rng=default_rng()], A, [S=eltype(A)])

Populate the array A with random values. If S is specified (S can be a type or a collection, cf. rand

for details), the values are picked randomly from S. This is equivalent to copyto!(A, rand(rng, S,

size(A))) but without allocating a new array.

Examples

julia> rng = MersenneTwister(1234);

julia> rand!(rng, zeros(5))

5-element Vector{Float64}:

0.5908446386657102

0.7667970365022592

0.5662374165061859

0.4600853424625171

0.7940257103317943

Random.bitrand – Function.

bitrand([rng=default_rng()], [dims...])

Generate a BitArray of random boolean values.

Examples

julia> rng = MersenneTwister(1234);

julia> bitrand(rng, 10)

10-element BitVector:

0

0

0

0

1

0

0

CHAPTER 87. RANDOM NUMBERS 1423

0

1

1

Base.randn – Function.

randn([rng=default_rng()], [T=Float64], [dims...])

Generate a normally-distributed random number of type T with mean 0 and standard deviation 1.

Optionally generate an array of normally-distributed random numbers. The Base module currently

provides an implementation for the types Float16, Float32, and Float64 (the default), and their

Complex counterparts. When the type argument is complex, the values are drawn from the circularly

symmetric complex normal distribution of variance 1 (corresponding to real and imaginary part having

independent normal distribution with mean zero and variance 1/2).

See also randn! to act in-place.

Examples

julia> using Random

julia> rng = MersenneTwister(1234);

julia> randn(rng, ComplexF64)

0.6133070881429037 - 0.6376291670853887im

julia> randn(rng, ComplexF32, (2, 3))

2×3 Matrix{ComplexF32}:

-0.349649-0.638457im 0.376756-0.192146im -0.396334-0.0136413im

0.611224+1.56403im 0.355204-0.365563im 0.0905552+1.31012im

Random.randn! – Function.

randn!([rng=default_rng()], A::AbstractArray) -> A

Fill the array A with normally-distributed (mean 0, standard deviation 1) random numbers. Also see the

rand function.

Examples

julia> rng = MersenneTwister(1234);

julia> randn!(rng, zeros(5))

5-element Vector{Float64}:

0.8673472019512456

-0.9017438158568171

-0.4944787535042339

-0.9029142938652416

0.8644013132535154

Random.randexp – Function.

randexp([rng=default_rng()], [T=Float64], [dims...])

CHAPTER 87. RANDOM NUMBERS 1424

Generate a random number of type T according to the exponential distribution with scale 1. Optionally

generate an array of such random numbers. The Base module currently provides an implementation

for the types Float16, Float32, and Float64 (the default).

Examples

julia> rng = MersenneTwister(1234);

julia> randexp(rng, Float32)

2.4835055f0

julia> randexp(rng, 3, 3)

3×3 Matrix{Float64}:

1.5167 1.30652 0.344435

0.604436 2.78029 0.418516

0.695867 0.693292 0.643644

Random.randexp! – Function.

randexp!([rng=default_rng()], A::AbstractArray) -> A

Fill the array A with random numbers following the exponential distribution (with scale 1).

Examples

julia> rng = MersenneTwister(1234);

julia> randexp!(rng, zeros(5))

5-element Vector{Float64}:

2.4835053723904896

1.516703605376473

0.6044364871025417

0.6958665886385867

1.3065196315496677

Random.randstring – Function.

randstring([rng=default_rng()], [chars], [len=8])

Create a random string of length len, consisting of characters from chars, which defaults to the set of

upper- and lower-case letters and the digits 0-9. The optional rng argument specifies a random number

generator, see Random Numbers.

Examples

julia> Random.seed!(3); randstring()

"Lxz5hUwn"

julia> randstring(MersenneTwister(3), 'a':'z', 6)

"ocucay"

julia> randstring("ACGT")

"TGCTCCTC"

CHAPTER 87. RANDOM NUMBERS 1425

Note

chars can be any collection of characters, of type Char or UInt8 (more efficient), provided

rand can randomly pick characters from it.

87.3 Subsequences, permutations and shuffling

Random.randsubseq – Function.

randsubseq([rng=default_rng(),] A, p) -> Vector

Return a vector consisting of a random subsequence of the given array A, where each element of A

is included (in order) with independent probability p. (Complexity is linear in p*length(A), so this

function is efficient even if p is small and A is large.) Technically, this process is known as "Bernoulli

sampling" of A.

Examples

julia> rng = MersenneTwister(1234);

julia> randsubseq(rng, 1:8, 0.3)

2-element Vector{Int64}:

7

8

Random.randsubseq! – Function.

randsubseq!([rng=default_rng(),] S, A, p)

Like randsubseq, but the results are stored in S (which is resized as needed).

Examples

julia> rng = MersenneTwister(1234);

julia> S = Int64[];

julia> randsubseq!(rng, S, 1:8, 0.3)

2-element Vector{Int64}:

7

8

julia> S

2-element Vector{Int64}:

7

8

Random.randperm – Function.

randperm([rng=default_rng(),] n::Integer)

Construct a random permutation of length n. The optional rng argument specifies a random number

generator (see Random Numbers). The element type of the result is the same as the type of n.

To randomly permute an arbitrary vector, see shuffle or shuffle!.

CHAPTER 87. RANDOM NUMBERS 1426

Julia 1.1

In Julia 1.1 randperm returns a vector v with eltype(v) == typeof(n) while in Julia 1.0

eltype(v) == Int.

Examples

julia> randperm(MersenneTwister(1234), 4)

4-element Vector{Int64}:

2

1

4

3

Random.randperm! – Function.

randperm!([rng=default_rng(),] A::Array{<:Integer})

Construct in A a random permutation of length length(A). The optional rng argument specifies a

random number generator (see Random Numbers). To randomly permute an arbitrary vector, see

shuffle or shuffle!.

Examples

julia> randperm!(MersenneTwister(1234), Vector{Int}(undef, 4))

4-element Vector{Int64}:

2

1

4

3

Random.randcycle – Function.

randcycle([rng=default_rng(),] n::Integer)

Construct a random cyclic permutation of length n. The optional rng argument specifies a random

number generator, see Random Numbers. The element type of the result is the same as the type of n.

Julia 1.1

In Julia 1.1 randcycle returns a vector v with eltype(v) == typeof(n) while in Julia 1.0

eltype(v) == Int.

Examples

julia> randcycle(MersenneTwister(1234), 6)

6-element Vector{Int64}:

3

5

4

6

1

2

CHAPTER 87. RANDOM NUMBERS 1427

Random.randcycle! – Function.

randcycle!([rng=default_rng(),] A::Array{<:Integer})

Construct in A a random cyclic permutation of length length(A). The optional rng argument specifies

a random number generator, see Random Numbers.

Examples

julia> randcycle!(MersenneTwister(1234), Vector{Int}(undef, 6))

6-element Vector{Int64}:

3

5

4

6

1

2

Random.shuffle – Function.

shuffle([rng=default_rng(),] v::AbstractArray)

Return a randomly permuted copy of v. The optional rng argument specifies a random number gen-

erator (see Random Numbers). To permute v in-place, see shuffle!. To obtain randomly permuted

indices, see randperm.

Examples

julia> rng = MersenneTwister(1234);

julia> shuffle(rng, Vector(1:10))

10-element Vector{Int64}:

6

1

10

2

3

9

5

7

4

8

Random.shuffle! – Function.

shuffle!([rng=default_rng(),] v::AbstractArray)

In-place version of shuffle: randomly permute v in-place, optionally supplying the random-number

generator rng.

Examples

CHAPTER 87. RANDOM NUMBERS 1428

julia> rng = MersenneTwister(1234);

julia> shuffle!(rng, Vector(1:16))

16-element Vector{Int64}:

2

15

5

14

1

9

10

6

11

3

16

7

4

12

8

13

87.4 Generators (creation and seeding)

Random.default_rng – Function.

default_rng() -> rng

Return the default global random number generator (RNG).

Note

What the default RNG is is an implementation detail. Across different versions of Julia, you

should not expect the default RNG to be always the same, nor that it will return the same

stream of random numbers for a given seed.

Julia 1.3

This function was introduced in Julia 1.3.

Random.seed! – Function.

seed!([rng=default_rng()], seed) -> rng

seed!([rng=default_rng()]) -> rng

Reseed the random number generator: rng will give a reproducible sequence of numbers if and only if

a seed is provided. Some RNGs don't accept a seed, like RandomDevice. After the call to seed!, rng is

equivalent to a newly created object initialized with the same seed.

If rng is not specified, it defaults to seeding the state of the shared task-local generator.

Examples

julia> Random.seed!(1234);

CHAPTER 87. RANDOM NUMBERS 1429

julia> x1 = rand(2)

2-element Vector{Float64}:

0.32597672886359486

0.5490511363155669

julia> Random.seed!(1234);

julia> x2 = rand(2)

2-element Vector{Float64}:

0.32597672886359486

0.5490511363155669

julia> x1 == x2

true

julia> rng = Xoshiro(1234); rand(rng, 2) == x1

true

julia> Xoshiro(1) == Random.seed!(rng, 1)

true

julia> rand(Random.seed!(rng), Bool) # not reproducible

true

julia> rand(Random.seed!(rng), Bool) # not reproducible either

false

julia> rand(Xoshiro(), Bool) # not reproducible either

true

Random.AbstractRNG – Type.

AbstractRNG

Supertype for random number generators such as MersenneTwister and RandomDevice.

Random.TaskLocalRNG – Type.

TaskLocalRNG

The TaskLocalRNG has state that is local to its task, not its thread. It is seeded upon task creation,

from the state of its parent task. Therefore, task creation is an event that changes the parent's RNG

state.

As an upside, the TaskLocalRNG is pretty fast, and permits reproducible multithreaded simulations (bar-

ring race conditions), independent of scheduler decisions. As long as the number of threads is not used

to make decisions on task creation, simulation results are also independent of the number of available

threads / CPUs. The random stream should not depend on hardware specifics, up to endianness and

possibly word size.

Using or seeding the RNG of any other task than the one returned by current_task() is undefined

behavior: it will work most of the time, and may sometimes fail silently.

Random.Xoshiro – Type.

CHAPTER 87. RANDOM NUMBERS 1430

Xoshiro(seed)

Xoshiro()

Xoshiro256++ is a fast pseudorandom number generator described by David Blackman and Sebas-

tiano Vigna in "Scrambled Linear Pseudorandom Number Generators", ACM Trans. Math. Softw., 2021.

Reference implementation is available at http://prng.di.unimi.it

Apart from the high speed, Xoshiro has a small memory footprint, making it suitable for applications

where many different random states need to be held for long time.

Julia's Xoshiro implementation has a bulk-generation mode; this seeds new virtual PRNGs from the

parent, and uses SIMD to generate in parallel (i.e. the bulk stream consists of multiple interleaved

xoshiro instances). The virtual PRNGs are discarded once the bulk request has been serviced (and

should cause no heap allocations).

Examples

julia> using Random

julia> rng = Xoshiro(1234);

julia> x1 = rand(rng, 2)

2-element Vector{Float64}:

0.32597672886359486

0.5490511363155669

julia> rng = Xoshiro(1234);

julia> x2 = rand(rng, 2)

2-element Vector{Float64}:

0.32597672886359486

0.5490511363155669

julia> x1 == x2

true

Random.MersenneTwister – Type.

MersenneTwister(seed)

MersenneTwister()

Create a MersenneTwister RNG object. Different RNG objects can have their own seeds, which may be

useful for generating different streams of random numbers. The seed may be a non-negative integer

or a vector of UInt32 integers. If no seed is provided, a randomly generated one is created (using

entropy from the system). See the seed! function for reseeding an already existing MersenneTwister

object.

Examples

julia> rng = MersenneTwister(1234);

julia> x1 = rand(rng, 2)

2-element Vector{Float64}:

0.5908446386657102

CHAPTER 87. RANDOM NUMBERS 1431

0.7667970365022592

julia> rng = MersenneTwister(1234);

julia> x2 = rand(rng, 2)

2-element Vector{Float64}:

0.5908446386657102

0.7667970365022592

julia> x1 == x2

true

Random.RandomDevice – Type.

RandomDevice()

Create a RandomDevice RNG object. Two such objects will always generate different streams of random

numbers. The entropy is obtained from the operating system.

87.5 Hooking into the Random API

There are two mostly orthogonal ways to extend Random functionalities:

1. generating random values of custom types

2. creating new generators

The API for 1) is quite functional, but is relatively recent so it may still have to evolve in subsequent releases

of the Randommodule. For example, it's typically sufficient to implement one randmethod in order to have

all other usual methods work automatically.

The API for 2) is still rudimentary, and may require more work than strictly necessary from the implementor,

in order to support usual types of generated values.

Generating random values of custom types

Generating random values for some distributions may involve various trade-offs. Pre-computed values,

such as an alias table for discrete distributions, or “squeezing” functions for univariate distributions, can

speed up sampling considerably. How much information should be pre-computed can depend on the num-

ber of values we plan to draw from a distribution. Also, some random number generators can have certain

properties that various algorithms may want to exploit.

The Randommodule defines a customizable framework for obtaining random values that can address these

issues. Each invocation of rand generates a sampler which can be customized with the above trade-offs in

mind, by adding methods to Sampler, which in turn can dispatch on the random number generator, the ob-

ject that characterizes the distribution, and a suggestion for the number of repetitions. Currently, for the lat-

ter, Val{1} (for a single sample) and Val{Inf} (for an arbitrary number) are used, with Random.Repetition

an alias for both.

The object returned by Sampler is then used to generate the random values. When implementing the

random generation interface for a value X that can be sampled from, the implementor should define the

method

https://en.wikipedia.org/wiki/Alias_method
https://en.wikipedia.org/wiki/Rejection_sampling

CHAPTER 87. RANDOM NUMBERS 1432

rand(rng, sampler)

for the particular sampler returned by Sampler(rng, X, repetition).

Samplers can be arbitrary values that implement rand(rng, sampler), but for most applications the fol-

lowing predefined samplers may be sufficient:

1. SamplerType{T}() can be used for implementing samplers that draw from type T (e.g. rand(Int)).

This is the default returned by Sampler for types.

2. SamplerTrivial(self) is a simple wrapper for self, which can be accessed with []. This is the

recommended sampler when no pre-computed information is needed (e.g. rand(1:3)), and is the

default returned by Sampler for values.

3. SamplerSimple(self, data) also contains the additional data field, which can be used to store

arbitrary pre-computed values, which should be computed in a custom method of Sampler.

We provide examples for each of these. We assume here that the choice of algorithm is independent of

the RNG, so we use AbstractRNG in our signatures.

Random.Sampler – Type.

Sampler(rng, x, repetition = Val(Inf))

Return a sampler object that can be used to generate random values from rng for x.

When sp = Sampler(rng, x, repetition), rand(rng, sp) will be used to draw random values, and

should be defined accordingly.

repetition can be Val(1) or Val(Inf), and should be used as a suggestion for deciding the amount

of precomputation, if applicable.

Random.SamplerType and Random.SamplerTrivial are default fallbacks for types and values, respec-

tively. Random.SamplerSimple can be used to store pre-computed values without defining extra types

for only this purpose.

Random.SamplerType – Type.

SamplerType{T}()

A sampler for types, containing no other information. The default fallback for Sampler when called with

types.

Random.SamplerTrivial – Type.

SamplerTrivial(x)

Create a sampler that just wraps the given value x. This is the default fall-back for values. The eltype

of this sampler is equal to eltype(x).

The recommended use case is sampling from values without precomputed data.

Random.SamplerSimple – Type.

SamplerSimple(x, data)

CHAPTER 87. RANDOM NUMBERS 1433

Create a sampler that wraps the given value x and the data. The eltype of this sampler is equal to

eltype(x).

The recommended use case is sampling from values with precomputed data.

Decoupling pre-computation from actually generating the values is part of the API, and is also available to

the user. As an example, assume that rand(rng, 1:20) has to be called repeatedly in a loop: the way to

take advantage of this decoupling is as follows:

rng = MersenneTwister()

sp = Random.Sampler(rng, 1:20) # or Random.Sampler(MersenneTwister, 1:20)

for x in X

n = rand(rng, sp) # similar to n = rand(rng, 1:20)

use n

end

This is the mechanism that is also used in the standard library, e.g. by the default implementation of

random array generation (like in rand(1:20, 10)).

Generating values from a type

Given a type T, it's currently assumed that if rand(T) is defined, an object of type T will be produced.

SamplerType is the default sampler for types. In order to define random generation of values of type T,

the rand(rng::AbstractRNG, ::Random.SamplerType{T}) method should be defined, and should return

values what rand(rng, T) is expected to return.

Let's take the following example: we implement a Die type, with a variable number n of sides, numbered

from 1 to n. We want rand(Die) to produce a Die with a random number of up to 20 sides (and at least 4):

struct Die

nsides::Int # number of sides

end

Random.rand(rng::AbstractRNG, ::Random.SamplerType{Die}) = Die(rand(rng, 4:20))

output

Scalar and array methods for Die now work as expected:

julia> rand(Die)

Die(5)

julia> rand(MersenneTwister(0), Die)

Die(11)

julia> rand(Die, 3)

3-element Vector{Die}:

Die(9)

Die(15)

Die(14)

CHAPTER 87. RANDOM NUMBERS 1434

julia> a = Vector{Die}(undef, 3); rand!(a)

3-element Vector{Die}:

Die(19)

Die(7)

Die(17)

A simple sampler without pre-computed data

Here we define a sampler for a collection. If no pre-computed data is required, it can be implemented with

a SamplerTrivial sampler, which is in fact the default fallback for values.

In order to define random generation out of objects of type S, the following method should be defined:

rand(rng::AbstractRNG, sp::Random.SamplerTrivial{S}). Here, sp simply wraps an object of type S,

which can be accessed via sp[]. Continuing the Die example, we want now to define rand(d::Die) to

produce an Int corresponding to one of d's sides:

julia> Random.rand(rng::AbstractRNG, d::Random.SamplerTrivial{Die}) = rand(rng, 1:d[].nsides);

julia> rand(Die(4))

1

julia> rand(Die(4), 3)

3-element Vector{Any}:

2

3

3

Given a collection type S, it's currently assumed that if rand(::S) is defined, an object of type eltype(S)

will be produced. In the last example, a Vector{Any} is produced; the reason is that eltype(Die) == Any.

The remedy is to define Base.eltype(::Type{Die}) = Int.

Generating values for an AbstractFloat type

AbstractFloat types are special-cased, because by default random values are not produced in the whole

type domain, but rather in [0,1). The following method should be implemented for T <: AbstractFloat:

Random.rand(::AbstractRNG, ::Random.SamplerTrivial{Random.CloseOpen01{T}})

An optimized sampler with pre-computed data

Consider a discrete distribution, where numbers 1:n are drawn with given probabilities that sum to one.

When many values are needed from this distribution, the fastest method is using an alias table. We don't

provide the algorithm for building such a table here, but suppose it is available in make_alias_table(probabilities)

instead, and draw_number(rng, alias_table) can be used to draw a random number from it.

Suppose that the distribution is described by

struct DiscreteDistribution{V <: AbstractVector}

probabilities::V

end

and that we always want to build an alias table, regardless of the number of values needed (we learn how

to customize this below). The methods

https://en.wikipedia.org/wiki/Alias_method

CHAPTER 87. RANDOM NUMBERS 1435

Random.eltype(::Type{<:DiscreteDistribution}) = Int

function Random.Sampler(::Type{<:AbstractRNG}, distribution::DiscreteDistribution, ::Repetition)

SamplerSimple(disribution, make_alias_table(distribution.probabilities))

end

should be defined to return a sampler with pre-computed data, then

function rand(rng::AbstractRNG, sp::SamplerSimple{<:DiscreteDistribution})

draw_number(rng, sp.data)

end

will be used to draw the values.

Custom sampler types

The SamplerSimple type is sufficient for most use cases with precomputed data. However, in order to

demonstrate how to use custom sampler types, here we implement something similar to SamplerSimple.

Going back to our Die example: rand(::Die) uses random generation from a range, so there is an oppor-

tunity for this optimization. We call our custom sampler SamplerDie.

import Random: Sampler, rand

struct SamplerDie <: Sampler{Int} # generates values of type Int

die::Die

sp::Sampler{Int} # this is an abstract type, so this could be improved

end

Sampler(RNG::Type{<:AbstractRNG}, die::Die, r::Random.Repetition) =

SamplerDie(die, Sampler(RNG, 1:die.nsides, r))

the `r` parameter will be explained later on

rand(rng::AbstractRNG, sp::SamplerDie) = rand(rng, sp.sp)

It's now possible to get a sampler with sp = Sampler(rng, die), and use sp instead of die in any rand

call involving rng. In the simplistic example above, die doesn't need to be stored in SamplerDie but this

is often the case in practice.

Of course, this pattern is so frequent that the helper type used above, namely Random.SamplerSimple, is

available, saving us the definition of SamplerDie: we could have implemented our decoupling with:

Sampler(RNG::Type{<:AbstractRNG}, die::Die, r::Random.Repetition) =

SamplerSimple(die, Sampler(RNG, 1:die.nsides, r))

rand(rng::AbstractRNG, sp::SamplerSimple{Die}) = rand(rng, sp.data)

Here, sp.data refers to the second parameter in the call to the SamplerSimple constructor (in this case

equal to Sampler(rng, 1:die.nsides, r)), while the Die object can be accessed via sp[].

CHAPTER 87. RANDOM NUMBERS 1436

Like SamplerDie, any custom sampler must be a subtype of Sampler{T} where T is the type of the gener-

ated values. Note that SamplerSimple(x, data) isa Sampler{eltype(x)}, so this constrains what the

first argument to SamplerSimple can be (it's recommended to use SamplerSimple like in the Die exam-

ple, where x is simply forwarded while defining a Sampler method). Similarly, SamplerTrivial(x) isa

Sampler{eltype(x)}.

Another helper type is currently available for other cases, Random.SamplerTag, but is considered as internal

API, and can break at any time without proper deprecations.

Using distinct algorithms for scalar or array generation

In some cases, whether one wants to generate only a handful of values or a large number of values will have

an impact on the choice of algorithm. This is handled with the third parameter of the Sampler constructor.

Let's assume we defined two helper types for Die, say SamplerDie1 which should be used to generate only

few random values, and SamplerDieMany for many values. We can use those types as follows:

Sampler(RNG::Type{<:AbstractRNG}, die::Die, ::Val{1}) = SamplerDie1(...)

Sampler(RNG::Type{<:AbstractRNG}, die::Die, ::Val{Inf}) = SamplerDieMany(...)

Of course, rand must also be defined on those types (i.e. rand(::AbstractRNG, ::SamplerDie1) and

rand(::AbstractRNG, ::SamplerDieMany)). Note that, as usual, SamplerTrivial and SamplerSimple

can be used if custom types are not necessary.

Note: Sampler(rng, x) is simply a shorthand for Sampler(rng, x, Val(Inf)), and Random.Repetition

is an alias for Union{Val{1}, Val{Inf}}.

Creating new generators

The API is not clearly defined yet, but as a rule of thumb:

1. any randmethod producing "basic" types (isbitstype integer and floating types in Base) should be

defined for this specific RNG, if they are needed;

2. other documented rand methods accepting an AbstractRNG should work out of the box, (provided

the methods from 1) what are relied on are implemented), but can of course be specialized for this

RNG if there is room for optimization;

3. copy for pseudo-RNGs should return an independent copy that generates the exact same random

sequence as the original from that point when called in the same way. When this is not feasible (e.g.

hardware-based RNGs), copy must not be implemented.

Concerning 1), a randmethod may happen to work automatically, but it's not officially supported and may

break without warnings in a subsequent release.

To define a new rand method for an hypothetical MyRNG generator, and a value specification s (e.g. s ==

Int, or s == 1:10) of type S==typeof(s) or S==Type{s} if s is a type, the same two methods as we saw

before must be defined:

1. Sampler(::Type{MyRNG}, ::S, ::Repetition), which returns an object of type say SamplerS

2. rand(rng::MyRNG, sp::SamplerS)

CHAPTER 87. RANDOM NUMBERS 1437

It can happen that Sampler(rng::AbstractRNG, ::S, ::Repetition) is already defined in the Random

module. It would then be possible to skip step 1) in practice (if one wants to specialize generation for this

particular RNG type), but the corresponding SamplerS type is considered as internal detail, and may be

changed without warning.

Specializing array generation

In some cases, for a given RNG type, generating an array of random values can be more efficient with a

specialized method than by merely using the decoupling technique explained before. This is for example

the case for MersenneTwister, which natively writes random values in an array.

To implement this specialization for MyRNG and for a specification s, producing elements of type S, the follow-

ing method can be defined: rand!(rng::MyRNG, a::AbstractArray{S}, ::SamplerS), where SamplerS

is the type of the sampler returned by Sampler(MyRNG, s, Val(Inf)). Instead of AbstractArray, it's

possible to implement the functionality only for a subtype, e.g. Array{S}. The non-mutating array method

of rand will automatically call this specialization internally.

Chapter 88

Reproducibility

By using an RNG parameter initialized with a given seed, you can reproduce the same pseudorandom

number sequence when running your program multiple times. However, a minor release of Julia (e.g. 1.3

to 1.4) may change the sequence of pseudorandom numbers generated from a specific seed, in partic-

ular if MersenneTwister is used. (Even if the sequence produced by a low-level function like rand does

not change, the output of higher-level functions like randsubseq may change due to algorithm updates.)

Rationale: guaranteeing that pseudorandom streams never change prohibits many algorithmic improve-

ments.

If you need to guarantee exact reproducibility of random data, it is advisable to simply save the data (e.g.

as a supplementary attachment in a scientific publication). (You can also, of course, specify a particular

Julia version and package manifest, especially if you require bit reproducibility.)

Software tests that rely on specific "random" data should also generally either save the data, embed it into

the test code, or use third-party packages like StableRNGs.jl. On the other hand, tests that should pass

for most random data (e.g. testing A \ (A*x) ≈ x for a random matrix A = randn(n,n)) can use an RNG

with a fixed seed to ensure that simply running the test many times does not encounter a failure due to

very improbable data (e.g. an extremely ill-conditioned matrix).

The statistical distribution from which random samples are drawn is guaranteed to be the same across any

minor Julia releases.

1438

https://github.com/JuliaRandom/StableRNGs.jl

Chapter 89

SHA

89.1 SHA functions

Usage is very straightforward:

julia> using SHA

julia> bytes2hex(sha256("test"))

"9f86d081884c7d659a2feaa0c55ad015a3bf4f1b2b0b822cd15d6c15b0f00a08"

Each exported function (at the time of this writing, SHA-1, SHA-2 224, 256, 384 and 512, and SHA-3 224,

256, 384 and 512 functions are implemented) takes in either an AbstractVector{UInt8}, an AbstractString

or an IO object. This makes it trivial to checksum a file:

shell> cat /tmp/test.txt

test

julia> using SHA

julia> open("/tmp/test.txt") do f

sha2_256(f)

end

32-element Array{UInt8,1}:

0x9f

0x86

0xd0

0x81

0x88

0x4c

0x7d

0x65

0x5d

0x6c

0x15

0xb0

0xf0

0x0a

0x08

1439

CHAPTER 89. SHA 1440

All SHA functions

Due to the colloquial usage of sha256 to refer to sha2_256, convenience functions are provided, mapping

shaxxx() function calls to sha2_xxx(). For SHA-3, no such colloquialisms exist and the user must use the

full sha3_xxx() names.

shaxxx() takes AbstractString and array-like objects (NTuple and Array) with elements of type UInt8.

SHA-1

SHA.sha1 – Function.

sha1(data)

Hash data using the sha1 algorithm and return the resulting digest. See also SHA1_CTX.

sha1(io::IO)

Hash data from io using sha1 algorithm.

SHA-2

SHA.sha224 – Function.

sha224(data)

Hash data using the sha224 algorithm and return the resulting digest. See also SHA2_224_CTX.

sha224(io::IO)

Hash data from io using sha224 algorithm.

SHA.sha256 – Function.

sha256(data)

Hash data using the sha256 algorithm and return the resulting digest. See also SHA2_256_CTX.

sha256(io::IO)

Hash data from io using sha256 algorithm.

SHA.sha384 – Function.

sha384(data)

Hash data using the sha384 algorithm and return the resulting digest. See also SHA2_384_CTX.

sha384(io::IO)

Hash data from io using sha384 algorithm.

SHA.sha512 – Function.

sha512(data)

Hash data using the sha512 algorithm and return the resulting digest. See also SHA2_512_CTX.

CHAPTER 89. SHA 1441

sha512(io::IO)

Hash data from io using sha512 algorithm.

SHA.sha2_224 – Function.

sha2_224(data)

Hash data using the sha2_224 algorithm and return the resulting digest. See also SHA2_224_CTX.

sha2_224(io::IO)

Hash data from io using sha2_224 algorithm.

SHA.sha2_256 – Function.

sha2_256(data)

Hash data using the sha2_256 algorithm and return the resulting digest. See also SHA2_256_CTX.

sha2_256(io::IO)

Hash data from io using sha2_256 algorithm.

SHA.sha2_384 – Function.

sha2_384(data)

Hash data using the sha2_384 algorithm and return the resulting digest. See also SHA2_384_CTX.

sha2_384(io::IO)

Hash data from io using sha2_384 algorithm.

SHA.sha2_512 – Function.

sha2_512(data)

Hash data using the sha2_512 algorithm and return the resulting digest. See also SHA2_512_CTX.

sha2_512(io::IO)

Hash data from io using sha2_512 algorithm.

SHA-3

SHA.sha3_224 – Function.

sha3_224(data)

Hash data using the sha3_224 algorithm and return the resulting digest. See also SHA3_224_CTX.

sha3_224(io::IO)

Hash data from io using sha3_224 algorithm.

SHA.sha3_256 – Function.

CHAPTER 89. SHA 1442

sha3_256(data)

Hash data using the sha3_256 algorithm and return the resulting digest. See also SHA3_256_CTX.

sha3_256(io::IO)

Hash data from io using sha3_256 algorithm.

SHA.sha3_384 – Function.

sha3_384(data)

Hash data using the sha3_384 algorithm and return the resulting digest. See also SHA3_384_CTX.

sha3_384(io::IO)

Hash data from io using sha3_384 algorithm.

SHA.sha3_512 – Function.

sha3_512(data)

Hash data using the sha3_512 algorithm and return the resulting digest. See also SHA3_512_CTX.

sha3_512(io::IO)

Hash data from io using sha3_512 algorithm.

89.2 Working with context

To create a hash from multiple items the SHAX_XXX_CTX() types can be used to create a stateful hash

object that is updated with update! and finalized with digest!

julia> using SHA

julia> ctx = SHA2_256_CTX()

SHA2 256-bit hash state

julia> update!(ctx, b"some data")

0x0000000000000009

julia> update!(ctx, b"some more data")

0x0000000000000017

julia> digest!(ctx)

32-element Vector{UInt8}:

0xbe

0xcf

0x23

0xda

0xaf

0x02

0xf7

0xa3

CHAPTER 89. SHA 1443

0x57

0x92

0x89

0x4f

0x59

0xd8

0xb3

0xb4

0x81

0x8b

0xc5

Note that, at the time of this writing, the SHA3 code is not optimized, and as such is roughly an order of

magnitude slower than SHA2.

SHA.update! – Function.

update!(context, data[, datalen])

Update the SHA context with the bytes in data. See also digest! for finalizing the hash.

Examples

julia> ctx = SHA1_CTX()

SHA1 hash state

julia> update!(ctx, b"data to to be hashed")

SHA.digest! – Function.

digest!(context)

Finalize the SHA context and return the hash as array of bytes (Array{Uint8, 1}). Updating the context

after calling digest! on it will error.

Examples

julia> ctx = SHA1_CTX()

SHA1 hash state

julia> update!(ctx, b"data to to be hashed")

julia> digest!(ctx)

20-element Array{UInt8,1}:

0x83

0xe4

0x89

0xf5

julia> update!(ctx, b"more data")

ERROR: Cannot update CTX after `digest!` has been called on it

[...]

CHAPTER 89. SHA 1444

All SHA context types

SHA-1

SHA.SHA1_CTX – Type.

SHA1_CTX()

Construct an empty SHA1 context.

SHA-2

Convenience types are also provided, where SHAXXX_CTX is a type alias for SHA2_XXX_CTX.

SHA.SHA224_CTX – Type.

SHA2_224_CTX()

Construct an empty SHA2_224 context.

SHA.SHA256_CTX – Type.

SHA2_256_CTX()

Construct an empty SHA2_256 context.

SHA.SHA384_CTX – Type.

SHA2_384()

Construct an empty SHA2_384 context.

SHA.SHA512_CTX – Type.

SHA2_512_CTX()

Construct an empty SHA2_512 context.

SHA.SHA2_224_CTX – Type.

SHA2_224_CTX()

Construct an empty SHA2_224 context.

SHA.SHA2_256_CTX – Type.

SHA2_256_CTX()

Construct an empty SHA2_256 context.

SHA.SHA2_384_CTX – Type.

SHA2_384()

Construct an empty SHA2_384 context.

SHA.SHA2_512_CTX – Type.

CHAPTER 89. SHA 1445

SHA2_512_CTX()

Construct an empty SHA2_512 context.

SHA-3

SHA.SHA3_224_CTX – Type.

SHA3_224_CTX()

Construct an empty SHA3_224 context.

SHA.SHA3_256_CTX – Type.

SHA3_256_CTX()

Construct an empty SHA3_256 context.

SHA.SHA3_384_CTX – Type.

SHA3_384_CTX()

Construct an empty SHA3_384 context.

SHA.SHA3_512_CTX – Type.

SHA3_512_CTX()

Construct an empty SHA3_512 context.

89.3 HMAC functions

julia> using SHA

julia> key = collect(codeunits("key_string"))

10-element Vector{UInt8}:

0x6b

0x65

0x79

0x5f

0x73

0x74

0x72

0x69

0x6e

0x67

julia> bytes2hex(hmac_sha3_256(key, "test-message"))

"bc49a6f2aa29b27ee5ed1e944edd7f3d153e8a01535d98b5e24dac9a589a6248"

To create a hash from multiple items, the HMAC_CTX() types can be used to create a stateful hash object

that is updated with update! and finalized with digest!.

CHAPTER 89. SHA 1446

julia> using SHA

julia> key = collect(codeunits("key_string"))

10-element Vector{UInt8}:

0x6b

0x65

0x79

0x5f

0x73

0x74

0x72

0x69

0x6e

0x67

julia> ctx = HMAC_CTX(SHA3_256_CTX(), key);

julia> update!(ctx, b"test-")

0x0000000000000000000000000000008d

julia> update!(ctx, b"message")

0x00000000000000000000000000000094

julia> bytes2hex(digest!(ctx))

"bc49a6f2aa29b27ee5ed1e944edd7f3d153e8a01535d98b5e24dac9a589a6248"

All HMAC functions

HMAC context type

SHA.HMAC_CTX – Type.

HMAC_CTX(ctx::CTX, key::Vector{UInt8}) where {CTX<:SHA_CTX}

Construct an empty HMAC_CTX context.

SHA-1

SHA.hmac_sha1 – Function.

hmac_sha1(key, data)

Hash data using the sha1 algorithm using the passed key. See also HMAC_CTX.

hmac_sha1(key, io::IO)

Hash data from io with the passed key using sha1 algorithm.

SHA-2

SHA.hmac_sha224 – Function.

hmac_sha224(key, data)

Hash data using the sha224 algorithm using the passed key. See also HMAC_CTX.

CHAPTER 89. SHA 1447

hmac_sha224(key, io::IO)

Hash data from io with the passed key using sha224 algorithm.

SHA.hmac_sha256 – Function.

hmac_sha256(key, data)

Hash data using the sha256 algorithm using the passed key. See also HMAC_CTX.

hmac_sha256(key, io::IO)

Hash data from io with the passed key using sha256 algorithm.

SHA.hmac_sha384 – Function.

hmac_sha384(key, data)

Hash data using the sha384 algorithm using the passed key. See also HMAC_CTX.

hmac_sha384(key, io::IO)

Hash data from io with the passed key using sha384 algorithm.

SHA.hmac_sha512 – Function.

hmac_sha512(key, data)

Hash data using the sha512 algorithm using the passed key. See also HMAC_CTX.

hmac_sha512(key, io::IO)

Hash data from io with the passed key using sha512 algorithm.

SHA.hmac_sha2_224 – Function.

hmac_sha2_224(key, data)

Hash data using the sha2_224 algorithm using the passed key. See also HMAC_CTX.

hmac_sha2_224(key, io::IO)

Hash data from io with the passed key using sha2_224 algorithm.

SHA.hmac_sha2_256 – Function.

hmac_sha2_256(key, data)

Hash data using the sha2_256 algorithm using the passed key. See also HMAC_CTX.

hmac_sha2_256(key, io::IO)

Hash data from io with the passed key using sha2_256 algorithm.

SHA.hmac_sha2_384 – Function.

hmac_sha2_384(key, data)

CHAPTER 89. SHA 1448

Hash data using the sha2_384 algorithm using the passed key. See also HMAC_CTX.

hmac_sha2_384(key, io::IO)

Hash data from io with the passed key using sha2_384 algorithm.

SHA.hmac_sha2_512 – Function.

hmac_sha2_512(key, data)

Hash data using the sha2_512 algorithm using the passed key. See also HMAC_CTX.

hmac_sha2_512(key, io::IO)

Hash data from io with the passed key using sha2_512 algorithm.

SHA-3

SHA.hmac_sha3_224 – Function.

hmac_sha3_224(key, data)

Hash data using the sha3_224 algorithm using the passed key. See also HMAC_CTX.

hmac_sha3_224(key, io::IO)

Hash data from io with the passed key using sha3_224 algorithm.

SHA.hmac_sha3_256 – Function.

hmac_sha3_256(key, data)

Hash data using the sha3_256 algorithm using the passed key. See also HMAC_CTX.

hmac_sha3_256(key, io::IO)

Hash data from io with the passed key using sha3_256 algorithm.

SHA.hmac_sha3_384 – Function.

hmac_sha3_384(key, data)

Hash data using the sha3_384 algorithm using the passed key. See also HMAC_CTX.

hmac_sha3_384(key, io::IO)

Hash data from io with the passed key using sha3_384 algorithm.

SHA.hmac_sha3_512 – Function.

hmac_sha3_512(key, data)

Hash data using the sha3_512 algorithm using the passed key. See also HMAC_CTX.

hmac_sha3_512(key, io::IO)

Hash data from io with the passed key using sha3_512 algorithm.

Chapter 90

Serialization

Provides serialization of Julia objects.

Serialization.serialize – Function.

serialize(stream::IO, value)

Write an arbitrary value to a stream in an opaque format, such that it can be read back by deserialize.

The read-back value will be as identical as possible to the original, but note that Ptr values are serialized

as all-zero bit patterns (NULL).

An 8-byte identifying header is written to the stream first. To avoid writing the header, construct a

Serializer and use it as the first argument to serialize instead. See also Serialization.writeheader.

The data format can change in minor (1.x) Julia releases, but files written by prior 1.x versions will

remain readable. The main exception to this is when the definition of a type in an external package

changes. If that occurs, it may be necessary to specify an explicit compatible version of the affected

package in your environment. Renaming functions, even private functions, inside packages can also

put existing files out of sync. Anonymous functions require special care: because their names are

automatically generated, minor code changes can cause them to be renamed. Serializing anonymous

functions should be avoided in files intended for long-term storage.

In some cases, the word size (32- or 64-bit) of the reading and writing machines must match. In rarer

cases the OS or architecture must also match, for example when using packages that contain platform-

dependent code.

serialize(filename::AbstractString, value)

Open a file and serialize the given value to it.

Julia 1.1

This method is available as of Julia 1.1.

Serialization.deserialize – Function.

deserialize(stream)

Read a value written by serialize. deserialize assumes the binary data read from stream is correct

and has been serialized by a compatible implementation of serialize. deserialize is designed for

1449

CHAPTER 90. SERIALIZATION 1450

simplicity and performance, and so does not validate the data read. Malformed data can result in

process termination. The caller must ensure the integrity and correctness of data read from stream.

deserialize(filename::AbstractString)

Open a file and deserialize its contents.

Julia 1.1

This method is available as of Julia 1.1.

Serialization.writeheader – Function.

Serialization.writeheader(s::AbstractSerializer)

Write an identifying header to the specified serializer. The header consists of 8 bytes as follows:

Offset Description

0 tag byte (0x37)

1-2 signature bytes "JL"

3 protocol version

4 bits 0-1: endianness: 0 = little, 1 = big

4 bits 2-3: platform: 0 = 32-bit, 1 = 64-bit

5-7 reserved

Chapter 91

Shared Arrays

SharedArray represents an array, which is shared across multiple processes, on a single machine.

SharedArrays.SharedArray – Type.

SharedArray{T}(dims::NTuple; init=false, pids=Int[])

SharedArray{T,N}(...)

Construct a SharedArray of a bits type T and size dims across the processes specified by pids - all of

which have to be on the same host. If N is specified by calling SharedArray{T,N}(dims), then N must

match the length of dims.

If pids is left unspecified, the shared array will be mapped across all processes on the current host,

including the master. But, localindices and indexpids will only refer to worker processes. This

facilitates work distribution code to use workers for actual computation with the master process acting

as a driver.

If an init function of the type initfn(S::SharedArray) is specified, it is called on all the participating

workers.

The shared array is valid as long as a reference to the SharedArray object exists on the node which

created the mapping.

SharedArray{T}(filename::AbstractString, dims::NTuple, [offset=0]; mode=nothing, init=false,

pids=Int[])

SharedArray{T,N}(...)

Construct a SharedArray backed by the file filename, with element type T (must be a bits type) and

size dims, across the processes specified by pids - all of which have to be on the same host. This file

is mmapped into the host memory, with the following consequences:

• The array data must be represented in binary format (e.g., an ASCII format like CSV cannot be

supported)

• Any changes you make to the array values (e.g., A[3] = 0) will also change the values on disk

If pids is left unspecified, the shared array will be mapped across all processes on the current host,

including the master. But, localindices and indexpids will only refer to worker processes. This

facilitates work distribution code to use workers for actual computation with the master process acting

as a driver.

1451

CHAPTER 91. SHARED ARRAYS 1452

mode must be one of "r", "r+", "w+", or "a+", and defaults to "r+" if the file specified by filename

already exists, or "w+" if not. If an init function of the type initfn(S::SharedArray) is specified, it

is called on all the participating workers. You cannot specify an init function if the file is not writable.

offset allows you to skip the specified number of bytes at the beginning of the file.

source

SharedArrays.SharedVector – Type.

SharedVector

A one-dimensional SharedArray.

source

SharedArrays.SharedMatrix – Type.

SharedMatrix

A two-dimensional SharedArray.

source

Distributed.procs – Method.

procs(S::SharedArray)

Get the vector of processes mapping the shared array.

source

SharedArrays.sdata – Function.

sdata(S::SharedArray)

Return the actual Array object backing S.

source

SharedArrays.indexpids – Function.

indexpids(S::SharedArray)

Return the current worker's index in the list of workers mapping the SharedArray (i.e. in the same list

returned by procs(S)), or 0 if the SharedArray is not mapped locally.

source

SharedArrays.localindices – Function.

localindices(S::SharedArray)

Return a range describing the "default" indices to be handled by the current process. This range should

be interpreted in the sense of linear indexing, i.e., as a sub-range of 1:length(S). In multi-process

contexts, returns an empty range in the parent process (or any process for which indexpids returns

0).

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SharedArrays/src/SharedArrays.jl#L52-L101
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SharedArrays/src/SharedArrays.jl#L278-L282
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SharedArrays/src/SharedArrays.jl#L284-L288
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SharedArrays/src/SharedArrays.jl#L321-L325
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SharedArrays/src/SharedArrays.jl#L337-L341
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SharedArrays/src/SharedArrays.jl#L328-L334

CHAPTER 91. SHARED ARRAYS 1453

It's worth emphasizing that localindices exists purely as a convenience, and you can partition work

on the array among workers any way you wish. For a SharedArray, all indices should be equally fast

for each worker process.

source

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SharedArrays/src/SharedArrays.jl#L345-L358

Chapter 92

Sockets

Sockets.Sockets – Module.

Support for sockets. Provides IPAddr and subtypes, TCPSocket, and UDPSocket.

Sockets.connect – Method.

connect([host], port::Integer) -> TCPSocket

Connect to the host host on port port.

Sockets.connect – Method.

connect(path::AbstractString) -> PipeEndpoint

Connect to the named pipe / UNIX domain socket at path.

Note

Path length on Unix is limited to somewhere between 92 and 108 bytes (cf. man unix).

Sockets.listen – Method.

listen([addr,]port::Integer; backlog::Integer=BACKLOG_DEFAULT) -> TCPServer

Listen on port on the address specified by addr. By default this listens on localhost only. To listen

on all interfaces pass IPv4(0) or IPv6(0) as appropriate. backlog determines how many connections

can be pending (not having called accept) before the server will begin to reject them. The default

value of backlog is 511.

Sockets.listen – Method.

listen(path::AbstractString) -> PipeServer

Create and listen on a named pipe / UNIX domain socket.

Note

Path length on Unix is limited to somewhere between 92 and 108 bytes (cf. man unix).

Sockets.getaddrinfo – Function.

1454

CHAPTER 92. SOCKETS 1455

getaddrinfo(host::AbstractString, IPAddr=IPv4) -> IPAddr

Gets the first IP address of the host of the specified IPAddr type. Uses the operating system's under-

lying getaddrinfo implementation, which may do a DNS lookup.

Sockets.getipaddr – Function.

getipaddr() -> IPAddr

Get an IP address of the local machine, preferring IPv4 over IPv6. Throws if no addresses are available.

getipaddr(addr_type::Type{T}) where T<:IPAddr -> T

Get an IP address of the local machine of the specified type. Throws if no addresses of the specified

type are available.

This function is a backwards-compatibility wrapper around getipaddrs. New applications should use

getipaddrs instead.

Examples

julia> getipaddr()

ip"192.168.1.28"

julia> getipaddr(IPv6)

ip"fe80::9731:35af:e1c5:6e49"

See also getipaddrs.

Sockets.getipaddrs – Function.

getipaddrs(addr_type::Type{T}=IPAddr; loopback::Bool=false) where T<:IPAddr -> Vector{T}

Get the IP addresses of the local machine.

Setting the optional addr_type parameter to IPv4 or IPv6 causes only addresses of that type to be

returned.

The loopback keyword argument dictates whether loopback addresses (e.g. ip"127.0.0.1", ip"::1")

are included.

Julia 1.2

This function is available as of Julia 1.2.

Examples

julia> getipaddrs()

5-element Array{IPAddr,1}:

ip"198.51.100.17"

ip"203.0.113.2"

ip"2001:db8:8:4:445e:5fff:fe5d:5500"

ip"2001:db8:8:4:c164:402e:7e3c:3668"

ip"fe80::445e:5fff:fe5d:5500"

CHAPTER 92. SOCKETS 1456

julia> getipaddrs(IPv6)

3-element Array{IPv6,1}:

ip"2001:db8:8:4:445e:5fff:fe5d:5500"

ip"2001:db8:8:4:c164:402e:7e3c:3668"

ip"fe80::445e:5fff:fe5d:5500"

See also islinklocaladdr.

Sockets.islinklocaladdr – Function.

islinklocaladdr(addr::IPAddr)

Tests if an IP address is a link-local address. Link-local addresses are not guaranteed to be unique

beyond their network segment, therefore routers do not forward them. Link-local addresses are from

the address blocks 169.254.0.0/16 or fe80::/10.

Example

filter(!islinklocaladdr, getipaddrs())

Sockets.getalladdrinfo – Function.

getalladdrinfo(host::AbstractString) -> Vector{IPAddr}

Gets all of the IP addresses of the host. Uses the operating system's underlying getaddrinfo imple-

mentation, which may do a DNS lookup.

Example

julia> getalladdrinfo("google.com")

2-element Array{IPAddr,1}:

ip"172.217.6.174"

ip"2607:f8b0:4000:804::200e"

Sockets.DNSError – Type.

DNSError

The type of exception thrown when an error occurs in DNS lookup. The host field indicates the host

URL string. The code field indicates the error code based on libuv.

Sockets.getnameinfo – Function.

getnameinfo(host::IPAddr) -> String

Performs a reverse-lookup for IP address to return a hostname and service using the operating system's

underlying getnameinfo implementation.

Examples

julia> getnameinfo(IPv4("8.8.8.8"))

"google-public-dns-a.google.com"

Sockets.getsockname – Function.

CHAPTER 92. SOCKETS 1457

getsockname(sock::Union{TCPServer, TCPSocket}) -> (IPAddr, UInt16)

Get the IP address and port that the given socket is bound to.

Sockets.getpeername – Function.

getpeername(sock::TCPSocket) -> (IPAddr, UInt16)

Get the IP address and port of the remote endpoint that the given socket is connected to. Valid only

for connected TCP sockets.

Sockets.IPAddr – Type.

IPAddr

Abstract supertype for IP addresses. IPv4 and IPv6 are subtypes of this.

Sockets.IPv4 – Type.

IPv4(host::Integer) -> IPv4

Return an IPv4 object from ip address host formatted as an Integer.

Examples

julia> IPv4(3223256218)

ip"192.30.252.154"

Sockets.IPv6 – Type.

IPv6(host::Integer) -> IPv6

Return an IPv6 object from ip address host formatted as an Integer.

Examples

julia> IPv6(3223256218)

ip"::c01e:fc9a"

Sockets.@ip_str – Macro.

@ip_str str -> IPAddr

Parse str as an IP address.

Examples

julia> ip"127.0.0.1"

ip"127.0.0.1"

julia> @ip_str "2001:db8:0:0:0:0:2:1"

ip"2001:db8::2:1"

Sockets.TCPSocket – Type.

CHAPTER 92. SOCKETS 1458

TCPSocket(; delay=true)

Open a TCP socket using libuv. If delay is true, libuv delays creation of the socket's file descriptor

till the first bind call. TCPSocket has various fields to denote the state of the socket as well as its

send/receive buffers.

Sockets.UDPSocket – Type.

UDPSocket()

Open a UDP socket using libuv. UDPSocket has various fields to denote the state of the socket.

Sockets.accept – Function.

accept(server[, client])

Accepts a connection on the given server and returns a connection to the client. An uninitialized client

stream may be provided, in which case it will be used instead of creating a new stream.

Sockets.listenany – Function.

listenany([host::IPAddr,] port_hint; backlog::Integer=BACKLOG_DEFAULT) -> (UInt16, TCPServer)

Create a TCPServer on any port, using hint as a starting point. Returns a tuple of the actual port that

the server was created on and the server itself. The backlog argument defines the maximum length to

which the queue of pending connections for sockfd may grow.

Base.bind – Function.

bind(socket::Union{TCPServer, UDPSocket, TCPSocket}, host::IPAddr, port::Integer;

ipv6only=false, reuseaddr=false, kws...)↪→

Bind socket to the given host:port. Note that 0.0.0.0 will listen on all devices.

• The ipv6only parameter disables dual stack mode. If ipv6only=true, only an IPv6 stack is

created.

• If reuseaddr=true, multiple threads or processes can bind to the same address without error if

they all set reuseaddr=true, but only the last to bind will receive any traffic.

bind(chnl::Channel, task::Task)

Associate the lifetime of chnl with a task. Channel chnl is automatically closed when the task termi-

nates. Any uncaught exception in the task is propagated to all waiters on chnl.

The chnl object can be explicitly closed independent of task termination. Terminating tasks have no

effect on already closed Channel objects.

When a channel is bound to multiple tasks, the first task to terminate will close the channel. When

multiple channels are bound to the same task, termination of the task will close all of the bound chan-

nels.

Examples

CHAPTER 92. SOCKETS 1459

julia> c = Channel(0);

julia> task = @async foreach(i->put!(c, i), 1:4);

julia> bind(c,task);

julia> for i in c

@show i

end;

i = 1

i = 2

i = 3

i = 4

julia> isopen(c)

false

julia> c = Channel(0);

julia> task = @async (put!(c, 1); error("foo"));

julia> bind(c, task);

julia> take!(c)

1

julia> put!(c, 1);

ERROR: TaskFailedException

Stacktrace:

[...]

nested task error: foo

[...]

source

Sockets.send – Function.

send(socket::UDPSocket, host::IPAddr, port::Integer, msg)

Send msg over socket to host:port.

Sockets.recv – Function.

recv(socket::UDPSocket)

Read a UDP packet from the specified socket, and return the bytes received. This call blocks.

Sockets.recvfrom – Function.

recvfrom(socket::UDPSocket) -> (host_port, data)

Read a UDP packet from the specified socket, returning a tuple of (host_port, data), where host_port

will be an InetAddr{IPv4} or InetAddr{IPv6}, as appropriate.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/channels.jl#L221-L272

CHAPTER 92. SOCKETS 1460

Julia 1.3

Prior to Julia version 1.3, the first returned value was an address (IPAddr). In version 1.3 it

was changed to an InetAddr.

Sockets.setopt – Function.

setopt(sock::UDPSocket; multicast_loop=nothing, multicast_ttl=nothing,

enable_broadcast=nothing, ttl=nothing)↪→

Set UDP socket options.

• multicast_loop: loopback for multicast packets (default: true).

• multicast_ttl: TTL for multicast packets (default: nothing).

• enable_broadcast: flag must be set to true if socket will be used for broadcast messages, or

else the UDP system will return an access error (default: false).

• ttl: Time-to-live of packets sent on the socket (default: nothing).

Sockets.nagle – Function.

nagle(socket::Union{TCPServer, TCPSocket}, enable::Bool)

Enables or disables Nagle's algorithm on a given TCP server or socket.

Julia 1.3

This function requires Julia 1.3 or later.

Sockets.quickack – Function.

quickack(socket::Union{TCPServer, TCPSocket}, enable::Bool)

On Linux systems, the TCP_QUICKACK is disabled or enabled on socket.

Chapter 93

Sparse Arrays

Julia has support for sparse vectors and sparse matrices in the SparseArrays stdlib module. Sparse arrays

are arrays that contain enough zeros that storing them in a special data structure leads to savings in space

and execution time, compared to dense arrays.

External packages which implement different sparse storage types, multidimensional sparse arrays, and

more can be found in Noteworthy external packages

93.1 Compressed Sparse Column (CSC) Sparse Matrix Storage

In Julia, sparse matrices are stored in the Compressed Sparse Column (CSC) format. Julia sparse matrices

have the type SparseMatrixCSC{Tv,Ti}, where Tv is the type of the stored values, and Ti is the integer

type for storing column pointers and row indices. The internal representation of SparseMatrixCSC is as

follows:

struct SparseMatrixCSC{Tv,Ti<:Integer} <: AbstractSparseMatrixCSC{Tv,Ti}

m::Int # Number of rows

n::Int # Number of columns

colptr::Vector{Ti} # Column j is in colptr[j]:(colptr[j+1]-1)

rowval::Vector{Ti} # Row indices of stored values

nzval::Vector{Tv} # Stored values, typically nonzeros

end

The compressed sparse column storage makes it easy and quick to access the elements in the column of

a sparse matrix, whereas accessing the sparse matrix by rows is considerably slower. Operations such as

insertion of previously unstored entries one at a time in the CSC structure tend to be slow. This is because

all elements of the sparse matrix that are beyond the point of insertion have to be moved one place over.

All operations on sparse matrices are carefully implemented to exploit the CSC data structure for perfor-

mance, and to avoid expensive operations.

If you have data in CSC format from a different application or library, and wish to import it in Julia, make

sure that you use 1-based indexing. The row indices in every column need to be sorted, and if they are

not, the matrix will display incorrectly. If your SparseMatrixCSC object contains unsorted row indices, one

quick way to sort them is by doing a double transpose. Since the transpose operation is lazy, make a copy

to materialize each transpose.

1461

https://en.wikipedia.org/wiki/Sparse_matrix
https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_column_.28CSC_or_CCS.29

CHAPTER 93. SPARSE ARRAYS 1462

In some applications, it is convenient to store explicit zero values in a SparseMatrixCSC. These are accepted

by functions in Base (but there is no guarantee that they will be preserved in mutating operations). Such

explicitly stored zeros are treated as structural nonzeros by many routines. The nnz function returns the

number of elements explicitly stored in the sparse data structure, including non-structural zeros. In order

to count the exact number of numerical nonzeros, use count(!iszero, x), which inspects every stored

element of a sparse matrix. dropzeros, and the in-place dropzeros!, can be used to remove stored zeros

from the sparse matrix.

julia> A = sparse([1, 1, 2, 3], [1, 3, 2, 3], [0, 1, 2, 0])

3×3 SparseMatrixCSC{Int64, Int64} with 4 stored entries:

0 ⋅ 1

⋅ 2 ⋅

⋅ ⋅ 0

julia> dropzeros(A)

3×3 SparseMatrixCSC{Int64, Int64} with 2 stored entries:

⋅ ⋅ 1

⋅ 2 ⋅

⋅ ⋅ ⋅

93.2 Sparse Vector Storage

Sparse vectors are stored in a close analog to compressed sparse column format for sparse matrices. In

Julia, sparse vectors have the type SparseVector{Tv,Ti} where Tv is the type of the stored values and Ti

the integer type for the indices. The internal representation is as follows:

struct SparseVector{Tv,Ti<:Integer} <: AbstractSparseVector{Tv,Ti}

n::Int # Length of the sparse vector

nzind::Vector{Ti} # Indices of stored values

nzval::Vector{Tv} # Stored values, typically nonzeros

end

As for SparseMatrixCSC, the SparseVector type can also contain explicitly stored zeros. (See Sparse

Matrix Storage.).

93.3 Sparse Vector and Matrix Constructors

The simplest way to create a sparse array is to use a function equivalent to the zeros function that Julia

provides for working with dense arrays. To produce a sparse array instead, you can use the same name

with an sp prefix:

julia> spzeros(3)

3-element SparseVector{Float64, Int64} with 0 stored entries

The sparse function is often a handy way to construct sparse arrays. For example, to construct a sparse

matrix we can input a vector I of row indices, a vector J of column indices, and a vector V of stored values

(this is also known as the COO (coordinate) format). sparse(I,J,V) then constructs a sparse matrix such

that S[I[k], J[k]] = V[k]. The equivalent sparse vector constructor is sparsevec, which takes the (row)

index vector I and the vector V with the stored values and constructs a sparse vector R such that R[I[k]]

= V[k].

https://en.wikipedia.org/wiki/Sparse_matrix#Coordinate_list_.28COO.29

CHAPTER 93. SPARSE ARRAYS 1463

julia> I = [1, 4, 3, 5]; J = [4, 7, 18, 9]; V = [1, 2, -5, 3];

julia> S = sparse(I,J,V)

5×18 SparseMatrixCSC{Int64, Int64} with 4 stored entries:

⎡⎤

⎣⎦

julia> R = sparsevec(I,V)

5-element SparseVector{Int64, Int64} with 4 stored entries:

[1] = 1

[3] = -5

[4] = 2

[5] = 3

The inverse of the sparse and sparsevec functions is findnz, which retrieves the inputs used to create

the sparse array. findall(!iszero, x) returns the Cartesian indices of non-zero entries in x (including

stored entries equal to zero).

julia> findnz(S)

([1, 4, 5, 3], [4, 7, 9, 18], [1, 2, 3, -5])

julia> findall(!iszero, S)

4-element Vector{CartesianIndex{2}}:

CartesianIndex(1, 4)

CartesianIndex(4, 7)

CartesianIndex(5, 9)

CartesianIndex(3, 18)

julia> findnz(R)

([1, 3, 4, 5], [1, -5, 2, 3])

julia> findall(!iszero, R)

4-element Vector{Int64}:

1

3

4

5

Another way to create a sparse array is to convert a dense array into a sparse array using the sparse

function:

julia> sparse(Matrix(1.0I, 5, 5))

5×5 SparseMatrixCSC{Float64, Int64} with 5 stored entries:

1.0 ⋅ ⋅ ⋅ ⋅

⋅ 1.0 ⋅ ⋅ ⋅

⋅ ⋅ 1.0 ⋅ ⋅

⋅ ⋅ ⋅ 1.0 ⋅

⋅ ⋅ ⋅ ⋅ 1.0

julia> sparse([1.0, 0.0, 1.0])

3-element SparseVector{Float64, Int64} with 2 stored entries:

CHAPTER 93. SPARSE ARRAYS 1464

[1] = 1.0

[3] = 1.0

You can go in the other direction using the Array constructor. The issparse function can be used to query

if a matrix is sparse.

julia> issparse(spzeros(5))

true

93.4 Sparse matrix operations

Arithmetic operations on sparse matrices also work as they do on dense matrices. Indexing of, assignment

into, and concatenation of sparse matrices work in the same way as dense matrices. Indexing operations,

especially assignment, are expensive, when carried out one element at a time. In many cases it may

be better to convert the sparse matrix into (I,J,V) format using findnz, manipulate the values or the

structure in the dense vectors (I,J,V), and then reconstruct the sparse matrix.

93.5 Correspondence of dense and sparse methods

The following table gives a correspondence between built-in methods on sparse matrices and their corre-

sponding methods on dense matrix types. In general, methods that generate sparse matrices differ from

their dense counterparts in that the resulting matrix follows the same sparsity pattern as a given sparse

matrix S, or that the resulting sparse matrix has density d, i.e. each matrix element has a probability d of

being non-zero.

Details can be found in the Sparse Vectors and Matrices section of the standard library reference.

Sparse Dense Description

spzeros(m,n)zeros(m,n)Creates a m-by-n matrix of zeros. (spzeros(m,n) is empty.)

sparse(I,n,n)Matrix(I,n,n)Creates a n-by-n identity matrix.

sparse(A) Array(S) Interconverts between dense and sparse formats.

sprand(m,n,d)rand(m,n) Creates a m-by-n random matrix (of density d) with iid non-zero elements

distributed uniformly on the half-open interval [0, 1).
sprandn(m,n,d)randn(m,n)Creates a m-by-n random matrix (of density d) with iid non-zero elements

distributed according to the standard normal (Gaussian) distribution.

sprandn(rng,m,n,d)randn(rng,m,n)Creates a m-by-n random matrix (of density d) with iid non-zero elements

generated with the rng random number generator

Chapter 94

SparseArrays API

SparseArrays.AbstractSparseArray – Type.

AbstractSparseArray{Tv,Ti,N}

Supertype for N-dimensional sparse arrays (or array-like types) with elements of type Tv and index type

Ti. SparseMatrixCSC, SparseVector and SuiteSparse.CHOLMOD.Sparse are subtypes of this.

source

SparseArrays.AbstractSparseVector – Type.

AbstractSparseVector{Tv,Ti}

Supertype for one-dimensional sparse arrays (or array-like types) with elements of type Tv and index

type Ti. Alias for AbstractSparseArray{Tv,Ti,1}.

source

SparseArrays.AbstractSparseMatrix – Type.

AbstractSparseMatrix{Tv,Ti}

Supertype for two-dimensional sparse arrays (or array-like types) with elements of type Tv and index

type Ti. Alias for AbstractSparseArray{Tv,Ti,2}.

source

SparseArrays.SparseVector – Type.

SparseVector{Tv,Ti<:Integer} <: AbstractSparseVector{Tv,Ti}

Vector type for storing sparse vectors. Can be created by passing the length of the vector, a sorted

vector of non-zero indices, and a vector of non-zero values.

For instance, the vector [5, 6, 0, 7] can be represented as

SparseVector(4, [1, 2, 4], [5, 6, 7])

1465

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/abstractsparse.jl#L3-L9
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/abstractsparse.jl#L12-L17
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/abstractsparse.jl#L27-L32

CHAPTER 94. SPARSEARRAYS API 1466

This indicates that the element at index 1 is 5, at index 2 is 6, at index 3 is zero(Int), and at index 4

is 7.

It may be more convenient to create sparse vectors directly from dense vectors using sparse as

sparse([5, 6, 0, 7])

yields the same sparse vector.

source

SparseArrays.SparseMatrixCSC – Type.

SparseMatrixCSC{Tv,Ti<:Integer} <: AbstractSparseMatrixCSC{Tv,Ti}

Matrix type for storing sparse matrices in the Compressed Sparse Column format. The standard way of

constructing SparseMatrixCSC is through the sparse function. See also spzeros, spdiagm and sprand.

source

SparseArrays.sparse – Function.

sparse(A)

Convert an AbstractMatrix A into a sparse matrix.

Examples

julia> A = Matrix(1.0I, 3, 3)

3×3 Matrix{Float64}:

1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

julia> sparse(A)

3×3 SparseMatrixCSC{Float64, Int64} with 3 stored entries:

1.0 ⋅ ⋅

⋅ 1.0 ⋅

⋅ ⋅ 1.0

source

sparse(I, J, V,[m, n, combine])

Create a sparse matrix S of dimensions m x n such that S[I[k], J[k]] = V[k]. The combine function

is used to combine duplicates. If m and n are not specified, they are set to maximum(I) and maximum(J)

respectively. If the combine function is not supplied, combine defaults to + unless the elements of V

are Booleans in which case combine defaults to |. All elements of Imust satisfy 1 <= I[k] <= m, and

all elements of J must satisfy 1 <= J[k] <= n. Numerical zeros in (I, J, V) are retained as structural

nonzeros; to drop numerical zeros, use dropzeros!.

For additional documentation and an expert driver, see SparseArrays.sparse!.

Examples

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsevector.jl#L13-L35
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsematrix.jl#L11-L18
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsematrix.jl#L986-L1005

CHAPTER 94. SPARSEARRAYS API 1467

julia> Is = [1; 2; 3];

julia> Js = [1; 2; 3];

julia> Vs = [1; 2; 3];

julia> sparse(Is, Js, Vs)

3×3 SparseMatrixCSC{Int64, Int64} with 3 stored entries:

1 ⋅ ⋅

⋅ 2 ⋅

⋅ ⋅ 3

source

SparseArrays.sparse! – Function.

sparse!(I::AbstractVector{Ti}, J::AbstractVector{Ti}, V::AbstractVector{Tv},

m::Integer, n::Integer, combine, klasttouch::Vector{Ti},

csrrowptr::Vector{Ti}, csrcolval::Vector{Ti}, csrnzval::Vector{Tv},

[csccolptr::Vector{Ti}], [cscrowval::Vector{Ti}, cscnzval::Vector{Tv}]) where

{Tv,Ti<:Integer}↪→

Parent of and expert driver for sparse; see sparse for basic usage. This method allows the user to

provide preallocated storage for sparse's intermediate objects and result as described below. This

capability enables more efficient successive construction of SparseMatrixCSCs from coordinate repre-

sentations, and also enables extraction of an unsorted-column representation of the result's transpose

at no additional cost.

This method consists of three major steps: (1) Counting-sort the provided coordinate representation

into an unsorted-row CSR form including repeated entries. (2) Sweep through the CSR form, simul-

taneously calculating the desired CSC form's column-pointer array, detecting repeated entries, and

repacking the CSR form with repeated entries combined; this stage yields an unsorted-row CSR form

with no repeated entries. (3) Counting-sort the preceding CSR form into a fully-sorted CSC form with

no repeated entries.

Input arrays csrrowptr, csrcolval, and csrnzval constitute storage for the intermediate CSR forms

and require length(csrrowptr) >= m + 1, length(csrcolval) >= length(I), and length(csrnzval

>= length(I)). Input array klasttouch, workspace for the second stage, requires length(klasttouch)

>= n. Optional input arrays csccolptr, cscrowval, and cscnzval constitute storage for the returned

CSC form S. If necessary, these are resized automatically to satisfy length(csccolptr) = n + 1,

length(cscrowval) = nnz(S) and length(cscnzval) = nnz(S); hence, if nnz(S) is unknown at the

outset, passing in empty vectors of the appropriate type (Vector{Ti}() and Vector{Tv}() respec-

tively) suffices, or calling the sparse! method neglecting cscrowval and cscnzval.

On return, csrrowptr, csrcolval, and csrnzval contain an unsorted-column representation of the

result's transpose.

Youmay reuse the input arrays' storage (I, J, V) for the output arrays (csccolptr, cscrowval, cscnzval).

For example, you may call sparse!(I, J, V, csrrowptr, csrcolval, csrnzval, I, J, V). Note

that they will be resized to satisfy the conditions above.

For the sake of efficiency, this method performs no argument checking beyond 1 <= I[k] <= m and

1 <= J[k] <= n. Use with care. Testing with --check-bounds=yes is wise.

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsematrix.jl#L1020-L1047

CHAPTER 94. SPARSEARRAYS API 1468

This method runs in O(m, n, length(I)) time. The HALFPERM algorithm described in F. Gustavson,

"Two fast algorithms for sparse matrices: multiplication and permuted transposition," ACM TOMS 4(3),

250-269 (1978) inspired this method's use of a pair of counting sorts.

source

SparseArrays.sparse!(I, J, V, [m, n, combine]) -> SparseMatrixCSC

Variant of sparse! that re-uses the input vectors (I, J, V) for the final matrix storage. After construction

the input vectors will alias the matrix buffers; S.colptr === I, S.rowval === J, and S.nzval === V

holds, and they will be resize!d as necessary.

Note that some work buffers will still be allocated. Specifically, this method is a convenience wrap-

per around sparse!(I, J, V, m, n, combine, klasttouch, csrrowptr, csrcolval, csrnzval,

csccolptr, cscrowval, cscnzval)where thismethod allocates klasttouch, csrrowptr, csrcolval,

and csrnzval of appropriate size, but reuses I, J, and V for csccolptr, cscrowval, and cscnzval.

Arguments m, n, and combine defaults to maximum(I), maximum(J), and +, respectively.

Julia 1.10

This method requires Julia version 1.10 or later.

source

SparseArrays.sparsevec – Function.

sparsevec(I, V, [m, combine])

Create a sparse vector S of length m such that S[I[k]] = V[k]. Duplicates are combined using the

combine function, which defaults to + if no combine argument is provided, unless the elements of V are

Booleans in which case combine defaults to |.

Examples

julia> II = [1, 3, 3, 5]; V = [0.1, 0.2, 0.3, 0.2];

julia> sparsevec(II, V)

5-element SparseVector{Float64, Int64} with 3 stored entries:

[1] = 0.1

[3] = 0.5

[5] = 0.2

julia> sparsevec(II, V, 8, -)

8-element SparseVector{Float64, Int64} with 3 stored entries:

[1] = 0.1

[3] = -0.1

[5] = 0.2

julia> sparsevec([1, 3, 1, 2, 2], [true, true, false, false, false])

3-element SparseVector{Bool, Int64} with 3 stored entries:

[1] = 1

[2] = 0

[3] = 1

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsematrix.jl#L1092-L1139
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsematrix.jl#L1282-L1300

CHAPTER 94. SPARSEARRAYS API 1469

source

sparsevec(d::Dict, [m])

Create a sparse vector of length m where the nonzero indices are keys from the dictionary, and the

nonzero values are the values from the dictionary.

Examples

julia> sparsevec(Dict(1 => 3, 2 => 2))

2-element SparseVector{Int64, Int64} with 2 stored entries:

[1] = 3

[2] = 2

source

sparsevec(A)

Convert a vector A into a sparse vector of length m.

Examples

julia> sparsevec([1.0, 2.0, 0.0, 0.0, 3.0, 0.0])

6-element SparseVector{Float64, Int64} with 3 stored entries:

[1] = 1.0

[2] = 2.0

[5] = 3.0

source

Base.similar – Method.

similar(A::AbstractSparseMatrixCSC{Tv,Ti}, [::Type{TvNew}, ::Type{TiNew}, m::Integer,

n::Integer]) where {Tv,Ti}↪→

Create an uninitialized mutable array with the given element type, index type, and size, based upon the

given source SparseMatrixCSC. The new sparse matrix maintains the structure of the original sparse

matrix, except in the case where dimensions of the output matrix are different from the output.

The output matrix has zeros in the same locations as the input, but uninitialized values for the nonzero

locations.

source

SparseArrays.issparse – Function.

issparse(S)

Returns true if S is sparse, and false otherwise.

Examples

julia> sv = sparsevec([1, 4], [2.3, 2.2], 10)

10-element SparseVector{Float64, Int64} with 2 stored entries:

[1] = 2.3

[4] = 2.2

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsevector.jl#L258-L288
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsevector.jl#L336-L349
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsevector.jl#L472-L485
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsematrix.jl#L698-L709

CHAPTER 94. SPARSEARRAYS API 1470

julia> issparse(sv)

true

julia> issparse(Array(sv))

false

source

SparseArrays.nnz – Function.

nnz(A)

Returns the number of stored (filled) elements in a sparse array.

Examples

julia> A = sparse(2I, 3, 3)

3×3 SparseMatrixCSC{Int64, Int64} with 3 stored entries:

2 ⋅ ⋅

⋅ 2 ⋅

⋅ ⋅ 2

julia> nnz(A)

3

source

SparseArrays.findnz – Function.

findnz(A::SparseMatrixCSC)

Return a tuple (I, J, V) where I and J are the row and column indices of the stored ("structurally

non-zero") values in sparse matrix A, and V is a vector of the values.

Examples

julia> A = sparse([1 2 0; 0 0 3; 0 4 0])

3×3 SparseMatrixCSC{Int64, Int64} with 4 stored entries:

1 2 ⋅

⋅ ⋅ 3

⋅ 4 ⋅

julia> findnz(A)

([1, 1, 3, 2], [1, 2, 2, 3], [1, 2, 4, 3])

source

SparseArrays.spzeros – Function.

spzeros([type,]m[,n])

Create a sparse vector of length m or sparse matrix of size m x n. This sparse array will not contain any

nonzero values. No storage will be allocated for nonzero values during construction. The type defaults

to Float64 if not specified.

Examples

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/abstractsparse.jl#L45-L63
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsematrix.jl#L193-L209
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/abstractsparse.jl#L112-L129

CHAPTER 94. SPARSEARRAYS API 1471

julia> spzeros(3, 3)

3×3 SparseMatrixCSC{Float64, Int64} with 0 stored entries:

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

julia> spzeros(Float32, 4)

4-element SparseVector{Float32, Int64} with 0 stored entries

source

spzeros([type], I::AbstractVector, J::AbstractVector, [m, n])

Create a sparse matrix S of dimensions m x n with structural zeros at S[I[k], J[k]].

This method can be used to construct the sparsity pattern of the matrix, and is more efficient than

using e.g. sparse(I, J, zeros(length(I))).

For additional documentation and an expert driver, see SparseArrays.spzeros!.

Julia 1.10

This methods requires Julia version 1.10 or later.

source

SparseArrays.spzeros! – Function.

spzeros!(::Type{Tv}, I::AbstractVector{Ti}, J::AbstractVector{Ti}, m::Integer, n::Integer,

klasttouch::Vector{Ti}, csrrowptr::Vector{Ti}, csrcolval::Vector{Ti},

[csccolptr::Vector{Ti}], [cscrowval::Vector{Ti}, cscnzval::Vector{Tv}]) where

{Tv,Ti<:Integer}↪→

Parent of and expert driver for spzeros(I, J) allowing user to provide preallocated storage for inter-

mediate objects. This method is to spzeros what SparseArrays.sparse! is to sparse. See documen-

tation for SparseArrays.sparse! for details and required buffer lengths.

Julia 1.10

This methods requires Julia version 1.10 or later.

source

SparseArrays.spzeros!(::Type{Tv}, I, J, [m, n]) -> SparseMatrixCSC{Tv}

Variant of spzeros! that re-uses the input vectors I and J for the final matrix storage. After construc-

tion the input vectors will alias the matrix buffers; S.colptr === I and S.rowval === J holds, and

they will be resize!d as necessary.

Note that some work buffers will still be allocated. Specifically, this method is a convenience wrapper

around spzeros!(Tv, I, J, m, n, klasttouch, csrrowptr, csrcolval, csccolptr, cscrowval)

where this method allocates klasttouch, csrrowptr, and csrcolval of appropriate size, but reuses I

and J for csccolptr and cscrowval.

Arguments m and n defaults to maximum(I) and maximum(J).

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsematrix.jl#L2071-L2090
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsematrix.jl#L2104-L2116
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsematrix.jl#L2133-L2145

CHAPTER 94. SPARSEARRAYS API 1472

Julia 1.10

This method requires Julia version 1.10 or later.

source

SparseArrays.spdiagm – Function.

spdiagm(kv::Pair{<:Integer,<:AbstractVector}...)

spdiagm(m::Integer, n::Integer, kv::Pair{<:Integer,<:AbstractVector}...)

Construct a sparse diagonal matrix from Pairs of vectors and diagonals. Each vector kv.second will

be placed on the kv.first diagonal. By default, the matrix is square and its size is inferred from kv,

but a non-square size m×n (padded with zeros as needed) can be specified by passing m,n as the first

arguments.

Examples

julia> spdiagm(-1 => [1,2,3,4], 1 => [4,3,2,1])

5×5 SparseMatrixCSC{Int64, Int64} with 8 stored entries:

⋅ 4 ⋅ ⋅ ⋅

1 ⋅ 3 ⋅ ⋅

⋅ 2 ⋅ 2 ⋅

⋅ ⋅ 3 ⋅ 1

⋅ ⋅ ⋅ 4 ⋅

source

spdiagm(v::AbstractVector)

spdiagm(m::Integer, n::Integer, v::AbstractVector)

Construct a sparse matrix with elements of the vector as diagonal elements. By default (no given m and

n), the matrix is square and its size is given by length(v), but a non-square size m×n can be specified

by passing m and n as the first arguments.

Julia 1.6

These functions require at least Julia 1.6.

Examples

julia> spdiagm([1,2,3])

3×3 SparseMatrixCSC{Int64, Int64} with 3 stored entries:

1 ⋅ ⋅

⋅ 2 ⋅

⋅ ⋅ 3

julia> spdiagm(sparse([1,0,3]))

3×3 SparseMatrixCSC{Int64, Int64} with 2 stored entries:

1 ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ 3

source

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsematrix.jl#L2156-L2172
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsematrix.jl#L4141-L4161
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsematrix.jl#L4165-L4191

CHAPTER 94. SPARSEARRAYS API 1473

SparseArrays.sparse_hcat – Function.

sparse_hcat(A...)

Concatenate along dimension 2. Return a SparseMatrixCSC object.

Julia 1.8

This method was added in Julia 1.8. It mimics previous concatenation behavior, where the

concatenation with specialized "sparse" matrix types from LinearAlgebra.jl automatically

yielded sparse output even in the absence of any SparseArray argument.

source

SparseArrays.sparse_vcat – Function.

sparse_vcat(A...)

Concatenate along dimension 1. Return a SparseMatrixCSC object.

Julia 1.8

This method was added in Julia 1.8. It mimics previous concatenation behavior, where the

concatenation with specialized "sparse" matrix types from LinearAlgebra.jl automatically

yielded sparse output even in the absence of any SparseArray argument.

source

SparseArrays.sparse_hvcat – Function.

sparse_hvcat(rows::Tuple{Vararg{Int}}, values...)

Sparse horizontal and vertical concatenation in one call. This function is called for block matrix syntax.

The first argument specifies the number of arguments to concatenate in each block row.

Julia 1.8

This method was added in Julia 1.8. It mimics previous concatenation behavior, where the

concatenation with specialized "sparse" matrix types from LinearAlgebra.jl automatically

yielded sparse output even in the absence of any SparseArray argument.

source

SparseArrays.blockdiag – Function.

blockdiag(A...)

Concatenate matrices block-diagonally. Currently only implemented for sparse matrices.

Examples

julia> blockdiag(sparse(2I, 3, 3), sparse(4I, 2, 2))

5×5 SparseMatrixCSC{Int64, Int64} with 5 stored entries:

2 ⋅ ⋅ ⋅ ⋅

⋅ 2 ⋅ ⋅ ⋅

⋅ ⋅ 2 ⋅ ⋅

⋅ ⋅ ⋅ 4 ⋅

⋅ ⋅ ⋅ ⋅ 4

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsevector.jl#L1276-L1285
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsevector.jl#L1291-L1300
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsevector.jl#L1306-L1317

CHAPTER 94. SPARSEARRAYS API 1474

source

SparseArrays.sprand – Function.

sprand([rng],[T::Type],m,[n],p::AbstractFloat)

sprand([rng],m,[n],p::AbstractFloat,[rfn=rand])

Create a random length m sparse vector or m by n sparse matrix, in which the probability of any element

being nonzero is independently given by p (and hence the mean density of nonzeros is also exactly p).

The optional rng argument specifies a random number generator, see Random Numbers. The optional

T argument specifies the element type, which defaults to Float64.

By default, nonzero values are sampled from a uniform distribution using the rand function, i.e. by

rand(T), or rand(rng, T) if rng is supplied; for the default T=Float64, this corresponds to nonzero

values sampled uniformly in [0,1).

You can sample nonzero values from a different distribution by passing a custom rfn function instead

of rand. This should be a function rfn(k) that returns an array of k random numbers sampled from

the desired distribution; alternatively, if rng is supplied, it should instead be a function rfn(rng, k).

Examples

julia> sprand(Bool, 2, 2, 0.5)

2×2 SparseMatrixCSC{Bool, Int64} with 2 stored entries:

1 1

⋅ ⋅

julia> sprand(Float64, 3, 0.75)

3-element SparseVector{Float64, Int64} with 2 stored entries:

[1] = 0.795547

[2] = 0.49425

source

SparseArrays.sprandn – Function.

sprandn([rng][,Type],m[,n],p::AbstractFloat)

Create a random sparse vector of length m or sparse matrix of size m by n with the specified (indepen-

dent) probability p of any entry being nonzero, where nonzero values are sampled from the normal

distribution. The optional rng argument specifies a random number generator, see Random Numbers.

Julia 1.1

Specifying the output element type Type requires at least Julia 1.1.

Examples

julia> sprandn(2, 2, 0.75)

2×2 SparseMatrixCSC{Float64, Int64} with 3 stored entries:

-1.20577 ⋅

0.311817 -0.234641

source

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsematrix.jl#L3914-L3929
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsematrix.jl#L1984-L2016
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsematrix.jl#L2041-L2059

CHAPTER 94. SPARSEARRAYS API 1475

SparseArrays.nonzeros – Function.

nonzeros(A)

Return a vector of the structural nonzero values in sparse array A. This includes zeros that are explicitly

stored in the sparse array. The returned vector points directly to the internal nonzero storage of A, and

any modifications to the returned vector will mutate A as well. See rowvals and nzrange.

Examples

julia> A = sparse(2I, 3, 3)

3×3 SparseMatrixCSC{Int64, Int64} with 3 stored entries:

2 ⋅ ⋅

⋅ 2 ⋅

⋅ ⋅ 2

julia> nonzeros(A)

3-element Vector{Int64}:

2

2

2

source

SparseArrays.rowvals – Function.

rowvals(A::AbstractSparseMatrixCSC)

Return a vector of the row indices of A. Any modifications to the returned vector will mutate A as well.

Providing access to how the row indices are stored internally can be useful in conjunction with iterating

over structural nonzero values. See also nonzeros and nzrange.

Examples

julia> A = sparse(2I, 3, 3)

3×3 SparseMatrixCSC{Int64, Int64} with 3 stored entries:

2 ⋅ ⋅

⋅ 2 ⋅

⋅ ⋅ 2

julia> rowvals(A)

3-element Vector{Int64}:

1

2

3

source

SparseArrays.nzrange – Function.

nzrange(A::AbstractSparseMatrixCSC, col::Integer)

Return the range of indices to the structural nonzero values of a sparse matrix column. In conjunction

with nonzeros and rowvals, this allows for convenient iterating over a sparse matrix :

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsematrix.jl#L222-L245
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsematrix.jl#L251-L273

CHAPTER 94. SPARSEARRAYS API 1476

A = sparse(I,J,V)

rows = rowvals(A)

vals = nonzeros(A)

m, n = size(A)

for j = 1:n

for i in nzrange(A, j)

row = rows[i]

val = vals[i]

perform sparse wizardry...

end

end

Warning

Adding or removing nonzero elements to the matrix may invalidate the nzrange, one should

not mutate the matrix while iterating.

source

nzrange(x::SparseVectorUnion, col)

Give the range of indices to the structural nonzero values of a sparse vector. The column index col is

ignored (assumed to be 1).

source

SparseArrays.droptol! – Function.

droptol!(A::AbstractSparseMatrixCSC, tol)

Removes stored values from A whose absolute value is less than or equal to tol.

source

droptol!(x::AbstractCompressedVector, tol)

Removes stored values from x whose absolute value is less than or equal to tol.

source

SparseArrays.dropzeros! – Function.

dropzeros!(x::AbstractCompressedVector)

Removes stored numerical zeros from x.

For an out-of-place version, see dropzeros. For algorithmic information, see fkeep!.

source

SparseArrays.dropzeros – Function.

dropzeros(A::AbstractSparseMatrixCSC;)

Generates a copy of A and removes stored numerical zeros from that copy.

For an in-place version and algorithmic information, see dropzeros!.

Examples

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsematrix.jl#L279-L300
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsevector.jl#L118-L123
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsematrix.jl#L1848-L1852
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsevector.jl#L2217-L2221
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsevector.jl#L2224-L2231

CHAPTER 94. SPARSEARRAYS API 1477

julia> A = sparse([1, 2, 3], [1, 2, 3], [1.0, 0.0, 1.0])

3×3 SparseMatrixCSC{Float64, Int64} with 3 stored entries:

1.0 ⋅ ⋅

⋅ 0.0 ⋅

⋅ ⋅ 1.0

julia> dropzeros(A)

3×3 SparseMatrixCSC{Float64, Int64} with 2 stored entries:

1.0 ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ 1.0

source

dropzeros(x::AbstractCompressedVector)

Generates a copy of x and removes numerical zeros from that copy.

For an in-place version and algorithmic information, see dropzeros!.

Examples

julia> A = sparsevec([1, 2, 3], [1.0, 0.0, 1.0])

3-element SparseVector{Float64, Int64} with 3 stored entries:

[1] = 1.0

[2] = 0.0

[3] = 1.0

julia> dropzeros(A)

3-element SparseVector{Float64, Int64} with 2 stored entries:

[1] = 1.0

[3] = 1.0

source

SparseArrays.permute – Function.

permute(A::AbstractSparseMatrixCSC{Tv,Ti}, p::AbstractVector{<:Integer},

q::AbstractVector{<:Integer}) where {Tv,Ti}

Bilaterally permute A, returning PAQ (A[p,q]). Column-permutation q's length must match A's column

count (length(q) == size(A, 2)). Row-permutation p's length must match A's row count (length(p)

== size(A, 1)).

For expert drivers and additional information, see permute!.

Examples

julia> A = spdiagm(0 => [1, 2, 3, 4], 1 => [5, 6, 7])

4×4 SparseMatrixCSC{Int64, Int64} with 7 stored entries:

1 5 ⋅ ⋅

⋅ 2 6 ⋅

⋅ ⋅ 3 7

⋅ ⋅ ⋅ 4

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsematrix.jl#L1867-L1888
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsevector.jl#L2235-L2255

CHAPTER 94. SPARSEARRAYS API 1478

julia> permute(A, [4, 3, 2, 1], [1, 2, 3, 4])

4×4 SparseMatrixCSC{Int64, Int64} with 7 stored entries:

⋅ ⋅ ⋅ 4

⋅ ⋅ 3 7

⋅ 2 6 ⋅

1 5 ⋅ ⋅

julia> permute(A, [1, 2, 3, 4], [4, 3, 2, 1])

4×4 SparseMatrixCSC{Int64, Int64} with 7 stored entries:

⋅ ⋅ 5 1

⋅ 6 2 ⋅

7 3 ⋅ ⋅

4 ⋅ ⋅ ⋅

source

Base.permute! – Method.

permute!(X::AbstractSparseMatrixCSC{Tv,Ti}, A::AbstractSparseMatrixCSC{Tv,Ti},

p::AbstractVector{<:Integer}, q::AbstractVector{<:Integer},

[C::AbstractSparseMatrixCSC{Tv,Ti}]) where {Tv,Ti}

Bilaterally permute A, storing result PAQ (A[p,q]) in X. Stores intermediate result (AQ)^T (transpose(A[:,q]))

in optional argument C if present. Requires that none of X, A, and, if present, C alias each other; to store

result PAQ back into A, use the following method lacking X:

permute!(A::AbstractSparseMatrixCSC{Tv,Ti}, p::AbstractVector{<:Integer},

q::AbstractVector{<:Integer}[, C::AbstractSparseMatrixCSC{Tv,Ti},

[workcolptr::Vector{Ti}]]) where {Tv,Ti}

X's dimensions must match those of A (size(X, 1) == size(A, 1) and size(X, 2) == size(A, 2)),

and X must have enough storage to accommodate all allocated entries in A (length(rowvals(X))

>= nnz(A) and length(nonzeros(X)) >= nnz(A)). Column-permutation q's length must match A's

column count (length(q) == size(A, 2)). Row-permutation p's length must match A's row count

(length(p) == size(A, 1)).

C's dimensions must match those of transpose(A) (size(C, 1) == size(A, 2) and size(C, 2) ==

size(A, 1)), and Cmust have enough storage to accommodate all allocated entries in A (length(rowvals(C))

>= nnz(A) and length(nonzeros(C)) >= nnz(A)).

For additional (algorithmic) information, and for versions of these methods that forgo argument check-

ing, see (unexported) parentmethods unchecked_noalias_permute! and unchecked_aliasing_permute!.

See also permute.

source

SparseArrays.halfperm! – Function.

halfperm!(X::AbstractSparseMatrixCSC{Tv,Ti}, A::AbstractSparseMatrixCSC{TvA,Ti},

q::AbstractVector{<:Integer}, f::Function = identity) where {Tv,TvA,Ti}

Column-permute and transpose A, simultaneously applying f to each entry of A, storing the result

(f(A)Q)^T (map(f, transpose(A[:,q]))) in X.

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsematrix.jl#L1707-L1740
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsematrix.jl#L1629-L1658

CHAPTER 94. SPARSEARRAYS API 1479

Element type Tv of X must match f(::TvA), where TvA is the element type of A. X's dimensions must

match those of transpose(A) (size(X, 1) == size(A, 2) and size(X, 2) == size(A, 1)), and X

must have enough storage to accommodate all allocated entries in A (length(rowvals(X)) >= nnz(A)

and length(nonzeros(X)) >= nnz(A)). Column-permutation q's length must match A's column count

(length(q) == size(A, 2)).

This method is the parent of several methods performing transposition and permutation operations on

SparseMatrixCSCs. As this method performs no argument checking, prefer the safer child methods

([c]transpose[!], permute[!]) to direct use.

This method implements the HALFPERM algorithm described in F. Gustavson, "Two fast algorithms for

sparse matrices: multiplication and permuted transposition," ACM TOMS 4(3), 250-269 (1978). The al-

gorithm runs in O(size(A, 1), size(A, 2), nnz(A)) time and requires no space beyond that passed

in.

source

SparseArrays.ftranspose! – Function.

ftranspose!(X::AbstractSparseMatrixCSC{Tv,Ti}, A::AbstractSparseMatrixCSC{Tv,Ti},

f::Function) where {Tv,Ti}↪→

Transpose A and store it in X while applying the function f to the non-zero elements. Does not remove

the zeros created by f. size(X) must be equal to size(transpose(A)). No additional memory is

allocated other than resizing the rowval and nzval of X, if needed.

See halfperm!

source

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsematrix.jl#L1326-L1347
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/SparseArrays/src/sparsematrix.jl#L1395-L1403

Chapter 95

Noteworthy external packages

Several other Julia packages provide sparse matrix implementations that should be mentioned:

1. SuiteSparseGraphBLAS.jl is a wrapper over the fast, multithreaded SuiteSparse:GraphBLAS C library.

On CPU this is typically the fastest option, often significantly outperforming MKLSparse.

2. CUDA.jl exposes the CUSPARSE library for GPU sparse matrix operations.

3. SparseMatricesCSR.jl provides a Julia native implementation of the Compressed Sparse Rows (CSR)

format.

4. MKLSparse.jl accelerates SparseArrays sparse-dense matrix operations using Intel's MKL library.

5. SparseArrayKit.jl available for multidimensional sparse arrays.

6. LuxurySparse.jl provides static sparse array formats, as well as a coordinate format.

7. ExtendableSparse.jl enables fast insertion into sparse matrices using a lazy approach to new stored

indices.

1480

https://github.com/JuliaSparse/SuiteSparseGraphBLAS.jl
https://github.com/JuliaGPU/CUDA.jl
https://docs.nvidia.com/cuda/cusparse/index.html
https://github.com/gridap/SparseMatricesCSR.jl
https://github.com/JuliaSparse/MKLSparse.jl
https://github.com/Jutho/SparseArrayKit.jl
https://github.com/QuantumBFS/LuxurySparse.jl
https://github.com/j-fu/ExtendableSparse.jl

Chapter 96

Statistics

The Statistics standard library module contains basic statistics functionality.

Statistics.std – Function.

std(itr; corrected::Bool=true, mean=nothing[, dims])

Compute the sample standard deviation of collection itr.

The algorithm returns an estimator of the generative distribution's standard deviation under the as-

sumption that each entry of itr is a sample drawn from the same unknown distribution, with the

samples uncorrelated. For arrays, this computation is equivalent to calculating sqrt(sum((itr .-

mean(itr)).^2) / (length(itr) - 1)). If corrected is true, then the sum is scaled with n-1,

whereas the sum is scaled with n if corrected is false with n the number of elements in itr.

If itr is an AbstractArray, dims can be provided to compute the standard deviation over dimensions.

A pre-computed mean may be provided. When dims is specified, mean must be an array with the same

shape as mean(itr, dims=dims) (additional trailing singleton dimensions are allowed).

Note

If array contains NaN or missing values, the result is also NaN or missing (missing takes

precedence if array contains both). Use the skipmissing function to omit missing entries

and compute the standard deviation of non-missing values.

source

Statistics.stdm – Function.

stdm(itr, mean; corrected::Bool=true[, dims])

Compute the sample standard deviation of collection itr, with known mean(s) mean.

The algorithm returns an estimator of the generative distribution's standard deviation under the as-

sumption that each entry of itr is a sample drawn from the same unknown distribution, with the

samples uncorrelated. For arrays, this computation is equivalent to calculating sqrt(sum((itr .-

mean(itr)).^2) / (length(itr) - 1)). If corrected is true, then the sum is scaled with n-1,

whereas the sum is scaled with n if corrected is false with n the number of elements in itr.

1481

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Statistics/src/Statistics.jl#L432-L458

CHAPTER 96. STATISTICS 1482

If itr is an AbstractArray, dims can be provided to compute the standard deviation over dimensions.

In that case, meanmust be an array with the same shape as mean(itr, dims=dims) (additional trailing

singleton dimensions are allowed).

Note

If array contains NaN or missing values, the result is also NaN or missing (missing takes

precedence if array contains both). Use the skipmissing function to omit missing entries

and compute the standard deviation of non-missing values.

source

Statistics.var – Function.

var(itr; corrected::Bool=true, mean=nothing[, dims])

Compute the sample variance of collection itr.

The algorithm returns an estimator of the generative distribution's variance under the assumption

that each entry of itr is a sample drawn from the same unknown distribution, with the samples un-

correlated. For arrays, this computation is equivalent to calculating sum((itr .- mean(itr)).^2) /

(length(itr) - 1). If corrected is true, then the sum is scaled with n-1, whereas the sum is scaled

with n if corrected is false where n is the number of elements in itr.

If itr is an AbstractArray, dims can be provided to compute the variance over dimensions.

A pre-computed mean may be provided. When dims is specified, mean must be an array with the same

shape as mean(itr, dims=dims) (additional trailing singleton dimensions are allowed).

Note

If array contains NaN or missing values, the result is also NaN or missing (missing takes

precedence if array contains both). Use the skipmissing function to omit missing entries

and compute the variance of non-missing values.

source

Statistics.varm – Function.

varm(itr, mean; dims, corrected::Bool=true)

Compute the sample variance of collection itr, with known mean(s) mean.

The algorithm returns an estimator of the generative distribution's variance under the assumption

that each entry of itr is a sample drawn from the same unknown distribution, with the samples un-

correlated. For arrays, this computation is equivalent to calculating sum((itr .- mean(itr)).^2) /

(length(itr) - 1). If corrected is true, then the sum is scaled with n-1, whereas the sum is scaled

with n if corrected is false with n the number of elements in itr.

If itr is an AbstractArray, dims can be provided to compute the variance over dimensions. In that

case, mean must be an array with the same shape as mean(itr, dims=dims) (additional trailing sin-

gleton dimensions are allowed).

Note

If array contains NaN or missing values, the result is also NaN or missing (missing takes

precedence if array contains both). Use the skipmissing function to omit missing entries

and compute the variance of non-missing values.

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Statistics/src/Statistics.jl#L476-L499
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Statistics/src/Statistics.jl#L351-L377

CHAPTER 96. STATISTICS 1483

source

Statistics.cor – Function.

cor(x::AbstractVector)

Return the number one.

source

cor(X::AbstractMatrix; dims::Int=1)

Compute the Pearson correlation matrix of the matrix X along the dimension dims.

source

cor(x::AbstractVector, y::AbstractVector)

Compute the Pearson correlation between the vectors x and y.

source

cor(X::AbstractVecOrMat, Y::AbstractVecOrMat; dims=1)

Compute the Pearson correlation between the vectors or matrices X and Y along the dimension dims.

source

Statistics.cov – Function.

cov(x::AbstractVector; corrected::Bool=true)

Compute the variance of the vector x. If corrected is true (the default) then the sum is scaled with

n-1, whereas the sum is scaled with n if corrected is false where n = length(x).

source

cov(X::AbstractMatrix; dims::Int=1, corrected::Bool=true)

Compute the covariance matrix of the matrix X along the dimension dims. If corrected is true (the

default) then the sum is scaled with n-1, whereas the sum is scaled with n if corrected is false where

n = size(X, dims).

source

cov(x::AbstractVector, y::AbstractVector; corrected::Bool=true)

Compute the covariance between the vectors x and y. If corrected is true (the default), com-

putes
1

n−1

∑n
i=1(xi − x̄)(yi − ȳ)∗ where ∗ denotes the complex conjugate and n = length(x) =

length(y). If corrected is false, computes
1
n

∑n
i=1(xi − x̄)(yi − ȳ)∗.

source

cov(X::AbstractVecOrMat, Y::AbstractVecOrMat; dims::Int=1, corrected::Bool=true)

Compute the covariance between the vectors ormatrices X and Y along the dimension dims. If corrected

is true (the default) then the sum is scaled with n-1, whereas the sum is scaled with n if corrected is

false where n = size(X, dims) = size(Y, dims).

source

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Statistics/src/Statistics.jl#L313-L336
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Statistics/src/Statistics.jl#L727-L731
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Statistics/src/Statistics.jl#L735-L739
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Statistics/src/Statistics.jl#L742-L746
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Statistics/src/Statistics.jl#L749-L753
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Statistics/src/Statistics.jl#L579-L584
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Statistics/src/Statistics.jl#L587-L593
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Statistics/src/Statistics.jl#L597-L604
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Statistics/src/Statistics.jl#L608-L614

CHAPTER 96. STATISTICS 1484

Statistics.mean! – Function.

mean!(r, v)

Compute the mean of v over the singleton dimensions of r, and write results to r.

Examples

julia> using Statistics

julia> v = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> mean!([1., 1.], v)

2-element Vector{Float64}:

1.5

3.5

julia> mean!([1. 1.], v)

1×2 Matrix{Float64}:

2.0 3.0

source

Statistics.mean – Function.

mean(itr)

Compute the mean of all elements in a collection.

Note

If itr contains NaN or missing values, the result is also NaN or missing (missing takes

precedence if array contains both). Use the skipmissing function to omit missing entries

and compute the mean of non-missing values.

Examples

julia> using Statistics

julia> mean(1:20)

10.5

julia> mean([1, missing, 3])

missing

julia> mean(skipmissing([1, missing, 3]))

2.0

source

mean(f, itr)

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Statistics/src/Statistics.jl#L116-L139
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Statistics/src/Statistics.jl#L19-L43

CHAPTER 96. STATISTICS 1485

Apply the function f to each element of collection itr and take the mean.

julia> using Statistics

julia> mean(√, [1, 2, 3])

1.3820881233139908

julia> mean([√1, √2, √3])

1.3820881233139908

source

mean(f, A::AbstractArray; dims)

Apply the function f to each element of array A and take the mean over dimensions dims.

Julia 1.3

This method requires at least Julia 1.3.

julia> using Statistics

julia> mean(√, [1, 2, 3])

1.3820881233139908

julia> mean([√1, √2, √3])

1.3820881233139908

julia> mean(√, [1 2 3; 4 5 6], dims=2)

2×1 Matrix{Float64}:

1.3820881233139908

2.2285192400943226

source

mean(A::AbstractArray; dims)

Compute the mean of an array over the given dimensions.

Julia 1.1

mean for empty arrays requires at least Julia 1.1.

Examples

julia> using Statistics

julia> A = [1 2; 3 4]

2×2 Matrix{Int64}:

1 2

3 4

julia> mean(A, dims=1)

1×2 Matrix{Float64}:

2.0 3.0

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Statistics/src/Statistics.jl#L46-L60
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Statistics/src/Statistics.jl#L81-L103

CHAPTER 96. STATISTICS 1486

julia> mean(A, dims=2)

2×1 Matrix{Float64}:

1.5

3.5

source

Statistics.median! – Function.

median!(v)

Like median, but may overwrite the input vector.

source

Statistics.median – Function.

median(itr)

Compute the median of all elements in a collection. For an even number of elements no exact median

element exists, so the result is equivalent to calculating mean of two median elements.

Note

If itr contains NaN or missing values, the result is also NaN or missing (missing takes

precedence if itr contains both). Use the skipmissing function to omit missing entries

and compute the median of non-missing values.

Examples

julia> using Statistics

julia> median([1, 2, 3])

2.0

julia> median([1, 2, 3, 4])

2.5

julia> median([1, 2, missing, 4])

missing

julia> median(skipmissing([1, 2, missing, 4]))

2.0

source

median(A::AbstractArray; dims)

Compute the median of an array along the given dimensions.

Examples

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Statistics/src/Statistics.jl#L147-L173
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Statistics/src/Statistics.jl#L807-L811
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Statistics/src/Statistics.jl#L828-L857

CHAPTER 96. STATISTICS 1487

julia> using Statistics

julia> median([1 2; 3 4], dims=1)

1×2 Matrix{Float64}:

2.0 3.0

source

Statistics.middle – Function.

middle(x)

Compute the middle of a scalar value, which is equivalent to x itself, but of the type of middle(x, x)

for consistency.

source

middle(x, y)

Compute the middle of two numbers x and y, which is equivalent in both value and type to computing

their mean ((x + y) / 2).

source

middle(a::AbstractArray)

Compute the middle of an array a, which consists of finding its extrema and then computing their mean.

julia> using Statistics

julia> middle(1:10)

5.5

julia> a = [1,2,3.6,10.9]

4-element Vector{Float64}:

1.0

2.0

3.6

10.9

julia> middle(a)

5.95

source

Statistics.quantile! – Function.

quantile!([q::AbstractArray,] v::AbstractVector, p; sorted=false, alpha::Real=1.0,

beta::Real=alpha)↪→

Compute the quantile(s) of a vector v at a specified probability or vector or tuple of probabilities p on

the interval [0,1]. If p is a vector, an optional output array q may also be specified. (If not provided, a

new output array is created.) The keyword argument sorted indicates whether v can be assumed to

be sorted; if false (the default), then the elements of v will be partially sorted in-place.

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Statistics/src/Statistics.jl#L860-L873
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Statistics/src/Statistics.jl#L759-L763
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Statistics/src/Statistics.jl#L769-L774
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Statistics/src/Statistics.jl#L777-L799

CHAPTER 96. STATISTICS 1488

Samples quantile are defined by Q(p) = (1-γ)*x[j] + γ*x[j+1], where x[j] is the j-th order statistic

of v, j = floor(n*p + m), m = alpha + p*(1 - alpha - beta) and γ = n*p + m - j.

By default (alpha = beta = 1), quantiles are computed via linear interpolation between the points

((k-1)/(n-1), x[k]), for k = 1:n where n = length(v). This corresponds to Definition 7 of Hynd-

man and Fan (1996), and is the same as the R and NumPy default.

The keyword arguments alpha and beta correspond to the same parameters in Hyndman and Fan,

setting them to different values allows to calculate quantiles with any of the methods 4-9 defined in

this paper:

• Def. 4: alpha=0, beta=1

• Def. 5: alpha=0.5, beta=0.5

• Def. 6: alpha=0, beta=0 (Excel PERCENTILE.EXC, Python default, Stata altdef)

• Def. 7: alpha=1, beta=1 (Julia, R and NumPy default, Excel PERCENTILE and PERCENTILE.INC,

Python 'inclusive')

• Def. 8: alpha=1/3, beta=1/3

• Def. 9: alpha=3/8, beta=3/8

Note

An ArgumentError is thrown if v contains NaN or missing values.

References

• Hyndman, R.J and Fan, Y. (1996) "Sample Quantiles in Statistical Packages", The American Statis-

tician, Vol. 50, No. 4, pp. 361-365

• Quantile on Wikipedia details the different quantile definitions

Examples

julia> using Statistics

julia> x = [3, 2, 1];

julia> quantile!(x, 0.5)

2.0

julia> x

3-element Vector{Int64}:

1

2

3

julia> y = zeros(3);

julia> quantile!(y, x, [0.1, 0.5, 0.9]) === y

true

julia> y

3-element Vector{Float64}:

https://en.m.wikipedia.org/wiki/Quantile

CHAPTER 96. STATISTICS 1489

1.2000000000000002

2.0

2.8000000000000003

source

Statistics.quantile – Function.

quantile(itr, p; sorted=false, alpha::Real=1.0, beta::Real=alpha)

Compute the quantile(s) of a collection itr at a specified probability or vector or tuple of probabilities

p on the interval [0,1]. The keyword argument sorted indicates whether itr can be assumed to be

sorted.

Samples quantile are defined by Q(p) = (1-γ)*x[j] + γ*x[j+1], where x[j] is the j-th order statistic

of itr, j = floor(n*p + m), m = alpha + p*(1 - alpha - beta) and γ = n*p + m - j.

By default (alpha = beta = 1), quantiles are computed via linear interpolation between the points

((k-1)/(n-1), x[k]), for k = 1:n where n = length(itr). This corresponds to Definition 7 of Hyn-

dman and Fan (1996), and is the same as the R and NumPy default.

The keyword arguments alpha and beta correspond to the same parameters in Hyndman and Fan,

setting them to different values allows to calculate quantiles with any of the methods 4-9 defined in

this paper:

• Def. 4: alpha=0, beta=1

• Def. 5: alpha=0.5, beta=0.5

• Def. 6: alpha=0, beta=0 (Excel PERCENTILE.EXC, Python default, Stata altdef)

• Def. 7: alpha=1, beta=1 (Julia, R and NumPy default, Excel PERCENTILE and PERCENTILE.INC,

Python 'inclusive')

• Def. 8: alpha=1/3, beta=1/3

• Def. 9: alpha=3/8, beta=3/8

Note

An ArgumentError is thrown if v contains NaN or missing values. Use the skipmissing

function to omit missing entries and compute the quantiles of non-missing values.

References

• Hyndman, R.J and Fan, Y. (1996) "Sample Quantiles in Statistical Packages", The American Statis-

tician, Vol. 50, No. 4, pp. 361-365

• Quantile on Wikipedia details the different quantile definitions

Examples

julia> using Statistics

julia> quantile(0:20, 0.5)

10.0

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Statistics/src/Statistics.jl#L880-L942
https://en.m.wikipedia.org/wiki/Quantile

CHAPTER 96. STATISTICS 1490

julia> quantile(0:20, [0.1, 0.5, 0.9])

3-element Vector{Float64}:

2.0

10.0

18.000000000000004

julia> quantile(skipmissing([1, 10, missing]), 0.5)

5.5

source

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Statistics/src/Statistics.jl#L1033-L1085

Chapter 97

TOML

TOML.jl is a Julia standard library for parsing and writing TOML v1.0 files.

97.1 Parsing TOML data

julia> using TOML

julia> data = """

[database]

server = "192.168.1.1"

ports = [8001, 8001, 8002]

""";

julia> TOML.parse(data)

Dict{String, Any} with 1 entry:

"database" => Dict{String, Any}("server"=>"192.168.1.1", "ports"=>[8001, 8001…

To parse a file, use TOML.parsefile. If the file has a syntax error, an exception is thrown:

julia> using TOML

julia> TOML.parse("""

value = 0.0.0

""")

ERROR: TOML Parser error:

none:1:16 error: failed to parse value

value = 0.0.0

^

[...]

There are other versions of the parse functions (TOML.tryparse and [TOML.tryparsefile]) that instead

of throwing exceptions on parser error returns a TOML.ParserError with information:

julia> using TOML

julia> err = TOML.tryparse("""

1491

https://toml.io/en/

CHAPTER 97. TOML 1492

value = 0.0.0

""");

julia> err.type

ErrGenericValueError::ErrorType = 14

julia> err.line

1

julia> err.column

16

97.2 Exporting data to TOML file

The TOML.print function is used to print (or serialize) data into TOML format.

julia> using TOML

julia> data = Dict(

"names" => ["Julia", "Julio"],

"age" => [10, 20],

);

julia> TOML.print(data)

names = ["Julia", "Julio"]

age = [10, 20]

julia> fname = tempname();

julia> open(fname, "w") do io

TOML.print(io, data)

end

julia> TOML.parsefile(fname)

Dict{String, Any} with 2 entries:

"names" => ["Julia", "Julio"]

"age" => [10, 20]

Keys can be sorted according to some value

julia> using TOML

julia> TOML.print(Dict(

"abc" => 1,

"ab" => 2,

"abcd" => 3,

); sorted=true, by=length)

ab = 2

abc = 1

abcd = 3

For custom structs, pass a function that converts the struct to a supported type

CHAPTER 97. TOML 1493

julia> using TOML

julia> struct MyStruct

a::Int

b::String

end

julia> TOML.print(Dict("foo" => MyStruct(5, "bar"))) do x

x isa MyStruct && return [x.a, x.b]

error("unhandled type $(typeof(x))")

end

foo = [5, "bar"]

97.3 References

TOML.parse – Function.

parse(x::Union{AbstractString, IO})

parse(p::Parser, x::Union{AbstractString, IO})

Parse the string or stream x, and return the resulting table (dictionary). Throw a ParserError upon

failure.

See also TOML.tryparse.

TOML.parsefile – Function.

parsefile(f::AbstractString)

parsefile(p::Parser, f::AbstractString)

Parse file f and return the resulting table (dictionary). Throw a ParserError upon failure.

See also TOML.tryparsefile.

TOML.tryparse – Function.

tryparse(x::Union{AbstractString, IO})

tryparse(p::Parser, x::Union{AbstractString, IO})

Parse the string or stream x, and return the resulting table (dictionary). Return a ParserError upon

failure.

See also TOML.parse.

TOML.tryparsefile – Function.

tryparsefile(f::AbstractString)

tryparsefile(p::Parser, f::AbstractString)

Parse file f and return the resulting table (dictionary). Return a ParserError upon failure.

See also TOML.parsefile.

TOML.print – Function.

print([to_toml::Function], io::IO [=stdout], data::AbstractDict; sorted=false, by=identity)

CHAPTER 97. TOML 1494

Write data as TOML syntax to the stream io. If the keyword argument sorted is set to true, sort tables

according to the function given by the keyword argument by.

The following data types are supported: AbstractDict, AbstractVector, AbstractString, Integer,

AbstractFloat, Bool, Dates.DateTime, Dates.Time, Dates.Date. Note that the integers and floats

need to be convertible to Float64 and Int64 respectively. For other data types, pass the function

to_toml that takes the data types and returns a value of a supported type.

TOML.Parser – Type.

Parser()

Constructor for a TOML Parser. Note that in most cases one does not need to explicitly create a Parser

but instead one directly use use TOML.parsefile or TOML.parse. Using an explicit parser will however

reuse some internal data structures which can be beneficial for performance if a larger number of small

files are parsed.

TOML.ParserError – Type.

ParserError

Type that is returned from tryparse and tryparsefile when parsing fails. It contains (among others)

the following fields:

• pos, the position in the string when the error happened

• table, the result that so far was successfully parsed

• type, an error type, different for different types of errors

Chapter 98

Tar

Tar.create – Function.

create(

[predicate,] dir, [tarball];

[skeleton,] [portable = false]

) -> tarball

predicate :: String --> Bool

dir :: AbstractString

tarball :: Union{AbstractString, AbstractCmd, IO}

skeleton :: Union{AbstractString, AbstractCmd, IO}

portable :: Bool

Create a tar archive ("tarball") of the directory dir. The resulting archive is written to the path tarball

or if no path is specified, a temporary path is created and returned by the function call. If tarball is

an IO object then the tarball content is written to that handle instead (the handle is left open).

If a predicate function is passed, it is called on each system path that is encountered while recursively

searching dir and path is only included in the tarball if predicate(path) is true. If predicate(path)

returns false for a directory, then the directory is excluded entirely: nothing under that directory will

be included in the archive.

If the skeleton keyword is passed then the file or IO handle given is used as a "skeleton" to generate

the tarball. You create a skeleton file by passing the skeleton keyword to the extract command. If

create is called with that skeleton file and the extracted files haven't changed, an identical tarball is

recreated. The skeleton and predicate arguments cannot be used together.

If the portable flag is true then path names are checked for validity on Windows, which ensures

that they don't contain illegal characters or have names that are reserved. See https://stackover-

flow.com/a/31976060/659248 for details.

Tar.extract – Function.

extract(

[predicate,] tarball, [dir];

[skeleton = <none>,]

[copy_symlinks = <auto>,]

[set_permissions = true,]

) -> dir

1495

CHAPTER 98. TAR 1496

predicate :: Header --> Bool

tarball :: Union{AbstractString, AbstractCmd, IO}

dir :: AbstractString

skeleton :: Union{AbstractString, AbstractCmd, IO}

copy_symlinks :: Bool

set_permissions :: Bool

Extract a tar archive ("tarball") located at the path tarball into the directory dir. If tarball is an

IO object instead of a path, then the archive contents will be read from that IO stream. The archive is

extracted to dir which must either be an existing empty directory or a non-existent path which can be

created as a new directory. If dir is not specified, the archive is extracted into a temporary directory

which is returned by extract.

If a predicate function is passed, it is called on each Header object that is encountered while extracting

tarball and the entry is only extracted if the predicate(hdr) is true. This can be used to selectively

extract only parts of an archive, to skip entries that cause extract to throw an error, or to record what

is extracted during the extraction process.

Before it is passed to the predicate function, the Header object is somewhat modified from the raw

header in the tarball: the path field is normalized to remove . entries and replace multiple consecutive

slashes with a single slash. If the entry has type :hardlink, the link target path is normalized the same

way so that it will match the path of the target entry; the size field is set to the size of the target path

(which must be an already-seen file).

If the skeleton keyword is passed then a "skeleton" of the extracted tarball is written to the file or IO

handle given. This skeleton file can be used to recreate an identical tarball by passing the skeleton

keyword to the create function. The skeleton and predicate arguments cannot be used together.

If copy_symlinks is true then instead of extracting symbolic links as such, they will be extracted as

copies of what they link to if they are internal to the tarball and if it is possible to do so. Non-internal

symlinks, such as a link to /etc/passwd will not be copied. Symlinks which are in any way cyclic will

also not be copied and will instead be skipped. By default, extract will detect whether symlinks can

be created in dir or not and will automatically copy symlinks if they cannot be created.

If set_permissions is false, no permissions are set on the extracted files.

Tar.list – Function.

list(tarball; [strict = true]) -> Vector{Header}

list(callback, tarball; [strict = true])

callback :: Header, [<data>] --> Any

tarball :: Union{AbstractString, AbstractCmd, IO}

strict :: Bool

List the contents of a tar archive ("tarball") located at the path tarball. If tarball is an IO handle,

read the tar contents from that stream. Returns a vector of Header structs. See Header for details.

If a callback is provided then instead of returning a vector of headers, the callback is called on each

Header. This can be useful if the number of items in the tarball is large or if you want examine items

prior to an error in the tarball. If the callback function can accept a second argument of either type

Vector{UInt8} or Vector{Pair{Symbol, String}} then it will be called with a representation of the

CHAPTER 98. TAR 1497

raw header data either as a single byte vector or as a vector of pairs mapping field names to the raw

data for that field (if these fields are concatenated together, the result is the raw data of the header).

By default list will error if it encounters any tarball contents which the extract function would refuse

to extract. With strict=false it will skip these checks and list all the the contents of the tar file

whether extract would extract them or not. Beware that malicious tarballs can do all sorts of crafty

and unexpected things to try to trick you into doing something bad.

If the tarball argument is a skeleton file (see extract and create) then list will detect that from

the file header and appropriately list or iterate the headers of the skeleton file.

Tar.rewrite – Function.

rewrite(

[predicate,] old_tarball, [new_tarball];

[portable = false,]

) -> new_tarball

predicate :: Header --> Bool

old_tarball :: Union{AbstractString, AbtractCmd, IO}

new_tarball :: Union{AbstractString, AbtractCmd, IO}

portable :: Bool

Rewrite old_tarball to the standard format that create generates, while also checking that it doesn't

contain anything that would cause extract to raise an error. This is functionally equivalent to doing

Tar.create(Tar.extract(predicate, old_tarball), new_tarball)

However, it never extracts anything to disk and instead uses the seek function to navigate the old

tarball's data. If no new_tarball argument is passed, the new tarball is written to a temporary file

whose path is returned.

If a predicate function is passed, it is called on each Header object that is encountered while extracting

old_tarball and the entry is skipped unless predicate(hdr) is true. This can be used to selectively

rewrite only parts of an archive, to skip entries that would cause extract to throw an error, or to record

what content is encountered during the rewrite process.

Before it is passed to the predicate function, the Header object is somewhat modified from the raw

header in the tarball: the path field is normalized to remove . entries and replace multiple consecutive

slashes with a single slash. If the entry has type :hardlink, the link target path is normalized the same

way so that it will match the path of the target entry; the size field is set to the size of the target path

(which must be an already-seen file).

If the portable flag is true then path names are checked for validity on Windows, which ensures

that they don't contain illegal characters or have names that are reserved. See https://stackover-

flow.com/a/31976060/659248 for details.

Tar.tree_hash – Function.

tree_hash([predicate,] tarball;

[algorithm = "git-sha1",]

[skip_empty = false]) -> hash::String

predicate :: Header --> Bool

tarball :: Union{AbstractString, AbstractCmd, IO}

CHAPTER 98. TAR 1498

algorithm :: AbstractString

skip_empty :: Bool

Compute a tree hash value for the file tree that the tarball contains. By default, this uses git's tree

hashing algorithm with the SHA1 secure hash function (like current versions of git). This means that

for any tarball whose file tree git can represent—i.e. one with only files, symlinks and non-empty

directories—the hash value computed by this function will be the same as the hash value git would

compute for that file tree. Note that tarballs can represent file trees with empty directories, which git

cannot store, and this function can generate hashes for those, which will, by default (see skip_empty

below for how to change this behavior), differ from the hash of a tarball which omits those empty

directories. In short, the hash function agrees with git on all trees which git can represent, but extends

(in a consistent way) the domain of hashable trees to other trees which git cannot represent.

If a predicate function is passed, it is called on each Header object that is encountered while processing

tarball and an entry is only hashed if predicate(hdr) is true. This can be used to selectively hash

only parts of an archive, to skip entries that cause extract to throw an error, or to record what is

extracted during the hashing process.

Before it is passed to the predicate function, the Header object is somewhat modified from the raw

header in the tarball: the path field is normalized to remove . entries and replace multiple consecutive

slashes with a single slash. If the entry has type :hardlink, the link target path is normalized the same

way so that it will match the path of the target entry; the size field is set to the size of the target path

(which must be an already-seen file).

Currently supported values for algorithm are git-sha1 (the default) and git-sha256, which uses

the same basic algorithm as git-sha1 but replaces the SHA1 hash function with SHA2-256, the hash

function that git will transition to using in the future (due to known attacks on SHA1). Support for other

file tree hashing algorithms may be added in the future.

The skip_empty option controls whether directories in the tarball which recursively contain no files or

symlinks are included in the hash or ignored. In general, if you are hashing the content of a tarball or

a file tree, you care about all directories, not just non-empty ones, so including these in the computed

hash is the default. So why does this function even provide the option to skip empty directories? Be-

cause git refuses to store empty directories and will ignore them if you try to add them to a repo. So if

you compute a reference tree hash by by adding files to a git repo and then asking git for the tree hash,

the hash value that you get will match the hash value computed by tree_hash with skip_empty=true.

In other words, this option allows tree_hash to emulate how git would hash a tree with empty direc-

tories. If you are hashing trees that may contain empty directories (i.e. do not come from a git repo),

however, it is recommended that you hash them using a tool (such as this one) that does not ignore

empty directories.

Tar.Header – Type.

The Header type is a struct representing the essential metadata for a single record in a tar file with this

definition:

struct Header

path :: String # path relative to the root

type :: Symbol # type indicator (see below)

mode :: UInt16 # mode/permissions (best viewed in octal)

size :: Int64 # size of record data in bytes

link :: String # target path of a symlink

end

CHAPTER 98. TAR 1499

Types are represented with the following symbols: file, hardlink, symlink, chardev, blockdev,

directory, fifo, or for unknown types, the typeflag character as a symbol. Note that extract re-

fuses to extract records types other than file, symlink and directory; list will only list other kinds

of records if called with strict=false.

The tar format includes various other metadata about records, including user and group IDs, user and

group names, and timestamps. The Tar package, by design, completely ignores these. When creating

tar files, these fields are always set to zero/empty. When reading tar files, these fields are ignored

aside from verifying header checksums for each header record for all fields.

Chapter 99

Unit Testing

99.1 Testing Base Julia

Julia is under rapid development and has an extensive test suite to verify functionality across multiple

platforms. If you build Julia from source, you can run this test suite with make test. In a binary install, you

can run the test suite using Base.runtests().

Base.runtests – Function.

Base.runtests(tests=["all"]; ncores=ceil(Int, Sys.CPU_THREADS / 2),

exit_on_error=false, revise=false, [seed])

Run the Julia unit tests listed in tests, which can be either a string or an array of strings, using ncores

processors. If exit_on_error is false, when one test fails, all remaining tests in other files will still

be run; they are otherwise discarded, when exit_on_error == true. If revise is true, the Revise

package is used to load any modifications to Base or to the standard libraries before running the tests.

If a seed is provided via the keyword argument, it is used to seed the global RNG in the context where

the tests are run; otherwise the seed is chosen randomly.

source

99.2 Basic Unit Tests

The Test module provides simple unit testing functionality. Unit testing is a way to see if your code is

correct by checking that the results are what you expect. It can be helpful to ensure your code still works

after you make changes, and can be used when developing as a way of specifying the behaviors your code

should have when complete. You may also want to look at the documentation for adding tests to your Julia

Package.

Simple unit testing can be performed with the @test and @test_throws macros:

Test.@test – Macro.

@test ex

@test f(args...) key=val ...

@test ex broken=true

@test ex skip=true

1500

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/util.jl#L668-L680
https://pkgdocs.julialang.org/dev/creating-packages/#Adding-tests-to-the-package
https://pkgdocs.julialang.org/dev/creating-packages/#Adding-tests-to-the-package

CHAPTER 99. UNIT TESTING 1501

Test that the expression ex evaluates to true. If executed inside a @testset, return a Pass Result

if it does, a Fail Result if it is false, and an Error Result if it could not be evaluated. If executed

outside a @testset, throw an exception instead of returning Fail or Error.

Examples

julia> @test true

Test Passed

julia> @test [1, 2] + [2, 1] == [3, 3]

Test Passed

The @test f(args...) key=val... form is equivalent to writing @test f(args..., key=val...)

which can be useful when the expression is a call using infix syntax such as approximate comparisons:

julia> @test π ≈ 3.14 atol=0.01

Test Passed

This is equivalent to the uglier test @test ≈(π, 3.14, atol=0.01). It is an error to supply more than

one expression unless the first is a call expression and the rest are assignments (k=v).

You can use any key for the key=val arguments, except for broken and skip, which have special

meanings in the context of @test:

• broken=cond indicates a test that should pass but currently consistently fails when cond==true.

