{
 "cells": [
  {
   "cell_type": "markdown",
   "source": [
    "# Performing a convergence study\n",
    "\n",
    "This example shows how to perform a convergence study to find an appropriate\n",
    "discretisation parameters for the Brillouin zone (`kgrid`) and kinetic energy\n",
    "cutoff (`Ecut`), such that the simulation results are converged to a desired\n",
    "accuracy tolerance.\n",
    "\n",
    "Such a convergence study is generally performed by starting with a\n",
    "reasonable base line value for `kgrid` and `Ecut` and then increasing these\n",
    "parameters (i.e. using finer discretisations) until a desired property (such\n",
    "as the energy) changes less than the tolerance.\n",
    "\n",
    "This procedure must be performed for each discretisation parameter. Beyond\n",
    "the `Ecut` and the `kgrid` also convergence in the smearing temperature or\n",
    "other numerical parameters should be checked. For simplicity we will neglect\n",
    "this aspect in this example and concentrate on `Ecut` and `kgrid`. Moreover\n",
    "we will restrict ourselves to using the same number of $k$-points in each\n",
    "dimension of the Brillouin zone.\n",
    "\n",
    "As the objective of this study we consider bulk platinum. For running the SCF\n",
    "conveniently we define a function:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "using DFTK\n",
    "using LinearAlgebra\n",
    "using Statistics\n",
    "using PseudoPotentialData\n",
    "\n",
    "function run_scf(; a=5.0, Ecut, nkpt, tol)\n",
    "    pseudopotentials = PseudoFamily(\"cp2k.nc.sr.lda.v0_1.largecore.gth\")\n",
    "    atoms    = [ElementPsp(:Pt, pseudopotentials)]\n",
    "    position = [zeros(3)]\n",
    "    lattice  = a * Matrix(I, 3, 3)\n",
    "\n",
    "    model  = model_DFT(lattice, atoms, position;\n",
    "                       functionals=LDA(), temperature=1e-2)\n",
    "    basis  = PlaneWaveBasis(model; Ecut, kgrid=(nkpt, nkpt, nkpt))\n",
    "    println(\"nkpt = $nkpt Ecut = $Ecut\")\n",
    "    self_consistent_field(basis; is_converged=ScfConvergenceEnergy(tol))\n",
    "end;"
   ],
   "metadata": {},
   "execution_count": 1
  },
  {
   "cell_type": "markdown",
   "source": [
    "Moreover we define some parameters. To make the calculations run fast for the\n",
    "automatic generation of this documentation we target only a convergence to\n",
    "1e-2. In practice smaller tolerances (and thus larger upper bounds for\n",
    "`nkpts` and `Ecuts` are likely needed."
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "tol   = 1e-2      # Tolerance to which we target to converge\n",
    "nkpts = 1:7       # K-point range checked for convergence\n",
    "Ecuts = 10:2:24;  # Energy cutoff range checked for convergence"
   ],
   "metadata": {},
   "execution_count": 2
  },
  {
   "cell_type": "markdown",
   "source": [
    "As the first step we converge in the number of $k$-points employed in each\n",
    "dimension of the Brillouin zone …"
   ],
   "metadata": {}
  },
  {
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "nkpt = 1 Ecut = 17.0\n",
      "n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime\n",
      "---   ---------------   ---------   ---------   ----   ------\n",
      "  1   -26.49622281284                   -0.22    8.0    110ms\n",
      "  2   -26.59233656940       -1.02       -0.63    2.0    158ms\n",
      "  3   -26.61290867394       -1.69       -1.41    2.0   33.9ms\n",
      "  4   -26.61326615223       -3.45       -2.13    2.0   31.5ms\n",
      "nkpt = 2 Ecut = 17.0\n",
      "n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime\n",
      "---   ---------------   ---------   ---------   ----   ------\n",
      "  1   -25.79261308699                   -0.09    5.2   86.2ms\n",
      "  2   -26.23307917121       -0.36       -0.70    2.0   56.2ms\n",
      "  3   -26.23823144216       -2.29       -1.32    2.0   68.0ms\n",
      "  4   -26.23848096839       -3.60       -2.32    1.0   48.0ms\n",
      "nkpt = 3 Ecut = 17.0\n",
      "n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime\n",
      "---   ---------------   ---------   ---------   ----   ------\n",
      "  1   -25.78404837737                   -0.09    5.0   79.2ms\n",
      "  2   -26.24025048195       -0.34       -0.80    2.0   57.1ms\n",
      "  3   -26.25080534270       -1.98       -1.65    2.2   61.3ms\n",
      "  4   -26.25104937780       -3.61       -2.22    1.0   46.1ms\n",
      "nkpt = 4 Ecut = 17.0\n",
      "n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime\n",
      "---   ---------------   ---------   ---------   ----   ------\n",
      "  1   -25.91216018156                   -0.11    5.2    186ms\n",
      "  2   -26.29428038427       -0.42       -0.77    2.0    116ms\n",
      "  3   -26.30833081937       -1.85       -1.74    2.2    147ms\n",
      "  4   -26.30842515507       -4.03       -2.66    1.0   91.4ms\n",
      "nkpt = 5 Ecut = 17.0\n",
      "n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime\n",
      "---   ---------------   ---------   ---------   ----   ------\n",
      "  1   -25.90303612261                   -0.11    4.0    154ms\n",
      "  2   -26.26717129897       -0.44       -0.72    2.0    115ms\n",
      "  3   -26.28543617491       -1.74       -1.64    2.1    156ms\n",
      "  4   -26.28571178256       -3.56       -2.28    1.0    346ms\n",
      "nkpt = 6 Ecut = 17.0\n",
      "n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime\n",
      "---   ---------------   ---------   ---------   ----   ------\n",
      "  1   -25.87574090843                   -0.10    5.0    319ms\n",
      "  2   -26.27389455410       -0.40       -0.77    1.9    208ms\n",
      "  3   -26.28808182713       -1.85       -1.71    2.2    228ms\n",
      "  4   -26.28818803673       -3.97       -2.62    1.0    162ms\n",
      "nkpt = 7 Ecut = 17.0\n",
      "n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime\n",
      "---   ---------------   ---------   ---------   ----   ------\n",
      "  1   -25.89625074297                   -0.11    3.5    249ms\n",
      "  2   -26.27883476796       -0.42       -0.75    2.0    187ms\n",
      "  3   -26.29413133618       -1.82       -1.74    2.1    206ms\n",
      "  4   -26.29420603226       -4.13       -2.65    1.0    145ms\n"
     ]
    },
    {
     "output_type": "execute_result",
     "data": {
      "text/plain": "5"
     },
     "metadata": {},
     "execution_count": 3
    }
   ],
   "cell_type": "code",
   "source": [
    "function converge_kgrid(nkpts; Ecut, tol)\n",
    "    energies = [run_scf(; nkpt, tol=tol/10, Ecut).energies.total for nkpt in nkpts]\n",
    "    errors = abs.(energies[1:end-1] .- energies[end])\n",
    "    iconv = findfirst(errors .< tol)\n",
    "    (; nkpts=nkpts[1:end-1], errors, nkpt_conv=nkpts[iconv])\n",
    "end\n",
    "result = converge_kgrid(nkpts; Ecut=mean(Ecuts), tol)\n",
    "nkpt_conv = result.nkpt_conv"
   ],
   "metadata": {},
   "execution_count": 3
  },
  {
   "cell_type": "markdown",
   "source": [
    "… and plot the obtained convergence:"
   ],
   "metadata": {}
  },
  {
   "outputs": [
    {
     "output_type": "execute_result",
     "data": {
      "text/plain": "Plot{Plots.GRBackend() n=1}",
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABwgAAASwCAIAAABggIlUAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd5xU1d0/8DMzuyy9iSgiKKIoNkRARWlGMRqTGGsiFiyAIo8aS9QHNYn10TRbIgpii+jPGEsSEqOiUlREQQQVULFSFER6W3bvzO+PJYiGGcrOzuzuvN9/nZ059+43CffmxYfzPSeWSqUCAAAAAEAhiee7AAAAAACAXBOMAgAAAAAFRzAKAAAAABQcwSgAAAAAUHAEowAAAABAwRGMAgAAAAAFRzAKAAAAABQcwSgAAAAAUHAEowAAAABAwRGMAgAAAAAFRzAKAAAAABQcwSgAAAAAUHAEowAAAABAwRGMAgAAAAAFRzAKAAAAABQcwSgAAAAAUHAEowAAAABAwRGMAgAAAAAFRzAKAAAAABQcwSgAAAAAUHAEowAAAABAwRGMAgAAAAAFRzAKAAAAABQcwSgAAAAAUHAEowAAAABAwRGMAgAAAAAFRzAKAAAAABQcwSgAAAAAUHAEowAAAABAwRGMAgAAAAAFRzAKAAAAABQcwSgAAAAAUHAEo2y11atX57sEAAAAAKgUwShb55JLLmnYsOGAAQPyXQgAAAAAbLtYKpXKdw3UJA0bNly1alU8Hl+7dm1xcXG+yli7dm15eXnDhg3zVQAUpiiKVq9eXb9+/UQike9aoLCsXLmyqKiobt26+S4ECktpaem6desaNWqU70KgsCSTyVWrVtWtWzePf+WEwlTRIly/fv18F5I7VoyydcrLy0MIyWQymUzmsYzS0lId/ZB7URStXLkyiqJ8FwIFZ/Xq1aWlpfmuAgrOunXrVq5cme8qoOAkk8mVK1dW/N0TyKXVq1evXbs231XklGAUAAAAACg4glEAAAAAoOAIRgEAAACAgiMYBQAAAAAKjmAUAAAAACg4glEAAAAAoOAIRgEAAACAgiMYBQAAAAAKjmAUAAAAACg4glEAAAAAoOAIRgEAAACAgiMYBQAAAAAKjmAUAAAAACg4glEAAAAAoOAIRql5Vq1a9dhjj40YMWLevHn5rgUAAACAGkkwSk0ya9asiy++uHXr1oMHD77mmmt23XXXE0888cUXX0ylUvkuDQAAAICaRDBKDVBeXv7kk08eccQRe++995133rls2bIQQojFy8vLn3rqqSOPPLJjx4533HHH0qVL810pAAAAADWDYJRq7csvv7z11lvbt29/0kknvfTSS6lUKhSVhK4nhivHht9+Ek68KTTfOYTw/vvv//znP2/VqtUpp5wyceLEfFcNAAAAQHUX04PMVqlbt25paWkIYe3atSUlJVX6u8aMGfPDH/6w4teFEELL3UOfQeGw/qF+s28mRWVh6t/C2HvD++M2fParX/3q17/+dZXWBoVp3bp1X3/99XbbbVenTp181wKFZeHChSUlJU2aNMl3IVBYVqxYsXLlylatWuW7ECgs5eXlX331VdOmTevVq5fvWqCwLFq0KB6PN2/ePN+F5I5glK2Ty2C0W7dukydPDvFE2P8Hoc/5Ye8jQyyWdvb8mWHsPeH1UWHN8pKSks8//7xly5ZVWh4UIMEo5ItgFPJCMAp5IRiFfCnAYFQrPdXUm2++OXny5BBCOP2PYciTYZ++mVLREMJOHUO/O8I1k0IsXlpaOnLkyNzUCQAAAEBNJBilmvrTn/4UQgj1m4aDfrYVl7VsH/b9fgjhnnvuiaKoakoDAAAAoMYTjFIdLVmy5IknngghhMP6h5IGW3dxn0EhhM8///yf//xnFZQGAAAAQG0gGKU6uu+++1avXh1isdBr4FZfvN8xocWuIYRhw4ZlvTAAAAAAagfBKNVOKpUaMWJECCF0PCLs2GGrr4/FQ68BIYTnnnvugw8+yHZ1AAAAANQGglGqnX//+98ffvhhCCH0OW8bb9HznFBc95uAFQAAAAC+TTBKtbO+Bb5pq7D/D7bxFg1bhC4nhBBGjhy5evXq7JUGAAAAQC0hGKXaeeGFF0II4eBTQ6J42+9ySL8QwpIlS956660s1QUAAABA7SEYpdrp2LFjCCF8MKFSd/lgQgihuLh49913z0ZRAAAAANQqglGqnfPPPz+EED55M3w6ZRtvUb4uvPJgCOGEE07Ycccds1YZAAAAALWFYJRq5/TTT2/WrFkIIYy7dxtvMeXJsHxBCGHw4MHZqwsAAACA2qMo3wXAd9WvX/+MM8648847w6THw0m3hAbNt/oWY+8NIey99969evXKfn0AAACQQ1EU3Xzzze+8806+C6H2aNu27XXXXdegQYN8F5JnglGqo8GDB991112psjXhtYdD359v3cVz3wmzXwshDBkyJBaLVUl9AAAAkCv/+Mc/fvnLX+a7CmqbVq1aXXbZZfmuIs+00lMd7bXXXt/73vdCCOHle0IquXUXj70nhNCwYcPTTz+9CkoDAACAnPrqq6/yXQK10KJFi/JdQv5ZMUo1NXjw4BdffDF89XGY8WLYp++WXrZ2RZj0/0IIB/34jMaNG1dhfQAAAJBbRxxxxHnnnZfvKqjZnnnmmUcffTTfVVQXglGqqeOOO65169bz5s0Loy4M3780HNIvlDTMdEEqGd55Njx/e1i7IoTw+t4DZy9P7d5YKz0AAAC1xG677XbyySfnuwpqto8++ijfJVQjWumppoqKii699NIQQvjq4/DI/4Rf7BoevTjMn7mJqSu+Cs/+JvzvnuGu48P740IIYd+jV++w71njoiiV05oBAAAAqCkEo1Rfl1566ahRow455JAQQlizPLw8LPyqU/hd3zD5ryEqCyGEj14P9/UPV+wWnromfP1ZCCFs1zYcf0M4/9EQwqsLUr+bvpX7kwIAAABQGLTSU63169evX79+U6dOvfvuux977LFVq1aF98eF98eFJq1CoxZh7jvr58XiYZ++oc/5Yb+jQzyx4fJfTomObhPr1FxDPQAAAADfYsUoNUDnzp1HjBgxd+7c22+/fc899wwhhGVfVKSiTZtvV3zMpeGmGeHif4ROx26cioYQ1iVDv5eiNeV5qRoAAACA6kswSo3RtGnTiy++eObMmWPGjDnppJP69u37wAMPfDFv7h2//23Yfrd0V81Ymrp2SpTLOgEAAACo/rTSU8PEYrEjjjiia9eupaWlLVu2DCGc3zH88/PkP+ekPWjptneTP2gT/95OGuoBAAAAWM+KUWq8WAj39ypqWS/thGQq9B8XLSnNYU0AAAAAVG+CUWqDlvXCvT0SGSbMXZW6eKKGegAAAADWE4xSS/xkl3j/PTL9ef7z7ORfPk7mrB4AAAAAqjPBKLXHnYcmdm2UaSPR81+N5q5KuxUpAAAAAIVDMErt0bg4/Ll3IpE+Gl1SGs4ZH0lGAQAAABCMUqv02DF26X6Z/lS/MC81bIaGegAAAIBCJxiltrmhS6JT80wN9b94I3p/mWWjAAAAAAVNMEptU5IIow5P1E1/Rv3q8nDay1GZZaMAAAAABUwwSi20T7PY9V3SJ6MhTFmUuuntKGf1AAAAAFDdCEapnS7bL354q0wN9Te9nZy0UEM9AAAAQIESjFI7xWPh4T6JZiVpJ5Qnw2ljo5VlOawJAAAAgGpDMEqttXOD2G2HZGqo/2h56so3NdQDAABArn399dcff/xxvqug0AlGqc367xE/uV2mP+TDZiT/OUdDPQAAAOTIlClTzjzzzFatWrVv375r167Dhw9ftWpVvouiQAlGqeXuPizRqn7ab1MhnDO+fOGaHBYEAAAAhWf58uV//OMf9957765du/75z38uKysLIUyZMuW8885r27bt5ZdfPnv27HzXSMERjFLLtagbHuxdlOEYpoVrwnmvaKgHAACAKjFr1qyLL764devWF1544cyZM/97wuLFi3//+9936NChb9++TzzxRHl5ee6LpDAJRqn9jmodO69jpj/qz3yWfPjDZM7qAQAAgFqvtLT00Ucf7dGjR8eOHe+8886VK1d+812d+qHHWeHH14ZmrTd8lkqlxowZc8opp7Rv3/7mm29esGBBHoqmwBTluwDIhd8fnHhpfuqDZWm3E71oYtS7VWyXhhmWlgIAAACbt2jRoj/84Q8jR45cuHDhd7/bYY/Qe1A47MxQv1kIIRz7v2HaP8PL94RZL4XU+r+zf/7551dfffV111134oknXn755QceeGBuy692FixYMGPGjCiKQgiNGzc+6KCD8l1R7SEYpSDULwqPHp7o/vfysjQLQ5etC6ePjcYeW5QQjQIAAMC2SqVSRx111NSpU7/1aTwROh0b+pwfOh4RYhv9xTteFDofFzofFxZ8GMbeG157OKxeWvHNunXrHnvssaeffnr69Ol77LFHDv8T5N/SpUvffffdKf8xY8aMDV9169btjTfeyGNttYxglELRpUXsfzvFr5+atmX+lS9Tt7+bvGw/+0sAAADANnrxxRe/lYo22TH0OCf0GhCa75zpsh32CD/9XTj++vDG4+Hle8Ln6++wdu3au+66684776zKkqudPffccxOLbakCMiAKyLWdEwe3zLQi9OrJ0fTFadvtAQAAgMzuvvvu9aOSBmHQI+GW2eEnv95MKrpBnfqhx9nh2klh6Cthl/Ud9A8//PCqVauqptgaIx6X4FUJ/7VSQIri4ZE+iYbFaSeURqHfy9FaZ9QDAADA1ps/f/7o0aPX/3BIv9DtlFBUZ1tu1O6g8ONrK4bLli0bNWpUlgqsMZo2bXrYYYdddNFFDz300Lvvvnvcccflu6LaSSs9hWX3xrH/65a48LW02ed7S1K/fiu6pVsil1UBAABALXDPPfeUlZWt/6HXgErda79jQotdw6JPQwh33333oEGDKltczTFt2rQdd9xx409iMSeiVAkrRik4Q/aO/6BNphfKb6cnx36hoR4AAAC2QllZ2ciRI9f/sPuhoW3nSt0uFt8QrU6bNu21116rXHU1yXdSUaqOYJSCEwthRM/EdiVpJyRT4ezx0fKytBMAAACA73jqqafmz5+//oc+52Xhjj3PCcV1K4bDhg3Lwg2r2DXXXNO1a9euXbsOGTJks5OfeOKJism9e/det25dDsrjvwlGKUQ71Y+N6JmpWf7TFamfT7TVKAAAAGypb45datgiHHh8Fu7YsEXockLF8C9/+cuCBQuycM+q1LNnzylTpkyZMmX48OHz5s3LPPm2226rmNyhQ4c6dbZpJ1YqzR6jFKjjd42fvnvqkdnJdBMe+CB5TJvYye384wEAAAA1zKsLUve9n5yxJBXlaqO4tXNmvjdhwvofep27YaVnZfU5L7z+aAhh3bp1XS6/b8cTr8zObTenUXFoVhL7UdvYGbvHi7Y4GDjqqKM6dOjwwQcflJeX33///ddee226me+8887EiRMrxuedl43VtWwTwSiF64+HJiZ8mfpsZdr/l7jg1ajnjvEd6+WyKAAAAKiUG6cmfzklZ4nofzx1d0ilQgghFg89z83abdt3D207h8+nhhDm/eveeT0vC/GcnZacevrT8PCHyX9+v6j+luVnsVhs4MCBv/jFL0III0aMGDp0aCKx6WpHjBhRMejUqVPXrl2zVDBbzWo4CleTOuHPfRLx9OcwLVobzhpX7hgmAAAAaooX5qWuzX0qWroyTHp0/Xj/Y0KLXbN5894D1w8Wzwnv/Dubd94CY79IXfnGVmy1d/bZZ9etWzeEMGfOnOeee26Tc9asWfPII49UjC+44ILKF8k2E4xS0HruGLt4n0xPwXNzU8NnpW23BwAAgGrlTzPy8XfYiY+ENcvXj7Ny7NLGDukX6jdbPx57b5ZvvgXu/yC5pnxLJ2+33XYnn3xyxXjDstDvePzxx5csWRJCaNiw4c9+9rNs1Mg2EoxS6P6vW2K/5ulXjYZw2evRB8ssGwUAAKAGmLk0H3+Bnf7s+kHTVmGfo7J88zr1NxzBFGa8EMpLs3z/zVldHjLswvffBg8eXDEYPXr0Jo9g2hCYnnbaaY0bN658hWwzwSiFriQRHu6dqJP+UVhVHk57OSqzbBQAAIBqr2lejjdv2X79YPnCsHhu9u//2ZT1g2Y7h6KS7N9/c5qWZFpQ9R3du3c/8MADQwgVRzB959uZM2e+9tprFeNBgwZlq0K2jWAUwgHbxX7dJdPmzZMXpW6dJhkFAACgujtul3xEPb0HhVgshBCSURi/6f7xbffRxPD52//5RQMzTq0SB7eMbe2xzBsOmh8xYkQUfWuL0mHDhlUMunXrVpGfkkeCUQghhCv3j/dulenff66bGr3xlYZ6AAAAqrWL943v22wrljdmR6u9wh4914/Hjwxla7N58w37ihbVCT3Oyuadt0C9onBn90xLqTapX79+TZo0CSHMmTPn+eef3/D5xscuWS5aHQhGIYQQ4rHwQK9E4+K0E8qTof+4aMu3WwYAAIDca1AUXj62qF/7eCLH6eiGM5dWLgpvPZ21265cFKY8tX7c9aTQqGXW7rwFDmwRe/kHRQdtv9X/VTZs2PD000+vGA8fPnzD53/5y18qjl1q1KjRT3/602zVyTYryncBUF20axT7wyGJAROidBNmLU1d9WZ0x9b/SxEAAADkTIu6YdThiWE9ErOXpXLW+Vh+7Ek/+vsvvvpyfgghjL03HHxqdu474f4N60/v/+UF+3fLXZDVsl5o02Db0+UhQ4bcfffdqVSq4gim1q1bh42OXTr99NMbNWqUnUKpBMEofOPcPeP/npv66ydptxO9673k0TvHj2mT864EAAAA2BqNi8OBLXL5t9c65w8894YbbgghhNmvhc+nhradK3vLVDKMv69i2KlTp7OPOayyN8yhjh079uzZc/z48eXl5Q888MA111yz8bFLAwfmYbNU/ptWeviWYYclMuypnAphwIRocWkOCwIAAICa4Pzzzy8u/s8Wdf8JNCvlnWfDok8rhhdccEEWbphbgwcPrhhUHMF0zz33pFKpEMLBBx/cuXOlU2OyQTAK39Kibnigd1GGf1Obvzo1MH27PQAAABSmnXba6Yc//OH6HyaOCquXVPaOY9fvztmoUaNTT81Sb34OnXDCCTvssEMI4fPPP//73/++4dilDWfWk3eCUfiuo3eODdgr06Px1KfJRz9K224PAAAAhWnDGsmwbnV4/dFK3eurT8K7z1UMzz777Jq4I2edOnXOPffcivHAgQMXL14cQmjSpIljl6oPe4zCJtx2SGLsF6kPl6XdpfqCV6MeO8TaNrTZKAAAAKx35JFHdujQ4YMPPgghhLH3ht6DQqJ4cxel8fKwkEqGEGKx2Pnnn5+9GnPqvPPOu/XWW6Mo+vrrrys+OeOMM+rXr5/5qrlz586aNWvjTxYuXFgxWL58+ZgxYzb+ql27du3bt89eyYVFMAqb0KAoPNQ70fMf5VGaaHTZunDO+Oj5Y4riolEAAAAIIYQQi8UGDx58ySWXhBDCF7PClbuHnueE3gND05229BZla8Ibfwlj7wmfTqn4oE+fPh07dqyaeqtc27ZtjznmmNGjR2/4ZMMa0gz+8Y9/pNtT9f333+/bt+/Gn1x99dU33nhjJessWFrpYdO6t4xd1SnTA/Li/NSd72moBwAAgG/079//mxWRy74Io28KV+4ehp0SZr4UUmn7MkMIYeHs8Jcrwi/ahQcHbkhFQ808dmlj32wvEMKhhx56wAEH5LEYvsOKUUjr1wcmnp+XevOrtC/uq96Mjtgptl9zq0YBAAAghBCaNWt23333XXzxxV999dX6j5Ll4a1nwlvPhB07hD7nhe5nhPpNv7kgGYXp/wpj7wkzxnwnOa3Yo/OEE07IYfnZ16NHj0QiEUVRCGHQoEFbckn79u1PPvnkLbz/vvvuu+3FFTzBKKRVFA8P9U50eaZ8TfmmJ5RGof+46PXjiupYew0AAAAhhBBOPfXUE0888W9/+9vw4cO/tSHmlx+E/3dZePLq0OnYcOTFYft24bWHw9jh4evPvnOHVq1anXnmmUOGDGnTpk1OS68CTzzxREUq2qxZs1NOOWVLLjnqqKOOOuqoKq6LELTSQ2Ydm8Zu7prIMGHq16nr3opyVg8AAABUf3Xq1Dn55JNfeOGFqVOnDhw4sEGDBt98V7Y2TH4y3NIr/KJdePLqjVPRWCzWt2/fp556as6cObfcckstSEVDCHfddVfFoH///vXq1ctvMXyHYBQ24+J940fvnKlZ/pZpyXFfZNwnBQAAAArSAQccMHz48Hnz5t1xxx177bXXt75LftOe2axZs0suuWTWrFnPP//88ccfn0hkWqJUgzz//PPTpk0LIRQXF68/k4rqRDAKmxEL4b6eieYlaSckU+Hs8dGKshzWBAAAADVHkyZNLrroopkzZ06YMOHkk08uLi7e8NWBBx547733zpkz5w9/+EOHDh3yWGTWLViw4Pzzz68Yn3rqqW3bts1vPfw3e4zC5rVuELvr0MRpL6dtmf9kReqySdHwHrXkX7QAAACgKvTo0aNHjx7z5s176KGHvv7661NOOeXggw/Od1HZVFpaetFFF4UQvvjii7Fjx65YsSKEULdu3aFDh+a7NDZBMApbpF/7+D8+T/2/j5LpJoyYlfx+69iJ7azCBgAAgExat25dW4PCsrKy4cOHf+fD22+/fc8998xLPWQmxIEtNeywRNuGmTYbHfxqtGBNzsoBAAAAqq/mzZv36dPnn//853nnnZfvWtg0K0ZhSzWtE0b2TBz1bHm6g5a+WhsGvRL9ra+GegAAAChEDRo0WLx4cQihqKioUaNG+S6HzbBiFLbCka1jF+6T6an5+2fJke+nbbcHAAAAarFYLNasWbNmzZpJRWsEwShsnVsPSuzbLFND/cUTow+XpVtUCgAAAEC1IBiFrVM3ER7uk6iT/tFZVR7OGh9FolEAAACAakwwClut83axaztn2kj0tQWp30zXUA8AAABQfQlGYVsMPSDea8dMDfW/mhK9+ZVVowAAAADVlGAUtkU8Fh7onWhUnHZCWTL0HxetKc9hTQAAAABsMcEobKPdGsV+d3CmhvqZS1NXT45yVg8AAAAAW04wCttu0F7xH7bN1FB/x3vJl+ZrqAcAAACodgSjUCn39yraoV7ab5OpcOa4aHFpDgsCAAAAYAsIRqFStq8b7u2RqaF+3qrURRM11AMAAABUL4JRqKzjdomf3SHTozRqdvLxj5M5qwcAAACAzRKMQhbc2T2xe+NMm42e/0o0Z5XNRgEAAACqC8EoZEHD4vBg70QifTS6dF04d3wkGQUAAACoJgSjkB2H7RC7fP9MD9QL81J/mqGhHgAAAKBaEIxC1lzfJdGpeaaG+l9Mit5bYtkoAAAAQP4JRiFr6sTDo99L1CtKO2FtFM4cF5VZNgoAAACQb+kjHGDr7d00dkOXxOWTonQT3lqUunFqdF2XRC6rAgAAoBZ4+OGH//rXv+a7Cmq2tWvX5ruEakQwCll2yb7xf81JvjQ/bcv8zdOSx7SJH9IyU9M9AAAAVCgqWp/elJaWlpaW5rcYao1EwpotrfSQbfFYeKh3ollJ2gnlyXDay9GKshzWBAAAQI3Vt2/fnXfeOd9VUKs0adLk+OOPz3cV+WfFKGTfzg1id3RPnDk2bUP9xytSV7wRDTvMP84AAACwGTvvvPMnn3yyYsWKfBdC7VG/fv2SkvRLugqGYBSqxBm7x//5eerxj9MetHTPzOSxbeI/bKuhHgAAgM0oKipq1qxZvquA2kYrPVSVe3okdm6QKfc8d0L5gjU5KwcAAACAbwhGoao0rRPu75XIkIwuXBPOeyVtuz0AAAAAVUcwClWob+vY4L0zPWV/+yz54Adp2+0BAAAAqCKCUahavz0osWeTTA31F06MZi9P5aweAAAAAIJgFKpa/aIw6vBEcfpHbWVZOGtcFIlGAQAAAHJIMApVrkuL2NADMj1rry5I/eEdDfUAAAAAuSMYhVy45oDEwS0zNdRfOyWattiqUQAAAIAcEYxCLhTFw6g+iYbFaSeURqHfS9FaZ9QDAAAA5IRgFHKkfePYrd0SGSbMWJr65RTJKAAAAEAuCEYhdwbvHT+2TaaG+t+/k3z5Cw31AAAAAFVOMAq5Ewvh/l5FLeulnZBMhTPHRktKc1gTAAAAQEESjEJOtawX7u2RqaF+7qrUJa9rqAcAAACoWoJRyLWf7BI/c49Mj95DHyb/8nEyZ/UAAAAAFCDBKOTBnd0TuzTMtNnokNeiL1bnrBwAAACAgiMYhTxoUic80ieRSB+NLlobzhpX7hgmAAAAgCoiGIX86LFj7Of7ZnoAn5+XumemhnoAAACAKiEYhby5qWti/+aZGuovnxS9v8yyUQAAAIDsE4xC3pQkwqOHJ+qmP6N+dXk47eWozLJRAAAAgGwTjEI+7dMs9usD0yejIUxZlLr5bckoAAAAQJYJRiHPfrF/vE+rTA31N74dTVqooR4AAAAgmwSjkGfxWHigV6JxcdoJ5clw+thoZVkOawIAAACo7QSjkH+7Nord3j1TQ/3s5an/fTPKWT0AAAAAtZ5gFKqFszvET26X6Xn804zkv+ZoqAcAAADIDsEoVBd3H5bYsV7ab1MhDJwQfV2aw4IAAAAAai/BKFQXLeqGB3sXZTiGaf7q1MAJGuoBAAAAskAwCtXI93eODdor01P59KfJR2Ync1YPAAAAQG0lGIXq5feHJDo0ybBsNPzPa9FnK202CgAAAFApglGoXhoUhVGHJ4rTP5rL1oUzxkZJ0SgAAABAJQhGodrp2iJ2VadMz+aEL1O3v6uhHgAAAGDbCUahOvpl58RB22dqqB86OZq+2KpRAAAAgG0kGIXqqCgeHuqdqFeUdkJpFPqPi9ZZNgoAAACwTQSjUE3t1TR2S7dEhglvf5361ZQoZ/UAAAAA1CaCUai+LtwnfkybTA31v5meHPeFhnoAAACArSYYheorFsJ9PRPNS9JOSKbC2eOj5WU5rAkAAACgVhCMQrW2U/3YiJ6ZGuo/WZG6ZKKGegAAAICtIxiF6u6EXeP92md6VO//IPnXT0WSB6oAACAASURBVBzDBAAAALAVBKNQA9x9WKJtw0ybjQ5+NfpyTc7KAQAAAKjxBKNQAzSpE+7vlYinj0YXrQ1njyt3DBMAAADAFhKMQs1wxE6xi/bJ9MD+e27qvlka6gEAAAC2iGAUaoxbuiX2a56pof6S16MPl1k2CgAAALB5glGoMUoS4aHeiTrpn9pV5aH/uCgSjQIAAABsjmAUapLO28V+dWAiw4SJC1O3TNNQDwAAALAZglGoYa7qFO/dKlND/a/fit78yqpRAAAAgEwEo1DDxGPhgV6JRsVpJ5QnQ/9x0ZryHNYEAAAAUNMIRqHmadco9odDMjXUz1ya+t/JUc7qAQAAAKhxBKNQIw3YM35iu0zP753vJp+do6EeAAAAYNMEo1BTDTsssUO9tN+mQhj4SrS4NIcFAQAAANQcglGoqbavG4b3yNRQP29VatArGuoBAAAANkEwCjXYj3eJn7tnpqf4yU+Sj32UzFk9AAAAADWFYBRqtju6J/ZoEssw4YJXo89X2mwUAAAA4FsEo1CzNSgKD/ZKJNJHo0vXhXMnRJJRAAAAgI0JRqHGO3SH2BX7Z3qWx8xL3fWehnoAAACAbwhGoTa4rkui2/aZGuqvfCN6d4llowAAAADrCUahNiiOh4d6J+oVpZ2wNgpnjo3WWTYKAAAAEEIQjEKt0bFp7KauiQwTpn6dumFqlLN6AAAAAKozwSjUHj/fN370zpka6m9+Ozn+Sw31AAAAAIJRqEViIdzXM9G8JO2EZCqcPS5aUZbDmgAAAACqJcEo1CqtG8Tu7J6pof7jFanLJ2moBwAAAAqdYBRqm9N2j/+sfaZHe/is5D8+dwwTAAAAUNAEo1ALDTss0aZBps1Gzx0fLViTs3IAAAAAqh3BKNRCTeuEkb0SGZLRr9aG817RUA8AAAAULsEo1E59W8eG7J3pAf/bZ8n7P9BQDwAAABQowSjUWr89OLFPs0wN9Re9Fs1enspZPQAAAADVh2AUaq26ifBw70Rx+qd8VXk4a1wUiUYBAACAwiMYhdrswBaxazonMkx4dUHqd9M11AMAAAAFRzAKtdzQTvFDWmZqqL92SjR5kVWjAAAAQGERjEItVxQPow5PNCpOO6EsGfqPjdaU57AmAAAAgHwTjELtt1uj2G8OytRQP2Np6topUc7qAQAAAMg7wSgUhPM7xn/YNlND/W3vJl+ar6EeAAAAKBSCUSgUI3sW7VAv7bfJVOg/LlpSmsOCAAAAAPJHMAqFomW9cG+PTA31c1elLp6ooR4AAAAoCIJRKCDH7RI/q0Omp/7Ps5OPf5zMWT0AAAAA+SIYhcJyV/fE7o0zbTZ6/ivRnFU2GwUAAABqOcEoFJaGxeHB3olE+mh06bpw7vhIMgoAAADUboJRKDiH7RC7dL9Mz/4L81J3z9BQDwAAANRmglEoRDd0SXRqnqmh/oo3oveXWTYKAAAA1FqCUShEJYkw6vBE3fRn1K8uD/1ejsosGwUAAABqKcEoFKh9msWu75I+GQ3hrUWpm96OclYPAAAAQC4JRqFwXbZf/PBWmRrqb3o7OWmhhnoAAACgFhKMQuGKx8LDfRLNStJOKE+G08ZGK8tyWBMAAABATghGoaDt3CB22yGZGuo/Wp668k0N9QAAAEBtIxiFQtd/j/gpu2V6FQybkfznHA31AAAAQK0iGAXCnw5NtKqf9ttUCOeML1+4JocFAQAAAFQxwSgQWtQND/YuynAM08I14bxXNNQDAAAAtYdgFAghhKNax87vmOmF8MxnyYc/TOasHgAAAIAqJRgF1vvdwYk9m2RYNhoumhh9ttJmowAAAEBtIBgF1qtfFEYdnihO/1ZYti6cPjaKRKMAAABAzScYBb7RpUVs6AGZXguvfJm67V0N9QAAAECNJxgFvuWaAxIHt8zUUH/N5Gj6YqtGAQAAgJpNMAp8S1E8jOqTaFicdkJpFPq9HK11Rj0AAABQkwlGge9q3zj2f90SGSa8tyT1qymSUQAAAKAGE4wCmzBk7/gP2mRqqP/dO8mxX2ioBwAAAGoqwSiwCbEQRvRMbFeSdkIyFc4eHy0vy2FNAAAAANkjGAU2baf6sRE9MzXUf7oidfFEDfUAAABAjSQYBdI6ftf46btneks8+EHyiU+SOasHAAAAIFsEo0Amfzw0sUvDTJuNXvBq9OWanJUDAAAAkB2CUSCTJnXCn/sk4umj0UVrw1njyh3DBAAAANQsglFgM3ruGPv5vpneFc/NTQ2fpaEeAAAAqEkEo8Dm3dw1sX/zTA31l70efbDMslEAAACgxhCMAptXkggP9U7USf/CWFUeTns5KrNsFAAAAKghBKPAFjlgu9h1XRIZJkxelLplmmQUAAAAqBkEo8CWumL/eO9WmRrqr58avfGVhnoAAACgBhCMAlsqHgsP9Eo0Lk47oTwZ+o+LVpfnsCYAAACAbSIYBbZCu0ax27pnaqiftTR11ZtRzuoBAAAA2DaCUWDrnNMhflK7TK+OP76XfHaOhnoAAACgWhOMAltt2GGJHeul/TYVwoAJ0delOSwIAAAAYCsJRoGt1qJueKB3UYZjmOavTg2aoKEeAAAAqL4Eo8C2OHrn2IC9Mr1Anvo0OWp2Mmf1AAAAAGwVwSiwjW47JLFHkwzLRsOQ16LPV9psFAAAAKiOBKPANmpQFB7qnUikj0aXrQtnjI2SolEAAACg+hGMAtuue8vYVZ0yvUbGf5m68z0N9QAAAEC1IxgFKuXXBya6bZ+pof6qN6N3Fls1CgAAAFQvglGgUori4aHeiXpFaSeURqH/uGidZaMAAABAdSIYBSqrY9PY/3VNZJgw9evUdW9FOasHAAAAYLMEo0AWXLRv/Jg2mRrqb5mWHPeFhnoAAACguhCMAlkQC2FEj0TzkrQTkqlw9vhoRVkOawIAAABITzAKZEfrBrHhPTI11H+yInXp6xrqAQAAgGpBMApkzYnt4qe2z/RWue/95JOfOIYJAAAAyD/BKJBNdx+WaNsw02ajg1+NvlyTs3IAAAAANk0wCmRT0zphZM9EhmT0q7XhvFc01AMAAAB5JhgFsuzI1rEL98n0bvn7Z8n73tdQDwAAAOSTYBTIvlsPSuzbLFND/c8nRh8uS+WsHgAAAIDvEIwC2Vc3ER7uk6iT/gWzqjycNT6KRKMAAABAnghGgSrRebvYtZ0TGSa8tiD1m+ka6gEAAID8EIwCVWXoAfFeO2ZqqP/VlOjNr6waBQAAAPJAMApUlXgsPNA70ag47YSyZOg/LlpTnsOaAAAAAEIIglGgSu3WKPa7gzM11M9cmrp6cpSzegAAAAAqCEaBqjVor/iP2mZ61dz+bvLfczXUAwAAADklGAWq3MheiR3qpf02FcKACdHi0hwWBAAAABQ8wShQ5bavG+7tkamhft6q1EUTNdQDAAAAuSMYBXLhuF3i53TI9MIZNTv5/z5K5qweAAAAoMAJRoEcufPQxO6NYxkmDH41mrPKZqMAAABALghGgRxpUBQe7J1IpI9Gl64L54yPJKMAAABADghGgdw5bIfY5ftneu2MmZf643sa6gEAAIAqJxgFcuqGLomuLTI11F/xRvTuEstGAQAAgKolGAVyqjgeHuqTqFeUdsLaKPQfF62zbBQAAACoSunDiS2wdu3a9957b8OP7du3b9q0aaVLAmq5vZvGbuiSuHxSlG7CW4tSN06Nru+SyGVVAAAAQEGpVDA6efLknj17Vozj8finn34qGAW2xCX7xv81J/nS/LQt8/83LXlMm3j3lpma7gEAAAC2WaVa6efNm7dhfOihh7Zp06bS9QAFIR4LD/VONCtJO6E8GU5/OVpRlsOaAAAAgEJSqWC0rOyb0KJ9+/aVLgYoIDs3iN3RPVOz/McrUle8kbbdHgAAAKAyKhWMbtw4r4ke2Fpn7B7/6W6Z3kL3zEyO/twJ9QAAAED2VSoY3WOPPTaMv/7660oXAxSce3ok2jTItJHouRPKF6zJWTkAAABAoahsMNqyZcuK8fTp07NRD1BYmtYJI3slMiSjC9eE817RUA8AAABkWaWC0Xg8fuKJJ1aMp0+fPnv27GyUBBSWvq1jF+yd6V30t8+SD36QzFk9AAAAQCGoVDAaQrj00ktLStYfLD106NBK1wMUot8clNizSaaG+gsnRrOX22wUAAAAyJrKBqO77777ddddVzF+4oknfvvb31a6JKDg1C8Kjx6eKE7/QlpZFs4aF0WiUQAAACBLKhuMhhCuuOKKIUOGbBifffbZDmICttaBLWJXH5DIMOHVBanfv6OhHgAAAMiOLASjsVjsj3/847Bhwxo1ahRCePDBB9u0aXPGGWc8/PDD06dPX7JkSTIpywA27+oD4oe0zNRQ/8sp0bTFVo0CAAAAWVBUyev79u07ZsyY73y4Zs2aRx555JFHHtmGGyaTyVgsUzIC1FZF8fBIn8QBT5evLNv0hNIo9HspmnJ8Ud1MS0sBAAAANi8LK0YBsqV949it3TKlnjOWpq6dHOWsHgAAAKC2EowC1cvgvePHtsm0bPwP7yZf/kJDPQAAAFApglGgeomFcH+vopb10k5IpsKZY6MlpTmsCQAAAKh1KrvH6IABA4488sislFLBBqNAy3rh3h6J419I2zI/d1Xq569HD/W21SgAAACwjSobjP70pz/NSh0AG/vJLvEz90g9/GEy3YSHP0we2yZ2ym6WvQMAAADbQqYAVFN3dk/s0jDTEvIhr0VfrM5ZOQAAAECtIhgFqqkmdcIjfRKJ9NHoorXhrHHljmECAAAAtoFgFKi+euwYu2TfTK+p5+el7pmZtt0eAAAAIB3BKFCt3dg1sX/zTA31l0+K3l9m2SgAAACwdQSjQLVWkgiPHp6om/78+dXl4bSXozLLRgEAAICtUdlT6TNYvXr122+/vWDBgqVLly5btqx+/frNmjXbbrvt9tlnnx122KHqfi9Qy+zTLHZdl8SVb0TpJkxZlLr57eSvDvQvPQAAAMCWyn4wOnfu3HvvvffZZ5+dNm1aeXn5JufstttuvXr1GjRoUPfu3bNeAFD7XL5f/Nk5ybFfpG2Zv/Ht6OidYwe3zNR0DwAAALBBNhdYLVy48LTTTmvXrt2NN944ZcqUdKloCOHjjz9+8MEHDz300G7dur322mtZrAGoleKx8ECvROPitBPKk+G0sdHKshzWBAAAANRkWQtGn3322f333//RRx/NkIf+t8mTJ/fq1evaa6+NorRNsgAhhF0bxe7onn6r0RA+Wp666k1vEgAAAGCLZCcYHT169I9//OMFCxZsw7VRFN14440XXHBBVioBarGzOsRPbpfprXX3jOS/5jihHgAAANi8LOwxOnny5FNOOeU7C0VLSkqOPPLIbt26dezYsXnz5k2aNFm1atWKFSs+/vjjqVOnPvfcc19++eXG84cPH77LLrsMHTq08vUAtdjdhyUmfJn8cs2mv02FMGBC+TsnFm9XktuyAAAAgJqmssFoKpX6n//5nzVrvkkpmjRpcs0115x77rnNmjVLd1UURf/+97+HDh06ffr0DR/ecMMN/fr123XXXStZElCLtagbHuxddMy/y9OtC/1idRg4IXrqyExN9wAAAACVbaV/6qmnJk2atOHHgw46aObMmZdffnmGVDSEkEgkjj322ClTplx55ZUbPly7du21115byXqAWu/7O8cG7ZXp3fX0p8k/z07mrB4AAACgJqpsMDpq1KgN486dO7/00kutWrXawmuLiopuueWWq666asMnTz311MaLTwE26feHJDo0iWWYcOFr0WcrbTYKAAAApFWpYLS0tHTMmDHrbxSPP/jggw0aNNjam1x//fX77LNPxXj16tVjx46tTElAIWhQFEYdnihO/wJbti6cMTZKikYBAACANCoVjM6aNWvFihUV4969e++///7bcJPi4uJBgwZt+PHNN9+sTElAgejaInZVp0xvsAlfpm5/V0M9AAAAsGmVCkYXLly4YXzEEUds8302vnbjewJk8MvOiYO2z9RQP3RyNH2xVaMAAADAJlQqGF20aNGG8ZZvLfrfWrduvWEsGAW2UFE8PNQ7Ub8o7YTSKPR7OVob5bAmAAAAoIaoVDBaUlKyYbx27dptvs/q1as3jOvVq1eZkoCCslfT2C3dEhkmvLckdd1bklEAAADguyoVjG6//fYbxh9//PE232fjaze+J8Bm/c8+8WPaZGqo/8305LgvNNQDAAAA31KpYHTjFvinn346ldrG6OGZZ57Z5D3ZEuvWrXvzzTfvueeegQMH9u3bt2/fvqeffnq+i4LciYVwX8/EdiVpJyRT4ezx0fKyHNYEAAAAVHvpN+fbArvttlv79u0/+uijEMLHH3/8wAMPnHPOOVt7k/nz548cOXLDj5U5xKnQJJPJbt26vfPOO2Vl34p8dt111zxVBPmxU/3Y8J6JE8ekbZn/ZEXqkonRyF6Zmu4BAACAglKpFaMhhKOPPnrD+NJLL500adJWXb5y5cqf/exnS5curfhx55133m+//SpZUuFIpVJvvfXWhlS0pKQkHq/s/6BQQ52wa/y03TP9+b//g+RfP0nmrB4AAACgmqtsjjZkyJCiovXLTpctW3bkkUc+/PDDW9hTP2PGjO9973sTJkzY8MnFF18ci2XaK5Dv6Nat2/nnnz9ixIi33nprxYoVDRs2zHdFkDd/OjTRtmGmF8jgV6Mv1+SsHAAAAKBaq2ww2rFjxwEDBmz4ceXKlf379+/evfuDDz64fPnyTV4SRdHYsWPPPvvsTp06vfnmmxs+b9eu3YUXXljJegpKIpF44403hg0bNmDAgM6dOxcXF+e7IsinJnXCI30S8fTR6KK14axx5Y5hAgAAAEIl9xitcMstt0ycOHHatGkbPpk0adKkSZMGDBiwxx57dOzYsUWLFo0bN165cuXy5cs/+eST6dOnr169+js3qV+//qhRo0pK0p+fArA5PXeMXbRP/PZ307bMPzc3NWJWctBeNp0AAACAQpeFYLRJkybPPvtsr169Zs+evfHnURTNmjVr1qxZm71DnTp1Hn/88e7du1e+GKDA3dIt8eL81DuL0y4MvfT1qE+rWIcmdu0AAACAgpadZVOtWrWaMmXKoEGDtuHavffee+LEiT/84Q+zUglQ4EoS4aHeiTrp322rysNZ46JIRz0AAAAUtqz1kzZu3Pjee+999tlnjzrqqC08QKlDhw533HHHW2+9deCBB2arDIDO28V+dWAiw4SJC1O3THNCPQAAABS0LLTSb+zoo48++uijP/jgg+eee+7111+fPHnyggULli1bVvFtvXr1mjdvvv/++x9yyCG9evXq3bu3M+iBqnBVp/jz85Ljvki7LvTXb0VHtY51294rCAAAAApUloPRCh06dOjQocOGI+aTyeSyZcvq1atXt27dqvh1AN8Rj4UHeiU6PVW+omzTE8qTof+4aMpPiupVyVsQAAAAqO4qFQmsWrVq4sSJG37s1KnT9ttv/9/T4vF4s2bNKvOLapnRo0efe+65W3vVoYce+vTTT1dFPVArtWsU+8MhiYETonQTZi5N/e/k6PZDMjXdAwAAALVVpYLRKVOm9O3bt2JcXFw8Z86cbJRU+61du3bhwoVbe9XixYurohioxQbsGf/33NSTn6TdTvTOd5Pfbx0/po2GegAAACg4lQpG58+fv2F82GGH7bDDDpWupyDss88+119//dZetcsuu1RFMVC7DTss8eqXyS/XbPrbVAgDX4mmn1DUvCS3ZQEAAAD5VqlgNIq+6VFt165dpYspFB07drz22mvzXQUUhO3rhnt7JI57IW1D/bxVqUGvRH89QkM9AAAAFJZKBaMb7xzauHHjShdTS0yePHnmzJkLFixo2LBhmzZtevXq1ahRo3wXBYXrx7vEB+yZuu/9tA31T36SfOyj2Knt47msCgAAAMivSgWje+yxx4bxV199Veli8mb+/PlT/uP1119ftGhRxef33nvvoEGDtvw+Dz300I033jh79uyNP6xfv/6pp576m9/8pnnz5tksGthit3dPjPsy9eGyVLoJF7waHbZDrG1Dm40CAABAoahUMLr77rvvtNNOFTuNTp06NUsl5dT48eN/8pOfLFmypJL3iaKof//+o0aN+u+vVq9ePXLkyOeee+5f//rXfvvtV8lfBGyDBkXhwV6JXqPLozTR6NJ14Zzx0Qs/KJKMAgAAQIGoVOtoLBY7+eSTK8YzZ86cMWNGNkrKqaVLl1Y+FQ0h/OIXv9iQirZr1+6mm2564oknRowY8ZOf/CQej4cQ5s6d+6Mf/WjBggWV/10bW7169ZKNpFKpEEIymdz4wzVr0pw7A4Xk0B1iV3bK9MZ7cX7qznfTttsDAAAAtUxl99S79NJL69evXzG+8sorK11P3rRv3/6UU0659dZbn3zyya299pVXXrntttsqxj/60Y/ee++9oUOHnnTSSQMGDHj66acff/zx4uLiEMJnn3122WWXZbfsSy65pPlGVqxYEUL4/PPPN/7whhtuyO4vhRrqugMT3bbPtCT0yjejdxanbbcHAAAAapPKBqNt27b9zW9+UzEePXr01VdfXemScqpTp05jxoxZvHjx7NmzH3/88SuuuKJ3795be5OhQ4dWDNq2bTtq1Kh69ept/O1JJ5101VVXVYwfe+yxd955p/JlA9ugKB4e6p2ol34HkdIo9B8XrbNsFAAAAApApfYYrTBkyJAvvvjipptuCiHcfPPNM2bMuPPOO9u0aVP5O+fALrvssssuu1TmDrNmzZowYULF+Morr9zkAfRXXHHFHXfcsXz58mQyef/9929YXlp5gwYNOvLIIzPP2WuvvbL166Cm69g0dlPXxKWvR+kmTP06df1b0Y1dE7msCgAAAMi9ygajK1euLCsru+yyy1q3bn3llVeuWLHimWee+cc//nHMMcf07du3c+fOrVu3btq0aSy2pSeaNGvWrJIl5djf//73ikFRUdFpp522yTkNGzY88cQTH3jggRDCM888k8VgtEuXLl26dMnW3bZExTamIYSRI0cWFW3+z0+fPn06dOhQxUXBVvj5vvHn5yb/PTdty/z/TUsetXO8147OYQIAAIDarLLB6PHHHz9mzJjvfBhF0ejRo0ePHr0NN0wmk1ueolYHL774YsXggAMOaNKkSbppffr0qQhGP/30048++qh9+/Y5qi/bysrKKgZDhgzZkvkNGzacNm1a1vPu5cuXl5aWVmzeClvr9/vHJi2sv2Tdpl81yVQ48+WyCUeublhkv9HvWrdu3bJly+LxeJ06dfJdCxSWpUuXlpSUJJM2+4CcWrly5apVq+rWrZvvQqCwlJeXL1u27P+zd6fxTZVpH8evk6RNWyjdoAso+w6iZZGlUGAUEIEBREQFRAFFcIZhGJcHx3UERx1cGEYU1FEBGXEDBaEqCC0UlH1HkR0KdN/3JOd5EQwVSbqcNKdtft+PL+6c3Ofkwo8e0n/v+zoiUlRUpHctgHfJysoyGAy653J+fn5XtamsPm7YSu/ljh49ah90797dxbSy7x45cqT2BqOVVVhYmJ2dXb9+ffdetrS01GKxOFJaoFIammReZ5mxp56zCWfylb/vM82/scCTVdUK9v/vLBaL7n9TAt7GYrEYDAb+4gM8rPRXehcCeBf7d87S0lKjkQ5XgEfVkO+cnlwGRzCqSV5e3vnz5+3jpk2bupjZvHlzx/jo0aMjRoyo1sKqj4+PT0lJiYhMmTKlIn9L3XbbbdHR0W4vw2w2FxcXh4eHu/3K8BLTwyUh2/rxCadrr5adMY9tFzCiqdYn1NUxJSUlBoMhLCyMFaOA55nNZhd7UwBUB39/f39/f75zAh5m/zV8cHCwx5aMAbAzGAwGgyE0NFTvQjyHYFSTlJQUR8/NJk2auJgZEBAQEhKSmZkpIsnJyZ4orno4lom9+eabZrNZ32IALd6KMSZeUs/lO90vPyXBenCMIYIvYwAAAAAA1EVag9FZs2aNHTvWLaXY1a7tmXl5eY5xvXpOt+U6JtiD0bJnAdBLsK/8N9Y4eL3FWTKaWiTTtlpXD2L/DgAAAAAAdZDWYHTYsGFuqaOWKhtxlrvI3zGBYBSoIW5tovypk2HhYacb6r88Y/vvMWVyWzbUAwAAAABQ1/DTviZl17c69tQ745hQu1bFAnXbKzcbO4e4+l9y5jbr8RweTw8AAAAAQF3jhmA081f2Z/J4lbIPWy8qKnI9ubCw8PdnAdCXn1E+7G/0dX4vzLfI/fFWK9EoAAAAAAB1i6ZgdMeOHYqihP7q+PHj7iqrtigbcZa7QT4/P//3ZwHQXdeGylPRrhqJJiar/zrgdLs9AAAAAACojTQFo+fOnXOMo6OjO3bsqLmeWiYiIsJguPzv8Pz58y5m5ubmZmVl2cdRUVHVXhmAyphzo6F3uKsN9c/stu5KY9UoAAAAAAB1h6Zg1LE3XETat2+vuZjaJyAgoGnTpvbxmTNnXMw8ffq0Y9yhQ4dqrQpAZZkMsnygMdDH6YRSm0zabC20eLAmAAAAAABQnTQFo2W3hIeHh2suplZyrJPdsWOHi2ll3+3UqVP11gSg8loGKv/q6WpD/ZEs9andVo/VAwAAAAAAqpWmYLRFixaOcXZ2tuZiaqVBgwbZB4cOHUpLS3M2bdOmTfZB27ZtmzVr5onKAFTStPaG4U1dbah/45Dt+wtsqAcAAAAAoC7QFIx26NAhMDDQPj527Jg76ql9Ro0aZR9YrdZly5Zdc052dvaqVavs49GjR3uoMgCV914/U4S/03dtqtwXb80s9mBBAAAAAACgemgKRn19fW+//Xb7+Mcff0xNTXVHSbVM8+bNhwwZYh+/8sor6enpv5/z/PPPFxQUiIjJZJoyZYpH6wNQGeH+srivqw31SfnqzO1sqAcAAAAAoNbTFIyKyOzZsxVFERGr1friiy+6oyRPy8nJySzD8ex47mTAKwAAIABJREFUESkoKMj8LZvN9vsrzJ071/4v4dKlS3fccUfZK4jI4sWLFyxYYB/ff//9bdq0qc4/DQCtRjYz3N/W1b1x+XHbypPXuBUAAAAAAIBaRFFVrf3yHn744cWLF4uIyWT67LPPRo4c6Y7CPKd79+67d++u4OSTJ0+W7azq8Nxzzz3//PP2cVhY2IQJE9q2bZuVlfX1119v27bNfrx9+/bbtm0LCQlxS9l68fPzKy4uFpGioiKz2axXGdnZ2cXFxV77yC9Ut7xSiV5lOZ7j9PYY7CsHxpiur+eqIWmdVFJSkp6eHhYW5uvrq3ctgHdJSUkxm81BQUF6FwJ4l9zc3Ly8vKioKL0LAbyLxWJJTU0NDg7293fe5QpANUhLSzMYDKGhoXoX4jkm7ZdYsGDBiRMnNmzYYLFYxo0b9+KLL/7lL38xGl3tRa17nn322czMzIULF6qqmp6e7lgi6tC+ffu1a9fW9lQU8BL1feSD/sb+ay1WJ9FoVolMSbB+M9TkdckoAAAAAAB1hdat9CJiNpu//vrrGTNmKIpSXFz8t7/9rWPHjq+88sq+fftKS0u1X7+6BQYGhlSYwXDtf2OKoixYsGDt2rV9+vSxb6t3iIyMnDNnzp49e1q1auWRPxAAN4iJUP52g6s75HdJ6qIjbKgHAAAAAKC20rqVfsaMGTt27LCPf/nll5ycnLLvms3mRo0aBQUF+fn5VfCCO3fuvCpYrHXOnj179OjRixcvBgUFXXfddV27dq1L62fZSg/vUWyVnl9a9mc4vUn6GWXXKFOnkNp9y6oUttIDemErPaALttIDumArPaAXttJX2i+//OKiQWdxcfH58+fPnz+v8VNql6ZNmzZt2lTvKgBoZTbKij8Yu62yFDl5Cn2RVe6Lt/7wR5OPGxbfAwAAAAAAj+KneQBwqmOw8kJ3Vyu+96Sp8/Y5yU0BAAAAAEANRjAKAK7M7mwYGOVqs/y8fbYfUjT1JAEAAAAAAJ6ndSv9sGHDWrZs6ZZSAKAGMiiydICxyxeWzOJrT7DYZMJm677Rpvo+nq0MAAAAAABooDUYnTVrllvqAIAa67p6yhu9jJPinW6ZP5GjPr7Duiim7jxmDQAAAACAOo+t9ABQvvvaGO5q6eqG+fZR29fn2FAPAAAAAECtQTAKABXydozxunpOm42qIpMTLCmFnqwIAAAAAABUHcEoAFRIiFneizW6eAxTSqFM28oT6gEAAAAAqB0IRgGgogY3UR7u4Oq2ufqM7cNfbB6rBwAAAAAAVBnBKABUwvyexnZBLpaNysxt1tO5NBsFAAAAAKCm0/pUehcuXrx47ty5zMzMnJwcEWnSpEmfPn2q7+MAwAMCTPLRQGPvryylThaG5pTKxHjr5mEmV7vuAQAAAACA3twfjG7atOmDDz7YsmXLqVOnyh4fPXr0F198cdXkY8eO7d+/3z5u3LhxTEyM2+sBAPfq1lB58ibD83ucbpnfekl9/ZDt0RtYkg8AAAAAQM3lzmB069atM2fO3Lt3b8VPURTlnnvusVqtItKwYcOkpCRfX183lgQA1eGpm4xx59UfU5xumX9ql3VwE6VLKKtGAQAAAACoodyzoElV1Xnz5g0cOLBSqaiItGnTZtSoUfZxWlraunXr3FIPAFQrk0E+GmCs7+N0QrFV7t1kLeIZ9QAAAAAA1FTuCUafeuqpp556ymKxVOHchx56yDH+/PPP3VIPAFS3Vg2Ul3oYXUw4nKk+u5tkFAAAAACAGsoNwegHH3zw4osvlj0SHR396quv7tixIykpqdy2oQMHDgwNDbWPv//+e1Xlac4AaocZHQ23X+9qs/z8g7bNF7mnAQAAAABQE2kNRnNzc5944gnHy+Dg4JUrV+7Zs2f27Nk9evRo3Lixj4/zvaYiIuLj4zN06FD7+MKFC8eOHdNYEgB4hiLyTj9jmNnpBJsqEzdbM4s9WBMAAAAAAKgYrcHowoULU1JS7OPg4OCEhIS77rqrshfp3r27Y3z48GGNJQGAxzQOUN7p52pD/fl8dfaPbKgHAAAAAKDG0RqMfvHFF47xokWLbrjhhipcJDo62jH+6aefNJYEAJ40urlhYmtX99IPjtk+PWXzWD0AAAAAAKAiNAWjKSkpe/bssY/btWt39913/36OorhqwGfXpEkTxzgpKUlLSQDgeQv7GJvVd3Wvm5FovVjgsXIAAAAAAED5NAWjx48fdzwrafjw4RXJQK8pODjYMc7JydFSEgB4XpCvLBtgNDi/BaYVyf3xFh7DBAAAAABAzaEpGE1NTXWMW7Vqdc05FUlL/fz8HOOCAlZVAah9+kUqszq7uqN+m6QuPsqGegAAAAAAagpNwWheXp5jXK9evSpfJyMjwzFu0KCBlpIAQC8vdjd2CXX1q6C//Wg9ls2yUQAAAAAAagRNwWhYWJhjXDbcLKsiK0bL9hVt2LChlpIAQC9mo6wYaPRz/oz6Aovcu8layrJRAAAAAABqAE3BaHh4uGOs5WnyiYmJjnFkZKSWkgBAR51ClGe7Ok9GRXanqf/cTzIKAAAAAID+NAWjrVq1MplM9vHGjRsdD2IqqyIrRletWuUY9+nTR0tJAKCvx7sY+ke5uu+9sNe6I5UN9QAAAAAA6ExTMBoUFNS7d2/7+Pjx4+vXr6/CReLj47dt22YfBwYG9ujRQ0tJAKAvgyLvxxob+DidYLHJpHhrgcWDNQEAAAAAgN/RFIyKyLBhwxzjv/zlLzk5OZU6PTs7e+rUqY6Xw4cPdyxBBYBaqkWg8npvVxvqf8pS/2+n1WP1AAAAAACA39MajE6bNi00NNQ+Pn78+KhRo7KysspOcLGVPjk5ediwYcePH79cisHw5JNPaqwHAGqCyW0Nd7ZwdYP9z2Hb+nNsqAcAAAAAQDdag9Hg4OA5c+Y4Xm7atKlbt26fffaZzebq6SKlpaXvvPNO165dyz52aezYsZ07d9ZYDwDUEG/FGCP9nb6rikzdYk0v9mBBAAAAAACgDDfsW581a9bGjRvj4uLsL0+ePDl27NioqKjhw4ffdNNNKSkp9uPZ2dnff//9yZMnExIS4uLiUlNTy16kVatWb731lvZiAKCGaOgnH/Q3DY2zOFsXeqFAfWiL9fNbXW26BwAAAAAA1US55qPkKys3N7d///579+6t2unBwcHx8fFdunTRXgmqm5+fX3FxsYgUFRWZzWa9ysjOzi4uLg4PD9erAKCCpm21LvnJ1Qr65QOM41trXbzvMSUlJenp6WFhYb6+vnrXAniXlJQUs9kcFBSkdyGAd8nNzc3Ly4uKitK7EMC7WCyW1NTU4OBgf3/nO7AAVIO0tDSDweDomekN3PPTeGBgYHx8/IQJE6pwbtu2bbdt20YqCqBOeq2XsW2Q01bLIvLINuvZPJqNAgAAAADgaW5bphQYGLhs2bLly5e3bdu2gqcEBATMnj17165dHTp0cFcZAFCj1DPJB/2NRufRaHaJTNhstRGNAgAAAADgWW7evzl+/PijR4+uXr163LhxzracmEymXr16Pfvss6dOnXr11VcDAwPdWwMA1Ci9w5U5N7m62W65pC447Gq7PQAAAAAAcDs3PHzpKgaDYeTIkSNHjhSRkydPnjlzJj09PSMjw8fHJywsrGHDhp07d27QoIHbPxcAaqxno43fnFd3pjpdFzpnp/XWxsoNoa423QMAAAAAADdyfzBaVsuWLVu2bFmtHwEANZ/JIB/2N3ZbbSm0XHtCsVXui7f+ONLkW2uewwQAAAAAQO3Gj+AA4AkdgpV/dje6mLAvXX1ut9Vj9QAAAAAA4OUIRgHAQ2Z2Ngy93tVm+ZcP2OIv8hgmAAAAAAA8gWAUADxEEXmnrzHU7HSCTZUHEqw5pR6sCQAAAAAAb0UwCgCe06SesqSvqw31p3LV2T+woR4AAAAAgGpHMAoAHjWmheGeVq7uve/9bPv8lM1j9QAAAAAA4J0IRgHA0xbFGJvWd9VsdHqi9VKhx8oBAAAAAMAbEYwCgKcF+8p/Y40uktHUIpm2lQ31AAAAAABUI4JRANDBLY2VmZ1d3YG/OmN792c21AMAAAAAUF0IRgFAHy/3MN4Q6mpD/azt1l+yVY/VAwAAAACAVyEYBQB9mI3yYX+jr/PbcL5F7k+wWolGAQAAAACoBgSjAKCb6DDlma5GFxO2Jasv72dDPQAAAAAA7kcwCgB6mnOjITbS1Yb6Z/dYd6ayahQAAAAAADcjGAUAPRkU+aC/MdDH6QSLTSbFWwstHqwJAAAAAAAvQDAKADprEai82tPVhvqjWeqTu6weqwcAAAAAAG9AMAoA+nuwvWFEU1c35AWHbHHn2VAPAAAAAIDbEIwCQI3wXqwxwt/pu6rI1C3WjGIPFgQAAAAAQJ1GMAoANUIjP1nc19WG+qR89c/b2FAPAAAAAIB7EIwCQE0xsplhcltXt+UVJ2wfn7B5rB4AAAAAAOowglEAqEH+3cfYuoHiYsL0ROu5fJqNAgAAAACglak6LlpQULBjx45t27adO3cuMzMzIyNDVdWYmJjnnnuuOj4OAOqMeib5oL+x/1qL1Un4mVUikxOs3w41uUpPAQAAAABAedwcjO7bt++1115buXJlSUnJVW8FBgb+fv7GjRtfeukl+7hz586vv/66e+sBgFonJkJ5rIvhpf1Ot8xvSFL/c9j2504s+QcAAAAAoOrcFowWFhbOmjVryZIllTqrd+/e+/fvT01NFZFNmzY9/vjjUVFR7ioJAGqpf3QzbkhSd6U53TL/+A7rwMZK5xCWjQIAAAAAUEXuWXB06dKlm2++ubKpqIgEBARMnz7dPrZarf/73//cUg8A1Go+BvlwgNHf+a+uiqwyKd5awnOYAAAAAACoKjcEozk5ObfffvuhQ4d+c12DoWPHjkOGDGnUqJHr08ePH+8Yr1u3Tns9AFAHdAxW5nYzupiwJ02du9fqsXoAAAAAAKhj3BCMzpw5c+/evY6X11133b///e+UlJTDhw/HxcV17NjR9elt27bt0qWLfZyYmFhYWKi9JACoA2Z1NvyhsavN8vP22bZc4gn1AAAAAABUhdZgdP/+/cuWLXO8HDZs2IEDB/785z+HhYXZjyhK+S3wbrnlFvugqKiobMYKAN7MoMjS/sYQs9MJNlXuj7fmlnqwJgAAAAAA6gqtweiCBQtststd7mJjYz///POQkJDKXiQ6Otox/vnnnzWWBAB1RpN6yr97u9pQfzJXfexHNtQDAAAAAFBpmoJRVVXj4uLsY5PJtGTJErP56qVNFVkx2rlzZ8f42LFjWkoCgDpmQmvDuJau7tWLf7KtPcuGegAAAAAAKkdTMPrzzz9fvHjRPr7lllvatWtXtes49t2LSHp6upaSAKDuebuv8fp6rn7JNDnBkkx/ZgAAAAAAKkNTMHrhwgXHODY2tsrXCQ4OdoxzcnK0lAQAdU+wr7wXa3SRjKYWybStbKgHAAAAAKASNAWjqampjnFUVNQ151RkK73FYnGMHR1LAQAOg5ooMzq6umN/ecb2/jHunwAAAAAAVJSmYNRguHK61Vr1xUplt883bNhQS0kAUFfN72nsFOLqV00zt1uP59BsFAAAAACACtEUjIaHhzvGKSkp15xTkRWjR48edYzL9hsFADj4GWVpf6OP89t2XqncH2+1Eo0CAAAAAFABbgtGd+zYUeXrxMfHO8YtW7bUUhIA1GFdGyp/v8noYkJisvrqQTbUAwAAAABQPk3BaNu2bR0LPL///vvs7Ozfzyl3xWhhYeFHH33keDlw4EAtJQFA3fb3mwy9wl3dV5/Zbd2fwapRAAAAAADKoSkYNRqNgwYNso9zc3MXLFhQhYssWLAgOTnZPm7ZsmXz5s21lAQAdZvJIMsHGOv7OJ1QbJV7v7cW8Yx6AAAAAABc0hSMisi4ceMc47lz527btu2qCa5XjCYkJDzzzDOOlw8++KDGegCgzmvVQHnlZlcb6o9kqU/vIhkFAAAAAMAVrcHoyJEje/bsaR+XlpYOGTJk9erVFTx36dKlt912W2lpqf1laGjoI488orEeAPAGD3cwDLve1a+dXjtk23SRDfUAAAAAADilNRhVFGX+/Pkmk8n+Mi8vb/To0bfffvu6detKSkrkWitG8/PzV61a1adPn0mTJhUWFjqOz5s3LzAwUGM9AOANFJH/xprC/Z1OsKly32ZrZrEHawIAAAAAoFbRGoyKSN++fd98882yR9avXz9s2LCQkJBu3brt3bvXfvDgwYMTJkzo3bt3WFjYHXfcsX379rKnTJo06eGHH9ZeDAB4iXB/WdzX1Yb68/nqrB/YUA8AAAAAwLWZ3HKVhx56KD09/amnnrLZbI6DBQUFe/bscbw8fvz48ePHr3n6iBEj3n77bbdUAgDeY1Qzw6Q26oe/2JxNWPqLbdj1yl0t3fA7MAAAAAAA6hi3/bQ8Z86cuLi4iIiISp2lKMozzzyzevVqPz8/d1UCAN7j332MzQNdNRt9ONF6Pp9mowAAAAAAXM2dy4gGDRp09OjRF198MSoqqvwPNhjGjh27f//+559/3mBgNRMAVEUDH1nW32h0Ho1mFsvkBCvJKAAAAAAAV3HPVnqHkJCQOXPmzJ49e/PmzVu3bt2yZcvp06czMjJyc3MVRWnYsGFYWNiNN954yy23DBo0qHnz5u79dADwQn0jlb92Nsw/6HRD/XdJ6ltHbDM68isoAAAAAACucHMwamc2m4cMGTJkyBDHkdLSUpPJ9Psn1AMAtJvb3fhtknogw+nC0Md2WG9porQL4iYMAAAAAMBlHlpA5OPjQyoKANXEbJQVA41+zp9RX2CR8ZuspU4XlQIAAAAA4HXYWQkAdUGnEOX5bs6TUZHdaeq8fVaP1QMAAAAAQA2nNRjNy8vLzMzMzMzMy8ur8kXy8/Mzf6WxHgDwWo/eYBgQ5Wpt/rx9th9TeA4TAAAAAAAi2oPR0aNHh4aGhoaGTpo0qcoXuf/++0N/par80A4AVWFQZNkAY4jZ6QSLTcZvtuaVerAmAAAAAABqKrbSA0DdcV095bWerjbUn8hR/28nG+oBAAAAACAYBYC65f62hrEtXN3bFx2xrTvH2nwAAAAAgLcjGAWAumZRjDEqwOm7qsjULZb0Yg8WBAAAAABAzVMjgtHS0ssd7wwGg6K4enIIAKBcDf3kg/4mFzfTiwXy4BY21AMAAAAAvFqNCEYvXbpkH9SvX1/fSgCgbhjcRJnWwdUdftVp27LjNo/VAwAAAABATVMjgtHz58/bBw0aNNC3EgCoM17taWwb5GoN/p+3Wc/k0WwUAAAAAOCl9A9Gt2zZkpSUZB+3bt1a32IAoM4IMMmKgUYf57f57BKZuNlqJRoFAAAAAHglUwXnlZSU5Ofn//64oz1oSUlJZmZmBa+mqmpqampaWlpiYuL8+fMdx6Ojoyt4BQBAubo1VObcaPjHXqdb5rdcUt84ZPvbDfr/kgwAAAAAAA+raDC6Zs2aO++808WEtWvXhoaGaqzG9UcAACrr6WjjN0nqjylO14X+fZd1UBOlSygPvgMAAAAAeJcatEqob9++vXv31rsKAKhTTAb5INYY4Py3YMVWuXeTtYhn1AMAAAAAvExNCUbbtWu3bNkyRWHJEgC4Wftg5aUeRhcTDmeqz+0hGQUAAAAAeBf9g9H27du/9NJLu3btat68ud61AEDd9KdOhqHXu/rN078O2DZf5DFMAAAAAAAvUtEeo127dl28ePHvj7/xxhtHjx4Vkejo6IcffriCVwsICAgMDAwNDe3cuXNISEgFzwIAVI0i8m4/Y5fPLenF155gU+WBBOv+O0wNfDxbGQAAAAAAOqloMNqiRYuHHnro98c//fRTezDqbAIAoCZoHKAs6Wccs8HplvnTueqs7db/xrradA8AAAAAQJ2h/1Z6AIBn3NHcML61q9v++8dsn52yeaweAAAAAAB0VNEVo84MGzasZcuWIhIdHe2OegAA1ejNPsYtl9SzeU7biU5PtPaNNET6e7IoAAAAAAB0oDUYnTVrllvqAAB4QJCvLB9gHPC1xeYkGk0rkvvjLetvM7l6VBMAAAAAALUfW+kBwLv0i1T+0snVzf+b8+o7P7GhHgAAAABQxxGMAoDX+WcP4w2hrpaEzv7Beizb6XZ7AAAAAADqAIJRAPA6ZqMs7W/0df43QL5F7o+3WolGAQAAAAB1F8EoAHijm8KU57oZXUzYnqL+cx8b6gEAAAAAdZbWhy+98MILBw8edEspditXrlQUnvkBANXuiS6Gb87b4i86XRf6/F7r4OuUmxtxTwYAAAAA1EFag9GEhIQNGza4pRS7lStXuvFqAABnDIq8H2u86QtLTum1J1hsMineumeUyV/r3xUAAAAAANQ4bKUHAO/VIlB5rZerDfU/Zan/t9PqsXoAAAAAAPAYglEA8GpT2hnGtHD1d8HCw7b153gMEwAAAACgrtG6PbJr164Vn1xaWpqZmXn+/PmMjAzHQUVR+vfvbzKxURMA9PFWjDHxku1S4bXfVUWmbrEeHGPyKcn98MMPf/zxx549e06aNCkwMNCzZQIAAAAA4E6Kqnp6HZCqqj/99NPy5cvffvtte0I6cODATz75pGHDhh6uBFXg5+dXXFwsIkVFRWazWa8ysrOzi4uLw8PD9SoAqGO+OmMb+Z3zLfMXjrTcvSRt8/KcnBz7gQYNGkycOHH69OmdOnXyUImAd0tJSTGbzUFBQXoXAniX3NzcvLy8qKgovQsBvIvFYklNTQ0ODvb399e7FsC7pKWlGQyG0NBQvQvxHB2CUYdLly6NHz/++++/F5EWLVps3LixRYsWehWDCiIYBeqqB7dY3/3Z9ptD1lLZ+6VseluOJVw5GHq9ZJxzvOrfv/+MGTNGjx7t4+PjqUoBb0QwCuiCYBTQBcEooBcvDEb17DEaGRn59ddf9+vXT0ROnTo1fPjwwkInOzkBANXsjd7GNkHK5RfZF+XL5+WJ1rL43supqLme9JsiT++Ql0/I0zuk3xQx1xOR+Pj4cePGNWvW7Jlnnrl48aJ+5QMAAAAAUDl6rhi1O3XqVIcOHeyLEP/+97/PnTtX33rgGitGgTpsW7Iau9ZizbokL9ws2ZcuH41sKwOmSe+JEhD8m9kFWbJ9mWxeLJeOXZ4YGbl3797IyEjPVg14BVaMArpgxSigC1aMAnphxagOWrRoMW7cOPt44cKF+fn5+tYDAF6rT4TyxI0GSXhXsi+JYpCuo2R2nPzjoNzy56tTUREJCJZb/iz/OCiz46TrKFEMly5dWrJkiR6FAwAAAABQafoHoyJy22232Qc5OTnffPONvsUAgDd7uovqm/ieiMiNw2T6J9LhD6Iork5QFOnwB5n+idw4TESWLFlisVg8UikAAAAAAJrUiGC0devWjvHOnTt1rAQAvNzar1aXpCeJiAx4uHJnDpgmIklJSV9++WU11AUAAAAAgJvViGC0bMOsc+fOuZgJAKhWb731lohIo5bS8ZbKndlxkES0uXIFAAAAAABqthoRjKanpzvGRUVFOlYCAN7sp59+2rRpk4jIwIdFqeRfEIoisVNFZOPGjYcPH66G6gAAAAAAcKcaEYxu27bNMW7UqJGOlQCAN3vrrbdUVRUff+lzX1XO7/uA+AaIyDvvvOPmygAAAAAAcDf9g9GSkpLFixc7XjZu3FjHYgDAaxUUFCxbtkxEpOc4qRdalUsEBEuPsSKy6N0P/rUzd3eaalXdWiIAAAAAAO5j0vfjLRbL1KlTf/nlF8eRgQMH6lgPAHit5cuXZ2Zmioj0n1b1q/zhEUn8sDQ/+/H/fCT9ptT3kRtDlW4NL//TKcTlA+4BAAAAAPAg3YLRwsLCNWvWzJs378CBA46D1113Xa9evfQqCQC82c6dO0VEgiKlebeqX6XpTRIUKdmX5NRO6Tclr1QSk9XE5MsLRyP9pUcjw82NlJvDlR4NlRCzO+oGAAAAAKBKtAajL7zwwsGDByt1Sn5+flJS0pEjR0pLS696a968eSaTzotYAcA7xcTEvPvuu5J9SU78IK2q+juqE9sl+5KISOuY3795qVDWnLWtOXv5ZVSAdGuo9I0wxEQo3Roq/tz+AQAAAAAepPXH0ISEhA0bNrillAkTJkyYMMEtlwIAVNa4ceMeffTR9PR02fx21YPRTW+LiASESPcx5c69WCBrz6prz1pFxGSQtg0u77jvG6lEhykGtt0DAAAAAKqT/g9fEhGDwTBz5sz333/fYKgR9QCAF/L393/ggQdERHZ9JrkpVblEXprsWSUi0m+y/fH0FWexyZEsddlx26wfrN1XW4KXlv7ha8v/7bR+cdp2Lp9HOAEAAAAA3E/njYs+Pj7Dhw9/7LHHevfurW8lAICHH374tddes1lKZOsHMvTxSp+f8J6UFomiSOwUjZXklsqmi+qmi5cj0aiAX5uTNlJ6NFKCfTVeHgAAAAAAzcFo165dK3tKYGBgUFBQs2bNunbt2rt370aNGmmsAQDgFq1atRo8eHBcXJxsXixD/iYGYyVOVm2y5T0RkU5DJLy1ewu7WCBfnbF9debyy6gAcXQmpTkpAAAAAKBqtP40+fLLL7ulDgBATTB9+vS4uDjJOCeH4qTLsEqceWC9pJ0WERkwrXpKu+JigXx6yvbpKRGakwIAAAAAqoplNgCAK4YNG9asWbMzZ87I5iWVC0bjl4hI4+ubzXtk2N5Mw+40dWeqWmKrrjod7M1Jj2Spy46LiNT3kRtDL+ek3RoqnUJISQEAAAAA10YwCgC4wmg0Tps27cknn5RDcfLGMBnwsHS53dWeeptVDqyTzW/LkQ0i8qfp0+5v73O/iIiU2uRAhrr1kro7Td2dph7NUj3wEKW8UklMVhOTrzQndYSkfSIMYebqrwAAAAAAUEsoqid+UEXd4efnV1xcLCJFRUVms24ZQ3Z2dnFxcXh4uF4FAHVYampq9+4G4egpAAAgAElEQVTdz549e/l16PUSO1X6TZYGEb+Zl5MsW/4rCe9Kxjn7gaZNm+7atctZ5+jsEjmYoSYmq1uTbTtS1ZTCavwjOENzUtReKSkpZrM5KChI70IA75Kbm5uXlxcVFaV3IYB3sVgsqampwcHB/v7+etcCeJe0tDSDwRAaGqp3IZ5DMIrKIRgFvEF6evp77723ePHikydPXj5k8pWuo2XANGnTV37ZKpsXy55VYimxv9myZctp06ZNmTIlLCysgh9xoeDyStLEZHVbslpgqY4/hyuO5qR9I5WYCKVDMM1JUaMRjAK6IBgFdEEwCuiFYBQoB8Eo4D1sNltcXNyiRYvWr19vs/3aLrR+mOSl24cGg2Ho0KEzZsy47bbbDAZDlT/IqspPWZdzUo81J71KoI90Cb3yEKeWgaSkqFkIRgFdEIwCuiAYBfRCMAqUg2AU8EKnTp1avHjxf//739TUVPuRRo0aTZ48edq0aS1atHD7x+VbZG/alZzUM81Jr0JzUtQ0BKOALghGAV0QjAJ6IRgFykEwCnit4uLi//3vfxs3brzlllvuuecej90Balpz0u6NFD/nD6MCqgnBKKALglFAFwSjgF4IRq+WkZHx2muveawaEZk7d64nPw6VRTAKeLOSkpL09PSwsDBfX1+9aqA5KbwTwSigC4JRQBcEo4BeCEavdvz48TZt2nisGhGx2WyKwo+YNRfBKODNakIwWlZNa07aL1JpQXNSVA+CUUAXBKOALghGAb14YTBq0rsAAACqyKhIpxClU4hyXxsRnZqT5pZKYrKamHz5o8o2J42JMITSnBQAAAAAaiqCUQBAHVHPJH0jlb6Rl9dsZpXIrlR1a7Jtd5r6Y4qaWuSJGi4WyNqz6tqz9pzU2jJQsXcmpTkpAAAAANQ05QSjPj4+zZo180wpduyjBwC4RbCv3NpEubXJ5TDS3pw0MVndekndm+6h5qQnc9WTueqy4yIiPgZp0+ByZ9JuDWlOCgAAAAA6KycYbdas2enTpz1SCQAA1ahxgNK4qTKiqYiIxSY/Z1/ZdL8jVS2t/uakpTY5kqUeyVKX/CRCc1IAAAAA0Btb6QEAXsdk+E1z0rxS2ZdOc1IAAAAA8C4EowAAb1ffh+akAAAAAOB1CEYBAPgNF81J96SrhTQnBQAAAIA6gWAUAABXnDUnTUxW96Wr1urfdX9Vc9IGPnJDqNKtodI3UukXaYj0r/YCAAAAAKBOIhgFAKCiXDcnPZLlgd6kkvNrc9J/HxYRa9nmpH0jDCE0JwUAAACAiiEYBQCgiq5qTnqpUHam2uwh6Q8paprezUl7NFLMNCcFAAAAACeqJRi1WCyHDh3atm3bzp07U1NTs7KycnJy/Pz8QkJCQkNDO3fu3KdPnx49etSvX786Ph0AAF1E+suIpgb7pnupec1JO4Yo9CYFAAAAAAc3B6MpKSnvv//+okWLzp4963qm2Wz+4x//OHv27F69erm3BgAAagIXzUn3pqs2XZuTxkYaImhOCgAAAMC7Karqtp/Mli5d+qc//Sk3N7dSZ02cOHHRokWsHq0t/Pz8iouLRaSoqMhs1q2VXXZ2dnFxcXh4uF4FAN6ppKQkPT09LCzM19dX71pqN12ak16F5qS1S0pKitlsDgoK0rsQwLvk5ubm5eVFRUXpXQjgXSwWS2pqanBwsL8/v8gFPCotLc1gMISGhupdiOe4Z8WoxWKZMGHCypUrq3DusmXLtm/f/s0337Rs2dItxQAAUMNd1Zz0YoHsStOzOalRsbYLUhw5Kc1JAQAAAHgDNwSjqqpOmTLFWSoaGBjYqFGj+vXr5+fn5+bmpqWl2Wy2q+YcP358yJAhW7dujYiI0F4PAAC1S1TA1c1J7Z1Jd6d5qDmpVb286d7RnLRL6JWHONGcFAAAAECd5IZgdMGCBUuXLi17xN/ff/To0WPHju3evft1111X9q3c3Nx9+/atW7fuo48+OnfunOP48ePH77777k2bNmmvBwCAWq1xgDK2hTK2hUiZ5qT2qPSnbA81J7UvX7W/pDkpAAAAgDpJa4/RjIyM1q1bZ2ZmOo7cc8898+fPb9y4sesTS0tL//Of/zz77LNle5KuWrVq1KhRWupBdaPHKODN6DGqu9xS2V+TmpP2izQE89+CR9BjFNAFPUYBXdBjFNALPUYr7c0333SkooqivPrqq3/9618rcqKPj89f//rXAQMG3HbbbSkpKfaDL7zwAsEoAADOBDpvTro9WU0v9kQNNCcFAAAAUDdoDUa//PJLx3jWrFkVTEUdoqOjv/jii9jYWHvj0T179pw9e7Zp06blnggAAFw0J92dphZZq70AmpMCAAAAqL00BaMpKSl79uyxj4ODg+fOnVuFi8TExNx1110ff/yx/eW33347depULVUBAOCdalpz0iBf6Ryi9I1UYiKUno0M4WyGAwAAAFCTaApGT5486WhRescddwQEBFTtOvfee68jGD1x4oSWkgAAgIiYDNIpROkUotzXRuS3zUm3Jquncj3RnDS7RBKT1cRk+2dZHc1J+0YYekco9dzwAEgAAAAAqDqtK0Yd4xtuuKHK1+nSpcs1rwkAANziquakFwquPMFJj+akNqMiZZuT3hyu+Bo8UQMAAAAAOGgKRss+UD4kJKTK1yl7bnZ2tpaSAABAuRoHKI2bKo7mpCdzr3QmpTkpAAAAAC+hKRgtG2impqZW+TplV4k2bNhQS0kAAKCyWgYqLQMvb7qnOSkAAAAAL6EpGG3UqJFjvGvXripfZ/fu3Y4xwSgAADqq4c1J+0QoATQnBQAAAOAOmn62aNOmjclkslgsIrJmzZr09PSwsLAqXGfp0qWOcYcOHbSUBAAA3MhFc9JtyWoGzUkBAAAA1FqagtHg4OA+ffokJCSISEFBwcyZMz/66KPKXuTLL79ct26dfWw0GocMGaKlJAAAUH1qWnPSeia5KexKTkpzUgAAAAAVp3U32ujRo+3BqIisWLEiPDz8tddeUyr8U8mmTZsmTpzoeNm3b1+20gMAUFuUbU5aapNj2Zc7k+5O81Bz0nxL2U33EuQrPRpdfohTr3BDI79qLwAAAABA7aWoqqafWgoKCtq1a3f+/HnHkdjY2IULF3bp0sX1iTk5OXPnzl2wYEFJSYnjYEJCQr9+/bTUg+rm5+dXXFwsIkVFRWazWa8ysrOzi4uLw8PD9SoA8E4lJSX2rim+vr5614KaLqdUDqRffojTlku2S4U61FCXmpOmpKSYzeagoCC9CwG8S25ubl5eXlRUlN6FAN7FYrGkpqYGBwf7+/MERsCj0tLSDAZDaGio3oV4jtZgVERWrFgxfvz431xUUfr06TN27Nju3bu3b9/e0Xi0oKDg5MmT+/bti4uLW716dX5+ftmz7rrrrpUrV2osBtWNYBTwZgSjqDJdmpOWZTJI2wa1uDkpwSigC4JRQBcEo4BevDAYdcPaiXvvvffIkSPz5s1zHFFVNTExMTEx0XEkODg4Ly/P/pima7r55pvfe+897cUAAIAayEVz0l1panH1Nye12GhOCgAAAOA33LOp7IUXXrBara+88orNZrvmhKysLBen9+3bd9WqVfXr13dLMQAAoIarac1Jg32lO81JAQAAAC/jnmBUUZR//vOfgwcPnjx58unTpyt+or+//7PPPvvoo48ajUa3VAIAAGoXH4N0ClE6hSgPtRfRqTlpVolsSFI3JNlzUqu9OWnfCENMhNK1Ye1uTgoAAADAGXd+0x84cOCxY8dWrVq1aNGirVu3Wq2u9sW1bt36wQcfnDJliqMDKQAAQAMf6Rup9I1U/tJZRIxlm5MmJquZHmlOerFA1p5V1561ym+bk/aNVG4KU4zsugcAAADqBDc8fOma8vLydu7cuWPHjpSUlMzMzLy8PLPZHBISEhIS0qVLl969ezdu3Lg6PhfVjYcvAd6Mhy9BX1ZVfsq6kpN6pjnpVer7yI2hV5qTdgqp9pT04MGDixYt+vzzzwMDA6dMmTJ16lT++gM8hocvAbrg4UuAXrzw4UvVFYyiriIYBbwZwShqlFKbHMi48hCno1k6fKcp25y0d7ihofuak5aUlHzxxReLFi3asmVL2eO+vr5jxoyZMWNG37593fZhAJwgGAV0QTAK6IVgFCgHwSjgzQhGUZOVbU6acMmW7JHmpFcp25y0W0PFv0oti86ePbtkyZJ33303OTn58iFzfbl5nGRdkEPfiHr5QZddunSZMWPG+PHjeXwlUH0IRgFdEIwCeiEYBcpBMAp4M4JR1CK6NCct66rmpNFhiqG8bfcnTpx49NFH16xZc6VRe1R7GfCw9J4g/g1ERFJPScI7svUDyUuzv9+gQYMHHnjgpZde8vNz32pVAL8iGAV0QTAK6IVgFCgHwSjgzQhGUUvViuakqqp27tz5yJEjIiJGH4n+o/SfJu36i/K7PLW0SHZ9LpvflpM/2g/MnDlzwYIF1f5nALwPwSigC4JRQC8Eo55gtVrPnj2bkZERGhrauHFjHcM1VAHBKODNCEZRN9SE5qT2Tff2f+zNSTds2DBo0CARkVv+JLc9JsEVCGLO7pVPn5CfNjdo0OD8+fOBgYHVXTbgbQhGAV0QjAJ68cJgtEq9r6rq3LlzL7zwwueff56RkWE/Uq9evVGjRj399NPt2rXzZCUAAMBr+Rguh5L2l9klcjBDTUxWtybbdqaqnmlOerFA1p5V1561R7LWqAAxvPWmiEhQlIx9WYw+FbpK02i5a778o3tOTs7y5cunT59efQUDAAAAdY/WFaNZWVmDBg2yX8TX1/ebb75xtlph+/btI0aMSE9P//1b/v7+ixcvnjhxopZK4BmsGAW8GStG4Q3KNifdeknNKvHIp2aclzltxWaREU/LH5+u3LkvxcqJHzp27Hjo0CHl9/vuAWjAilFAF6wYBfTCitFK+/LLL3ft2mUfT5gwwVkqmpSUNGrUqGumoiJSWFj4wAMPBAcHjxgxQmM9AAAAWjQOUBo3VUY0FRGx2ORIlrojVd2Rqu5IUQ9nqRZb9Xxqwrtis4jBJLFTKn1u/2ly4ocjR45s3bq1X79+1VAcAAAAUDcZNJ6/fv16x3jy5MnOpj355JMpKSkurmO1Wh988MHs7GyN9QAAALiLySBdQpWp7QxL+hr33WHKvs9ny3DTqz2Nd7cytAh039pMa6kkvi8iEv1HCW5c6dN73CmB4SLy1ltvua0kAAAAwAtoDUZ//PHy41BDQkKcLVI4ffr0Rx995HhpNpv/9Kc/ffLJJ8uXL7/77rsdx5OTk1999VWN9QAAAFSTAJP0jVRm32D430DjyXGmrPt8tgw3vdTDOLypEq5lq9+eVZJ1UURkwLSqnG4yS9/7ReSzzz67cOGChjoAAAAA76IpGM3Ozj59+rR9HBMTYzJde2P+smXLrFbr5c8zGL766quFCxeOHTt2/Pjx//vf//7zn/84Zi5dutRmq6YtagAAAO4U5Ct9I5UnbjSsGWxKHu+TdK/pq8HGZ7sabm2iBFSqWdHmxSIiUe2l3YAqljJgmhiMpaWl77//fhWvAAAAAHgfTcGoIxUVkS5dujib9vnnnzvGd9111+DBg8u++8gjj8TExNjHZ86c2bdvn5aSAAAAdNE4QBnR1PBcV+N3Q005k3wOjTF92N84s5MhJkLxdfGFK/kXObZFRKT/Q1LlRyeFXi+dh4jIu+++W8UrAAAAAN5H08OXkpKSHOMWLVpcc05aWtrBgwcdL6dMucYjBe6///7ExET7eO/evV27dtVSFQAAgL6MinQKUTqFKPe1ERHJt8ietF8f4pSqns5Vr0wtyLw8CLlO00eGXCcimZmZ5U4EAAAAYKcpGM3Pz3eMGzRocM05W7ZsceyODwgIuGYf0rJJ6JEjR7SUBAAAUNPUM0m/SKVf5OUFodklcjBDTUxWtybbdvj1SAlvLSnHJeEd6Tqqih9QlCs7PhaRst3bAQAAALimaSt9YWGhY+yswei2bdsc4379+pnN5t/PiYyMdIxZ6QAAAOq23zQnneD795lTRUSObJDkX6p4xe3LpTBHRB566CH3lQkAAADUcZqCUT8/P8c4JSXlmnM2b97sGN96663XnBMeHq782lQrJydHS0kAAAC1y18fnurn5yeqKvHvVPES8e+ISExMDP2IAAAAgIrTFIwGBgY6xtcMRtPS0vbs2eN42b9//2tep7S0VFUvN9tytvIUAACgTgoLC7vrrrtERBI/kOL8cmb/3rEESTokIj3ufNjNlQEAAAB1mqZg9Prrr3eMr9kb9LvvvnM0GK1fv/5NN910zeuU3T5fNmwFAADwBjNmzBARKciSnZ9U+uTNi0VE6jdc6DdyyU82N1cGAAAA1F2agtH27ds7dtPHxcX9fhf822+/7RjHxsb6+Phc8zqnT592jCMiIrSUBAAAUOv07Nmze/fuIiLfL6rcmdmXZO+XIiKxU6wmv4e3Wp/bY3V/fQAAAEBdpCkYNZlMsbGx9nF2dvacOXPKvvvdd98lJCQ4Xg4bNszZdcput2/VqpWWkgAAAGqj6dOni4ic2y8Hvq7oOTaLfPOaWErEYJTYqSKiijy/xzZzu9WmVluhAAAAQF2hKRgVkYkTJzrGixYtGj58+Keffvr999/PmzdvzJgxjrfMZvO4ceOcXeSHH35wjNu3b6+xJAAAgFrn7rvvDgkJERFZOFrm9ZHED6W00Ons7Iuydp78Xxv57g0Rkc63SVgzx5sLD9vui7eWsqseAAAAcElxPPWoaiwWS/fu3ffv3+962qxZs15//fVrvlVcXBwREZGdnS0iPj4+2dnZ/v7+WkpCtfLz8ysuLhaRoqIis9msVxnZ2dnFxcXh4eF6FQB4p5KSkvT09LCwMF9fX71rAeqgzz777MEHH8zKyrr8ul6oxEyS/g9JeJn9NMcSZNPbsvdLsZZePhLZVv68WsJbX3W1W5soq2411b92HyMAFZKbm5uXlxcVFaV3IYB3sVgsqampwcHBhAOAh6WlpRkMhtDQUL0L8RytK0ZNJtO7775bv359F3OaN2/+9NNPO3s3Li7OnoqKSHR0NDc+AADgne68886kpKR33nknOjpaRCQ/Q759XZ7qJG8Ml71fyaa35Nmb5F+3yq7PxFoqBqPcOFxmrZV/HPh9KioiG5LUW9ZZ0oo8/acAAAAAagutwaiIdO/efd26dU2aNLnmu61bt/76669dhM1vvvmmYzxo0CDt9QAAANRSAQEBU6dO3bNnz/bt2ydOnGg2m0W1yeFvZdGdsuIvcuGIiISHh8+ZM2f+xl9MM7+QToNFcfp1bkeq2n+t5Xw+DUcBAACAa3BDMCoi/fr1O3LkyMsvv9y7d++wsDARadCgQUxMzGuvvbZv376OHTs6O3Hfvn3fffed4+XQoUPdUg8AAECt1qtXr6VLl54/f/6ll15q0aKF/WBMTMxHH3107ty5F1988W8DWnx6i9HPWM51jmSpfddYf84mGwUAAACuprXHqEbJycnnz593vLzpppuMxvK+4ENX9BgFvBk9RgFd2Gy29evXN2zYsGfPnle9temiOupbS07pNc+7ItQsXw8x9QpXqqtEoI6ixyigC3qMAnrxwh6jJn0/PiIiIiIiQt8aAAAAajKDwdCjR49r/j5yYJTy/TDT7d9YUpw/wV5EMorl1nWWLwaZBjchGwUAAAAuc89WegAAAOiiW0Nl+x9NrRqUk3jmW2TEN5ZPTto8UxUAAABQ8xGMAgAA1G4tA5Utw003hpaTjZbY5N5N1rePko0CAAAAIgSjAAAAdUBUgGwaZoqJKCcbtaoyPdH6fzutnqkKAAAAqMmqscdofn7+gQMHkpKSsrOzs7Ky6tWrFxwcHBYWdsMNN0RGRlbf5wIAAHihELN8O9Q0dqNl3blyHq358n5bXqn8u7fRQMdRAAAAeDH3B6OnT59+77331qxZc/jwYYvFcs05TZs2HThw4OTJk2NjY91eAAAAgHcKMMmXg0zTtlr/e6yc/fJvHrFdLJAVA41mo2dKAwAAAGocd26lP3/+/JgxY1q1ajV37tz9+/c7S0VF5OzZsx9++GH//v07d+68ceNGN9YAAADgzUwGeTfW+OgN5X/H++K07fZvLLmlHigKAAAAqIncFox+8MEHnTp1+uKLL2y2SnT0P3z48KBBg6ZOnVpUVOSuSgAAALyZIvKvnsaXehjL3Sj//QX1lnWWVL6FAQAAwCu5Jxj917/+NXny5JycnCqcq6rqe++9N3To0Ly8PLcUAwAAgCduNLzf32gq77vezlS1/1rL2bxy2pICAAAAdY8beoy+//77jz/++FUHmzZtOnLkyOjo6A4dOgQHB5vNZpvNlpWVdebMmf3793/33Xc//PCDql75Cr558+YJEyasXr1aez0AAAAQkUltDCG+cvcma6HT/kYiIkez1N5fWeNuM94QysOYAAAA4EWUsulkFVy4cKFTp05ZWVmOI506dXr11VcHDRpkMLhaonDixImnn376448/LlvAihUr7rnnHi31oLr5+fkVFxeLSFFRkdls1quM7Ozs4uLi8PBwvQoAvFNJSUl6enpYWJivr6/etQDeJSUlxWw2BwUFVeHc+IvqyO8s2SXlTAs1y5rBpj4RZKPAFbm5uXl5eVFRUXoXAngXi8WSmpoaHBzs7++vdy2Ad0lLSzMYDKGhoXoX4jlat9LPnz+/bCr64IMP7tu3b8iQIa5TURFp1arVihUrPvvsMz8/P8fBp556SmNQCwAAgLL6RylbR5gaB5STeGYUy+D1lrjzfBMDAACAt9AUjNpstpUrVzpejh8/fsmSJSZTJbbn33HHHStWrHC8PHny5I4dO7SUBAAAgKt0DlG2jjC2blBONppvkZHfWj4+UYkHaQIAAAC1l6Zg9MiRIxcuXLCPg4KCFi5cWIWLjB49etSoUY6XGzZs0FISAAAAfq9FoLJlhOmmsHKy0RKb3LvJ+tpBslEAAADUfZqC0aSkJMd4zJgxISEhVbvO5MmTr3lNAAAAuEukv2waZuoXWU42qor87Ufr/+20eqYqAAAAQC+agtHU1FTH+Oabb67ydXr06OEYp6SkaCkJAAAAzgT7yndDTXc0L/8b4Mv7bTMSrTY6jgIAAKDu0hSMln1uUqNGjap8nUaNGinK5cULPHUOAACg+piN8sktxqntyv8S+NZR25gN1iJWjgIAAKCO0hSMNmvWzDHOyMio8nUyMjIcD6Nv2rSplpIAAADgmlGRJf2Mj3cp/3vg6jO22+MsOaUeKAoAAADwNE3BaOfOnR0LPA8cOFDl65Q9t1u3blpKAgAAQLkUkZdvNr7Ry1hOw1GRTRfVP3xtSS3yRFUAAACAJ2kKRv39/YcOHWoff/LJJ0VFVfzK/NFHH9kH9evXHzRokJaSAAAAUEF/6Wz4cIDRp7zvg7vT1N5fWU7k0HAUAAAAdYqmYFREHnvsMXt70OTk5GeeeaYKV0hMTFy6dKl9/NBDDwUGBmosCQAAABU0sbXh81uN/qZypp3IUfuttRzIIBsFAABA3aE1GO3Vq9cjjzxiH8+fP3/+/PmVOn337t2jR4+2Wq0i0qZNm+eee05jPQAAAKiUEU0N399uCjOXM+1igQz42pKYTDYKAACAOkJrMCoir7/++pgxY0REVdXHHnts5MiRv/zyS7ln5efnP/fcc7GxsampqSLSvHnz9evXs1wUAADA83qFK/HDTU3qldNxNLNYBq+3rDtHNgoAAIC6wA3BqMlk+uSTT/7xj3/4+vqKyFdffdW+ffsBAwa88cYbmzdvTklJKSkpERFVVTMzM/fu3fvhhx9OnDgxMjLy+eefLygoEJHhw4f/+OOPrVq10l4MAAAAqqBTiLJ1uLFNUDnZaIFFRn5nef+YzTNVAQAAANWnnIZSp06dqvhj4lX18vIBm80WHx8fHx/veMtoNNr3y19TYmJi+/bt7eP09HR701IAAAB4UvNAZctw09A4y950V2tCLTaZkmBNL5ZHb3DDr9gBAAAAvZQTjFqt1szMTO0f4yIVFRG3fAQAAAA0ivCXhOGmOzZYvktylY2qIo/9aE0rUv/Zw8gvtAEAAFBL8Xt+AAAAXFHfR9YMNt3ZovxviS/vtz0Qb7Wwqx4AAAC1E8EoAAAAfsNslI//YHywfflfFD/8xXbnRmuhxQNFAQAAAG5Wzlb6sLCwl156yTOl2NFgFAAAQHdGRRb3NTYOkOf3lLMi9Mszttu/UVcPMgX5eqY0AAAAwD3KCUZDQkKeeOIJz5QCAACAmkMRea6rMcyszPrBanPVcVQ2X1T7rbXE3WZsHMBvuAEAAFBrsJUeAAAATv25k+HD/kaf8r4zHsxQ+62x/j979x0fVZ3vf/x7SjIphFRCbwpEugUQMICBBBII6KJBZbEugiAq7t4r3PX+hN31XsGOrCJgxRVFEBUSQu9VBQUpoQZUIKSSQpJJzjnz+2O8I0vJgZzJTJJ5Pf/xOzPf850PD//5zjvfcqyoygAVAAAAqE0IRgEAAFCVMe3krxLUIJONRuJEsaPfcu3HPLJRAAAA1A0EowAAADAxrKW0YZgaaTPpllUm4tK0rVlkowAAAKgDCEYBAABgrlcjafNwtUWwySmi5ytEfLq29KTJlU0AAACA1xGMAgAA4Jp0CpO2DldiQk2yUbsuRq3T3z9MNgoAAIBajWAUAAAA16p1A2n7CLV3tEk2qjvE41v0l/eRjQIAAKD2IhgFAADAdYiwiTVJ6uDmJtmoQ4gp3+rP7NA5cBQAAAC1k9n1otdP1/X9+/fv2rUrMzOzsLDw/PnzmqZd++OLFi2SJJN5NgAAALyogZ9YPkR9cKP+xQmTNaFvHTDOV4j3+ykqf44HAABALePOYPT48eNvv/32hx9+eP78+WoPsmjRIjeWBAAAgJrgL4uFcUq4v5ibYZKNLjhqFNjFooFKoPv/Ig8AAABUn3v+du9wOEVW63cAACAASURBVGbNmtWpU6c33njDSioKAACAukKRxLuxyoyeimnP5T8biSu1wgoPFAUAAABcK/cEo+PHj588eXJFBbNdAAAA3zKlu/zPvopsdhLS5ixH7HLt9AVOHAUAAEBt4YYdTbNnz54/f/7F78iyHBMTEx0dvWvXrvLyciFEq1atOnToUFhYmJOTc+rUKYfj3+bEffv2DQoKsl4JAAAAPO/JTnK4TTyySa+sclf9/gJHv1R9VaLSPpQD5QEAAOB9VleMFhQUPP/8866X/v7+f/3rX8+ePXvw4MGNGzc2adLE+f7IkSPXrFnz7bffZmZmZmdnL1q0KC4uzvVUfn7+rFmz1qxZs2bNGm5eAgAAqHNG3yinJ6ohfibdMosd/VK1H/JYNwoAAADvsxqMvvPOO8XFxc62n5/fV1999T//8z/R0dFVPBIVFTVq1Kj169cvW7ascePGQoiMjIx+/frt27fPYjEAAADwlkHNpHVD1agAk27nykT/VG3tabJRAAAAeJnVYPTrr792tZ9//vmhQ4de+7PDhw/ftm1bs2bNhBD5+fl33XWXK2MFAABAndOzkbQ5WW0ZbLIBqKRSJK/WlmSaXGcPAAAA1ChLwWhxcfGPP/7obDdo0ODZZ5+93hFuvPHGJUuWOLfPnzx58sUXX7RSDwAAALyrY5i08y6la4RJNmrXxf3r9fkZZKMAAADwGkvB6MGDBzVNc7YTEhIaNmx4tZ6ubpfr06dPSkqKsz1v3ryysjIrJQEAAMC7mgVJG4epfaJNslHdIcZv1afv0T1TFQAAAHAJS8Fofn6+q33bbbdV0dNut1fx6f333+9snD9/fvPmzVZKAgAAgNdF2MSaoWpiC5Ns1CHE3/YYz+zQDU4cBQAAgMdZCkYLCgpc7SteuBQQ8Nvx+6WlpVWMc/vtt7va33//vZWSAAAAUBsEq+Kbwer9N5rPNt86YDy8Sa9kVz0AAAA8y1IwKsu/P+7KQC8WEhLibJw5c6aKcaKjo53HjAohTpw4YaUkAAAA1BL+slgYpzzbxXzC+a9jxsi1WulVz14CAAAA3M9SMHrxoaJFRUVVdDh16lQV42ia5nA4qhgHAAAAdZEkxOu9lRk9FdOeqT87Bq7Q8qo6fgkAAABwJ0vBaLNmzVzti7fVu7Rv397ZyMzMzM3Nvdo4x44dc7VVVbVSEgAAAGqbKd3lt/sqssmJo2JXtqP/cu3XCxw4CgAAAE+wFIzGxMS4dtMfOHDg8g5dunRxNhwOR3p6+tXGSUtLc7WjoqKslAQAAIBaaGIneckgJcBs5ejB845+qfqRQrJRAAAA1DhLwWhgYGBMTIyz/eOPP17eoX///q72q6++esW76XNycl5//XXXS1eWCgAAgPrkD23ktCFqQz+TbieLHf1TtT25ZKMAAACoWZaCUXFR9Hn48OGTJ09e8mnXrl07derkbO/bt++Pf/xjYWHhxR2OHTs2ePDg7Oxs1zsDBw60WBIAAABqp4HNpHXD1EZXuLPz35wrEwPStNWnyUYBAABQg6wGo3Fxcc6Gw+FYunTp5R0mTZrkan/55Zdt2rQZPXr0Cy+88PzzzycnJ3fu3PnipaZDhgxxHUsKAACA+qdHlLQ5WW3VwOTA0ZJKMXyVtjjT8ExVAAAA8EGS6zr46ikuLm7cuHFZWZkQIiYm5uDBg65TR510Xe/Ro8cVN9pfIiAgYMeOHTfffLOVelDTAgICnEcilJeX22w2b5VRWFhot9ujo6O9VQDgmyoqKvLy8iIjI/39/b1dC+BbsrOzbTZbaGiotwtxm7OlInGlti/fZCKqSOLtO5TxN1n9Wz5QPcXFxSUlJU2bNvV2IYBv0TQtJycnLCwsMDDQ27UAviU3N1eW5YiICG8X4jlWZ5khISH33HNPeHh4eHh4dnb2ypUrL+mgKMpXX33VqlWrqsdRVXXu3LmkogAAAL6gaZDYOEy9o7HJulHdIZ7Yqk/9TvdMVQAAAPApbvjz+yeffJL/f4YOHXp5hzZt2mzevHnYsGFXG6FNmzZpaWkPPfSQ9WIAAABQJ4TbxOokNamlSTYqhJi513hqu25w4igAAADcSvXM17Ru3To1NXX79u1ff/31zp07s7OzS0pKoqKiunTpMnTo0HvvvZddmQAAAL4mSBXLEtRxW/UPj5icJfrPg0a+XXw0QPFjVz0AAADcxEPBqFPfvn379u3ryW8EAABAbabK4v3+SoRNvPaTSTa68LhxrszxVYIa4ueZ0gAAAFDP8Td3AAAAeJMkxKu3KzN6KqY9151xDFqh5ZZ7oCgAAADUfwSjAAAA8L4p3eUP+yuq2eT0uxxH/1TtlwscOAoAAACrCEYBAABQKzzSQV4ySAkwWzl66Lyj33L9cCHZKAAAACwhGAUAAEBtcVdrOT1RbWh2iuipEkffZdqObLJRAAAAVB/BKAAAAGqRO5tK64ep0YEm3fLtImGFtupXslEAAABUE8EoAAAAapfboqQdI9R2DaWqu13QxIjV2qITJtfZAwAAAFdEMAoAAIBa54YQactwtXuESTZaYYgH1utv7icbBQAAwHUjGAUAAEBt1CRQbExWY5uYZKMOIZ7dqU/9TvdMVQAAAKg3CEYBAABQS4X5i1WJ6rCWJtmoEGLmXuPJ7brBiaMAAAC4ZgSjAAAAqL2CVPHNYPWxDuaz1ncOGveu08tZOQoAAIBrQzAKAACAWk2RxHv9lf/sZj5x/eqkMWyVVlzpgaIAAABQ5xGMAgAAoLaThHi5l/Jmb8V0U/36M46BaVpOuSeqAgAAQJ1GMAoAAIC64Zku8kcDFNVsAvt9rqN/qvZzCQeOAgAAoCoEowAAAKgzHmovfzlICVRNumWcd/Repv2UTzYKAACAqyIYBQAAQF0yorWcPkQN9TfpdrZUDEjTtp8jGwUAAMCVEYwCAACgjhnQVNo6XG0WZHLiaIFdDE7X0n8hGwUAAMAVEIwCAACg7ukSLm0drrQPNclGL2ji7jXaZ8cNz1QFAACAOoRgFAAAAHVS2xBpc7J6c6RJNlphiD9u0F//iWwUAAAA/8ZqMGq3291SBwAAAHC9mgSKDcPUfk1MslGHEH/ZpU/9TvdMVQAAAKgTrAajI0eOHDVq1Nq1ax0ODm8CAACAp4X5izVJ6j1tzae1M/caj27WNVaOAgAAQAhhPRitqKhYvHhxQkJCTEzMzJkzc3Jy3FIWAAAAcI1silg0UBkbYz6z/eiIkbJOL2flKAAAANx4xujRo0enTp3asmVLFpACAADAwxRJzOunTLvVfHL79Slj6EqtqNIDRQEAAKBWc/PlS3a73bmAtGPHjjNnzszNzXXv+AAAAMAVSUJMv1V5s7cim5w4KjacdQxM07LLPFIWAAAAaiurweidd94ZEhJy+fuHDx92LiB9+OGHt23bZvFbAAAAgGvxTBf54wGKn9kkd3euo88y7XgRm5wAAAB8l9Vg9Pnnnz99+vTcuXPvuOOOyz8tLy9fsGBBbGyscwFpXl6exa8DAAAAqjamnbw0Xg1UTbqdKHb0S9X25pONAgAA+Cg3bKUPCQkZN27c1q1b9+/fP2XKlPDw8Mv7ZGRkTJ06tUWLFs4TSK1/KQAAAHA1ya2kDUPVSJtJt7OlIi5N25pFNgoAAOCL3HnGaOfOnWfMmHH69OkvvvgiPj7+8g7l5eXOE0g7deo0c+bM/Px8N347AAAA4HJ7tLQpWW0ebHLgaIFdDFmprfiFbBQAAMDnuPnyJSFEYGBgSkrKmjVrDhw4cLUFpIcOHZo6dWrz5s1ZQAoAAIAa0jlc2pqsdAg1yUZLNXHXGu2DI4ZnqgIAAEAt4f5g1KVTp04zZsw4c+aM6QLSzp07z5w5s6CgoOaKAQAAgA9qEyJtTlZvjTLJRjVDjN2sv7KPbBQAAMCH1GAw6hQQEHDxAtKIiIjL+xw8eHDq1KnNmjUbNWoUV9gDAADAjRoHik3D1ITmJtmoQ4jnvtWf2aGzqR4AAMBH1Hgw6uJcQHrq1Kn58+f37Nnz8g7OBaSxsbE9evR47733SktLPVYbAAAA6rEGfmL5YDWlrfnU960DxqObdI2VowAAAD7Ac8GoU4MGDcaOHfvtt9/u2bNn/PjxiqJc3mf37t2PP/54ixYtnnvuuXPnznm4QgAAANQ/NkV8NlAZd5P57Pfjo8Y96/QyzQNFAQAAwJs8HYw6nTt3bvXq1evWrdN1/Wp9CgoKXnnllRtvvHHatGl2u92T5QEAAKD+USTxbqwy7VbzCfCyU0bSKq2wwgNFAQAAwGs8Gow6HI61a9eOGjWqVatWU6dOPXbsmOkjFy5c+Pvf/96rV69ff/3VAxUCAACgHpOEmH6r8lYfRTY5cVRsOuuIXa6dKeXEUQAAgHrLQ8HouXPnZs6c2b59+4SEhMWLF1dUXPr39+bNm0+bNu3gwYOzZ8/u1q3bJZ/u27cvPj6eU0cBAABg3VOd5QUDFD+zifD+Akfscv1YEdkoAABA/VSzwahhGGvWrElJSXEuET1+/PglHSRJio+P//LLL0+ePDl9+vSOHTtOmjRp796969atS05OluXfyzt8+PCsWbNqtFoAAAD4iD+2k1cMURv4mXTLLHb0W679mEc2CgAAUA/VVDB67ty5GTNmdOjQYfDgwUuWLLl8iWhERMSf//znjIyMNWvWjBw5UlXViz8dOHDg8uXLd+zY0a5dO9ebCxYsqKFqAQAA4Gvim0vrhqpRASbdsspEXJq2JYtsFAAAoL5RzbtcD8Mw1q1bN2/evG+++aaysvKKfXr16jVhwoT77rsvMDCw6tF69eqVlpbWuXNnTdOEEIcPHy4qKmrYsKF7awYAAIBv6tVI2pSsDknXf71QVe55vkIkpGuf3qnc09Y7N5cCAACgJrhtbpeVlfXSSy+1b9/euUT08lQ0KCho7Nix33///a5dux555BHTVNSpQ4cOQ4YMcbYdDkd2dra7CgYAAAA6hUlbhysxoSaXMdl1cd96/b3DhmeqAgAAgAdYXTFqGMbatWvnzZu3bNmyqy0R7dix4xNPPPHQQw+FhYVV4ys6dOiQlpbmbJeXl1e/VgAAAOAyrRtI20eow1ZpO7OrWjeqO8S4LXpeuZjSnXWjAAAA9YHVYHTUqFFffvnlFT/y8/O7++67J0yYcOedd0qSyR/hq8DeeQAAANSoCJtYO1QduUZbfbqqbNQhxNTv9DOljjf7KNWf3QIAAKB2sBqMFhYWXv5ms2bNHnzwwSeffLJly5YWxwcAAAA8IFgVy4eoD27Uvzhhsl/+rQNGgV2831/xY+UoAABAXebOy5dkWU5ISJgwYUJycrKiKO4aNj4+3nUgaZMmTdw1LAAAAHAxf1ksjFMibOLdQybZ6CfHjPMVYtFAJdDNV5kCAADAc9wzlQsLCxs1atTkyZM7duzolgEvFhsbGxsb6/ZhAQAAgEsokphzh9KmgTT1O73qnst/NgaucKQOUSNtnikNAAAAbmY1GO3Ro8dDDz2UkpISEBDgloIAAAAA75rSXW7gJ57eoRtVnTgqdmY7BqRqqxKV5sGcOAoAAFD3WA1GX3rpJbfUAQAAANQeT3aSmwaJ0Rt0e5UrRw8UOGJT9dWJSvtQslEAAIA6hhPjAQAAgCsY2UZeMUQN8TPpdrLY0S9V+yGvysWlAAAAqH0IRgEAAIArG9hMWjdUbWR2ZNS5MtE/VVtzmmwUAACgLiEYBQAAAK6qZyNpU7LaqoHJTvmSSjF8tbYk0+Q6ewAAANQeBKMAAABAVTqGSTtGKF0jTLJRuy7uX6/PzyAbBQAAqBusXr509OjRoqIiN9ShqqGhoWFhYWFhYdZHAwAAANyoWZC0cZg6fLW2/VxV++V1hxi/VT9d6ph+q+Kx2gAAAFA9VoPRiRMnrl271i2lOEVHR/fo0aN3795jxoxp27atG0cGAAAAqi3CJlYnqfeu1Vb+WlU26hDib3uMfLt4s7cic1M9AABALVbrttJnZ2evWLHihRdeaNeu3bBhw/bv3+/tigAAAAAhhAhWxTeD1ftvNJ9Czz5gPLRJr2RXPQAAQC1W64JRF8MwVqxY0bNnz9mzZ3u7FgAAAEAIIfxlsTBO+XNX81n0p8eMP6zRSjUPFAUAAIDqqL3BqFN5efnTTz9NNgoAAIBaQhLitduVGT3NTxFN+8URl6bllnugKAAAAFw3q2eMLliwoKysTAiRmpr617/+9cKFC87327Vrl5iYePPNN7dp0yYsLExV1dLS0oKCggMHDnz//fdpaWmunt26dfvnP/8ZFRVVWFiYl5f3ww8/bNq0ad26dQ7H74c3Pfvss926dRswYIDFagEAAAC3mNJdbugvJm3XjapOHBXf5jgGpGqrkpQWwRw4CgAAULtIF+eP1faPf/xj2rRpzqF69er16quv9uvXr4r+Fy5c+OCDD6ZNm1ZQUCCEaNKkSWpq6m233ebqcOTIkaeeemr16tWud/r06bN9+3brpcKigIAAu90uhCgvL7fZbN4qo7Cw0G63R0dHe6sAwDdVVFTk5eVFRkb6+/t7uxbAt2RnZ9tsttDQUG8Xgkt9fcp4YL1erpt0a91AWpWkxISSjdYxxcXFJSUlTZs29XYhgG/RNC0nJycsLCwwMNDbtQC+JTc3V5bliIgIbxfiOW7YSj979uwXXnjBmYo+99xzO3bsqDoVFUIEBwc/9dRT+/fv79q1qxAiKysrKSnp5MmTrg4dOnRIT0+fOHGi650dO3Zs3LjRerUAAACAu9zdWl6RqDb0M+l2qsTRd5m2M9sNKxIAAADgLlaD0ePHjz/33HPO9rhx42bOnCnL1zpms2bNNmzY0KRJEyFETk7O+PHj/60yWZ41a1afPn1c76SmplqsFgAAAHCvuKbS+mFqowCTbvl2kZCurT5NNgoAAFBbWA1GX3755fLyciFEeHj4yy+/fL2PR0ZGzpw509levXr1zp07L/5UVdW///3vrpebNm2yViwAAADgfrdFSTtGqDc2NNkpX1Iphq/SvjhheKYqAAAAVM1SMKpp2pIlS5ztu+++u3rnXt17773BwcHO9ueff37Jp/Hx8c4lpUKIvXv3uuVEVAAAAMC9bmwobUlWu0WYZKMVhhi9QX/3ENkoAACA91kKRjMyMvLz853tXr16VW+QoKCgzp07O9vbtm27vENsbKyzUVlZWVRUVL1vAQAAAGpU0yCxcZh6R2OTbFR3iAnb9KnfmV3YBAAAgBpmKRg9duyYq92oUaNqj9O4cWNn4/jx45d/2rp1a1fblcMCAAAAtU24TaxOUoe2NL99fuZeY9J23WA3FAAAgPdYCkZLSkpcbStrOQsLC52N4uLiyz8NDw93tSsqKqr9LQAAAEBNC1LFNwnqox3Mp9lvHzQe3KhXsqseAADASywFoxcfKnr48OHqDWIYxpEjRy4f0OXiMDQoKKh63wIAAAB4hiqL9/sr/9HVfKa98LiRtFIrrvRAUQAAALiUpWC0WbNmrvbSpUurdzPStm3bsrKynO2mTZte3uHi7fPVu98JAAAA8CRJiFduV2b0VEw31a874xi0Qsst90RVAAAAuJilYLRjx46uC+WPHj06b9686x3BMIypU6e6Xvbo0ePyPocOHXI2wsPDGzZsWK1KAQAAAE+b0l3+cICims24v8tx9E/VfrnAgaMAAAAeZSkYDQoKGjZsmOvlX/7yl3Xr1l3744ZhTJo0afv27a53UlJSLumj6/qePXuc7Xbt2lkoFgAAAPC0h9vLSwYpAYpJt0PnHb2/0X/KJxsFAADwHEvBqBDiqaeekqTfdghduHAhOTn5H//4R3m5+V6gI0eODB06dM6cOa53OnXqlJCQcEm3zZs3FxQUONtXXE8KAAAA1GZ3tZbTE9VQf5NuZ0odd6ZpO7LJRgEAADzEajAaGxs7duxY18vy8vIXXnihdevWTz/9dHp6+pkzZy7urGnagQMHPv744+Tk5M6dO69ater3OmR53rx5fn5+l4y/cOFCV7tv374WqwUAAAA8786m0pZktVmQyYmj+XaRsEJb+SvZKAAAgCdI1bsx6WLOhaIbN2684qc2my0kJCQ4OLioqOj8+fNX/DpJkt56661JkyZd8n5WVlbbtm2d609VVc3KyoqMjLRYLSwKCAiw2+1CiPLycpvN5q0yCgsL7XZ7dHS0twoAfFNFRUVeXl5kZKS/v9nCJwBulZ2dbbPZuIWyrjtR7BiSrh8rMpl++8vi4wHK/TdaXcEA64qLi0tKSq54QyyAmqNpWk5OTlhYWGBgoLdrAXxLbm6uLMsRERHeLsRzVOtDBAcHp6ampqSkpKenX/6p3W632+25ublXe9zf3/+tt94aP3785R+dPXt2+vTpznZUVBSpKAAAAOquG0KkLcPVpJXaj3lVZaMVhhi9QT9bJp7tQjYKAABQg9wQjAohgoODV6xYsXjx4gkTJuTl5V37g7fccsv7779/yy23XO3Tq30EAAAA1DlNAsWGYerw1drWrKqyUYcQf96pnytzzOhpdm0TAAAAqsudf4VOSUk5ceLEO++8Y5pmBgQEjBo1au3atbt37yb6BAAAgO8I8xdrk9SRbczn4TP3Gk9u1w1OHAUAAKgZ7lkx6tKwYcMJEyZMmDAhPz9/165dP/30U05Ozvnz5y9cuBAeHh4eHt68efOePXt279798nuWAAAAAF9gU8QXg5TxW8X7h42qe75z0DhbKhbGKQGsHAUAAHA3NwejLhEREUlJSUlJSTU0PgAAAFB3KZKY30+JtImX95lko1+dNIaudHw9WG3IugIAAAC3shSM5ubmvv/++66X9913X5s2baxWBAAAAPgASYiZvZRmQdKzO/Wqt8tvOOsYlKatSFQbBXioNgAAAF9gKRj94Ycfpk6d6myHhIRMmjTJHSUBAAAAvuKZLnK4Tfxpi65VuXL0+1xH/1RtVaLSqoHkqdIAAADqOUuXL2VnZ7vasbGxwcHBlusBAAAAfMtD7eWl8Uqg2YqFjPOO3su0fflcxgQAAOAeloJRRfn9EPhWrVpZLgYAAADwRcNbySsT1VB/k25nS8Wdadq2c2SjAAAAbmApGI2KinK1uWUeAAAAqLb+TaStw9XmwSY75QvsYnC6lv4L2SgAAIBVloLRjh07utpZWVmWiwEAAAB8V5dwaUuy0j7UJBst1cSINdqHR0yuswcAAEDVLAWjzZs3j4mJcba3bdvmcPCHawAAAKD62oZIW5LVWyJNslHNEH/arL/2E9koAABA9VkKRoUQjzzyiLNx9uzZDRs2WC0HAAAA8G2NA8XmZDW+uUk26hDiP3bpU7/TWZsAAABQPVaD0YkTJzZr1szZ/vOf/1xeXm65JAAAAMCnNfATqYPVe9uaz9Vn7jUe26xrrBwFAAC4flaD0YYNG3700Ueqqgoh9u7dm5KSUlZW5o7CAAAAAN9lU8TnA5XHbzKfrn90xLh3nV6ue6AoAACAesVqMCqESEhI+PzzzwMDA4UQqamp3bp1+/rrr3WdqRkAAABQfYok5sYq0241n7F/c8pIWqkVVXqgKAAAgPpDtfj8nj178vPzQ0NDX3rppRdeeKGoqOjYsWN/+MMfmjVrNmjQoJtvvrlFixahoaGKolzjgPHx8RZLAgAAAOoHSYjptyoRNunZnbpR5WGiG886BqZpK4ao0YGeKg4AAKCOkyxeJZ+QkLB27Vp3VSOEMAxDkkxOmocXBQQE2O12IUR5ebnNZvNWGYWFhXa7PTo62lsFAL6poqIiLy8vMjLS39/f27UAviU7O9tms4WGhnq7EHjNv44Zj23WK83OEr0hRFqVpLRryHTaPYqLi0tKSpo2bertQgDfomlaTk5OWFiYc2cqAI/Jzc2VZTkiIsLbhXiOG7bSAwAAAKhRY9rJS+PVILPtXieKHf2Wa3vzuakeAADAHMEoAAAAUAckt5LWD1UjzXbsZJWJO1O1rVlkowAAACYIRgEAAIC64fZoaVOy2iLYZKf8+QoRn64tPWm28R4AAMC3Wb18acGCBWVlZW4pxYkDRgEAAICr6RwubUlWhqzUjxRWtSbUrotR6/S5seJPMayEAAAAuDKrwSgnkQMAAACe1CZE2pysDl2l7cmtKhvVHeLxLXq+XfxnN7JRAACAK2CSBAAAANQxjQPFpmHq4OYme60cQjz3rf7MDp0DRwEAAC5HMAoAAADUPQ38xPIhakpb8/n8WweMRzbpGieOAgAA/DuCUQAAAKBO8pfFZwOV8TeZT+kXHDXuWaeXaR4oCgAAoM4gGAUAAADqKkUS78YqM3oqpj2XnTKSVmmFFR4oCgAAoG4gGAUAAADqtind5dl9FdnkxFGx6awjdrl2ppQTRwEAAISwfiv9FWVnZ2/btm379u2//PJLQUFBQUGBYRhxcXGvvPJKTXwdAAAA4OMmdZIjbOKRTXpllWeJ7i9wxC7XVyUq7UPNYlQAAID6zs3B6IYNG15//fUVK1YYxqUzslatWl3ef/Xq1X/961+d7a5du3744YfurQcAAADwEaNvlBsHSn9YoxVXVtUts9jRP1VLT1RvjiQbBQAAPs1tW+mLiopGjx49cODA1NTUy1PRqxkwYMDZs2d37969e/fuBQsW/Pzzz+6qBwAAAPA1g5pJ64aqUQEm3bLKRFyatiWLPfUAAMCnuScYPXXq1M033/zZZ59d74M2m+3JJ590tg3DWLhwoVvqAQAAAHxTz0bS5mS1ZbDJatDzFSIhXfsy81oXNAAAANQ/bghGc3NzExMTMzMzL34zICAgNjb2gQceaNq0adWPP/DAA5L027wtPT3dej0AAACAL+sYJm0ZrsSYnSJq18V96/X5GWSjAADAR7khGH3yySczMjJcL2NiYj755JOCgoItW7YsXLiwQ4cOVT/etm3bW2+91dneuXPnhQsXrJcEAAAA+LLWDaTtI9Q+0SbZqO4Q47fq0/fonqkKAACgVrEajH777beLFy92jhjsmQAAIABJREFUvXzggQf27NkzZsyYgIDfTjZyrQatQlxcnLNRUVGxZ88eiyUBAAAAiLCJNUPVIS1MZuMOIf62x3hmh25w4igAAPAxVoPR2bNnOxy/zaGSkpIWLFgQFBR0vYPccsstrvbhw4ctlgQAAABACBGsimWD1ftuMJ/zv3XAeHiTXsmuegAA4EssBaOGYaxatcrZttlsb7/9tqqql/S5lhWjnTp1crWPHj1qpSQAAAAALv6y+GygMrmL+bT/X8eMkWu1Ms0DRQEAANQKloLRQ4cO5eTkONsJCQlt27at3jiRkZGudn5+vpWSAAAAAFxMEuKN3sqMnoppz9SfHXErtDy7B4oCAADwPkvBaFZWlqsdGxt7xT7XsmI0LCzM1S4qKrJSEgAAAIDLTekuv91Xkc3m5ruyHQNStV8vcOAoAACo/ywFo67lokKIxo0bV3uciooKK2UAAAAAMDWxk7xkkBJgtnL0QIGjX6p+pJBsFAAA1HOWglE/Pz9Xu7Kystrj5OXludoXb6sHAAAA4EZ/aCOnDVFD/Ey6nSx29E/V9uSSjQIAgPrMUjDaqFEjV/vcuXNX7HMtW+n379/vakdFRVkpCQAAAEAVBjaT1g9TGwWYdDtXJgakaWtOk40CAIB6y1IwevH2+Z07d1Z7nI0bN7ra7du3t1ISAAAAgKr1iJI2J6utGpisYCipFMNXa4szDc9UBQAA4GGWgtH27dtHR0c72xs2bLh4R7yL6YrRkpKSTz/91PUyLi7OSkkAAAAATN0UJu0YoXSNMJmr23XxwHp9XgbZKAAAqIcsBaOyLA8ZMsTZLi0tfeWVV6oxyMyZM/Pz853tmJiYFi1aWCkJAAAAwLVoFiRtGqb2bWySjeoOMX6rPvU73TNVAQAAeIylYFQIMXr0aFf71VdfXb169SUdql4xmpaW9r//+7+ul0888YTFegAAAABco3CbWJ2kJrU0vxVg5l7jqe26wYmjAACgHrEajCYmJg4YMMDZ1nV9xIgRH330kcNhPmMyDGPWrFl33323Yfy2Madx48bjxo2zWA8AAACAaxesiq8T1AduNP9d8M+DxkOb9Ep21QMAgPrCajAqhHjttddsNpuzbbfbH3300TvuuOPTTz8tKioSV1oxmp2d/cEHH3Tt2nXy5Mmaprnef/XVV4OCgqzXAwAAAODa+cvi0zjlz13Nfxp8eswYukorrvRAUQAAADVOtT7Ebbfd9uGHH/7xj390LRTdsWPHjh07ZFlu3bp1QUGB8809e/YMGzbs+PHjR48eda0SdXnqqafGjBljvRgAAAAA10sS4rXblegAyfQs0bWnHfErtLQhalSAZ0oDAACoKW4IRoUQDzzwQEFBweTJkysrf//zsWEYmZmZrpenTp06derUFR9/8MEHX3vtNbdUAgAAAKB6pnSXGweKx7fqWpX75b/NcQxI1VYmKS2DzQ8nBQAAqLXcsJXeaeLEiVu2bGnTps11PeXn5/fGG28sWLDAz8/PXZUAAAAAqJ5HOsiLBykBikm3g+cd/Zbrhwu5jAkAANRhbgtGhRC33357RkbGxx9/3LFjR9POfn5+Dz744MGDBydPnuzGGgAAAABYcXdreUWi2tBs3cKpEkffZdrObLJRAABQV7lnK72LzWZ76KGHxowZ8/3332/dunXLli0nT57Mz8/Pz8/38/Nr1KhRZGRk9+7dBw0aFBcXFxkZ6d5vBwAAAGBdXFNp/TB16Cotu6yqbvl2Eb9C+zJeHdKCPfUAAKDukVw3JgHXIiAgwG63CyHKy8ttNpu3yigsLLTb7dHR0d4qAPBNFRUVeXl5kZGR/v7+3q4F8C3Z2dk2my00NNTbhcC3nCh2DE7XjxeZ/F7wl8UndyqjbnDnXrRaori4uKSkpGnTpt4uBPAtmqbl5OSEhYUFBgZ6uxbAt+Tm5sqyHBER4e1CPKceTl8AAAAAWHdDiLQlWe0eYbIatMIQozfo7x6q8sImAACA2odgFAAAAMCVNQ0SG4apsU1MslHdISZs06d+p3umKgAAALcgGAUAAABwVeE2sSpRHdrS/BTRmXuNSdt1g5O6AABAHUEwCgAAAKAqQar4JkF9rIP5b4e3Dxop63Q7K0cBAEBdQDAKAAAAwIQqi/f6K//Zzfznw9KTxtBVWnGlB4oCAACwRK2hccvKyor+z3U9eNttt9VQSQAAAACqTRLi5V5K8yDp2Z161dvl159xDFqhpQ1RGwV4qDYAAIBqcGcwWlxc/MUXX6Snp+/evfvkyZPVG8QwDEkyP8AIAAAAgOc900UOs4mxW3Stylvov8txDEjVViYqrRowtwcAALWUe4JRTdNee+21F198saSkxC0DAgAAAKidHm4vh/uL+zfoZVpV3Q6dd/RZpq9MVLpGkI0CAIDayA1njJaWlsbHx0+dOpVUFAAAAPAFI1rL6UPUUH+TbmdKHQPStO3nuKgeAADURm4IRlNSUjZt2mR9HAAAAAB1xYCm0tbharMgk9WgBXYxOF1b+SvZKAAAqHWsbqVfunTpihUrLn4nMDAwOTm5d+/eHTp0CAoKCg0Nva4BOWAUAAAAqBO6hEtbhyuD0/VjRVXlnhc0cddq7eMByv03umFZBgAAgLtYDUZfe+21i18++uijr776akREhMVhAQAAANR+bUOkLcPVpJXaj3lVZaMVhhi9QT9TKv7clWwUAADUFpbmJfn5+bt27XK9nDRp0gcffEAqCgAAAPiOJoFiwzC1XxOTjV8OIf6yS5/6ne6ZqgAAAExZCkb379+v67/NbKKiombMmOGOkgAAAADUJWH+Yk2Sek9b8x8XM/caE7fpBieOAgCAWsBSMJqTk+NqJyYmBgcHW64HAAAAQN1jU8SigcrYGPPfF3MOGfes1ctZOQoAALzNUjBaVlbmardv395yMQAAAADqKkUS8/opU7qb/8T4+pQxdKVWVOmBogAAAK7KUjAaHh7uavv5+VkuBgAAAEAdJgkxo6fyZm/F5MBRITacdQxM07LLzPoBAADUGEvBaMeOHV3ti7fVAwAAAPBZz3SRP75T8TP7qbE719FnmXa8iANHAQCAd1gKRm+44QbXDvqLr6cHAAAA4MsebCd/Ga8EqibdThQ7+qVq+/LJRgEAgBdYCkaFEI899pizsWvXrszMTMv1AAAAAKgPhreS1w9VI20m3c6WijvTtG3nyEYBAICnWQ1GJ02a1Lp1ayGErutTpkxxR0kAAAAA6oPe0dKmZLV5sMmJowV2MThdW/EL2SgAAPAoq8FogwYNFi5cGBAQIIRYvHjx9OnT3VAUAAAAgHqhc7i0NVlpH2qSjZZq4q412gdHDM9UBQAAIKwHo0KIvn37pqWlRUZGCiH+9re/paSk/Pzzz9aHBQAAAFAPtAmRtiSrt0SaZKOaIcZu1l/9iWwUAAB4iORwWNqxcvTo0aKiIiHEiRMnnnjiifz8fCGEqqpJSUlxcXExMTERERF+fn7XPuBtt91mpR7UtICAALvdLoQoLy+32cyOjKoxhYWFdrs9OjraWwUAvqmioiIvLy8yMtLf39/btQC+JTs722azhYaGersQoPpKKsXItdqa0+a/PqZ0l1/qqZjEqB5RXFxcUlLStGlTbxcC+BZN03JycsLCwgIDA71dC+BbcnNzZVmOiIjwdiGeY3ZPpJmJEyeuXbv2kjc1TVu+fPny5curMaBhGJJUG2ZBAAAAANymgZ9YPlgds1FfkmmyJnTmXiOrVLzXT1HdsL0NAADgqphrAAAAAPAEmyI+H6g8fpP5b5CPjxr3rtPLNA8UBQAAfBfBKAAAAAAPUSQxN1aZdqv5z5BvThlDV2mFFR4oCgAA+CiCUQAAAACeIwkx/VblrT6KbHaA1sazjn6p2plSS5ciAAAAXI3VM0bfeecd5+VL7sIBowAAAEC991RnOcImHt2sV1Z54uhP+Y7Y5frqJKVdQ34mAAAAN7MajLZv394tdQAAAADwKX9sJ4fZpFHrtNIqzxLNLHb0W66lJ6o3R5KNAgAAd2IrPQAAAADvGNZS2jBMjQow6ZZVJuLStC1Z7KkHAADuRDAKAAAAwGt6NZI2Jastgk1Wg56vEAnp2tKTVW68BwAAuB4EowAAAAC8qVOYtHW4EhNqko3adTFqnf7+YbJRAADgHgSjAAAAALysdQNp+wi1d7RJNqo7xONb9Jf3kY0CAAA3IBgFAAAA4H0RNrEmSR3c3CQbdQgx5Vv9mR06B44CAACLrN5Kf0UXLlzYtWvXjh07fvnll4KCgvz8fCHEHXfcMX369Jr4OgAAAAD1QAM/sXyI+uBG/YsTJmtC3zpgnK8Q7/dTVFZ6AACA6nJzMPrDDz+8/vrrX3zxRUVFxSUfhYSEXN5//fr1L730krPdpUuXN954w731AAAAAKhD/GWxME6JsIl3D5lkowuOGgV2sWigElgjiz0AAED957ZJRFlZ2TPPPDN//vzreqp379579+7NyckRQmzYsOG5555r2rSpu0oCAAAAUOcokphzh9KmgTT1O73qnst/NhJXOpYNVkP9PVMaAACoV9yz8yQrK6tXr17Xm4oKIYKCgiZOnOhs67q+cOFCt9QDAAAAoE6b0l3+Z19FNjlxVGzOcsQu105f4MRRAABw3dwQjBYVFSUlJe3fv//fxpXlzp07JyYmNmrUqOrHR48e7WqvWLHCej0AAAAA6oEnO8mf3Kn4mf1k2V/g6JeqHy0kGwUAANfHDcHo008//eOPP7petmzZcvbs2Tk5Ofv3709PT+/UqVPVj3fo0KFbt27O9vbt28vKyqyXBAAAAKAeGH2jnJ6ohviZdMssdvRL1X7IIxsFAADXwWowunfv3k8++cT1Mjk5ed++fZMmTYqIiHC+I0lmu1+EGDRokLNRXl7+ww8/WCwJAAAAQL0xqJm0bqgaFWDS7VyZ6J+qrT1NNgoAAK6V1WB01qxZhvHbfZEDBgxYsmRJWFjY9Q5yyy23uNoZGRkWSwIAAABQn/RsJG1OVlsGmyy5KKkUyau1JZkm19kDAAA4WQpGHQ5Henq6s+3n5zd37lybzXZJn2tZMdqlSxdX++jRo1ZKAgAAAFD/dAyTdt6ldI0w+XFh18X96/X5GWSjAADAnKVgNCMjIysry9keOHBgTExM9caJjIx0tfPy8qyUBAAAAKBeahYkbRym9ok2yUZ1hxi/VZ++R/dMVQAAoO6yFIyePXvW1R4wYEC1x7l4931RUZGVkgAAAADUVxE2sWaomtjCJBt1CPG3PcYzO3SDE0cBAMDVWQpGc3JyXO0mTZpcsc+1bKXXNM3Vdp1YCgAAAACXCFbFN4PV+280/yHz1gHj4U16JT8vAADAVVgKRmX598d1vfp7VXJzc13tqKgoKyUBAAAAqN/8ZbEwTnm2i/lvmX8dM0au1Uo1044AAMAXWQpGo6OjXe3s7Owr9rmWFaMX30R/8XmjAAAAAHA5SYjXeyszeiqmPVN/dgxcoeXZPVAUAACoY9wWjH777bfVHmfTpk2u9g033GClJAAAAAA+Ykp3+e2+imy2EmNXtqP/cu3XCxw4CgAA/o2lYLRDhw6uBZ7r168vLCy8vI/pitGysrJ//etfrpdxcXFWSgIAAADgOyZ2kpcMUgLMVo4ePO/ol6ofKSQbBQAAv7MUjCqKMnjwYGe7uLh41qxZ1RjkzTffdG3Dv+GGG9q0aWOlJAAAAAA+5Q9t5BWJakM/k24nix19l2m7sslGAQDAbywFo0KI++67z9V+8cUXt23bdkmHqleMbtq0adq0aa6Xjz/+uMV6AAAAAPiauKbSumFqowCTbnl2EZ+urT5NNgoAAISwHoyOGDHi9ttvd7YrKysTExO/+uqra3z2448/TkxMrKysdL6MjIx88sknLdYDAAAAwAf1iJI2J6utGpgc5FVSKYav0r44YXimKgAAUJtZDUYlSXrttddUVXW+LCkpGTlyZFJSUlpamt1uF1daMVpSUrJ06dI+ffo88sgj5eXlrvdffPHFkJAQi/UAAAAA8E03hUk7R6jdIkyy0QpDjN6gz80gGwUAwNdJDocbNpLMnz9/3Lhxl7wZFBQUExPzyy+/5ObmCiHatWvXq1ev48eP//jjj87M9GKPPPLIhx9+aL0S1LSAgADn/77y8nKbzeatMgoLC+12e3R0tLcKAHxTRUVFXl5eZGSkv7+/t2sBfEt2drbNZgsNDfV2IUAdUGAXw1dr286Z/8yZ0l2e0bOqa5uKi4tLSkqaNm3qvuoAmNM0LScnJywsLDAw0Nu1AL4lNzdXluWIiAhvF+I5qltGefzxx3Nzc//7v//bMH7/u2tpaekPP/zgenns2LFjx45d8fERI0bMmTPHLZUAAAAA8GXhNrE6Sb13nZb+i0k2OnOvcaFSzOqjyCZrTAEAQP1kdSu9y3/913+tWrWqSZMm1/f1sjxt2rSvvvoqIMDspHQAAAAAuAZBqliWoD7awfzHzj8PGg9u1CvZVQ8AgE9yWzAqhIiPjz948OBLL710LZtNZFm+77779u7dO336dFl2ZxkAAAAAfJwqi/f7K3/pav5DY+FxI2mlVlzpgaIAAEDt4p4zRi9RUVGxcePGrVu3bt26NTMzMz8/v6ioSJblqKioyMjI7t27Dxo0KCEhoXXr1m7/atQ0zhgFfBlnjALewhmjQLXN3Gv813e66W+eno2kFUPUqIu2se3YsePtt98+c+bMvffe++CDD3JPLOAxnDEKeIsPnjFaI8Ho5TRNc91cjzqNYBTwZQSjgLcQjAJWfHTEeHyrrpntl+8YJq1KUiJE6cKFC+fMmXPxfQkhISFjxoyZOHFily5darZWAASjgPf4YDDqoT3spKIAAAAAvOKRDvKSQUpAVffPCyHEoYyMzinPNGveYty4cb+losERok0PIURxcfGcOXO6du06YMCARYsWVVRU1HzVAACgxpFXAgAAAKjn7motpydKd63Wiq54lujeNLFutsjYUOzaTtemh4h7QvRMEX6B4pd9YuO7Ytdnwn5h8+bNmzdvbtKkydixYydPnhwZGenBfwQAAHAzD22lR73BVnrAl7GVHvAWttIDbrE71zF0lZZd9u/vfrtIzH/wt7ZfoOg1Stz5hGhz26UPlxWKHf8SG94VWYedb9x6663ff/+9JEk1XDXgc9hKD3gLW+kBAAAAoH66LUraMUJt1/Dfo8yVrwohRFhTkTJTvJIpHpl/hVRUCBEYKgY+Kf6+T/xlleg+TAixZ8+eNWvWeKBsAABQQwhGAQAAAPiKG0KkLcPV7hH/l40e2y5+2SuEECP/Rwx+VgSbrZGRJHFTnJi4WIQ3F0LMmTOnRqsFAAA1imAUAAAAgA9pEig2JquxTSQhhNg4VwghGkSKHvdexxCyKvo9JoRYvnz5qVOnaqJIAADgAQSjAAAAAHxLmL9Ym6Qmh+eLPV8JIUTso8Iv4PqG6D9WKH66rr/33ns1USEAAPAAglEAAAAAPsemiNsPfyAqy4UkOZd/Xp/QpuKWEUKIuXPnOu8mBQAAdQ7BKAAAAACfYxjG+/PnCSFEl0QR3a46QwwYL4TIyclZunSpW0sDAAAeQjAKAAAAwOekpqaePHlSCCHuHFfNIW66UzTvLLiCCQCAOotgFAAAAIDPeffdd4UQIrKV6JJY/VH6jxVCbNmyZf/+/W6qCwAAeA7BKAAAAACfk5GRIYQQ7e4QslL9UTr0d/73wMFD7igKAAB4FMEoAAAAAJ8zePBgIYT4cbkoK6r+KDs/FUII1X9y/h3T9+i55e6pDQAAeAbBKAAAAACfM3HiRCGEsJf8Fm5WQ2WZ2PaxEEL0uDdLbfS3PUaLzypHrdN3ZjvcViUAAKhJBKMAAAAAfE63bt3uuOMOIYTYMEc4qhVlfrdYlOQJIcSd451v2HWxONPos0yLXa4tOmFUGu4qFgAA1AiCUQAAAAC+aMKECUIIcTZDHN1Snec3zhVCiJbdxI19Lvlk2znH/ev1Np9r//jByCqzWCYAAKgpBKMAAAAAfFFKSkrjxo2F+L+I87r8/KPI/E4IIe584mpdzpQ6Xtitt/6sctQ6fe1p9tcDAFDrEIwCAAAA8EX+/v6PPfaYEELs+VqcP3t9D294RwghAkPF7Q9U3bHCEIszjYR07bavtXkZRplWvWIBAID7EYwCAAAA8FHjx49XFEXolWLL+9fxWEme+PYLIYToM0bYgq/xoT25jvFb9TaLKqd+p58qYQEpAADeRzAKAAAAwEe1bt166NChQgix/B/ijaHih2+EoVf1QE6m+PKv4v91FRWlQpJc1y5du+wyMXOvccMibfhqbe3p6t36BAAA3EP1dgEAAAAA4DXTp0/ftGlTUVGROLhWHFwrIlqI/mNF7GMitMnvnRyG+Gml2DhX7F8lHL9dNj/q4cebxHd6/7Bx4fp3xxsOkfqzI/VnLSZUmtBRHnuTHMwvMwAAPE5y8EdKXI+AgAC73S6EKC8vt9ls3iqjsLDQbrdHR0d7qwDAN1VUVOTl5UVGRvr7+3u7FsC3ZGdn22y20NBQbxcC1E+FhYWLFi168803Dx069Ntbqr+4ebjoP1a0vlXs+JdYO1vknnR+4u/vf9ddd40bNy4+Pl4IUVghPjpizDpgZBZX/4dVqL94uL08uYvcNkSy+o8B6j5N03JycsLCwgIDA71dC+BbcnNzZVmOiIjwdiGeQzCK60MwCvgyglHAWwhGAQ8wDGPVqlVz5sxJS0szjN+WhQpJdi0Rbd269fjx4//0pz9dPgs1HGL9GcesA3raz9X/fSVLYmAz6enOcnIrmXwUvoxgFPAWglHABMEo4MsIRgFvIRgFPOnkyZNz58794IMPsrOzhRCyLCckJEycOHHYsGGKolT97NFCx/tHjLmHjPMV1S+gfaj0pw7yuJvkcK9NtwFvIhgFvIVgFDBBMAr4MoJRwFsIRgHPs9vtCxcuPHXq1JgxY9q1a3ddzxZXis+OG28dMA4UVP/XVoifeOBG+enOcudw1o/CtxCMAt5CMAqYIBgFfBnBKOAtBKOAVxQXF5eUlDRt2rR6jzuEWHfaMS/DWHrS0C386rqjsfRMF3lkG1khIIVvIBgFvMUHg1HuPgQAAAAA95OEiG8uxTdXjhfJ8w8b8zOMfHt1xtl2zrHtnH5DiDHuJnnsTXIk++sBAHAT2dsFAAAAAEB9dmNDaUZP5fRov48HKN0iqrns80SxY+p3eouFlQ9t1Pfls+0PAAA3IBgFAAAAgBoXoIiH2st7R6pbktWUtrJarZ9i5br45JjRfanW42ttwVFDM9xdJQAAvoRgFAAAAAA8J7aJ9MUg5dT96rRb5UYB1Rxkd67j4U16q88rp+/Rc8rdWh8AAD6DYBQAAAAAPK1ZkDT9VuWXB/y+GKT0ia7m/vqzpeJve4yWn1WOWqdvP8f+egAArg/BKAAAAAB4h00RKW3l7SPU7+9Wx90kByjVGcSui8WZxh3LtR5fa/MyjHLd3VUCAFBPEYwCAAAAgJfdFiXNjVVO3u83o6fSIriaC0h35zrGb9XbfF459Tv9lwssIAUAwATBKAAAAADUCo0DxZTu8vH71C8GKfHNqxmPnisTM/ca7RZpo9bpa08TjwIAcFUEowAAAABQi/jLIqWtvCZJ3X23Ou4mOUitziAVhlicaSSka7d+pc3LMEo1d1cJAEDdRzAKAAAAALXRrVHS3Fjl9Gi/N3srrRtUcwHpD3mO8Vv15gsrn9mhnyphASkAAL8jGAUAAACA2ivMXzzTRT5xn7pssBLfXKpePnq+Qrx1wLhhkTZ8tbb2tIN8FAAAQTAKAAAAALWfLInhreQ1SeqhFPXpznJwtfbXGw6R+rMjIV3ruFibtd+4wP56AIBvIxgFAAAAgDojJlSa1Uc580e/ubHKTWHV3F9/uNAxeafe7NPK8Vv1Q+dZPwoA8FEEowAAAABQxzT0E+Nukg/co65JUpNbVXN/fVGlmJdhdPlSS0jXFmcaOgEpAMDHVGsDBgAAAADA22RJxDeX4purx4oc7x025mUYBfbrHsRwiLWnHWtP6+0aGmNj5HE3yeG2GqgVAIDahxWjAAAAAFC3tWsozeipnLrfb26s0iW8mvvrjxU5pn6nt/q8cvxWfX8By0cBAPUfwSgAAAAA1AchfmLcTfJP96hbktWUtrJarV97JZViXobR9Ustdrm2ONPQDHdXCQBArcFWegAAAACoV2KbSLFNlBPF8rwM470MI+/699cLIbadc2w7pzcPNsbGSE91ViLZXw8AqHdYMQoAAAAA9dANIdKMnsrp0X4fD1C6R1Rzf/3pC46/7TGaL6x8aKO+N5/99fj/7N17fBT1vf/xz8xsrpALJIQkC4FwkeANAbGCUUACghBKsaDgpSoahLZqL4qeYxWtVvB3WisegaBHKyooqFhAsBAsVBCUBEVuQS4hlwVyJSEhyWZ3Z35/LKRUEMhms5Psvp5/fdmdnfnQh9uw77y/OwDgVwhGAQAAAMBvhWhyT2/124mW7AmWu3upQR59BLS75J2D+jUfO6/9xLn4gO5gfz0AwC8QjAIAAACA/xsYqywepuXfEfTMALVTqIcnySkzfrHJlbTU8cR2l+0UBVIAQNtGMAoAAAAAgSIhXGYP0IqmBi0boQ3p7OH++uN1Mnen3uMD5+QNri3FxKMAgLaKYBQAAAAAAkuwKpOS1S3pluwJlowUNVTz5CQNuizP01NXOa/9xLkoV69zentKAABaGMEoAAAAAASogbFKZqp25I6gOYO0ru08LJDmlBnTN7u6f+B4YruroIYCKQCgzSAYBQAAAICA1jlMZvVT8+6wrBylpVk9jEdLzuyvT1/nzLIRjwIA2gCCUQAAAACAaIqkJ6nrx1h2/MySkaKGWzw5icuQ1QXGyLXO/iuci3L1WvbXAwBaMYJRAAAAAMC/9Y9RMlO1o1OD/nq91j3CwwLpt+XG9M2uxCWOR7a6jlSMaGwdAAAgAElEQVRTIAUAtEYEowAAAACAH4oKlkeuVA9NtqwfYxmXpHiWj1Y1yLw9es9lzpFrnasKdPJRAECrQjAKAAAAADg/VZE0q7JqlCV3kuXhK9T2QZ6cRDcky2aMX+dKWe58Zbde4/D2lAAAeIRgFAAAAABwEZdFKa8M1mxTgzJTtb7RHu6v/77KeHSby7rEMX2za28l/VEAgMkIRgEAAAAAlyQySDJS1N23WdaPsUxKVjWPAtKTDlmUq1/1kXPkWufyPN1FQAoAMIlHNxoEAAAAAAQq9/76NKt28KT6xn799Vy9wt7kk7j312fZXD0j9Qf7qA+mqB1DWmBWAAB+HI1RAAAAAIAnekUqcwZp+XcEZaZqV3bwcH/9oZPGE9td1iWOeza6dlVQHwUA+A7BKAAAAADAc+2DJCNF3XWb5YtxlknJqsWjT5n1LnnnoH71x87UVc7lebpT9/aUAACcg630AAAAAAAvSI1XUuO1o7Xqolz9tb16Wb0nJ9lSbGwpdiWG6w+mKL+6XIsN9faUAACcQWMUAAAAAOA1ieHK7AFa0ZSgt4dq18R4uL/+aK3x7A69y1LH5A2ubSXsrwcAtAiCUQAAAACAl4Vock9v9ZufWbInWO7upQZ59NHT7pLlefrglc5rP3EuPqA72F8PAPAqglEAAAAAQEsZGKssHqYVTAmaM0iztvOwQJpTZvxikytpqeOJ7a6iUxRIAQDeQTAKAAAAAGhZ8WEyq596+HbLshHaDZ09jEeP18ncnXrPD5yTN7iybMSjAIDmIhgFAAAAAPhCsCqTktXN6ZbsCZaMFDXMo5sBN+iyPE8fudZ57SfORbl6ndPbUwIAAgbBKAAAAADApwbGKpmp2pHbg+YM0pLae76/fvpmV/cPHE9sdxXUUCAFADQZwSgAAAAAwARxYTKrn5p3u2XlKC3N6mE8WlInc3fqyR8409c5s2wG+SgA4NIRjAIAAAAATKMqkp6krh9j2fdzy8NXqO082l+vG7K6wBi51nn5h85Xduun2F8PALgEBKMAAAAAAPOlRCuvDNZsU4P+er2WHOFhgTS30nh0m8u6xPHIVldeNf1RAMCFEIwCAAAAAFqLqGB55Er14GTL+jGWcUmKZ/loVYPM26P3WuYcuda5qkAnHwUAnJdHuxQAAAAAAGgxqiJpViXNajlQZfzf93rmPr2yockn0Q3JshlZNlfvKH3aZer0vmp0cAvMCgBos2iMAgAAAABaqd5RypxBWsGUoMxU7fJoD/fXH6gyntjuSlrqmL7ZtecE/VEAwGk0Rv3B3r17s7OzCwoK6urqOnTocMUVV9x4443t27c3ey4AAAAA8IKIIMlIUR9MUTfYjEW5+sdHdFfT481qhyzK1V/P1UdYlYwUdWJ3VfMwaAUA+AmC0TZs165dS5Ys+eijjw4cOPCDpyIiIh566KFnn302LCzMlNkAAAAAwLsUce+v1w6dVF/fr7+eq1fYm3wSQ07vr+8RoWekqA+kqDEhLTArAKAtUAyDfQRtVXp6+urVqxv/GBMTExoaarPZGh+59tprs7KyoqKivHjR0NBQu90uIvX19SEhpv0Loqqqym63x8XFmTUAEJgaGhrKy8tjYmKCg/mCLsCnSkpKQkJCvPszHcBFVVdX19TUJCQkmD0Izq/eJcsO6/+zS99V4fmn2lBNJiWrv79avboj9dHWwul0lpaWRkdHU/QBfKysrExV1Y4dO5o9iO/wHaNtm8ViSU9P/+CDD0pKSsrKyoqKiqqrq999991OnTqJSHZ29qOPPmr2jAAAAADgfaGa3NNb/W6i5YtxlknJqsWjT7f1LnnnoN7vY+e1nzgXH9CdurenBAC0YjRG27DXX3992LBhvXv3Pvep3bt3X3vttXa7XVXVo0ePdu7c2VsXpTEKBDIao4BZaIwCpqAx2rYcrTUW5eqv7dXL6j0/SUK4ZKSov7xc6xTqvcnQRDRGAbPQGEVb8uCDD543FRWRK6+8cvLkySKi6/qWLVt8OxcAAAAA+FpiuDJ7gFY0JWjZCG1wnIf74o/VyrM79K5LHZM3uLaW0CICAD9HMOq3+vbt615UVFSYOwkAAAAA+EaIJpOS1S/HW7InWO7upQZ59JHX7pLlefqQlc5rP3EuytXrXd6eEgDQOhCM+q1jx465F+w3BwAAABBoBsYqi4dpBVOC5gzSurTzsECaU2ZM3+zq/r7jie2uwlMUSAHA3xCM+ien0/nJJ5+IiMViSU1NNXscAAAAADBBfJjM6qceut2ybISWZvUwHi2uk7k79V4fOCdvcGXZiEcBwH8QjPqnP//5z4WFhSJy9913B9SX5gIAAADADwSrMilZXT/GkjPBkpGihlk8OUmDLsvz9JFrnQM/cS7K1Wud3p4SAOBzBKN+aMuWLU8//bSIdOrU6YUXXjB7HAAAAABoFQbEKpmp2tGpQX+9XuvW3sMC6Y4yY/pml3WJ45GtrvwaCqQA0IZ59JsyNE9dXd2KFSua+ipVVe+4446LHnbgwIHbbrutoaFB07S//e1vCQkJHs0IAAAAAP4pOlgeuVL99RXqp4X6vD36BpvhQbpZ2SDz9uj/u1e/tavyyBXaCKviYc4KADAPwagJKioq7rzzzqa+ymKxXDQYLSgoGDVqVHFxsaIoCxYsuPXWWz2dEQAAAAD8mapIepKanqTurzLm79X/b79+qum743VDVhcYqwucfaKUGX3VB1LUdnzIBoC2g630/sNmsw0fPvzIkSMi8tJLLz344INmTwQAAAAArV2fKOWVwdrRO4MyU7WUaA97n/urjEe3uRLfc0zf7NpXyf56AGgb+GWWCRITE6urq5v6KuWCOzOKi4tHjBhx+PBhEfnTn/70+9//3vP5AAAAACDARAZJRor6QB/186PGK3tcnxZ4sr/+pEMW5epv7NdvTlQevkIdl6Syvx4AWjOCURMoitK+fXsvnrC0tDQtLW3//v0iMnv27CeffNKLJwcAAACAAKEqkmZV0qyWA1XG/32vL8rVT9ibfBLdkCybkWVz9YrUH+ijZqSoHUJaYFYAQLMRjP6HvLy87Oxsd+9SRK666qqmfk3n119//c477+zYsaOwsDAoKCgxMfHGG2+8++67+/bt2wLziohUVlaOHj169+7dIvK73/3umWeeaaELAQAAAECA6B2lzBmk/fc12tJD+rw9+p4TnuyOP3jSeGK764VvXVN6qr++Qr2yA/1RAGhdFMOT/QH+w+l0rly5Mjs7OycnJzs7u6Ki4uxn77333rfeeusST1VVVfXrX//6nXfeOfcpRVEefPDBl19+OTw83AtDn6WysnLkyJHZ2dki8uijj7788svePf+5QkND7Xa7iNTX14eEmPZ7z6qqKrvdHhcXZ9YAQGBqaGgoLy+PiYkJDg42exYgsJSUlISEhERFRZk9CBBYqqura2pqEhISzB4E5tt83Ji3R//4iO5qxgfoGzorj1yp/qybauFmHxfkdDpLS0ujo6PDwsLMngUILGVlZaqqduzY0exBfCfQG6OVlZW33XZb889TU1MzdOjQnTt3Nj4SHx/vcDjKy8tFxDCMRYsWFRUVrVy5UtO05l/Oraqq6pZbbnGnog8//LAPUlEAAAAACECp8UpqvHa4Wl2Uq7+Rq5c3fX+9iGwpNrYUu6zt9Af6KL++Qothfz0AmC3Qg9Fz9ejR4/jx47W1tU161X333deYit5///3PPvtsly5dRGT//v2PPfbYqlWrRGTNmjV/+MMf/vSnP3lr1DvuuOPrr78WkYSEhISEhLlz5573sOuvv37o0KHeuigAAAAABKYeEcqcQdrsAdqyw/qfd+nfVXhSH7WdMp7dYczZqU9OVn93tdqvI/vrAcA0BKOSnJx87bXXDjyjQ4cOKSkp7hsZXaJ//etfH374oXv9m9/85i9/+UvjU3369Pnkk09uv/129wF/+ctfMjIyunfv7pXJjxw54l4cO3bsAjdcevLJJwlGAQAAAMArQjW5p7d6T281p8x4Zbf+/mHdoTf5JHaXvHNQf+egPjBWefgKdUpPNYj99QDgc4EejMbGxjbeasljzz33nHvRvXv3cwuhqqouWLBg3bp1J0+etNvtL7300vz585t5RbfIyMgOHTpc9LDQ0FCvXA4AAAAA0GhgrLJ4mDb3Oi0z1zV/r15a78lJcsqMX2xyPbHddU9v9deXq9Z2FEgBwHcCPRhtvvLy8o0bN7rXDz300HlTyNjY2KlTpy5cuFBEPvroo1dffdUr3zT61VdfNf8kAAAAAACPJYTL7AHaf12j/T1f/+tu/ctiT/bXH6uVuTv1l3fpP+2mPnKlekNn4lEA8AWC0eZavXq1y+VyrydMmPBjh/3sZz9zB6MlJSXbtm274YYbfDSftzX+Zfv27asoF/lpHRwcPG7cuB/78tPm0M/w+pkBXIB+FrNnAQILbz3AFLz1cOksIrd1k9u6qTllxuv7jXcOGvWuJp+kQZflefryPH1grPJgH+WunkpYQH5k59+cgFncbzrT33qKolw0cfKWgPx/Wa/KyclxL2JjYy+77LIfO2zw4MGaprlTxezsbD8IRvPy8i7l+Nzc3AkTJvTo0cO7Y5w8ebKhocEwPPllLACPORyOiooKl8sVFBRk9ixAYCkrKwsODq6v92iXJgBP1dTUnDp1SlX56kc0QReRZ3vJr7qqy4pC3zoSerTek/9+csqMnDLjqWz99i7193WvTwwNrHzQ6XSWl5c3NDTwvXCAj1VUVKiq6nA4zB2jXbt2kZGRvrkWwWhz7du3z724cIMyIiLCarUWFBSISG5uro+GawGKojQpjrzssstSUlLCwsK8Pobdbo+KivLuaQFcWENDg9PpjIyMDA4ONnsWILA0NDSEhIT47B+IANw0TdM0jX9zwgNRIv8VJ49d41pVpL95UP3ncU/i0TK7+tqh8IWHw0cl6r/sYwyPD5R41Ol0OhyOyMhIr3+QBHBhTqdTVVXTf/BZLL6LKwlGm+vQoUPuRdeuXS98ZLdu3dzB6IEDB1p8rBYTFBRkt9tFZN++fZeSjHTp0qUlAhSHw6Gqanh4uNfPDOACLBZLXV1deHg4wSjgY2FhYSEhIfzgA3zM5XK5XC7eemiOu1LkrhT5ptxYuE9/96Be62zyGVyGrLWpa23SP8byUF/1rl5quL9/jnc6nWFhYeHh4QSjgI/V1tYGWtji7/+H2vKqqqrci9jY2AsfGRMT84OXtGnJyckhISFmTwEAAAAArV3/GCUzVZt7nfb29/pf9+hHqj35TrBvyo3pm12Pf+36RW/1N1eq3SO4QRMANBdfl9NcNTU17sVFf5fVmLg3vgQAAAAAECCig+WRK9VDky3rx1jGJXl4Y5GqBpm3R++5zDlyrXNVgc5dFwCgOQhGm0XX9YaGBvf6orciaexX1tbWtuxYAAAAAIBWSVUkzaqsGmXJnWR5+Aq1vUe3tNQNybIZ49e5UpY7X9mt15h8oxQAaKsIRptFVdXGL9q76E273F/NKZfQLQUAAAAA+LfLopRXBmu2qUGZqVrfaA/3xX9fZTy6zWVd4pi+2bW3kv4oADQNwWhztWvXzr2or6+/8JF1dXXuRURERMvOBAAAAABoCyKDJCNF3X2bZf0Yy6RkVfMoID3pkEW5+lUfOUeudS7P010EpABwaQhGmysqKsq9KC8vv/CRjQdERka27EwAAAAAgLbDvb9+2Qgtd5JlVj+1o0e3uXXvr5+8wdVnuXPuTr3C7u0pAcDvEIw2V8+ePd2LgoKCCx+Zn5/vXvTq1atlZwIAAAAAtEG9IpU5g7T8O4IyU7UrO3i4v/7QSeOJ7a5u7zumb3btqqA+CgA/imC0uVJSUtyL/fv3X+Cwmpoam83mXvft27fFxwIAAAAAtE3tgyQjRd11m+WLcZZJyarFow/uNQ5ZlKtf/bEzdZVzeZ7u1L09JQC0fQSjzTVgwAD3ori4+ODBgz922LZt25xO5w9eAgAAAADAj0mNV5aN0PLvsDwzQI0N9fAkW4qNyRtc3d53zt7hKrvIrTEAILAQjDbXuHHjNE1zr//+97//2GGNT8XExAwZMsQXkwEAAAAA2r7EcGX2AK1oStDbQ7V+HT3cX3+01nh2h95lqWPyBte2EvbXA4AIwWjzxcXFpaamuteZmZkNDQ3nHlNZWfnee++51xMnTrRYLL6bDwAAAADQ9oVock9v9duJluwJlrt7qUEefZq3u2R5nj54pfPaT5yLD+gO9tcDCGwEo17w1FNPuRcHDhyYPXv2D541DONXv/rViRMnRCQoKOjxxx/38XgAAAAAAL8xMFZZPEwrmBI0Z5BmbedhgTSnzPjFJlfSUscT211FpyiQAghQVBclKysrJyfn7EcqKirci127ds2dO/fsp9LT0y+//PIfnCEtLW3s2LGffvqpiLz44ovV1dVPPfVU586dRSQvL++JJ55YtmyZ+8iZM2dyS3oAAAAAQDPFh8msfupvrlL/nq+/slvfUuxJuHm8Tubu1F/epf+0m5qRoqZZPYxZAaCNUgwj0H819PDDD7/66quXePC777575513nvt4ZWXlkCFD9u3b5/6jpmlJSUkOh8NmszX+LzxixIi1a9cGBQV5ZWyzhIaG2u12Eamvrw8JCTFrjKqqKrvdHhcXZ9YAQGBqaGgoLy+PiYkJDg42exYgsJSUlISEhERFRZk9CBBYqqura2pqEhISzB4EuLicMmNRrv7OQb3O6flJBsYqGSnq3b3UMFM7VE6ns7S0NDo6OiwszMw5gMBTVlamqmrHjh3NHsR32ErvHdHR0Zs2bZowYYL7jy6XKy8vr6ioqDEVvfvuuz/55JO2nooCAAAAAFqhgbFKZqp25PagOYO0pPae76+fvtnV/QPHE9tdBTWBXqICEAjYSi/jx4+3Wq2XeHD//v1/7KlOnTqtWLFi06ZN77333tdff338+HFVVa1Wa2pq6j333HOBFwIAAAAA0HxxYTKrn/r7q9U1hfq8PXqWzZNws6RO5u7U/993+q1dlUeu0EZYFTbYA/BXbKVH07CVHghkbKUHzMJWesAUbKVHW/dtubFgn/7uQb22GfvrU6KVh1LUB1LUdr4qVrGVHjALW+kBAAAAAIA/uCZGyUzVjk4N+uv1WvcID3ufuZXGo9tc1iWOR7a68qppVgHwKwSjAAAAAAD4rahgeeRK9dBky/oxlnFJHu6Lr2qQeXv0XsucI9c6VxXo5KMA/APfMQoAAAAAgJ9TFUmzKmlWy/dVxpvf65n79MqGJp9ENyTLZmTZXL2j9GmXqdP7qtF8wRKAtozGKAAAAAAAgeKyKGXOIK1gSlBmqnZ5tIf76w9UGU9sdyUtdUzf7Npzgv4ogLaKYBQAAAAAgMASESQZKerun1vWj7FMSlY1jwLSaocsytWv+sg5cq1zeZ7uIiAF0NawlR4AAAAAgECkiHt/vXbopPr6fv31XL3C3uSTGHJ6f32PCD0jRX0wRe0Y0gKzAkALoDEKAAAAAEBA6xmpzBmk2aYGvT1Uu6qjh/vrD1cbT2x3WZc47tno+q6C+iiANoBgFAAAAAAASKgm9/RWv5to+WKcZVKyavEoMKh3yTsH9X4fO1NXOZfn6U69yWfYu3fvu+++u3nzZk8uDwBNwVZ6AAAAAADwb6nxSmq8drRWXZSrv7ZXL6v35CRbio0txa6EcFdGivrLy7VOoRc53uFwrFixYsGCBRs3bnQ/csUVV8ycOfOuu+6KjIz0ZAIAuBjFMOi3owlCQ0PtdruI1NfXh4SY9s0xVVVVdrs9Li7OrAGAwNTQ0FBeXh4TExMcHGz2LEBgKSkpCQkJiYqKMnsQILBUV1fX1NQkJCSYPQhgJrtLVhbof9mlbyvxPD0I0WR8kvqbq9TBcefZp19UVLRo0aI33njj2LFj5z4bERFx1113zZgx46qrrvJ4AACXoqysTFXVjh07mj2I7xCMomkIRoFARjAKmIVgFDAFwShwtpwy45Xd+vuHdUfTd8c3GhirZKSo9/RWQzURkc2bN8+bN++TTz5xOBynj4jrJTfeJ4PvkgNfyr/ekH0b/v3agQMzMjLuvvvusLCw5vxFAPwYglHgIghGgUBGMAqYhWAUMAXBKHCu43Xy9vf6/+7Vi055HiZ0DpNf9DK+emr8pqx/nH5Itcg142TYQ5IyXJSzWqWF38mmTNm2VOw17gf69OnzxRdfdOrUyfO/A4AfEYDBKDdfAgAAAAAAlyQ+TGb1Uw/dblk2Qkuzenj/+uI6eWnxqtOpaFSCpD8lcw/KjGXS9+b/SEVFpOvVctdr8v/yZMpfJSFFRPbv3//qq682968BACJCMAoAAAAAAJokWJVJyer6MZacCZaMFDXMg/s6b1woItIpWeYelPFPS3TihQ4Oi5KbZ8qzO6X/eBF54403/r31HgCagWAUAAAAAAB4YkCskpmqHbk9aM4grVv7Sy6QlhySfZ+LiAydLlrQpb5KUWT4TBE5duzYihUrPJgWAH6AYBQAAAAAAHguLkxm9VMP325ZOUpLsyoXz0c3LhRDF0uIDLm7aVfqe7MkXi4iCxYs8GxUADgbwSgAAAAAAGguVZH0JHX9GMu3Ey0PpqjhP7a/3lEnX74jInLd7RLR9Hso3TRNRDZu3Lhr165mDAsAIgSjAAAAAADAi67uqCxK1Y5ODfrr9VpyxDn90W1L5VSFiMiw6Z6cfcg9EtJORDIzM5s5JwAQjAIAAAAAAC+LCpZHrlQPTrasH2MZl3TW/vpNi0REkq6R5EGenDcsSq67Q0QWL1588uRJ78wKIFARjAIAAAAAgBahKpJmVVaNsuyfZJnVT40o/Eryd4iI+zZKHho+Q0Sqq6sffvndE3YvDQogIBGMAgAAAACAltU7SpkzSPulkSUiYgmW6yZ7fq6uV0uXq0Tk7RVr4t5z3Lja+adv9R1lhuGlUQEEjh/7MmQAAAAAAABvuuKyXiIizgbJ3yG9Uz08S025FB8QEYnr7dRl83Fj83HXf2dLp1AZlqCmWZXx3dT4MK/NDMCP0RgFAAAAAAC+MGnSpLi4OBGRjc24ddLmt8RRL4oiQx88++HSelmep0/f7OqyxHHtJ84ntrs2Hzd0eqQAfhzBKAAAAAAA8IWQkJD77rtPRGTHCjlZ7MkpDEO+eFNE5PI06dz7vIe4DMkpM+bu1G9c7ez8nmPyBteiXP1YrcdTA/BbBKMAAAAAAMBHZsyYoWmaOBtO55tNtfszKTkoIjJ0+qUcXtZYI13quH6lc/YO11cl1EgBnEYwCgAAAAAAfKRbt26jR48WEfnX66K7mvz6jYtERDp2kX63Nul1uiFflRjP7tCvX+mMe/d0jdR2iogUCGgEowAAAAAAwHdmzpwpIlJRJN+tadorKwpl92ciIjc9KKrnd5MutzfWSJ1XfOh8Yrsry2Y4dI/PB6CtIhgFAAAAAAC+M2bMmN69e4s0/RZMGzNFd4kWJDfc661h9lYac3fqI9c6O77jSF/nXJSrF1EjBQIGwSgAAAAAAPAdRVEeeOABEZG96+WD38vx7y/+mpPFsmaOO0gdO2Fi5rgu45KUEM2bU9U4ZHWBMX2zq+tZNdIGaqSAX1MMg9+EoAlCQ0PtdruI1NfXh4SEmDVGVVWV3W6Pi4szawAgMDU0NJSXl8fExAQHB5s9CxBYSkpKQkJCoqKizB4ECCzV1dU1NTUJCQlmDwL4obKysj59+lRUVIiIKIqk3CzDH5J+Y8+zQf7AZtmYKTtWiLNBRCwWyxdffHH99deLSK1Tviw2VhXoKwuMI9UtEm60s8jwRCU9SR3TVenaTmmJSwCtR1lZmaqqHTt2NHsQ3yEYRdMQjAKBjGAUMAvBKGAKglGgReXm5s6dO/f999+vr68//VAHq9z0gNx4v0QlSH21fLVU/rlQbLvdT6qqOmbMmMcee2zo0KHnnu1wtZFlM1YV6Fk2o77pt3S6FD0ilHFJSnqSelOCEsz+W/gjglHgIghGgUBGMAqYhWAUMAXBKOAD5eXlb7311sKFCw8dOnT6IS1I+gyVvK+l7qT7gU6dOt1///3Tp09PTk6+6AnrnLKl2Mg6qq/MN/ZVtlSNdHBnZVxX9WfdlaT21EjhPwhGgYsgGAUCGcEoYBaCUcAUBKOAz+i6vm7dugULFnz66acu178Ln4MHD545c+akSZM8+/jprpFm2YzPivRqh/fGPUuPCCXNqoxLUkZZVe9+5yngewSjwEUQjAKBjGAUMAvBKGAKglHA9/Lz8xcsWPDZZ5/179//4Ycf7t+/v1dO21gjzbIZOWUtEoOEW2RIZ2VcV/Wn3ZTuEdRI0SYRjAIXQTAKBDKCUcAsBKOAKQhGAVM4nc7S0tLo6OiwsLCWOL8va6QjrWooNVK0HQEYjJ5zuzcAAAAAAAA/1SNCyUhRMlKk3qVtPt4iNdLD1caiXGNRroRZXDd0VtIS1fHdlL7R1EiBVodgFAAAAAAABJxQTdKsSppVk0FypNpYZzOybMY/ivST3quR1jkly2Zk2VxPbD9dI02zKmO6qO2DvHYJAM1BMAoAAAAAAAJa9zM1UqeubSsxVhfqWTZjR5k3v3zw3BppmlUZGEuNFDATwSgAAAAAAICIiEWV1HglNV6TQVJcJ/8o0lcXGOtselWD1y7RWCOVs2qko7uoEdRIAZ8jGAUAAAAAAPihzmFyT2/1nt7iMrRvy41VBfrqgpaqkYZqrtR4aqSArxGMAgAAAAAA/ChNkYGxysBYbfYAKamTTcf1VfnGqgK90ns10nrXv2uk3SOUUVYlzarc0kWNpEYKtCSCUQAAAAAAgEsSFyaTktVJyS1YIz1ypkZqUV0/6aSkJ6lpVmVArEKPFPA6glEAAAAAAICmObtGWlovG4/pq/KN1YX6CbvXLuHUZUuxsaXYJdulc5iMsqrp3ZRRVjUq2GuXAAIcwSgAAAAAAIDnOoX+R400y2asKrF73/AAACAASURBVNC3lhi693qkxXXyzkH9nYOiKa5rYpRxSUp6kkqNFGgmglEAAAAAAAAvOFMjVWb1U8vq5Z/H9CybsTJfP17ntUu4DMkpM3LKjGd36HFhMjReHZekjO+mRlMjBZqOYBQAAAAAAMDLYs/USBfcoH1TbmTZjKyj+sZjhlP32iVK6mR5nr48jxop4CGCUQAAAAAAgJainlUjLbfL50f1LJuxusA4Wuu1nfZn10g7hcqwBNUdknYI8dYVAP9EMAoAAAAAAOALMSGna6S6IY010k3HDIf3aqSl9f9RI02zKuO6qkM6Kyo9UuAcBKMAAAAAAAA+dXaNtMIuG47qWTbj00LDdsr7NdK5O/XYUBmeoKZZlfHd1Pgwb10BaPMIRgEAAAAAAEzT8UyNVET2nDBWF3i/Rlp2pkY6Y4urf4ySZlXSEtVhCYpF9dolgLaIYBQAAAAAAKBVuKKDckUHZVY/tcYh/zymry4w1hQaRd6rkepn1UhjQuTmRDXNqoxLUhLD2WmPQEQwCgAAAAAA0Lq0D5L0JDU9SUTkcLWxKt9YXaj/65jR4L0aabn9dI1UVaSxRjo0QQmiRoqAQTAKAAAAAADQevWIUB65UnnkSvWUUz4/qq8uMD4rMgpqWqRG2jFERiSqaVZlbFfF2o4aKfwcwSgAAAAAAEAb0M5ynhrpF8cNu8trl6g4UyMVkcujlfRu1EjhzwhGAQAAAAAA2pjGGmmtU74sNlYV6H/PN/K9VyMVkb2Vxt5KY+5OvX2QDEtQ0pPUW7sqXaiRwo8QjAIAAAAAALRV4RZJsyppVu2VwXK42siyGasK9PU2b9ZIaxyyusBYXeASkR4RyrgkJT1JvSlBCaZGijaOYBQAAAAAAMAf9IhQMlKUjJTTNdKso/rf843cSm/WSA9XG/P2GPP26O0sMjxRSU9SR3dRktpTI0WbRDAKAAAAAADgVxprpHMGna6RZtmMtUV6jcNrlzjlPE+N9MZ4JUTz2iWAlkYwCgAAAAAA4LfO1EilzqltKTayjuqr8o29LVMjDbfIkM7KuK7qhO5KN2qkaPUIRgEAAAAAAPxf2PlqpJ8V6dXeq5HWOiXLZmTZXI9ukx4RSppVGZekjLKq1EjROhGMAgAAAAAABJbGGmm9S9t83Mg6qmfZjJwyL9dIF+Uai3Il3OIa0llJS1R/2k1JiaZGilaEYBQAAAAAACBAhWqna6QySPKqjfU2I8tm/KNIP9kCNdIntv+7RjrSqoZSI4XZCEYBAAAAAAAgyWdqpE5d21ZirC7Us2zGjjLDiz3SxhppmMV1Q2clLVFN76ZcTo0UJiEYBQAAAAAAwL9ZVEmNV1LjNRkkx+tkXZG+usBYZ9OrGrx2ibpzaqRpVmV0FzUiyGuXAC6KYBQAAAAAAADnFx8m9/RW7+ntixppqOZKjVfSEtU0qzIwlhopWhzBKAAAAAAAAC7i7BppcZ38o0hfXWCst+mV3quR1rtO10hluyRHKCOtSppVuaWLGkmNFC2DYBQAAAAAAABN0PlMjdRlaN+WG6sK9NUFXq6R5p2pkVpU1086KelJappVGRCr0COFFxGMAgAAAAAAwBOaIgNjlYGx2uwBUlInm47rq/KN1YX6CbvXLuHUZUuxsaXYJdslPkxGWtX0bsooqxoV7LVLIGARjAIAAAAAAKC54sJkUrI6Kfl0jTTLZqwq0LeWGLr3eqTH6+Sdg/o7B6mRwjsIRgEAAAAAAOA1Z2qkyqx+amm9bDymr8o3Pi3UK1qmRto5TEZZ1fRuykirGk2NFE1BMAoAAAAAAIAW0Sm0xWukxWdqpJriuiZGGZekpCep1EhxKQhGAQAAAAAA0LLOrpGW1cs/j+nukPRYrdcu4TIkp8zIKTOe3aHHhcnQeNUdknYI8dol4GcIRgEAAAAAAOA7sWdqpAsM7ZtyI8tmZB3VNx4znLrXLlFSJ8vz9OV5p2ukaVZlXFf1hnhqpPgPBKMAAAAAAAAwgXpWjbTcLp8f1bNsxuoC42it13baN9ZI5+7UO4XKsAR1XJIyLkntSI0UBKMAAAAAAAAwXUzI6RqpiOw5YawuMLKO6puOGQ7v1UhL689TIx3SWVHpkQYqglEAAAAAAAC0Ild0UK7ooMzqp1bYZcNRPctmrCk0ik61SI00NlSGJ6hpViU9SU0I99YV0DYQjAIAAAAAAKA16ni+Gum/jhkN3quRlp2pkc5QXP1jlDSrkpaoDktQLKrXLoFWi2AUAAAAAAAArV1jjfSUUz4/qq8uMNYWGoXeq5HqZ9VIY0Lk5kQ1zaqMS1ISw9lp77cIRgEAAAAAANBmtLNIepKaniQicrjaWJVvrC70co203H66Rioil0cr6d2UtER1aIISRI3UvxCMAgAAAAAAoE3qEaE8cqXyyJXqKadsLTZWFeif5BsFNV6rkYrI3kpjb6Uxd6feMURGJKppVuXWrkqXdtRI/QHBKAAAAAAAANq2dhZJsyppVu2VwXK42siyGasK9PU2w+7y2iUqzlcjvSlBCaZG2mYRjAIAAAAAAMB/9IhQMlKUjBS11ilfFhurCvS/5xv5LVMjbWeR4YlKepI6pqvSlRppW0MwCgAAAAAAAD8Ufr4aaZbNqPdejfSUU1YXGKsLXCLSI0IZl6SkJ1EjbTMIRgEAAAAAAODnGmukdU7ZUmxkHdVX5hv7Kr1ZIz1cbczbY8zbo7ezyODOyriu6s+6K0ntqZG2XgSjAAAAAAAACBRhZ2qkcwadrpFm2Yy1RXqNw2uXOOWULJuRZXM9uk16RChpVmVckjLKqoZoXrsEvIJgFAAAAAAAAIHoTI1U6pyau0aaZTNyyrxcI12UayzKlXCLa0hnZVxXdUJ3pRs10taBYBQAAAAAAAABrbFGKmfVSD8r0qu9VyOtPV+NdKRVDaVGah6CUQAAAAAAAOC0xhppvUvbfLxla6RhFtcNnZW0RHV8N6VvNDVSXyMYBQAAAAAAAH4oVPt3jTSv2lhvM7Jsxj+K9JPeq5HWnamRPrH9dI00zaqM6aK2D/LaJXABBKMAAAAAAADAhSSfqZE6dW1bibG6UM+yGTvKDC/2SM+tkaZZlYGx1EhbEMEoAAAAAAAAcEksqqTGK6nxmgyS43WyrkhfXWCss+lVDV67RGONVM6qkY7uokZQI/U2glEAAAAAAACgyeLD5J7e6j29xWVo35Ybqwr01QUtVSMN1Vyp8dRIvYxgFAAAAAAAAPCcpsjAWGVgrDZ7gBTXyT+K9NUFxnqbXum9Gmm969810uQIZaRVSbMqt3RRI71RIy0sLMzMzFy8eLHFYpk2bdoDDzzQuXNnL5y31VMMb6bY8H+hoaF2u11E6uvrQ0JCzBqjqqrKbrfHxcWZNQAQmBoaGsrLy2NiYoKDg82eBQgsJSUlISEhUVFRZg8CBJbq6uqampqEhASzBwECi9PpLC0tjY6ODgsLM3sWoFlchrRQjbSRRZWfdFLSk9Q0qzIgVmlqj9QwjKysrPnz569atcrlcjU+HhwcPHHixJkzZ954443eHbi1IRhF0xCMAoGMYBQwC8EoYAqCUcAUBKPwSyV1sum4virfWF2on7C3yCXiw2SkVU3vpoyyqlEX+8R24sSJv/3tbwsWLDhw4MDph7QguSZdHHbZtVYM3f3YVVddNWPGjLvuuisiIqJFhjYbwSiahmAUCGQEo4BZCEYBUxCMAqYgGIV/c9dIs2zGqgJ9a4mht0AspylyTYwyLklJT1LPrZGWlZXNmjXr/fffr62tPf1QdILc9IDc+IBEJ4iIlOfLxkWy5W9SXep+PjIy8u67737xxRf9Lx4lGEXTEIwCgYxgFDALwShgCoJRwBQEowgcpfWy8ZieZTNW5uvH61rkEp3DZJRVTe+mjLSq0cEiIrfccsu6detERBRF+gyTYdOl/3hRz7kLkdMu2R/JxoVyaJv7gSlTpixZsqRFpjQPwSiahmAUCGQEo4BZCEYBUxCMAqYgGEUA0g35xic10utdufMnXW0Yhlz7cxn/tCSkXPyVhTtlxdOya21QUFB+fr6f/VhUzR4AAAAAAAAACFyqIgNjlVn91M3pluI7g5aN0DJS1IRwb17CZUhOmfHa/IWGYUhQmNz1v5eUiopI135y12uiag6H4/XXX/fmTK0AwSgAAAAAAADQKsSGyqRkNTNVK5oSlD3BMmeQlmZVgrwS4NlrZOu7IiLXT5F2HZvwwo5d5OpbRSQzM9PhcHhjlNaCYBQAAAAAAABoXRprpOvHWI7dGbRkuHZ3LzWuOd8wsW2p1FWJiAzNaPJrh00XkaNHj65ataoZE7Q6BKMAAAAAAABA6xUTIlN6qouHacemBmVPsPxxoHZDZ0VTLv7C//Cv10VEevxEug1o8gSXj5TOvUVk/vz5TX5tK0YwCgAAAAAAALQB7hrpU/3VzemW0ruCPrhZu+8yNf5SaqQHt0jBtyKnu59Npihy0wMismHDhj179nhyhlaJYBQAAAAAAABoYzqEyOQe6ps3aUfvDNrxM8ufBmk3xSuWH4v6NmaKiLSPkWt/7uH1Uu+T4HAR8adbMBGMAgAAAAAAAG2VItI/Rnmyn7ppnKXsrqDlI7RpfVRru7N22teekJwVIiI33CtBoR5eJjxaBk0Skbfffttutzd/7NbAYvYAAAAAAAAAALwgKlh+nqz+PFlE5LsK47Mi47NC/Yu91U6nXUSkU3Kzzt4pWUROnjzZ0NAQEhLS/GlNR2MUAAAAAAAA8DdXd1Qev1r9fKyl4tGeva4eJCKyaZHnpzN0+eItERk9enRERISXZjQZwSgAAAAAAADgtyKC5L8enSEiUvidHNrm4Vm+WyPl+SIyY8YM741mMoJRAAAAAAAAwJ/dcccdMTExIiKbMj08xcZMEUlKShozZoz35jIZwSgAAAAAAADgz8LCwu69914Rke0fSnVJk19felj2rBeRGTNmaJrm5eHMQzAKAAAAAAAA+LkZM2aoqipOu2x5u8kv3rRIDD0kJOT+++9vgdFMQzAKAAAAAAAA+LmePXuOGjVKRGRjpuiuJrzSUefOUidPnhwXF9cy05mDYBQAAAAAAADwf6fvm1ReIF9/0ISX/esNqSkXkYceeqhl5jINwSgAAAAAAADg/8aOHdutWzcRkf+7V14YLJv/Jo66Hz26vlo2LpTZ/eX934nINddcM2TIEF9N6iMEowAAAAAAAID/0zRt4cKF0dHRIiJHcuTtDPl9d1n2uJQc/I/jbHvkvV/LY93lvYfFtkdE4uLiXnvtNTNGblkWswcAAAAAAAAA4AujR4+22WxLly6dP3/+jh07pPaErP+rZL0il6fJ0OnirJeNmfL9F43HDxkyZObMmT//+c9DQkJMHLuFKIZhmD0D2pLQ0FC73S4i9fX1Jr4lqqqq7Ha7n33jL9D6NTQ0lJeXx8TEBAcHmz0LEFhKSkpCQkKioqLMHgQILNXV1TU1NQkJCWYPAgQWp9NZWloaHR0dFhZm9iyAn/vqq6/mz5+/bNmy+vr6HzzVvn37qVOnzpw5s1+/fqbM5htspQcAAAAAAAACzk9+8pO33367sLDwpZde6tGjh/vBvn37zps3r6ioKDMz079TUSEYRRtVUFDw3XffmT0FEHBqa2u3bt1aW1tr9iBAwNm5c2dBQYHZUwAB59ixYzk5OeyxA3ysoaFh27ZtJ0+eNHsQIFDExsY+9thjBw4cmD9//ptvvrlnz55f//rXAbJXiWAUbU9ubu511103cuTIN954w+xZgMCSnp5+2223paenmz0IEFhef/31UaNGXXfddfv37zd7FiCAFBcXX3fddenp6c8//7zZswCB5d577504ceJNN93kcrnMngUIIJ9++ukvf/nLjIyMLVu2mD2L7xCMou3Zvn27+8svNm/ebPYsQGBx/4AMqB+TQGvg/nlXX1+/fft2s2cBAsiuXbuqqqqEf3MCPuf+1+b3339fWlpq9ixAANmyZYthGE6nc+vWrWbP4jsEo2h7Gnczsa0J8DH3m463HuBj/OADTMFbDzAL7z7AFIH51iMYBQAAAAAAABBwCEYBAAAAAAAABByCUQAAAAAAAAABh2AUAAAAAAAAQMAhGAUAAAAAAAAQcAhGAQAAAAAAAAQcglEAAAAAAAAAAYdgFAAAAAAAAEDAIRgFAAAAAAAAEHAIRgEAAAAAAAAEHIvZA6CtysvLCw4ONuXSpaWl7kV1dfXhw4dNmQEIcLz1AF+qqalxL0pKSnj3AT5z7Ngx96Kuro63HuBLTqfTvcjPz6+rqzN3GCBwVFZWuhcVFRXm/uALDw+Pj4/3zbUUwzB8cyX4B4vF4nK5zJ4CAAAAAAAA/ik9PX3lypU+uBDBKJpGVVX+mwEAAAAAAEALUVW1rq7OBzuV2UqPppk6dery5csjIiKioqLMmsEwjOLiYpfL1alTJ7O28wOB6eTJk1VVVVFRUZGRkWbPAgSQhoaG0tJSi8USFxenKIrZ4wABpKSkpKGhITY2NjQ01OxZgABSU1Nz4sSJ9u3