Tests that the expression ex evaluates to false or causes an exception. Returns a Broken Result

if it does, or an Error Result if the expression evaluates to true. Regular @test ex is evaluated

when cond==false.

• skip=cond marks a test that should not be executed but should be included in test summary

reporting as Broken, when cond==true. This can be useful for tests that intermittently fail, or

tests of not-yet-implemented functionality. Regular @test ex is evaluated when cond==false.

Examples

julia> @test 2 + 2 ≈ 6 atol=1 broken=true

Test Broken

Expression: ≈(2 + 2, 6, atol = 1)

julia> @test 2 + 2 ≈ 5 atol=1 broken=false

Test Passed

julia> @test 2 + 2 == 5 skip=true

Test Broken

Skipped: 2 + 2 == 5

julia> @test 2 + 2 == 4 skip=false

Test Passed

Julia 1.7

The broken and skip keyword arguments require at least Julia 1.7.

source

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Test/src/Test.jl#L419-L485

CHAPTER 99. UNIT TESTING 1502

Test.@test_throws – Macro.

@test_throws exception expr

Tests that the expression expr throws exception. The exception may specify either a type, a string,

regular expression, or list of strings occurring in the displayed error message, a matching function, or a

value (which will be tested for equality by comparing fields). Note that @test_throws does not support

a trailing keyword form.

Julia 1.8

The ability to specify anything other than a type or a value as exception requires Julia v1.8

or later.

Examples

julia> @test_throws BoundsError [1, 2, 3][4]

Test Passed

Thrown: BoundsError

julia> @test_throws DimensionMismatch [1, 2, 3] + [1, 2]

Test Passed

Thrown: DimensionMismatch

julia> @test_throws "Try sqrt(Complex" sqrt(-1)

Test Passed

Message: "DomainError with -1.0:\nsqrt was called with a negative real argument but will

only return a complex result if called with a complex argument. Try sqrt(Complex(x))."↪→

In the final example, instead of matching a single string it could alternatively have been performed

with:

• ["Try", "Complex"] (a list of strings)

• r"Try sqrt\([Cc]omplex" (a regular expression)

• str -> occursin("complex", str) (a matching function)

source

For example, suppose we want to check our new function foo(x) works as expected:

julia> using Test

julia> foo(x) = length(x)^2

foo (generic function with 1 method)

If the condition is true, a Pass is returned:

julia> @test foo("bar") == 9

Test Passed

julia> @test foo("fizz") >= 10

Test Passed

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Test/src/Test.jl#L727-L760

CHAPTER 99. UNIT TESTING 1503

If the condition is false, then a Fail is returned and an exception is thrown:

julia> @test foo("f") == 20

Test Failed at none:1

Expression: foo("f") == 20

Evaluated: 1 == 20

ERROR: There was an error during testing

If the condition could not be evaluated because an exception was thrown, which occurs in this case because

length is not defined for symbols, an Error object is returned and an exception is thrown:

julia> @test foo(:cat) == 1

Error During Test

Test threw an exception of type MethodError

Expression: foo(:cat) == 1

MethodError: no method matching length(::Symbol)

Closest candidates are:

length(::SimpleVector) at essentials.jl:256

length(::Base.MethodList) at reflection.jl:521

length(::MethodTable) at reflection.jl:597

...

Stacktrace:

[...]

ERROR: There was an error during testing

If we expect that evaluating an expression should throw an exception, then we can use @test_throws to

check that this occurs:

julia> @test_throws MethodError foo(:cat)

Test Passed

Thrown: MethodError

99.3 Working with Test Sets

Typically a large number of tests are used to make sure functions work correctly over a range of inputs. In

the event a test fails, the default behavior is to throw an exception immediately. However, it is normally

preferable to run the rest of the tests first to get a better picture of how many errors there are in the code

being tested.

Note

The @testset will create a local scope of its own when running the tests in it.

The @testset macro can be used to group tests into sets. All the tests in a test set will be run, and at the

end of the test set a summary will be printed. If any of the tests failed, or could not be evaluated due to

an error, the test set will then throw a TestSetException.

Test.@testset – Macro.

CHAPTER 99. UNIT TESTING 1504

@testset [CustomTestSet] [options...] ["description"] begin test_ex end

@testset [CustomTestSet] [options...] ["description $v"] for v in itr test_ex end

@testset [CustomTestSet] [options...] ["description $v, $w"] for v in itrv, w in itrw test_ex

end↪→

@testset [CustomTestSet] [options...] ["description"] test_func()

@testset let v = v, w = w; test_ex; end

With begin/end or function call

When@testset is used, with begin/end or a single function call, the macro starts a new test set in which

to evaluate the given expression.

If no custom testset type is given it defaults to creating a DefaultTestSet. DefaultTestSet records

all the results and, if there are any Fails or Errors, throws an exception at the end of the top-level

(non-nested) test set, along with a summary of the test results.

Any custom testset type (subtype of AbstractTestSet) can be given and it will also be used for any

nested @testset invocations. The given options are only applied to the test set where they are given.

The default test set type accepts three boolean options:

• verbose: if true, the result summary of the nested testsets is shown even when they all pass

(the default is false).

• showtiming: if true, the duration of each displayed testset is shown (the default is true).

• failfast: if true, any test failure or error will cause the testset and any child testsets to return im-

mediately (the default is false). This can also be set globally via the env var JULIA_TEST_FAILFAST.

Julia 1.8

@testset test_func() requires at least Julia 1.8.

Julia 1.9

failfast requires at least Julia 1.9.

The description string accepts interpolation from the loop indices. If no description is provided, one

is constructed based on the variables. If a function call is provided, its name will be used. Explicit

description strings override this behavior.

By default the @testset macro will return the testset object itself, though this behavior can be cus-

tomized in other testset types. If a for loop is used then the macro collects and returns a list of the

return values of the finish method, which by default will return a list of the testset objects used in

each iteration.

Before the execution of the body of a @testset, there is an implicit call to Random.seed!(seed) where

seed is the current seed of the global RNG. Moreover, after the execution of the body, the state of the

global RNG is restored to what it was before the @testset. This is meant to ease reproducibility in case

of failure, and to allow seamless re-arrangements of @testsets regardless of their side-effect on the

global RNG state.

Examples

julia> @testset "trigonometric identities" begin

θ = 2/3*π

@test sin(-θ) ≈ -sin(θ)

CHAPTER 99. UNIT TESTING 1505

@test cos(-θ) ≈ cos(θ)

@test sin(2θ) ≈ 2*sin(θ)*cos(θ)

@test cos(2θ) ≈ cos(θ)^2 - sin(θ)^2

end;

Test Summary: | Pass Total Time

trigonometric identities | 4 4 0.2s

@testset for

When @testset for is used, the macro starts a new test for each iteration of the provided loop. The

semantics of each test set are otherwise identical to that of that begin/end case (as if used for each

loop iteration).

@testset let

When @testset let is used, the macro starts a transparent test set with the given object added as

a context object to any failing test contained therein. This is useful when performing a set of related

tests on one larger object and it is desirable to print this larger object when any of the individual tests

fail. Transparent test sets do not introduce additional levels of nesting in the test set hierarchy and are

passed through directly to the parent test set (with the context object appended to any failing tests.)

Julia 1.9

@testset let requires at least Julia 1.9.

Julia 1.10

Multiple let assignements are supported since Julia 1.10.

Examples

julia> @testset let logi = log(im)

@test imag(logi) == π/2

@test !iszero(real(logi))

end

Test Failed at none:3

Expression: !(iszero(real(logi)))

Context: logi = 0.0 + 1.5707963267948966im

ERROR: There was an error during testing

julia> @testset let logi = log(im), op = !iszero

@test imag(logi) == π/2

@test op(real(logi))

end

Test Failed at none:3

Expression: op(real(logi))

Context: logi = 0.0 + 1.5707963267948966im

op = !iszero

ERROR: There was an error during testing

source

Test.TestSetException – Type.

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Test/src/Test.jl#L1353-L1465

CHAPTER 99. UNIT TESTING 1506

TestSetException

Thrown when a test set finishes and not all tests passed.

source

We can put our tests for the foo(x) function in a test set:

julia> @testset "Foo Tests" begin

@test foo("a") == 1

@test foo("ab") == 4

@test foo("abc") == 9

end;

Test Summary: | Pass Total Time

Foo Tests | 3 3 0.0s

Test sets can also be nested:

julia> @testset "Foo Tests" begin

@testset "Animals" begin

@test foo("cat") == 9

@test foo("dog") == foo("cat")

end

@testset "Arrays $i" for i in 1:3

@test foo(zeros(i)) == i^2

@test foo(fill(1.0, i)) == i^2

end

end;

Test Summary: | Pass Total Time

Foo Tests | 8 8 0.0s

As well as call functions:

julia> f(x) = @test isone(x)

f (generic function with 1 method)

julia> @testset f(1);

Test Summary: | Pass Total Time

f | 1 1 0.0s

This can be used to allow for factorization of test sets, making it easier to run individual test sets by running

the associated functions instead. Note that in the case of functions, the test set will be given the name of

the called function. In the event that a nested test set has no failures, as happened here, it will be hidden

in the summary, unless the verbose=true option is passed:

julia> @testset verbose = true "Foo Tests" begin

@testset "Animals" begin

@test foo("cat") == 9

@test foo("dog") == foo("cat")

end

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Test/src/Test.jl#L952-L956

CHAPTER 99. UNIT TESTING 1507

@testset "Arrays $i" for i in 1:3

@test foo(zeros(i)) == i^2

@test foo(fill(1.0, i)) == i^2

end

end;

Test Summary: | Pass Total Time

Foo Tests | 8 8 0.0s

Animals | 2 2 0.0s

Arrays 1 | 2 2 0.0s

Arrays 2 | 2 2 0.0s

Arrays 3 | 2 2 0.0s

If we do have a test failure, only the details for the failed test sets will be shown:

julia> @testset "Foo Tests" begin

@testset "Animals" begin

@testset "Felines" begin

@test foo("cat") == 9

end

@testset "Canines" begin

@test foo("dog") == 9

end

end

@testset "Arrays" begin

@test foo(zeros(2)) == 4

@test foo(fill(1.0, 4)) == 15

end

end

Arrays: Test Failed

Expression: foo(fill(1.0, 4)) == 15

Evaluated: 16 == 15

[...]

Test Summary: | Pass Fail Total Time

Foo Tests | 3 1 4 0.0s

Animals | 2 2 0.0s

Arrays | 1 1 2 0.0s

ERROR: Some tests did not pass: 3 passed, 1 failed, 0 errored, 0 broken.

99.4 Testing Log Statements

One can use the @test_logs macro to test log statements, or use a TestLogger.

Test.@test_logs – Macro.

@test_logs [log_patterns...] [keywords] expression

Collect a list of log records generated by expression using collect_test_logs, check that they match

the sequence log_patterns, and return the value of expression. The keywords provide some simple

filtering of log records: the min_level keyword controls the minimum log level which will be collected

for the test, the match_mode keyword defines how matching will be performed (the default :all checks

that all logs and patterns match pairwise; use :any to check that the pattern matches at least once

somewhere in the sequence.)

CHAPTER 99. UNIT TESTING 1508

The most useful log pattern is a simple tuple of the form (level,message). A different number of tuple

elements may be used to match other log metadata, corresponding to the arguments to passed to

AbstractLogger via the handle_message function: (level,message,module,group,id,file,line).

Elements which are present will be matched pairwise with the log record fields using == by default,

with the special cases that Symbols may be used for the standard log levels, and Regexs in the pattern

will match string or Symbol fields using occursin.

Examples

Consider a function which logs a warning, and several debug messages:

function foo(n)

@info "Doing foo with n=$n"

for i=1:n

@debug "Iteration $i"

end

42

end

We can test the info message using

@test_logs (:info,"Doing foo with n=2") foo(2)

If we also wanted to test the debug messages, these need to be enabled with the min_level keyword:

using Logging

@test_logs (:info,"Doing foo with n=2") (:debug,"Iteration 1") (:debug,"Iteration 2")

min_level=Logging.Debug foo(2)

If you want to test that some particular messages are generated while ignoring the rest, you can set

the keyword match_mode=:any:

using Logging

@test_logs (:info,) (:debug,"Iteration 42") min_level=Logging.Debug match_mode=:any foo(100)

The macro may be chained with @test to also test the returned value:

@test (@test_logs (:info,"Doing foo with n=2") foo(2)) == 42

If you want to test for the absence of warnings, you can omit specifying log patterns and set the

min_level accordingly:

test that the expression logs no messages when the logger level is warn:

@test_logs min_level=Logging.Warn @info("Some information") # passes

@test_logs min_level=Logging.Warn @warn("Some information") # fails

If you want to test the absence of warnings (or error messages) in stderr which are not generated by

@warn, see @test_nowarn.

source

Test.TestLogger – Type.

TestLogger(; min_level=Info, catch_exceptions=false)

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Test/src/logging.jl#L174-L236

CHAPTER 99. UNIT TESTING 1509

Create a TestLogger which captures logged messages in its logs::Vector{LogRecord} field.

Set min_level to control the LogLevel, catch_exceptions for whether or not exceptions thrown as

part of log event generation should be caught, and respect_maxlog for whether or not to follow the

convention of logging messages with maxlog=n for some integer n at most n times.

See also: LogRecord.

Example

julia> using Test, Logging

julia> f() = @info "Hi" number=5;

julia> test_logger = TestLogger();

julia> with_logger(test_logger) do

f()

@info "Bye!"

end

julia> @test test_logger.logs[1].message == "Hi"

Test Passed

julia> @test test_logger.logs[1].kwargs[:number] == 5

Test Passed

julia> @test test_logger.logs[2].message == "Bye!"

Test Passed

source

Test.LogRecord – Type.

LogRecord

Stores the results of a single log event. Fields:

• level: the LogLevel of the log message

• message: the textual content of the log message

• _module: the module of the log event

• group: the logging group (by default, the name of the file containing the log event)

• id: the ID of the log event

• file: the file containing the log event

• line: the line within the file of the log event

• kwargs: any keyword arguments passed to the log event

source

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Test/src/logging.jl#L51-L86
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Test/src/logging.jl#L8-L21

CHAPTER 99. UNIT TESTING 1510

99.5 Other Test Macros

As calculations on floating-point values can be imprecise, you can perform approximate equality checks

using either @test a ≈ b (where ≈, typed via tab completion of \approx, is the isapprox function) or use

isapprox directly.

julia> @test 1 ≈ 0.999999999

Test Passed

julia> @test 1 ≈ 0.999999

Test Failed at none:1

Expression: 1 ≈ 0.999999

Evaluated: 1 ≈ 0.999999

ERROR: There was an error during testing

You can specify relative and absolute tolerances by setting the rtol and atol keyword arguments of

isapprox, respectively, after the ≈ comparison:

julia> @test 1 ≈ 0.999999 rtol=1e-5

Test Passed

Note that this is not a specific feature of the ≈ but rather a general feature of the @test macro: @test a

<op> b key=val is transformed by the macro into @test op(a, b, key=val). It is, however, particularly

useful for ≈ tests.

Test.@inferred – Macro.

@inferred [AllowedType] f(x)

Tests that the call expression f(x) returns a value of the same type inferred by the compiler. It is useful

to check for type stability.

f(x) can be any call expression. Returns the result of f(x) if the types match, and an Error Result if

it finds different types.

Optionally, AllowedType relaxes the test, by making it pass when either the type of f(x) matches

the inferred type modulo AllowedType, or when the return type is a subtype of AllowedType. This is

useful when testing type stability of functions returning a small union such as Union{Nothing, T} or

Union{Missing, T}.

julia> f(a) = a > 1 ? 1 : 1.0

f (generic function with 1 method)

julia> typeof(f(2))

Int64

julia> @code_warntype f(2)

MethodInstance for f(::Int64)

from f(a) @ Main none:1

Arguments

#self#::Core.Const(f)

CHAPTER 99. UNIT TESTING 1511

a::Int64

Body::UNION{FLOAT64, INT64}

1 ─ %1 = (a > 1)::Bool

└── goto #3 if not %1

2 ─ return 1

3 ─ return 1.0

julia> @inferred f(2)

ERROR: return type Int64 does not match inferred return type Union{Float64, Int64}

[...]

julia> @inferred max(1, 2)

2

julia> g(a) = a < 10 ? missing : 1.0

g (generic function with 1 method)

julia> @inferred g(20)

ERROR: return type Float64 does not match inferred return type Union{Missing, Float64}

[...]

julia> @inferred Missing g(20)

1.0

julia> h(a) = a < 10 ? missing : f(a)

h (generic function with 1 method)

julia> @inferred Missing h(20)

ERROR: return type Int64 does not match inferred return type Union{Missing, Float64, Int64}

[...]

source

Test.@test_deprecated – Macro.

@test_deprecated [pattern] expression

When --depwarn=yes, test that expression emits a deprecation warning and return the value of

expression. The logmessage string will bematched against patternwhich defaults to r"deprecated"i.

When --depwarn=no, simply return the result of executing expression. When --depwarn=error,

check that an ErrorException is thrown.

Examples

Deprecated in julia 0.7

@test_deprecated num2hex(1)

The returned value can be tested by chaining with @test:

@test (@test_deprecated num2hex(1)) == "0000000000000001"

source

Test.@test_warn – Macro.

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Test/src/Test.jl#L1787-L1844
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Test/src/logging.jl#L308-L327

CHAPTER 99. UNIT TESTING 1512

@test_warn msg expr

Test whether evaluating expr results in stderr output that contains the msg string or matches the msg

regular expression. If msg is a boolean function, tests whether msg(output) returns true. If msg is a

tuple or array, checks that the error output contains/matches each item in msg. Returns the result of

evaluating expr.

See also @test_nowarn to check for the absence of error output.

Note: Warnings generated by @warn cannot be tested with this macro. Use @test_logs instead.

source

Test.@test_nowarn – Macro.

@test_nowarn expr

Test whether evaluating expr results in empty stderr output (no warnings or other messages). Returns

the result of evaluating expr.

Note: The absence of warnings generated by @warn cannot be tested with this macro. Use @test_logs

instead.

source

99.6 Broken Tests

If a test fails consistently it can be changed to use the @test_broken macro. This will denote the test as

Broken if the test continues to fail and alerts the user via an Error if the test succeeds.

Test.@test_broken – Macro.

@test_broken ex

@test_broken f(args...) key=val ...

Indicates a test that should pass but currently consistently fails. Tests that the expression ex evalu-

ates to false or causes an exception. Returns a Broken Result if it does, or an Error Result if the

expression evaluates to true. This is equivalent to @test ex broken=true.

The @test_broken f(args...) key=val... form works as for the @test macro.

Examples

julia> @test_broken 1 == 2

Test Broken

Expression: 1 == 2

julia> @test_broken 1 == 2 atol=0.1

Test Broken

Expression: ==(1, 2, atol = 0.1)

source

@test_skip is also available to skip a test without evaluation, but counting the skipped test in the test set

reporting. The test will not run but gives a Broken Result.

Test.@test_skip – Macro.

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Test/src/Test.jl#L846-L859
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Test/src/Test.jl#L878-L886
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Test/src/Test.jl#L519-L541

CHAPTER 99. UNIT TESTING 1513

@test_skip ex

@test_skip f(args...) key=val ...

Marks a test that should not be executed but should be included in test summary reporting as Broken.

This can be useful for tests that intermittently fail, or tests of not-yet-implemented functionality. This

is equivalent to @test ex skip=true.

The @test_skip f(args...) key=val... form works as for the @test macro.

Examples

julia> @test_skip 1 == 2

Test Broken

Skipped: 1 == 2

julia> @test_skip 1 == 2 atol=0.1

Test Broken

Skipped: ==(1, 2, atol = 0.1)

source

99.7 Test result types

Test.Result – Type.

Test.Result

All tests produce a result object. This object may or may not be stored, depending on whether the test

is part of a test set.

source

Test.Pass – Type.

Test.Pass <: Test.Result

The test condition was true, i.e. the expression evaluated to true or the correct exception was thrown.

source

Test.Fail – Type.

Test.Fail <: Test.Result

The test condition was false, i.e. the expression evaluated to false or the correct exception was not

thrown.

source

Test.Error – Type.

Test.Error <: Test.Result

The test condition couldn't be evaluated due to an exception, or it evaluated to something other than

a Bool. In the case of @test_broken it is used to indicate that an unexpected Pass Result occurred.

source

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Test/src/Test.jl#L550-L571
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Test/src/Test.jl#L106-L111
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Test/src/Test.jl#L114-L119
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Test/src/Test.jl#L144-L149
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Test/src/Test.jl#L205-L212

CHAPTER 99. UNIT TESTING 1514

Test.Broken – Type.

Test.Broken <: Test.Result

The test condition is the expected (failed) result of a broken test, or was explicitly skippedwith @test_skip.

source

99.8 Creating Custom AbstractTestSet Types

Packages can create their own AbstractTestSet subtypes by implementing the record and finishmeth-

ods. The subtype should have a one-argument constructor taking a description string, with any options

passed in as keyword arguments.

Test.record – Function.

record(ts::AbstractTestSet, res::Result)

Record a result to a testset. This function is called by the @testset infrastructure each time a contained

@test macro completes, and is given the test result (which could be an Error). This will also be called

with an Error if an exception is thrown inside the test block but outside of a @test context.

source

Test.finish – Function.

finish(ts::AbstractTestSet)

Do any final processing necessary for the given testset. This is called by the @testset infrastructure

after a test block executes.

Custom AbstractTestSet subtypes should call record on their parent (if there is one) to add them-

selves to the tree of test results. This might be implemented as:

if get_testset_depth() != 0

Attach this test set to the parent test set

parent_ts = get_testset()

record(parent_ts, self)

return self

end

source

Test takes responsibility for maintaining a stack of nested testsets as they are executed, but any result

accumulation is the responsibility of the AbstractTestSet subtype. You can access this stack with the

get_testset and get_testset_depth methods. Note that these functions are not exported.

Test.get_testset – Function.

get_testset()

Retrieve the active test set from the task's local storage. If no test set is active, use the fallback default

test set.

source

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Test/src/Test.jl#L286-L291
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Test/src/Test.jl#L921-L928
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Test/src/Test.jl#L931-L949
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Test/src/Test.jl#L1739-L1744

CHAPTER 99. UNIT TESTING 1515

Test.get_testset_depth – Function.

get_testset_depth()

Return the number of active test sets, not including the default test set

source

Test also makes sure that nested @testset invocations use the same AbstractTestSet subtype as their

parent unless it is set explicitly. It does not propagate any properties of the testset. Option inheritance

behavior can be implemented by packages using the stack infrastructure that Test provides.

Defining a basic AbstractTestSet subtype might look like:

import Test: Test, record, finish

using Test: AbstractTestSet, Result, Pass, Fail, Error

using Test: get_testset_depth, get_testset

struct CustomTestSet <: Test.AbstractTestSet

description::AbstractString

foo::Int

results::Vector

constructor takes a description string and options keyword arguments

CustomTestSet(desc; foo=1) = new(desc, foo, [])

end

record(ts::CustomTestSet, child::AbstractTestSet) = push!(ts.results, child)

record(ts::CustomTestSet, res::Result) = push!(ts.results, res)

function finish(ts::CustomTestSet)

just record if we're not the top-level parent

if get_testset_depth() > 0

record(get_testset(), ts)

end

ts

end

And using that testset looks like:

@testset CustomTestSet foo=4 "custom testset inner 2" begin

this testset should inherit the type, but not the argument.

@testset "custom testset inner" begin

@test true

end

end

99.9 Test utilities

Test.GenericArray – Type.

The GenericArray can be used to test generic array APIs that program to the AbstractArray interface,

in order to ensure that functions can work with array types besides the standard Array type.

source

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Test/src/Test.jl#L1774-L1778
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Test/src/Test.jl#L2112-L2116

CHAPTER 99. UNIT TESTING 1516

Test.GenericDict – Type.

The GenericDict can be used to test generic dict APIs that program to the AbstractDict interface, in

order to ensure that functions can work with associative types besides the standard Dict type.

source

Test.GenericOrder – Type.

The GenericOrder can be used to test APIs for their support of generic ordered types.

source

Test.GenericSet – Type.

The GenericSet can be used to test generic set APIs that program to the AbstractSet interface, in

order to ensure that functions can work with set types besides the standard Set and BitSet types.

source

Test.GenericString – Type.

The GenericString can be used to test generic string APIs that program to the AbstractString inter-

face, in order to ensure that functions can work with string types besides the standard String type.

source

Test.detect_ambiguities – Function.

detect_ambiguities(mod1, mod2...; recursive=false,

ambiguous_bottom=false,

allowed_undefineds=nothing)

Return a vector of (Method,Method) pairs of ambiguous methods defined in the specified modules.

Use recursive=true to test in all submodules.

ambiguous_bottom controls whether ambiguities triggered only by Union{} type parameters are in-

cluded; in most cases you probably want to set this to false. See Base.isambiguous.

See Test.detect_unbound_args for an explanation of allowed_undefineds.

Julia 1.8

allowed_undefineds requires at least Julia 1.8.

source

Test.detect_unbound_args – Function.

detect_unbound_args(mod1, mod2...; recursive=false, allowed_undefineds=nothing)

Return a vector of Methods which may have unbound type parameters. Use recursive=true to test in

all submodules.

By default, any undefined symbols trigger a warning. This warning can be suppressed by supplying a

collection of GlobalRefs for which the warning can be skipped. For example, setting

allowed_undefineds = Set([GlobalRef(Base, :active_repl),

GlobalRef(Base, :active_repl_backend)])

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Test/src/Test.jl#L2090-L2094
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Test/src/Test.jl#L2124-L2127
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Test/src/Test.jl#L2081-L2085
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Test/src/Test.jl#L2064-L2068
https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Test/src/Test.jl#L1902-L1920

CHAPTER 99. UNIT TESTING 1517

would suppress warnings about Base.active_repl and Base.active_repl_backend.

Julia 1.8

allowed_undefineds requires at least Julia 1.8.

source

99.10 Workflow for Testing Packages

Using the tools available to us in the previous sections, here is a potential workflow of creating a package

and adding tests to it.

Generating an Example Package

For this workflow, we will create a package called Example:

pkg> generate Example

shell> cd Example

shell> mkdir test

pkg> activate .

Creating Sample Functions

The number one requirement for testing a package is to have functionality to test. For that, we will add

some simple functions to Example that we can test. Add the following to src/Example.jl:

module Example

function greet()

"Hello world!"

end

function simple_add(a, b)

a + b

end

function type_multiply(a::Float64, b::Float64)

a * b

end

end

Creating a Test Environment

From within the root of the Example package, navigate to the test directory, activate a new environment

there, and add the Test package to the environment:

shell> cd test

pkg> activate .

(test) pkg> add Test

https://github.com/JuliaLang/docs.julialang.org/blob/1e3c5d7dfdda72cb25e04638e0b06c512feb5215/pdf/build/julia-1.10.4-linux-x86_64/share/julia/stdlib/v1.10/Test/src/Test.jl#L1981-L2001

CHAPTER 99. UNIT TESTING 1518

Testing Our Package

Now, we are ready to add tests to Example. It is standard practice to create a file within the test directory

called runtests.jl which contains the test sets we want to run. Go ahead and create that file within the

test directory and add the following code to it:

using Example

using Test

@testset "Example tests" begin

@testset "Math tests" begin

include("math_tests.jl")

end

@testset "Greeting tests" begin

include("greeting_tests.jl")

end

end

We will need to create those two included files, math_tests.jl and greeting_tests.jl, and add some

tests to them.

Note: Notice how we did not have to specify add Example into the test environment's

Project.toml. This is a benefit of Julia's testing system that you could read about more

here.

Writing Tests for math_tests.jl

Using our knowledge of Test.jl, here are some example tests we could add to math_tests.jl:

@testset "Testset 1" begin

@test 2 == simple_add(1, 1)

@test 3.5 == simple_add(1, 2.5)

@test_throws MethodError simple_add(1, "A")

@test_throws MethodError simple_add(1, 2, 3)

end

@testset "Testset 2" begin

@test 1.0 == type_multiply(1.0, 1.0)

@test isa(type_multiply(2.0, 2.0), Float64)

@test_throws MethodError type_multiply(1, 2.5)

end

Writing Tests for greeting_tests.jl

Using our knowledge of Test.jl, here are some example tests we could add to math_tests.jl:

@testset "Testset 3" begin

@test "Hello world!" == greet()

@test_throws MethodError greet("Antonia")

end

https://pkgdocs.julialang.org/dev/creating-packages/
https://pkgdocs.julialang.org/dev/creating-packages/

CHAPTER 99. UNIT TESTING 1519

Testing Our Package

Now that we have added our tests and our runtests.jl script in test, we can test our Example package

by going back to the root of the Example package environment and reactivating the Example environment:

shell> cd ..

pkg> activate .

From there, we can finally run our test suite as follows:

(Example) pkg> test

Testing Example

Status `/tmp/jl_Yngpvy/Project.toml`

[fa318bd2] Example v0.1.0 `/home/src/Projects/tmp/errata/Example`

[8dfed614] Test `@stdlib/Test`

Status `/tmp/jl_Yngpvy/Manifest.toml`

[fa318bd2] Example v0.1.0 `/home/src/Projects/tmp/errata/Example`

[2a0f44e3] Base64 `@stdlib/Base64`

[b77e0a4c] InteractiveUtils `@stdlib/InteractiveUtils`

[56ddb016] Logging `@stdlib/Logging`

[d6f4376e] Markdown `@stdlib/Markdown`

[9a3f8284] Random `@stdlib/Random`

[ea8e919c] SHA `@stdlib/SHA`

[9e88b42a] Serialization `@stdlib/Serialization`

[8dfed614] Test `@stdlib/Test`

Testing Running tests...

Test Summary: | Pass Total

Example tests | 9 9

Testing Example tests passed

And if all went correctly, you should see a similar output as above. Using Test.jl, more complicated tests

can be added for packages but this should ideally point developers in the direction of how to get started

with testing their own created packages.

Chapter 100

UUIDs

UUIDs.uuid1 – Function.

uuid1([rng::AbstractRNG]) -> UUID

Generates a version 1 (time-based) universally unique identifier (UUID), as specified by RFC 4122. Note

that the Node ID is randomly generated (does not identify the host) according to section 4.5 of the RFC.

The default rng used by uuid1 is not GLOBAL_RNG and every invocation of uuid1() without an argument

should be expected to return a unique identifier. Importantly, the outputs of uuid1 do not repeat even

when Random.seed!(seed) is called. Currently (as of Julia 1.6), uuid1 uses Random.RandomDevice as

the default rng. However, this is an implementation detail that may change in the future.

Julia 1.6

The output of uuid1 does not depend on GLOBAL_RNG as of Julia 1.6.

Examples

julia> rng = MersenneTwister(1234);

julia> uuid1(rng)

UUID("cfc395e8-590f-11e8-1f13-43a2532b2fa8")

UUIDs.uuid4 – Function.

uuid4([rng::AbstractRNG]) -> UUID

Generates a version 4 (random or pseudo-random) universally unique identifier (UUID), as specified by

RFC 4122.

The default rng used by uuid4 is not GLOBAL_RNG and every invocation of uuid4() without an argument

should be expected to return a unique identifier. Importantly, the outputs of uuid4 do not repeat even

when Random.seed!(seed) is called. Currently (as of Julia 1.6), uuid4 uses Random.RandomDevice as

the default rng. However, this is an implementation detail that may change in the future.

Julia 1.6

The output of uuid4 does not depend on GLOBAL_RNG as of Julia 1.6.

1520

CHAPTER 100. UUIDS 1521

Examples

julia> rng = MersenneTwister(1234);

julia> uuid4(rng)

UUID("7a052949-c101-4ca3-9a7e-43a2532b2fa8")

UUIDs.uuid5 – Function.

uuid5(ns::UUID, name::String) -> UUID

Generates a version 5 (namespace and domain-based) universally unique identifier (UUID), as specified

by RFC 4122.

Julia 1.1

This function requires at least Julia 1.1.

Examples

julia> rng = MersenneTwister(1234);

julia> u4 = uuid4(rng)

UUID("7a052949-c101-4ca3-9a7e-43a2532b2fa8")

julia> u5 = uuid5(u4, "julia")

UUID("086cc5bb-2461-57d8-8068-0aed7f5b5cd1")

UUIDs.uuid_version – Function.

uuid_version(u::UUID) -> Int

Inspects the given UUID and returns its version (see RFC 4122).

Examples

julia> uuid_version(uuid4())

4

https://www.ietf.org/rfc/rfc4122

Chapter 101

Unicode

Unicode.julia_chartransform – Function.

Unicode.julia_chartransform(c::Union{Char,Integer})

Map the Unicode character (Char) or codepoint (Integer) c to the corresponding "equivalent" character

or codepoint, respectively, according to the custom equivalence used within the Julia parser (in addition

to NFC normalization).

For example, 'µ' (U+00B5 micro) is treated as equivalent to 'μ' (U+03BC mu) by Julia's parser, so

julia_chartransform performs this transformation while leaving other characters unchanged:

julia> Unicode.julia_chartransform('µ')

'μ': Unicode U+03BC (category Ll: Letter, lowercase)

julia> Unicode.julia_chartransform('x')

'x': ASCII/Unicode U+0078 (category Ll: Letter, lowercase)

julia_chartransform is mainly useful for passing to the Unicode.normalize function in order to

mimic the normalization used by the Julia parser:

julia> s = "µö "

"µö "

julia> s2 = Unicode.normalize(s, compose=true, stable=true,

chartransform=Unicode.julia_chartransform)↪→

"μö"

julia> collect(s2)

2-element Vector{Char}:

'μ': Unicode U+03BC (category Ll: Letter, lowercase)

'ö': Unicode U+00F6 (category Ll: Letter, lowercase)

julia> s2 == string(Meta.parse(s))

true

Julia 1.8

This function was introduced in Julia 1.8.

1522

CHAPTER 101. UNICODE 1523

Unicode.isassigned – Function.

Unicode.isassigned(c) -> Bool

Return true if the given char or integer is an assigned Unicode code point.

Examples

julia> Unicode.isassigned(101)

true

julia> Unicode.isassigned('\x01')

true

Unicode.isequal_normalized – Function.

isequal_normalized(s1::AbstractString, s2::AbstractString; casefold=false, stripmark=false,

chartransform=identity)↪→

Return whether s1 and s2 are canonically equivalent Unicode strings. If casefold=true, ignores case

(performs Unicode case-folding); if stripmark=true, strips diacritical marks and other combining char-

acters.

As with Unicode.normalize, you can also pass an arbitrary function via the chartransform keyword

(mapping Integer codepoints to codepoints) to perform custom normalizations, such as Unicode.julia_chartransform.

Julia 1.8

The isequal_normalized function was added in Julia 1.8.

Examples

For example, the string "noël" can be constructed in two canonically equivalent ways in Unicode,

depending on whether "ë" is formed from a single codepoint U+00EB or from the ASCII character 'e'

followed by the U+0308 combining-diaeresis character.

julia> s1 = "noël"

"noël"

julia> s2 = "noë l"

"noë l"

julia> s1 == s2

false

julia> isequal_normalized(s1, s2)

true

julia> isequal_normalized(s1, "noel", stripmark=true)

true

julia> isequal_normalized(s1, "NOËL", casefold=true)

true

Unicode.normalize – Function.

CHAPTER 101. UNICODE 1524

Unicode.normalize(s::AbstractString; keywords...)

Unicode.normalize(s::AbstractString, normalform::Symbol)

Normalize the string s. By default, canonical composition (compose=true) is performed without en-

suring Unicode versioning stability (compat=false), which produces the shortest possible equivalent

string but may introduce composition characters not present in earlier Unicode versions.

Alternatively, one of the four "normal forms" of the Unicode standard can be specified: normalform

can be :NFC, :NFD, :NFKC, or :NFKD. Normal forms C (canonical composition) and D (canonical decom-

position) convert different visually identical representations of the same abstract string into a single

canonical form, with form C being more compact. Normal forms KC and KD additionally canonicalize

"compatibility equivalents": they convert characters that are abstractly similar but visually distinct into

a single canonical choice (e.g. they expand ligatures into the individual characters), with form KC being

more compact.

Alternatively, finer control and additional transformationsmay be obtained by calling Unicode.normalize(s;

keywords...), where any number of the following boolean keywords options (which all default to false

except for compose) are specified:

• compose=false: do not perform canonical composition

• decompose=true: do canonical decomposition instead of canonical composition (compose=true

is ignored if present)

• compat=true: compatibility equivalents are canonicalized

• casefold=true: perform Unicode case folding, e.g. for case-insensitive string comparison

• newline2lf=true, newline2ls=true, or newline2ps=true: convert various newline sequences

(LF, CRLF, CR, NEL) into a linefeed (LF), line-separation (LS), or paragraph-separation (PS) char-

acter, respectively

• stripmark=true: strip diacritical marks (e.g. accents)

• stripignore=true: strip Unicode's "default ignorable" characters (e.g. the soft hyphen or the

left-to-right marker)

• stripcc=true: strip control characters; horizontal tabs and form feeds are converted to spaces;

newlines are also converted to spaces unless a newline-conversion flag was specified

• rejectna=true: throw an error if unassigned code points are found

• stable=true: enforce Unicode versioning stability (never introduce characters missing from ear-

lier Unicode versions)

You can also use the chartransform keyword (which defaults to identity) to pass an arbitrary function

mapping Integer codepoints to codepoints, which is is called on each character in s as it is processed,

in order to perform arbitrary additional normalizations. For example, by passing chartransform=Unicode.julia_chartransform,

you can apply a few Julia-specific character normalizations that are performed by Julia when parsing

identifiers (in addition to NFC normalization: compose=true, stable=true).

For example, NFKC corresponds to the options compose=true, compat=true, stable=true.

Examples

julia> "é" == Unicode.normalize("é ") #LHS: Unicode U+00e9, RHS: U+0065 & U+0301

true

CHAPTER 101. UNICODE 1525

julia> "μ" == Unicode.normalize("µ", compat=true) #LHS: Unicode U+03bc, RHS: Unicode U+00b5

true

julia> Unicode.normalize("JuLiA", casefold=true)

"julia"

julia> Unicode.normalize("JúLiA", stripmark=true)

"JuLiA"

Julia 1.8

The chartransform keyword argument requires Julia 1.8.

Unicode.graphemes – Function.

graphemes(s::AbstractString) -> GraphemeIterator

Return an iterator over substrings of s that correspond to the extended graphemes in the string, as

defined by Unicode UAX #29. (Roughly, these are what users would perceive as single characters,

even though they may contain more than one codepoint; for example a letter combined with an accent

mark is a single grapheme.)

graphemes(s::AbstractString, m:n) -> SubString

Returns a SubString of s consisting of the m-th through n-th graphemes of the string s, where the

second argument m:n is an integer-valued AbstractUnitRange.

Loosely speaking, this corresponds to the m:n-th user-perceived "characters" in the string. For example:

julia> s = graphemes("exposé ", 3:6)

"posé "

julia> collect(s)

5-element Vector{Char}:

'p': ASCII/Unicode U+0070 (category Ll: Letter, lowercase)

'o': ASCII/Unicode U+006F (category Ll: Letter, lowercase)

's': ASCII/Unicode U+0073 (category Ll: Letter, lowercase)

'e': ASCII/Unicode U+0065 (category Ll: Letter, lowercase)

''́: Unicode U+0301 (category Mn: Mark, nonspacing)

This consists of the 3rd to 7th codepoints (Chars) in "exposé ", because the grapheme "é " is actually

two Unicode codepoints (an 'e' followed by an acute-accent combining character U+0301).

Because finding grapheme boundaries requires iteration over the string contents, the graphemes(s,

m:n) function requires time proportional to the length of the string (number of codepoints) before the

end of the substring.

Julia 1.9

The m:n argument of graphemes requires Julia 1.9.

Part IV

Developer Documentation

1526

Chapter 102

Documentation of Julia’s Internals

102.1 Initialization of the Julia runtime

How does the Julia runtime execute julia -e 'println("Hello World!")' ?

main()

Execution starts at main() in cli/loader_exe.c, which calls jl_load_repl() in cli/loader_lib.c which

loads a few libraries, eventually calling jl_repl_entrypoint() in src/jlapi.c.

jl_repl_entrypoint() calls libsupport_init() to set the C library locale and to initialize the "ios" library

(see ios_init_stdstreams() and Legacy ios.c library).

Next jl_parse_opts() is called to process command line options. Note that jl_parse_opts() only deals

with options that affect code generation or early initialization. Other options are handled later by exec_options()

in base/client.jl.

jl_parse_opts() stores command line options in the global jl_options struct.

julia_init()

julia_init() in init.c is called by main() and calls _julia_init() in init.c.

_julia_init() begins by calling libsupport_init() again (it does nothing the second time).

restore_signals() is called to zero the signal handler mask.

jl_resolve_sysimg_location() searches configured paths for the base system image. See Building the

Julia system image.

jl_gc_init() sets up allocation pools and lists for weak refs, preserved values and finalization.

jl_init_frontend() loads and initializes a pre-compiled femtolisp image containing the scanner/parser.

jl_init_types() creates jl_datatype_t type description objects for the built-in types defined in julia.h.

e.g.

jl_any_type = jl_new_abstracttype(jl_symbol("Any"), core, NULL, jl_emptysvec);

jl_any_type->super = jl_any_type;

jl_type_type = jl_new_abstracttype(jl_symbol("Type"), core, jl_any_type, jl_emptysvec);

1527

https://github.com/JuliaLang/julia/blob/master/cli/loader_exe.c
https://github.com/JuliaLang/julia/blob/master/cli/loader_lib.c
https://github.com/JuliaLang/julia/blob/master/src/jlapi.c
https://github.com/JuliaLang/julia/blob/master/src/support/libsupportinit.c
https://github.com/JuliaLang/julia/blob/master/src/support/ios.c
https://github.com/JuliaLang/julia/blob/master/src/jloptions.c
https://github.com/JuliaLang/julia/blob/master/base/client.jl
https://github.com/JuliaLang/julia/blob/master/base/client.jl
https://github.com/JuliaLang/julia/blob/master/src/julia.h
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/signals-unix.c
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/gc.c
https://github.com/JuliaLang/julia/blob/master/src/ast.c
https://github.com/JuliaLang/julia/blob/master/src/jltypes.c
https://github.com/JuliaLang/julia/blob/master/src/julia.h

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1528

jl_int32_type = jl_new_primitivetype(jl_symbol("Int32"), core,

jl_any_type, jl_emptysvec, 32);

jl_init_tasks() creates the jl_datatype_t* jl_task_type object; initializes the global jl_root_task

struct; and sets jl_current_task to the root task.

jl_init_codegen() initializes the LLVM library.

jl_init_serializer() initializes 8-bit serialization tags for builtin jl_value_t values.

If there is no sysimg file (!jl_options.image_file) then the Core and Main modules are created and

boot.jl is evaluated:

jl_core_module = jl_new_module(jl_symbol("Core")) creates the Julia Core module.

jl_init_intrinsic_functions() creates a new Juliamodule Intrinsics containing constant jl_intrinsic_type

symbols. These define an integer code for each intrinsic function. emit_intrinsic() translates these

symbols into LLVM instructions during code generation.

jl_init_primitives() hooks C functions up to Julia function symbols. e.g. the symbol Core.:(===)() is

bound to C function pointer jl_f_is() by calling add_builtin_func("===", jl_f_is).

jl_new_main_module() creates the global "Main" module and sets jl_current_task->current_module

= jl_main_module.

Note: _julia_init() then sets jl_root_task->current_module = jl_core_module. jl_root_task is

an alias of jl_current_task at this point, so the current_module set by jl_new_main_module() above

is overwritten.

jl_load("boot.jl", sizeof("boot.jl")) calls jl_parse_eval_allwhich repeatedly calls jl_toplevel_eval_flex()

to execute boot.jl. <!– TODO – drill down into eval? –>

jl_get_builtin_hooks() initializes global C pointers to Julia globals defined in boot.jl.

jl_init_box_caches() pre-allocates global boxed integer value objects for values up to 1024. This speeds

up allocation of boxed ints later on. e.g.:

jl_value_t *jl_box_uint8(uint32_t x)

{

return boxed_uint8_cache[(uint8_t)x];

}

_julia_init() iterates over the jl_core_module->bindings.table looking for jl_datatype_t values

and sets the type name's module prefix to jl_core_module.

jl_add_standard_imports(jl_main_module) does "using Base" in the "Main" module.

Note: _julia_init() now reverts to jl_root_task->current_module = jl_main_module as it was be-

fore being set to jl_core_module above.

Platform specific signal handlers are initialized for SIGSEGV (OSX, Linux), and SIGFPE (Windows).

Other signals (SIGINFO, SIGBUS, SIGILL, SIGTERM, SIGABRT, SIGQUIT, SIGSYS and SIGPIPE) are hooked

up to sigdie_handler() which prints a backtrace.

jl_init_restored_module() calls jl_module_run_initializer() for each deserialized module to run

the __init__() function.

https://github.com/JuliaLang/julia/blob/master/src/task.c
https://github.com/JuliaLang/julia/blob/master/src/codegen.cpp
https://llvm.org
https://github.com/JuliaLang/julia/blob/master/src/staticdata.c
https://github.com/JuliaLang/julia/blob/master/src/intrinsics.cpp
https://github.com/JuliaLang/julia/blob/master/src/intrinsics.cpp
https://github.com/JuliaLang/julia/blob/master/src/intrinsics.cpp
https://github.com/JuliaLang/julia/blob/master/src/builtins.c
https://github.com/JuliaLang/julia/blob/master/src/toplevel.c
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/ast.c
https://github.com/JuliaLang/julia/blob/master/src/toplevel.c
https://github.com/JuliaLang/julia/blob/master/base/boot.jl
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/datatype.c
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/toplevel.c
https://github.com/JuliaLang/julia/blob/master/src/signals-unix.c
https://github.com/JuliaLang/julia/blob/master/src/staticdata.c
https://github.com/JuliaLang/julia/blob/master/src/module.c

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1529

Finally sigint_handler() is hooked up to SIGINT and calls jl_throw(jl_interrupt_exception).

_julia_init() then returns back to main() in cli/loader_exe.c and main() calls repl_entrypoint(argc,

(char**)argv).

sysimg

If there is a sysimg file, it contains a pre-cooked image of the Core and Main modules (and

whatever else is created by boot.jl). See Building the Julia system image.

jl_restore_system_image() deserializes the saved sysimg into the current Julia runtime en-

vironment and initialization continues after jl_init_box_caches() below...

Note: jl_restore_system_image() (and staticdata.c in general) uses the Legacy ios.c

library.

repl_entrypoint()

repl_entrypoint() loads the contents of argv[] into Base.ARGS.

If a .jl "program" file was supplied on the command line, then exec_program() calls jl_load(program,len)

which calls jl_parse_eval_all which repeatedly calls jl_toplevel_eval_flex() to execute the pro-

gram.

However, in our example (julia -e 'println("Hello World!")'), jl_get_global(jl_base_module,

jl_symbol("_start")) looks up Base._start and jl_apply() executes it.

Base._start

Base._start calls Base.exec_optionswhich calls jl_parse_input_line("println("Hello World!")")

to create an expression object and Core.eval(Main, ex) to execute the parsed expression ex in the

module context of Main.

Core.eval

Core.eval(Main, ex) calls jl_toplevel_eval_in(m, ex), which calls jl_toplevel_eval_flex. jl_toplevel_eval_flex

implements a simple heuristic to decide whether to compile a given code thunk or run it by interpreter.

When given println("Hello World!"), it would usually decide to run the code by interpreter, in which

case it calls jl_interpret_toplevel_thunk, which then calls eval_body.

The stack dump below shows how the interpreter works its way through variousmethods of Base.println()

and Base.print() before arriving at write(s::IO, a::Array{T}) where Twhich does ccall(jl_uv_write()).

jl_uv_write() calls uv_write() to write "Hello World!" to JL_STDOUT. See Libuv wrappers for stdio.:

Hello World!

Since our example has just one function call, which has done its job of printing "Hello World!", the stack

now rapidly unwinds back to main().

jl_atexit_hook()

main() calls jl_atexit_hook(). This calls Base._atexit, then calls jl_gc_run_all_finalizers() and

cleans up libuv handles.

https://github.com/JuliaLang/julia/blob/master/src/signals-unix.c
https://github.com/JuliaLang/julia/blob/master/cli/loader_exe.c
https://github.com/JuliaLang/julia/blob/master/src/staticdata.c
https://github.com/JuliaLang/julia/blob/master/src/staticdata.c
https://github.com/JuliaLang/julia/blob/master/src/jlapi.c
https://github.com/JuliaLang/julia/blob/master/src/jlapi.c
https://github.com/JuliaLang/julia/blob/master/src/toplevel.c
https://github.com/JuliaLang/julia/blob/master/src/ast.c
https://github.com/JuliaLang/julia/blob/master/src/toplevel.c
https://github.com/JuliaLang/julia/blob/master/src/module.c
https://github.com/JuliaLang/julia/blob/master/src/module.c
https://github.com/JuliaLang/julia/blob/master/base/client.jl
https://github.com/JuliaLang/julia/blob/master/src/julia.h
https://github.com/JuliaLang/julia/blob/master/base/client.jl
https://github.com/JuliaLang/julia/blob/master/base/client.jl
https://github.com/JuliaLang/julia/blob/master/src/ast.c
https://github.com/JuliaLang/julia/blob/master/src/toplevel.c
https://github.com/JuliaLang/julia/blob/master/src/toplevel.c
https://github.com/JuliaLang/julia/blob/master/src/interpreter.c
https://github.com/JuliaLang/julia/blob/master/src/interpreter.c
https://github.com/JuliaLang/julia/blob/master/base/stream.jl
https://github.com/JuliaLang/julia/blob/master/src/jl_uv.c
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/gc.c

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1530

Stack frame Source code Notes

jl_uv_write() jl_uv.c called though ccall

julia_write_282942 stream.jl function write!(s::IO, a::Array{T}) where T

julia_print_284639 ascii.jl print(io::IO, s::String) = (write(io, s);

nothing)

jlcall_print_284639

jl_apply() julia.h

jl_trampoline() builtins.c

jl_apply() julia.h

jl_apply_generic() gf.c Base.print(Base.TTY, String)

jl_apply() julia.h

jl_trampoline() builtins.c

jl_apply() julia.h

jl_apply_generic() gf.c Base.print(Base.TTY, String, Char, Char...)

jl_apply() julia.h

jl_f_apply() builtins.c

jl_apply() julia.h

jl_trampoline() builtins.c

jl_apply() julia.h

jl_apply_generic() gf.c Base.println(Base.TTY, String, String...)

jl_apply() julia.h

jl_trampoline() builtins.c

jl_apply() julia.h

jl_apply_generic() gf.c Base.println(String,)

jl_apply() julia.h

do_call() interpreter.c

eval_body() interpreter.c

jl_interpret_toplevel_thunkinterpreter.c

jl_toplevel_eval_flex toplevel.c

jl_toplevel_eval_in toplevel.c

Core.eval boot.jl

julia_save()

Finally, main() calls julia_save(), which if requested on the command line, saves the runtime state to a

new system image. See jl_compile_all() and jl_save_system_image().

102.2 Julia ASTs

Julia has two representations of code. First there is a surface syntax AST returned by the parser (e.g.

the Meta.parse function), and manipulated by macros. It is a structured representation of code as it is

written, constructed by julia-parser.scm from a character stream. Next there is a lowered form, or

IR (intermediate representation), which is used by type inference and code generation. In the lowered

form there are fewer types of nodes, all macros are expanded, and all control flow is converted to explicit

branches and sequences of statements. The lowered form is constructed by julia-syntax.scm.

First we will focus on the AST, since it is needed to write macros.

https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/gf.c
https://github.com/JuliaLang/julia/blob/master/src/staticdata.c

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1531

Surface syntax AST

Front end ASTs consist almost entirely of Exprs and atoms (e.g. symbols, numbers). There is generally a

different expression head for each visually distinct syntactic form. Examples will be given in s-expression

syntax. Each parenthesized list corresponds to an Expr, where the first element is the head. For example

(call f x) corresponds to Expr(:call, :f, :x) in Julia.

Calls

Input AST

f(x) (call f x)

f(x, y=1, z=2) (call f x (kw y 1) (kw z 2))

f(x; y=1) (call f (parameters (kw y 1)) x)

f(x...) (call f (... x))

do syntax:

f(x) do a,b

body

end

parses as (do (call f x) (-> (tuple a b) (block body))).

Operators

Most uses of operators are just function calls, so they are parsed with the head call. However some

operators are special forms (not necessarily function calls), and in those cases the operator itself is the

expression head. In julia-parser.scm these are referred to as "syntactic operators". Some operators (+ and

*) use N-ary parsing; chained calls are parsed as a single N-argument call. Finally, chains of comparisons

have their own special expression structure.

Input AST

x+y (call + x y)

a+b+c+d (call + a b c d)

2x (call * 2 x)

a&&b (&& a b)

x += 1 (+= x 1)

a ? 1 : 2 (if a 1 2)

a,b (tuple a b)

a==b (call == a b)

1<i<=n (comparison 1 < i <= n)

a.b (. a (quote b))

a.(b) (. a (tuple b))

Bracketed forms

Macros

Strings

Doc string syntax:

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1532

Input AST

a[i] (ref a i)

t[i;j] (typed_vcat t i j)

t[i j] (typed_hcat t i j)

t[a b; c d] (typed_vcat t (row a b) (row c d))

t[a b;;; c d] (typed_ncat t 3 (row a b) (row c d))

a{b} (curly a b)

a{b;c} (curly a (parameters c) b)

[x] (vect x)

[x,y] (vect x y)

[x;y] (vcat x y)

[x y] (hcat x y)

[x y; z t] (vcat (row x y) (row z t))

[x;y;; z;t;;;] (ncat 3 (nrow 2 (nrow 1 x y) (nrow 1 z t)))

[x for y in z, a in b] (comprehension (generator x (= y z) (= a b)))

T[x for y in z] (typed_comprehension T (generator x (= y z)))

(a, b, c) (tuple a b c)

(a; b; c) (block a b c)

Input AST

@m x y (macrocall @m (line) x y)

Base.@m x y (macrocall (. Base (quote @m)) (line) x y)

@Base.m x y (macrocall (. Base (quote @m)) (line) x y)

Input AST

"a" "a"

x"y" (macrocall @x_str (line) "y")

x"y"z (macrocall @x_str (line) "y" "z")

"x = $x" (string "x = " x)

`a b c` (macrocall @cmd (line) "a b c")

"some docs"

f(x) = x

parses as (macrocall (|.| Core '@doc) (line) "some docs" (= (call f x) (block x))).

Imports and such

Input AST

import a (import (. a))

import a.b.c (import (. a b c))

import ...a (import (. . . . a))

import a.b, c.d (import (. a b) (. c d))

import Base: x (import (: (. Base) (. x)))

import Base: x, y (import (: (. Base) (. x) (. y)))

export a, b (export a b)

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1533

using has the same representation as import, but with expression head :using instead of :import.

Numbers

Julia supports more number types than many scheme implementations, so not all numbers are represented

directly as scheme numbers in the AST.

Input AST

11111111111111111111 (macrocall @int128_str nothing "11111111111111111111")

0xfffffffffffffffff (macrocall @uint128_str nothing "0xfffffffffffffffff")

1111...many digits... (macrocall @big_str nothing "1111....")

Block forms

A block of statements is parsed as (block stmt1 stmt2 ...).

If statement:

if a

b

elseif c

d

else

e

end

parses as:

(if a (block (line 2) b)

(elseif (block (line 3) c) (block (line 4) d)

(block (line 6 e))))

A while loop parses as (while condition body).

A for loop parses as (for (= var iter) body). If there is more than one iteration specification, they are

parsed as a block: (for (block (= v1 iter1) (= v2 iter2)) body).

break and continue are parsed as 0-argument expressions (break) and (continue).

let is parsed as (let (= var val) body) or (let (block (= var1 val1) (= var2 val2) ...) body),

like for loops.

A basic function definition is parsed as (function (call f x) body). A more complex example:

function f(x::T; k = 1) where T

return x+1

end

parses as:

(function (where (call f (parameters (kw k 1))

(:: x T))

T)

(block (line 2) (return (call + x 1))))

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1534

Type definition:

mutable struct Foo{T<:S}

x::T

end

parses as:

(struct true (curly Foo (<: T S))

(block (line 2) (:: x T)))

The first argument is a boolean telling whether the type is mutable.

try blocks parse as (try try_block var catch_block finally_block). If no variable is present after

catch, var is #f. If there is no finally clause, then the last argument is not present.

Quote expressions

Julia source syntax forms for code quoting (quote and :()) support interpolation with $. In Lisp terminol-

ogy, this means they are actually "backquote" or "quasiquote" forms. Internally, there is also a need for

code quoting without interpolation. In Julia's scheme code, non-interpolating quote is represented with the

expression head inert.

inert expressions are converted to Julia QuoteNode objects. These objects wrap a single value of any type,

and when evaluated simply return that value.

A quote expression whose argument is an atom also gets converted to a QuoteNode.

Line numbers

Source location information is represented as (line line_num file_name) where the third component is

optional (and omitted when the current line number, but not file name, changes).

These expressions are represented as LineNumberNodes in Julia.

Macros

Macro hygiene is represented through the expression head pair escape and hygienic-scope. The result of

a macro expansion is automatically wrapped in (hygienic-scope block module), to represent the result

of the new scope. The user can insert (escape block) inside to interpolate code from the caller.

Lowered form

Lowered form (IR) is more important to the compiler, since it is used for type inference, optimizations

like inlining, and code generation. It is also less obvious to the human, since it results from a significant

rearrangement of the input syntax.

In addition to Symbols and some number types, the following data types exist in lowered form:

• Expr

Has a node type indicated by the head field, and an args field which is a Vector{Any} of subexpres-

sions. While almost every part of a surface AST is represented by an Expr, the IR uses only a limited

number of Exprs, mostly for calls and some top-level-only forms.

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1535

• SlotNumber

Identifies arguments and local variables by consecutive numbering. It has an integer-valued id field

giving the slot index. The types of these slots can be found in the slottypes field of their CodeInfo

object. When a slot has different types at different uses and thus requires per-use type annotations,

they are converted to temporary Core.Compiler.TypedSlot object. This object has an additional

typ field as well as the id field. Note that Core.Compiler.TypedSlot only appears in an unoptimized

lowered form that is scheduled for optimization, and it never appears elsewhere.

• Argument

The same as SlotNumber, but appears only post-optimization. Indicates that the referenced slot is

an argument of the enclosing function.

• CodeInfo

Wraps the IR of a group of statements. Its code field is an array of expressions to execute.

• GotoNode

Unconditional branch. The argument is the branch target, represented as an index in the code array

to jump to.

• GotoIfNot

Conditional branch. If the cond field evaluates to false, goes to the index identified by the dest field.

• ReturnNode

Returns its argument (the val field) as the value of the enclosing function. If the val field is unde-

fined, then this represents an unreachable statement.

• QuoteNode

Wraps an arbitrary value to reference as data. For example, the function f() = :a contains a

QuoteNodewhose value field is the symbol a, in order to return the symbol itself instead of evaluating

it.

• GlobalRef

Refers to global variable name in module mod.

• SSAValue

Refers to a consecutively-numbered (starting at 1) static single assignment (SSA) variable inserted

by the compiler. The number (id) of an SSAValue is the code array index of the expression whose

value it represents.

• NewvarNode

Marks a point where a variable (slot) is created. This has the effect of resetting a variable to unde-

fined.

Expr types

These symbols appear in the head field of Exprs in lowered form.

• call

Function call (dynamic dispatch). args[1] is the function to call, args[2:end] are the arguments.

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1536

• invoke

Function call (static dispatch). args[1] is the MethodInstance to call, args[2:end] are the argu-

ments (including the function that is being called, at args[2]).

• static_parameter

Reference a static parameter by index.

• =

Assignment. In the IR, the first argument is always a SlotNumber or a GlobalRef.

• method

Adds a method to a generic function and assigns the result if necessary.

Has a 1-argument form and a 3-argument form. The 1-argument form arises from the syntax function

foo end. In the 1-argument form, the argument is a symbol. If this symbol already names a function

in the current scope, nothing happens. If the symbol is undefined, a new function is created and as-

signed to the identifier specified by the symbol. If the symbol is defined but names a non-function,

an error is raised. The definition of "names a function" is that the binding is constant, and refers to

an object of singleton type. The rationale for this is that an instance of a singleton type uniquely

identifies the type to add the method to. When the type has fields, it wouldn't be clear whether the

method was being added to the instance or its type.

The 3-argument form has the following arguments:

– args[1]

A function name, or nothing if unknown or unneeded. If a symbol, then the expression first

behaves like the 1-argument form above. This argument is ignored from then on. It can be

nothing when methods are added strictly by type, (::T)(x) = x, or when a method is being

added to an existing function, MyModule.f(x) = x.

– args[2]

A SimpleVector of argument type data. args[2][1] is a SimpleVector of the argument types,

and args[2][2] is a SimpleVector of type variables corresponding to the method's static

parameters.

– args[3]

A CodeInfo of the method itself. For "out of scope" method definitions (adding a method to a

function that also has methods defined in different scopes) this is an expression that evaluates

to a :lambda expression.

• struct_type

A 7-argument expression that defines a new struct:

– args[1]

The name of the struct

– args[2]

A call expression that creates a SimpleVector specifying its parameters

– args[3]

A call expression that creates a SimpleVector specifying its fieldnames

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1537

– args[4]

A Symbol, GlobalRef, or Expr specifying the supertype (e.g., :Integer, GlobalRef(Core,

:Any), or :(Core.apply_type(AbstractArray, T, N)))

– args[5]

A call expression that creates a SimpleVector specifying its fieldtypes

– args[6]

A Bool, true if mutable

– args[7]

The number of arguments to initialize. This will be the number of fields, or theminimum number

of fields called by an inner constructor's new statement.

• abstract_type

A 3-argument expression that defines a new abstract type. The arguments are the same as argu-

ments 1, 2, and 4 of struct_type expressions.

• primitive_type

A 4-argument expression that defines a new primitive type. Arguments 1, 2, and 4 are the same as

struct_type. Argument 3 is the number of bits.

Julia 1.5

struct_type, abstract_type, and primitive_type were removed in Julia 1.5 and re-

placed by calls to new builtins.

• global

Declares a global binding.

• const

Declares a (global) variable as constant.

• new

Allocates a new struct-like object. First argument is the type. The new pseudo-function is lowered to

this, and the type is always inserted by the compiler. This is very much an internal-only feature, and

does no checking. Evaluating arbitrary new expressions can easily segfault.

• splatnew

Similar to new, except field values are passed as a single tuple. Works similarly to splat(new) if new

were a first-class function, hence the name.

• isdefined

Expr(:isdefined, :x) returns a Bool indicating whether x has already been defined in the current

scope.

• the_exception

Yields the caught exception inside a catch block, as returned by jl_current_exception().

• enter

Enters an exception handler (setjmp). args[1] is the label of the catch block to jump to on error.

Yields a token which is consumed by pop_exception.

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1538

• leave

Pop exception handlers. args[1] is the number of handlers to pop.

• pop_exception

Pop the stack of current exceptions back to the state at the associated enter when leaving a catch

block. args[1] contains the token from the associated enter.

Julia 1.1

pop_exception is new in Julia 1.1.

• inbounds

Controls turning bounds checks on or off. A stack is maintained; if the first argument of this expres-

sion is true or false (truemeans bounds checks are disabled), it is pushed onto the stack. If the first

argument is :pop, the stack is popped.

• boundscheck

Has the value false if inlined into a section of code marked with @inbounds, otherwise has the value

true.

• loopinfo

Marks the end of the a loop. Contains metadata that is passed to LowerSimdLoop to either mark the

inner loop of @simd expression, or to propagate information to LLVM loop passes.

• copyast

Part of the implementation of quasi-quote. The argument is a surface syntax AST that is simply

copied recursively and returned at run time.

• meta

Metadata. args[1] is typically a symbol specifying the kind of metadata, and the rest of the argu-

ments are free-form. The following kinds of metadata are commonly used:

– :inline and :noinline: Inlining hints.

• foreigncall

Statically-computed container for ccall information. The fields are:

– args[1] : name

The expression that'll be parsed for the foreign function.

– args[2]::Type : RT

The (literal) return type, computed statically when the containing method was defined.

– args[3]::SimpleVector (of Types) : AT

The (literal) vector of argument types, computed statically when the containing method was

defined.

– args[4]::Int : nreq

The number of required arguments for a varargs function definition.

– args[5]::QuoteNode{Symbol} : calling convention

The calling convention for the call.

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1539

– args[6:5+length(args[3])] : arguments

The values for all the arguments (with types of each given in args[3]).

– args[6+length(args[3])+1:end] : gc-roots

The additional objects that may need to be gc-rooted for the duration of the call. See Working

with LLVM for where these are derived from and how they get handled.

• new_opaque_closure

Constructs a new opaque closure. The fields are:

– args[1] : signature

The function signature of the opaque closure. Opaque closures don't participate in dispatch,

but the input types can be restricted.

– args[2] : isva

Indicates whether the closure accepts varargs.

– args[3] : lb

Lower bound on the output type. (Defaults to Union{})

– args[4] : ub

Upper bound on the output type. (Defaults to Any)

– args[5] : method

The actual method as an opaque_closure_method expression.

– args[6:end] : captures

The values captured by the opaque closure.

Julia 1.7

Opaque closures were added in Julia 1.7

Method

A unique'd container describing the shared metadata for a single method.

• name, module, file, line, sig

Metadata to uniquely identify the method for the computer and the human.

• ambig

Cache of other methods that may be ambiguous with this one.

• specializations

Cache of all MethodInstance ever created for this Method, used to ensure uniqueness. Uniqueness

is required for efficiency, especially for incremental precompile and tracking of method invalidation.

• source

The original source code (if available, usually compressed).

• generator

A callable object which can be executed to get specialized source for a specific method signature.

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1540

• roots

Pointers to non-AST things that have been interpolated into the AST, required by compression of the

AST, type-inference, or the generation of native code.

• nargs, isva, called, is_for_opaque_closure,

Descriptive bit-fields for the source code of this Method.

• primary_world

The world age that "owns" this Method.

MethodInstance

A unique'd container describing a single callable signature for a Method. See especially Propermaintenance

and care of multi-threading locks for important details on how to modify these fields safely.

• specTypes

The primary key for this MethodInstance. Uniqueness is guaranteed through a def.specializations

lookup.

• def

The Method that this function describes a specialization of. Or a Module, if this is a top-level Lambda

expanded in Module, and which is not part of a Method.

• sparam_vals

The values of the static parameters in specTypes indexed by def.sparam_syms. For the MethodInstance

at Method.unspecialized, this is the empty SimpleVector. But for a runtime MethodInstance from

the MethodTable cache, this will always be defined and indexable.

• uninferred

The uncompressed source code for a toplevel thunk. Additionally, for a generated function, this is

one of many places that the source code might be found.

• backedges

We store the reverse-list of cache dependencies for efficient tracking of incremental reanalysis/re-

compilation work that may be needed after a new method definitions. This works by keeping a list

of the other MethodInstance that have been inferred or optimized to contain a possible call to this

MethodInstance. Those optimization results might be stored somewhere in the cache, or it might

have been the result of something we didn't want to cache, such as constant propagation. Thus

we merge all of those backedges to various cache entries here (there's almost always only the one

applicable cache entry with a sentinel value for max_world anyways).

• cache

Cache of CodeInstance objects that share this template instantiation.

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1541

CodeInstance

• def

The MethodInstance that this cache entry is derived from.

• rettype/rettype_const

The inferred return type for the specFunctionObject field, which (in most cases) is also the com-

puted return type for the function in general.

• inferred

May contain a cache of the inferred source for this function, or it could be set to nothing to just

indicate rettype is inferred.

• ftpr

The generic jlcall entry point.

• jlcall_api

The ABI to use when calling fptr. Some significant ones include:

– 0 - Not compiled yet

– 1 - JL_CALLABLE jl_value_t *(*)(jl_function_t *f, jl_value_t *args[nargs], uint32_t

nargs)

– 2 - Constant (value stored in rettype_const)

– 3 -With Static-parameters forwarded jl_value_t *(*)(jl_svec_t *sparams, jl_function_t

*f, jl_value_t *args[nargs], uint32_t nargs)

– 4 - Run in interpreter jl_value_t *(*)(jl_method_instance_t *meth, jl_function_t *f,

jl_value_t *args[nargs], uint32_t nargs)

• min_world / max_world

The range of world ages for which this method instance is valid to be called. If max_world is the

special token value -1, the value is not yet known. It may continue to be used until we encounter a

backedge that requires us to reconsider.

CodeInfo

A (usually temporary) container for holding lowered source code.

• code

An Any array of statements

• slotnames

An array of symbols giving names for each slot (argument or local variable).

• slotflags

A UInt8 array of slot properties, represented as bit flags:

– 0x02 - assigned (only false if there are no assignment statements with this var on the left)

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1542

– 0x08 - used (if there is any read or write of the slot)

– 0x10 - statically assigned once

– 0x20 - might be used before assigned. This flag is only valid after type inference.

• ssavaluetypes

Either an array or an Int.

If an Int, it gives the number of compiler-inserted temporary locations in the function (the length of

code array). If an array, specifies a type for each location.

• ssaflags

Statement-level flags for each expression in the function. Many of these are reserved, but not yet

implemented:

– 0x01 « 0 = statement is marked as @inbounds

– 0x01 « 1 = statement is marked as @inline

– 0x01 « 2 = statement is marked as @noinline

– 0x01 « 3 = statement is within a block that leads to throw call

– 0x01 « 4 = statement may be removed if its result is unused, in particular it is thus be both

pure and effect free

– 0x01 « 5-6 = <unused>

– 0x01 « 7 = <reserved> has out-of-band info

• linetable

An array of source location objects

• codelocs

An array of integer indices into the linetable, giving the location associated with each statement.

Optional Fields:

• slottypes

An array of types for the slots.

• rettype

The inferred return type of the lowered form (IR). Default value is Any.

• method_for_inference_limit_heuristics

The method_for_inference_heuristicswill expand the givenmethod's generator if necessary dur-

ing inference.

• parent

The MethodInstance that "owns" this object (if applicable).

• edges

Forward edges to method instances that must be invalidated.

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1543

• min_world/max_world

The range of world ages for which this code was valid at the time when it had been inferred.

Boolean properties:

• inferred

Whether this has been produced by type inference.

• inlineable

Whether this should be eligible for inlining.

• propagate_inbounds

Whether this should propagate @inbounds when inlined for the purpose of eliding @boundscheck

blocks.

UInt8 settings:

• constprop

– 0 = use heuristic

– 1 = aggressive

– 2 = none

• purity Constructed from 5 bit flags:

– 0x01 « 0 = this method is guaranteed to return or terminate consistently (:consistent)

– 0x01 « 1 = this method is free from externally semantically visible side effects (:effect_free)

– 0x01 « 2 = this method is guaranteed to not throw an exception (:nothrow)

– 0x01 « 3 = this method is guaranteed to terminate (:terminates_globally)

– 0x01 « 4= the syntactic control flowwithin thismethod is guaranteed to terminate (:terminates_locally)

See the documentation of Base.@assume_effects for more details.

102.3 More about types

If you've used Julia for a while, you understand the fundamental role that types play. Here we try to get

under the hood, focusing particularly on Parametric Types.

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1544

Types and sets (and Any and Union{}/Bottom)

It's perhaps easiest to conceive of Julia's type system in terms of sets. While programsmanipulate individual

values, a type refers to a set of values. This is not the same thing as a collection; for example a Set of

values is itself a single Set value. Rather, a type describes a set of possible values, expressing uncertainty

about which value we have.

A concrete type T describes the set of values whose direct tag, as returned by the typeof function, is T.

An abstract type describes some possibly-larger set of values.

Any describes the entire universe of possible values. Integer is a subset of Any that includes Int, Int8,

and other concrete types. Internally, Julia also makes heavy use of another type known as Bottom, which

can also be written as Union{}. This corresponds to the empty set.

Julia's types support the standard operations of set theory: you can ask whether T1 is a "subset" (subtype)

of T2 with T1 <: T2. Likewise, you intersect two types using typeintersect, take their union with Union,

and compute a type that contains their union with typejoin:

julia> typeintersect(Int, Float64)

Union{}

julia> Union{Int, Float64}

Union{Float64, Int64}

julia> typejoin(Int, Float64)

Real

julia> typeintersect(Signed, Union{UInt8, Int8})

Int8

julia> Union{Signed, Union{UInt8, Int8}}

Union{UInt8, Signed}

julia> typejoin(Signed, Union{UInt8, Int8})

Integer

julia> typeintersect(Tuple{Integer, Float64}, Tuple{Int, Real})

Tuple{Int64, Float64}

julia> Union{Tuple{Integer, Float64}, Tuple{Int, Real}}

Union{Tuple{Int64, Real}, Tuple{Integer, Float64}}

julia> typejoin(Tuple{Integer, Float64}, Tuple{Int, Real})

Tuple{Integer, Real}

While these operations may seem abstract, they lie at the heart of Julia. For example, method dispatch is

implemented by stepping through the items in a method list until reaching one for which the type of the

argument tuple is a subtype of themethod signature. For this algorithm to work, it's important that methods

be sorted by their specificity, and that the search begins with the most specific methods. Consequently,

Julia also implements a partial order on types; this is achieved by functionality that is similar to <:, but with

differences that will be discussed below.

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1545

UnionAll types

Julia's type system can also express an iterated union of types: a union of types over all values of some

variable. This is needed to describe parametric types where the values of some parameters are not known.

For example, Array has two parameters as in Array{Int,2}. If we did not know the element type, we could

write Array{T,2} where T, which is the union of Array{T,2} for all values of T: Union{Array{Int8,2},

Array{Int16,2}, ...}.

Such a type is represented by a UnionAll object, which contains a variable (T in this example, of type

TypeVar), and a wrapped type (Array{T,2} in this example).

Consider the following methods:

f1(A::Array) = 1

f2(A::Array{Int}) = 2

f3(A::Array{T}) where {T<:Any} = 3

f4(A::Array{Any}) = 4

The signature - as described in Function calls - of f3 is a UnionAll typewrapping a tuple type: Tuple{typeof(f3),

Array{T}} where T. All but f4 can be called with a = [1,2]; all but f2 can be called with b = Any[1,2].

Let's look at these types a little more closely:

julia> dump(Array)

UnionAll

var: TypeVar

name: Symbol T

lb: Union{}

ub: Any

body: UnionAll

var: TypeVar

name: Symbol N

lb: Union{}

ub: Any

body: Array{T, N} <: DenseArray{T, N}

This indicates that Array actually names a UnionAll type. There is one UnionAll type for each parameter,

nested. The syntax Array{Int,2} is equivalent to Array{Int}{2}; internally each UnionAll is instantiated

with a particular variable value, one at a time, outermost-first. This gives a natural meaning to the omission

of trailing type parameters; Array{Int} gives a type equivalent to Array{Int,N} where N.

A TypeVar is not itself a type, but rather should be considered part of the structure of a UnionAll type.

Type variables have lower and upper bounds on their values (in the fields lb and ub). The symbol name is

purely cosmetic. Internally, TypeVars are compared by address, so they are defined as mutable types to

ensure that "different" type variables can be distinguished. However, by convention they should not be

mutated.

One can construct TypeVars manually:

julia> TypeVar(:V, Signed, Real)

Signed<:V<:Real

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1546

There are convenience versions that allow you to omit any of these arguments except the name symbol.

The syntax Array{T} where T<:Integer is lowered to

let T = TypeVar(:T,Integer)

UnionAll(T, Array{T})

end

so it is seldom necessary to construct a TypeVar manually (indeed, this is to be avoided).

Free variables

The concept of a free type variable is extremely important in the type system. We say that a variable

V is free in type T if T does not contain the UnionAll that introduces variable V. For example, the type

Array{Array{V} where V<:Integer} has no free variables, but the Array{V} part inside of it does have

a free variable, V.

A type with free variables is, in some sense, not really a type at all. Consider the type Array{Array{T}}

where T, which refers to all homogeneous arrays of arrays. The inner type Array{T}, seen by itself, might

seem to refer to any kind of array. However, every element of the outer array must have the same array

type, so Array{T} cannot refer to just any old array. One could say that Array{T} effectively "occurs"

multiple times, and T must have the same value each "time".

For this reason, the function jl_has_free_typevars in the C API is very important. Types for which it

returns true will not give meaningful answers in subtyping and other type functions.

TypeNames

The following two Array types are functionally equivalent, yet print differently:

julia> TV, NV = TypeVar(:T), TypeVar(:N)

(T, N)

julia> Array

Array

julia> Array{TV, NV}

Array{T, N}

These can be distinguished by examining the name field of the type, which is an object of type TypeName:

julia> dump(Array{Int,1}.name)

TypeName

name: Symbol Array

module: Module Core

names: empty SimpleVector

wrapper: UnionAll

var: TypeVar

name: Symbol T

lb: Union{}

ub: Any

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1547

body: UnionAll

var: TypeVar

name: Symbol N

lb: Union{}

ub: Any

body: Array{T, N} <: DenseArray{T, N}

cache: SimpleVector

...

linearcache: SimpleVector

...

hash: Int64 -7900426068641098781

mt: MethodTable

name: Symbol Array

defs: Nothing nothing

cache: Nothing nothing

max_args: Int64 0

module: Module Core

: Int64 0

: Int64 0

In this case, the relevant field is wrapper, which holds a reference to the top-level type used to make new

Array types.

julia> pointer_from_objref(Array)

Ptr{Cvoid} @0x00007fcc7de64850

julia> pointer_from_objref(Array.body.body.name.wrapper)

Ptr{Cvoid} @0x00007fcc7de64850

julia> pointer_from_objref(Array{TV,NV})

Ptr{Cvoid} @0x00007fcc80c4d930

julia> pointer_from_objref(Array{TV,NV}.name.wrapper)

Ptr{Cvoid} @0x00007fcc7de64850

The wrapper field of Array points to itself, but for Array{TV,NV} it points back to the original definition of

the type.

What about the other fields? hash assigns an integer to each type. To examine the cache field, it's helpful

to pick a type that is less heavily used than Array. Let's first create our own type:

julia> struct MyType{T,N} end

julia> MyType{Int,2}

MyType{Int64, 2}

julia> MyType{Float32, 5}

MyType{Float32, 5}

When you instantiate a parametric type, each concrete type gets saved in a type cache (MyType.body.body.name.cache).

However, instances containing free type variables are not cached.

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1548

Tuple types

Tuple types constitute an interesting special case. For dispatch to work on declarations like x::Tuple, the

type has to be able to accommodate any tuple. Let's check the parameters:

julia> Tuple

Tuple

julia> Tuple.parameters

svec(Vararg{Any})

Unlike other types, tuple types are covariant in their parameters, so this definition permits Tuple to match

any type of tuple:

julia> typeintersect(Tuple, Tuple{Int,Float64})

Tuple{Int64, Float64}

julia> typeintersect(Tuple{Vararg{Any}}, Tuple{Int,Float64})

Tuple{Int64, Float64}

However, if a variadic (Vararg) tuple type has free variables it can describe different kinds of tuples:

julia> typeintersect(Tuple{Vararg{T} where T}, Tuple{Int,Float64})

Tuple{Int64, Float64}

julia> typeintersect(Tuple{Vararg{T}} where T, Tuple{Int,Float64})

Union{}

Notice that when T is free with respect to the Tuple type (i.e. its binding UnionAll type is outside the

Tuple type), only one T value must work over the whole type. Therefore a heterogeneous tuple does not

match.

Finally, it's worth noting that Tuple{} is distinct:

julia> Tuple{}

Tuple{}

julia> Tuple{}.parameters

svec()

julia> typeintersect(Tuple{}, Tuple{Int})

Union{}

What is the "primary" tuple-type?

julia> pointer_from_objref(Tuple)

Ptr{Cvoid} @0x00007f5998a04370

julia> pointer_from_objref(Tuple{})

Ptr{Cvoid} @0x00007f5998a570d0

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1549

julia> pointer_from_objref(Tuple.name.wrapper)

Ptr{Cvoid} @0x00007f5998a04370

julia> pointer_from_objref(Tuple{}.name.wrapper)

Ptr{Cvoid} @0x00007f5998a04370

so Tuple == Tuple{Vararg{Any}} is indeed the primary type.

Diagonal types

Consider the type Tuple{T,T} where T. A method with this signature would look like:

f(x::T, y::T) where {T} = ...

According to the usual interpretation of a UnionAll type, this T ranges over all types, including Any, so

this type should be equivalent to Tuple{Any,Any}. However, this interpretation causes some practical

problems.

First, a value of T needs to be available inside the method definition. For a call like f(1, 1.0), it's not clear

what T should be. It could be Union{Int,Float64}, or perhaps Real. Intuitively, we expect the declaration

x::T to mean T === typeof(x). To make sure that invariant holds, we need typeof(x) === typeof(y)

=== T in this method. That implies the method should only be called for arguments of the exact same type.

It turns out that being able to dispatch on whether two values have the same type is very useful (this is used

by the promotion system for example), so we have multiple reasons to want a different interpretation of

Tuple{T,T} where T. To make this work we add the following rule to subtyping: if a variable occurs more

than once in covariant position, it is restricted to ranging over only concrete types. ("Covariant position"

means that only Tuple and Union types occur between an occurrence of a variable and the UnionAll type

that introduces it.) Such variables are called "diagonal variables" or "concrete variables".

So for example, Tuple{T,T} where T can be seen as Union{Tuple{Int8,Int8}, Tuple{Int16,Int16},

...}, where T ranges over all concrete types. This gives rise to some interesting subtyping results. For

example Tuple{Real,Real} is not a subtype of Tuple{T,T} where T, because it includes some types like

Tuple{Int8,Int16} where the two elements have different types. Tuple{Real,Real} and Tuple{T,T}

where T have the non-trivial intersection Tuple{T,T} where T<:Real. However, Tuple{Real} is a sub-

type of Tuple{T} where T, because in that case T occurs only once and so is not diagonal.

Next consider a signature like the following:

f(a::Array{T}, x::T, y::T) where {T} = ...

In this case, T occurs in invariant position inside Array{T}. That means whatever type of array is passed

unambiguously determines the value of T – we say T has an equality constraint on it. Therefore in this case

the diagonal rule is not really necessary, since the array determines T and we can then allow x and y to

be of any subtypes of T. So variables that occur in invariant position are never considered diagonal. This

choice of behavior is slightly controversial – some feel this definition should be written as

f(a::Array{T}, x::S, y::S) where {T, S<:T} = ...

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1550

to clarify whether x and y need to have the same type. In this version of the signature they would, or we

could introduce a third variable for the type of y if x and y can have different types.

The next complication is the interaction of unions and diagonal variables, e.g.

f(x::Union{Nothing,T}, y::T) where {T} = ...

Consider what this declaration means. y has type T. x then can have either the same type T, or else be of

type Nothing. So all of the following calls should match:

f(1, 1)

f("", "")

f(2.0, 2.0)

f(nothing, 1)

f(nothing, "")

f(nothing, 2.0)

These examples are telling us something: when x is nothing::Nothing, there are no extra constraints on

y. It is as if the method signature had y::Any. Indeed, we have the following type equivalence:

(Tuple{Union{Nothing,T},T} where T) == Union{Tuple{Nothing,Any}, Tuple{T,T} where T}

The general rule is: a concrete variable in covariant position acts like it's not concrete if the subtyping

algorithm only uses it once. When x has type Nothing, we don't need to use the T in Union{Nothing,T};

we only use it in the second slot. This arises naturally from the observation that in Tuple{T} where T

restricting T to concrete types makes no difference; the type is equal to Tuple{Any} either way.

However, appearing in invariant position disqualifies a variable from being concrete whether that appear-

ance of the variable is used or not. Otherwise types can behave differently depending on which other types

they are compared to, making subtyping not transitive. For example, consider

Tuple{Int,Int8,Vector{Integer}} <: Tuple{T,T,Vector{Union{Integer,T}}} where T

If the T inside the Union is ignored, then T is concrete and the answer is "false" since the first two types

aren't the same. But consider instead

Tuple{Int,Int8,Vector{Any}} <: Tuple{T,T,Vector{Union{Integer,T}}} where T

Now we cannot ignore the T in the Union (we must have T == Any), so T is not concrete and the answer is

"true". That would make the concreteness of T depend on the other type, which is not acceptable since a

type must have a clear meaning on its own. Therefore the appearance of T inside Vector is considered in

both cases.

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1551

Subtyping diagonal variables

The subtyping algorithm for diagonal variables has two components: (1) identifying variable occurrences,

and (2) ensuring that diagonal variables range over concrete types only.

The first task is accomplished by keeping counters occurs_inv and occurs_cov (in src/subtype.c) for

each variable in the environment, tracking the number of invariant and covariant occurrences, respectively.

A variable is diagonal when occurs_inv == 0 && occurs_cov > 1.

The second task is accomplished by imposing a condition on a variable's lower bound. As the subtyping

algorithm runs, it narrows the bounds of each variable (raising lower bounds and lowering upper bounds)

to keep track of the range of variable values for which the subtype relation would hold. When we are

done evaluating the body of a UnionAll type whose variable is diagonal, we look at the final values of

the bounds. Since the variable must be concrete, a contradiction occurs if its lower bound could not be a

subtype of a concrete type. For example, an abstract type like AbstractArray cannot be a subtype of a

concrete type, but a concrete type like Int can be, and the empty type Bottom can be as well. If a lower

bound fails this test the algorithm stops with the answer false.

For example, in the problem Tuple{Int,String} <: Tuple{T,T} where T, we derive that this would be

true if T were a supertype of Union{Int,String}. However, Union{Int,String} is an abstract type, so

the relation does not hold.

This concreteness test is done by the function is_leaf_bound. Note that this test is slightly different from

jl_is_leaf_type, since it also returns true for Bottom. Currently this function is heuristic, and does not

catch all possible concrete types. The difficulty is that whether a lower bound is concrete might depend

on the values of other type variable bounds. For example, Vector{T} is equivalent to the concrete type

Vector{Int} only if both the upper and lower bounds of T equal Int. We have not yet worked out a

complete algorithm for this.

Introduction to the internal machinery

Most operations for dealing with types are found in the files jltypes.c and subtype.c. A good way to

start is to watch subtyping in action. Build Julia with make debug and fire up Julia within a debugger. gdb

debugging tips has some tips which may be useful.

Because the subtyping code is used heavily in the REPL itself – and hence breakpoints in this code get

triggered often – it will be easiest if you make the following definition:

julia> function mysubtype(a,b)

ccall(:jl_breakpoint, Cvoid, (Any,), nothing)

a <: b

end

and then set a breakpoint in jl_breakpoint. Once this breakpoint gets triggered, you can set breakpoints

in other functions.

As a warm-up, try the following:

mysubtype(Tuple{Int, Float64}, Tuple{Integer, Real})

We can make it more interesting by trying a more complex case:

mysubtype(Tuple{Array{Int,2}, Int8}, Tuple{Array{T}, T} where T)

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1552

Subtyping and method sorting

The type_morespecific functions are used for imposing a partial order on functions in method tables (from

most-to-least specific). Specificity is strict; if a is more specific than b, then a does not equal b and b is not

more specific than a.

If a is a strict subtype of b, then it is automatically consideredmore specific. From there, type_morespecific

employs some less formal rules. For example, subtype is sensitive to the number of arguments, but

type_morespecificmay not be. In particular, Tuple{Int,AbstractFloat} is more specific than Tuple{Integer},

even though it is not a subtype. (Of Tuple{Int,AbstractFloat} and Tuple{Integer,Float64}, neither

is more specific than the other.) Likewise, Tuple{Int,Vararg{Int}} is not a subtype of Tuple{Integer},

but it is considered more specific. However, morespecific does get a bonus for length: in particular,

Tuple{Int,Int} is more specific than Tuple{Int,Vararg{Int}}.

If you're debugging how methods get sorted, it can be convenient to define the function:

type_morespecific(a, b) = ccall(:jl_type_morespecific, Cint, (Any,Any), a, b)

which allows you to test whether tuple type a is more specific than tuple type b.

102.4 Memory layout of Julia Objects

Object layout (jl_value_t)

The jl_value_t struct is the name for a block of memory owned by the Julia Garbage Collector, represent-

ing the data associated with a Julia object in memory. Absent any type information, it is simply an opaque

pointer:

typedef struct jl_value_t* jl_pvalue_t;

Each jl_value_t struct is contained in a jl_typetag_t struct that contains metadata information about

the Julia object, such as its type and garbage collector (gc) reachability:

typedef struct {

opaque metadata;

jl_value_t value;

} jl_typetag_t;

The type of any Julia object is an instance of a leaf jl_datatype_t object. The jl_typeof() function can

be used to query for it:

jl_value_t *jl_typeof(jl_value_t *v);

The layout of the object depends on its type. Reflection methods can be used to inspect that layout. A field

can be accessed by calling one of the get-field methods:

jl_value_t *jl_get_nth_field_checked(jl_value_t *v, size_t i);

jl_value_t *jl_get_field(jl_value_t *o, char *fld);

If the field types are known, a priori, to be all pointers, the values can also be extracted directly as an array

access:

jl_value_t *v = value->fieldptr[n];

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1553

As an example, a "boxed" uint16_t is stored as follows:

struct {

opaque metadata;

struct {

uint16_t data; // -- 2 bytes

} jl_value_t;

};

This object is created by jl_box_uint16(). Note that the jl_value_t pointer references the data portion,

not the metadata at the top of the struct.

A value may be stored "unboxed" in many circumstances (just the data, without the metadata, and possibly

not even stored but just kept in registers), so it is unsafe to assume that the address of a box is a unique

identifier. The "egal" test (corresponding to the === function in Julia), should instead be used to compare

two unknown objects for equivalence:

int jl_egal(jl_value_t *a, jl_value_t *b);

This optimization should be relatively transparent to the API, since the object will be "boxed" on-demand,

whenever a jl_value_t pointer is needed.

Note that modification of a jl_value_t pointer in memory is permitted only if the object is mutable. Oth-

erwise, modification of the value may corrupt the program and the result will be undefined. The mutability

property of a value can be queried for with:

int jl_is_mutable(jl_value_t *v);

If the object being stored is a jl_value_t, the Julia garbage collector must be notified also:

void jl_gc_wb(jl_value_t *parent, jl_value_t *ptr);

However, the Embedding Julia section of the manual is also required reading at this point, for covering

other details of boxing and unboxing various types, and understanding the gc interactions.

Mirror structs for some of the built-in types are defined in julia.h. The corresponding global jl_datatype_t

objects are created by jl_init_types in jltypes.c.

Garbage collector mark bits

The garbage collector uses several bits from themetadata portion of the jl_typetag_t to track each object

in the system. Further details about this algorithm can be found in the comments of the garbage collector

implementation in gc.c.

Object allocation

Most new objects are allocated by jl_new_structv():

jl_value_t *jl_new_struct(jl_datatype_t *type, ...);

jl_value_t *jl_new_structv(jl_datatype_t *type, jl_value_t **args, uint32_t na);

Although, isbits objects can be also constructed directly from memory:

jl_value_t *jl_new_bits(jl_value_t *bt, void *data)

https://github.com/JuliaLang/julia/blob/master/src/julia.h
https://github.com/JuliaLang/julia/blob/master/src/jltypes.c
https://github.com/JuliaLang/julia/blob/master/src/gc.c
https://github.com/JuliaLang/julia/blob/master/src/gc.c

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1554

And some objects have special constructors that must be used instead of the above functions:

Types:

jl_datatype_t *jl_apply_type(jl_datatype_t *tc, jl_tuple_t *params);

jl_datatype_t *jl_apply_array_type(jl_datatype_t *type, size_t dim);

While these are the most commonly used options, there are more low-level constructors too, which you

can find declared in julia.h. These are used in jl_init_types() to create the initial types needed to

bootstrap the creation of the Julia system image.

Tuples:

jl_tuple_t *jl_tuple(size_t n, ...);

jl_tuple_t *jl_tuplev(size_t n, jl_value_t **v);

jl_tuple_t *jl_alloc_tuple(size_t n);

The representation of tuples is highly unique in the Julia object representation ecosystem. In some cases,

a Base.tuple() object may be an array of pointers to the objects contained by the tuple equivalent to:

typedef struct {

size_t length;

jl_value_t *data[length];

} jl_tuple_t;

However, in other cases, the tuple may be converted to an anonymous isbits type and stored unboxed,

or it may not stored at all (if it is not being used in a generic context as a jl_value_t*).

Symbols:

jl_sym_t *jl_symbol(const char *str);

Functions and MethodInstance:

jl_function_t *jl_new_generic_function(jl_sym_t *name);

jl_method_instance_t *jl_new_method_instance(jl_value_t *ast, jl_tuple_t *sparams);

Arrays:

jl_array_t *jl_new_array(jl_value_t *atype, jl_tuple_t *dims);

jl_array_t *jl_new_arrayv(jl_value_t *atype, ...);

jl_array_t *jl_alloc_array_1d(jl_value_t *atype, size_t nr);

jl_array_t *jl_alloc_array_2d(jl_value_t *atype, size_t nr, size_t nc);

jl_array_t *jl_alloc_array_3d(jl_value_t *atype, size_t nr, size_t nc, size_t z);

jl_array_t *jl_alloc_vec_any(size_t n);

Note that many of these have alternative allocation functions for various special-purposes. The list here

reflects the more common usages, but a more complete list can be found by reading the julia.h header

file.

Internal to Julia, storage is typically allocated by newstruct() (or newobj() for the special types):

jl_value_t *newstruct(jl_value_t *type);

jl_value_t *newobj(jl_value_t *type, size_t nfields);

And at the lowest level, memory is getting allocated by a call to the garbage collector (in gc.c), then tagged

with its type:

https://github.com/JuliaLang/julia/blob/master/src/julia.h
https://github.com/JuliaLang/julia/blob/master/src/julia.h
https://github.com/JuliaLang/julia/blob/master/src/julia.h

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1555

jl_value_t *jl_gc_allocobj(size_t nbytes);

void jl_set_typeof(jl_value_t *v, jl_datatype_t *type);

Out of date Warning

The documentation and usage for the function jl_gc_allocobj may be out of date

Note that all objects are allocated in multiples of 4 bytes and aligned to the platform pointer size. Memory

is allocated from a pool for smaller objects, or directly with malloc() for large objects.

Singleton Types

Singleton types have only one instance and no data fields. Singleton instances have a size of

0 bytes, and consist only of their metadata. e.g. nothing::Nothing.

See Singleton Types and Nothingness and missing values

102.5 Eval of Julia code

One of the hardest parts about learning how the Julia Language runs code is learning how all of the pieces

work together to execute a block of code.

Each chunk of code typically makes a trip through many steps with potentially unfamiliar names, such as

(in no particular order): flisp, AST, C++, LLVM, eval, typeinf, macroexpand, sysimg (or system image),

bootstrapping, compile, parse, execute, JIT, interpret, box, unbox, intrinsic function, and primitive function,

before turning into the desired result (hopefully).

Definitions

• REPL

REPL stands for Read-Eval-Print Loop. It's just what we call the command line environ-

ment for short.

• AST

Abstract Syntax Tree The AST is the digital representation of the code structure. In this

form the code has been tokenized for meaning so that it is more suitable for manipulation

and execution.

Julia Execution

The 10,000 foot view of the whole process is as follows:

1. The user starts julia.

2. The C function main() from cli/loader_exe.c gets called. This function processes the command

line arguments, filling in the jl_options struct and setting the variable ARGS. It then initializes Julia

(by calling julia_init in init.c, which may load a previously compiled sysimg). Finally, it passes

off control to Julia by calling Base._start().

https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/base/client.jl

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1556

Figure 102.1: Diagram of the compiler flow

3. When _start() takes over control, the subsequent sequence of commands depends on the com-

mand line arguments given. For example, if a filename was supplied, it will proceed to execute that

file. Otherwise, it will start an interactive REPL.

4. Skipping the details about how the REPL interacts with the user, let's just say the program ends up

with a block of code that it wants to run.

5. If the block of code to run is in a file, jl_load(char *filename) gets invoked to load the file and

parse it. Each fragment of code is then passed to eval to execute.

6. Each fragment of code (or AST), is handed off to eval() to turn into results.

7. eval() takes each code fragment and tries to run it in jl_toplevel_eval_flex().

8. jl_toplevel_eval_flex() decides whether the code is a "toplevel" action (such as using or module),

which would be invalid inside a function. If so, it passes off the code to the toplevel interpreter.

9. jl_toplevel_eval_flex() then expands the code to eliminate any macros and to "lower" the AST

to make it simpler to execute.

10. jl_toplevel_eval_flex() then uses some simple heuristics to decide whether to JIT compile the

AST or to interpret it directly.

https://github.com/JuliaLang/julia/blob/master/src/toplevel.c
https://github.com/JuliaLang/julia/blob/master/src/toplevel.c

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1557

11. The bulk of the work to interpret code is handled by eval in interpreter.c.

12. If instead, the code is compiled, the bulk of the work is handled by codegen.cpp. Whenever a Julia

function is called for the first time with a given set of argument types, type inference will be run on

that function. This information is used by the codegen step to generate faster code.

13. Eventually, the user quits the REPL, or the end of the program is reached, and the _start()method

returns.

14. Just before exiting, main() calls jl_atexit_hook(exit_code). This calls Base._atexit() (which

calls any functions registered to atexit() inside Julia). Then it calls jl_gc_run_all_finalizers().

Finally, it gracefully cleans up all libuv handles and waits for them to flush and close.

Parsing

The Julia parser is a small lisp program written in femtolisp, the source-code for which is distributed inside

Julia in src/flisp.

The interface functions for this are primarily defined in jlfrontend.scm. The code in ast.c handles this

handoff on the Julia side.

The other relevant files at this stage are julia-parser.scm, which handles tokenizing Julia code and turn-

ing it into an AST, and julia-syntax.scm, which handles transforming complex AST representations into

simpler, "lowered" AST representations which are more suitable for analysis and execution.

If you want to test the parser without re-building Julia in its entirety, you can run the frontend on its own

as follows:

$ cd src

$ flisp/flisp

> (load "jlfrontend.scm")

> (jl-parse-file "<filename>")

Macro Expansion

When eval() encounters a macro, it expands that AST node before attempting to evaluate the expression.

Macro expansion involves a handoff from eval() (in Julia), to the parser function jl_macroexpand() (writ-

ten in flisp) to the Julia macro itself (written in - what else - Julia) via fl_invoke_julia_macro(), and

back.

Typically, macro expansion is invoked as a first step during a call to Meta.lower()/jl_expand(), although

it can also be invoked directly by a call to macroexpand()/jl_macroexpand().

Type Inference

Type inference is implemented in Julia by typeinf() in compiler/typeinfer.jl. Type inference is the

process of examining a Julia function and determining bounds for the types of each of its variables, as well

as bounds on the type of the return value from the function. This enables many future optimizations, such

as unboxing of known immutable values, and compile-time hoisting of various run-time operations such as

computing field offsets and function pointers. Type inference may also include other steps such as constant

propagation and inlining.

More Definitions

https://github.com/JuliaLang/julia/blob/master/src/interpreter.c
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/gc.c
https://github.com/JuliaLang/julia/tree/master/src/flisp
https://github.com/JuliaLang/julia/blob/master/src/jlfrontend.scm
https://github.com/JuliaLang/julia/blob/master/src/ast.c
https://github.com/JuliaLang/julia/blob/master/src/julia-parser.scm
https://github.com/JuliaLang/julia/blob/master/src/julia-syntax.scm
https://github.com/JuliaLang/julia/blob/master/base/compiler/typeinfer.jl

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1558

• JIT

Just-In-Time Compilation The process of generating native-machine code into memory

right when it is needed.

• LLVM

Low-Level Virtual Machine (a compiler) The Julia JIT compiler is a program/library called

libLLVM. Codegen in Julia refers both to the process of taking a Julia AST and turning it

into LLVM instructions, and the process of LLVM optimizing that and turning it into native

assembly instructions.

• C++

The programming language that LLVM is implemented in, which means that codegen is

also implemented in this language. The rest of Julia's library is implemented in C, in part

because its smaller feature set makes it more usable as a cross-language interface layer.

• box

This term is used to describe the process of taking a value and allocating a wrapper

around the data that is tracked by the garbage collector (gc) and is tagged with the

object's type.

• unbox

The reverse of boxing a value. This operation enables more efficient manipulation of

data when the type of that data is fully known at compile-time (through type inference).

• generic function

A Julia function composed of multiple "methods" that are selected for dynamic dispatch

based on the argument type-signature

• anonymous function or "method"

A Julia function without a name and without type-dispatch capabilities

• primitive function

A function implemented in C but exposed in Julia as a named function "method" (albeit

without generic function dispatch capabilities, similar to a anonymous function)

• intrinsic function

A low-level operation exposed as a function in Julia. These pseudo-functions implement

operations on raw bits such as add and sign extend that cannot be expressed directly

in any other way. Since they operate on bits directly, they must be compiled into a

function and surrounded by a call to Core.Intrinsics.box(T, ...) to reassign type

information to the value.

JIT Code Generation

Codegen is the process of turning a Julia AST into native machine code.

The JIT environment is initialized by an early call to jl_init_codegen in codegen.cpp.

On demand, a Juliamethod is converted into a native function by the function emit_function(jl_method_instance_t*).

(note, when using the MCJIT (in LLVM v3.4+), each function must be JIT into a new module.) This function

recursively calls emit_expr() until the entire function has been emitted.

Much of the remaining bulk of this file is devoted to various manual optimizations of specific code pat-

terns. For example, emit_known_call() knows how to inline many of the primitive functions (defined in

builtins.c) for various combinations of argument types.

Other parts of codegen are handled by various helper files:

https://github.com/JuliaLang/julia/blob/master/src/codegen.cpp
https://github.com/JuliaLang/julia/blob/master/src/builtins.c

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1559

• debuginfo.cpp

Handles backtraces for JIT functions

• ccall.cpp

Handles the ccall and llvmcall FFI, along with various abi_*.cpp files

• intrinsics.cpp

Handles the emission of various low-level intrinsic functions

Bootstrapping

The process of creating a new system image is called "bootstrapping".

The etymology of this word comes from the phrase "pulling oneself up by the bootstraps", and

refers to the idea of starting from a very limited set of available functions and definitions and

ending with the creation of a full-featured environment.

System Image

The system image is a precompiled archive of a set of Julia files. The sys.ji file distributed with Julia is one

such system image, generated by executing the file sysimg.jl, and serializing the resulting environment

(including Types, Functions, Modules, and all other defined values) into a file. Therefore, it contains a frozen

version of the Main, Core, and Basemodules (and whatever else was in the environment at the end of boot-

strapping). This serializer/deserializer is implemented by jl_save_system_image/jl_restore_system_image

in staticdata.c.

If there is no sysimg file (jl_options.image_file == NULL), this also implies that --build was given on

the command line, so the final result should be a new sysimg file. During Julia initialization, minimal Core

and Main modules are created. Then a file named boot.jl is evaluated from the current directory. Julia

then evaluates any file given as a command line argument until it reaches the end. Finally, it saves the

resulting environment to a "sysimg" file for use as a starting point for a future Julia run.

102.6 Calling Conventions

Julia uses three calling conventions for four distinct purposes:

Name Prefix Purpose

Native julia_ Speed via specialized signatures

JL Call jlcall_ Wrapper for generic calls

JL Call jl_ Builtins

C ABI jlcapi_ Wrapper callable from C

Julia Native Calling Convention

The native calling convention is designed for fast non-generic calls. It usually uses a specialized signature.

• LLVM ghosts (zero-length types) are omitted.

• LLVM scalars and vectors are passed by value.

https://github.com/JuliaLang/julia/blob/master/src/debuginfo.cpp
https://github.com/JuliaLang/julia/blob/master/src/ccall.cpp
https://github.com/JuliaLang/julia/blob/master/src/intrinsics.cpp
https://github.com/JuliaLang/julia/blob/master/base/sysimg.jl
https://github.com/JuliaLang/julia/blob/master/src/staticdata.c
https://github.com/JuliaLang/julia/blob/master/src/staticdata.c

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1560

• LLVM aggregates (arrays and structs) are passed by reference.

A small return values is returned as LLVM return values. A large return values is returned via the "structure

return" (sret) convention, where the caller provides a pointer to a return slot.

An argument or return values that is a homogeneous tuple is sometimes represented as an LLVM vector

instead of an LLVM array.

JL Call Convention

The JL Call convention is for builtins and generic dispatch. Hand-written functions using this convention

are declared via the macro JL_CALLABLE. The convention uses exactly 3 parameters:

• F - Julia representation of function that is being applied

• args - pointer to array of pointers to boxes

• nargs - length of the array

The return value is a pointer to a box.

C ABI

C ABI wrappers enable calling Julia from C. The wrapper calls a function using the native calling convention.

Tuples are always represented as C arrays.

102.7 High-level Overview of the Native-Code Generation Process

Representation of Pointers

When emitting code to an object file, pointers will be emitted as relocations. The deserialization code will

ensure any object that pointed to one of these constants gets recreated and contains the right runtime

pointer.

Otherwise, they will be emitted as literal constants.

To emit one of these objects, call literal_pointer_val. It'll handle tracking the Julia value and the LLVM

global, ensuring they are valid both for the current runtime and after deserialization.

When emitted into the object file, these globals are stored as references in a large gvals table. This allows

the deserializer to reference them by index, and implement a custommanual mechanism similar to a Global

Offset Table (GOT) to restore them.

Function pointers are handled similarly. They are stored as values in a large fvals table. Like globals, this

allows the deserializer to reference them by index.

Note that extern functions are handled separately, with names, via the usual symbol resolutionmechanism

in the linker.

Note too that ccall functions are also handled separately, via a manual GOT and Procedure Linkage Table

(PLT).

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1561

Representation of Intermediate Values

Values are passed around in a jl_cgval_t struct. This represents an R-value, and includes enough infor-

mation to determine how to assign or pass it somewhere.

They are created via one of the helper constructors, usually: mark_julia_type (for immediate values) and

mark_julia_slot (for pointers to values).

The function convert_julia_type can transform between any two types. It returns an R-value with

cgval.typ set to typ. It'll cast the object to the requested representation, making heap boxes, allocating

stack copies, and computing tagged unions as needed to change the representation.

By contrast update_julia_type will change cgval.typ to typ, only if it can be done at zero-cost (i.e.

without emitting any code).

Union representation

Inferred union types may be stack allocated via a tagged type representation.

The primitive routines that need to be able to handle tagged unions are:

• mark-type

• load-local

• store-local

• isa

• is

• emit_typeof

• emit_sizeof

• boxed

• unbox

• specialized cc-ret

Everything else should be possible to handle in inference by using these primitives to implement union-

splitting.

The representation of the tagged-union is as a pair of < void* union, byte selector >. The selector

is fixed-size as byte & 0x7f, and will union-tag the first 126 isbits. It records the one-based depth-first

count into the type-union of the isbits objects inside. An index of zero indicates that the union* is actually

a tagged heap-allocated jl_value_t*, and needs to be treated as normal for a boxed object rather than

as a tagged union.

The high bit of the selector (byte & 0x80) can be tested to determine if the void* is actually a heap-

allocated (jl_value_t*) box, thus avoiding the cost of re-allocating a box, while maintaining the ability to

efficiently handle union-splitting based on the low bits.

It is guaranteed that byte & 0x7f is an exact test for the type, if the value can be represented by a tag –

it will never be marked byte = 0x80. It is not necessary to also test the type-tag when testing isa.

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1562

The union* memory region may be allocated at any size. The only constraint is that it is big enough to

contain the data currently specified by selector. It might not be big enough to contain the union of all

types that could be stored there according to the associated Union type field. Use appropriate care when

copying.

Specialized Calling Convention Signature Representation

A jl_returninfo_t object describes the calling convention details of any callable.

If any of the arguments or return type of a method can be represented unboxed, and the method is not

varargs, it'll be given an optimized calling convention signature based on its specTypes and rettype fields.

The general principles are that:

• Primitive types get passed in int/float registers.

• Tuples of VecElement types get passed in vector registers.

• Structs get passed on the stack.

• Return values are handle similarly to arguments, with a size-cutoff at which they will instead be

returned via a hidden sret argument.

The total logic for this is implemented by get_specsig_function and deserves_sret.

Additionally, if the return type is a union, it may be returned as a pair of values (a pointer and a tag). If the

union values can be stack-allocated, then sufficient space to store them will also be passed as a hidden

first argument. It is up to the callee whether the returned pointer will point to this space, a boxed object,

or even other constant memory.

102.8 Julia Functions

This document will explain how functions, method definitions, and method tables work.

Method Tables

Every function in Julia is a generic function. A generic function is conceptually a single function, but consists

of many definitions, or methods. The methods of a generic function are stored in a method table. Method

tables (type MethodTable) are associated with TypeNames. A TypeName describes a family of parameterized

types. For example Complex{Float32} and Complex{Float64} share the same Complex type name object.

All objects in Julia are potentially callable, because every object has a type, which in turn has a TypeName.

Function calls

Given the call f(x,y), the following steps are performed: first, the method table to use is accessed as

typeof(f).name.mt. Second, an argument tuple type is formed, Tuple{typeof(f), typeof(x), typeof(y)}.

Note that the type of the function itself is the first element. This is because the typemight have parameters,

and so needs to take part in dispatch. This tuple type is looked up in the method table.

This dispatch process is performed by jl_apply_generic, which takes two arguments: a pointer to an

array of the values f, x, and y, and the number of values (in this case 3).

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1563

Throughout the system, there are two kinds of APIs that handle functions and argument lists: those that

accept the function and arguments separately, and those that accept a single argument structure. In the

first kind of API, the "arguments" part does not contain information about the function, since that is passed

separately. In the second kind of API, the function is the first element of the argument structure.

For example, the following function for performing a call accepts just an args pointer, so the first element

of the args array will be the function to call:

jl_value_t *jl_apply(jl_value_t **args, uint32_t nargs)

This entry point for the same functionality accepts the function separately, so the args array does not

contain the function:

jl_value_t *jl_call(jl_function_t *f, jl_value_t **args, int32_t nargs);

Adding methods

Given the above dispatch process, conceptually all that is needed to add a new method is (1) a tuple type,

and (2) code for the body of themethod. jl_method_def implements this operation. jl_method_table_for

is called to extract the relevant method table from what would be the type of the first argument. This is

much more complicated than the corresponding procedure during dispatch, since the argument tuple type

might be abstract. For example, we can define:

(::Union{Foo{Int},Foo{Int8}})(x) = 0

which works since all possible matching methods would belong to the same method table.

Creating generic functions

Since every object is callable, nothing special is needed to create a generic function. Therefore jl_new_generic_function

simply creates a new singleton (0 size) subtype of Function and returns its instance. A function can have

a mnemonic "display name" which is used in debug info and when printing objects. For example the name

of Base.sin is sin. By convention, the name of the created type is the same as the function name, with a

prepended. So typeof(sin) is Base.#sin.

Closures

A closure is simply a callable object with field names corresponding to captured variables. For example,

the following code:

function adder(x)

return y->x+y

end

is lowered to (roughly):

struct ##1{T}

x::T

end

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1564

(_::##1)(y) = _.x + y

function adder(x)

return ##1(x)

end

Constructors

A constructor call is just a call to a type. The method table for Type contains all constructor definitions.

All subtypes of Type (Type, UnionAll, Union, and DataType) currently share a method table via special

arrangement.

Builtins

The "builtin" functions, defined in the Core module, are:

<: === _abstracttype _apply_iterate _apply_pure _call_in_world

_call_in_world_total _call_latest _compute_sparams _equiv_typedef _expr

_primitivetype _setsuper! _structtype _svec_ref _typebody! _typevar applicable

apply_type arrayref arrayset arraysize compilerbarrier const_arrayref donotdelete

fieldtype finalizer get_binding_type getfield getglobal ifelse invoke isa

isdefined modifyfield! nfields replacefield! set_binding_type! setfield!

setglobal! sizeof svec swapfield! throw tuple typeassert typeof

These are all singleton objects whose types are subtypes of Builtin, which is a subtype of Function. Their

purpose is to expose entry points in the run time that use the "jlcall" calling convention:

jl_value_t *(jl_value_t*, jl_value_t**, uint32_t)

Themethod tables of builtins are empty. Instead, they have a single catch-all method cache entry (Tuple{Vararg{Any}})

whose jlcall fptr points to the correct function. This is kind of a hack but works reasonably well.

Keyword arguments

Keyword arguments work by addingmethods to the kwcall function. This function is usually the "keyword ar-

gument sorter" or "keyword sorter", which then calls the inner body of the function (defined anonymously).

Every definition in the kwsorter function has the same arguments as some definition in the normal method

table, except with a single NamedTuple argument prepended, which gives the names and values of passed

keyword arguments. The kwsorter's job is to move keyword arguments into their canonical positions based

on name, plus evaluate and substitute any needed default value expressions. The result is a normal posi-

tional argument list, which is then passed to yet another compiler-generated function.

The easiest way to understand the process is to look at how a keyword argument method definition is

lowered. The code:

function circle(center, radius; color = black, fill::Bool = true, options...)

draw

end

actually produces three method definitions. The first is a function that accepts all arguments (including

keyword arguments) as positional arguments, and includes the code for the method body. It has an auto-

generated name:

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1565

function #circle#1(color, fill::Bool, options, circle, center, radius)

draw

end

The second method is an ordinary definition for the original circle function, which handles the case where

no keyword arguments are passed:

function circle(center, radius)

#circle#1(black, true, pairs(NamedTuple()), circle, center, radius)

end

This simply dispatches to the first method, passing along default values. pairs is applied to the named

tuple of rest arguments to provide key-value pair iteration. Note that if the method doesn't accept rest

keyword arguments then this argument is absent.

Finally there is the kwsorter definition:

function (::Core.kwftype(typeof(circle)))(kws, circle, center, radius)

if haskey(kws, :color)

color = kws.color

else

color = black

end

etc.

put remaining kwargs in `options`

options = structdiff(kws, NamedTuple{(:color, :fill)})

if the method doesn't accept rest keywords, throw an error

unless `options` is empty

#circle#1(color, fill, pairs(options), circle, center, radius)

end

The function Core.kwftype(t) creates the field t.name.mt.kwsorter (if it hasn't been created yet), and

returns the type of that function.

This design has the feature that call sites that don't use keyword arguments require no special handling;

everything works as if they were not part of the language at all. Call sites that do use keyword arguments

are dispatched directly to the called function's kwsorter. For example the call:

circle((0,0), 1.0, color = red; other...)

is lowered to:

kwcall(merge((color = red,), other), circle, (0,0), 1.0)

kwcall (also inCore) denotes a kwcall signature and dispatch. The keyword splatting operation (written

as other...) calls the named tuple merge function. This function further unpacks each element of other,

expecting each one to contain two values (a symbol and a value). Naturally, a more efficient implemen-

tation is available if all splatted arguments are named tuples. Notice that the original circle function is

passed through, to handle closures.

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1566

Compiler efficiency issues

Generating a new type for every function has potentially serious consequences for compiler resource use

when combined with Julia's "specialize on all arguments by default" design. Indeed, the initial implemen-

tation of this design suffered from much longer build and test times, higher memory use, and a system

image nearly 2x larger than the baseline. In a naive implementation, the problem is bad enough to make

the system nearly unusable. Several significant optimizations were needed to make the design practical.

The first issue is excessive specialization of functions for different values of function-valued arguments.

Many functions simply "pass through" an argument to somewhere else, e.g. to another function or to a

storage location. Such functions do not need to be specialized for every closure that might be passed

in. Fortunately this case is easy to distinguish by simply considering whether a function calls one of its

arguments (i.e. the argument appears in "head position" somewhere). Performance-critical higher-order

functions like map certainly call their argument function and so will still be specialized as expected. This

optimization is implemented by recording which arguments are called during the analyze-variables pass

in the front end. When cache_method sees an argument in the Function type hierarchy passed to a slot

declared as Any or Function, it behaves as if the @nospecialize annotation were applied. This heuristic

seems to be extremely effective in practice.

The next issue concerns the structure of method cache hash tables. Empirical studies show that the vast

majority of dynamically-dispatched calls involve one or two arguments. In turn, many of these cases can

be resolved by considering only the first argument. (Aside: proponents of single dispatch would not be

surprised by this at all. However, this argument means "multiple dispatch is easy to optimize in practice",

and that we should therefore use it, not "we should use single dispatch"!) So the method cache uses the

type of the first argument as its primary key. Note, however, that this corresponds to the second element

of the tuple type for a function call (the first element being the type of the function itself). Typically, type

variation in head position is extremely low – indeed, the majority of functions belong to singleton types

with no parameters. However, this is not the case for constructors, where a single method table holds

constructors for every type. Therefore the Type method table is special-cased to use the first tuple type

element instead of the second.

The front end generates type declarations for all closures. Initially, this was implemented by generating

normal type declarations. However, this produced an extremely large number of constructors, all of which

were trivial (simply passing all arguments through to new). Since methods are partially ordered, inserting

all of these methods is O(n^2), plus there are just too many of them to keep around. This was optimized

by generating struct_type expressions directly (bypassing default constructor generation), and using new

directly to create closure instances. Not the prettiest thing ever, but you do what you gotta do.

The next problem was the @test macro, which generated a 0-argument closure for each test case. This is

not really necessary, since each test case is simply run once in place. Therefore, @test was modified to

expand to a try-catch block that records the test result (true, false, or exception raised) and calls the test

suite handler on it.

102.9 Base.Cartesian

The (non-exported) Cartesian module provides macros that facilitate writing multidimensional algorithms.

Most often you can write such algorithms with straightforward techniques; however, there are a few cases

where Base.Cartesian is still useful or necessary.

Principles of usage

A simple example of usage is:

https://julialang.org/blog/2016/02/iteration

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1567

@nloops 3 i A begin

s += @nref 3 A i

end

which generates the following code:

for i_3 = axes(A, 3)

for i_2 = axes(A, 2)

for i_1 = axes(A, 1)

s += A[i_1, i_2, i_3]

end

end

end

In general, Cartesian allows you to write generic code that contains repetitive elements, like the nested

loops in this example. Other applications include repeated expressions (e.g., loop unwinding) or creating

function calls with variable numbers of arguments without using the "splat" construct (i...).

Basic syntax

The (basic) syntax of @nloops is as follows:

• The first argument must be an integer (not a variable) specifying the number of loops.

• The second argument is the symbol-prefix used for the iterator variable. Here we used i, and vari-

ables i_1, i_2, i_3 were generated.

• The third argument specifies the range for each iterator variable. If you use a variable (symbol) here,

it's taken as axes(A, dim). More flexibly, you can use the anonymous-function expression syntax

described below.

• The last argument is the body of the loop. Here, that's what appears between the begin...end.

There are some additional features of @nloops described in the reference section.

@nref follows a similar pattern, generating A[i_1,i_2,i_3] from @nref 3 A i. The general practice is to

read from left to right, which is why @nloops is @nloops 3 i A expr (as in for i_2 = axes(A, 2), where

i_2 is to the left and the range is to the right) whereas @nref is @nref 3 A i (as in A[i_1,i_2,i_3], where

the array comes first).

If you're developing code with Cartesian, you may find that debugging is easier when you examine the

generated code, using @macroexpand:

julia> @macroexpand @nref 2 A i

:(A[i_1, i_2])

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1568

Supplying the number of expressions

The first argument to both of these macros is the number of expressions, which must be an integer. When

you're writing a function that you intend to work in multiple dimensions, this may not be something you

want to hard-code. The recommended approach is to use a @generated function. Here's an example:

@generated function mysum(A::Array{T,N}) where {T,N}

quote

s = zero(T)

@nloops $N i A begin

s += @nref $N A i

end

s

end

end

Naturally, you can also prepare expressions or perform calculations before the quote block.

Anonymous-function expressions as macro arguments

Perhaps the single most powerful feature in Cartesian is the ability to supply anonymous-function expres-

sions that get evaluated at parsing time. Let's consider a simple example:

@nexprs 2 j->(i_j = 1)

@nexprs generates n expressions that follow a pattern. This code would generate the following statements:

i_1 = 1

i_2 = 1

In each generated statement, an "isolated" j (the variable of the anonymous function) gets replaced by

values in the range 1:2. Generally speaking, Cartesian employs a LaTeX-like syntax. This allows you to do

math on the index j. Here's an example computing the strides of an array:

s_1 = 1

@nexprs 3 j->(s_{j+1} = s_j * size(A, j))

would generate expressions

s_1 = 1

s_2 = s_1 * size(A, 1)

s_3 = s_2 * size(A, 2)

s_4 = s_3 * size(A, 3)

Anonymous-function expressions have many uses in practice.

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1569

Macro reference Base.Cartesian.@nloops – Macro.

@nloops N itersym rangeexpr bodyexpr

@nloops N itersym rangeexpr preexpr bodyexpr

@nloops N itersym rangeexpr preexpr postexpr bodyexpr

Generate N nested loops, using itersym as the prefix for the iteration variables. rangeexprmay be an

anonymous-function expression, or a simple symbol var in which case the range is axes(var, d) for

dimension d.

Optionally, you can provide "pre" and "post" expressions. These get executed first and last, respec-

tively, in the body of each loop. For example:

@nloops 2 i A d -> j_d = min(i_d, 5) begin

s += @nref 2 A j

end

would generate:

for i_2 = axes(A, 2)

j_2 = min(i_2, 5)

for i_1 = axes(A, 1)

j_1 = min(i_1, 5)

s += A[j_1, j_2]

end

end

If you want just a post-expression, supply nothing for the pre-expression. Using parentheses and

semicolons, you can supply multi-statement expressions.

source

Base.Cartesian.@nref – Macro.

@nref N A indexexpr

Generate expressions like A[i_1, i_2, ...]. indexexpr can either be an iteration-symbol prefix, or

an anonymous-function expression.

Examples

julia> @macroexpand Base.Cartesian.@nref 3 A i

:(A[i_1, i_2, i_3])

source

Base.Cartesian.@nextract – Macro.

@nextract N esym isym

Generate N variables esym_1, esym_2, ..., esym_N to extract values from isym. isym can be either a

Symbol or anonymous-function expression.

@nextract 2 x y would generate

x_1 = y[1]

x_2 = y[2]

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/cartesian.jl#L9-L37
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/cartesian.jl#L72-L83

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1570

while @nextract 3 x d->y[2d-1] yields

x_1 = y[1]

x_2 = y[3]

x_3 = y[5]

source

Base.Cartesian.@nexprs – Macro.

@nexprs N expr

Generate N expressions. expr should be an anonymous-function expression.

Examples

julia> @macroexpand Base.Cartesian.@nexprs 4 i -> y[i] = A[i+j]

quote

y[1] = A[1 + j]

y[2] = A[2 + j]

y[3] = A[3 + j]

y[4] = A[4 + j]

end

source

Base.Cartesian.@ncall – Macro.

@ncall N f sym...

Generate a function call expression. sym represents any number of function arguments, the last of

which may be an anonymous-function expression and is expanded into N arguments.

For example, @ncall 3 func a generates

func(a_1, a_2, a_3)

while @ncall 2 func a b i->c[i] yields

func(a, b, c[1], c[2])

source

Base.Cartesian.@ntuple – Macro.

@ntuple N expr

Generates an N-tuple. @ntuple 2 i would generate (i_1, i_2), and @ntuple 2 k->k+1 would gen-

erate (2,3).

source

Base.Cartesian.@nall – Macro.

@nall N expr

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/cartesian.jl#L132-L149
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/cartesian.jl#L111-L126
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/cartesian.jl#L89-L103
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/cartesian.jl#L193-L198

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1571

Check whether all of the expressions generated by the anonymous-function expression expr evaluate

to true.

@nall 3 d->(i_d > 1)would generate the expression (i_1 > 1 && i_2 > 1 && i_3 > 1). This can

be convenient for bounds-checking.

source

Base.Cartesian.@nany – Macro.

@nany N expr

Check whether any of the expressions generated by the anonymous-function expression expr evaluate

to true.

@nany 3 d->(i_d > 1) would generate the expression (i_1 > 1 || i_2 > 1 || i_3 > 1).

source

Base.Cartesian.@nif – Macro.

@nif N conditionexpr expr

@nif N conditionexpr expr elseexpr

Generates a sequence of if ... elseif ... else ... end statements. For example:

@nif 3 d->(i_d >= size(A,d)) d->(error("Dimension ", d, " too big")) d->println("All OK")

would generate:

if i_1 > size(A, 1)

error("Dimension ", 1, " too big")

elseif i_2 > size(A, 2)

error("Dimension ", 2, " too big")

else

println("All OK")

end

source

102.10 Talking to the compiler (the :meta mechanism)

In some circumstances, onemight wish to provide hints or instructions that a given block of code has special

properties: you might always want to inline it, or you might want to turn on special compiler optimization

passes. Starting with version 0.4, Julia has a convention that these instructions can be placed inside a

:meta expression, which is typically (but not necessarily) the first expression in the body of a function.

:meta expressions are created with macros. As an example, consider the implementation of the @inline

macro:

macro inline(ex)

esc(isa(ex, Expr) ? pushmeta!(ex, :inline) : ex)

end

Here, ex is expected to be an expression defining a function. A statement like this:

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/cartesian.jl#L160-L168
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/cartesian.jl#L177-L184
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/cartesian.jl#L204-L221

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1572

@inline function myfunction(x)

x*(x+3)

end

gets turned into an expression like this:

quote

function myfunction(x)

Expr(:meta, :inline)

x*(x+3)

end

end

Base.pushmeta!(ex, :symbol, args...) appends :symbol to the end of the :meta expression, creating

a new :meta expression if necessary. If args is specified, a nested expression containing :symbol and

these arguments is appended instead, which can be used to specify additional information.

To use the metadata, you have to parse these :meta expressions. If your implementation can be performed

within Julia, Base.popmeta! is very handy: Base.popmeta!(body, :symbol) will scan a function body

expression (one without the function signature) for the first :meta expression containing :symbol, extract

any arguments, and return a tuple (found::Bool, args::Array{Any}). If the metadata did not have any

arguments, or :symbol was not found, the args array will be empty.

Not yet provided is a convenient infrastructure for parsing :meta expressions from C++.

102.11 SubArrays

Julia's SubArray type is a container encoding a "view" of a parent AbstractArray. This page documents

some of the design principles and implementation of SubArrays.

One of themajor design goals is to ensure high performance for views of both IndexLinear and IndexCartesian

arrays. Furthermore, views of IndexLinear arrays should themselves be IndexLinear to the extent that

it is possible.

Index replacement

Consider making 2d slices of a 3d array:

julia> A = rand(2,3,4);

julia> S1 = view(A, :, 1, 2:3)

2×2 view(::Array{Float64, 3}, :, 1, 2:3) with eltype Float64:

0.839622 0.711389

0.967143 0.103929

julia> S2 = view(A, 1, :, 2:3)

3×2 view(::Array{Float64, 3}, 1, :, 2:3) with eltype Float64:

0.839622 0.711389

0.789764 0.806704

0.566704 0.962715

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1573

view drops "singleton" dimensions (ones that are specified by an Int), so both S1 and S2 are two-dimensional

SubArrays. Consequently, the natural way to index these is with S1[i,j]. To extract the value from

the parent array A, the natural approach is to replace S1[i,j] with A[i,1,(2:3)[j]] and S2[i,j] with

A[1,i,(2:3)[j]].

The key feature of the design of SubArrays is that this index replacement can be performed without any

runtime overhead.

SubArray design

Type parameters and fields

The strategy adopted is first and foremost expressed in the definition of the type:

struct SubArray{T,N,P,I,L} <: AbstractArray{T,N}

parent::P

indices::I

offset1::Int # for linear indexing and pointer, only valid when L==true

stride1::Int # used only for linear indexing

...

end

SubArray has 5 type parameters. The first two are the standard element type and dimensionality. The next

is the type of the parent AbstractArray. The most heavily-used is the fourth parameter, a Tuple of the

types of the indices for each dimension. The final one, L, is only provided as a convenience for dispatch;

it's a boolean that represents whether the index types support fast linear indexing. More on that later.

If in our example above A is a Array{Float64, 3}, our S1 case abovewould be a SubArray{Float64,2,Array{Float64,3},Tuple{Base.Slice{Base.OneTo{Int64}},Int64,UnitRange{Int64}},false}.

Note in particular the tuple parameter, which stores the types of the indices used to create S1. Likewise,

julia> S1.indices

(Base.Slice(Base.OneTo(2)), 1, 2:3)

Storing these values allows index replacement, and having the types encoded as parameters allows one

to dispatch to efficient algorithms.

Index translation

Performing index translation requires that you do different things for different concrete SubArray types.

For example, for S1, one needs to apply the i,j indices to the first and third dimensions of the parent array,

whereas for S2 one needs to apply them to the second and third. The simplest approach to indexing would

be to do the type-analysis at runtime:

parentindices = Vector{Any}()

for thisindex in S.indices

...

if isa(thisindex, Int)

Don't consume one of the input indices

push!(parentindices, thisindex)

elseif isa(thisindex, AbstractVector)

Consume an input index

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1574

push!(parentindices, thisindex[inputindex[j]])

j += 1

elseif isa(thisindex, AbstractMatrix)

Consume two input indices

push!(parentindices, thisindex[inputindex[j], inputindex[j+1]])

j += 2

elseif ...

end

S.parent[parentindices...]

Unfortunately, this would be disastrous in terms of performance: each element access would allocate

memory, and involves the running of a lot of poorly-typed code.

The better approach is to dispatch to specific methods to handle each type of stored index. That's what

reindex does: it dispatches on the type of the first stored index and consumes the appropriate number of

input indices, and then it recurses on the remaining indices. In the case of S1, this expands to

Base.reindex(S1, S1.indices, (i, j)) == (i, S1.indices[2], S1.indices[3][j])

for any pair of indices (i,j) (except CartesianIndexs and arrays thereof, see below).

This is the core of a SubArray; indexing methods depend upon reindex to do this index translation. Some-

times, though, we can avoid the indirection and make it even faster.

Linear indexing

Linear indexing can be implemented efficiently when the entire array has a single stride that separates

successive elements, starting from some offset. This means that we can pre-compute these values and

represent linear indexing simply as an addition and multiplication, avoiding the indirection of reindex and

(more importantly) the slow computation of the cartesian coordinates entirely.

For SubArray types, the availability of efficient linear indexing is based purely on the types of the indices,

and does not depend on values like the size of the parent array. You can ask whether a given set of indices

supports fast linear indexing with the internal Base.viewindexing function:

julia> Base.viewindexing(S1.indices)

IndexCartesian()

julia> Base.viewindexing(S2.indices)

IndexLinear()

This is computed during construction of the SubArray and stored in the L type parameter as a boolean that

encodes fast linear indexing support. While not strictly necessary, it means that we can define dispatch

directly on SubArray{T,N,A,I,true} without any intermediaries.

Since this computation doesn't depend on runtime values, it can miss some cases in which the stride

happens to be uniform:

julia> A = reshape(1:4*2, 4, 2)

4×2 reshape(::UnitRange{Int64}, 4, 2) with eltype Int64:

1 5

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1575

2 6

3 7

4 8

julia> diff(A[2:2:4,:][:])

3-element Vector{Int64}:

2

2

2

A view constructed as view(A, 2:2:4, :) happens to have uniform stride, and therefore linear indexing

indeed could be performed efficiently. However, success in this case depends on the size of the array: if

the first dimension instead were odd,

julia> A = reshape(1:5*2, 5, 2)

5×2 reshape(::UnitRange{Int64}, 5, 2) with eltype Int64:

1 6

2 7

3 8

4 9

5 10

julia> diff(A[2:2:4,:][:])

3-element Vector{Int64}:

2

3

2

then A[2:2:4,:] does not have uniform stride, so we cannot guarantee efficient linear indexing. Since we

have to base this decision based purely on types encoded in the parameters of the SubArray, S = view(A,

2:2:4, :) cannot implement efficient linear indexing.

A few details

• Note that the Base.reindex function is agnostic to the types of the input indices; it simply determines

how and where the stored indices should be reindexed. It not only supports integer indices, but it

supports non-scalar indexing, too. Thismeans that views of views don't need two levels of indirection;

they can simply re-compute the indices into the original parent array!

• Hopefully by now it's fairly clear that supporting slices means that the dimensionality, given by the

parameter N, is not necessarily equal to the dimensionality of the parent array or the length of the

indices tuple. Neither do user-supplied indices necessarily line up with entries in the indices tuple

(e.g., the second user-supplied index might correspond to the third dimension of the parent array,

and the third element in the indices tuple).

What might be less obvious is that the dimensionality of the stored parent array must be equal to

the number of effective indices in the indices tuple. Some examples:

A = reshape(1:35, 5, 7) # A 2d parent Array

S = view(A, 2:7) # A 1d view created by linear indexing

S = view(A, :, :, 1:1) # Appending extra indices is supported

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1576

Naively, you'd think you could just set S.parent = A and S.indices = (:,:,1:1), but supporting

this dramatically complicates the reindexing process, especially for views of views. Not only do you

need to dispatch on the types of the stored indices, but you need to examine whether a given index

is the final one and "merge" any remaining stored indices together. This is not an easy task, and

even worse: it's slow since it implicitly depends upon linear indexing.

Fortunately, this is precisely the computation that ReshapedArray performs, and it does so linearly if

possible. Consequently, view ensures that the parent array is the appropriate dimensionality for the

given indices by reshaping it if needed. The inner SubArray constructor ensures that this invariant

is satisfied.

• CartesianIndex and arrays thereof throw a nasty wrench into the reindex scheme. Recall that

reindex simply dispatches on the type of the stored indices in order to determine how many passed

indices should be used and where they should go. But with CartesianIndex, there's no longer a one-

to-one correspondence between the number of passed arguments and the number of dimensions

that they index into. If we return to the above example of Base.reindex(S1, S1.indices, (i,

j)), you can see that the expansion is incorrect for i, j = CartesianIndex(), CartesianIndex(2,1).

It should skip the CartesianIndex() entirely and return:

(CartesianIndex(2,1)[1], S1.indices[2], S1.indices[3][CartesianIndex(2,1)[2]])

Instead, though, we get:

(CartesianIndex(), S1.indices[2], S1.indices[3][CartesianIndex(2,1)])

Doing this correctly would require combined dispatch on both the stored and passed indices across

all combinations of dimensionalities in an intractable manner. As such, reindex must never be

called with CartesianIndex indices. Fortunately, the scalar case is easily handled by first flattening

the CartesianIndex arguments to plain integers. Arrays of CartesianIndex, however, cannot be

split apart into orthogonal pieces so easily. Before attempting to use reindex, view must ensure

that there are no arrays of CartesianIndex in the argument list. If there are, it can simply "punt"

by avoiding the reindex calculation entirely, constructing a nested SubArray with two levels of

indirection instead.

102.12 isbits Union Optimizations

In Julia, the Array type holds both "bits" values as well as heap-allocated "boxed" values. The distinction

is whether the value itself is stored inline (in the direct allocated memory of the array), or if the memory

of the array is simply a collection of pointers to objects allocated elsewhere. In terms of performance,

accessing values inline is clearly an advantage over having to follow a pointer to the actual value. The

definition of "isbits" generally means any Julia type with a fixed, determinate size, meaning no "pointer"

fields, see ?isbitstype.

Julia also supports Union types, quite literally the union of a set of types. Custom Union type definitions can

be extremely handy for applications wishing to "cut across" the nominal type system (i.e. explicit subtype

relationships) and define methods or functionality on these, otherwise unrelated, set of types. A compiler

challenge, however, is in determining how to treat these Union types. The naive approach (and indeed,

what Julia itself did pre-0.7), is to simply make a "box" and then a pointer in the box to the actual value,

similar to the previously mentioned "boxed" values. This is unfortunate, however, because of the number

of small, primitive "bits" types (think UInt8, Int32, Float64, etc.) that would easily fit themselves inline

in this "box" without needing any indirection for value access. There are two main ways Julia can take

advantage of this optimization as of 0.7: isbits Union fields in types, and isbits Union Arrays.

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1577

isbits Union Structs

Julia now includes an optimization wherein "isbits Union" fields in types (mutable struct, struct, etc.) will

be stored inline. This is accomplished by determining the "inline size" of the Union type (e.g. Union{UInt8,

Int16} will have a size of two bytes, which represents the size needed of the largest Union type Int16),

and in addition, allocating an extra "type tag byte" (UInt8), whose value signals the type of the actual

value stored inline of the "Union bytes". The type tag byte value is the index of the actual value's type in

the Union type's order of types. For example, a type tag value of 0x02 for a field with type Union{Nothing,

UInt8, Int16} would indicate that an Int16 value is stored in the 16 bits of the field in the structure's

memory; a 0x01 value would indicate that a UInt8 value was stored in the first 8 bits of the 16 bits of the

field's memory. Lastly, a value of 0x00 signals that the nothing value will be returned for this field, even

though, as a singleton type with a single type instance, it technically has a size of 0. The type tag byte for

a type's Union field is stored directly after the field's computed Union memory.

isbits Union Arrays

Julia can now also store "isbits Union" values inline in an Array, as opposed to requiring an indirection

box. The optimization is accomplished by storing an extra "type tag array" of bytes, one byte per array

element, alongside the bytes of the actual array data. This type tag array serves the same function as

the type field case: its value signals the type of the actual stored Union value in the array. In terms of

layout, a Julia Array can include extra "buffer" space before and after its actual data values, which are

tracked in the a->offset and a->maxsize fields of the jl_array_t* type. The "type tag array" is treated

exactly as another jl_array_t*, but which shares the same a->offset, a->maxsize, and a->len fields.

So the formula to access an isbits Union Array's type tag bytes is a->data + (a->maxsize - a->offset)

* a->elsize + a->offset; i.e. the Array's a->data pointer is already shifted by a->offset, so correcting

for that, we follow the data all the way to the max of what it can hold a->maxsize, then adjust by a->offset

more bytes to account for any present "front buffering" the array might be doing. This layout in particular

allows for very efficient resizing operations as the type tag data only ever has to move when the actual

array's data has to move.

102.13 System Image Building

Building the Julia system image

Julia ships with a preparsed system image containing the contents of the Basemodule, named sys.ji. This

file is also precompiled into a shared library called sys.{so,dll,dylib} on as many platforms as possible,

so as to give vastly improved startup times. On systems that do not ship with a precompiled system image

file, one can be generated from the source files shipped in Julia's DATAROOTDIR/julia/base folder.

Julia will by default generate its system image on half of the available system threads. This may be con-

trolled by the JULIA_IMAGE_THREADS environment variable.

This operation is useful for multiple reasons. A user may:

• Build a precompiled shared library system image on a platform that did not ship with one, thereby

improving startup times.

• Modify Base, rebuild the system image and use the new Base next time Julia is started.

• Include a userimg.jl file that includes packages into the system image, thereby creating a system

image that has packages embedded into the startup environment.

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1578

The PackageCompiler.jl package contains convenient wrapper functions to automate this process.

System image optimized for multiple microarchitectures

The system image can be compiled simultaneously for multiple CPU microarchitectures under the same

instruction set architecture (ISA). Multiple versions of the same function may be created with minimum

dispatch point inserted into shared functions in order to take advantage of different ISA extensions or other

microarchitecture features. The version that offers the best performance will be selected automatically at

runtime based on available CPU features.

Specifying multiple system image targets

A multi-microarchitecture system image can be enabled by passing multiple targets during system image

compilation. This can be done either with the JULIA_CPU_TARGET make option or with the -C command

line option when running the compilation command manually. Multiple targets are separated by ; in the

option string. The syntax for each target is a CPU name followed by multiple features separated by ,. All

features supported by LLVM are supported and a feature can be disabled with a - prefix. (+ prefix is also

allowed and ignored to be consistent with LLVM syntax). Additionally, a few special features are supported

to control the function cloning behavior.

Note

It is good practice to specify either clone_all or base(<n>) for every target apart from the

first one. This makes it explicit which targets have all functions cloned, and which targets are

based on other targets. If this is not done, the default behavior is to not clone every function,

and to use the first target's function definition as the fallback when not cloning a function.

1. clone_all

By default, only functions that are the most likely to benefit from the microarchitecture features will

be cloned. When clone_all is specified for a target, however, all functions in the system image will

be cloned for the target. The negative form -clone_all can be used to prevent the built-in heuristic

from cloning all functions.

2. base(<n>)

Where <n> is a placeholder for a non-negative number (e.g. base(0), base(1)). By default, a

partially cloned (i.e. not clone_all) target will use functions from the default target (first one speci-

fied) if a function is not cloned. This behavior can be changed by specifying a different base with the

base(<n>) option. The nth target (0-based) will be used as the base target instead of the default (0th)

one. The base target has to be either 0 or another clone_all target. Specifying a non-clone_all

target as the base target will cause an error.

3. opt_size

This causes the function for the target to be optimized for size when there isn't a significant runtime

performance impact. This corresponds to -Os GCC and Clang option.

4. min_size

This causes the function for the target to be optimized for size that might have a significant runtime

performance impact. This corresponds to -Oz Clang option.

https://github.com/JuliaLang/PackageCompiler.jl

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1579

As an example, at the time of this writing, the following string is used in the creation of the official x86_64

Julia binaries downloadable from julialang.org:

generic;sandybridge,-xsaveopt,clone_all;haswell,-rdrnd,base(1)

This creates a system image with three separate targets; one for a generic x86_64 processor, one with a

sandybridge ISA (explicitly excluding xsaveopt) that explicitly clones all functions, and one targeting the

haswell ISA, based off of the sandybridge sysimg version, and also excluding rdrnd. When a Julia imple-

mentation loads the generated sysimg, it will check the host processor for matching CPU capability flags,

enabling the highest ISA level possible. Note that the base level (generic) requires the cx16 instruction,

which is disabled in some virtualization software and must be enabled for the generic target to be loaded.

Alternatively, a sysimg could be generated with the target generic,-cx16 for greater compatibility, how-

ever note that this may cause performance and stability problems in some code.

Implementation overview

This is a brief overview of different part involved in the implementation. See code comments for each

components for more implementation details.

1. System image compilation

The parsing and cloning decision are done in src/processor*. We currently support cloning of

function based on the present of loops, simd instructions, or other math operations (e.g. fast-

math, fma, muladd). This information is passed on to src/llvm-multiversioning.cpp which does

the actual cloning. In addition to doing the cloning and insert dispatch slots (see comments in

MultiVersioning::runOnModule for how this is done), the pass also generates metadata so that

the runtime can load and initialize the system image correctly. A detailed description of the metadata

is available in src/processor.h.

2. System image loading

The loading and initialization of the system image is done in src/processor* by parsing the meta-

data saved during system image generation. Host feature detection and selection decision are done

in src/processor_*.cpp depending on the ISA. The target selection will prefer exact CPU name

match, larger vector register size, and larger number of features. An overview of this process is in

src/processor.cpp.

102.14 Package Images

Julia package images provide object (native code) caches for Julia packages. They are similar to Julia's

system image and support many of the same features. In fact the underlying serialization format is the

same, and the system image is the base image that the package images are build against.

High-level overview

Package images are shared libraries that contain both code and data. Like .ji cache files, they are gen-

erated per package. The data section contains both global data (global variables in the package) as well

as the necessary metadata about what methods and types are defined by the package. The code section

contains native objects that cache the final output of Julia's LLVM-based compiler.

The command line option --pkgimages=no can be used to turn off object caching for this session. Note

that this means that cache files have to likely be regenerated. See JULIA_MAX_NUM_PRECOMPILE_FILES for

the upper limit of variants Julia caches per default.

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1580

Note

While the package images present themselves as native shared libraries, they are only an

approximation thereof. You will not be able to link against them from a native program and

they must be loaded from Julia.

Linking

Since the package images contain native code, we must run a linker over them before we can use them.

You can set the environment variable JULIA_VERBOSE_LINKING to true to make the package image linking

process verbose.

Furthermore, we cannot assume that the user has a working system linker installed. Therefore, Julia ships

with LLD, the LLVM linker, to provide a working out of the box experience. In base/linking.jl, we imple-

ment a limited interface to be able to link package images on all supported platforms.

Quirks

Despite LLD being a multi-platform linker, it does not provide a consistent interface across platforms. Fur-

thermore, it is meant to be used from clang or another compiler driver, we therefore reimplement some

of the logic from llvm-project/clang/lib/Driver/ToolChains. Thankfully one can use lld -flavor to

set lld to the right platform

Windows To avoid having to deal with link.exe we use -flavor gnu, effectively turning lld into a

cross-linker from a mingw32 environment. Windows DLLs are required to contain a _DllMainCRTStartup

function and to minimize our dependence on mingw32 libraries, we inject a stub definition ourselves.

MacOS Dynamic libraries onmacOS need to link against -lSystem. On recent macOS versions, -lSystem

is only available for linking when Xcode is available. To that effect we link with -undefined dynamic_lookup.

Package images optimized for multiple microarchitectures

Similar to multi-versioning for system images, package images support multi-versioning. If you are in a het-

erogenous environment, with a unified cache, you can set the environment variable JULIA_CPU_TARGET=generic

to multi-version the object caches.

Flags that impact package image creation and selection

These are the Julia command line flags that impact cache selection. Package images that were created

with different flags will be rejected.

• -g, --debug-info: Exact match required since it changes code generation.

• --check-bounds: Exact match required since it changes code generation.

• --inline: Exact match required since it changes code generation.

• --pkgimages: To allow running without object caching enabled.

• -O, --optimize: Reject package images generated for a lower optimization level, but allow for higher

optimization levels to be loaded.

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1581

102.15 Working with LLVM

This is not a replacement for the LLVM documentation, but a collection of tips for working on LLVM for Julia.

Overview of Julia to LLVM Interface

Julia dynamically links against LLVM by default. Build with USE_LLVM_SHLIB=0 to link statically.

The code for lowering Julia AST to LLVM IR or interpreting it directly is in directory src/.

File Description

aotcompile.cpp Legacy pass manager pipeline, compiler C-interface entry

builtins.c Builtin functions

ccall.cpp Lowering ccall

cgutils.cpp Lowering utilities, notably for array and tuple accesses

codegen.cpp Top-level of code generation, pass list, lowering builtins

debuginfo.cpp Tracks debug information for JIT code

disasm.cpp Handles native object file and JIT code diassembly

gf.c Generic functions

intrinsics.cpp Lowering intrinsics

jitlayers.cpp JIT-specific code, ORC compilation layers/utilities

llvm-alloc-helpers.cpp Julia-specific escape analysis

llvm-alloc-opt.cpp Custom LLVM pass to demote heap allocations to the stack

llvm-cpufeatures.cpp Custom LLVM pass to lower CPU-based functions (e.g. haveFMA)

llvm-demote-float16.cpp Custom LLVM pass to lower 16b float ops to 32b float ops

llvm-final-gc-lowering.cpp Custom LLVM pass to lower GC calls to their final form

llvm-gc-invariant-verifier.cpp Custom LLVM pass to verify Julia GC invariants

llvm-julia-licm.cpp Custom LLVM pass to hoist/sink Julia-specific intrinsics

llvm-late-gc-lowering.cpp Custom LLVM pass to root GC-tracked values

llvm-lower-handlers.cpp Custom LLVM pass to lower try-catch blocks

llvm-muladd.cpp Custom LLVM pass for fast-match FMA

llvm-multiversioning.cpp Custom LLVM pass to generate sysimg code on multiple

architectures

llvm-propagate-addrspaces.cpp Custom LLVM pass to canonicalize addrspaces

llvm-ptls.cpp Custom LLVM pass to lower TLS operations

llvm-remove-addrspaces.cpp Custom LLVM pass to remove Julia addrspaces

llvm-remove-ni.cpp Custom LLVM pass to remove Julia non-integral addrspaces

llvm-simdloop.cpp Custom LLVM pass for @simd

pipeline.cpp New pass manager pipeline, pass pipeline parsing

sys.c I/O and operating system utility functions

Some of the .cpp files form a group that compile to a single object.

The difference between an intrinsic and a builtin is that a builtin is a first class function that can be used

like any other Julia function. An intrinsic can operate only on unboxed data, and therefore its arguments

must be statically typed.

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1582

Alias Analysis

Julia currently uses LLVM's Type Based Alias Analysis. To find the comments that document the inclusion

relationships, look for static MDNode* in src/codegen.cpp.

The -O option enables LLVM's Basic Alias Analysis.

Building Julia with a different version of LLVM

The default version of LLVM is specified in deps/llvm.version. You can override it by creating a file called

Make.user in the top-level directory and adding a line to it such as:

LLVM_VER = 13.0.0

Besides the LLVM release numerals, you can also use DEPS_GIT = llvm in combination with USE_BINARYBUILDER_LLVM

= 0 to build against the latest development version of LLVM.

You can also specify to build a debug version of LLVM, by setting either LLVM_DEBUG = 1 or LLVM_DEBUG

= Release in your Make.user file. The former will be a fully unoptimized build of LLVM and the latter will

produce an optimized build of LLVM. Depending on your needs the latter will suffice and it quite a bit faster.

If you use LLVM_DEBUG = Release you will also want to set LLVM_ASSERTIONS = 1 to enable diagnostics

for different passes. Only LLVM_DEBUG = 1 implies that option by default.

Passing options to LLVM

You can pass options to LLVM via the environment variable JULIA_LLVM_ARGS. Here are example settings

using bash syntax:

• export JULIA_LLVM_ARGS=-print-after-all dumps IR after each pass.

• export JULIA_LLVM_ARGS=-debug-only=loop-vectorize dumps LLVM DEBUG(...) diagnostics for

loop vectorizer. If you get warnings about "Unknown command line argument", rebuild LLVM with

LLVM_ASSERTIONS = 1.

• export JULIA_LLVM_ARGS=-help shows a list of available options. export JULIA_LLVM_ARGS=-help-

hidden shows even more.

• export JULIA_LLVM_ARGS="-fatal-warnings -print-options" is an example how to usemultiple

options.

Useful JULIA_LLVM_ARGS parameters

• -print-after=PASS: prints the IR after any execution of PASS, useful for checking changes done by

a pass.

• -print-before=PASS: prints the IR before any execution of PASS, useful for checking the input to a

pass.

• -print-changed: prints the IR whenever a pass changes the IR, useful for narrowing down which

passes are causing problems.

• -print-(before|after)=MARKER-PASS: the Julia pipeline ships with a number of marker passes in

the pipeline, which can be used to identify where problems or optimizations are occurring. A marker

pass is defined as a pass which appears once in the pipeline and performs no transformations on the

https://llvm.org/docs/LangRef.html#tbaa-metadata
https://llvm.org/docs/AliasAnalysis.html#the-basic-aa-pass

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1583

IR, and is only useful for targeting print-before/print-after. Currently, the following marker passes

exist in the pipeline:

– BeforeOptimization

– BeforeEarlySimplification

– AfterEarlySimplification

– BeforeEarlyOptimization

– AfterEarlyOptimization

– BeforeLoopOptimization

– BeforeLICM

– AfterLICM

– BeforeLoopSimplification

– AfterLoopSimplification

– AfterLoopOptimization

– BeforeScalarOptimization

– AfterScalarOptimization

– BeforeVectorization

– AfterVectorization

– BeforeIntrinsicLowering

– AfterIntrinsicLowering

– BeforeCleanup

– AfterCleanup

– AfterOptimization

• -time-passes: prints the time spent in each pass, useful for identifying which passes are taking a

long time.

• -print-module-scope: used in conjunction with -print-(before|after), gets the entire module

rather than the IR unit received by the pass

• -debug: prints out a lot of debugging information throughout LLVM

• -debug-only=NAME, prints out debugging statements from files with DEBUG_TYPE defined to NAME,

useful for getting additional context about a problem

Debugging LLVM transformations in isolation

On occasion, it can be useful to debug LLVM's transformations in isolation from the rest of the Julia sys-

tem, e.g. because reproducing the issue inside julia would take too long, or because one wants to take

advantage of LLVM's tooling (e.g. bugpoint). To get unoptimized IR for the entire system image, pass the

--output-unopt-bc unopt.bc option to the system image build process, which will output the unopti-

mized IR to an unopt.bc file. This file can then be passed to LLVM tools as usual. libjulia can function

as an LLVM pass plugin and can be loaded into LLVM tools, to make julia-specific passes available in this

environment. In addition, it exposes the -julia meta-pass, which runs the entire Julia pass-pipeline over

the IR. As an example, to generate a system image with the old pass manager, one could do:

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1584

opt -enable-new-pm=0 -load libjulia-codegen.so -julia -o opt.bc unopt.bc

llc -o sys.o opt.bc

cc -shared -o sys.so sys.o

To generate a system image with the new pass manager, one could do:

opt -load-pass-plugin=libjulia-codegen.so --passes='julia' -o opt.bc unopt.bc

llc -o sys.o opt.bc

cc -shared -o sys.so sys.o

This system image can then be loaded by julia as usual.

It is also possible to dump an LLVM IR module for just one Julia function, using:

fun, T = +, Tuple{Int,Int} # Substitute your function of interest here

optimize = false

open("plus.ll", "w") do file

println(file, InteractiveUtils._dump_function(fun, T, false, false, false, true, :att,

optimize, :default))↪→

end

These files can be processed the same way as the unoptimized sysimg IR shown above.

Improving LLVM optimizations for Julia

Improving LLVM code generation usually involves either changing Julia lowering to be more friendly to

LLVM's passes, or improving a pass.

If you are planning to improve a pass, be sure to read the LLVM developer policy. The best strategy is to

create a code example in a form where you can use LLVM's opt tool to study it and the pass of interest in

isolation.

1. Create an example Julia code of interest.

2. Use JULIA_LLVM_ARGS=-print-after-all to dump the IR.

3. Pick out the IR at the point just before the pass of interest runs.

4. Strip the debug metadata and fix up the TBAA metadata by hand.

The last step is labor intensive. Suggestions on a better way would be appreciated.

The jlcall calling convention

Julia has a generic calling convention for unoptimized code, which looks somewhat as follows:

jl_value_t *any_unoptimized_call(jl_value_t *, jl_value_t **, int);

where the first argument is the boxed function object, the second argument is an on-stack array of ar-

guments and the third is the number of arguments. Now, we could perform a straightforward lowering

and emit an alloca for the argument array. However, this would betray the SSA nature of the uses at the

call site, making optimizations (including GC root placement), significantly harder. Instead, we emit it as

follows:

https://llvm.org/docs/DeveloperPolicy.html

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1585

call %jl_value_t *@julia.call(jl_value_t *(*)(...) @any_unoptimized_call, %jl_value_t *%arg1, %

jl_value_t *%arg2)

This allows us to retain the SSA-ness of the uses throughout the optimizer. GC root placement will later

lower this call to the original C ABI.

GC root placement

GC root placement is done by an LLVM pass late in the pass pipeline. Doing GC root placement this late en-

ables LLVM to make more aggressive optimizations around code that requires GC roots, as well as allowing

us to reduce the number of required GC roots and GC root store operations (since LLVM doesn't understand

our GC, it wouldn't otherwise know what it is and is not allowed to do with values stored to the GC frame,

so it'll conservatively do very little). As an example, consider an error path

if some_condition()

#= Use some variables maybe =#

error("An error occurred")

end

During constant folding, LLVM may discover that the condition is always false, and can remove the basic

block. However, if GC root lowering is done early, the GC root slots used in the deleted block, as well as any

values kept alive in those slots only because they were used in the error path, would be kept alive by LLVM.

By doing GC root lowering late, we give LLVM the license to do any of its usual optimizations (constant

folding, dead code elimination, etc.), without having to worry (too much) about which values may or may

not be GC tracked.

However, in order to be able to do late GC root placement, we need to be able to identify a) which pointers

are GC tracked and b) all uses of such pointers. The goal of the GC placement pass is thus simple:

Minimize the number of needed GC roots/stores to them subject to the constraint that at every safepoint,

any live GC-tracked pointer (i.e. for which there is a path after this point that contains a use of this pointer)

is in some GC slot.

Representation

The primary difficulty is thus choosing an IR representation that allows us to identify GC-tracked pointers

and their uses, even after the program has been run through the optimizer. Our design makes use of three

LLVM features to achieve this:

• Custom address spaces

• Operand Bundles

• Non-integral pointers

Custom address spaces allow us to tag every point with an integer that needs to be preserved through

optimizations. The compiler may not insert casts between address spaces that did not exist in the original

program and it must never change the address space of a pointer on a load/store/etc operation. This allows

us to annotate which pointers are GC-tracked in an optimizer-resistant way. Note that metadata would not

be able to achieve the same purpose. Metadata is supposed to always be discardable without altering the

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1586

semantics of the program. However, failing to identify a GC-tracked pointer alters the resulting program

behavior dramatically - it'll probably crash or return wrong results. We currently use three different address

spaces (their numbers are defined in src/codegen_shared.cpp):

• GC Tracked Pointers (currently 10): These are pointers to boxed values that may be put into a GC

frame. It is loosely equivalent to a jl_value_t* pointer on the C side. N.B. It is illegal to ever have

a pointer in this address space that may not be stored to a GC slot.

• Derived Pointers (currently 11): These are pointers that are derived from some GC tracked pointer.

Uses of these pointers generate uses of the original pointer. However, they need not themselves be

known to the GC. The GC root placement pass MUST always find the GC tracked pointer from which

this pointer is derived and use that as the pointer to root.

• Callee Rooted Pointers (currently 12): This is a utility address space to express the notion of a callee

rooted value. All values of this address space MUST be storable to a GC root (though it is possible to

relax this condition in the future), but unlike the other pointers need not be rooted if passed to a call

(they do still need to be rooted if they are live across another safepoint between the definition and

the call).

• Pointers loaded from tracked object (currently 13): This is used by arrays, which themselves contain

a pointer to the managed data. This data area is owned by the array, but is not a GC-tracked object

by itself. The compiler guarantees that as long as this pointer is live, the object that this pointer was

loaded from will keep being live.

Invariants

The GC root placement pass makes use of several invariants, which need to be observed by the frontend

and are preserved by the optimizer.

First, only the following address space casts are allowed:

• 0->{Tracked,Derived,CalleeRooted}: It is allowable to decay an untracked pointer to any of the

others. However, do note that the optimizer has broad license to not root such a value. It is never

safe to have a value in address space 0 in any part of the program if it is (or is derived from) a value

that requires a GC root.

• Tracked->Derived: This is the standard decay route for interior values. The placement pass will look

for these to identify the base pointer for any use.

• Tracked->CalleeRooted: Addrspace CalleeRooted serves merely as a hint that a GC root is not re-

quired. However, do note that the Derived->CalleeRooted decay is prohibited, since pointers should

generally be storable to a GC slot, even in this address space.

Now let us consider what constitutes a use:

• Loads whose loaded values is in one of the address spaces

• Stores of a value in one of the address spaces to a location

• Stores to a pointer in one of the address spaces

• Calls for which a value in one of the address spaces is an operand

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1587

• Calls in jlcall ABI, for which the argument array contains a value

• Return instructions.

We explicitly allow load/stores and simple calls in address spaces Tracked/Derived. Elements of jlcall ar-

gument arrays must always be in address space Tracked (it is required by the ABI that they are valid

jl_value_t* pointers). The same is true for return instructions (though note that struct return arguments

are allowed to have any of the address spaces). The only allowable use of an address space CalleeRooted

pointer is to pass it to a call (which must have an appropriately typed operand).

Further, we disallow getelementptr in addrspace Tracked. This is because unless the operation is a noop,

the resulting pointer will not be validly storable to a GC slot and may thus not be in this address space. If

such a pointer is required, it should be decayed to addrspace Derived first.

Lastly, we disallow inttoptr/ptrtoint instructions in these address spaces. Having these instructions

would mean that some i64 values are really GC tracked. This is problematic, because it breaks that stated

requirement that we're able to identify GC-relevant pointers. This invariant is accomplished using the

LLVM "non-integral pointers" feature, which is new in LLVM 5.0. It prohibits the optimizer from making

optimizations that would introduce these operations. Note we can still insert static constants at JIT time by

using inttoptr in address space 0 and then decaying to the appropriate address space afterwards.

Supporting ccall

One important aspect missing from the discussion so far is the handling of ccall. ccall has the peculiar

feature that the location and scope of a use do not coincide. As an example consider:

A = randn(1024)

ccall(:foo, Cvoid, (Ptr{Float64},), A)

In lowering, the compiler will insert a conversion from the array to the pointer which drops the reference

to the array value. However, we of course need to make sure that the array does stay alive while we're

doing the ccall. To understand how this is done, first recall the lowering of the above code:

return $(Expr(:foreigncall, :(:foo), Cvoid, svec(Ptr{Float64}), 0, :(:ccall), Expr(:foreigncall,

:(:jl_array_ptr), Ptr{Float64}, svec(Any), 0, :(:ccall), :(A)), :(A)))↪→

The last :(A), is an extra argument list inserted during lowering that informs the code generator which

Julia level values need to be kept alive for the duration of this ccall. We then take this information and

represent it in an "operand bundle" at the IR level. An operand bundle is essentially a fake use that is

attached to the call site. At the IR level, this looks like so:

call void inttoptr (i64 ... to void (double*)*)(double* %5) ["jl_roots"(%jl_value_t addrspace

(10)* %A)]

The GC root placement pass will treat the jl_roots operand bundle as if it were a regular operand. How-

ever, as a final step, after the GC roots are inserted, it will drop the operand bundle to avoid confusing

instruction selection.

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1588

Supporting pointer_from_objref

pointer_from_objref is special because it requires the user to take explicit control of GC rooting. By our

above invariants, this function is illegal, because it performs an address space cast from 10 to 0. However,

it can be useful, in certain situations, so we provide a special intrinsic:

declared %jl_value_t *julia.pointer_from_objref(%jl_value_t addrspace(10)*)

which is lowered to the corresponding address space cast after GC root lowering. Do note however that

by using this intrinsic, the caller assumes all responsibility for making sure that the value in question is

rooted. Further this intrinsic is not considered a use, so the GC root placement pass will not provide a GC

root for the function. As a result, the external rooting must be arranged while the value is still tracked by

the system. I.e. it is not valid to attempt to use the result of this operation to establish a global root - the

optimizer may have already dropped the value.

Keeping values alive in the absence of uses

In certain cases it is necessary to keep an object alive, even though there is no compiler-visible use of

said object. This may be case for low level code that operates on the memory-representation of an object

directly or code that needs to interface with C code. In order to allow this, we provide the following intrinsics

at the LLVM level:

token @llvm.julia.gc_preserve_begin(...)

void @llvm.julia.gc_preserve_end(token)

(The llvm. in the name is required in order to be able to use the token type). The semantics of these

intrinsics are as follows: At any safepoint that is dominated by a gc_preserve_begin call, but that is not

not dominated by a corresponding gc_preserve_end call (i.e. a call whose argument is the token returned

by a gc_preserve_begin call), the values passed as arguments to that gc_preserve_begin will be kept

live. Note that the gc_preserve_begin still counts as a regular use of those values, so the standard lifetime

semantics will ensure that the values will be kept alive before entering the preserve region.

102.16 printf() and stdio in the Julia runtime

Libuv wrappers for stdio

julia.h defines libuv wrappers for the stdio.h streams:

uv_stream_t *JL_STDIN;

uv_stream_t *JL_STDOUT;

uv_stream_t *JL_STDERR;

... and corresponding output functions:

int jl_printf(uv_stream_t *s, const char *format, ...);

int jl_vprintf(uv_stream_t *s, const char *format, va_list args);

These printf functions are used by the .c files in the src/ and cli/ directories wherever stdio is needed

to ensure that output buffering is handled in a unified way.

In special cases, like signal handlers, where the full libuv infrastructure is too heavy, jl_safe_printf()

can be used to write(2) directly to STDERR_FILENO:

void jl_safe_printf(const char *str, ...);

https://docs.libuv.org

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1589

Interface between JL_STD* and Julia code

Base.stdin, Base.stdout and Base.stderr are bound to the JL_STD* libuv streams defined in the run-

time.

Julia's __init__() function (in base/sysimg.jl) calls reinit_stdio() (in base/stream.jl) to create Julia

objects for Base.stdin, Base.stdout and Base.stderr.

reinit_stdio() uses ccall to retrieve pointers to JL_STD* and calls jl_uv_handle_type() to inspect

the type of each stream. It then creates a Julia Base.IOStream, Base.TTY or Base.PipeEndpoint object

to represent each stream, e.g.:

$ julia -e 'println(typeof((stdin, stdout, stderr)))'

Tuple{Base.TTY,Base.TTY,Base.TTY}

$ julia -e 'println(typeof((stdin, stdout, stderr)))' < /dev/null 2>/dev/null

Tuple{IOStream,Base.TTY,IOStream}

$ echo hello | julia -e 'println(typeof((stdin, stdout, stderr)))' | cat

Tuple{Base.PipeEndpoint,Base.PipeEndpoint,Base.TTY}

The Base.read and Base.writemethods for these streams use ccall to call libuv wrappers in src/jl_uv.c,

e.g.:

stream.jl: function write(s::IO, p::Ptr, nb::Integer)

-> ccall(:jl_uv_write, ...)

jl_uv.c: -> int jl_uv_write(uv_stream_t *stream, ...)

-> uv_write(uvw, stream, buf, ...)

printf() during initialization

The libuv streams relied upon by jl_printf() etc., are not available until midway through initialization of

the runtime (see init.c, init_stdio()). Error messages or warnings that need to be printed before this

are routed to the standard C library fwrite() function by the following mechanism:

In sys.c, the JL_STD* stream pointers are statically initialized to integer constants: STD*_FILENO (0,

1 and 2). In jl_uv.c the jl_uv_puts() function checks its uv_stream_t* stream argument and calls

fwrite() if stream is set to STDOUT_FILENO or STDERR_FILENO.

This allows for uniform use of jl_printf() throughout the runtime regardless of whether or not any par-

ticular piece of code is reachable before initialization is complete.

Legacy ios.c library

The src/support/ios.c library is inherited from femtolisp. It provides cross-platform buffered file IO and

in-memory temporary buffers.

ios.c is still used by:

• src/flisp/*.c

• src/dump.c – for serialization file IO and for memory buffers.

• src/staticdata.c – for serialization file IO and for memory buffers.

https://github.com/JeffBezanson/femtolisp

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1590

• base/iostream.jl – for file IO (see base/fs.jl for libuv equivalent).

Use of ios.c in these modules is mostly self-contained and separated from the libuv I/O system. However,

there is one place where femtolisp calls through to jl_printf() with a legacy ios_t stream.

There is a hack in ios.h that makes the ios_t.bm field line up with the uv_stream_t.type and ensures that

the values used for ios_t.bm to not overlap with valid UV_HANDLE_TYPE values. This allows uv_stream_t

pointers to point to ios_t streams.

This is needed because jl_printf() caller jl_static_show() is passed an ios_t stream by femtolisp's

fl_print() function. Julia's jl_uv_puts() function has special handling for this:

if (stream->type > UV_HANDLE_TYPE_MAX) {

return ios_write((ios_t*)stream, str, n);

}

102.17 Bounds checking

Like many modern programming languages, Julia uses bounds checking to ensure program safety when

accessing arrays. In tight inner loops or other performance critical situations, you may wish to skip these

bounds checks to improve runtime performance. For instance, in order to emit vectorized (SIMD) instruc-

tions, your loop body cannot contain branches, and thus cannot contain bounds checks. Consequently,

Julia includes an @inbounds(...) macro to tell the compiler to skip such bounds checks within the given

block. User-defined array types can use the @boundscheck(...) macro to achieve context-sensitive code

selection.

Eliding bounds checks

The @boundscheck(...) macro marks blocks of code that perform bounds checking. When such blocks are

inlined into an @inbounds(...) block, the compiler may remove these blocks. The compiler removes the

@boundscheck block only if it is inlined into the calling function. For example, you might write the method

sum as:

function sum(A::AbstractArray)

r = zero(eltype(A))

for i in eachindex(A)

@inbounds r += A[i]

end

return r

end

With a custom array-like type MyArray having:

@inline getindex(A::MyArray, i::Real) = (@boundscheck checkbounds(A, i); A.data[to_index(i)])

Then when getindex is inlined into sum, the call to checkbounds(A, i) will be elided. If your function

contains multiple layers of inlining, only @boundscheck blocks at most one level of inlining deeper are

eliminated. The rule prevents unintended changes in program behavior from code further up the stack.

https://github.com/JuliaLang/julia/blob/master/src/flisp/print.c#L654

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1591

Caution!

It is easy to accidentally expose unsafe operations with @inbounds. You might be tempted to write the

above example as

function sum(A::AbstractArray)

r = zero(eltype(A))

for i in 1:length(A)

@inbounds r += A[i]

end

return r

end

Which quietly assumes 1-based indexing and therefore exposes unsafe memory access when used with

OffsetArrays:

julia> using OffsetArrays

julia> sum(OffsetArray([1, 2, 3], -10))

9164911648 # inconsistent results or segfault

While the original source of the error here is 1:length(A), the use of @inbounds increases the conse-

quences from a bounds error to a less easily caught and debugged unsafe memory access. It is often

difficult or impossible to prove that a method which uses @inbounds is safe, so one must weigh the bene-

fits of performance improvements against the risk of segfaults and silent misbehavior, especially in public

facing APIs.

Propagating inbounds

Theremay be certain scenarios where for code-organization reasons you wantmore than one layer between

the @inbounds and @boundscheck declarations. For instance, the default getindexmethods have the chain

getindex(A::AbstractArray, i::Real) calls getindex(IndexStyle(A), A, i) calls _getindex(::IndexLinear,

A, i).

To override the "one layer of inlining" rule, a function may be marked with Base.@propagate_inbounds to

propagate an inbounds context (or out of bounds context) through one additional layer of inlining.

The bounds checking call hierarchy

The overall hierarchy is:

• checkbounds(A, I...) which calls

– checkbounds(Bool, A, I...) which calls

∗ checkbounds_indices(Bool, axes(A), I) which recursively calls

· checkindex for each dimension

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1592

Here A is the array, and I contains the "requested" indices. axes(A) returns a tuple of "permitted" indices

of A.

checkbounds(A, I...) throws an error if the indices are invalid, whereas checkbounds(Bool, A, I...)

returns false in that circumstance. checkbounds_indices discards any information about the array other

than its axes tuple, and performs a pure indices-vs-indices comparison: this allows relatively few compiled

methods to serve a huge variety of array types. Indices are specified as tuples, and are usually compared

in a 1-1 fashion with individual dimensions handled by calling another important function, checkindex:

typically,

checkbounds_indices(Bool, (IA1, IA...), (I1, I...)) = checkindex(Bool, IA1, I1) &

checkbounds_indices(Bool, IA, I)

so checkindex checks a single dimension. All of these functions, including the unexported checkbounds_indices

have docstrings accessible with ? .

If you have to customize bounds checking for a specific array type, you should specialize checkbounds(Bool,

A, I...). However, in most cases you should be able to rely on checkbounds_indices as long as you

supply useful axes for your array type.

If you have novel index types, first consider specializing checkindex, which handles a single index for a par-

ticular dimension of an array. If you have a custommultidimensional index type (similar to CartesianIndex),

then you may have to consider specializing checkbounds_indices.

Note this hierarchy has been designed to reduce the likelihood of method ambiguities. We try to make

checkbounds the place to specialize on array type, and try to avoid specializations on index types; con-

versely, checkindex is intended to be specialized only on index type (especially, the last argument).

Emit bounds checks

Julia can be launched with --check-bounds={yes|no|auto} to emit bounds checks always, never, or re-

spect @inbounds declarations.

102.18 Proper maintenance and care of multi-threading locks

The following strategies are used to ensure that the code is dead-lock free (generally by addressing the

4th Coffman condition: circular wait).

1. structure code such that only one lock will need to be acquired at a time

2. always acquire shared locks in the same order, as given by the table below

3. avoid constructs that expect to need unrestricted recursion

Locks

Below are all of the locks that exist in the system and the mechanisms for using them that avoid the

potential for deadlocks (no Ostrich algorithm allowed here):

The following are definitely leaf locks (level 1), and must not try to acquire any other lock:

• safepoint

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1593

Note that this lock is acquired implicitly by JL_LOCK and JL_UNLOCK. use the

_NOGC variants to avoid that for level 1 locks.

While holding this lock, the code must not do any allocation or hit any safe-

points. Note that there are safepoints when doing allocation, enabling / dis-

abling GC, entering / restoring exception frames, and taking / releasing locks.

• shared_map

• finalizers

• pagealloc

• gcpermlock

• flisp

• jlinstackwalk (Win32)

• ResourcePool<?>::mutex

• RLST_mutex

• jllockedstream::mutex

• debuginfo_asyncsafe

• inferencetimingmutex

• ExecutionEngine::SessionLock

flisp itself is already threadsafe, this lock only protects the jl_ast_context_list_t

pool likewise, the ResourcePool<?>::mutexes just protect the associated re-

source pool

The following is a leaf lock (level 2), and only acquires level 1 locks (safepoint) internally:

• typecache

• Module->lock

• JLDebuginfoPlugin::PluginMutex

• newlyinferredmutex

The following is a level 3 lock, which can only acquire level 1 or level 2 locks internally:

• Method->writelock

The following is a level 4 lock, which can only recurse to acquire level 1, 2, or 3 locks:

• MethodTable->writelock

No Julia code may be called while holding a lock above this point.

orc::ThreadSafeContext (TSCtx) locks occupy a special spot in the locking hierarchy. They are used to

protect LLVM's global non-threadsafe state, but there may be an arbitrary number of them. By default, all

of these locks may be treated as level 5 locks for the purposes of comparing with the rest of the hierarchy.

Acquiring a TSCtx should only be done from the JIT's pool of TSCtx's, and all locks on that TSCtx should be

released prior to returning it to the pool. If multiple TSCtx locks must be acquired at the same time (due

to recursive compilation), then locks should be acquired in the order that the TSCtxs were borrowed from

the pool.

The following is a level 5 lock

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1594

• JuliaOJIT::EmissionMutex

The following are a level 6 lock, which can only recurse to acquire locks at lower levels:

• codegen

• jlmodulesmutex

The following is an almost root lock (level end-1), meaning only the root look may be held when trying to

acquire it:

• typeinf

this one is perhaps one of the most tricky ones, since type-inference can be

invoked from many points

currently the lock is merged with the codegen lock, since they call each other

recursively

The following lock synchronizes IO operation. Be aware that doing any I/O (for example, printing warning

messages or debug information) while holding any other lock listed above may result in pernicious and

hard-to-find deadlocks. BE VERY CAREFUL!

• iolock

• Individual ThreadSynchronizers locks

this may continue to be held after releasing the iolock, or acquired without it,

but be very careful to never attempt to acquire the iolock while holding it

The following is the root lock, meaning no other lock shall be held when trying to acquire it:

• toplevel

this should be held while attempting a top-level action (such as making a new

type or defining a new method): trying to obtain this lock inside a staged func-

tion will cause a deadlock condition!

additionally, it's unclear if any code can safely run in parallel with an arbitrary

toplevel expression, so it may require all threads to get to a safepoint first

Broken Locks

The following locks are broken:

• toplevel

doesn't exist right now

fix: create it

• Module->lock

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1595

This is vulnerable to deadlocks since it can't be certain it is acquired in sequence. Some

operations (such as import_module) are missing a lock.

fix: replace with jl_modules_mutex?

• loading.jl: require and register_root_module

This file potentially has numerous problems.

fix: needs locks

Shared Global Data Structures

These data structures each need locks due to being shared mutable global state. It is the inverse list for

the above lock priority list. This list does not include level 1 leaf resources due to their simplicity.

MethodTable modifications (def, cache) : MethodTable->writelock

Type declarations : toplevel lock

Type application : typecache lock

Global variable tables : Module->lock

Module serializer : toplevel lock

JIT & type-inference : codegen lock

MethodInstance/CodeInstance updates : Method->writelock, codegen lock

• These are set at construction and immutable:

– specTypes

– sparam_vals

– def

• These are set by jl_type_infer (while holding codegen lock):

– cache

– rettype

– inferred

* valid ages

• inInference flag:

– optimization to quickly avoid recurring into jl_type_infer while it is already run-

ning

– actual state (of setting inferred, then fptr) is protected by codegen lock

• Function pointers:

– these transition once, from NULL to a value, while the codegen lock is held

• Code-generator cache (the contents of functionObjectsDecls):

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1596

– these can transition multiple times, but only while the codegen lock is held

– it is valid to use old version of this, or block for new versions of this, so races are

benign, as long as the code is careful not to reference other data in the method

instance (such as rettype) and assume it is coordinated, unless also holding the

codegen lock

LLVMContext : codegen lock

Method : Method->writelock

• roots array (serializer and codegen)

• invoke / specializations / tfunc modifications

102.19 Arrays with custom indices

Conventionally, Julia's arrays are indexed starting at 1, whereas some other languages start numbering at

0, and yet others (e.g., Fortran) allow you to specify arbitrary starting indices. While there is much merit in

picking a standard (i.e., 1 for Julia), there are some algorithms which simplify considerably if you can index

outside the range 1:size(A,d) (and not just 0:size(A,d)-1, either). To facilitate such computations, Julia

supports arrays with arbitrary indices.

The purpose of this page is to address the question, "what do I have to do to support such arrays in my own

code?" First, let's address the simplest case: if you know that your code will never need to handle arrays

with unconventional indexing, hopefully the answer is "nothing." Old code, on conventional arrays, should

function essentially without alteration as long as it was using the exported interfaces of Julia. If you find it

more convenient to just force your users to supply traditional arrays where indexing starts at one, you can

add

Base.require_one_based_indexing(arrays...)

where arrays... is a list of the array objects that you wish to check for anything that violates 1-based

indexing.

Generalizing existing code

As an overview, the steps are:

• replace many uses of size with axes

• replace 1:length(A) with eachindex(A), or in some cases LinearIndices(A)

• replace explicit allocations like Array{Int}(undef, size(B))with similar(Array{Int}, axes(B))

These are described in more detail below.

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1597

Things to watch out for

Because unconventional indexing breaks many people's assumptions that all arrays start indexing with 1,

there is always the chance that using such arrays will trigger errors. The most frustrating bugs would be

incorrect results or segfaults (total crashes of Julia). For example, consider the following function:

function mycopy!(dest::AbstractVector, src::AbstractVector)

length(dest) == length(src) || throw(DimensionMismatch("vectors must match"))

OK, now we're safe to use @inbounds, right? (not anymore!)

for i = 1:length(src)

@inbounds dest[i] = src[i]

end

dest

end

This code implicitly assumes that vectors are indexed from 1; if dest starts at a different index than src,

there is a chance that this code would trigger a segfault. (If you do get segfaults, to help locate the cause

try running julia with the option --check-bounds=yes.)

Using axes for bounds checks and loop iteration

axes(A) (reminiscent of size(A)) returns a tuple of AbstractUnitRange{<:Integer} objects, specifying

the range of valid indices along each dimension of A. When A has unconventional indexing, the ranges may

not start at 1. If you just want the range for a particular dimension d, there is axes(A, d).

Base implements a custom range type, OneTo, where OneTo(n)means the same thing as 1:n but in a form

that guarantees (via the type system) that the lower index is 1. For any new AbstractArray type, this is

the default returned by axes, and it indicates that this array type uses "conventional" 1-based indexing.

For bounds checking, note that there are dedicated functions checkbounds and checkindex which can

sometimes simplify such tests.

Linear indexing (LinearIndices)

Some algorithms are most conveniently (or efficiently) written in terms of a single linear index, A[i]

even if A is multi-dimensional. Regardless of the array's native indices, linear indices always range from

1:length(A). However, this raises an ambiguity for one-dimensional arrays (a.k.a., AbstractVector):

does v[i] mean linear indexing , or Cartesian indexing with the array's native indices?

For this reason, your best option may be to iterate over the array with eachindex(A), or, if you require

the indices to be sequential integers, to get the index range by calling LinearIndices(A). This will return

axes(A, 1) if A is an AbstractVector, and the equivalent of 1:length(A) otherwise.

By this definition, 1-dimensional arrays always use Cartesian indexing with the array's native indices. To

help enforce this, it's worth noting that the index conversion functions will throw an error if shape indicates

a 1-dimensional array with unconventional indexing (i.e., is a Tuple{UnitRange} rather than a tuple of

OneTo). For arrays with conventional indexing, these functions continue to work the same as always.

Using axes and LinearIndices, here is one way you could rewrite mycopy!:

function mycopy!(dest::AbstractVector, src::AbstractVector)

axes(dest) == axes(src) || throw(DimensionMismatch("vectors must match"))

for i in LinearIndices(src)

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1598

@inbounds dest[i] = src[i]

end

dest

end

Allocating storage using generalizations of similar

Storage is often allocated with Array{Int}(undef, dims) or similar(A, args...). When the result

needs to match the indices of some other array, this may not always suffice. The generic replacement

for such patterns is to use similar(storagetype, shape). storagetype indicates the kind of underlying

"conventional" behavior you'd like, e.g., Array{Int} or BitArray or even dims->zeros(Float32, dims)

(which would allocate an all-zeros array). shape is a tuple of Integer or AbstractUnitRange values,

specifying the indices that you want the result to use. Note that a convenient way of producing an all-zeros

array that matches the indices of A is simply zeros(A).

Let's walk through a couple of explicit examples. First, if A has conventional indices, then similar(Array{Int},

axes(A))would end up calling Array{Int}(undef, size(A)), and thus return an array. If A is an AbstractArray

type with unconventional indexing, then similar(Array{Int}, axes(A)) should return something that

"behaves like" an Array{Int} but with a shape (including indices) that matches A. (The most obvious im-

plementation is to allocate an Array{Int}(undef, size(A)) and then "wrap" it in a type that shifts the

indices.)

Note also that similar(Array{Int}, (axes(A, 2),))would allocate an AbstractVector{Int} (i.e., 1-dimensional

array) that matches the indices of the columns of A.

Writing custom array types with non-1 indexing

Most of the methods you'll need to define are standard for any AbstractArray type, see Abstract Arrays.

This page focuses on the steps needed to define unconventional indexing.

Custom AbstractUnitRange types

If you're writing a non-1 indexed array type, you will want to specialize axes so it returns a UnitRange, or

(perhaps better) a custom AbstractUnitRange. The advantage of a custom type is that it "signals" the

allocation type for functions like similar. If we're writing an array type for which indexing will start at 0, we

likely want to begin by creating a new AbstractUnitRange, ZeroRange, where ZeroRange(n) is equivalent

to 0:n-1.

In general, you should probably not export ZeroRange from your package: there may be other packages

that implement their own ZeroRange, and having multiple distinct ZeroRange types is (perhaps counterin-

tuitively) an advantage: ModuleA.ZeroRange indicates that similar should create a ModuleA.ZeroArray,

whereas ModuleB.ZeroRange indicates a ModuleB.ZeroArray type. This design allows peaceful coexis-

tence among many different custom array types.

Note that the Julia package CustomUnitRanges.jl can sometimes be used to avoid the need to write your

own ZeroRange type.

Specializing axes

Once you have your AbstractUnitRange type, then specialize axes:

Base.axes(A::ZeroArray) = map(n->ZeroRange(n), A.size)

https://github.com/JuliaArrays/CustomUnitRanges.jl

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1599

where here we imagine that ZeroArray has a field called size (there would be other ways to implement

this).

In some cases, the fallback definition for axes(A, d):

axes(A::AbstractArray{T,N}, d) where {T,N} = d <= N ? axes(A)[d] : OneTo(1)

may not be what you want: you may need to specialize it to return something other than OneTo(1) when d

> ndims(A). Likewise, in Base there is a dedicated function axes1 which is equivalent to axes(A, 1) but

which avoids checking (at runtime) whether ndims(A) > 0. (This is purely a performance optimization.) It

is defined as:

axes1(A::AbstractArray{T,0}) where {T} = OneTo(1)

axes1(A::AbstractArray) = axes(A)[1]

If the first of these (the zero-dimensional case) is problematic for your custom array type, be sure to

specialize it appropriately.

Specializing similar

Given your custom ZeroRange type, then you should also add the following two specializations for similar:

function Base.similar(A::AbstractArray, T::Type, shape::Tuple{ZeroRange,Vararg{ZeroRange}})

body

end

function Base.similar(f::Union{Function,DataType}, shape::Tuple{ZeroRange,Vararg{ZeroRange}})

body

end

Both of these should allocate your custom array type.

Specializing reshape

Optionally, define a method

Base.reshape(A::AbstractArray, shape::Tuple{ZeroRange,Vararg{ZeroRange}}) = ...

and you can reshape an array so that the result has custom indices.

For objects that mimic AbstractArray but are not subtypes

has_offset_axes depends on having axes defined for the objects you call it on. If there is some reason

you don't have an axes method defined for your object, consider defining a method

Base.has_offset_axes(obj::MyNon1IndexedArraylikeObject) = true

This will allow code that assumes 1-based indexing to detect a problem and throw a helpful error, rather

than returning incorrect results or segfaulting julia.

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1600

Catching errors

If your new array type triggers errors in other code, one helpful debugging step can be to comment out

@boundscheck in your getindex and setindex! implementation. This will ensure that every element

access checks bounds. Or, restart julia with --check-bounds=yes.

In some cases it may also be helpful to temporarily disable size and length for your new array type, since

code that makes incorrect assumptions frequently uses these functions.

102.20 Module loading

Base.require is responsible for loading modules and it also manages the precompilation cache. It is the

implementation of the import statement.

Experimental features

The features below are experimental and not part of the stable Julia API. Before building upon them inform

yourself about the current thinking and whether they might change soon.

Module loading callbacks

It is possible to listen to the modules loaded by Base.require, by registering a callback.

loaded_packages = Channel{Symbol}()

callback = (mod::Symbol) -> put!(loaded_packages, mod)

push!(Base.package_callbacks, callback)

Please note that the symbol given to the callback is a non-unique identifier and it is the responsibility of

the callback provider to walk the module chain to determine the fully qualified name of the loaded binding.

The callback below is an example of how to do that:

Get the fully-qualified name of a module.

function module_fqn(name::Symbol)

fqn = fullname(Base.root_module(name))

return join(fqn, '.')

end

102.21 Inference

How inference works

In Julia compiler, "type inference" refers to the process of deducing the types of later values from the types

of input values. Julia's approach to inference has been described in the blog posts below:

1. Shows a simplified implementation of the data-flow analysis algorithm, that Julia's type inference

routine is based on.