bd+jQwexZgADidDpLSkoURYmLi9M0zcRJVFW97777fBP40BgFAAAAAAAAEHC4Kz0AAAAAAACAgEMwCgAAAAAAACDgEIwCAAAAAAAACDgEowAAAAAAAAACDsEoAAAAAAAAgIBDMAoAAAAAAAAg4BCMAgAAAAAAAAg4BKMAAAAAAAAAAg7BKAAAAAAAAICAQzAKAAAAAAAAIOAQjAIAAAAAAAAIOASjAAAAAAAAAAIOwSgAAAAAAACAgEMwCgAAAAAAACDgEIwCAAAAAAAACDgEowAAAAAAAAACDsEoAAAAAAAAgIBjMXsAAEAb4HK5ioqKKisrQ0JCOnbsGBcXZ/ZEQKCorKwsLi6ur6+PjIy0Wq3BwcFmTwQAAAC/VVJSUlJS0q5du/j4+LCwMLPHaXEEo2gzbDZbdnZ2Tk7Ot99+W1dX537w3Xff7dy5s7mDAf7KMIytW7euWbNmw4YNO3fubHzfiUhCQsLNN988ffr0G2+80cQJAb+0e/fuLVu2bN26ddu2bXl5eQ0NDY1PBQcHX3PNNZMmTbr//vs7duxo4pBAQHnuuee++OIL99pisaxdu9bceQA/8/TTT2/duvVSjvz4448jIiJaeh4gABmGsWLFiqVLl65Zs6a2trbx8fj4+BEjRtxyyy0TJ05s166diRO2HMUwDLNnAC5kxYoVb775ZnZ29vHjx8999siRI926dfP9VIDf++ijjx5//PHDhw9f+LDJkycvXLiwQ4cOvpkKCARJSUmFhYUXPqZTp04LFy6cOHGib0YCAtmmTZuGDx/e+KEpODjYbrebOxLgZ37605+uXLnyUo4sLy/n94KA1+3bt2/69OmNvwI8ry1btgwZMsRnI/kSjVG0dhs2bFi9erXZUwAB58svvzw7FdU0LTk5OS4uzuFw7N+//+TJk+7Hly1bdujQoc8//zwyMtKkSQF/Fhwc3Llz5y5duui6brPZioqK3I+XlpZOmjRp8eLFd955p7kTAv6ttrb2gQceoEoCAPBXO3bsSEtLO3HiROMj3bt3T0hI0HX9+PHj+fn5Js7mGwSjaEusVuu1115rGMYl/kYRQDOFhYVNnDhxypQpN954Y2P06XK5VqxY8eijj9psNhHJycl5/PHHFy5caOqkgP+IjY0dMmRIWlrazTff3KNHj7OfOnTo0EsvvbRo0SIR0XV95syZN998c0JCgkmTAv7vqaeeOnjwoIhcdtll33//vdnjAH5u2rRpM2bMuMAB/CYe8K7Dhw+PGjXKnYoGBwf/9re/nT59evfu3RsPKCkp+fDDD9977z1FUUybsoWxlR6t3VtvvVVYWDhw4MCBAwfGx8eLyJIlSxoLMmylB1rIM88843Q6f/vb38bExJz3AJvNdv3117v7a6qqFhYWJiYm+nZGIEC98MILTz31lHv90ksvPfbYY+bOA/irbdu2paamulyu4cOH33DDDc8//7ywlR5oAY1b6Z966qk//vGPZo8DBArDMNLS0j7//HMRiYyM/OyzzwYPHmz2UCZQzR4AuIj77rvv6aefHjt2rDsVBeAbs2fPfuGFF34sFRURq9U6Z84c91rX9TVr1vhqNCDQzZo1KzY21r3+8ssvzR0G8Fd2u33atGkulys8PPz111/346YMACAwLV261J2Kisgbb7wRmKmoEIwCAM7rUj4BTpgwofGwi96mCYC3WCyWfv36udelpaXmDgP4q9mzZ+/du1dEnnvuuZ49e5o9DgAAXvbaa6+5F0OHDp00aZK5w5iIYBQA4KF27dqFhoa61/X19eYOAwSUxp28F6h1A/DYt99+++c//1lE+vXr9/DDD5s9DgAAXrZ3797GjUcZGRnmDmMuglEAgIeKi4vr6urca75gFPCZ8vLy7Oxs9/qmm24ydxjA/zidzvvvv9/hcFgsljfffDMoKMjsiQAA8LKsrCz3QlXVsWPHmjuMubgrPQDAQx9++GHjevjw4SZOAgQO9/ceujvanTp1uu+++8yeCPA3zz///DfffCMiv//97wcMGGD2OEAA+eKLL2677bY9e/aUlJS0b98+Li5u0KBBo0aNGj9+vKZpZk8H+JXG37JffvnlUVFRhmGsWbNm8eLFu3btKi4ujoqKSk5OHj58+C9+8YuuXbuaO2pLIxgFAHiipqbmpZdecq+vuuoqPjoCXtfQ0FBUVORe19XVFRQU7N69OzMz89ChQyLSvn37ZcuWdezY0dQZAX+za9euF198UUR69+799NNPmz0OEFg2bdrUuD5x4kRhYWFOTs7ChQt79uw5b968W2+91cTZAD+za9cu9yIlJaWoqOjee+/dsGFD47MVFRV5eXmff/75888/P2vWrGeeeUZV/XbHOcEoAMATjz/+eEFBgXs9Z84cbtcLeN3evXv79+9/7uOapk2YMGHOnDm9evXy/VSAH3M6ndOmTWtoaFAUZf78+WFhYWZPBEBE5NChQ+PGjXvxxRdnzZpl9iyAn6ioqHAvQkND09LS9u/f7/5jYmJieHj40aNHa2trRcRutz/33HMHDhx47733/PUTn98mvgCAlvP2228vWLDAvZ42bRq/wAd8aejQoVOmTOnRo4fZgwD+5n/+53+2b98uItOmTUtLSzN7HCCAdO/e/fHHH//888+PHTtmt9tra2sPHz789ttvDx482H2AYRhPPvnkkiVLzJ0T8BtVVVXuxdKlS92p6LRp0/Ly8mw224EDByorKz/66KNu3bo1HvPyyy+bNmsLUwzDMHsGoGmWLFly5513utdHjhxpfK8C8I1169aNHz/efVPsq666auvWre3atTN7KMAPff/991OnTnWvDcMoKCgoKytrfHbgwIHLli0jHgW8Zf/+/f3796+rq4uPj9+7d2+HDh3Ofvbpp5/+4x//KCLBwcHun4AAvKWgoKBr167nLaMZhjFv3rzf/OY37uAiLi7u0KFD7du39/mMgL8JDQ09+8fZH/7wh+eee+4Hxxw9evS6666z2WwiEhUVlZ+fHxUV5dMpfYLGKACgCbZs2TJx4kT3D9GePXt+9tlnpKJAC7nsssuyz8jJySktLd23b9+vfvUr9w0ocnJyhg0bVlxcbPaYgD/Qdf2BBx6oq6sTkXnz5v0gFQXQopKSkn5si66iKI888sh///d/u/9YUlKyePFiH44G+K2zP8T17dv3mWeeOfeYxMTEv/zlL+51VVXV+++/76PhfItgFABwqbZt2zZmzJhTp06JSJcuXdavX5+YmGj2UEAASUlJefXVVz/++GOLxSIihYWFv/vd78weCvAH8+bN27x5s4iMHTt20qRJZo8D4D88+eSTjb+u+Oyzz8wdBvAPZzev7733Xvfv3c81ceLEmJgY93rjxo0+GMz3CEYBAJckOzt79OjR1dXVItK5c+esrKzk5GSzhwIC0fjx4zMyMtzrDz744Oz99QA8cPTo0aeeekpEIiMjFy5caPY4AH4oPDx8+PDh7vWePXvMHQbwD41xp4hcd911P3aYxWIZOHCge/3999+3+Fhm4K70AICL++6770aPHu3+iu5OnTplZWX16dPH7KGAwDVlypT58+eLiNPp/Oqrr8aOHWv2REAbVlhY6N4M4XK5hg4det5jTpw44V44HI6ePXu616NHj37ttdd8MyQQ4BpvLFFaWmruJIB/SElJ+eabb9zrTp06XeDIuLj/3969B0VV/38cP7vIIojcRC0jL6kZ2mYu3lJBVxHSFMUQy2EyS2WmLC01TVPzW2lOZk6GXaxMMy+ZMl7wghiEmA6maeWdVFxQJK7Sirvg7veP8/ue2R/isq67LMt5Pv76nM9+PufzXmaa4OX5nE8rsdFY/zGeYBQAUIdz585FR0cXFxcLghAQELBnz57HH3/c1UUBsta2bVupzZ+IgKPo9fqLFy9aH2M2m6UxvOQXqDfSKTEqlcq1lQCNQ9euXaV2dXW1lZFVVVViw8vLy7k1uQhb6QEA1pw/f16r1RYUFAiC4O/vn5qaKm2mAOAq4uPbokZ5PCgAAJbOnj0rNqw/2gbARhEREVJbp9NZGSl92lj/6+OJUQDAXV24cEGr1V67dk0QBD8/v3379vXq1cvVRQH4fy+/522/wH0KCwsrKSmxPmbx4sXLli0TBEGlUon/WCjw5BpQX3Q6nXg8mmD1ZYgAbNe/f//WrVuLWx/S09NHjBhR67CysrLjx4+L7cb6lyBPjAIAapebmzt06NCrV68KguDj47Nz584+ffq4uigAQklJydKlS8V2mzZtunfv7tp6AHfXpEmTwLp4e3tL46XOZs2aubBsQCZu3779yiuvGI1G8XLkyJGurQdoHDw8PBISEsT22rVrxdem3SkpKenWrVtie/jw4fVUXP0iGAUA1OLKlSuDBg3Kzc0VBMHHx2fXrl2Wuy0AOMmsWbM+//zzGzdu3G3AyZMntVptfn6+eDlt2jSF36LJDAAAEgFJREFUQlFf1QEA4GCJiYkbN26UkpcaCgsLn3322V27domXjz/+eGxsbD1WBzRmc+bMEd/IVFxcnJCQUFlZWWNAWlrae++9J7Y1Gs3QoUPru8R6oTCbza6uAbCmvLw8Li7OsqegoOCvv/4S2wMGDGjatKn0UUhIyJo1a+q1PqCRGjFiREpKitgOCQl57LHHrI/XaDTSI2wA7BYfH79lyxYvLy+tVqvRaEJDQ/39/b28vEpKSnJycg4cOJCZmWkymcTB/fr1y8jI8PT0dG3NgBwsWLBA/ONQpVJJh8AAuH99+vTJzs5u3rx5ZGSkRqPp1KmTv79/dXV1QUFBZmbmtm3bbt68KY709fVNT0/v2bOnawsGGpM1a9a89NJLYrtLly4zZ87s16+fr6/vxYsXf/zxx9WrV4vnMnl7ex86dKhHjx4uLdZZeMcoGrqqqqq0tLS7fSq9a0b06KOPOr8iQBak/UqCIOTl5eXl5VkfzzNrgAMZDIa9e/fu3bvXypjIyMiffvqJVBQA0AhUVFQkJycnJyffbUDr1q03btxIKgo41sSJE/Py8hYuXGg2m8+dOzd58uQ7x/j6+v7www+NNRUV2EoPAADQcMTHxz/99NM+Pj5Wxmg0mu+//z41NZXz6AEA7m7w4MEPP/ywlQF+fn6vv/76n3/+qdVq660qQD7mz5+fkpLSvn37Wj+Njo4+fPhwTExM/RZVr9hKj4auurr65MmTNg5u2rRpt27dnFoPIBMXLlyw8pbDO/n5+XXu3Nl59QCyYjAYDh8+fPz48UuXLhUVFd2+fdvPzy8oKEitVvfq1avOV1sAcLirV69eu3ZNEASFQqHRaFxdDtDY5ObmHjp0SPy/XlFRUXV1dWBgYEhISO/evZ966ikOOgOczWQyZWVl/fzzz3l5eRUVFcHBwV26dImKipLDr50EowAAAAAAAABkh630AAAAAAAAAGSHYBQAAAAAAACA7BCMAgAAAAAAAJAdglEAAAAAAAAAskMwCgAAAAAAAEB2CEYBAAAAAAAAyA7BKAAAAAAAAADZIRgFAAAAAAAAIDsEowAAAAAAAABkh2AUAAAAAAAAgOwQjAIAAAAAAACQHYJRAAAAAAAAALJDMAoAAAAAAABAdghGAQAAAAAAAMgOwSgAAAAAAAAA2SEYBQAAAAAAACA7BKMAAAAAAAAAZIdgFAAAAAAAAIDsEIwCAAAAAAAAkB2CUQAAAAAAAACyQzAKAAAAAAAAQHYIRgEAAAAAAADIThNXFwAAAADUTqfTVVVViW1/f/8WLVq4tp4GqLS0VK/Xi20vL6+WLVs68Obl5eXFxcViW6FQdOjQwYE3BwAAcDmeGAUAAEADpdVqO/7P4sWLXV1OQzRr1qyH/2fkyJGOvfl3330n/fzVarVjbw4AAOByBKMAAAAAAAAAZIdgFAAAAAAAAIDsEIwCAAAAAAAAkB2CUQAAAAAAAACyw6n0AAAAgLuKj48PDQ0V223atHFtMQAAAO6FYBQAAABwV1FRUVFRUa6uAgAAwC2xlR4AAAAAAACA7BCMAgAAAAAAAJAdttIDAAAA98xgMOTk5Fy9erWsrKx58+YdO3bs2LGjUun4xw4qKyvPnDmTn59/69atgICAzp07t2/f3iF3Li8vv3jxonjnli1bdunS5YEHHnDInQEAANwCwSgAAAAaCZPJNH/+/OzsbKmnXbt2n376qY+PjwNXOXr06MqVK3fs2FFeXm7Z36pVq3Hjxs2YMaNdu3aCIOTl5U2cOFH6dPny5Wq1utYbJiQkXL9+XWzHx8dPnjxZEASz2bxjx45Vq1b98ssvBoNBGhweHp6ZmSldrly5ct++fWL7scceW7ZsmS1fISUl5csvv9y3b5/RaLTs79at26RJkxITE729vW25DwAAgFsjGAUAAEBjYDAYJkyYsHnzZqlHrVavWbPGgaloZWXl7Nmzk5KSTCbTnZ8WFhauXLnym2++WbFixeTJk2/evJmWliZ9WlpaerfbHjp06PLly2Jbo9EIgpCfn5+QkJCRkXHnYLPZbHl58uTJlJQUsV1UVFTnVygsLHzllVe2bt1a66enTp164403kpKSNm3aFBYWVufdAAAA3BrBKAAAANxeSUnJ6NGjDx48KPVERkZu3brVz8/PUUvcunVr9OjRqamp1ofdvHlzypQpJSUlsbGx9i105cqVAQMG6HS6Wj+tNZO1UWFh4aBBg86cOWN9WE5OzsCBA+v8pgAAAO6OYBQAAADu7dKlS8OHDz979qzUM2HChNWrV3t6ejpwlfHjx9fICtu2bTtmzJjOnTsHBgZev349Ozt7165dFRUVgiC8/fbb9u1GNxqNo0aNklLRpk2b9uvXLyQkxNPTs6Cg4Pjx4zWeGLVdZWVlVFRUjVRUrVaPHj26Q4cOHh4eOp0uJSXlyJEjZrNZr9fHxsaKm/oBAAAaK4JRAAAAuLGjR4+OHDlSekenIAizZ89esmSJQqFw4Crr169PTk6WLr29vZcsWTJ16lQPDw/LYSUlJW+88ca6devMZvPcuXPtWGjt2rXipvvAwMCFCxdOmjSpWbNm0qe3b98+ceKEfV9h0aJFJ0+elC5btmz5xRdfjBkzxnLMvHnzDh48+OKLL168eLGwsHDFihX2rQUAAOAWCEYBAADgrlJTU+Pi4sSHNAVB8PDwSEpKSkxMdOwq//777/Tp06VLlUr1008/DR8+/M6RQUFBa9eubdGixSeffKLX6+1YS0xFH3zwwbS0tK5du9b41MPDw75Xf546derjjz+WLgMCAg4cOFDrYVDh4eEHDx7s37//5cuX7fsKAAAA7kLp6gIAAAAAe3z77bfPPPOMlIo2a9Zs+/btDk9FBUHYuHFjcXGxdDl79uxaU1HJsmXL+vTpY/dyHh4e27dvvzMVvR+fffZZdXW1dPn555/XmoqK2rRps3nzZqWSvxQAAEAjx687AAAAcDNms/ndd999+eWXpbDvgQce+OWXX5555hlnLLd69WqpHRwcPGfOHOvjlUrl0qVL7V7u5Zdf7tWrl93T76TX6zds2CBd9u3bd9y4cdan9O7de/z48Q6sAQAAoAEiGAUAAIA7MRqNL7zwwqJFi6SeTp06HTx40L495nUqKyv77bffpMv4+HgfH586Z0VERDzyyCP2rThlyhT7Jt5NRkbGjRs3pMtJkybZ8gJWTl4CAACNHsEoAAAA3EZFRcWoUaPWr18v9fTt2/fw4cOdOnVy0orZ2dmWB8EPGzbMllkKhcL6dvu7CQ4OdnjCe/ToUcvLUaNG2TJrwIABLVu2dGwlAAAADQrBKAAAANzD1atXIyIi9u7dK/XExsb+/PPPwcHBzlvU8iR3QRCefPJJGyfaPtKSRqOxY5Z1x44dk9pt27a18celVCp79Ojh8GIAAAAaDk6lBwAAgBs4ffp079698/PzpZ7p06d//PHHtp8R9Pvvv1++fLnOYTWelLQ8dsnT0zMkJMTG5ezbSv/QQw/ZMcu6a9euSe3Q0FDbJ4aGhqampjq8HgAAgAaCYBQAAABuwPJBUUEQPvjgg7lz597THVatWvX111/XOSwtLW3IkCHSZWlpqdT28/Ozfbl7Gnyfs6yz/AoBAQG2T7ynwQAAAG6HrfQAAABwP3v27LE8UMh5KisrpbaXl5ftE729ve1Y7p6WsJHlD8rX19f2ic2bN3d4MQAAAA0HwSgAAADcQEJCguVbO7OysgYPHmy5z91J/P39pbZer7d9YkVFhRPKsYdlRGswGGyfeOvWLSeUAwAA0FCwlR4AAABuoFWrVunp6cOGDTty5IjYc+zYscjIyNTUVBsPTx84cKAtLySt8ZZPy+3kFRUV1dXVTZrY9Cu05QZ21woICNDpdGL7nuLa+nkmFwAAwFUIRgEAAOAeAgIC9u/fHxMTk56eLvacOHEiIiIiLS3NljOLEhISEhIS7nXRNm3aSG2TyXTu3Llu3brZMvH06dP3upaTBAUFSW1bjp+S5ObmOr4aAACABoOt9AAAAHAbvr6+u3btGjp0qNRz9uzZ8PDwS5cuOWnFnj17Wl4eO3bMxom//fabE8qxh1qtltpnzpwxGo02Tjxx4oRzKgIAAGgQCEYBAADgTnx8fHbu3Dl69Gip59KlS1qtNicnxxnLde/evWnTptLlli1bbJlVWVmZkpLijHrs0KtXL6ltNBqzsrJsmaXT6S5cuOC0ogAAAFyPYBQAAABuxsvLa/PmzXFxcVJPbm5ueHj4qVOnHL6WSqUaMWKEdLlv3z5bEth169Y1nBd0hoeHKxQK6fKHH36wZdaGDRtMJpPTigIAAHA9glEAAAC4H5VKtWnTpgkTJkg9BQUFgwcP/uOPPxy+1pQpU6R2VVXVtGnTzGazlfH//PPPO++84/Ay7NahQwetVitdrl+//vz589an3LhxY8WKFU6uCwAAwMUIRgEAAOCWPDw81qxZ8+qrr0o9hYWFgwYNys7OduxCkZGRlrvRd+/ePX369Ltlo2VlZcOGDSsqKnJsDfcpMTFRahuNxsTERCtvGjWbza+99lpBQUG9lAYAAOAyBKMAAABwVwqFYuXKldOnT5d6SktLo6Kifv31V8eu8s0336hUKqnn008/HTx48NGjRy2HGQyGLVu2PPHEE+IBTY8++qgDa7hPcXFxAwYMkC4zMjKee+658vLyO0caDIapU6euW7euHqsDAABwDYJRAAAAuDGFQvHJJ58sWLBA6ikvL4+Kijpw4IADV1Gr1cuXL7fsycjI6N27d7t27aKjo8eOHRsREdG6dev4+HidTicIQnBw8GeffVajTgfWc6+USuVXX31leYpUcnKy+KX+/vvvqqoqk8mk0+m++uqrsLCwVatWCYKgUChGjRrlupIBAACcromrCwAAAADu16JFi3x8fObMmSNe6vX6mJiYbdu2RUdHO2qJV1991WAwzJw503IT/ZUrV65cuVJjZFBQ0M6dOwMCAiw7mzVr5qhK7BMaGiqeWFVVVSX26HS6GTNmzJgxQ6lUKpXK6upqy/Hz5s0LDg7evn27K4oFAACoDzwxCgAAgMZg9uzZH330kfRg5s2bN2NiYpKTkx24xJtvvnngwAHre+TDw8OPHDnSt2/fGqfS18hJXSImJmbz5s3+/v41+k0mU41U9K233vrPf/5Tj6UBAAC4AMEoAAAAGomZM2euWrVKqfy/X3GNRuPYsWPXr1/vwCW0Wu0ff/yRnJz8/PPPd+nSRXwO1NvbW61WJyYmpqenZ2Zmdu7cWRCE4uJiy4kNIRgVBCE2NvbUqVNxcXFNmtS+dUytVqekpCxdutS1e/8BAADqgeJu52kCAAAAsNvixYvnzZsntoODg//55x9nrFJdXS097KlUKi1PiLKusLAwOTn59OnT+fn5RqMxMDAwNDR0yJAhPXv2JBIFAAAywTtGAQAAAMfLzMyU2mFhYU5apUmTJnd79tO6Vq1aJSYmOrweAAAAN8JWegAAAMDBcnJy9u/fL1327dvXhcUAAACgVgSjAAAAgCOZzeYZM2aYTCbxUqFQjB8/3rUlAQAA4E4EowAAAEDdzpw5U1RUVOcwk8k0c+bMHTt2SD1Dhw61fpA9AAAAXIJgFAAAAKjb/v3727dvP3Xq1F9//fVu55dmZWUNGTJk+fLlUo9Kpfrwww/rq0YAAADcAw5fAgAAAGyi1+uTkpKSkpJat24dFhYWGhraokULlUpVWlqam5ublZV1+fLlGlPef//9Hj16uKJYAAAA1IFgFAAAALg3169f37179+7du62MUSgUCxYsmDVrVr1VBQAAgHtCMAoAAADULSAgQKlUSkcqWafRaJYsWRIVFeXsqgAAAGA3xd1ekAQAAADAUkFBQUpKyqFDh44dO3bhwoXKykrLTxUKRdeuXQcNGjRixIjo6GiFQuGqOgEAAGALglEAAADAHtevX9fr9WVlZd7e3kFBQUFBQZ6enq4uCgAAALYiGAUAAAAAAAAgO0pXFwAAAAAAAAAA9Y1gFAAAAAAAAIDsEIwCAAAAAAAAkB2CUQAAAAAAAACyQzAKAAAAAAAAQHYIRgEAAAAAAADIDsEoAAAAAAAAANkhGAUAAAAAAAAgOwSjAAAAAAAAAGSHYBQAAAAAAACA7BCMAgAAAAAAAJAdglEAAAAAAAAAsvNfwW+ScIIZp00AAAAASUVORK5CYII=",
      "text/html": [
       "<?xml version=\"1.0\" encoding=\"utf-8\"?>\n",
       "<svg xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"600\" height=\"400\" viewBox=\"0 0 2400 1600\">\n",
       "<defs>\n",
       "  <clipPath id=\"clip030\">\n",
       "    <rect x=\"0\" y=\"0\" width=\"2400\" height=\"1600\"/>\n",
       "  </clipPath>\n",
       "</defs>\n",
       "<path clip-path=\"url(#clip030)\" d=\"M0 1600 L2400 1600 L2400 0 L0 0  Z\" fill=\"#ffffff\" fill-rule=\"evenodd\" fill-opacity=\"1\"/>\n",
       "<defs>\n",
       "  <clipPath id=\"clip031\">\n",
       "    <rect x=\"480\" y=\"0\" width=\"1681\" height=\"1600\"/>\n",
       "  </clipPath>\n",
       "</defs>\n",
       "<path clip-path=\"url(#clip030)\" d=\"M251.372 1423.18 L2352.76 1423.18 L2352.76 47.2441 L251.372 47.2441  Z\" fill=\"#ffffff\" fill-rule=\"evenodd\" fill-opacity=\"1\"/>\n",
       "<defs>\n",
       "  <clipPath id=\"clip032\">\n",
       "    <rect x=\"251\" y=\"47\" width=\"2102\" height=\"1377\"/>\n",
       "  </clipPath>\n",
       "</defs>\n",
       "<polyline clip-path=\"url(#clip032)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"310.845,1423.18 310.845,47.2441 \"/>\n",
       "<polyline clip-path=\"url(#clip032)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"707.333,1423.18 707.333,47.2441 \"/>\n",
       "<polyline clip-path=\"url(#clip032)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"1103.82,1423.18 1103.82,47.2441 \"/>\n",
       "<polyline clip-path=\"url(#clip032)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"1500.31,1423.18 1500.31,47.2441 \"/>\n",
       "<polyline clip-path=\"url(#clip032)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"1896.8,1423.18 1896.8,47.2441 \"/>\n",
       "<polyline clip-path=\"url(#clip032)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"2293.28,1423.18 2293.28,47.2441 \"/>\n",
       "<polyline clip-path=\"url(#clip032)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"251.372,1218.22 2352.76,1218.22 \"/>\n",
       "<polyline clip-path=\"url(#clip032)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"251.372,465.474 2352.76,465.474 \"/>\n",
       "<polyline clip-path=\"url(#clip030)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"251.372,1423.18 2352.76,1423.18 \"/>\n",
       "<polyline clip-path=\"url(#clip030)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"310.845,1423.18 310.845,1404.28 \"/>\n",
       "<polyline clip-path=\"url(#clip030)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"707.333,1423.18 707.333,1404.28 \"/>\n",
       "<polyline clip-path=\"url(#clip030)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"1103.82,1423.18 1103.82,1404.28 \"/>\n",
       "<polyline clip-path=\"url(#clip030)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"1500.31,1423.18 1500.31,1404.28 \"/>\n",
       "<polyline clip-path=\"url(#clip030)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"1896.8,1423.18 1896.8,1404.28 \"/>\n",
       "<polyline clip-path=\"url(#clip030)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"2293.28,1423.18 2293.28,1404.28 \"/>\n",