2. Gives a high level view of inference with a focus on its inter-procedural convergence guarantee.

3. Explains a refinement on the algorithm introduced in 2.

https://aviatesk.github.io/posts/data-flow-problem/
https://aviatesk.github.io/posts/data-flow-problem/
https://info.juliahub.com/inference-convergence-algorithm-in-julia
https://info.juliahub.com/inference-convergence-algorithm-in-julia-revisited

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1601

Debugging compiler.jl

You can start a Julia session, edit compiler/*.jl (for example to insert print statements), and then replace

Core.Compiler in your running session by navigating to base and executing include("compiler/compiler.jl").

This trick typically leads to much faster development than if you rebuild Julia for each change.

Alternatively, you can use the Revise.jl package to track the compiler changes by using the command

Revise.track(Core.Compiler) at the beginning of your Julia session. As explained in the Revise docu-

mentation, the modifications to the compiler will be reflected when the modified files are saved.

A convenient entry point into inference is typeinf_code. Here's a demo running inference on convert(Int,

UInt(1)):

Get the method

atypes = Tuple{Type{Int}, UInt} # argument types

mths = methods(convert, atypes) # worth checking that there is only one

m = first(mths)

Create variables needed to call `typeinf_code`

interp = Core.Compiler.NativeInterpreter()

sparams = Core.svec() # this particular method doesn't have type-parameters

optimize = true # run all inference optimizations

types = Tuple{typeof(convert), atypes.parameters...} # Tuple{typeof(convert), Type{Int}, UInt}

Core.Compiler.typeinf_code(interp, m, types, sparams, optimize)

If your debugging adventures require a MethodInstance, you can look it up by calling Core.Compiler.specialize_method

using many of the variables above. A CodeInfo object may be obtained with

Returns the CodeInfo object for `convert(Int, ::UInt)`:

ci = (@code_typed convert(Int, UInt(1)))[1]

The inlining algorithm (inline_worthy)

Much of the hardest work for inlining runs in ssa_inlining_pass!. However, if your question is "why didn't

my function inline?" then you will most likely be interested in inline_worthy, which makes a decision to

inline the function call or not.

inline_worthy implements a cost-model, where "cheap" functions get inlined; more specifically, we inline

functions if their anticipated run-time is not large compared to the time it would take to issue a call to them if

they were not inlined. The cost-model is extremely simple and ignoresmany important details: for example,

all for loops are analyzed as if they will be executed once, and the cost of an if...else...end includes

the summed cost of all branches. It's also worth acknowledging that we currently lack a suite of functions

suitable for testing how well the cost model predicts the actual run-time cost, although BaseBenchmarks

provides a great deal of indirect information about the successes and failures of any modification to the

inlining algorithm.

The foundation of the cost-model is a lookup table, implemented in add_tfunc and its callers, that assigns

an estimated cost (measured in CPU cycles) to each of Julia's intrinsic functions. These costs are based on

standard ranges for common architectures (see Agner Fog's analysis for more detail).

We supplement this low-level lookup table with a number of special cases. For example, an :invoke expres-

sion (a call for which all input and output types were inferred in advance) is assigned a fixed cost (currently

20 cycles). In contrast, a :call expression, for functions other than intrinsics/builtins, indicates that the

https://github.com/timholy/Revise.jl
https://timholy.github.io/Revise.jl/stable/
https://timholy.github.io/Revise.jl/stable/
https://en.wikipedia.org/wiki/Calling_convention
https://github.com/JuliaCI/BaseBenchmarks.jl
http://ithare.com/wp-content/uploads/part101_infographics_v08.png
https://www.agner.org/optimize/instruction_tables.pdf

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1602

call will require dynamic dispatch, in which case we assign a cost set by Params.inline_nonleaf_penalty

(currently set at 1000). Note that this is not a "first-principles" estimate of the raw cost of dynamic dispatch,

but a mere heuristic indicating that dynamic dispatch is extremely expensive.

Each statement gets analyzed for its total cost in a function called statement_cost. You can display the

cost associated with each statement as follows:

julia> Base.print_statement_costs(stdout, map, (typeof(sqrt), Tuple{Int},)) # map(sqrt, (2,))

map(f, t::Tuple{Any}) @ Base tuple.jl:273

0 1 ─ %1 = Base.getfield(_3, 1, true)::Int64

1 │ %2 = Base.sitofp(Float64, %1)::Float64

2 │ %3 = Base.lt_float(%2, 0.0)::Bool

0 └── goto #3 if not %3

0 2 ─ invoke Base.Math.throw_complex_domainerror(:sqrt::Symbol, %2::Float64)::Union{}

0 └── unreachable

20 3 ─ %7 = Base.Math.sqrt_llvm(%2)::Float64

0 └── goto #4

0 4 ─ goto #5

0 5 ─ %10 = Core.tuple(%7)::Tuple{Float64}

0 └── return %10

The line costs are in the left column. This includes the consequences of inlining and other forms of opti-

mization.

102.22 Julia SSA-form IR

Background

Beginning in Julia 0.7, parts of the compiler use a new SSA-form intermediate representation (IR). Histor-

ically, the compiler would directly generate LLVM IR from a lowered form of the Julia AST. This form had

most syntactic abstractions removed, but still looked a lot like an abstract syntax tree. Over time, in order

to facilitate optimizations, SSA values were introduced to this IR and the IR was linearized (i.e. turned into

a form where function arguments could only be SSA values or constants). However, non-SSA values (slots)

remained in the IR due to the lack of Phi nodes in the IR (necessary for back-edges and re-merging of

conditional control flow). This negated much of the usefulness of SSA form representation when perform-

ing middle end optimizations. Some heroic effort was put into making these optimizations work without a

complete SSA form representation, but the lack of such a representation ultimately proved prohibitive.

New IR nodes

With the new IR representation, the compiler learned to handle four new IR nodes, Phi nodes, Pi nodes as

well as PhiC nodes and Upsilon nodes (the latter two are only used for exception handling).

Phi nodes and Pi nodes

Phi nodes are part of generic SSA abstraction (see the link above if you're not familiar with the concept).

In the Julia IR, these nodes are represented as:

struct PhiNode

edges::Vector{Int32}

values::Vector{Any}

end

https://en.wikipedia.org/wiki/Static_single_assignment_form

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1603

where we ensure that both vectors always have the same length. In the canonical representation (the one

handled by codegen and the interpreter), the edge values indicate come-from statement numbers (i.e.

if edge has an entry of 15, there must be a goto, gotoifnot or implicit fall through from statement 15

that targets this phi node). Values are either SSA values or constants. It is also possible for a value to

be unassigned if the variable was not defined on this path. However, undefinedness checks get explicitly

inserted and represented as booleans after middle end optimizations, so code generators may assume that

any use of a Phi node will have an assigned value in the corresponding slot. It is also legal for the mapping

to be incomplete, i.e. for a Phi node to have missing incoming edges. In that case, it must be dynamically

guaranteed that the corresponding value will not be used.

PiNodes encode statically proven information that may be implicitly assumed in basic blocks dominated

by a given pi node. They are conceptually equivalent to the technique introduced in the paper ABCD:

Eliminating Array Bounds Checks on Demand or the predicate info nodes in LLVM. To see how they work,

consider, e.g.

%x::Union{Int, Float64} # %x is some Union{Int, Float64} typed ssa value

if isa(x, Int)

use x

else

use x

end

We can perform predicate insertion and turn this into:

%x::Union{Int, Float64} # %x is some Union{Int, Float64} typed ssa value

if isa(x, Int)

%x_int = PiNode(x, Int)

use %x_int

else

%x_float = PiNode(x, Float64)

use %x_float

end

Pi nodes are generally ignored in the interpreter, since they don't have any effect on the values, but they

may sometimes lead to code generation in the compiler (e.g. to change from an implicitly union split

representation to a plain unboxed representation). The main usefulness of PiNodes stems from the fact

that path conditions of the values can be accumulated simply by def-use chain walking that is generally

done for most optimizations that care about these conditions anyway.

PhiC nodes and Upsilon nodes

Exception handling complicates the SSA story moderately, because exception handling introduces addi-

tional control flow edges into the IR across which values must be tracked. One approach to do so, which

is followed by LLVM, is to make calls which may throw exceptions into basic block terminators and add an

explicit control flow edge to the catch handler:

invoke @function_that_may_throw() to label %regular unwind to %catch

regular:

Control flow continues here

https://dl.acm.org/citation.cfm?id=358438.349342
https://dl.acm.org/citation.cfm?id=358438.349342

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1604

catch:

Exceptions go here

However, this is problematic in a language like Julia, where at the start of the optimization pipeline, we do

not know which calls throw. We would have to conservatively assume that every call (which in Julia is every

statement) throws. This would have several negative effects. On the one hand, it would essentially reduce

the scope of every basic block to a single call, defeating the purpose of having operations be performed at

the basic block level. On the other hand, every catch basic block would have n*m phi node arguments (n,

the number of statements in the critical region, m the number of live values through the catch block).

To work around this, we use a combination of Upsilon and PhiC nodes (the C standing for catch, written

φᶜ in the IR pretty printer, because unicode subscript c is not available). There are several ways to think of

these nodes, but perhaps the easiest is to think of each PhiC as a load from a unique store-many, read-once

slot, with Upsilon being the corresponding store operation. The PhiC has an operand list of all the upsilon

nodes that store to its implicit slot. The Upsilon nodes however, do not record which PhiC node they store

to. This is done for more natural integration with the rest of the SSA IR. E.g. if there are no more uses

of a PhiC node, it is safe to delete it, and the same is true of an Upsilon node. In most IR passes, PhiC

nodes can be treated like Phi nodes. One can follow use-def chains through them, and they can be lifted

to new PhiC nodes and new Upsilon nodes (in the same places as the original Upsilon nodes). The result

of this scheme is that the number of Upsilon nodes (and PhiC arguments) is proportional to the number

of assigned values to a particular variable (before SSA conversion), rather than the number of statements

in the critical region.

To see this scheme in action, consider the function

@noinline opaque() = invokelatest(identity, nothing) # Something opaque

function foo()

local y

x = 1

try

y = 2

opaque()

y = 3

error()

catch

end

(x, y)

end

The corresponding IR (with irrelevant types stripped) is:

1 ─ nothing::Nothing

2 ─ %2 = $(Expr(:enter, #4))

3 ─ %3 = ϒ (false)│

%4 = ϒ (#undef)│

%5 = ϒ (1)│

%6 = ϒ (true)│

%7 = ϒ (2)│

invoke Main.opaque()::Any│

%9 = ϒ (true)│

%10 = ϒ (3)│

invoke Main.error()::Union{}└──

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1605

$(Expr(:unreachable))::Union{}

4 ┄ %13 = φᶜ (%3, %6, %9)::Bool│

%14 = φᶜ (%4, %7, %10)::Core.Compiler.MaybeUndef(Int64)│

%15 = φᶜ (%5)::Core.Const(1)└──

$(Expr(:leave, 1))

5 ─ $(Expr(:pop_exception, :(%2)))::Any│

$(Expr(:throw_undef_if_not, :y, :(%13)))::Any│

%19 = Core.tuple(%15, %14)└──

return %19

Note in particular that every value live into the critical region gets an upsilon node at the top of the critical

region. This is because catch blocks are considered to have an invisible control flow edge from outside

the function. As a result, no SSA value dominates the catch blocks, and all incoming values have to come

through a φᶜ node.

Main SSA data structure

The main SSAIR data structure is worthy of discussion. It draws inspiration from LLVM and Webkit's B3

IR. The core of the data structure is a flat vector of statements. Each statement is implicitly assigned an

SSA value based on its position in the vector (i.e. the result of the statement at idx 1 can be accessed

using SSAValue(1) etc). For each SSA value, we additionally maintain its type. Since, SSA values are

definitionally assigned only once, this type is also the result type of the expression at the corresponding

index. However, while this representation is rather efficient (since the assignments don't need to be ex-

plicitly encoded), it of course carries the drawback that order is semantically significant, so reorderings

and insertions change statement numbers. Additionally, we do not keep use lists (i.e. it is impossible to

walk from a def to all its uses without explicitly computing this map–def lists however are trivial since you

can look up the corresponding statement from the index), so the LLVM-style RAUW (replace-all-uses-with)

operation is unavailable.

Instead, we do the following:

• We keep a separate buffer of nodes to insert (including the position to insert them at, the type of

the corresponding value and the node itself). These nodes are numbered by their occurrence in the

insertion buffer, allowing their values to be immediately used elsewhere in the IR (i.e. if there are 12

statements in the original statement list, the first new statement will be accessible as SSAValue(13)).

• RAUW style operations are performed by setting the corresponding statement index to the replace-

ment value.

• Statements are erased by setting the corresponding statement to nothing (this is essentially just a

special-case convention of the above.

• If there are any uses of the statement being erased, they will be set to nothing.

There is a compact! function that compacts the above data structure by performing the insertion of nodes

in the appropriate place, trivial copy propagation, and renaming of uses to any changed SSA values. How-

ever, the clever part of this scheme is that this compaction can be done lazily as part of the subsequent

pass. Most optimization passes need to walk over the entire list of statements, performing analysis or

modifications along the way. We provide an IncrementalCompact iterator that can be used to iterate over

the statement list. It will perform any necessary compaction and return the new index of the node, as

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1606

well as the node itself. It is legal at this point to walk def-use chains, as well as make any modifications or

deletions to the IR (insertions are disallowed however).

The idea behind this arrangement is that, since the optimization passes need to touch the corresponding

memory anyway and incur the corresponding memory access penalty, performing the extra housekeeping

should have comparatively little overhead (and save the overhead of maintaining these data structures

during IR modification).

102.23 EscapeAnalysis

Core.Compiler.EscapeAnalysis is a compiler utility module that aims to analyze escape information of

Julia's SSA-form IR a.k.a. IRCode.

This escape analysis aims to:

• leverage Julia's high-level semantics, especially reason about escapes and aliasing via inter-procedural

calls

• be versatile enough to be used for various optimizations including alias-aware SROA, early finalize

insertion, copy-free ImmutableArray construction, stack allocation of mutable objects, and so on.

• achieve a simple implementation based on a fully backward data-flow analysis implementation as

well as a new lattice design that combines orthogonal lattice properties

Try it out!

You can give a try to the escape analysis by loading the EAUtils.jl utility script that define the convenience

entries code_escapes and @code_escapes for testing and debugging purposes:

julia> include(normpath(Sys.BINDIR, "..", "share", "julia", "test", "compiler", "EscapeAnalysis",

"EAUtils.jl")); using .EAUtils↪→

julia> mutable struct SafeRef{T}

x::T

end

julia> Base.getindex(x::SafeRef) = x.x;

julia> Base.setindex!(x::SafeRef, v) = x.x = v;

julia> Base.isassigned(x::SafeRef) = true;

julia> get′(x) = isassigned(x) ? x[] : throw(x);

julia> result = code_escapes((String,String,String,String)) do s1, s2, s3, s4

r1 = Ref(s1)

https://github.com/JuliaLang/julia/pull/43888
https://github.com/JuliaLang/julia/pull/44056
https://github.com/JuliaLang/julia/pull/44056
https://github.com/JuliaLang/julia/pull/42465

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1607

r2 = Ref(s2)

r3 = SafeRef(s3)

try

s1 = get′(r1)

ret = sizeof(s1)

catch err

global GV = err # will definitely escape `r1`

end

s2 = get′(r2) # still `r2` doesn't escape fully

s3 = get′(r3) # still `r3` doesn't escape fully

s4 = sizeof(s4) # the argument `s4` doesn't escape here

return s2, s3, s4

end

#1(X _2::String, ↑ _3::String, ↑ _4::String, ✓ _5::String) in Main at REPL[7]:2

X 1 ── %1 = %new(Base.RefValue{String}, _2)::Base.RefValue{String}

*′ │ %2 = %new(Base.RefValue{String}, _3)::Base.RefValue{String}

✓′ └─── %3 = %new(Main.SafeRef{String}, _4)::Main.SafeRef{String}

✓′ 2 ── %4 = ϒ (%3)::Main.SafeRef{String}

*′ │ %5 = ϒ (%2)::Base.RefValue{String}

✓ │ %6 = ϒ (_5)::String

◌ └─── %7 = $(Expr(:enter, #8))

◌ 3 ── %8 = Base.isdefined(%1, :x)::Bool

◌ └─── goto #5 if not %8

X 4 ── Base.getfield(%1, :x)::String

◌ └─── goto #6

◌ 5 ── Main.throw(%1)::Union{}

◌ └─── unreachable

◌ 6 ── $(Expr(:leave, 1))

◌ 7 ── goto #11

✓′ 8 ┄─ %16 = φᶜ (%4)::Main.SafeRef{String}

*′ │ %17 = φᶜ (%5)::Base.RefValue{String}

✓ │ %18 = φᶜ (%6)::String

◌ └─── $(Expr(:leave, 1))

X 9 ── %20 = $(Expr(:the_exception))::Any

◌ 10 ─ (Main.GV = %20)::Any

◌ └─── $(Expr(:pop_exception, :(%7)))::Any

✓′ 11 ┄ %23 = φ (#7 => %3, #10 => %16)::Main.SafeRef{String}

*′ │ %24 = φ (#7 => %2, #10 => %17)::Base.RefValue{String}

✓ │ %25 = φ (#7 => _5, #10 => %18)::String

◌ │ %26 = Base.isdefined(%24, :x)::Bool

◌ └─── goto #13 if not %26

↑ 12 ─ %28 = Base.getfield(%24, :x)::String

◌ └─── goto #14

◌ 13 ─ Main.throw(%24)::Union{}

◌ └─── unreachable

↑ 14 ─ %32 = Base.getfield(%23, :x)::String

◌ │ %33 = Core.sizeof(%25)::Int64

↑′ │ %34 = Core.tuple(%28, %32, %33)::Tuple{String, String, Int64}

◌ └─── return %34

The symbols in the side of each call argument and SSA statements represents the following meaning:

• ◌ (plain): this value is not analyzed because escape information of it won't be used anyway (when

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1608

the object is isbitstype for example)

• ✓ (green or cyan): this value never escapes (has_no_escape(result.state[x]) holds), colored blue

if it has arg escape also (has_arg_escape(result.state[x]) holds)

• ↑ (blue or yellow): this value can escape to the caller via return (has_return_escape(result.state[x])

holds), colored yellow if it has unhandled thrown escape also (has_thrown_escape(result.state[x])

holds)

• X (red): this value can escape to somewhere the escape analysis can't reason about like escapes to

a global memory (has_all_escape(result.state[x]) holds)

• * (bold): this value's escape state is between the ReturnEscape and AllEscape in the partial order of

EscapeInfo, colored yellow if it has unhandled thrown escape also (has_thrown_escape(result.state[x])

holds)

• ′: this value has additional object field / array element information in its AliasInfo property

Escape information of each call argument and SSA value can be inspected programmatically as like:

julia> result.state[Core.Argument(3)] # get EscapeInfo of `s2`

ReturnEscape

julia> result.state[Core.SSAValue(3)] # get EscapeInfo of `r3`

NoEscape′

Analysis Design

Lattice Design

EscapeAnalysis is implemented as a data-flow analysis that works on a lattice of x::EscapeInfo, which

is composed of the following properties:

• x.Analyzed::Bool: not formally part of the lattice, only indicates x has not been analyzed or not

• x.ReturnEscape::BitSet: records SSA statements where x can escape to the caller via return

• x.ThrownEscape::BitSet: records SSA statements where x can be thrown as exception (used for

the exception handling described below)

• x.AliasInfo: maintains all possible values that can be aliased to fields or array elements of x (used

for the alias analysis described below)

• x.ArgEscape::Int (not implemented yet): indicates it will escape to the caller through setfield!

on argument(s)

These attributes can be combined to create a partial lattice that has a finite height, given the invariant that

an input program has a finite number of statements, which is assured by Julia's semantics. The clever part

of this lattice design is that it enables a simpler implementation of lattice operations by allowing them to

handle each lattice property separately1.

https://en.wikipedia.org/wiki/Data-flow_analysis

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1609

Backward Escape Propagation

This escape analysis implementation is based on the data-flow algorithm described in the paper2. The

analysis works on the lattice of EscapeInfo and transitions lattice elements from the bottom to the top

until every lattice element gets converged to a fixed point by maintaining a (conceptual) working set that

contains program counters corresponding to remaining SSA statements to be analyzed. The analysis man-

ages a single global state that tracks EscapeInfo of each argument and SSA statement, but also note that

some flow-sensitivity is encoded as program counters recorded in EscapeInfo's ReturnEscape property,

which can be combined with domination analysis later to reason about flow-sensitivity if necessary.

One distinctive design of this escape analysis is that it is fully backward, i.e. escape information flows from

usages to definitions. For example, in the code snippet below, EA first analyzes the statement return %1

and imposes ReturnEscape on %1 (corresponding to obj), and then it analyzes %1 = %new(Base.RefValue{String,

_2})) and propagates the ReturnEscape imposed on %1 to the call argument _2 (corresponding to s):

julia> code_escapes((String,)) do s

obj = Ref(s)

return obj

end

#3(↑ _2::String) in Main at REPL[1]:2

↑′ 1 ─ %1 = %new(Base.RefValue{String}, _2)::Base.RefValue{String}

◌ └── return %1

The key observation here is that this backward analysis allows escape information to flow naturally along

the use-def chain rather than control-flow3. As a result this scheme enables a simple implementation

of escape analysis, e.g. PhiNode for example can be handled simply by propagating escape information

imposed on a PhiNode to its predecessor values:

julia> code_escapes((Bool, String, String)) do cnd, s, t

if cnd

obj = Ref(s)

else

obj = Ref(t)

end

return obj

end

#5(✓ _2::Bool, ↑ _3::String, ↑ _4::String) in Main at REPL[1]:2

◌ 1 ─ goto #3 if not _2

↑′ 2 ─ %2 = %new(Base.RefValue{String}, _3)::Base.RefValue{String}

◌ └── goto #4

↑′ 3 ─ %4 = %new(Base.RefValue{String}, _4)::Base.RefValue{String}

↑′ 4 ┄ %5 = φ (#2 => %2, #3 => %4)::Base.RefValue{String}

◌ └── return %5

Alias Analysis

EscapeAnalysis implements a backward field analysis in order to reason about escapes imposed on object

fields with certain accuracy, and x::EscapeInfo's x.AliasInfo property exists for this purpose. It records

all possible values that can be aliased to fields of x at "usage" sites, and then the escape information of

that recorded values are propagated to the actual field values later at "definition" sites. More specifically,

the analysis records a value that may be aliased to a field of object by analyzing getfield call, and then it

propagates its escape information to the field when analyzing %new(...) expression or setfield! call4.

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1610

julia> code_escapes((String,)) do s

obj = SafeRef("init")

obj[] = s

v = obj[]

return v

end

#7(↑ _2::String) in Main at REPL[1]:2

✓′ 1 ─ %1 = %new(Main.SafeRef{String}, "init")::Main.SafeRef{String}

◌ │ Base.setfield!(%1, :x, _2)::String

↑ │ %3 = Base.getfield(%1, :x)::String

◌ └── return %3

In the example above, ReturnEscape imposed on %3 (corresponding to v) is not directly propagated to %1

(corresponding to obj) but rather that ReturnEscape is only propagated to _2 (corresponding to s). Here %3

is recorded in %1's AliasInfo property as it can be aliased to the first field of %1, and then when analyzing

Base.setfield!(%1, :x, _2)::String, that escape information is propagated to _2 but not to %1.

So EscapeAnalysis tracks which IR elements can be aliased across a getfield-%new/setfield! chain

in order to analyze escapes of object fields, but actually this alias analysis needs to be generalized to

handle other IR elements as well. This is because in Julia IR the same object is sometimes represented

by different IR elements and so we should make sure that those different IR elements that actually can

represent the same object share the same escape information. IR elements that return the same object

as their operand(s), such as PiNode and typeassert, can cause that IR-level aliasing and thus requires

escape information imposed on any of such aliased values to be shared between them. More interestingly,

it is also needed for correctly reasoning about mutations on PhiNode. Let's consider the following example:

julia> code_escapes((Bool, String,)) do cond, x

if cond

ϕ2 = ϕ1 = SafeRef("foo")

else

ϕ2 = ϕ1 = SafeRef("bar")

end

ϕ2[] = x

y = ϕ1[]

return y

end

#9(✓ _2::Bool, ↑ _3::String) in Main at REPL[1]:2

◌ 1 ─ goto #3 if not _2

✓′ 2 ─ %2 = %new(Main.SafeRef{String}, "foo")::Main.SafeRef{String}

◌ └── goto #4

✓′ 3 ─ %4 = %new(Main.SafeRef{String}, "bar")::Main.SafeRef{String}

✓′ 4 ┄ %5 = φ (#2 => %2, #3 => %4)::Main.SafeRef{String}

✓′ │ %6 = φ (#2 => %2, #3 => %4)::Main.SafeRef{String}

◌ │ Base.setfield!(%5, :x, _3)::String

↑ │ %8 = Base.getfield(%6, :x)::String

◌ └── return %8

ϕ1 = %5 and ϕ2 = %6 are aliased and thus ReturnEscape imposed on %8 = Base.getfield(%6, :x)::String

(corresponding to y = ϕ1[]) needs to be propagated to Base.setfield!(%5, :x, _3)::String (corre-

sponding to ϕ2[] = x). In order for such escape information to be propagated correctly, the analysis should

recognize that the predecessors of ϕ1 and ϕ2 can be aliased as well and equalize their escape information.

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1611

One interesting property of such aliasing information is that it is not known at "usage" site but can only

be derived at "definition" site (as aliasing is conceptually equivalent to assignment), and thus it doesn't

naturally fit in a backward analysis. In order to efficiently propagate escape information between related

values, EscapeAnalysis.jl uses an approach inspired by the escape analysis algorithm explained in an old

JVM paper5. That is, in addition to managing escape lattice elements, the analysis also maintains an

"equi"-alias set, a disjoint set of aliased arguments and SSA statements. The alias set manages values

that can be aliased to each other and allows escape information imposed on any of such aliased values to

be equalized between them.

Array Analysis

The alias analysis for object fields described above can also be generalized to analyze array operations.

EscapeAnalysis implements handlings for various primitive array operations so that it can propagate

escapes via arrayref-arrayset use-def chain and does not escape allocated arrays too conservatively:

julia> code_escapes((String,)) do s

ary = Any[]

push!(ary, SafeRef(s))

return ary[1], length(ary)

end

#11(↑ _2::String) in Main at REPL[1]:2

*′ 1 ─ %1 = $(Expr(:foreigncall, :(:jl_alloc_array_1d), Vector{Any}, svec(Any, Int64), 0,

:(:ccall), Vector{Any}, 0, 0))::Vector{Any}↪→

↑′ │ %2 = %new(Main.SafeRef{String}, _2)::Main.SafeRef{String}

◌ │ $(Expr(:foreigncall, :(:jl_array_grow_end), Nothing, svec(Any, UInt64), 0, :(:ccall),

:(%1), 0x0000000000000001, 0x0000000000000001))::Nothing↪→

◌ │ %4 = Base.arraylen(%1)::Int64

◌ │ Base.arrayset(false, %1, %2, %4)::Vector{Any}

↑′ │ %6 = Base.arrayref(true, %1, 1)::Any

◌ │ %7 = Base.arraylen(%1)::Int64

↑′ │ %8 = Core.tuple(%6, %7)::Tuple{Any, Int64}

◌ └── return %8

In the above example EscapeAnalysis understands that %20 and %2 (corresponding to the allocated object

SafeRef(s)) are aliased via the arrayset-arrayref chain and imposes ReturnEscape on them, but not

impose it on the allocated array %1 (corresponding to ary). EscapeAnalysis still imposes ThrownEscape on

ary since it also needs to account for potential escapes via BoundsError, but also note that such unhandled

ThrownEscape can often be ignored when optimizing the ary allocation.

Furthermore, in cases when array index information as well as array dimensions can be known precisely,

EscapeAnalysis is able to even reason about "per-element" aliasing via arrayref-arrayset chain, as

EscapeAnalysis does "per-field" alias analysis for objects:

julia> code_escapes((String,String)) do s, t

ary = Vector{Any}(undef, 2)

ary[1] = SafeRef(s)

ary[2] = SafeRef(t)

return ary[1], length(ary)

end

#13(↑ _2::String, * _3::String) in Main at REPL[1]:2

*′ 1 ─ %1 = $(Expr(:foreigncall, :(:jl_alloc_array_1d), Vector{Any}, svec(Any, Int64), 0,

:(:ccall), Vector{Any}, 2, 2))::Vector{Any}↪→

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1612

↑′ │ %2 = %new(Main.SafeRef{String}, _2)::Main.SafeRef{String}

◌ │ Base.arrayset(true, %1, %2, 1)::Vector{Any}

*′ │ %4 = %new(Main.SafeRef{String}, _3)::Main.SafeRef{String}

◌ │ Base.arrayset(true, %1, %4, 2)::Vector{Any}

↑′ │ %6 = Base.arrayref(true, %1, 1)::Any

◌ │ %7 = Base.arraylen(%1)::Int64

↑′ │ %8 = Core.tuple(%6, %7)::Tuple{Any, Int64}

◌ └── return %8

Note that ReturnEscape is only imposed on %2 (corresponding to SafeRef(s)) but not on %4 (corresponding

to SafeRef(t)). This is because the allocated array's dimension and indices involvedwith all arrayref/arrayset

operations are available as constant information and EscapeAnalysis can understand that %6 is aliased

to %2 but never be aliased to %4. In this kind of case, the succeeding optimization passes will be able to

replace Base.arrayref(true, %1, 1)::Any with %2 (a.k.a. "load-forwarding") and eventually eliminate

the allocation of array %1 entirely (a.k.a. "scalar-replacement").

When compared to object field analysis, where an access to object field can be analyzed trivially using

type information derived by inference, array dimension isn't encoded as type information and so we need

an additional analysis to derive that information. EscapeAnalysis at this moment first does an additional

simple linear scan to analyze dimensions of allocated arrays before firing up the main analysis routine so

that the succeeding escape analysis can precisely analyze operations on those arrays.

However, such precise "per-element" alias analysis is often hard. Essentially, the main difficulty inherit to

array is that array dimension and index are often non-constant:

• loop often produces loop-variant, non-constant array indices

• (specific to vectors) array resizing changes array dimension and invalidates its constant-ness

Let's discuss those difficulties with concrete examples.

In the following example, EscapeAnalysis fails the precise alias analysis since the index at the Base.arrayset(false,

%4, %8, %6)::Vector{Any} is not (trivially) constant. Especially Any[nothing, nothing] forms a loop

and calls that arrayset operation in a loop, where %6 is represented as a ϕ-node value (whose value

is control-flow dependent). As a result, ReturnEscape ends up imposed on both %23 (corresponding to

SafeRef(s)) and %25 (corresponding to SafeRef(t)), although ideally we want it to be imposed only on

%23 but not on %25:

julia> code_escapes((String,String)) do s, t

ary = Any[nothing, nothing]

ary[1] = SafeRef(s)

ary[2] = SafeRef(t)

return ary[1], length(ary)

end

#15(↑ _2::String, ↑ _3::String) in Main at REPL[1]:2

*′ 1 ─ %1 = $(Expr(:foreigncall, :(:jl_alloc_array_1d), Vector{Any}, svec(Any, Int64), 0,

:(:ccall), Vector{Any}, 2, 2))::Vector{Any}↪→

◌ └── goto #7 if not true

◌ 2 ┄ %3 = φ (#1 => 1, #6 => %11)::Int64

◌ │ %4 = φ (#1 => 1, #6 => %12)::Int64

◌ │ Base.arrayset(false, %1, nothing, %3)::Vector{Any}

◌ │ %6 = (%4 === 2)::Bool

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1613

◌ └── goto #4 if not %6

◌ 3 ─ goto #5

◌ 4 ─ %9 = Base.add_int(%4, 1)::Int64

◌ └── goto #5

◌ 5 ┄ %11 = φ (#4 => %9)::Int64

◌ │ %12 = φ (#4 => %9)::Int64

◌ │ %13 = φ (#3 => true, #4 => false)::Bool

◌ │ %14 = Base.not_int(%13)::Bool

◌ └── goto #7 if not %14

◌ 6 ─ goto #2

◌ 7 ┄ goto #8

↑′ 8 ─ %18 = %new(Main.SafeRef{String}, _2)::Main.SafeRef{String}

◌ │ Base.arrayset(true, %1, %18, 1)::Vector{Any}

↑′ │ %20 = %new(Main.SafeRef{String}, _3)::Main.SafeRef{String}

◌ │ Base.arrayset(true, %1, %20, 2)::Vector{Any}

↑′ │ %22 = Base.arrayref(true, %1, 1)::Any

◌ │ %23 = Base.arraylen(%1)::Int64

↑′ │ %24 = Core.tuple(%22, %23)::Tuple{Any, Int64}

◌ └── return %24

The next example illustrates how vector resizingmakes precise alias analysis hard. The essential difficulty is

that the dimension of allocated array %1 is first initialized as 0, but it changes by the two :jl_array_grow_end

calls afterwards. EscapeAnalysis currently simply gives up precise alias analysis whenever it encounters

any array resizing operations and so ReturnEscape is imposed on both %2 (corresponding to SafeRef(s))

and %20 (corresponding to SafeRef(t)):

julia> code_escapes((String,String)) do s, t

ary = Any[]

push!(ary, SafeRef(s))

push!(ary, SafeRef(t))

ary[1], length(ary)

end

#17(↑ _2::String, ↑ _3::String) in Main at REPL[1]:2

*′ 1 ─ %1 = $(Expr(:foreigncall, :(:jl_alloc_array_1d), Vector{Any}, svec(Any, Int64), 0,

:(:ccall), Vector{Any}, 0, 0))::Vector{Any}↪→

↑′ │ %2 = %new(Main.SafeRef{String}, _2)::Main.SafeRef{String}

◌ │ $(Expr(:foreigncall, :(:jl_array_grow_end), Nothing, svec(Any, UInt64), 0,

:(:ccall), :(%1), 0x0000000000000001, 0x0000000000000001))::Nothing↪→

◌ │ %4 = Base.arraylen(%1)::Int64

◌ │ Base.arrayset(false, %1, %2, %4)::Vector{Any}

↑′ │ %6 = %new(Main.SafeRef{String}, _3)::Main.SafeRef{String}

◌ │ $(Expr(:foreigncall, :(:jl_array_grow_end), Nothing, svec(Any, UInt64), 0,

:(:ccall), :(%1), 0x0000000000000001, 0x0000000000000001))::Nothing↪→

◌ │ %8 = Base.arraylen(%1)::Int64

◌ │ Base.arrayset(false, %1, %6, %8)::Vector{Any}

↑′ │ %10 = Base.arrayref(true, %1, 1)::Any

◌ │ %11 = Base.arraylen(%1)::Int64

↑′ │ %12 = Core.tuple(%10, %11)::Tuple{Any, Int64}

◌ └── return %12

In order to address these difficulties, we need inference to be aware of array dimensions and propagate

array dimensions in a flow-sensitive way6, as well as come up with nice representation of loop-variant

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1614

values.

EscapeAnalysis at this moment quickly switches to the more imprecise analysis that doesn't track precise

index information in cases when array dimensions or indices are trivially non constant. The switch can

naturally be implemented as a lattice join operation of EscapeInfo.AliasInfo property in the data-flow

analysis framework.

Exception Handling

It would be also worth noting how EscapeAnalysis handles possible escapes via exceptions. Naively it

seems enough to propagate escape information imposed on :the_exception object to all values that may

be thrown in a corresponding try block. But there are actually several other ways to access to the exception

object in Julia, such as Base.current_exceptions and rethrow. For example, escape analysis needs to

account for potential escape of r in the example below:

julia> const GR = Ref{Any}();

julia> @noinline function rethrow_escape!()

try

rethrow()

catch err

GR[] = err

end

end;

julia> get′(x) = isassigned(x) ? x[] : throw(x);

julia> code_escapes() do

r = Ref{String}()

local t

try

t = get′(r)

catch err

t = typeof(err) # `err` (which `r` aliases to) doesn't escape here

rethrow_escape!() # but `r` escapes here

end

return t

end

#19() in Main at REPL[4]:2

X 1 ── %1 = %new(Base.RefValue{String})::Base.RefValue{String}

◌ 2 ── %2 = $(Expr(:enter, #8))

◌ 3 ── %3 = Base.isdefined(%1, :x)::Bool

◌ └─── goto #5 if not %3

X 4 ── %5 = Base.getfield(%1, :x)::String

◌ └─── goto #6

◌ 5 ── Main.throw(%1)::Union{}

◌ └─── unreachable

◌ 6 ── $(Expr(:leave, 1))

◌ 7 ── goto #10

◌ 8 ┄─ $(Expr(:leave, 1))

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1615

✓ 9 ── %12 = $(Expr(:the_exception))::Any

X │ %13 = Main.typeof(%12)::DataType

X │ invoke Main.rethrow_escape!()::Any

◌ └─── $(Expr(:pop_exception, :(%2)))::Any

X 10 ┄ %16 = φ (#7 => %5, #9 => %13)::Union{DataType, String}

◌ └─── return %16

It requires a global analysis in order to correctly reason about all possible escapes via existing exception

interfaces. For now we always propagate the topmost escape information to all potentially thrown objects

conservatively, since such an additional analysis might not be worthwhile to do given that exception han-

dling and error path usually don't need to be very performance sensitive, and also optimizations of error

paths might be very ineffective anyway since they are often even "unoptimized" intentionally for latency

reasons.

x::EscapeInfo's x.ThrownEscape property records SSA statements where x can be thrown as an excep-

tion. Using this information EscapeAnalysis can propagate possible escapes via exceptions limitedly to

only those may be thrown in each try region:

julia> result = code_escapes((String,String)) do s1, s2

r1 = Ref(s1)

r2 = Ref(s2)

local ret

try

s1 = get′(r1)

ret = sizeof(s1)

catch err

global GV = err # will definitely escape `r1`

end

s2 = get′(r2) # still `r2` doesn't escape fully

return s2

end

#21(X _2::String, ↑ _3::String) in Main at REPL[1]:2

X 1 ── %1 = %new(Base.RefValue{String}, _2)::Base.RefValue{String}

*′ └─── %2 = %new(Base.RefValue{String}, _3)::Base.RefValue{String}

*′ 2 ── %3 = ϒ (%2)::Base.RefValue{String}

◌ └─── %4 = $(Expr(:enter, #8))

◌ 3 ── %5 = Base.isdefined(%1, :x)::Bool

◌ └─── goto #5 if not %5

X 4 ── Base.getfield(%1, :x)::String

◌ └─── goto #6

◌ 5 ── Main.throw(%1)::Union{}

◌ └─── unreachable

◌ 6 ── $(Expr(:leave, 1))

◌ 7 ── goto #11

*′ 8 ┄─ %13 = φᶜ (%3)::Base.RefValue{String}

◌ └─── $(Expr(:leave, 1))

X 9 ── %15 = $(Expr(:the_exception))::Any

◌ 10 ─ (Main.GV = %15)::Any

◌ └─── $(Expr(:pop_exception, :(%4)))::Any

*′ 11 ┄ %18 = φ (#7 => %2, #10 => %13)::Base.RefValue{String}

◌ │ %19 = Base.isdefined(%18, :x)::Bool

◌ └─── goto #13 if not %19

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1616

↑ 12 ─ %21 = Base.getfield(%18, :x)::String

◌ └─── goto #14

◌ 13 ─ Main.throw(%18)::Union{}

◌ └─── unreachable

◌ 14 ─ return %21

Analysis Usage

analyze_escapes is the entry point to analyze escape information of SSA-IR elements.

Most optimizations like SROA (sroa_pass!) are more effective when applied to an optimized source that

the inlining pass (ssa_inlining_pass!) has simplified by resolving inter-procedural calls and expanding

callee sources. Accordingly, analyze_escapes is also able to analyze post-inlining IR and collect escape

information that is useful for certain memory-related optimizations.

However, since certain optimization passes like inlining can change control flows and eliminate dead code,

they can break the inter-procedural validity of escape information. In particularity, in order to collect inter-

procedurally valid escape information, we need to analyze a pre-inlining IR.

Because of this reason, analyze_escapes can analyze IRCode at any Julia-level optimization stage, and

especially, it is supposed to be used at the following two stages:

• IPO EA: analyze pre-inlining IR to generate IPO-valid escape information cache

• Local EA: analyze post-inlining IR to collect locally-valid escape information

Escape information derived by IPO EA is transformed to the ArgEscapeCache data structure and cached

globally. By passing an appropriate get_escape_cache callback to analyze_escapes, the escape analysis

can improve analysis accuracy by utilizing cached inter-procedural information of non-inlined callees that

has been derived by previous IPO EA. More interestingly, it is also valid to use IPO EA escape information

for type inference, e.g., inference accuracy can be improved by forming Const/PartialStruct/MustAlias

of mutable object.

Since the computational cost of analyze_escapes is not that cheap, both IPO EA and Local EA are better

to run only when there is any profitability. Currently EscapeAnalysis provides the is_ipo_profitable

heuristic to check a profitability of IPO EA.

Core.Compiler.EscapeAnalysis.analyze_escapes – Function.

analyze_escapes(ir::IRCode, nargs::Int, call_resolved::Bool, get_escape_cache::Callable)

-> estate::EscapeState

Analyzes escape information in ir:

• nargs: the number of actual arguments of the analyzed call

• call_resolved: if interprocedural calls are already resolved by ssa_inlining_pass!

• get_escape_cache(::Union{InferenceResult,MethodInstance}) -> Union{Nothing,ArgEscapeCache}:

retrieves cached argument escape information

source

Core.Compiler.EscapeAnalysis.EscapeState – Type.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/compiler/ssair/EscapeAnalysis/EscapeAnalysis.jl#L650-L659

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1617

estate::EscapeState

Extended lattice thatmaps arguments and SSA values to escape information represented as EscapeInfo.

Escape information imposed on SSA IR element x can be retrieved by estate[x].

source

Core.Compiler.EscapeAnalysis.EscapeInfo – Type.

x::EscapeInfo

A lattice for escape information, which holds the following properties:

• x.Analyzed::Bool: not formally part of the lattice, only indicates x has not been analyzed or not

• x.ReturnEscape::Bool: indicates x can escape to the caller via return

• x.ThrownEscape::BitSet: records SSA statement numbers where x can be thrown as exception:

– isempty(x.ThrownEscape): x will never be thrown in this call frame (the bottom)

– pc ∈ x.ThrownEscape: x may be thrown at the SSA statement at pc

– -1 ∈ x.ThrownEscape: x may be thrown at arbitrary points of this call frame (the top)

This information will be used by escape_exception! to propagate potential escapes via excep-

tion.

• x.AliasInfo::Union{Bool,IndexableFields,IndexableElements,Unindexable}: maintains all

possible values that can be aliased to fields or array elements of x:

– x.AliasInfo === false indicates the fields/elements of x aren't analyzed yet

– x.AliasInfo === true indicates the fields/elements of x can't be analyzed, e.g. the type

of x is not known or is not concrete and thus its fields/elements can't be known precisely

– x.AliasInfo::IndexableFields records all the possible values that can be aliased to fields

of object x with precise index information

– x.AliasInfo::IndexableElements records all the possible values that can be aliased to

elements of array x with precise index information

– x.AliasInfo::Unindexable records all the possible values that can be aliased to fields/ele-

ments of x without precise index information

• x.Liveness::BitSet: records SSA statement numbers where x should be live, e.g. to be used

as a call argument, to be returned to a caller, or preserved for :foreigncall:

– isempty(x.Liveness): x is never be used in this call frame (the bottom)

– 0 ∈ x.Liveness also has the special meaning that it's a call argument of the currently an-

alyzed call frame (and thus it's visible from the caller immediately).

– pc ∈ x.Liveness: x may be used at the SSA statement at pc

– -1 ∈ x.Liveness: x may be used at arbitrary points of this call frame (the top)

There are utility constructors to create common EscapeInfos, e.g.,

• NoEscape(): the bottom(-like) element of this lattice, meaning it won't escape to anywhere

• AllEscape(): the topmost element of this lattice, meaning it will escape to everywhere

analyze_escapes will transition these elements from the bottom to the top, in the same direction as

Julia's native type inference routine. An abstract state will be initialized with the bottom(-like) elements:

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/compiler/ssair/EscapeAnalysis/EscapeAnalysis.jl#L450-L455

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1618

• the call arguments are initialized as ArgEscape(), whose Liveness property includes 0 to indicate

that it is passed as a call argument and visible from a caller immediately

• the other states are initialized as NotAnalyzed(), which is a special lattice element that is slightly

lower than NoEscape, but at the same time doesn't represent any meaning other than it's not

analyzed yet (thus it's not formally part of the lattice)

source

Core.Compiler.EscapeAnalysis.is_ipo_profitable – Function.

is_ipo_profitable(ir::IRCode, nargs::Int) -> Bool

Heuristically checks if there is any profitability to run the escape analysis on ir and generate IPO

escape information cache. Specifically, this function examines if any call argument is "interesting" in

terms of their escapability.

source

102.24 Static analyzer annotations for GC correctness in C code

Running the analysis

The analyzer plugin that drives the analysis ships with julia. Its source code can be found in src/clangsa.

Running it requires the clang dependency to be build. Set the BUILD_LLVM_CLANG variable in your Make.user

in order to build an appropriate version of clang. You may also want to use the prebuilt binaries using the

USE_BINARYBUILDER_LLVM options.

Alternatively (or if these do not suffice), try

make -C src install-analysis-deps

from Julia's toplevel directory.

Afterwards, running the analysis over the source tree is as simple as running make -C src analyzegc.

1Our type inference implementation takes the alternative approach, where each lattice property is represented by a special

lattice element type object. It turns out that it started to complicate implementations of the lattice operations mainly because it often

requires conversion rules between each lattice element type object. And we are working on overhauling our type inference lattice

implementation with EscapeInfo-like lattice design.

2A Graph-Free approach to Data-Flow Analysis. Markas Mohnen, 2002, April. https://api.semanticscholar.org/CorpusID:28519618.

3Our type inference algorithm in contrast is implemented as a forward analysis, because type information usually flows from

"definition" to "usage" and it is more natural and effective to propagate such information in a forward way.

4In some cases, however, object fields can't be analyzed precisely. For example, object may escape to somewhere

EscapeAnalysis can't account for possible memory effects on it, or fields of the objects simply can't be known because of the

lack of type information. In such cases AliasInfo property is raised to the topmost element within its own lattice order, and it causes

succeeding field analysis to be conservative and escape information imposed on fields of an unanalyzable object to be propagated

to the object itself.

5Escape Analysis in the Context of Dynamic Compilation and Deoptimization. Thomas Kotzmann and Hanspeter Mössenböck,

2005, June. https://dl.acm.org/doi/10.1145/1064979.1064996.

6Otherwise we will need yet another forward data-flow analysis on top of the escape analysis.

https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/compiler/ssair/EscapeAnalysis/EscapeAnalysis.jl#L47-L87
https://github.com/JuliaLang/julia/blob/48d4fd48430af58502699fdf3504b90589df3852/base/compiler/ssair/EscapeAnalysis/EscapeAnalysis.jl#L592-L598
https://github.com/JuliaLang/julia/pull/42596
https://github.com/JuliaLang/julia/pull/42596
https://api.semanticscholar.org/CorpusID:28519618
https://dl.acm.org/doi/10.1145/1064979.1064996

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1619

General Overview

Since Julia's GC is precise, it needs to maintain correct rooting information for any value that may be

referenced at any time GC may occur. These places are known as safepoints and in the function local

context, we extend this designation to any function call that may recursively end up at a safepoint.

In generated code, this is taken care of automatically by the GC root placement pass (see the chapter on

GC rooting in the LLVM codegen devdocs). However, in C code, we need to inform the runtime of any GC

roots manually. This is done using the following macros:

// The value assigned to any slot passed as an argument to these

// is rooted for the duration of this GC frame.

JL_GC_PUSH{1,...,6}(args...)

// The values assigned into the size `n` array `rts` are rooted

// for the duration of this GC frame.

JL_GC_PUSHARGS(rts, n)

// Pop a GC frame

JL_GC_POP

If these macros are not used where they need to be, or they are used incorrectly, the result is silent memory

corruption. As such it is very important that they are placed correctly in all applicable code.

As such, we employ static analysis (and in particular the clang static analyzer) to help ensure that these

macros are used correctly. The remainder of this document gives an overview of this static analysis and

describes the support needed in the julia code base to make things work.

GC Invariants

There is two simple invariants correctness:

• All GC_PUSH calls need to be followed by an appropriate GC_POP (in practice we enforce this at the

function level)

• If a value was previously not rooted at any safepoint, it may no longer be referenced afterwards

Of course the devil is in the details here. In particular to satisfy the second of the above conditions, we

need to know:

• Which calls are safepoints and which are not

• Which values are rooted at any given safepoint and which are not

• When is a value referenced

For the second point in particular, we need to know which memory locations will be considered rooting at

runtime (i.e. values assigned to such locations are rooted). This includes locations explicitly designated as

such by passing them to one of the GC_PUSH macros, globally rooted locations and values, as well as any

location recursively reachable from one of those locations.

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1620

Static Analysis Algorithm

The idea itself is very simple, although the implementation is quite a bit more complicated (mainly due to

a large number of special cases and intricacies of C and C++). In essence, we keep track of all locations

that are rooting, all values that are rootable and any expression (assignments, allocations, etc) affect the

rootedness of any rootable values. Then, at any safepoint, we perform a "symbolic GC" and poison any

values that are not rooted at said location. If these values are later referenced, we emit an error.

The clang static analyzer works by constructing a graph of states and exploring this graph for sources of

errors. Several nodes in this graph are generated by the analyzer itself (e.g. for control flow), but the

definitions above augment this graph with our own state.

The static analyzer is interprocedural and can analyze control flow across function boundaries. However,

the static analyzer is not fully recursive and makes heuristic decisions about which calls to explore (addi-

tionally some calls are cross-translation unit and invisible to the analyzer). In our case, our definition of

correctness requires total information. As such, we need to annotate the prototypes of all function calls

with whatever information the analysis required, even if that information would otherwise be available by

interprocedural static analysis.

Luckily however, we can still use this interprocedural analysis to ensure that the annotations we place on

a given function are indeed correct given the implementation of said function.

The analyzer annotations

These annotations are found in src/support/analyzer_annotations.h. The are only active when the ana-

lyzer is being used and expand either to nothing (for prototype annotations) or to no-ops (for function like

annotations).

JL_NOTSAFEPOINT

This is perhaps the most common annotation, and should be placed on any function that is known not to

possibly lead to reaching a GC safepoint. In general, it is only safe for such a function to perform arithmetic,

memory accesses and calls to functions either annotated JL_NOTSAFEPOINT or otherwise known not to be

safepoints (e.g. function in the C standard library, which are hardcoded as such in the analyzer)

It is valid to keep values unrooted across calls to any function annotated with this attribute:

Usage Example:

void jl_get_one() JL_NOTSAFEPOINT {

return 1;

}

jl_value_t *example() {

jl_value_t *val = jl_alloc_whatever();

// This is valid, even though `val` is unrooted, because

// jl_get_one is not a safepoint

jl_get_one();

return val;

}

JL_MAYBE_UNROOTED/JL_ROOTS_TEMPORARILY

When JL_MAYBE_UNROOTED is annotated as an argument on a function, indicates that said argument may

be passed, even if it is not rooted. In the ordinary course of events, the julia ABI guarantees that callers root

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1621

values before passing them to callees. However, some functions do not follow this ABI and allow values

to be passed to them even though they are not rooted. Note however, that this does not automatically

imply that said argument will be preserved. The ROOTS_TEMPORARILY annotation provides the stronger

guarantee that, not only may the value be unrooted when passed, it will also be preserved across any

internal safepoints by the callee.

Note that JL_NOTSAFEPOINT essentially implies JL_MAYBE_UNROOTED/JL_ROOTS_TEMPORARILY, because the

rootedness of an argument is irrelevant if the function contains no safepoints.

One additional point to note is that these annotations apply on both the caller and the callee side. On the

caller side, they lift rootedness restrictions that are normally required for julia ABI functions. On the callee

side, they have the reverse effect of preventing these arguments from being considered implicitly rooted.

If either of these annotations is applied to the function as a whole, it applies to all arguments of the function.

This should generally only be necessary for varargs functions.

Usage example:

JL_DLLEXPORT void JL_NORETURN jl_throw(jl_value_t *e JL_MAYBE_UNROOTED);

jl_value_t *jl_alloc_error();

void example() {

// The return value of the allocation is unrooted. This would normally

// be an error, but is allowed because of the above annotation.

jl_throw(jl_alloc_error());

}

JL_PROPAGATES_ROOT

This annotation is commonly found on accessor functions that return one rootable object stored within

another. When annotated on a function argument, it tells the analyzer that the root for that argument also

applies to the value returned by the function.

Usage Example:

jl_value_t *jl_svecref(jl_svec_t *t JL_PROPAGATES_ROOT, size_t i) JL_NOTSAFEPOINT;

size_t example(jl_svec_t *svec) {

jl_value_t *val = jl_svecref(svec, 1)

// This is valid, because, as annotated by the PROPAGATES_ROOT annotation,

// jl_svecref propagates the rooted-ness from `svec` to `val`

jl_gc_safepoint();

return jl_unbox_long(val);

}

JL_ROOTING_ARGUMENT/JL_ROOTED_ARGUMENT

This is essentially the assignment counterpart to JL_PROPAGATES_ROOT. When assigning a value to a field

of another value that is already rooted, the assigned value will inherit the root of the value it is assigned

into.

Usage Example:

void jl_svecset(void *t JL_ROOTING_ARGUMENT, size_t i, void *x JL_ROOTED_ARGUMENT)

JL_NOTSAFEPOINT

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1622

size_t example(jl_svec_t *svec) {

jl_value_t *val = jl_box_long(10000);

jl_svecset(svec, val);

// This is valid, because the annotations imply that the

// jl_svecset propagates the rooted-ness from `svec` to `val`

jl_gc_safepoint();

return jl_unbox_long(val);

}

JL_GC_DISABLED

This annotation implies that this function is only called with the GC runtime-disabled. Functions of this kind

are most often encountered during startup and in the GC code itself. Note that this annotation is checked

against the runtime enable/disable calls, so clang will know if you lie. This is not a good way to disable

processing of a given function if the GC is not actually disabled (use ifdef __clang_analyzer__ for that

if you must).

Usage example:

void jl_do_magic() JL_GC_DISABLED {

// Wildly allocate here with no regard for roots

}

void example() {

int en = jl_gc_enable(0);

jl_do_magic();

jl_gc_enable(en);

}

JL_REQUIRE_ROOTED_SLOT

This annotation requires the caller to pass in a slot that is rooted (i.e. values assigned to this slot will be

rooted).

Usage example:

void jl_do_processing(jl_value_t **slot JL_REQUIRE_ROOTED_SLOT) {

*slot = jl_box_long(1);

// Ok, only, because the slot was annotated as rooting

jl_gc_safepoint();

}

void example() {

jl_value_t *slot = NULL;

JL_GC_PUSH1(&slot);

jl_do_processing(&slot);

JL_GC_POP();

}

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1623

JL_GLOBALLY_ROOTED

This annotation implies that a given value is always globally rooted. It can be applied to global variable

declarations, in which case it will apply to the value of those variables (or values if the declaration if for an

array), or to functions, in which case it will apply to the return value of such functions (e.g. for functions

that always return some private, globally rooted value).

Usage example:

extern JL_DLLEXPORT jl_datatype_t *jl_any_type JL_GLOBALLY_ROOTED;

jl_ast_context_t *jl_ast_ctx(fl_context_t *fl) JL_GLOBALLY_ROOTED;

JL_ALWAYS_LEAFTYPE

This annotations is essentially equivalent to JL_GLOBALLY_ROOTED, except that is should only be used if

those values are globally rooted by virtue of being a leaftype. The rooting of leaftypes is a bit complicated.

They are generally rooted through cache field of the corresponding TypeName, which itself is rooted by

the containing module (so they're rooted as long as the containing module is ok) and we can generally

assume that leaftypes are rooted where they are used, but we may refine this property in the future, so

the separate annotation helps split out the reason for being globally rooted.

The analyzer also automatically detects checks for leaftype-ness and will not complain about missing GC

roots on these paths.

JL_DLLEXPORT jl_value_t *jl_apply_array_type(jl_value_t *type, size_t dim) JL_ALWAYS_LEAFTYPE;

JL_GC_PROMISE_ROOTED

This is a function-like annotation. Any value passed to this annotation will be considered rooted for the

scope of the current function. It is designed as an escape hatch for analyzer inadequacy or complicated

situations. However, it should be used sparingly, in favor of improving the analyzer itself.

void example() {

jl_value_t *val = jl_alloc_something();

if (some_condition) {

// We happen to know for complicated external reasons

// that val is rooted under these conditions

JL_GC_PROMISE_ROOTED(val);

}

}

Completeness of analysis

The analyzer only looks at local information. In particular, e.g. in the PROPAGATES_ROOT case above, it

assumes that such memory is only modified in ways it can see, not in any called functions (unless it

happens to decide to consider them in its analysis) and not in any concurrently running threads. As such, it

may miss a few problematic cases, though in practice such concurrent modification is fairly rare. Improving

the analyzer to handle more such cases may be an interesting topic for future work.

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1624

102.25 Garbage Collection in Julia

Introduction

Julia has a non-moving, partially concurrent, parallel, generational andmostly precise mark-sweep collector

(an interface for conservative stack scanning is provided as an option for users who wish to call Julia from

C).

Allocation

Julia uses two types of allocators, the size of the allocation request determining which one is used. Objects

up to 2k bytes are allocated on a per-thread free-list pool allocator, while objects larger than 2k bytes are

allocated through libc malloc.

Julia’s pool allocator partitions objects on different size classes, so that a memory page managed by the

pool allocator (which spans 4 operating system pages on 64bit platforms) only contains objects of the same

size class. Each memory page from the pool allocator is paired with some page metadata stored on per-

thread lock-free lists. The page metadata contains information such as whether the page has live objects

at all, number of free slots, and offsets to the first and last objects in the free-list contained in that page.

These metadata are used to optimize the collection phase: a page which has no live objects at all may be

returned to the operating system without any need of scanning it, for example.

While a page that has no objects may be returned to the operating system, its associated metadata is per-

manently allocated andmay outlive the given page. As mentioned above, metadata for allocated pages are

stored on per-thread lock-free lists. Metadata for free pages, however, may be stored into three separate

lock-free lists depending on whether the page has been mapped but never accessed (page_pool_clean),

or whether the page has been lazily sweeped and it's waiting to be madvised by a background GC thread

(page_pool_lazily_freed), or whether the page has been madvised (page_pool_freed).

Julia's pool allocator follows a "tiered" allocation discipline. When requesting a memory page for the pool

allocator, Julia will:

• Try to claim a page from page_pool_lazily_freed, which contains pages which were empty on the

last stop-the-world phase, but not yet madivsed by a concurrent sweeper GC thread.

• If it failed claiming a page from page_pool_lazily_freed, it will try to claim a page from the

page_pool_clean, which contains pages which were mmaped on a previous page allocation request

but never accessed.

• If it failed claiming a page from pool_page_clean and from page_pool_lazily_freed, it will try to

claim a page from page_pool_freed, which contains pages which have already been madvised by

a concurrent sweeper GC thread and whose underlying virtual address can be recycled.

• If it failed in all of the attempts mentioned above, it will mmap a batch of pages, claim one page for

itself, and insert the remaining pages into page_pool_clean.

Marking and Generational Collection

Julia’s mark phase is implemented through a parallel iterative depth-first-search over the object graph.

Julia’s collector is non-moving, so object age information can’t be determined through the memory region

in which the object resides alone, but has to be somehow encoded in the object header or on a side table.

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1625

Figure 102.2: Diagram of tiered pool allocation

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1626

The lowest two bits of an object’s header are used to store, respectively, a mark bit that is set when an

object is scanned during the mark phase and an age bit for the generational collection.

Generational collection is implemented through sticky bits: objects are only pushed to the mark-stack,

and therefore traced, if their mark-bits are not set. When objects reach the oldest generation, their mark-

bits are not reset during the so-called "quick-sweep", which leads to these objects not being traced in a

subsequent mark phase. A "full-sweep", however, causes the mark-bits of all objects to be reset, leading to

all objects being traced in a subsequent mark phase. Objects are promoted to the next generation during

every sweep phase they survive. On the mutator side, field writes are intercepted through a write barrier

that pushes an object’s address into a per-thread remembered set if the object is in the last generation,

and if the object at the field being written is not. Objects in this remembered set are then traced during

the mark phase.

Sweeping

Sweeping of object pools for Julia may fall into two categories: if a given page managed by the pool

allocator contains at least one live object, then a free-list must be threaded through its dead objects; if

a given page contains no live objects at all, then its underlying physical memory may be returned to the

operating system through, for instance, the use of madvise system calls on Linux.

The first category of sweeping is currently serial and performed in the stop-the-world phase. For the sec-

ond category of sweeping, if concurrent page sweeping is enabled through the flag --gcthreads=X,1 we

perform the madvise system calls in a background sweeper thread, concurrently with the mutator threads.

During the stop-the-world phase of the collector, pool allocated pages which contain no live objects are

initially pushed into the pool_page_lazily_freed. The background sweeping thread is then woken up and

is responsible for removing pages from pool_page_lazily_freed, calling madvise on them, and inserting

them into pool_page_freed. As described above, pool_page_lazily_freed is also shared with mutator

threads. This implies that on allocation-heavy multithreaded workloads, mutator threads would often avoid

a page fault on allocation (coming from accessing a fresh mmaped page or accessing a madvised page) by

directly allocating from a page in pool_page_lazily_freed, while the background sweeper thread needs

to madvise a reduce number of pages given some of them were already claimed by the mutators.

Heuristics

GC heuristics tune the GC by changing the size of the allocation interval between garbage collections. If

a GC was unproductive, then we increase the size of the allocation interval to allow objects more time to

die. If a GC returns a lot of space we can shrink the interval. The goal is to find a steady state where we

are allocating just about the same amount as we are collecting.

102.26 Fixing precompilation hangs due to open tasks or IO

On Julia 1.10 or higher, you might see the following message:

This may repeat. If it continues to repeat with no hints that it will resolve itself, you may have a "precom-

pilation hang" that requires fixing. Even if it's transient, you might prefer to resolve it so that users will not

be bothered by this warning. This page walks you through how to analyze and fix such issues.

If you follow the advice and hit Ctrl-C, you might see

^C Interrupted: Exiting precompilation...

1 dependency had warnings during precompilation:┌

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1627

Figure 102.3: Screenshot of precompilation hang

Test1 [ac89d554-e2ba-40bc-bc5c-de68b658c982]│

[pid 2745] waiting for IO to finish:│

Handle type uv_handle_t->data│

timer 0x55580decd1e0->0x7f94c3a4c340

This message conveys two key pieces of information:

• the hang is occurring during precompilation of Test1, a dependency of Test2 (the package we were

trying to load with using Test2)

• during precompilation of Test1, Julia created a Timer object (use ?Timer if you're unfamiliar with

Timers) which is still open; until that closes, the process is hung

If this is enough of a hint for you to figure out how timer = Timer(args...) is being created, one good

solution is to add wait(timer) if timer eventually finishes on its own, or close(timer) if you need to

force-close it, before the final end of the module.

However, there are cases that may not be that straightforward. Usually the best option is to start by

determining whether the hang is due to code in Test1 or whether it is due to one of Test1's dependencies:

• Option 1: Pkg.add("Aqua") and use Aqua.test_persistent_tasks. This should help you identify

which package is causing the problem, after which the instructions below should be followed. If

needed, you can create a PkgId as Base.PkgId(UUID("..."), "Test1"), where ... comes from

the uuid entry in Test1/Project.toml.

• Option 2: manually diagnose the source of the hang.

To manually diagnose:

1. Pkg.develop("Test1")

2. Comment out all the code included or defined in Test1, except the using/import statements.

3. Try using Test2 (or even using Test1 assuming that hangs too) again

Now we arrive at a fork in the road: either

• the hang persists, indicating it is due to one of your dependencies

• the hang disappears, indicating that it is due to something in your code.

https://juliatesting.github.io/Aqua.jl/dev/#Aqua.test_persistent_tasks-Tuple\protect \TU\textbraceleft Base.PkgId\protect \TU\textbraceright

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1628

Diagnosing and fixing hangs due to a package dependency

Use a binary search to identify the problematic dependency: start by commenting out half your dependen-

cies, then when you isolate which half is responsible comment out half of that half, etc. (You don't have to

remove them from the project, just comment out the using/import statements.)

Once you've identified a suspect (here we'll call it ThePackageYouThinkIsCausingTheProblem), first try

precompiling that package. If it also hangs during precompilation, continue chasing the problem back-

wards.

However, most likely ThePackageYouThinkIsCausingTheProblem will precompile fine. This suggests it's in

the function ThePackageYouThinkIsCausingTheProblem.__init__, which does not run during precompi-

lation of ThePackageYouThinkIsCausingTheProblem but does in any package that loads ThePackageYouThinkIsCausingTheProblem.

To test this theory, set up a minimal working example (MWE), something like

(@v1.10) pkg> generate MWE

Generating project MWE:

MWE\Project.toml

MWE\src\MWE.jl

where the source code of MWE.jl is

module MWE

using ThePackageYouThinkIsCausingTheProblem

end

and you've added ThePackageYouThinkIsCausingTheProblem to MWE's dependencies.

If that MWE reproduces the hang, you've found your culprit: ThePackageYouThinkIsCausingTheProblem.__init__

must be creating the Timer object. If the timer object can be safely closed, that's a good option. Oth-

erwise, the most common solution is to avoid creating the timer while any package is being precompiled:

add

ccall(:jl_generating_output, Cint, ()) == 1 && return nothing

as the first line of ThePackageYouThinkIsCausingTheProblem.__init__, and it will avoid doing any ini-

tialization in any Julia process whose purpose is to precompile packages.

Fixing package code to avoid hangs

Search your package for suggestive words (here like "Timer") and see if you can identify where the problem

is being created. Note that a method definition like

maketimer() = Timer(timer -> println("hi"), 0; interval=1)

is not problematic in and of itself: it can cause this problem only if maketimer gets called while the module

is being defined. This might be happening from a top-level statement such as

const GLOBAL_TIMER = maketimer()

CHAPTER 102. DOCUMENTATION OF JULIA’S INTERNALS 1629

or it might conceivably occur in a precompile workload.

If you struggle to identify the causative lines, then consider doing a binary search: comment out sections

of your package (or include lines to omit entire files) until you've reduced the problem in scope.

https://github.com/JuliaLang/PrecompileTools.jl

Chapter 103

Developing/debugging Julia’s C code

103.1 Reporting and analyzing crashes (segfaults)

So you managed to break Julia. Congratulations! Collected here are some general procedures you can

undergo for common symptoms encountered when something goes awry. Including the information from

these debugging steps can greatly help the maintainers when tracking down a segfault or trying to figure

out why your script is running slower than expected.

If you've been directed to this page, find the symptom that best matches what you're experiencing and

follow the instructions to generate the debugging information requested. Table of symptoms:

• Segfaults during bootstrap (sysimg.jl)

• Segfaults when running a script

• Errors during Julia startup

• Other generic segfaults or unreachables reached

Version/Environment info

No matter the error, we will always need to know what version of Julia you are running. When Julia first

starts up, a header is printed out with a version number and date. Please also include the output of

versioninfo() (exported from the InteractiveUtils standard library) in any report you create:

julia> using InteractiveUtils

julia> versioninfo()

Julia Version 1.10.4

Commit 48d4fd48430 (2024-06-04 10:41 UTC)

Build Info:

Official https://julialang.org/ release

Platform Info:

OS: Linux (x86_64-linux-gnu)

CPU: 4 × AMD EPYC 7763 64-Core Processor

WORD_SIZE: 64

LIBM: libopenlibm

1630

CHAPTER 103. DEVELOPING/DEBUGGING JULIA’S C CODE 1631

LLVM: libLLVM-15.0.7 (ORCJIT, znver3)

Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Environment:

JULIA_DOCS =

/home/runner/work/docs.julialang.org/docs.julialang.org/pdf/build/docs.julialang.org↪→

JULIA_SOURCE = /home/runner/work/docs.julialang.org/docs.julialang.org/pdf/build/julia

JULIA_EXECUTABLE =

/home/runner/work/docs.julialang.org/docs.julialang.org/pdf/build/julia-1.10.4-linux-

x86_64/bin/julia

↪→

↪→

Segfaults during bootstrap (sysimg.jl)

Segfaults toward the end of the make process of building Julia are a common symptom of something going

wrong while Julia is preparsing the corpus of code in the base/ folder. Many factors can contribute toward

this process dying unexpectedly, however it is as often as not due to an error in the C-code portion of Julia,

and as such must typically be debugged with a debug build inside of gdb. Explicitly:

Create a debug build of Julia:

$ cd <julia_root>

$ make debug

Note that this process will likely fail with the same error as a normal make incantation, however this will

create a debug executable that will offer gdb the debugging symbols needed to get accurate backtraces.

Next, manually run the bootstrap process inside of gdb:

$ cd base/

$ gdb -x ../contrib/debug_bootstrap.gdb

This will start gdb, attempt to run the bootstrap process using the debug build of Julia, and print out a

backtrace if (when) it segfaults. You may need to hit <enter> a few times to get the full backtrace. Create

a gist with the backtrace, the version info, and any other pertinent information you can think of and open

a new issue on Github with a link to the gist.

Segfaults when running a script

The procedure is very similar to Segfaults during bootstrap (sysimg.jl). Create a debug build of Julia, and

run your script inside of a debugged Julia process:

$ cd <julia_root>

$ make debug

$ gdb --args usr/bin/julia-debug <path_to_your_script>

Note that gdb will sit there, waiting for instructions. Type r to run the process, and bt to generate a

backtrace once it segfaults:

(gdb) r

Starting program: /home/sabae/src/julia/usr/bin/julia-debug ./test.jl

...

(gdb) bt

Create a gist with the backtrace, the version info, and any other pertinent information you can think of and

open a new issue on Github with a link to the gist.

https://gist.github.com
https://github.com/JuliaLang/julia/issues?q=is%3Aopen
https://gist.github.com
https://github.com/JuliaLang/julia/issues?q=is%3Aopen

CHAPTER 103. DEVELOPING/DEBUGGING JULIA’S C CODE 1632

Errors during Julia startup

Occasionally errors occur during Julia's startup process (especially when using binary distributions, as op-

posed to compiling from source) such as the following:

$ julia

exec: error -5

These errors typically indicate something is not getting loaded properly very early on in the bootup phase,

and our best bet in determining what's going wrong is to use external tools to audit the disk activity of the

julia process:

• On Linux, use strace:

$ strace julia

• On OSX, use dtruss:

$ dtruss -f julia

Create a gist with the strace/ dtruss output, the version info, and any other pertinent information and

open a new issue on Github with a link to the gist.

Other generic segfaults or unreachables reached

As mentioned elsewhere, julia has good integration with rr for generating traces; this includes, on Linux,

the ability to automatically run julia under rr and share the trace after a crash. This can be immensely

helpful when debugging such crashes and is strongly encouraged when reporting crash issues to the Ju-

liaLang/julia repo. To run julia under rr automatically, do:

julia --bug-report=rr

To generate the rr trace locally, but not share, you can do:

julia --bug-report=rr-local

Note that this is only works on Linux. The blog post on Time Travelling Bug Reporting has many more

details.

Glossary

A few terms have been used as shorthand in this guide:

• <julia_root> refers to the root directory of the Julia source tree; e.g. it should contain folders such

as base, deps, src, test, etc.....

https://gist.github.com
https://github.com/JuliaLang/julia/issues?q=is%3Aopen
https://julialang.org/blog/2020/05/rr/

CHAPTER 103. DEVELOPING/DEBUGGING JULIA’S C CODE 1633

103.2 gdb debugging tips

Displaying Julia variables

Within gdb, any jl_value_t* object obj can be displayed using

(gdb) call jl_(obj)

The object will be displayed in the julia session, not in the gdb session. This is a useful way to discover

the types and values of objects being manipulated by Julia's C code.

Similarly, if you're debugging some of Julia's internals (e.g., compiler.jl), you can print obj using

ccall(:jl_, Cvoid, (Any,), obj)

This is a good way to circumvent problems that arise from the order in which julia's output streams are

initialized.

Julia's flisp interpreter uses value_t objects; these can be displayedwith call fl_print(fl_ctx, ios_stdout,

obj).

Useful Julia variables for Inspecting

While the addresses of many variables, like singletons, can be useful to print for many failures, there are a

number of additional variables (see julia.h for a complete list) that are even more useful.

• (when in jl_apply_generic) mfunc and jl_uncompress_ast(mfunc->def, mfunc->code) :: for fig-

uring out a bit about the call-stack

• jl_lineno and jl_filename :: for figuring out what line in a test to go start debugging from (or

figure out how far into a file has been parsed)

• $1 :: not really a variable, but still a useful shorthand for referring to the result of the last gdb

command (such as print)

• jl_options :: sometimes useful, since it lists all of the command line options that were successfully

parsed

• jl_uv_stderr :: because who doesn't like to be able to interact with stdio

Useful Julia functions for Inspecting those variables

• jl_gdblookup($rip) :: For looking up the current function and line. (use $eip on i686 platforms)

• jlbacktrace() :: For dumping the current Julia backtrace stack to stderr. Only usable after record_backtrace()

has been called.

• jl_dump_llvm_value(Value*) :: For invoking Value->dump() in gdb, where it doesn't work natively.

For example, f->linfo->functionObject, f->linfo->specFunctionObject, and to_function(f->linfo).

• Type->dump() :: only works in lldb. Note: add something like ;1 to prevent lldb from printing its

prompt over the output

CHAPTER 103. DEVELOPING/DEBUGGING JULIA’S C CODE 1634

• jl_eval_string("expr") :: for invoking side-effects to modify the current state or to lookup sym-

bols

• jl_typeof(jl_value_t*) :: for extracting the type tag of a Julia value (in gdb, call macro define

jl_typeof jl_typeof first, or pick something short like ty for the first arg to define a shorthand)

Inserting breakpoints for inspection from gdb

In your gdb session, set a breakpoint in jl_breakpoint like so:

(gdb) break jl_breakpoint

Then within your Julia code, insert a call to jl_breakpoint by adding

ccall(:jl_breakpoint, Cvoid, (Any,), obj)

where obj can be any variable or tuple you want to be accessible in the breakpoint.

It's particularly helpful to back up to the jl_apply frame, from which you can display the arguments to a

function using, e.g.,

(gdb) call jl_(args[0])

Another useful frame is to_function(jl_method_instance_t *li, bool cstyle). The jl_method_instance_t*

argument is a struct with a reference to the final AST sent into the compiler. However, the AST at this point

will usually be compressed; to view the AST, call jl_uncompress_ast and then pass the result to jl_:

#2 0x00007ffff7928bf7 in to_function (li=0x2812060, cstyle=false) at codegen.cpp:584

584 abort();

(gdb) p jl_(jl_uncompress_ast(li, li->ast))

Inserting breakpoints upon certain conditions

Loading a particular file

Let's say the file is sysimg.jl:

(gdb) break jl_load if strcmp(fname, "sysimg.jl")==0

Calling a particular method

(gdb) break jl_apply_generic if strcmp((char*)(jl_symbol_name)(jl_gf_mtable(F)->name), "

method_to_break")==0

Since this function is used for every call, you will make everything 1000x slower if you do this.

Dealing with signals

Julia requires a few signals to function properly. The profiler uses SIGUSR2 for sampling and the garbage

collector uses SIGSEGV for threads synchronization. If you are debugging some code that uses the profiler

or multiple threads, you may want to let the debugger ignore these signals since they can be triggered

very often during normal operations. The command to do this in GDB is (replace SIGSEGV with SIGUSR2 or

other signals you want to ignore):

CHAPTER 103. DEVELOPING/DEBUGGING JULIA’S C CODE 1635

(gdb) handle SIGSEGV noprint nostop pass

The corresponding LLDB command is (after the process is started):

(lldb) pro hand -p true -s false -n false SIGSEGV

If you are debugging a segfault with threaded code, you can set a breakpoint on jl_critical_error

(sigdie_handler should also work on Linux and BSD) in order to only catch the actual segfault rather than

the GC synchronization points.

Debugging during Julia's build process (bootstrap)

Errors that occur during make need special handling. Julia is built in two stages, constructing sys0 and

sys.ji. To see what commands are running at the time of failure, use make VERBOSE=1.

At the time of this writing, you can debug build errors during the sys0 phase from the base directory using:

julia/base$ gdb --args ../usr/bin/julia-debug -C native --build ../usr/lib/julia/sys0 sysimg.jl

You might need to delete all the files in usr/lib/julia/ to get this to work.

You can debug the sys.ji phase using:

julia/base$ gdb --args ../usr/bin/julia-debug -C native --build ../usr/lib/julia/sys -J ../usr/

lib/julia/sys0.ji sysimg.jl

By default, any errors will cause Julia to exit, even under gdb. To catch an error "in the act", set a breakpoint

in jl_error (there are several other useful spots, for specific kinds of failures, including: jl_too_few_args,

jl_too_many_args, and jl_throw).

Once an error is caught, a useful technique is to walk up the stack and examine the function by inspecting

the related call to jl_apply. To take a real-world example:

Breakpoint 1, jl_throw (e=0x7ffdf42de400) at task.c:802

802 {

(gdb) p jl_(e)

ErrorException("auto_unbox: unable to determine argument type")

$2 = void

(gdb) bt 10

#0 jl_throw (e=0x7ffdf42de400) at task.c:802

#1 0x00007ffff65412fe in jl_error (str=0x7ffde56be000 <_j_str267> "auto_unbox:

unable to determine argument type")

at builtins.c:39

#2 0x00007ffde56bd01a in julia_convert_16886 ()

#3 0x00007ffff6541154 in jl_apply (f=0x7ffdf367f630, args=0x7fffffffc2b0, nargs=2) at julia.h

:1281

...

The most recent jl_apply is at frame #3, so we can go back there and look at the AST for the func-

tion julia_convert_16886. This is the uniqued name for some method of convert. f in this frame is a

jl_function_t*, so we can look at the type signature, if any, from the specTypes field:

(gdb) f 3

#3 0x00007ffff6541154 in jl_apply (f=0x7ffdf367f630, args=0x7fffffffc2b0, nargs=2) at julia.h

:1281

CHAPTER 103. DEVELOPING/DEBUGGING JULIA’S C CODE 1636

1281 return f->fptr((jl_value_t*)f, args, nargs);

(gdb) p f->linfo->specTypes

$4 = (jl_tupletype_t *) 0x7ffdf39b1030

(gdb) p jl_(f->linfo->specTypes)

Tuple{Type{Float32}, Float64} # <-- type signature for julia_convert_16886

Then, we can look at the AST for this function:

(gdb) p jl_(jl_uncompress_ast(f->linfo, f->linfo->ast))

Expr(:lambda, Array{Any, 1}[:#s29, :x], Array{Any, 1}[Array{Any, 1}[], Array{Any, 1}[Array{Any,

1}[:#s29, :Any, 0], Array{Any, 1}[:x, :Any, 0]], Array{Any, 1}[], 0], Expr(:body,

Expr(:line, 90, :float.jl)::Any,

Expr(:return, Expr(:call, :box, :Float32, Expr(:call, :fptrunc, :Float32, :x)::Any)::Any)::Any)::

Any)::Any

Finally, and perhaps most usefully, we can force the function to be recompiled in order to step through the

codegen process. To do this, clear the cached functionObject from the jl_lamdbda_info_t*:

(gdb) p f->linfo->functionObject

$8 = (void *) 0x1289d070

(gdb) set f->linfo->functionObject = NULL

Then, set a breakpoint somewhere useful (e.g. emit_function, emit_expr, emit_call, etc.), and run

codegen:

(gdb) p jl_compile(f)

... # your breakpoint here

Debugging precompilation errors

Module precompilation spawns a separate Julia process to precompile each module. Setting a breakpoint or

catching failures in a precompile worker requires attaching a debugger to the worker. The easiest approach

is to set the debugger watch for new process launches matching a given name. For example:

(gdb) attach -w -n julia-debug

or:

(lldb) process attach -w -n julia-debug

Then run a script/command to start precompilation. As described earlier, use conditional breakpoints in the

parent process to catch specific file-loading events and narrow the debugging window. (some operating

systems may require alternative approaches, such as following each fork from the parent process)

Mozilla's Record and Replay Framework (rr)

Julia now works out of the box with rr, the lightweight recording and deterministic debugging framework

from Mozilla. This allows you to replay the trace of an execution deterministically. The replayed execution's

address spaces, register contents, syscall data etc are exactly the same in every run.

A recent version of rr (3.1.0 or higher) is required.

https://rr-project.org/

CHAPTER 103. DEVELOPING/DEBUGGING JULIA’S C CODE 1637

Reproducing concurrency bugs with rr

rr simulates a single-threaded machine by default. In order to debug concurrent code you can use rr

record --chaos which will cause rr to simulate between one to eight cores, chosen randomly. You might

therefore want to set JULIA_NUM_THREADS=8 and rerun your code under rr until you have caught your bug.

103.3 Using Valgrind with Julia

Valgrind is a tool for memory debugging, memory leak detection, and profiling. This section describes

things to keep in mind when using Valgrind to debug memory issues with Julia.

General considerations

By default, Valgrind assumes that there is no self modifying code in the programs it runs. This assumption

works fine in most instances but fails miserably for a just-in-time compiler like julia. For this reason it

is crucial to pass --smc-check=all-non-file to valgrind, else code may crash or behave unexpectedly

(often in subtle ways).

In some cases, to better detect memory errors using Valgrind it can help to compile julia with memory

pools disabled. The compile-time flag MEMDEBUG disables memory pools in Julia, and MEMDEBUG2 disables

memory pools in FemtoLisp. To build julia with both flags, add the following line to Make.user:

CFLAGS = -DMEMDEBUG -DMEMDEBUG2

Another thing to note: if your program uses multiple workers processes, it is likely that you want all

such worker processes to run under Valgrind, not just the parent process. To do this, pass --trace-

children=yes to valgrind.

Yet another thing to note: if using valgrind errors with Unable to find compatible target in system

image, try rebuilding the sysimage with target generic or julia with JULIA_CPU_TARGET=generic.

Suppressions

Valgrind will typically display spurious warnings as it runs. To reduce the number of such warnings, it

helps to provide a suppressions file to Valgrind. A sample suppressions file is included in the Julia source

distribution at contrib/valgrind-julia.supp.

The suppressions file can be used from the julia/ source directory as follows:

$ valgrind --smc-check=all-non-file --suppressions=contrib/valgrind-julia.supp ./julia progname.

jl

Any memory errors that are displayed should either be reported as bugs or contributed as additional sup-

pressions. Note that some versions of Valgrind are shipped with insufficient default suppressions, so that

may be one thing to consider before submitting any bugs.

Running the Julia test suite under Valgrind

It is possible to run the entire Julia test suite under Valgrind, but it does take quite some time (typically

several hours). To do so, run the following command from the julia/test/ directory:

valgrind --smc-check=all-non-file --trace-children=yes --suppressions=$PWD/../contrib/valgrind-

julia.supp ../julia runtests.jl all

https://valgrind.org/
https://valgrind.org/docs/manual/manual-core.html#manual-core.suppress
https://github.com/JuliaLang/julia/issues/8314#issuecomment-55766210

CHAPTER 103. DEVELOPING/DEBUGGING JULIA’S C CODE 1638

If you would like to see a report of "definite" memory leaks, pass the flags --leak-check=full --show-

leak-kinds=definite to valgrind as well.

Additional spurious warnings

This section covers Valgrind warnings which cannot be added to the suppressions file yet are nonetheless

safe to ignore.

Unhandled rr system calls

Valgrind will emit a warning if it encounters any of the system calls that are specific to rr, the Record and

Replay Framework. In particular, a warning about an unhandled 1008 syscall will be shown when julia tries

to detect whether it is running under rr:

--xxxxxx-- WARNING: unhandled amd64-linux syscall: 1008

--xxxxxx-- You may be able to write your own handler.

--xxxxxx-- Read the file README_MISSING_SYSCALL_OR_IOCTL.

--xxxxxx-- Nevertheless we consider this a bug. Please report

--xxxxxx-- it at http://valgrind.org/support/bug_reports.html.

This issue has been reported to the Valgrind developers as they have requested.

Caveats

Valgrind currently does not support multiple rounding modes, so code that adjusts the rounding mode will

behave differently when run under Valgrind.

In general, if after setting --smc-check=all-non-file you find that your program behaves differently

when run under Valgrind, it may help to pass --tool=none to valgrind as you investigate further. This will

enable the minimal Valgrind machinery but will also run much faster than when the full memory checker

is enabled.

103.4 External Profiler Support

Julia provides explicit support for some external tracing profilers, enabling you to obtain a high-level

overview of the runtime's execution behavior.

The currently supported profilers are:

• Tracy

• Intel VTune (ITTAPI)

Adding New Zones

To add new zones, use the JL_TIMING macro. You can find numerous examples throughout the codebase

by searching for JL_TIMING. To add a new type of zone you add it to JL_TIMING_OWNERS (and possibly

JL_TIMING_EVENTS).

https://github.com/rr-debugger/rr/blob/master/src/preload/rrcalls.h
https://rr-project.org/
https://rr-project.org/
https://bugs.kde.org/show_bug.cgi?id=446401
https://bugs.kde.org/show_bug.cgi?id=136779
https://github.com/wolfpld/tracy
https://github.com/intel/ittapi

CHAPTER 103. DEVELOPING/DEBUGGING JULIA’S C CODE 1639

Figure 103.1: Typical Tracy usage

Dynamically Enabling and Disabling Zones

The JULIA_TIMING_SUBSYSTEMS environment variable allows you to enable or disable zones for a specific

Julia run. For instance, setting the variable to +GC,-INFERENCE will enable the GC zones and disable the

INFERENCE zones.

Tracy Profiler

Tracy is a flexible profiler that can be optionally integrated with Julia.

A typical Tracy session might look like this:

Building Julia with Tracy

To enable Tracy integration, build Julia with the extra option WITH_TRACY=1 in the Make.user file.

Installing the Tracy Profile Viewer

The easiest way to obtain the profile viewer is by adding the TracyProfiler_jll package and launching

the profiler with:

https://github.com/wolfpld/tracy

CHAPTER 103. DEVELOPING/DEBUGGING JULIA’S C CODE 1640

run(TracyProfiler_jll.tracy())

Note

On macOS, you may want to set the TRACY_DPI_SCALE environment variable to 1.0 if the UI

elements in the profiler appear excessively large.

To run a "headless" instance that saves the trace to disk, use TracyProfiler_jll.capture() -o mytracefile.tracy

instead.

For information on using the Tracy UI, refer to the Tracy manual.

Profiling Julia with Tracy

A typical workflow for profiling Julia with Tracy involves starting Julia using:

JULIA_WAIT_FOR_TRACY=1 ./julia -e '...'

The environment variable ensures that Julia waits until it has successfully connected to the Tracy profiler

before continuing execution. Afterward, use the Tracy profiler UI, click Connect, and Julia execution should

resume and profiling should start.

Profiling package precompilation with Tracy

To profile a package precompilation process it is easiest to explicitly call into Base.compilecache with the

package you want to precompile:

pkg = Base.identify_package("SparseArrays")

withenv("JULIA_WAIT_FOR_TRACY" => 1, "TRACY_PORT" => 9001) do

Base.compilecache(pkg)

end

Here, we use a custom port for tracy which makes it easier to find the correct client in the Tracy UI to

connect to.

Adding metadata to zones

The various jl_timing_show_* and jl_timing_printf functions can be used to attach a string (or strings)

to a zone. For example, the trace zone for inference shows the method instance that is being inferred.

The TracyCZoneColor function can be used to set the color of a certain zone. Search through the codebase

to see how it is used.

Viewing Tracy files in your browser

Visit https://topolarity.github.io/trace-viewer/ for an (experimental) web viewer for Tracy traces.

You can open a local .tracy file or provide a URL from the web (e.g. a file in a Github repo). If you load a

trace file from the web, you can also share the page URL directly with others, enabling them to view the

same trace.

CHAPTER 103. DEVELOPING/DEBUGGING JULIA’S C CODE 1641

Enabling stack trace samples

To enable call stack sampling in Tracy, build Julia with these options in your Make.user file:

WITH_TRACY := 1

WITH_TRACY_CALLSTACKS := 1

USE_BINARYBUILDER_LIBTRACYCLIENT := 0

You may also need to run make -C deps clean-libtracyclient to force a re-build of Tracy.

This feature has a significant impact on trace size and profiling overhead, so it is recommended to leave

call stack sampling off when possible, especially if you intend to share your trace files online.

Note that the Julia JIT runtime does not yet have integration for Tracy's symbolification, so Julia functions

will typically be unknown in these stack traces.

Intel VTune (ITTAPI) Profiler

This section is yet to be written.

103.5 Sanitizer support

Sanitizers can be used in custom Julia builds to make it easier to detect certain kinds of errors in Julia's

internal C/C++ code.

Address Sanitizer: easy build

From a source-checkout of Julia, you should be able to build a version supporting address sanitization in

Julia and LLVM as follows:

$ mkdir /tmp/julia

$ contrib/asan/build.sh /tmp/julia/

Here we've chosen /tmp/julia as a build directory, but you can choose whatever you wish. Once built,

run the workload you wish to test with /tmp/julia/julia. Memory bugs will result in errors.

If you require customization or further detail, see the documentation below.

General considerations

Using Clang's sanitizers obviously requires you to use Clang (USECLANG=1), but there's another catch: most

sanitizers require a run-time library, provided by the host compiler, while the instrumented code generated

by Julia's JIT relies on functionality from that library. This implies that the LLVM version of your host compiler

must match that of the LLVM library used within Julia.

An easy solution is to have a dedicated build folder for providing a matching toolchain, by building with

BUILD_LLVM_CLANG=1. You can then refer to this toolchain from another build folder by specifying USECLANG=1

while overriding the CC and CXX variables.

The sanitizers error out when they detect a shared library being opened using RTLD_DEEPBIND (ref: google/san-

itizers#611). Since libblastrampoline by default uses RTLD_DEEPBIND, we need to set the environment

variable LBT_USE_RTLD_DEEPBIND=0 when using a sanitizer.

To use one of of the sanitizers set SANITIZE=1 and then the appropriate flag for the sanitizer you want to

use.

https://github.com/google/sanitizers
https://github.com/google/sanitizers/issues/611
https://github.com/google/sanitizers/issues/611
https://github.com/staticfloat/libblastrampoline

CHAPTER 103. DEVELOPING/DEBUGGING JULIA’S C CODE 1642

On macOS, this might need some extra flags also to work. Altogether, it might look like this, plus one or

more of the SANITIZE_* flags listed below:

make -C deps USE_BINARYBUILDER_LLVM=0 LLVM_VER=svn stage-llvm

make -C src SANITIZE=1 USECLANG=1 \

CC=~+/deps/scratch/llvm-svn/build_Release/bin/clang \

CXX=~+/deps/scratch/llvm-svn/build_Release/bin/clang++ \

CPPFLAGS="-isysroot $(xcode-select -p)/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk" \

CXXFLAGS="-isystem $(xcode-select -p)/Toolchains/XcodeDefault.xctoolchain/usr/include/c++/v1"

(or put these into your Make.user, so you don't need to remember them every time).

Address Sanitizer (ASAN)

For detecting or debugging memory bugs, you can use Clang's address sanitizer (ASAN). By compiling

with SANITIZE_ADDRESS=1 you enable ASAN for the Julia compiler and its generated code. In addition, you

can specify LLVM_SANITIZE=1 to sanitize the LLVM library as well. Note that these options incur a high

performance and memory cost. For example, using ASAN for Julia and LLVM makes testall1 take 8-10

times as long while using 20 times as much memory (this can be reduced to respectively a factor of 3 and

4 by using the options described below).

By default, Julia sets the allow_user_segv_handler=1 ASAN flag, which is required for signal delivery

to work properly. You can define other options using the ASAN_OPTIONS environment flag, in which case

you'll need to repeat the default option mentioned before. For example, memory usage can be reduced

by specifying fast_unwind_on_malloc=0 and malloc_context_size=2, at the cost of backtrace accuracy.

For now, Julia also sets detect_leaks=0, but this should be removed in the future.

Example setup

Step 1: Install toolchain Checkout a Git worktree (or create out-of-tree build directory) at $TOOLCHAIN_WORKTREE

and create a config file $TOOLCHAIN_WORKTREE/Make.user with

USE_BINARYBUILDER_LLVM=1

BUILD_LLVM_CLANG=1

Run:

cd $TOOLCHAIN_WORKTREE

make -C deps install-llvm install-clang install-llvm-tools

to install toolchain binaries in $TOOLCHAIN_WORKTREE/usr/tools

Step 2: Build Julia with ASAN Checkout a Git worktree (or create out-of-tree build directory) at $BUILD_WORKTREE

and create a config file $BUILD_WORKTREE/Make.user with

TOOLCHAIN=$(TOOLCHAIN_WORKTREE)/usr/tools

use our new toolchain

USECLANG=1

override CC=$(TOOLCHAIN)/clang

override CXX=$(TOOLCHAIN)/clang++

export ASAN_SYMBOLIZER_PATH=$(TOOLCHAIN)/llvm-symbolizer

https://clang.llvm.org/docs/AddressSanitizer.html

CHAPTER 103. DEVELOPING/DEBUGGING JULIA’S C CODE 1643

USE_BINARYBUILDER_LLVM=1

override SANITIZE=1

override SANITIZE_ADDRESS=1

make the GC use regular malloc/frees, which are hooked by ASAN

override WITH_GC_DEBUG_ENV=1

default to a debug build for better line number reporting

override JULIA_BUILD_MODE=debug

make ASAN consume less memory

export ASAN_OPTIONS=detect_leaks=0:fast_unwind_on_malloc=0:allow_user_segv_handler=1:

malloc_context_size=2

JULIA_PRECOMPILE=1

tell libblastrampoline to not use RTLD_DEEPBIND

export LBT_USE_RTLD_DEEPBIND=0

Run:

cd $BUILD_WORKTREE

make debug

to build julia-debug with ASAN.

Memory Sanitizer (MSAN)

For detecting use of uninitialized memory, you can use Clang's memory sanitizer (MSAN) by compiling with

SANITIZE_MEMORY=1.

Thread Sanitizer (TSAN)

For debugging data-races and other threading related issues you can use Clang's thread sanitizer (TSAN)

by compiling with SANITIZE_THREAD=1.

103.6 Instrumenting Julia with DTrace, and bpftrace

DTrace and bpftrace are tools that enable lightweight instrumentation of processes. You can turn the

instrumentation on and off while the process is running, and with instrumentation off the overhead is

minimal.

Julia 1.8

Support for probes was added in Julia 1.8

Note

This documentation has been written from a Linux perspective, most of this should hold on

Mac OS/Darwin and FreeBSD.

https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/ThreadSanitizer.html

CHAPTER 103. DEVELOPING/DEBUGGING JULIA’S C CODE 1644

Enabling support

On Linux install the systemtap package that has a version of dtrace and create a Make.user file containing

WITH_DTRACE=1

to enable USDT probes.

Verifying

> readelf -n usr/lib/libjulia-internal.so.1

Displaying notes found in: .note.gnu.build-id

Owner Data size Description

GNU 0x00000014 NT_GNU_BUILD_ID (unique build ID bitstring)

Build ID: 57161002f35548772a87418d2385c284ceb3ead8

Displaying notes found in: .note.stapsdt

Owner Data size Description

stapsdt 0x00000029 NT_STAPSDT (SystemTap probe descriptors)

Provider: julia

Name: gc__begin

Location: 0x000000000013213e, Base: 0x00000000002bb4da, Semaphore: 0x0000000000346cac

Arguments:

stapsdt 0x00000032 NT_STAPSDT (SystemTap probe descriptors)

Provider: julia

Name: gc__stop_the_world

Location: 0x0000000000132144, Base: 0x00000000002bb4da, Semaphore: 0x0000000000346cae

Arguments:

stapsdt 0x00000027 NT_STAPSDT (SystemTap probe descriptors)

Provider: julia

Name: gc__end

Location: 0x000000000013214a, Base: 0x00000000002bb4da, Semaphore: 0x0000000000346cb0

Arguments:

stapsdt 0x0000002d NT_STAPSDT (SystemTap probe descriptors)

Provider: julia

Name: gc__finalizer

Location: 0x0000000000132150, Base: 0x00000000002bb4da, Semaphore: 0x0000000000346cb2

Arguments:

Adding probes in libjulia

Probes are declared in dtraces format in the file src/uprobes.d. The generated header file is included in

src/julia_internal.h and if you add probes you should provide a noop implementation there.

The header will contain a semaphore *_ENABLED and the actual call to the probe. If the probe arguments

are expensive to compute you should first check if the probe is enabled and then compute the arguments

and call the probe.

if (JL_PROBE_{PROBE}_ENABLED())

auto expensive_arg = ...;

JL_PROBE_{PROBE}(expensive_arg);

If your probe has no arguments it is preferred to not include the semaphore check. With USDT probes

enabled the cost of a semaphore is a memory load, irrespective of the fact that the probe is enabled or

not.

CHAPTER 103. DEVELOPING/DEBUGGING JULIA’S C CODE 1645

#define JL_PROBE_GC_BEGIN_ENABLED() __builtin_expect (julia_gc__begin_semaphore, 0)

__extension__ extern unsigned short julia_gc__begin_semaphore __attribute__ ((unused))

__attribute__ ((section (".probes")));

Whereas the probe itself is a noop sled that will be patched to a trampoline to the probe handler.

Available probes

GC probes

1. julia:gc__begin: GC begins running on one thread and triggers stop-the-world.

2. julia:gc__stop_the_world: All threads have reached a safepoint and GC runs.

3. julia:gc__mark__begin: Beginning the mark phase

4. julia:gc__mark_end(scanned_bytes, perm_scanned): Mark phase ended

5. julia:gc__sweep_begin(full): Starting sweep

6. julia:gc__sweep_end: Sweep phase finished

7. julia:gc__end: GC is finished, other threads continue work

8. julia:gc__finalizer: Initial GC thread has finished running finalizers

Task runtime probes

1. julia:rt__run__task(task): Switching to task task on current thread.

2. julia:rt__pause__task(task): Switching from task task on current thread.

3. julia:rt__new__task(parent, child): Task parent created task child on current thread.

4. julia:rt__start__task(task): Task task started for the first time with a new stack.

5. julia:rt__finish__task(task): Task task finished and will no longer execute.

6. julia:rt__start__process__events(task): Task task started processing libuv events.

7. julia:rt__finish__process__events(task): Task task finished processing libuv events.

Task queue probes

1. julia:rt__taskq__insert(ptls, task): Thread ptls attempted to insert task into a PARTR mul-

tiq.

2. julia:rt__taskq__get(ptls, task): Thread ptls popped task from a PARTR multiq.

CHAPTER 103. DEVELOPING/DEBUGGING JULIA’S C CODE 1646

Thread sleep/wake probes

1. julia:rt__sleep__check__wake(ptls, old_state): Thread (PTLS ptls) waking up, previously in

state old_state.

2. julia:rt__sleep__check__wakeup(ptls): Thread (PTLS ptls) woke itself up.

3. julia:rt__sleep__check__sleep(ptls): Thread (PTLS ptls) is attempting to sleep.

4. julia:rt__sleep__check__taskq__wake(ptls): Thread (PTLS ptls) fails to sleep due to tasks in

PARTR multiq.

5. julia:rt__sleep__check__task__wake(ptls): Thread (PTLS ptls) fails to sleep due to tasks in

Base workqueue.

6. julia:rt__sleep__check__uv__wake(ptls): Thread (PTLS ptls) fails to sleep due to libuv wakeup.

Probe usage examples

GC stop-the-world latency

An example bpftrace script is given in contrib/gc_stop_the_world_latency.bt and it creates a his-

togram of the latency for all threads to reach a safepoint.

Running this Julia code, with julia -t 2

using Base.Threads

fib(x) = x <= 1 ? 1 : fib(x-1) + fib(x-2)

beaver = @spawn begin

while true

fib(30)

This safepoint is necessary until #41616, since otherwise this

loop will never yield to GC.

GC.safepoint()

end

end

allocator = @spawn begin

while true

zeros(1024)

end

end

wait(allocator)

and in a second terminal

> sudo contrib/bpftrace/gc_stop_the_world_latency.bt

Attaching 4 probes...

Tracing Julia GC Stop-The-World Latency... Hit Ctrl-C to end.

^C

@usecs[1743412]:

CHAPTER 103. DEVELOPING/DEBUGGING JULIA’S C CODE 1647

[4, 8) 971 |@@|

[8, 16) 837 |@@ |

[16, 32) 129 |@@@@@@ |

[32, 64) 10 | |

[64, 128) 1 | |

We can see the latency distribution of the stop-the-world phase in the executed Julia process.

Task spawn monitor

It's sometimes useful to knowwhen a task is spawning other tasks. This is very easy to see with rt__new__task.

The first argument to the probe, parent, is the existing task which is creating a new task. This means that

if you know the address of the task you want to monitor, you can easily just look at the tasks that that

specific task spawned. Let's see how to do this; first let's start a Julia session and get the PID and REPL's

task address:

> julia

_

_ _ _(_)_ | Documentation: https://docs.julialang.org

(_) | (_) (_) |

_ _ _| |_ __ _ | Type "?" for help, "]?" for Pkg help.

| | | | | | |/ _` | |

| | |_| | | | (_| | | Version 1.6.2 (2021-07-14)

_/ |__'_|_|_|__'_| | Official https://julialang.org/ release

|__/ |

1> getpid()

997825

2> current_task()

Task (runnable) @0x00007f524d088010

Now we can start bpftrace and have it monitor rt__new__task for only this parent:

sudo bpftrace -p 997825 -e 'usdt:usr/lib/libjulia-internal.so:julia:rt__new__task /arg0==0x00007f524d088010/{

printf("Task: %x\n", arg0); }'

(Note that in the above, arg0 is the first argument, parent).

And if we spawn a single task:

@async 1+1

we see this task being created:

Task: 4d088010

However, if we spawn a bunch of tasks from that newly-spawned task:

@async for i in 1:10

@async 1+1

end

we still only see one task from bpftrace:

Task: 4d088010

CHAPTER 103. DEVELOPING/DEBUGGING JULIA’S C CODE 1648

and it's still the same task we were monitoring! Of course, we can remove this filter to see all newly-created

tasks just as easily:

sudo bpftrace -p 997825 -e 'usdt:usr/lib/libjulia-internal.so:julia:rt__new__task { printf("Task:

%x\n", arg0); }'

Task: 4d088010

Task: 4dc4e290

Task: 4dc4e290

Task: 4dc4e290

Task: 4dc4e290

Task: 4dc4e290

Task: 4dc4e290

Task: 4dc4e290

Task: 4dc4e290

Task: 4dc4e290

Task: 4dc4e290

We can see our root task, and the newly-spawned task as the parent of the ten even newer tasks.

Thundering herd detection

Task runtimes can often suffer from the "thundering herd" problem: when somework is added to a quiet task

runtime, all threads may be woken up from their slumber, even if there isn't enough work for each thread

to process. This can cause extra latency and CPU cycles while all threads awaken (and simultaneously go

back to sleep, not finding any work to execute).

We can see this problem illustrated with bpftrace quite easily. First, in one terminal we start Julia with

multiple threads (6 in this example), and get the PID of that process:

> julia -t 6

_

_ _ _(_)_ | Documentation: https://docs.julialang.org

(_) | (_) (_) |

_ _ _| |_ __ _ | Type "?" for help, "]?" for Pkg help.

| | | | | | |/ _` | |

| | |_| | | | (_| | | Version 1.6.2 (2021-07-14)

_/ |__'_|_|_|__'_| | Official https://julialang.org/ release

|__/ |

1> getpid()

997825

And in another terminal we start bpftracemonitoring our process, specifically probing the rt__sleep__check__wake

hook:

sudo bpftrace -p 997825 -e 'usdt:usr/lib/libjulia-internal.so:julia:rt__sleep__check__wake

{ printf("Thread wake up! %x\n", arg0); }'

Now, we create and execute a single task in Julia:

Threads.@spawn 1+1

And in bpftrace we see printed out something like:

Thread wake up! 3f926100

CHAPTER 103. DEVELOPING/DEBUGGING JULIA’S C CODE 1649

Thread wake up! 3ebd5140

Thread wake up! 3f876130

Thread wake up! 3e2711a0

Thread wake up! 3e312190

Even though we only spawned a single task (which only one thread could process at a time), we woke up

all of our other threads! In the future, a smarter task runtime might only wake up a single thread (or none

at all; the spawning thread could execute this task!), and we should see this behavior go away.

Task Monitor with BPFnative.jl

BPFnative.jl is able to attach to USDT probe points just like bpftrace. There is a demo available for moni-

toring the task runtime, GC, and thread sleep/wake transitions here.

Notes on using bpftrace

An example probe in the bpftrace format looks like:

usdt:usr/lib/libjulia-internal.so:julia:gc__begin

{

@start[pid] = nsecs;

}

The probe declaration takes the kind usdt, then either the path to the library or the PID, the provider name

julia and the probe name gc__begin. Note that I am using a relative path to the libjulia-internal.so,

but this might need to be an absolute path on a production system.

Useful references:

• Julia Evans blog on Linux tracing systems

• LWN article on USDT and BPF

• GDB support for probes

• Brendan Gregg – Linux Performance

https://github.com/jpsamaroo/BPFnative.jl/blob/master/examples/task-runtime.jl
https://jvns.ca/blog/2017/07/05/linux-tracing-systems
https://lwn.net/Articles/753601/
https://sourceware.org/gdb/onlinedocs/gdb/Static-Probe-Points.html
https://www.brendangregg.com/linuxperf.html

Chapter 104

Building Julia

104.1 Building Julia (Detailed)

Downloading the Julia source code

If you are behind a firewall, you may need to use the https protocol instead of the git protocol:

git config --global url."https://".insteadOf git://

Be sure to also configure your system to use the appropriate proxy settings, e.g. by setting the https_proxy

and http_proxy variables.

Building Julia

When compiled the first time, the build will automatically download pre-built external dependencies. If

you prefer to build all the dependencies on your own, or are building on a system that cannot access the

network during the build process, add the following in Make.user:

USE_BINARYBUILDER=0

Building Julia requires 5GiB if building all dependencies and approximately 4GiB of virtual memory.

To perform a parallel build, use make -j N and supply the maximum number of concurrent processes. If

the defaults in the build do not work for you, and you need to set specific make parameters, you can save

them in Make.user, and place the file in the root of your Julia source. The build will automatically check

for the existence of Make.user and use it if it exists.

You can create out-of-tree builds of Julia by specifying make O=<build-directory> configure on the com-

mand line. This will create a directory mirror, with all of the necessary Makefiles to build Julia, in the spec-

ified directory. These builds will share the source files in Julia and deps/srccache. Each out-of-tree build

directory can have its own Make.user file to override the global Make.user file in the top-level folder.

If everything works correctly, you will see a Julia banner and an interactive prompt into which you can enter

expressions for evaluation. (Errors related to libraries might be caused by old, incompatible libraries sitting

around in your PATH. In this case, try moving the julia directory earlier in the PATH). Note that most of

the instructions above apply to unix systems.

To run julia from anywhere you can:

1650

CHAPTER 104. BUILDING JULIA 1651

• add an alias (in bash: echo "alias julia='/path/to/install/folder/bin/julia'" >> ~/.bashrc

&& source ~/.bashrc), or

• add a soft link to the julia executable in the julia directory to /usr/local/bin (or any suitable

directory already in your path), or

• add the julia directory to your executable path for this shell session (in bash: export PATH="$(pwd):$PATH"

; in csh or tcsh:

set path= ($path $cwd)), or

• add the julia directory to your executable path permanently (e.g. in .bash_profile), or

• write prefix=/path/to/install/folder into Make.user and then run make install. If there is a

version of Julia already installed in this folder, you should delete it before running make install.

Some of the options you can set to control the build of Julia are listed and documented at the beginning of

the file Make.inc, but you should never edit it for this purpose, use Make.user instead.

Julia's Makefiles define convenient automatic rules called print-<VARNAME> for printing the value of vari-

ables, replacing <VARNAME> with the name of the variable to print the value of. For example

$ make print-JULIA_PRECOMPILE

JULIA_PRECOMPILE=1

These rules are useful for debugging purposes.

Now you should be able to run Julia like this:

julia

If you are building a Julia package for distribution on Linux, macOS, or Windows, take a look at the detailed

notes in distributing.md.

Updating an existing source tree

If you have previously downloaded julia using git clone, you can update the existing source tree using

git pull rather than starting anew:

cd julia

git pull && make

Assuming that you had made no changes to the source tree that will conflict with upstream updates, these

commands will trigger a build to update to the latest version.

General troubleshooting

1. Over time, the base library may accumulate enough changes such that the bootstrapping process

in building the system image will fail. If this happens, the build may fail with an error like

*** This error is usually fixed by running 'make clean'. If the error persists, try 'make

cleanall' ***

https://github.com/JuliaLang/julia/blob/master/doc/src/devdocs/build/distributing.md

CHAPTER 104. BUILDING JULIA 1652

As described, running make clean && make is usually sufficient. Occasionally, the stronger cleanup

done by make cleanall is needed.

2. New versions of external dependencies may be introduced which may occasionally cause conflicts

with existing builds of older versions.

a. Special make targets exist to help wipe the existing build of a dependency. For example, make

-C deps clean-llvm will clean out the existing build of llvm so that llvm will be rebuilt from the

downloaded source distribution the next time make is called. make -C deps distclean-llvm is a

stronger wipe which will also delete the downloaded source distribution, ensuring that a fresh copy

of the source distribution will be downloaded and that any new patches will be applied the next time

make is called.

b. To delete existing binaries of julia and all its dependencies, delete the ./usr directory in the

source tree.

3. If you've updated macOS recently, be sure to run xcode-select --install to update the com-

mand line tools. Otherwise, you could run into errors for missing headers and libraries, such as ld:

library not found for -lcrt1.10.6.o.

4. If you've moved the source directory, you might get errors such as CMake Error: The current

CMakeCache.txt directory ... is different than the directory ... where CMakeCache.txt

was created., in which case you may delete the offending dependency under deps

5. In extreme cases, you may wish to reset the source tree to a pristine state. The following git com-

mands may be helpful:

git reset --hard #Forcibly remove any changes to any files under version control

git clean -x -f -d #Forcibly remove any file or directory not under version control

To avoid losing work, make sure you know what these commands do before you run them. git will

not be able to undo these changes!

Platform-Specific Notes

Notes for various operating systems:

• Linux

• macOS

• Windows

• FreeBSD

Notes for various architectures:

• ARM

https://github.com/JuliaLang/julia/blob/master/doc/src/devdocs/build/linux.md
https://github.com/JuliaLang/julia/blob/master/doc/src/devdocs/build/macos.md
https://github.com/JuliaLang/julia/blob/master/doc/src/devdocs/build/windows.md
https://github.com/JuliaLang/julia/blob/master/doc/src/devdocs/build/freebsd.md
https://github.com/JuliaLang/julia/blob/master/doc/src/devdocs/build/arm.md

CHAPTER 104. BUILDING JULIA 1653

Required Build Tools and External Libraries

Building Julia requires that the following software be installed:

• [GNU make] — building dependencies.

• [gcc & g++][gcc] (>= 7.1) or [Clang][clang] (>= 5.0, >= 9.3 for Apple Clang) — compiling and

linking C, C++.

• [libatomic][gcc] — provided by [gcc] and needed to support atomic operations.

• [python] (>=2.7) — needed to build LLVM.

• [gfortran] — compiling and linking Fortran libraries.

• [perl] — preprocessing of header files of libraries.

• [wget], [curl], or [fetch] (FreeBSD) — to automatically download external libraries.

• [m4] — needed to build GMP.

• [awk] — helper tool for Makefiles.

• [patch] — for modifying source code.

• [cmake] (>= 3.4.3) — needed to build libgit2.

• [pkg-config] — needed to build libgit2 correctly, especially for proxy support.

• [powershell] (>= 3.0) — necessary only on Windows.

• [which] — needed for checking build dependencies.

On Debian-based distributions (e.g. Ubuntu), you can easily install them with apt-get:

sudo apt-get install build-essential libatomic1 python gfortran perl wget m4 cmake pkg-config

curl

Julia uses the following external libraries, which are automatically downloaded (or in a few cases, included

in the Julia source repository) and then compiled from source the first time you run make. The specific

version numbers of these libraries that Julia uses are listed in deps/$(libname).version:

• [LLVM] (15.0 + patches) — compiler infrastructure (see note below).

• [FemtoLisp] — packaged with Julia source, and used to implement the compiler front-end.

• [libuv] (custom fork) — portable, high-performance event-based I/O library.

• [OpenLibm] — portable libm library containing elementary math functions.

• [DSFMT] — fast Mersenne Twister pseudorandom number generator library.

• [OpenBLAS] — fast, open, and maintained [basic linear algebra subprograms (BLAS)]

• [LAPACK] — library of linear algebra routines for solving systems of simultaneous linear equations,

least-squares solutions of linear systems of equations, eigenvalue problems, and singular value prob-

lems.

https://github.com/JuliaLang/julia/blob/master/deps/
https://github.com/JuliaLang/llvm-project/tree/julia-release/15.x

CHAPTER 104. BUILDING JULIA 1654

• [MKL] (optional) – OpenBLAS and LAPACK may be replaced by Intel's MKL library.

• [SuiteSparse] — library of linear algebra routines for sparse matrices.

• [PCRE] — Perl-compatible regular expressions library.

• [GMP] — GNU multiple precision arithmetic library, needed for BigInt support.

• [MPFR]— GNU multiple precision floating point library, needed for arbitrary precision floating point

(BigFloat) support.

• [libgit2] — Git linkable library, used by Julia's package manager.

• [curl] — libcurl provides download and proxy support.

• [libssh2] — library for SSH transport, used by libgit2 for packages with SSH remotes.

• [mbedtls] — library used for cryptography and transport layer security, used by libssh2

• [utf8proc] — a library for processing UTF-8 encoded Unicode strings.

• [LLVM libunwind]—LLVM's fork of [libunwind], a library that determines the call-chain of a program.

• [ITTAPI] — Intel's Instrumentation and Tracing Technology and Just-In-Time API.

[GNUmake]: https://www.gnu.org/software/make [patch]: https://www.gnu.org/software/patch [wget]: https://www.gnu.org/-

software/wget [m4]: https://www.gnu.org/software/m4 [awk]: https://www.gnu.org/software/gawk [gcc]:

https://gcc.gnu.org [clang]: https://clang.llvm.org [python]: https://www.python.org/ [gfortran]: https://gcc.gnu.org/-

fortran/ [curl]: https://curl.haxx.se [fetch]: https://www.freebsd.org/cgi/man.cgi?fetch(1) [perl]: https://www.perl.org

[cmake]: https://www.cmake.org [OpenLibm]: https://github.com/JuliaLang/openlibm [DSFMT]: https://github.com/MersenneTwister-

Lab/dSFMT [OpenBLAS]: https://github.com/xianyi/OpenBLAS [LAPACK]: https://www.netlib.org/lapack [MKL]:

https://software.intel.com/en-us/articles/intel-mkl [SuiteSparse]: https://people.engr.tamu.edu/davis/suites-

parse.html [PCRE]: https://www.pcre.org [LLVM]: https://www.llvm.org [LLVM libunwind]: https://github.com/llvm/llvm-

project/tree/main/libunwind [FemtoLisp]: https://github.com/JeffBezanson/femtolisp [GMP]: https://gmplib.org

[MPFR]: https://www.mpfr.org [libuv]: https://github.com/JuliaLang/libuv [libgit2]: https://libgit2.org/ [utf8proc]:

https://julialang.org/utf8proc/ [libunwind]: https://www.nongnu.org/libunwind [libssh2]: https://www.libssh2.org

[mbedtls]: https://tls.mbed.org/ [pkg-config]: https://www.freedesktop.org/wiki/Software/pkg-config/ [pow-

ershell]: https://docs.microsoft.com/en-us/powershell/scripting/wmf/overview [which]: https://carlowood.github.io/which/

[ITTAPI]: https://github.com/intel/ittapi

Build dependencies

If you already have one or more of these packages installed on your system, you can prevent Julia from com-

piling duplicates of these libraries by passing USE_SYSTEM_...=1 to make or adding the line to Make.user.

The complete list of possible flags can be found in Make.inc.

Please be aware that this procedure is not officially supported, as it introduces additional variability into the

installation and versioning of the dependencies, and is recommended only for system packagemaintainers.

Unexpected compile errors may result, as the build system will do no further checking to ensure the proper

packages are installed.

CHAPTER 104. BUILDING JULIA 1655

LLVM

The most complicated dependency is LLVM, for which we require additional patches from upstream (LLVM

is not backward compatible).

For packaging Julia with LLVM, we recommend either:

• bundling a Julia-only LLVM library inside the Julia package, or

• adding the patches to the LLVM package of the distribution.

– A complete list of patches is available in on Github see the julia-release/15.x branch.

– The only Julia-specific patch is the lib renaming (llvm7-symver-jlprefix.patch), which should

not be applied to a system LLVM.

– The remaining patches are all upstream bug fixes, and have been contributed into upstream

LLVM.

Using an unpatched or different version of LLVM will result in errors and/or poor performance. You can build

a different version of LLVM from a remote Git repository with the following options in the Make.user file:

Force source build of LLVM

USE_BINARYBUILDER_LLVM = 0

Use Git for fetching LLVM source code

this is either `1` to get all of them

DEPS_GIT = 1

or a space-separated list of specific dependencies to download with git

DEPS_GIT = llvm

Other useful options:

#URL of the Git repository you want to obtain LLVM from:

LLVM_GIT_URL = ...

#Name of the alternate branch to clone from git

LLVM_BRANCH = julia-16.0.6-0

#SHA hash of the alterate commit to check out automatically

LLVM_SHA1 = $(LLVM_BRANCH)

#List of LLVM targets to build. It is strongly recommended to keep at least all the

#default targets listed in `deps/llvm.mk`, even if you don't necessarily need all of them.

LLVM_TARGETS = ...

#Use ccache for faster recompilation in case you need to restart a build.

USECCACHE = 1

CMAKE_GENERATOR=Ninja

LLVM_ASSERTIONS=1

LLVM_DEBUG=Symbols

The various build phases are controlled by specific files:

• deps/llvm.version : touch or change to checkout a new version, make get-llvm check-llvm

• deps/srccache/llvm/source-extracted : result of make extract-llvm

• deps/llvm/build_Release*/build-configured : result of make configure-llvm

• deps/llvm/build_Release*/build-configured : result of make compile-llvm

https://github.com/JuliaLang/llvm-project

CHAPTER 104. BUILDING JULIA 1656

• usr-staging/llvm/build_Release*.tgz : result of make stage-llvm (regenerate with make reinstall-llvm)

• usr/manifest/llvm : result of make install-llvm (regenerate with make uninstall-llvm)

• make version-check-llvm : runs every time to warn the user if there are local modifications

Though Julia can be built with newer LLVM versions, support for this should be regarded as experimental

and not suitable for packaging.

libuv

Julia uses a custom fork of libuv. It is a small dependency, and can be safely bundled in the same package

as Julia, and will not conflict with the system library. Julia builds should not try to use the system libuv.

BLAS and LAPACK

As a high-performance numerical language, Julia should be linked to a multi-threaded BLAS and LAPACK,

such as OpenBLAS or ATLAS, which will provide much better performance than the reference libblas

implementations which may be default on some systems.

Source distributions of releases

Each pre-release and release of Julia has a "full" source distribution and a "light" source distribution.

The full source distribution contains the source code for Julia and all dependencies so that it can be built

from source without an internet connection. The light source distribution does not include the source code

of dependencies.

For example, julia-1.0.0.tar.gz is the light source distribution for the v1.0.0 release of Julia, while

julia-1.0.0-full.tar.gz is the full source distribution.

Building Julia from source with a Git checkout of a stdlib

If you need to build Julia from source with a Git checkout of a stdlib, then use make DEPS_GIT=NAME_OF_STDLIB

when building Julia.

For example, if you need to build Julia from source with a Git checkout of Pkg, then use make DEPS_GIT=Pkg

when building Julia. The Pkg repo is in stdlib/Pkg, and created initially with a detached HEAD. If you're

doing this from a pre-existing Julia repository, you may need to make clean beforehand.

If you need to build Julia from source with Git checkouts of more than one stdlib, then DEPS_GIT should be

a space-separated list of the stdlib names. For example, if you need to build Julia from source with a Git

checkout of Pkg, Tar, and Downloads, then use make DEPS_GIT='Pkg Tar Downloads' when building Julia.

Building an "assert build" of Julia

An "assert build" of Julia is a build that was built with both FORCE_ASSERTIONS=1 and LLVM_ASSERTIONS=1.

To build an assert build, define both of the following variables in your Make.user file:

FORCE_ASSERTIONS=1

LLVM_ASSERTIONS=1

Please note that assert builds of Julia will be slower than regular (non-assert) builds.

CHAPTER 104. BUILDING JULIA 1657

Building 32-bit Julia on a 64-bit machine

Occasionally, bugs specific to 32-bit architectures may arise, and when this happens it is useful to be able

to debug the problem on your local machine. Since most modern 64-bit systems support running programs

built for 32-bit ones, if you don't have to recompile Julia from source (e.g. you mainly need to inspect the

behavior of a 32-bit Julia without having to touch the C code), you can likely use a 32-bit build of Julia for

your system that you can obtain from the official downloads page. However, if you do need to recompile

Julia from source one option is to use a Docker container of a 32-bit system. At least for now, building a

32-bit version of Julia is relatively straightforward using ubuntu 32-bit docker images. In brief, after setting

up docker here are the required steps:

$ docker pull i386/ubuntu

$ docker run --platform i386 -i -t i386/ubuntu /bin/bash

At this point you should be in a 32-bit machine console (note that uname reports the host architecture, so

will still say 64-bit, but this will not affect the Julia build). You can add packages and compile code; when

you exit, all the changes will be lost, so be sure to finish your analysis in a single session or set up a

copy/pastable script you can use to set up your environment.

From this point, you should

apt update

(Note that sudo isn't installed, but neither is it necessary since you are running as root, so you can omit

sudo from all commands.)

Then add all the build dependencies, a console-based editor of your choice, git, and anything else you'll

need (e.g., gdb, rr, etc). Pick a directory to work in and git clone Julia, check out the branch you wish to

debug, and build Julia as usual.

Update the version number of a dependency

There are two types of builds

1. Build everything (deps/ and src/) from source code. (Add USE_BINARYBUILDER=0 to Make.user, see

Building Julia)

2. Build from source (src/) with pre-compiled dependencies (default)

When you want to update the version number of a dependency in deps/, you may want to use the following

checklist:

Check list

Version numbers:

- [] `deps/$(libname).version`: `LIBNAME_VER`, `LIBNAME_BRANCH`, `LIBNAME_SHA1` and `

LIBNAME_JLL_VER`

- [] `stdlib/$(LIBNAME_JLL_NAME)_jll/Project.toml`: `version`

Checksum:

- [] `deps/checksums/$(libname)`

- [] `deps/checksums/$(LIBNAME_JLL_NAME)-*/`: `md5` and `sha512`

https://julialang.org/downloads/
https://hub.docker.com/r/i386/ubuntu

CHAPTER 104. BUILDING JULIA 1658

Patches:

- [] `deps/$(libname).mk`

- [] `deps/patches/$(libname)-*.patch`

Note:

• For specific dependencies, some items in the checklist may not exist.

• For checksum file, it may be a single file without a suffix, or a folder containing two files.

Example: OpenLibm

1. Update Version numbers in deps/openlibm.version

– OPENLIBM_VER := 0.X.Y

– OPENLIBM_BRANCH = v0.X.Y

– OPENLIBM_SHA1 = new-sha1-hash

2. Update Version number in stdlib/OpenLibm_jll/Project.toml

– version = "0.X.Y+0"

3. Update checksums in deps/checksums/openlibm

– make -f contrib/refresh_checksums.mk openlibm

4. Check if the patch files deps/patches/openlibm-*.patch exist

– if patches don't exist, skip.

– if patches exist, check if they have been merged into the new version and need to be removed.

When deleting a patch, remember tomodify the correspondingMakefile file (deps/openlibm.mk).

104.2 Linux

• GCC version 4.7 or later is required to build Julia.

• To use external shared libraries not in the system library search path, set USE_SYSTEM_XXX=1 and

LDFLAGS=-Wl,-rpath,/path/to/dir/contains/libXXX.so in Make.user.

• Instead of setting LDFLAGS, putting the library directory into the environment variable LD_LIBRARY_PATH

(at both compile and run time) also works.

• The USE_SYSTEM_* flags should be used with caution. These are meant only for troubleshooting,

porting, and packaging, where package maintainers work closely with the Julia developers to make

sure that Julia is built correctly. Production use cases should use the officially provided binaries.

Issues arising from the use of these flags will generally not be accepted.

• See also the external dependencies.

CHAPTER 104. BUILDING JULIA 1659

Architecture Customization

Julia can be built for a non-generic architecture by configuring the ARCH Makefile variable in a Make.user

file. See the appropriate section of Make.inc for additional customization options, such as MARCH and

JULIA_CPU_TARGET.

For example, to build for Pentium 4, set MARCH=pentium4 and install the necessary system libraries for

linking. On Ubuntu, these may include lib32gfortran-6-dev, lib32gcc1, and lib32stdc++6, among others.

You can also set MARCH=native in Make.user for a maximum-performance build customized for the current

machine CPU.

Linux Build Troubleshooting

Problem Possible Solution

OpenBLAS

build failure

Set one of the following build options in Make.user and build again:

OPENBLAS_TARGET_ARCH=BARCELONA (AMD CPUs) or OPENBLAS_TARGET_ARCH=NEHALEM

(Intel CPUs)Set OPENBLAS_DYNAMIC_ARCH = 0 to disable compiling multiple

architectures in a single binary. OPENBLAS_NO_AVX2 = 1 disables AVX2

instructions, allowing OpenBLAS to compile with OPENBLAS_DYNAMIC_ARCH = 1 using

old versions of binutils USE_SYSTEM_BLAS=1 uses the system provided

libblas Set LIBBLAS=-lopenblas and LIBBLASNAME=libopenblas to force

the use of the system provided OpenBLAS when multiple BLAS versions are installed.

<p> If you get an error that looks like

../kernel/x86_64/dgemm_kernel_4x4_haswell.S:1709: Error: no such

instruction: `vpermpd $ 0xb1,%ymm0,%ymm0', then you need to set

OPENBLAS_DYNAMIC_ARCH = 0 or OPENBLAS_NO_AVX2 = 1, or you need a newer version

of binutils (2.18 or newer). (Issue #7653)</p><p> If the linker cannot find gfortran

and you get an error like julia /usr/bin/x86_64-linux-gnu-ld: cannot find

-lgfortran, check the path with gfortran -print-file-name=libgfortran.so and

use the output to export something similar to this: export

LDFLAGS=-L/usr/lib/gcc/x86_64-linux-gnu/8/. See Issue #6150.</p>

Illegal

Instruction

error

Check if your CPU supports AVX while your OS does not (e.g. through virtualization, as

described in this issue).

104.3 macOS

You need to have the current Xcode command line utilities installed: run xcode-select --install in the

terminal. You will need to rerun this terminal command after each macOS update, otherwise you may run

into errors involving missing libraries or headers.

The dependent libraries are now built with BinaryBuilder and will be automatically downloaded. This is the

preferred way to build Julia source. In case you want to build them all on your own, you will need a 64-bit

gfortran to compile Julia dependencies.

brew install gcc

If you have set LD_LIBRARY_PATH or DYLD_LIBRARY_PATH in your .bashrc or equivalent, Julia may be unable

to find various libraries that come bundled with it. These environment variables need to be unset for Julia

to work.

https://github.com/JuliaLang/julia/issues/7653
https://github.com/JuliaLang/julia/issues/6150#issuecomment-37546803
https://github.com/JuliaLang/julia/issues/3263
https://binarybuilder.org

CHAPTER 104. BUILDING JULIA 1660

104.4 Windows

This file describes how to install, or build, and use Julia on Windows.

For more general information about Julia, please see the main README or the documentation.

General Information for Windows

We highly recommend running Julia using a modern terminal application, in particular Windows Terminal,

which can be installed from the Microsoft Store.

Line endings

Julia uses binary-mode files exclusively. Unlike many other Windows programs, if you write \n to a file, you

get a \n in the file, not some other bit pattern. This matches the behavior exhibited by other operating

systems. If you have installed Git for Windows, it is suggested, but not required, that you configure your

system Git to use the same convention:

git config --global core.eol lf

git config --global core.autocrlf input

or edit %USERPROFILE%\.gitconfig and add/edit the lines:

[core]

eol = lf

autocrlf = input

Binary distribution

For the binary distribution installation notes onWindows please see the instructions at https://julialang.org/-

downloads/platform/#windows.

Source distribution

Cygwin-to-MinGW cross-compiling

The recommended way of compiling Julia from source on Windows is by cross compiling from Cygwin, using

versions of the MinGW-w64 compilers available through Cygwin's package manager.

1. Download and run Cygwin setup for 32 bit or 64 bit. Note, that you can compile either 32 or 64 bit

Julia from either 32 or 64 bit Cygwin. 64 bit Cygwin has a slightly smaller but often more up-to-date

selection of packages.

Advanced: you may skip steps 2-4 by running:

setup-x86_64.exe -s <url> -q -P cmake,gcc-g++,git,make,patch,curl,m4,python3,p7zip,mingw64-

i686-gcc-g++,mingw64-i686-gcc-fortran,mingw64-x86_64-gcc-g++,mingw64-x86_64-gcc-

fortran

:: replace <url> with a site from https://cygwin.com/mirrors.html

:: or run setup manually first and select a mirror

2. Select installation location and download mirror.

3. At the 'Select Packages' step, select the following:

https://github.com/JuliaLang/julia/blob/master/README.md
https://docs.julialang.org
https://aka.ms/terminal
https://julialang.org/downloads/platform/#windows
https://julialang.org/downloads/platform/#windows
https://www.cygwin.com
https://cygwin.com/setup-x86.exe
https://cygwin.com/setup-x86_64.exe

CHAPTER 104. BUILDING JULIA 1661

1. From the Devel category: cmake, gcc-g++, git, make, patch

2. From the Net category: curl

3. From Interpreters (or Python) category: m4, python3

4. From the Archive category: p7zip

5. For 32 bit Julia, and also from the Devel category: mingw64-i686-gcc-g++ and mingw64-i686-

gcc-fortran

6. For 64 bit Julia, and also from the Devel category: mingw64-x86_64-gcc-g++ and mingw64-x86_64-

gcc-fortran

4. Allow Cygwin installation to finish, then start from the installed shortcut a 'Cygwin Terminal', or

'Cygwin64 Terminal', respectively.

5. Build Julia and its dependencies from source:

1. Get the Julia sources

git clone https://github.com/JuliaLang/julia.git

cd julia

Tip: If you get an error: cannot fork() for fetch-pack: Resource temporarily unavailable

from git, add alias git="env PATH=/usr/bin git" to ~/.bashrc and restart Cygwin.

2. Set the XC_HOST variable in Make.user to indicate MinGW-w64 cross compilation

echo 'XC_HOST = i686-w64-mingw32' > Make.user # for 32 bit Julia

or

echo 'XC_HOST = x86_64-w64-mingw32' > Make.user # for 64 bit Julia

3. Start the build

make -j 4 # Adjust the number of threads (4) to match your build environment.

make -j 4 debug # This builds julia-debug.exe

> Protip: build both!

> ```sh

> make O=julia-win32 configure

> make O=julia-win64 configure

> echo 'XC_HOST = i686-w64-mingw32' > julia-win32/Make.user

> echo 'XC_HOST = x86_64-w64-mingw32' > julia-win64/Make.user

> echo 'ifeq ($(BUILDROOT),$(JULIAHOME))

> $(error "in-tree build disabled")

> endif' >> Make.user

> make -C julia-win32 # build for Windows x86 in julia-win32 folder

> make -C julia-win64 # build for Windows x86-64 in julia-win64 folder

> ```

6. Run Julia using the Julia executables directly

usr/bin/julia.exe

usr/bin/julia-debug.exe

CHAPTER 104. BUILDING JULIA 1662

Compiling with MinGW/MSYS2

MSYS2 provides a robust MSYS experience.

Note: MSYS2 requires 64 bit Windows 7 or newer.

1. Install and configure MSYS2, Software Distribution and Building Platform for Windows.

1. Download and run the latest installer for the 64-bit distribution. The installer will have a name

like msys2-x86_64-yyyymmdd.exe.

2. Open MSYS2. Update package database and base packages: sh pacman -Syu

3. Exit and restart MSYS2, Update the rest of the base packages: sh pacman -Syu

4. Then install tools required to build julia: “‘sh

104.5 tools

pacman -S cmake diffutils git m4 make patch tar p7zip curl python

104.6 For 64 bit Julia, install x86_64

pacman -S mingw-w64-x86_64-gcc

104.7 For 32 bit Julia, install i686

pacman -S mingw-w64-i686-gcc “‘

5. Configuration of MSYS2 is complete. Now exit the MSYS2 shell.

2. Build Julia and its dependencies with pre-build dependencies.

1. Open a newMINGW64/MINGW32 shell. Currently we can't use both mingw32 and mingw64,

so if you want to build the x86_64 and i686 versions, you'll need to build them in each environ-

ment separately.

2. and clone the Julia sources sh git clone https://github.com/JuliaLang/julia.git cd

julia

3. Start the build sh make -j$(nproc)

Protip: build in dir

make O=julia-mingw-w64 configure

echo 'ifeq ($(BUILDROOT),$(JULIAHOME))

$(error "in-tree build disabled")

endif' >> Make.user

make -C julia-mingw-w64

https://www.msys2.org/
https://github.com/msys2/msys2-installer/releases/latest
https://www.msys2.org/docs/environments/#overview

CHAPTER 104. BUILDING JULIA 1663

Cross-compiling from Unix (Linux/Mac/WSL)

You can also use MinGW-w64 cross compilers to build a Windows version of Julia from Linux, Mac, or the

Windows Subsystem for Linux (WSL).

First, you will need to ensure your system has the required dependencies. We need wine (>=1.7.5), a

system compiler, and some downloaders. Note: a cygwin install might interfere with this method if using

WSL.

On Ubuntu (on other Linux systems the dependency names are likely to be similar):

apt-get install wine-stable gcc wget p7zip-full winbind mingw-w64 gfortran-mingw-w64

dpkg --add-architecture i386 && apt-get update && apt-get install wine32 # add sudo to each if

needed

switch all of the following to their "-posix" variants (interactively):

for pkg in i686-w64-mingw32-g++ i686-w64-mingw32-gcc i686-w64-mingw32-gfortran x86_64-w64-mingw32

-g++ x86_64-w64-mingw32-gcc x86_64-w64-mingw32-gfortran; do sudo update-alternatives --

config $pkg; done

On Mac: Install XCode, XCode command line tools, X11 (now XQuartz), and MacPorts or Homebrew. Then

run port install wine wget mingw-w64, or brew install wine wget mingw-w64, as appropriate.

Then run the build:

1. git clone https://github.com/JuliaLang/julia.git julia-win32

2. cd julia-win32

3. echo override XC_HOST = i686-w64-mingw32 >> Make.user

4. make

5. make win-extras (Necessary before running make binary-dist)

6. make binary-dist then make exe to create the Windows installer.

7. move the julia-*.exe installer to the target machine

If you are building for 64-bit windows, the steps are essentially the same. Just replace i686 in XC_HOST

with x86_64. (note: on Mac, wine only runs in 32-bit mode).

Debugging a cross-compiled build under wine

The most effective way to debug a cross-compiled version of Julia on the cross-compilation host is to install

a windows version of gdb and run it under wine as usual. The pre-built packages available as part of the

MSYS2 project are known to work. Apart from the GDB package you may also need the python and termcap

packages. Finally, GDB's prompt may not work when launch from the command line. This can be worked

around by prepending wineconsole to the regular GDB invocation.

After compiling

Compiling using one of the options above creates a basic Julia build, but not some extra components that

are included if you run the full Julia binary installer. If you need these components, the easiest way to get

them is to build the installer yourself using make win-extras followed by make binary-dist and make

exe. Then running the resulting installer.

https://www.xquartz.org/
https://www.macports.org/install.php
https://brew.sh/
https://sourceforge.net/projects/msys2/files/REPOS/MINGW/
https://sourceforge.net/projects/msys2/files/REPOS/MINGW/

CHAPTER 104. BUILDING JULIA 1664

Windows Build Debugging

GDB hangs with cygwin mintty

• Run gdb under the windows console (cmd) instead. gdb may not function properly under mintty with

non- cygwin applications. You can use cmd /c start to start the windows console from mintty if

necessary.

GDB not attaching to the right process

• Use the PID from the windows task manager or WINPID from the ps command instead of the PID from

unix style command line tools (e.g. pgrep). You may need to add the PID column if it is not shown

by default in the windows task manager.

GDB not showing the right backtrace

• When attaching to the julia process, GDBmay not be attaching to the right thread. Use info threads

command to show all the threads and thread <threadno> to switch threads.

• Be sure to use a 32 bit version of GDB to debug a 32 bit build of Julia, or a 64 bit version of GDB to

debug a 64 bit build of Julia.

Build process is slow/eats memory/hangs my computer

• Disable the Windows Superfetch and Program Compatibility Assistant services, as they are known to

have spurious interactions with MinGW/Cygwin.

As mentioned in the link above: excessive memory use by svchost specifically may be investi-

gated in the Task Manager by clicking on the high-memory svchost.exe process and selecting Go

to Services. Disable child services one-by-one until a culprit is found.

• Beware of BLODA. The vmmap tool is indispensable for identifying such software conflicts. Use

vmmap to inspect the list of loaded DLLs for bash, mintty, or another persistent process used to

drive the build. Essentially any DLL outside of the Windows System directory is potential BLODA.

104.8 FreeBSD

Clang is the default compiler on FreeBSD 11.0-RELEASE and above. The remaining build tools are available

from the Ports Collection, and can be installed using pkg install git gcc gmake cmake pkgconf. To

build Julia, simply run gmake. (Note that gmake must be used rather than make, since make on FreeBSD

corresponds to the incompatible BSD Make rather than GNU Make.)

As mentioned above, it is important to note that the USE_SYSTEM_* flags should be used with caution on

FreeBSD. This is because many system libraries, and even libraries from the Ports Collection, link to the

system's libgcc_s.so.1, or to another library which links to the system libgcc_s. This library declares

its GCC version to be 4.6, which is too old to build Julia, and conflicts with other libraries when linking. Thus

it is highly recommended to simply allow Julia to build all of its dependencies. If you do choose to use the

USE_SYSTEM_* flags, note that /usr/local is not on the compiler path by default, so you may need to add

LDFLAGS=-L/usr/local/lib and CPPFLAGS=-I/usr/local/include to your Make.user, though doing so

may interfere with other dependencies.

Note that the x86 architecture does not support threading due to lack of compiler runtime library support,

so you may need to set JULIA_THREADS=0 in your Make.user if you're on a 32-bit system.

https://www.cygwin.com/ml/cygwin/2009-02/msg00531.html
https://en.wikipedia.org/wiki/Windows_Vista_I/O_technologies#SuperFetch
https://blogs.msdn.com/b/cjacks/archive/2011/11/22/managing-the-windows-7-program-compatibility-assistant-pca.aspx
https://cygwin.com/ml/cygwin/2011-12/msg00058.html
https://cygwin.com/faq/faq.html#faq.using.bloda
https://technet.microsoft.com/en-us/sysinternals/dd535533.aspx

CHAPTER 104. BUILDING JULIA 1665

104.9 ARM (Linux)

Julia fully supports ARMv8 (AArch64) processors, and supports ARMv7 and ARMv6 (AArch32) with some

caveats. This file provides general guidelines for compilation, in addition to instructions for specific devices.

A list of known issues for ARM is available. If you encounter difficulties, please create an issue including

the output from cat /proc/cpuinfo.

32-bit (ARMv6, ARMv7)

Julia has been successfully compiled on several variants of the following ARMv6 & ARMv7 devices:

• ARMv7 / Cortex A15 Samsung Chromebooks running Ubuntu Linux under Crouton;

• Raspberry Pi.

• Odroid.

Julia requires at least the armv6 and vfpv2 instruction sets. It's recommended to use armv7-a. armv5 or

soft float are not supported.

Raspberry Pi 1 / Raspberry Pi Zero

If the type of ARM CPU used in the Raspberry Pi is not detected by LLVM, then explicitly set the CPU target

by adding the following to Make.user:

JULIA_CPU_TARGET=arm1176jzf-s

To complete the build, you may need to increase the swap file size. To do so, edit /etc/dphys-swapfile,

changing the line:

CONF_SWAPSIZE=100

to:

CONF_SWAPSIZE=512

before restarting the swapfile service:

sudo /etc/init.d/dphys-swapfile stop

sudo /etc/init.d/dphys-swapfile start

Raspberry Pi 2

The type of ARM CPU used in the Raspberry Pi 2 is not detected by LLVM. Explicitly set the CPU target by

adding the following to Make.user:

JULIA_CPU_TARGET=cortex-a7

Depending on the exact compiler and distribution, there might be a build failure due to unsupported inline

assembly. In that case, add MCPU=armv7-a to Make.user.

https://github.com/JuliaLang/julia/labels/arm
https://www.raspberrypi.org
https://www.hardkernel.com

CHAPTER 104. BUILDING JULIA 1666

AArch64 (ARMv8)

Julia has been successfully built on the following ARMv8 devices:

• nVidia Jetson TX1 & TX2;

• X-Gene 1;

• Overdrive 3000;

• Cavium ThunderX on packet.net.

Compilation on ARMv8-A requires that Make.user is configured as follows:

MCPU=armv8-a

Starting from Julia v1.10, JITLink is automatically enabled on this architecture for all operating systems

when linking to LLVM 15 or later versions. Due to a bug in LLVM memory manager, non-trivial workloads

may generate too many memory mappings that on Linux can exceed the limit of memory mappings (mmap)

set in the file /proc/sys/vm/max_map_count, resulting in an error like

JIT session error: Cannot allocate memory

Should this happen, ask your system administrator to increase the limit of memory mappings for example

with the command

sysctl -w vm.max_map_count=262144

nVidia Jetson TX2

Julia builds and runs on the nVidia Jetson TX2 platform with minimal configuration changes.

After configuring Make.user as per the AArch64 instructions in this document, follow the general build

instructions. The majority of the build dependencies specified in the instructions are installed by the de-

fault configuration flashed by Jetpack 3.0. The remaining tools can be installed by issuing the following

command:

sudo apt-get install gfortran wget cmake

A full parallel build, including LLVM, will complete in around two hours. All tests pass and CUDA functionality

is available through, e.g., CUDAdrv.

104.10 Binary distributions

These notes are for those wishing to compile a binary distribution of Julia for distribution on various plat-

forms. We love users spreading Julia as far and wide as they can, trying it out on as wide an array of

operating systems and hardware configurations as possible. As each platform has specific gotchas and

processes that must be followed in order to create a portable, working Julia distribution, we have sepa-

rated most of the notes by OS.

Note that while the code for Julia is MIT-licensed, with a few exceptions, the distribution created by the

techniques described herein will be GPL licensed, as various dependent libraries such as SuiteSparse are

GPL licensed. We do hope to have a non-GPL distribution of Julia in the future.

https://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
https://www.apm.com/products/data-center/x-gene-family/x-gene/
https://softiron.com/products/overdrive-3000/
https://www.cavium.com/ThunderX_ARM_Processors.html
https://www.packet.net
https://llvm.org/docs/JITLink.html
https://github.com/llvm/llvm-project/issues/63236
https://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
https://github.com/JuliaLang/julia/blob/master/README.md
https://github.com/JuliaLang/julia/blob/master/README.md
https://developer.nvidia.com/embedded/jetpack
https://github.com/JuliaGPU/CUDAdrv.jl
https://github.com/JuliaLang/julia/blob/master/LICENSE.md

CHAPTER 104. BUILDING JULIA 1667

Versioning and Git

The Makefile uses both the VERSION file and commit hashes and tags from the git repository to generate the

base/version_git.jl with information we use to fill the splash screen and the versioninfo() output. If

you for some reason don't want to have the git repository available when building you should pregenerate

the base/version_git.jl file with:

make -C base version_git.jl.phony

Julia has lots of build dependencies where we use patched versions that has not yet been included by

the popular package managers. These dependencies will usually be automatically downloaded when you

build, but if you want to be able to build Julia on a computer without internet access you should create a

full-source-dist archive with the special make target

make full-source-dist

that creates a julia-version-commit.tar.gz archive with all required dependencies.

When compiling a tagged release in the git repository, we don't display the branch/commit hash info in the

splash screen. You can use this line to show a release description of up to 45 characters. To set this line

you have to create a Make.user file containing:

override TAGGED_RELEASE_BANNER = "my-package-repository build"

Target Architectures

By default, Julia optimizes its system image to the native architecture of the build machine. This is usu-

ally not what you want when building packages, as it will make Julia fail at startup on any machine with

incompatible CPUs (in particular older ones with more restricted instruction sets).

We therefore recommend that you pass the MARCH variable when calling make, setting it to the baseline

target you intend to support. This will determine the target CPU for both the Julia executable and libraries,

and the system image (the latter can also be set using JULIA_CPU_TARGET). Typically useful values for x86

CPUs are x86-64 and core2 (for 64-bit builds) and pentium4 (for 32-bit builds). Unfortunately, CPUs older

than Pentium 4 are currently not supported (see this issue).

The full list of CPU targets supported by LLVM can be obtained by running llc -mattr=help.

Linux

On Linux, make binary-dist creates a tarball that contains a fully functional Julia installation. If you wish

to create a distribution package such as a .deb, or .rpm, some extra effort is needed. See the julia-

debian repository for an example of what metadata is needed for creating .deb packages for Debian and

Ubuntu-based systems. See the Fedora package for RPM-based distributions. Although we have not yet

experimented with it, Alien could be used to generate Julia packages for various Linux distributions.

Julia supports overriding standard installation directories via prefix and other environment variables you

can pass when calling make and make install. See Make.inc for their list. DESTDIR can also be used to

force the installation into a temporary directory.

By default, Julia loads $prefix/etc/julia/startup.jl as an installation-wide initialization file. This file

can be used by distribution managers to set up custom paths or initialization code. For Linux distribution

packages, if $prefix is set to /usr, there is no /usr/etc to look into. This requires the path to Julia's

private etc directory to be changed. This can be done via the sysconfdir make variable when building.

https://github.com/JuliaLang/julia/issues/7185
https://github.com/staticfloat/julia-debian
https://github.com/staticfloat/julia-debian
https://src.fedoraproject.org/rpms/julia
https://wiki.debian.org/Alien

CHAPTER 104. BUILDING JULIA 1668

Simply pass sysconfdir=/etc to make when building and Julia will first check /etc/julia/startup.jl

before trying $prefix/etc/julia/startup.jl.

OS X

To create a binary distribution on OSX, build Julia first, then cd to contrib/mac/app, and run make with the

same makevars that were used with make when building Julia proper. This will then create a .dmg file in the

contrib/mac/app directory holding a completely self-contained Julia.app.

Alternatively, Julia may be built as a framework by invoking make with the darwinframework target and

DARWIN_FRAMEWORK=1 set. For example, make DARWIN_FRAMEWORK=1 darwinframework.

Windows

Instructions for reating a Julia distribution on Windows are described in the build devdocs for Windows.

Notes on BLAS and LAPACK

Julia builds OpenBLAS by default, which includes the BLAS and LAPACK libraries. On 32-bit architectures,

Julia builds OpenBLAS to use 32-bit integers, while on 64-bit architectures, Julia builds OpenBLAS to use

64-bit integers (ILP64). It is essential that all Julia functions that call BLAS and LAPACK API routines use

integers of the correct width.

Most BLAS and LAPACK distributions provided on linux distributions, and even commercial implementations

ship libraries that use 32-bit APIs. In many cases, a 64-bit API is provided as a separate library.

When using vendor provided or OS provided libraries, a make option called USE_BLAS64 is available as part

of the Julia build. When doing make USE_BLAS64=0, Julia will call BLAS and LAPACK assuming a 32-bit API,

where all integers are 32-bit wide, even on a 64-bit architecture.

Other libraries that Julia uses, such as SuiteSparse also use BLAS and LAPACK internally. The APIs need

to be consistent across all libraries that depend on BLAS and LAPACK. The Julia build process will build all

these libraries correctly, but when overriding defaults and using system provided libraries, this consistency

must be ensured.

Also note that Linux distributions sometimes ship several versions of OpenBLAS, some of which enable

multithreading, and others only working in a serial fashion. For example, in Fedora, libopenblasp.so is

threaded, but libopenblas.so is not. We recommend using the former for optimal performance. To choose

an OpenBLAS library whose name is different from the default libopenblas.so, pass LIBBLAS=-l$(YOURBLAS)

and LIBBLASNAME=lib$(YOURBLAS) to make, replacing $(YOURBLAS) with the name of your library. You can

also add .so.0 to the name of the library if you want your package to work without requiring the unver-

sioned .so symlink.

Finally, OpenBLAS includes its own optimized version of LAPACK. If you set USE_SYSTEM_BLAS=1 and USE_SYSTEM_LAPACK=1,

you should also set LIBLAPACK=-l$(YOURBLAS) and LIBLAPACKNAME=lib$(YOURBLAS). Else, the reference

LAPACK will be used and performance will typically be much lower.

Starting with Julia 1.7, Julia uses libblastrampoline to pick a different BLAS at runtime.

104.11 Point releasing 101

Creating a point/patch release consists of several distinct steps.

https://github.com/JuliaLang/julia/blob/master/doc/src/devdocs/build/windows.md
https://github.com/JuliaLinearAlgebra/libblastrampoline

CHAPTER 104. BUILDING JULIA 1669

Backporting commits

Some pull requests are labeled "backport pending x.y", e.g. "backport pending 0.6". This designates that

the next subsequent release tagged from the release-x.y branch should include the commit(s) in that pull

request. Once the pull request is merged into master, each of the commits should be cherry picked to a

dedicated branch that will ultimately be merged into release-x.y.

Creating a backports branch

First, create a new branch based on release-x.y. The typical convention for Julia branches is to prefix the

branch name with your initials if it's intended to be a personal branch. For the sake of example, we'll say

that the author of the branch is Jane Smith.

git fetch origin

git checkout release-x.y

git rebase origin/release-x.y

git checkout -b js/backport-x.y

This ensures that your local copy of release-x.y is up to date with origin before you create a new branch

from it.

Cherry picking commits

Now we do the actual backporting. Find all merged pull requests labeled "backport pending x.y" in the

GitHub web UI. For each of these, scroll to the bottom where it says "someperson merged commit 123abc

into master XX minutes ago". Note that the commit name is a link; if you click it, you'll be shown the

contents of the commit. If this page shows that 123abc is a merge commit, go back to the PR page–-we

don't want merge commits, we want the actual commits. However, if this does not show a merge commit,

it means that the PR was squash-merged. In that case, use the git SHA of the commit, listed next to commit

on this page.

Once you have the SHA of the commit, cherry-pick it onto the backporting branch:

git cherry-pick -x -e <sha>

There may be conflicts which need to be resolved manually. Once conflicts are resolved (if applicable), add

a reference to the GitHub pull request that introduced the commit in the body of the commit message.

After all of the relevant commits are on the backports branch, push the branch to GitHub.

Checking for performance regressions

Point releases should never introduce performance regressions. Luckily the Julia benchmarking bot, Nanosol-

dier, can run benchmarks against any branch, not just master. In this case we want to check the benchmark

results of js/backport-x.y against release-x.y. To do this, awaken the Nanosoldier from his robotic slumber

using a comment on your backporting pull request:

@nanosoldier `runbenchmarks(ALL, vs=":release-x.y")`

This will run all registered benchmarks on release-x.y and js/backport-x.y and produce a summary of results,

marking all improvements and regressions.

If Nanosoldier finds any regressions, try verifying locally and rerun Nanosoldier if necessary. If the regres-

sions are deemed to be real rather than just noise, you'll have to find a commit on master to backport

https://git-scm.com/docs/git-cherry-pick

CHAPTER 104. BUILDING JULIA 1670

that fixes it if one exists, otherwise you should determine what caused the regression and submit a patch

(or get someone who knows the code to submit a patch) to master, then backport the commit once that's

merged. (Or submit a patch directly to the backport branch if appropriate.)

Building test binaries

After the backport PR has been merged into the release-x.y branch, update your local clone of Julia, then

get the SHA of the branch using

git rev-parse origin/release-x.y

Keep that handy, as it's what you'll enter in the "Revision" field in the buildbot UI.

For now, all you need are binaries for Linux x86-64, since this is what's used for running PackageE-

valuator. Go to https://buildog.julialang.org, submit a job for nuke_linux64, then queue up a job for

package_linux64, providing the SHA as the revision. When the packaging job completes, it will upload

the binary to the julialang2 bucket on AWS. Retrieve the URL, as it will be used for PackageEvaluator.

Checking for package breakages

Point releases should never break packages, with the possible exception of packages that are doing some

seriously questionable hacks using Base internals that are not intended to be user-facing. (In those cases,

maybe have a word with the package author.)

Checking whether changes made in the forthcoming new version will break packages can be accomplished

using PackageEvaluator, often called "PkgEval" for short. PkgEval is what populates the status badges

on GitHub repos and on pkg.julialang.org. It typically runs on one of the non-benchmarking nodes of

Nanosoldier and uses Vagrant to perform its duties in separate, parallel VirtualBox virtual machines.

Setting up PackageEvaluator

Clone PackageEvaluator and create a branch called backport-x.y.z, and check it out. Note that the

required changes are a little hacky and confusing, and hopefully that will be addressed in a future version

of PackageEvaluator. The changes to make will be modeled off of this commit.

The setup script takes its first argument as the version of Julia to run and the second as the range of

package names (AK for packages named A-K, LZ for L-Z). The basic idea is that we're going to tweak that

a bit to run only two versions of Julia, the current x.y release and our backport version, each with three

ranges of packages.

In the linked diff, we're saying that if the second argument is LZ, use the binaries built from our backport

branch, otherwise (AK) use the release binaries. Then we're using the first argument to run a section of

the package list: A-F for input 0.4, G-N for 0.5, and O-Z for 0.6.

Running PackageEvaluator

To run PkgEval, find a hefty enough machine (such as Nanosoldier node 1), then run

git clone https://github.com/JuliaCI/PackageEvaluator.jl.git

cd PackageEvaluator.jl/scripts

git checkout backport-x.y.z

./runvagrant.sh

This produces some folders in the scripts/ directory. The folder names and their contents are decoded

below:

https://github.com/JuliaCI/PackageEvaluator.jl
https://github.com/JuliaCI/PackageEvaluator.jl/commit/5ba6a3b000e7a3793391d16f695c8704b91d6016

CHAPTER 104. BUILDING JULIA 1671

Folder name Julia version Package range

0.4AK Release A-F

0.4LZ Backport A-F

0.5AK Release G-N

0.5LZ Backport G-N

0.6AK Release O-Z

0.6LZ Backport O-Z

Investigating results

Once that's done, you can use ./summary.sh from that same directory to produce a summary report of the

findings. We'll do so for each of the folders to aggregate overall results by version.

./summary.sh 0.4AK/*.json > summary_release.txt

./summary.sh 0.5AK/*.json >> summary_release.txt

./summary.sh 0.6AK/*.json >> summary_release.txt

./summary.sh 0.4LZ/*.json > summary_backport.txt

./summary.sh 0.5LZ/*.json >> summary_backport.txt

./summary.sh 0.6LZ/*.json >> summary_backport.txt

Now we have two files, summary_release.txt and summary_backport.txt, containing the PackageEvalu-

ator test results (pass/fail) for each package for the two versions.

To make these easier to ingest into a Julia, we'll convert them into CSV files then use the DataFrames

package to process the results. To convert to CSV, copy each .txt file to a corresponding .csv file, then

enter Vim and execute ggVGI"<esc> then :%s/\.json /",/g. (You don't have to use Vim; this just is one

way to do it.) Now process the results with Julia code similar to the following.

using DataFrames

release = readtable("summary_release.csv", header=false, names=[:package, :release])

backport = readtable("summary_backport.csv", header=false, names=[:package, :backport])

results = join(release, backport, on=:package, kind=:outer)

for result in eachrow(results)

a = result[:release]

b = result[:backport]

if (isna(a) && !isna(b)) || (isna(b) && !isna(a))

color = :yellow

elseif a != b && occursin("pass", b)

color = :green

elseif a != b

color = :red

else

continue

end

printstyled(result[:package], ": Release ", a, " -> Backport ", b, "\n", color=color)

end

This will write color-coded lines to stdout. All lines in red must be investigated as they signify potential

breakages caused by the backport version. Lines in yellow should be looked into since it means a package

CHAPTER 104. BUILDING JULIA 1672

ran on one version but not on the other for some reason. If you find that your backported branch is causing

breakages, use git bisect to identify the problematic commits, git revert those commits, and repeat

the process.

Merging backports into the release branch

After you have ensured that

• the backported commits pass all of Julia's unit tests,

• there are no performance regressions introduced by the backported commits as compared to the

release branch, and

• the backported commits do not break any registered packages,

then the backport branch is ready to be merged into release-x.y. Once it's merged, go through and remove

the "backport pending x.y" label from all pull requests containing the commits that have been backported.

Do not remove the label from PRs that have not been backported.

The release-x.y branch should now contain all of the new commits. The last thing we want to do to the

branch is to adjust the version number. To do this, submit a PR against release-x.y that edits the VERSION

file to remove -pre from the version number. Once that's merged, we're ready to tag.

Tagging the release

It's time! Check out the release-x.y branch and make sure that your local copy of the branch is up to date

with the remote branch. At the command line, run

git tag v$(cat VERSION)

git push --tags

This creates the tag locally and pushes it to GitHub.

After tagging the release, submit another PR to release-x.y to bump the patch number and add -pre back

to the end. This denotes that the branch state reflects a prerelease version of the next point release in the

x.y series.

Follow the remaining directions in the Makefile.

Signing binaries

Some of these steps will require secure passwords. To obtain the appropriate passwords, contact Elliot

Saba (staticfloat) or Alex Arslan (ararslan). Note that code signing for each platform must be performed

on that platform (e.g. Windows signing must be done on Windows, etc.).

Linux

Code signing must be done manually on Linux, but it's quite simple. First obtain the file julia.key from

the CodeSigning folder in the juliasecure AWS bucket. Add this to your GnuPG keyring using

gpg --import julia.key

This will require entering a password that you must obtain from Elliot or Alex. Next, set the trust level for

the key to maximum. Start by entering a gpg session:

CHAPTER 104. BUILDING JULIA 1673

gpg --edit-key julia

At the prompt, type trust, then when asked for a trust level, provide the maximum available (likely 5).

Exit GnuPG.

Now, for each of the Linux tarballs that were built on the buildbots, enter

gpg -u julia --armor --detach-sig julia-x.y.z-linux-<arch>.tar.gz

This will produce a corresponding .asc file for each tarball. And that's it!

macOS

Code signing should happen automatically on the macOS buildbots. However, it's important to verify that

it was successful. On a system or virtual machine running macOS, download the .dmg file that was built

on the buildbots. For the sake of example, say that the .dmg file is called julia-x.y.z-osx.dmg. Run

mkdir ./jlmnt

hdiutil mount -readonly -mountpoint ./jlmnt julia-x.y.z-osx.dmg

codesign -v jlmnt/Julia-x.y.app

Be sure to note the name of the mounted disk listed when mounting! For the sake of example, we'll assume

this is disk3. If the code signing verification exited successfully, there will be no output from the codesign

step. If it was indeed successful, you can detach the .dmg now:

hdiutil eject /dev/disk3

rm -rf ./jlmnt

If you get a message like

Julia-x.y.app: code object is not signed at all

then you'll need to sign manually.

To sign manually, first retrieve the OS X certificates from the CodeSigning folder in the juliasecure bucket

on AWS. Add the .p12 file to your keychain using Keychain.app. Ask Elliot Saba (staticfloat) or Alex Arslan

(ararslan) for the password for the key. Now run

hdiutil convert julia-x.y.z-osx.dmg -format UDRW -o julia-x.y.z-osx_writable.dmg

mkdir ./jlmnt

hdiutil mount -mountpoint julia-x.y.z-osx_writable.dmg

codesign -s "AFB379C0B4CBD9DB9A762797FC2AB5460A2B0DBE" --deep jlmnt/Julia-x.y.app

This may fail with a message like

Julia-x.y.app: resource fork, Finder information, or similar detritus not allowed

If that's the case, you'll need to remove extraneous attributes:

xattr -cr jlmnt/Julia-x.y.app

Then retry code signing. If that produces no errors, retry verification. If all is now well, unmount the writable

.dmg and convert it back to read-only:

CHAPTER 104. BUILDING JULIA 1674

hdiutil eject /dev/disk3

rm -rf ./jlmnt

hdiutil convert julia-x.y.z-osx_writable.dmg -format UDZO -o julia-x.y.z-osx_fixed.dmg

Verify that the resulting .dmg is in fact fixed by double clicking it. If everything looks good, eject it then

drop the _fixed suffix from the name. And that's it!

Windows

Signingmust be performedmanually onWindows. First obtain theWindows 10 SDK, which contains the nec-

essary signing utilities, from theMicrosoft website. We need the SignTool utility which should have been in-

stalled somewhere like C:\Program Files (x86)\Windows Kits\10\App Certification Kit. Grab the

Windows certificate files from CodeSigning on juliasecure and put them in the same directory as the

executables. Open a Windows CMD window, cd to where all the files are, and run

set PATH=%PATH%;C:\Program Files (x86)\Windows Kits\10\App Certification Kit;

signtool sign /f julia-windows-code-sign_2017.p12 /p "PASSWORD" ^

/t http://timestamp.verisign.com/scripts/timstamp.dll ^

/v julia-x.y.z-win32.exe

Note that ^ is a line continuation character in Windows CMD and PASSWORD is a placeholder for the password

for this certificate. As usual, contact Elliot or Alex for passwords. If there are no errors, we're all good!

Uploading binaries

Now that everything is signed, we need to upload the binaries to AWS. You can use a program like Cyber-

duck or the aws command line utility. The binaries should go in the julialang2 bucket in the appropriate

folders. For example, Linux x86-64 goes in julialang2/bin/linux/x.y. Be sure to delete the current

julia-x.y-latest-linux-<arch>.tar.gz file and replace it with a duplicate of julia-x.y.z-linux-<arch>.tar.gz.

We also need to upload the checksums for everything we've built, including the source tarballs and all

release binaries. This is simple:

shasum -a 256 julia-x.y.z* | grep -v -e sha256 -e md5 -e asc > julia-x.y.z.sha256

md5sum julia-x.y.z* | grep -v -e sha256 -e md5 -e asc > julia-x.y.z.md5

Note that if you're running those commands on macOS, you'll get very slightly different output, which can

be reformatted by looking at an existing file. Mac users will also need to use md5 -r instead of md5sum.

Upload the .md5 and .sha256 files to julialang2/bin/checksums on AWS.

Ensure that the permissions on AWS for all uploaded files are set to "Everyone: READ."

For each file we've uploaded, we need to purge the Fastly cache so that the links on the website point to

the updated files. As an example:

curl -X PURGE https://julialang-s3.julialang.org/bin/checksums/julia-x.y.z.sha256

Sometimes this isn't necessary but it's good to do anyway.

Chapter 105

Julia v1.10 Release Notes

105.1 New language features

• JuliaSyntax.jl is now used as the default parser, providing better diagnostics and faster parsing. Set

environment variable JULIA_USE_FLISP_PARSER to 1 to switch back to the old parser if necessary

(and if you find this necessary, please file an issue) (#46372).

• (U+297A, \leftarrowsubset) and (U+2977, \leftarrowless) may now be used as binary opera-

tors with arrow precedence (#45962).

105.2 Language changes

• When a task forks a child, the parent task's task-local RNG (random number generator) is no longer

affected. The seeding of child based on the parent task also takes a more disciplined approach

to collision resistance, using a design based on the SplitMix and DotMix splittable RNG schemes

(#49110).

• A newmore-specific rule for methods resolves ambiguities containing Union{} in favor of the method

defined explicitly to handle the Union{} argument. This makes it possible to define methods to ex-

plicitly handle Union{} without the ambiguities that commonly would result previously. This also

lets the runtime optimize certain method lookups in a way that significantly improves load and infer-

ence times for heavily overloaded methods that dispatch on Types (such as traits and constructors).

(#49349)

• The "h bar" ℏ (\hslash U+210F) character is now treated as equivalent to ħ (\hbar U+0127).

• The @simd macro now has more limited and clearer semantics: it only enables reordering and con-

traction of floating-point operations, instead of turning on all "fastmath" optimizations. If you observe

performance regressions due to this change, you can recover previous behavior with @fastmath

@simd, if you are OK with all the optimizations enabled by the @fastmath macro (#49405).

• When a method with keyword arguments is displayed in the stack trace view, the textual repre-

sentation of the keyword arguments' type is simplified using the new @Kwargs{key1::Type1, ...}

macro syntax (#49959).

1675

https://github.com/JuliaLang/julia/issues/46372
https://github.com/JuliaLang/julia/issues/45962
https://github.com/JuliaLang/julia/issues/49110
https://github.com/JuliaLang/julia/issues/49349
https://github.com/JuliaLang/julia/issues/49405
https://github.com/JuliaLang/julia/issues/49959

CHAPTER 105. JULIA V1.10 RELEASE NOTES 1676

105.3 Compiler/Runtime improvements

• The mark phase of the garbage collector is now multi-threaded (#48600).

• JITLink is enabled by default on Linux aarch64 when Julia is linked to LLVM 15 or later versions

(#49745). This should resolve many segmentation faults previously observed on this platform.

• The precompilation process now uses pidfile locks and orchestrates multiple julia processes to only

have one process spend effort precompiling while the others wait. Previously all would do the work

and race to overwrite the cache files. (#49052)

105.4 Command-line option changes

• New option --gcthreads to set how many threads will be used by the garbage collector (#48600).

The default is N/2 where N is the number of worker threads (--threads) used by Julia.

105.5 Build system changes

• SparseArrays and SuiteSparse are no longer included in the default system image, so the core lan-

guage no longer contains GPL libraries. However, these libraries are still included alongside the

language in the standard binary distribution (#44247, #48979, #49266).

105.6 New library functions

• tanpi is now defined. It computes tan(πx) more accurately than ‘tan(pix)‘ (#48575).

• fourthroot(x) is now defined in Base.Math and can be used to compute the fourth root of x. It can

also be accessed using the unicode character ∜, which can be typed by \fourthroot<tab> (#48899).

• Libc.memmove, Libc.memset, and Libc.memcpy are now defined, whose functionality matches that

of their respective C calls.

• Base.isprecompiled(pkg::PkgId) has been added, to identify whether a package has already been

precompiled (#50218).

105.7 New library features

• binomial(x, k) now supports non-integer x (#48124).

• A CartesianIndex is now treated as a "scalar" for broadcasting (#47044).

• printstyled now supports italic output (#45164).

• parent and parentindices support SubStrings.

• replace(string, pattern...) now supports an optional IO argument to write the output to a

stream rather than returning a string (#48625).

• startswith now supports seekable IO streams (#43055).

https://github.com/JuliaLang/julia/issues/48600
https://llvm.org/docs/JITLink.html
https://github.com/JuliaLang/julia/issues/49745
https://github.com/JuliaLang/julia/issues/49052
https://github.com/JuliaLang/julia/issues/48600
https://github.com/JuliaLang/julia/issues/44247
https://github.com/JuliaLang/julia/issues/48979
https://github.com/JuliaLang/julia/issues/49266
https://github.com/JuliaLang/julia/issues/48575
https://github.com/JuliaLang/julia/issues/48899
https://github.com/JuliaLang/julia/issues/50218
https://github.com/JuliaLang/julia/issues/48124
https://github.com/JuliaLang/julia/issues/47044
https://github.com/JuliaLang/julia/issues/45164
https://github.com/JuliaLang/julia/issues/48625
https://github.com/JuliaLang/julia/issues/43055

CHAPTER 105. JULIA V1.10 RELEASE NOTES 1677

105.8 Standard library changes

• The initialized=true keyword assignment for sortperm! and partialsortperm! is now a no-op

(#47979). It previously exposed unsafe behavior (#47977).

• Printing integral Rationals will skip the denominator in Rational-typed IO context (e.g. in arrays)

(#45396).

Package Manager

• Pkg.precompile now accepts timing as a keyword argument which displays per package timing

information for precompilation (e.g. Pkg.precompile(timing=true)).

LinearAlgebra

• AbstractQ no longer subtypes AbstractMatrix. Moreover, adjoint(Q::AbstractQ) no longer

wraps Q in an Adjoint type, but instead in an AdjointQ, that itself subtypes AbstractQ. This change

accounts for the fact that typically AbstractQ instances behave like function-based, matrix-backed

linear operators, and hence don't allow for efficient indexing. Also, many AbstractQ types can act on

vectors/matrices of different size, acting like a matrix with context-dependent size. With this change,

AbstractQ has a well-defined API that is described in detail in the Julia documentation (#46196).

• Adjoints and transposes of Factorization objects are no longer wrapped in Adjoint and Transpose

wrappers, respectively. Instead, they are wrapped in AdjointFactorization and TranposeFactorization

types, which themselves subtype Factorization (#46874).

• New functions hermitianpart and hermitianpart! for extracting the Hermitian (real symmetric)

part of a matrix (#31836).

• The norm of the adjoint or transpose of an AbstractMatrix now returns the norm of the parent matrix

by default, matching the current behaviour for AbstractVectors (#49020).

• eigen(A, B) and eigvals(A, B), where one of A or B is symmetric or Hermitian, are now fully

supported (#49533).

• eigvals/eigen(A, cholesky(B)) now computes the generalized eigenvalues (eigen: and eigen-

vectors) of A and B via Cholesky decomposition for positive definite B. Note: The second argument

is the output of cholesky.

Printf

• Format specifiers now support dynamic width and precision, e.g. %*s and %*.*g (#40105).

REPL

• When stack traces are printed, the printed depth of types in function signatures will be limited to

avoid overly verbose output (#49795).

Test

• The @test_brokenmacro (or @test with broken=true) now complains if the test expression returns

a non-boolean value in the same way as a non-broken test (#47804).

https://github.com/JuliaLang/julia/issues/47979
https://github.com/JuliaLang/julia/issues/47977
https://github.com/JuliaLang/julia/issues/45396
https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#man-linalg-abstractq
https://github.com/JuliaLang/julia/issues/46196
https://github.com/JuliaLang/julia/issues/46874
https://github.com/JuliaLang/julia/issues/31836
https://github.com/JuliaLang/julia/issues/49020
https://github.com/JuliaLang/julia/issues/49533
https://github.com/JuliaLang/julia/issues/40105
https://github.com/JuliaLang/julia/issues/49795
https://github.com/JuliaLang/julia/issues/47804

CHAPTER 105. JULIA V1.10 RELEASE NOTES 1678

• When a call to @test fails or errors inside a function, a larger stacktrace is now printed such that the

location of the test within a @testset can be retrieved (#49451).

InteractiveUtils

• code_native and @code_native now default to intel syntax instead of AT&T.

• @time_imports now shows the timing of any module __init__()s that are run (#49529).

105.9 Deprecated or removed

• The @pure macro is now deprecated. Use Base.@assume_effects :foldable instead (#48682).

https://github.com/JuliaLang/julia/issues/49451
https://github.com/JuliaLang/julia/issues/49529
https://github.com/JuliaLang/julia/issues/48682

	Contents
	Manual
	Julia 1.10 Documentation
	Important Links
	Introduction
	Julia Compared to Other Languages

	Getting Started
	Resources

	Variables
	Allowed Variable Names
	Assignment expressions and assignment versus mutation
	Stylistic Conventions

	Integers and Floating-Point Numbers
	Integers
	Floating-Point Numbers
	Arbitrary Precision Arithmetic
	Numeric Literal Coefficients
	Literal zero and one

	Mathematical Operations and Elementary Functions
	Arithmetic Operators
	Boolean Operators
	Bitwise Operators
	Updating operators
	Vectorized "dot" operators
	Numeric Comparisons
	Operator Precedence and Associativity
	Numerical Conversions

	Complex and Rational Numbers
	Complex Numbers
	Rational Numbers

	Strings
	Characters
	String Basics
	Unicode and UTF-8
	Concatenation
	Interpolation
	Triple-Quoted String Literals
	Common Operations
	Non-Standard String Literals
	Regular Expressions
	Byte Array Literals
	Version Number Literals
	Raw String Literals

	Functions
	Argument Passing Behavior
	Argument-type declarations
	The return Keyword
	Operators Are Functions
	Operators With Special Names
	Anonymous Functions
	Tuples
	Named Tuples
	Destructuring Assignment and Multiple Return Values
	Property destructuring
	Argument destructuring
	Varargs Functions
	Optional Arguments
	Keyword Arguments
	Evaluation Scope of Default Values
	Do-Block Syntax for Function Arguments
	Function composition and piping
	Dot Syntax for Vectorizing Functions
	Further Reading

	Control Flow
	Compound Expressions
	Conditional Evaluation
	Short-Circuit Evaluation
	Repeated Evaluation: Loops
	Exception Handling
	Tasks (aka Coroutines)

	Scope of Variables
	Global Scope
	Local Scope
	Constants
	Typed Globals

	Types
	Type Declarations
	Abstract Types
	Primitive Types
	Composite Types
	Mutable Composite Types
	Declared Types
	Type Unions
	Parametric Types
	UnionAll Types
	Singleton types
	Types of functions
	Type{T} type selectors
	Type Aliases
	Operations on Types
	Custom pretty-printing
	"Value types"

	Methods
	Defining Methods
	Method specializations
	Method Ambiguities
	Parametric Methods
	Redefining Methods
	Design Patterns with Parametric Methods
	Parametrically-constrained Varargs methods
	Note on Optional and keyword Arguments
	Function-like objects
	Empty generic functions
	Method design and the avoidance of ambiguities
	Defining methods in local scope

	Constructors
	Outer Constructor Methods
	Inner Constructor Methods
	Incomplete Initialization
	Parametric Constructors
	Case Study: Rational
	Outer-only constructors

	Conversion and Promotion
	Conversion
	Promotion

	Interfaces
	Iteration
	Indexing
	Abstract Arrays
	Strided Arrays
	Customizing broadcasting
	Instance Properties

	Modules
	Namespace management
	Submodules and relative paths
	Module initialization and precompilation

	Documentation
	Accessing Documentation
	Writing Documentation
	Functions & Methods
	Advanced Usage
	Syntax Guide

	Metaprogramming
	Program representation
	Expressions and evaluation
	Macros
	Code Generation
	Non-Standard String Literals
	Generated functions

	Single- and multi-dimensional Arrays
	Basic Functions
	Construction and Initialization
	Array literals
	Comprehensions
	Generator Expressions
	Indexing
	Indexed Assignment
	Supported index types
	Iteration
	Array traits
	Array and Vectorized Operators and Functions
	Broadcasting
	Implementation

	Missing Values
	Propagation of Missing Values
	Equality and Comparison Operators
	Logical operators
	Control Flow and Short-Circuiting Operators
	Arrays With Missing Values
	Skipping Missing Values
	Logical Operations on Arrays

	Networking and Streams
	Basic Stream I/O
	Text I/O
	IO Output Contextual Properties
	Working with Files
	A simple TCP example
	Resolving IP Addresses
	Asynchronous I/O
	Multicast

	Parallel Computing
	Asynchronous Programming
	Basic Task operations
	Communicating with Channels
	More task operations
	Tasks and events

	Multi-Threading
	Starting Julia with multiple threads
	Threadpools
	Communication and synchronization
	The @threads Macro
	Atomic Operations
	Per-field atomics
	Side effects and mutable function arguments
	@threadcall
	Caveats
	Task Migration
	Safe use of Finalizers

	Multi-processing and Distributed Computing
	Code Availability and Loading Packages
	Starting and managing worker processes
	Data Movement
	Global variables
	Parallel Map and Loops
	Remote References and AbstractChannels
	Channels and RemoteChannels
	Local invocations
	Shared Arrays
	ClusterManagers
	Specifying Network Topology (Experimental)
	Noteworthy external packages

	Running External Programs
	Interpolation
	Quoting
	Pipelines
	Cmd Objects

	Calling C and Fortran Code
	Creating C-Compatible Julia Function Pointers
	Mapping C Types to Julia
	Mapping C Functions to Julia
	C Wrapper Examples
	Fortran Wrapper Example
	Garbage Collection Safety
	Non-constant Function Specifications
	Indirect Calls
	Closure cfunctions
	Closing a Library
	Variadic function calls
	ccall interface
	Calling Convention
	Accessing Global Variables
	Accessing Data through a Pointer
	Thread-safety
	More About Callbacks
	C++

	Handling Operating System Variation
	Environment Variables
	File locations
	Pkg.jl
	Network transport
	External applications
	Parallelization
	REPL formatting
	System and Package Image Building
	Debugging and profiling

	Embedding Julia
	High-Level Embedding
	High-Level Embedding on Windows with Visual Studio
	Converting Types
	Calling Julia Functions
	Memory Management
	Working with Arrays
	Exceptions

	Code Loading
	Definitions
	Federation of packages
	Environments
	Conclusion

	Profiling
	Basic usage
	Accumulation and clearing
	Options for controlling the display of profile results
	Configuration
	Memory allocation analysis
	External Profiling

	Stack Traces
	Viewing a stack trace
	Extracting useful information
	Error handling
	Exception stacks and current_exceptions
	Comparison with backtrace

	Performance Tips
	Performance critical code should be inside a function
	Avoid untyped global variables
	Measure performance with @time and pay attention to memory allocation
	Tools
	Avoid containers with abstract type parameters
	Type declarations
	Break functions into multiple definitions
	Write "type-stable" functions
	Avoid changing the type of a variable
	Separate kernel functions (aka, function barriers)
	Types with values-as-parameters
	The dangers of abusing multiple dispatch (aka, more on types with values-as-parameters)
	Access arrays in memory order, along columns
	Pre-allocating outputs
	More dots: Fuse vectorized operations
	Consider using views for slices
	Copying data is not always bad
	Consider StaticArrays.jl for small fixed-size vector/matrix operations
	Avoid string interpolation for I/O
	Optimize network I/O during parallel execution
	Fix deprecation warnings
	Tweaks
	Performance Annotations
	Treat Subnormal Numbers as Zeros
	@code_warntype
	Performance of captured variable
	Multithreading and linear algebra
	Alternative linear algebra backends

	Workflow Tips
	REPL-based workflow
	Browser-based workflow
	Revise-based workflows

	Style Guide
	Indentation
	Write functions, not just scripts
	Avoid writing overly-specific types
	Handle excess argument diversity in the caller
	Append ! to names of functions that modify their arguments
	Avoid strange type Unions
	Avoid elaborate container types
	Prefer exported methods over direct field access
	Use naming conventions consistent with Julia base/
	Write functions with argument ordering similar to Julia Base
	Don't overuse try-catch
	Don't parenthesize conditions
	Don't overuse ...
	Don't use unnecessary static parameters
	Avoid confusion about whether something is an instance or a type
	Don't overuse macros
	Don't expose unsafe operations at the interface level
	Don't overload methods of base container types
	Avoid type piracy
	Be careful with type equality
	Don't write a trivial anonymous function x->f(x) for a named function f
	Avoid using floats for numeric literals in generic code when possible

	Frequently Asked Questions
	General
	Public API
	Sessions and the REPL
	Scripting
	Variables and Assignments
	Functions
	Types, type declarations, and constructors
	Troubleshooting "method not matched": parametric type invariance and MethodErrors
	Packages and Modules
	Nothingness and missing values
	Memory
	Asynchronous IO and concurrent synchronous writes
	Arrays
	Computing cluster
	Julia Releases

	Noteworthy Differences from other Languages
	Noteworthy differences from MATLAB
	Noteworthy differences from R
	Noteworthy differences from Python
	Noteworthy differences from C/C++
	Noteworthy differences from Common Lisp

	Unicode Input
	Command-line Interface
	Using arguments inside scripts
	Parallel mode
	Startup file
	Command-line switches for Julia

	Base
	Essentials
	Introduction
	Getting Around
	Keywords
	Standard Modules
	Base Submodules
	All Objects
	Properties of Types
	Special Types
	Generic Functions
	Syntax
	Missing Values
	System
	Versioning
	Errors
	Events
	Reflection
	Code loading
	Internals
	Meta

	Collections and Data Structures
	Iteration
	Constructors and Types
	General Collections
	Iterable Collections
	Indexable Collections
	Dictionaries
	Set-Like Collections
	Dequeues
	Utility Collections

	Mathematics
	Mathematical Operators
	Mathematical Functions
	Customizable binary operators

	Numbers
	Standard Numeric Types
	Data Formats
	General Number Functions and Constants
	BigFloats and BigInts

	Strings
	Arrays
	Constructors and Types
	Basic functions
	Broadcast and vectorization
	Indexing and assignment
	Views (SubArrays and other view types)
	Concatenation and permutation
	Array functions
	Combinatorics

	Tasks
	Scheduling
	Synchronization
	Channels
	Low-level synchronization using schedule and wait

	Multi-Threading
	Atomic operations
	ccall using a libuv threadpool (Experimental)
	Low-level synchronization primitives

	Constants
	Filesystem
	I/O and Network
	General I/O
	Text I/O
	Multimedia I/O
	Network I/O

	Punctuation
	Sorting and Related Functions
	Sorting Functions
	Order-Related Functions
	Sorting Algorithms
	Alternate Orderings

	Iteration utilities
	Reflection and introspection
	Module bindings
	DataType fields
	Subtypes
	DataType layout
	Function methods
	Expansion and lowering
	Intermediate and compiled representations

	C Interface
	LLVM Interface
	C Standard Library
	StackTraces
	SIMD Support

	Standard Library
	ArgTools
	Argument Handling
	Function Testing

	Artifacts
	Base64
	CRC32c
	Dates
	Constructors
	Durations/Comparisons
	Accessor Functions
	Query Functions
	TimeType-Period Arithmetic
	Adjuster Functions
	Period Types
	Rounding

	API reference
	Dates and Time Types
	Dates Functions

	Delimited Files
	Distributed Computing
	Cluster Manager Interface

	Downloads
	File Events
	Pidfile
	Primary Functions
	Helper Functions

	Future
	Interactive Utilities
	Lazy Artifacts
	LibCURL
	LibGit2
	Dynamic Linker
	Linear Algebra
	Special matrices
	Matrix factorizations
	Orthogonal matrices (AbstractQ)
	Standard functions
	Low-level matrix operations
	BLAS functions
	LAPACK functions

	Logging
	Log event structure
	Processing log events
	Testing log events
	Environment variables
	Examples
	Reference

	Markdown
	Inline elements
	Toplevel elements
	Markdown Syntax Extensions

	Memory-mapped I/O
	Network Options
	Pkg
	Printf
	Profiling
	CPU Profiling
	Via @profile
	Triggered During Execution
	Reference
	Memory profiling
	Heap Snapshots

	The Julia REPL
	The different prompt modes
	Key bindings
	Tab completion
	Customizing Colors
	Changing the contextual module which is active at the REPL
	Numbered prompt
	TerminalMenus
	References

	Random Numbers
	Random numbers module
	Random generation functions
	Subsequences, permutations and shuffling
	Generators (creation and seeding)
	Hooking into the Random API

	Reproducibility
	SHA
	SHA functions
	Working with context
	HMAC functions

	Serialization
	Shared Arrays
	Sockets
	Sparse Arrays
	Compressed Sparse Column (CSC) Sparse Matrix Storage
	Sparse Vector Storage
	Sparse Vector and Matrix Constructors
	Sparse matrix operations
	Correspondence of dense and sparse methods

	SparseArrays API
	Noteworthy external packages
	Statistics
	TOML
	Parsing TOML data
	Exporting data to TOML file
	References

	Tar
	Unit Testing
	Testing Base Julia
	Basic Unit Tests
	Working with Test Sets
	Testing Log Statements
	Other Test Macros
	Broken Tests
	Test result types
	Creating Custom AbstractTestSet Types
	Test utilities
	Workflow for Testing Packages

	UUIDs
	Unicode

	Developer Documentation
	Documentation of Julia's Internals
	Initialization of the Julia runtime
	Julia ASTs
	More about types
	Memory layout of Julia Objects
	Eval of Julia code
	Calling Conventions
	High-level Overview of the Native-Code Generation Process
	Julia Functions
	Base.Cartesian
	Talking to the compiler (the :meta mechanism)
	SubArrays
	isbits Union Optimizations
	System Image Building
	Package Images
	Working with LLVM
	printf() and stdio in the Julia runtime
	Bounds checking
	Proper maintenance and care of multi-threading locks
	Arrays with custom indices
	Module loading
	Inference
	Julia SSA-form IR
	EscapeAnalysis
	Static analyzer annotations for GC correctness in C code
	Garbage Collection in Julia
	Fixing precompilation hangs due to open tasks or IO

	Developing/debugging Julia's C code
	Reporting and analyzing crashes (segfaults)
	gdb debugging tips
	Using Valgrind with Julia
	External Profiler Support
	Sanitizer support
	Instrumenting Julia with DTrace, and bpftrace

	Building Julia
	Building Julia (Detailed)
	Linux
	macOS
	Windows
	tools
	For 64 bit Julia, install x86_64
	For 32 bit Julia, install i686
	FreeBSD
	ARM (Linux)
	Binary distributions
	Point releasing 101

	Julia v1.10 Release Notes
	New language features
	Language changes
	Compiler/Runtime improvements
	Command-line option changes
	Build system changes
	New library functions
	New library features
	Standard library changes
	Deprecated or removed