       "<path clip-path=\"url(#clip030)\" d=\"M301.227 1481.64 L308.866 1481.64 L308.866 1455.28 L300.556 1456.95 L300.556 1452.69 L308.82 1451.02 L313.496 1451.02 L313.496 1481.64 L321.135 1481.64 L321.135 1485.58 L301.227 1485.58 L301.227 1481.64 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M701.986 1481.64 L718.305 1481.64 L718.305 1485.58 L696.361 1485.58 L696.361 1481.64 Q699.023 1478.89 703.606 1474.26 Q708.212 1469.61 709.393 1468.27 Q711.638 1465.74 712.518 1464.01 Q713.421 1462.25 713.421 1460.56 Q713.421 1457.8 711.476 1456.07 Q709.555 1454.33 706.453 1454.33 Q704.254 1454.33 701.8 1455.09 Q699.37 1455.86 696.592 1457.41 L696.592 1452.69 Q699.416 1451.55 701.87 1450.97 Q704.324 1450.39 706.361 1450.39 Q711.731 1450.39 714.925 1453.08 Q718.12 1455.77 718.12 1460.26 Q718.12 1462.39 717.31 1464.31 Q716.523 1466.2 714.416 1468.8 Q713.837 1469.47 710.736 1472.69 Q707.634 1475.88 701.986 1481.64 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M1108.07 1466.95 Q1111.42 1467.66 1113.3 1469.93 Q1115.2 1472.2 1115.2 1475.53 Q1115.2 1480.65 1111.68 1483.45 Q1108.16 1486.25 1101.68 1486.25 Q1099.5 1486.25 1097.19 1485.81 Q1094.9 1485.39 1092.44 1484.54 L1092.44 1480.02 Q1094.39 1481.16 1096.7 1481.74 Q1099.02 1482.32 1101.54 1482.32 Q1105.94 1482.32 1108.23 1480.58 Q1110.54 1478.84 1110.54 1475.53 Q1110.54 1472.48 1108.39 1470.77 Q1106.26 1469.03 1102.44 1469.03 L1098.42 1469.03 L1098.42 1465.19 L1102.63 1465.19 Q1106.08 1465.19 1107.91 1463.82 Q1109.73 1462.43 1109.73 1459.84 Q1109.73 1457.18 1107.84 1455.77 Q1105.96 1454.33 1102.44 1454.33 Q1100.52 1454.33 1098.32 1454.75 Q1096.12 1455.16 1093.48 1456.04 L1093.48 1451.88 Q1096.15 1451.14 1098.46 1450.77 Q1100.8 1450.39 1102.86 1450.39 Q1108.18 1450.39 1111.29 1452.83 Q1114.39 1455.23 1114.39 1459.35 Q1114.39 1462.22 1112.74 1464.21 Q1111.1 1466.18 1108.07 1466.95 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M1503.32 1455.09 L1491.51 1473.54 L1503.32 1473.54 L1503.32 1455.09 M1502.09 1451.02 L1507.97 1451.02 L1507.97 1473.54 L1512.9 1473.54 L1512.9 1477.43 L1507.97 1477.43 L1507.97 1485.58 L1503.32 1485.58 L1503.32 1477.43 L1487.72 1477.43 L1487.72 1472.92 L1502.09 1451.02 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M1887.07 1451.02 L1905.43 1451.02 L1905.43 1454.96 L1891.36 1454.96 L1891.36 1463.43 Q1892.37 1463.08 1893.39 1462.92 Q1894.41 1462.73 1895.43 1462.73 Q1901.22 1462.73 1904.6 1465.9 Q1907.98 1469.08 1907.98 1474.49 Q1907.98 1480.07 1904.5 1483.17 Q1901.03 1486.25 1894.71 1486.25 Q1892.54 1486.25 1890.27 1485.88 Q1888.02 1485.51 1885.61 1484.77 L1885.61 1480.07 Q1887.7 1481.2 1889.92 1481.76 Q1892.14 1482.32 1894.62 1482.32 Q1898.62 1482.32 1900.96 1480.21 Q1903.3 1478.1 1903.3 1474.49 Q1903.3 1470.88 1900.96 1468.77 Q1898.62 1466.67 1894.62 1466.67 Q1892.74 1466.67 1890.87 1467.08 Q1889.02 1467.5 1887.07 1468.38 L1887.07 1451.02 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M2293.69 1466.44 Q2290.54 1466.44 2288.69 1468.59 Q2286.86 1470.74 2286.86 1474.49 Q2286.86 1478.22 2288.69 1480.39 Q2290.54 1482.55 2293.69 1482.55 Q2296.84 1482.55 2298.66 1480.39 Q2300.52 1478.22 2300.52 1474.49 Q2300.52 1470.74 2298.66 1468.59 Q2296.84 1466.44 2293.69 1466.44 M2302.97 1451.78 L2302.97 1456.04 Q2301.21 1455.21 2299.41 1454.77 Q2297.62 1454.33 2295.86 1454.33 Q2291.23 1454.33 2288.78 1457.45 Q2286.35 1460.58 2286 1466.9 Q2287.37 1464.89 2289.43 1463.82 Q2291.49 1462.73 2293.97 1462.73 Q2299.17 1462.73 2302.18 1465.9 Q2305.22 1469.05 2305.22 1474.49 Q2305.22 1479.82 2302.07 1483.03 Q2298.92 1486.25 2293.69 1486.25 Q2287.69 1486.25 2284.52 1481.67 Q2281.35 1477.06 2281.35 1468.33 Q2281.35 1460.14 2285.24 1455.28 Q2289.13 1450.39 2295.68 1450.39 Q2297.44 1450.39 2299.22 1450.74 Q2301.03 1451.09 2302.97 1451.78 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M1213.52 1518.52 L1219.41 1518.52 L1219.41 1547.77 L1236.88 1532.4 L1244.36 1532.4 L1225.45 1549.07 L1245.15 1568.04 L1237.52 1568.04 L1219.41 1550.63 L1219.41 1568.04 L1213.52 1568.04 L1213.52 1518.52 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M1248.53 1547.58 L1265.68 1547.58 L1265.68 1552.8 L1248.53 1552.8 L1248.53 1547.58 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M1298.47 1549.81 Q1298.47 1543.44 1295.83 1539.94 Q1293.22 1536.44 1288.47 1536.44 Q1283.76 1536.44 1281.12 1539.94 Q1278.51 1543.44 1278.51 1549.81 Q1278.51 1556.14 1281.12 1559.64 Q1283.76 1563.14 1288.47 1563.14 Q1293.22 1563.14 1295.83 1559.64 Q1298.47 1556.14 1298.47 1549.81 M1304.32 1563.62 Q1304.32 1572.72 1300.28 1577.15 Q1296.24 1581.6 1287.9 1581.6 Q1284.81 1581.6 1282.08 1581.13 Q1279.34 1580.68 1276.76 1579.72 L1276.76 1574.03 Q1279.34 1575.43 1281.85 1576.1 Q1284.37 1576.76 1286.98 1576.76 Q1292.74 1576.76 1295.6 1573.74 Q1298.47 1570.75 1298.47 1564.67 L1298.47 1561.77 Q1296.65 1564.92 1293.82 1566.48 Q1290.99 1568.04 1287.04 1568.04 Q1280.48 1568.04 1276.47 1563.05 Q1272.46 1558.05 1272.46 1549.81 Q1272.46 1541.53 1276.47 1536.53 Q1280.48 1531.54 1287.04 1531.54 Q1290.99 1531.54 1293.82 1533.1 Q1296.65 1534.66 1298.47 1537.81 L1298.47 1532.4 L1304.32 1532.4 L1304.32 1563.62 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M1337.04 1537.87 Q1336.06 1537.3 1334.88 1537.04 Q1333.73 1536.76 1332.33 1536.76 Q1327.37 1536.76 1324.69 1540 Q1322.05 1543.22 1322.05 1549.27 L1322.05 1568.04 L1316.16 1568.04 L1316.16 1532.4 L1322.05 1532.4 L1322.05 1537.93 Q1323.9 1534.69 1326.86 1533.13 Q1329.82 1531.54 1334.05 1531.54 Q1334.66 1531.54 1335.39 1531.63 Q1336.12 1531.7 1337.01 1531.85 L1337.04 1537.87 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M1343.19 1532.4 L1349.04 1532.4 L1349.04 1568.04 L1343.19 1568.04 L1343.19 1532.4 M1343.19 1518.52 L1349.04 1518.52 L1349.04 1525.93 L1343.19 1525.93 L1343.19 1518.52 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M1384.75 1537.81 L1384.75 1518.52 L1390.61 1518.52 L1390.61 1568.04 L1384.75 1568.04 L1384.75 1562.7 Q1382.91 1565.88 1380.08 1567.44 Q1377.27 1568.97 1373.33 1568.97 Q1366.87 1568.97 1362.79 1563.81 Q1358.75 1558.65 1358.75 1550.25 Q1358.75 1541.85 1362.79 1536.69 Q1366.87 1531.54 1373.33 1531.54 Q1377.27 1531.54 1380.08 1533.1 Q1382.91 1534.62 1384.75 1537.81 M1364.8 1550.25 Q1364.8 1556.71 1367.44 1560.4 Q1370.11 1564.07 1374.76 1564.07 Q1379.41 1564.07 1382.08 1560.4 Q1384.75 1556.71 1384.75 1550.25 Q1384.75 1543.79 1382.08 1540.13 Q1379.41 1536.44 1374.76 1536.44 Q1370.11 1536.44 1367.44 1540.13 Q1364.8 1543.79 1364.8 1550.25 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><polyline clip-path=\"url(#clip030)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"251.372,1423.18 251.372,47.2441 \"/>\n",
       "<polyline clip-path=\"url(#clip030)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"251.372,1218.22 270.27,1218.22 \"/>\n",
       "<polyline clip-path=\"url(#clip030)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"251.372,465.474 270.27,465.474 \"/>\n",
       "<path clip-path=\"url(#clip030)\" d=\"M115.232 1238.01 L122.871 1238.01 L122.871 1211.65 L114.561 1213.31 L114.561 1209.06 L122.825 1207.39 L127.501 1207.39 L127.501 1238.01 L135.14 1238.01 L135.14 1241.95 L115.232 1241.95 L115.232 1238.01 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M154.584 1210.47 Q150.973 1210.47 149.144 1214.03 Q147.339 1217.57 147.339 1224.7 Q147.339 1231.81 149.144 1235.37 Q150.973 1238.92 154.584 1238.92 Q158.218 1238.92 160.024 1235.37 Q161.852 1231.81 161.852 1224.7 Q161.852 1217.57 160.024 1214.03 Q158.218 1210.47 154.584 1210.47 M154.584 1206.76 Q160.394 1206.76 163.45 1211.37 Q166.528 1215.95 166.528 1224.7 Q166.528 1233.43 163.45 1238.04 Q160.394 1242.62 154.584 1242.62 Q148.774 1242.62 145.695 1238.04 Q142.64 1233.43 142.64 1224.7 Q142.64 1215.95 145.695 1211.37 Q148.774 1206.76 154.584 1206.76 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M166.528 1200.87 L190.64 1200.87 L190.64 1204.06 L166.528 1204.06 L166.528 1200.87 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M202.113 1211.34 L215.372 1211.34 L215.372 1214.54 L197.542 1214.54 L197.542 1211.34 Q199.705 1209.1 203.429 1205.34 Q207.172 1201.56 208.131 1200.47 Q209.956 1198.42 210.67 1197.01 Q211.404 1195.58 211.404 1194.21 Q211.404 1191.97 209.824 1190.56 Q208.263 1189.15 205.743 1189.15 Q203.956 1189.15 201.962 1189.77 Q199.987 1190.39 197.73 1191.65 L197.73 1187.81 Q200.025 1186.89 202.019 1186.42 Q204.012 1185.95 205.667 1185.95 Q210.031 1185.95 212.626 1188.13 Q215.222 1190.31 215.222 1193.96 Q215.222 1195.69 214.563 1197.25 Q213.924 1198.8 212.212 1200.9 Q211.742 1201.45 209.222 1204.06 Q206.702 1206.66 202.113 1211.34 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M114.931 485.267 L122.57 485.267 L122.57 458.901 L114.26 460.568 L114.26 456.308 L122.524 454.642 L127.2 454.642 L127.2 485.267 L134.839 485.267 L134.839 489.202 L114.931 489.202 L114.931 485.267 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M154.283 457.721 Q150.672 457.721 148.843 461.285 Q147.038 464.827 147.038 471.957 Q147.038 479.063 148.843 482.628 Q150.672 486.169 154.283 486.169 Q157.917 486.169 159.723 482.628 Q161.552 479.063 161.552 471.957 Q161.552 464.827 159.723 461.285 Q157.917 457.721 154.283 457.721 M154.283 454.017 Q160.093 454.017 163.149 458.623 Q166.227 463.207 166.227 471.957 Q166.227 480.683 163.149 485.29 Q160.093 489.873 154.283 489.873 Q148.473 489.873 145.394 485.29 Q142.339 480.683 142.339 471.957 Q142.339 463.207 145.394 458.623 Q148.473 454.017 154.283 454.017 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M166.227 448.118 L190.339 448.118 L190.339 451.316 L166.227 451.316 L166.227 448.118 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M199.197 458.594 L205.404 458.594 L205.404 437.172 L198.652 438.526 L198.652 435.066 L205.366 433.711 L209.166 433.711 L209.166 458.594 L215.372 458.594 L215.372 461.791 L199.197 461.791 L199.197 458.594 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M44.7161 1053.69 L47.5806 1053.69 L47.5806 1080.62 Q53.6281 1080.23 56.8109 1076.99 Q59.9619 1073.71 59.9619 1067.88 Q59.9619 1064.51 59.1344 1061.36 Q58.3069 1058.18 56.6518 1055.06 L62.1899 1055.06 Q63.5267 1058.21 64.227 1061.52 Q64.9272 1064.83 64.9272 1068.23 Q64.9272 1076.76 59.9619 1081.76 Q54.9967 1086.73 46.5303 1086.73 Q37.7774 1086.73 32.6531 1082.02 Q27.4968 1077.27 27.4968 1069.25 Q27.4968 1062.06 32.1438 1057.89 Q36.7589 1053.69 44.7161 1053.69 M42.9973 1059.54 Q38.1912 1059.61 35.3266 1062.25 Q32.4621 1064.86 32.4621 1069.19 Q32.4621 1074.09 35.2312 1077.05 Q38.0002 1079.98 43.0292 1080.42 L42.9973 1059.54 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M42.4881 1014.44 L64.0042 1014.44 L64.0042 1020.3 L42.679 1020.3 Q37.6183 1020.3 35.1038 1022.27 Q32.5894 1024.25 32.5894 1028.19 Q32.5894 1032.94 35.6131 1035.67 Q38.6368 1038.41 43.8567 1038.41 L64.0042 1038.41 L64.0042 1044.3 L28.3562 1044.3 L28.3562 1038.41 L33.8944 1038.41 Q30.6797 1036.31 29.0883 1033.48 Q27.4968 1030.61 27.4968 1026.89 Q27.4968 1020.75 31.3163 1017.59 Q35.1038 1014.44 42.4881 1014.44 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M44.7161 972.271 L47.5806 972.271 L47.5806 999.198 Q53.6281 998.816 56.8109 995.569 Q59.9619 992.291 59.9619 986.466 Q59.9619 983.093 59.1344 979.942 Q58.3069 976.759 56.6518 973.64 L62.1899 973.64 Q63.5267 976.791 64.227 980.101 Q64.9272 983.411 64.9272 986.817 Q64.9272 995.347 59.9619 1000.34 Q54.9967 1005.31 46.5303 1005.31 Q37.7774 1005.31 32.6531 1000.6 Q27.4968 995.856 27.4968 987.835 Q27.4968 980.642 32.1438 976.472 Q36.7589 972.271 44.7161 972.271 M42.9973 978.127 Q38.1912 978.191 35.3266 980.833 Q32.4621 983.443 32.4621 987.771 Q32.4621 992.673 35.2312 995.633 Q38.0002 998.561 43.0292 999.007 L42.9973 978.127 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M33.8307 942.002 Q33.2578 942.989 33.0032 944.166 Q32.7167 945.312 32.7167 946.713 Q32.7167 951.678 35.9632 954.351 Q39.1779 956.993 45.2253 956.993 L64.0042 956.993 L64.0042 962.881 L28.3562 962.881 L28.3562 956.993 L33.8944 956.993 Q30.6479 955.147 29.0883 952.187 Q27.4968 949.227 27.4968 944.994 Q27.4968 944.389 27.5923 943.657 Q27.656 942.925 27.8151 942.034 L33.8307 942.002 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M45.7664 913.547 Q39.4007 913.547 35.8996 916.189 Q32.3984 918.799 32.3984 923.541 Q32.3984 928.252 35.8996 930.894 Q39.4007 933.504 45.7664 933.504 Q52.1003 933.504 55.6014 930.894 Q59.1026 928.252 59.1026 923.541 Q59.1026 918.799 55.6014 916.189 Q52.1003 913.547 45.7664 913.547 M59.58 907.691 Q68.683 907.691 73.1071 911.733 Q77.5631 915.775 77.5631 924.114 Q77.5631 927.202 77.0857 929.939 Q76.6401 932.676 75.6852 935.254 L69.9879 935.254 Q71.3884 932.676 72.0568 930.162 Q72.7252 927.647 72.7252 925.037 Q72.7252 919.276 69.7015 916.412 Q66.7096 913.547 60.6303 913.547 L57.7339 913.547 Q60.885 915.361 62.4446 918.194 Q64.0042 921.027 64.0042 924.974 Q64.0042 931.53 59.0071 935.541 Q54.01 939.551 45.7664 939.551 Q37.491 939.551 32.4939 935.541 Q27.4968 931.53 27.4968 924.974 Q27.4968 921.027 29.0564 918.194 Q30.616 915.361 33.7671 913.547 L28.3562 913.547 L28.3562 907.691 L59.58 907.691 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M67.3143 880.796 Q73.68 883.278 75.6216 885.634 Q77.5631 887.989 77.5631 891.936 L77.5631 896.614 L72.6615 896.614 L72.6615 893.177 Q72.6615 890.758 71.5157 889.421 Q70.3699 888.084 66.1048 886.461 L63.4312 885.411 L28.3562 899.829 L28.3562 893.623 L56.238 882.483 L28.3562 871.343 L28.3562 865.136 L67.3143 880.796 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M46.0847 820.13 Q46.0847 827.228 47.7079 829.966 Q49.3312 832.703 53.2461 832.703 Q56.3653 832.703 58.2114 830.666 Q60.0256 828.597 60.0256 825.064 Q60.0256 820.194 56.5881 817.266 Q53.1188 814.306 47.3897 814.306 L46.0847 814.306 L46.0847 820.13 M43.6657 808.449 L64.0042 808.449 L64.0042 814.306 L58.5933 814.306 Q61.8398 816.311 63.3994 819.303 Q64.9272 822.295 64.9272 826.624 Q64.9272 832.098 61.8716 835.345 Q58.7843 838.559 53.6281 838.559 Q47.6125 838.559 44.5569 834.549 Q41.5014 830.507 41.5014 822.518 L41.5014 814.306 L40.9285 814.306 Q36.8862 814.306 34.6901 816.979 Q32.4621 819.621 32.4621 824.427 Q32.4621 827.483 33.1941 830.379 Q33.9262 833.276 35.3903 835.949 L29.9795 835.949 Q28.7381 832.735 28.1334 829.711 Q27.4968 826.687 27.4968 823.823 Q27.4968 816.088 31.5072 812.269 Q35.5176 808.449 43.6657 808.449 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M46.212 770.796 Q39.7508 770.796 36.0905 773.47 Q32.3984 776.112 32.3984 780.759 Q32.3984 785.406 36.0905 788.079 Q39.7508 790.721 46.212 790.721 Q52.6732 790.721 56.3653 788.079 Q60.0256 785.406 60.0256 780.759 Q60.0256 776.112 56.3653 773.47 Q52.6732 770.796 46.212 770.796 M33.7671 790.721 Q30.5842 788.875 29.0564 786.074 Q27.4968 783.241 27.4968 779.326 Q27.4968 772.833 32.6531 768.791 Q37.8093 764.717 46.212 764.717 Q54.6147 764.717 59.771 768.791 Q64.9272 772.833 64.9272 779.326 Q64.9272 783.241 63.3994 786.074 Q61.8398 788.875 58.657 790.721 L64.0042 790.721 L64.0042 796.609 L14.479 796.609 L14.479 790.721 L33.7671 790.721 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M29.4065 732.284 L34.9447 732.284 Q33.6716 734.766 33.035 737.44 Q32.3984 740.114 32.3984 742.978 Q32.3984 747.339 33.7352 749.535 Q35.072 751.699 37.7456 751.699 Q39.7826 751.699 40.9603 750.14 Q42.1061 748.58 43.1565 743.869 L43.6021 741.864 Q44.9389 735.626 47.3897 733.016 Q49.8086 730.374 54.1691 730.374 Q59.1344 730.374 62.0308 734.321 Q64.9272 738.236 64.9272 745.111 Q64.9272 747.975 64.3543 751.094 Q63.8132 754.182 62.6992 757.619 L56.6518 757.619 Q58.3387 754.373 59.198 751.222 Q60.0256 748.071 60.0256 744.983 Q60.0256 740.846 58.6251 738.618 Q57.1929 736.39 54.6147 736.39 Q52.2276 736.39 50.9545 738.013 Q49.6813 739.604 48.5037 745.047 L48.0262 747.084 Q46.8804 752.527 44.5251 754.946 Q42.138 757.365 38.0002 757.365 Q32.9713 757.365 30.2341 753.8 Q27.4968 750.235 27.4968 743.678 Q27.4968 740.432 27.9743 737.567 Q28.4517 734.703 29.4065 732.284 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M32.4621 707.235 Q32.4621 711.945 36.1542 714.683 Q39.8145 717.42 46.212 717.42 Q52.6095 717.42 56.3017 714.714 Q59.9619 711.977 59.9619 707.235 Q59.9619 702.556 56.2698 699.819 Q52.5777 697.081 46.212 697.081 Q39.8781 697.081 36.186 699.819 Q32.4621 702.556 32.4621 707.235 M27.4968 707.235 Q27.4968 699.596 32.4621 695.235 Q37.4273 690.875 46.212 690.875 Q54.9649 690.875 59.9619 695.235 Q64.9272 699.596 64.9272 707.235 Q64.9272 714.905 59.9619 719.266 Q54.9649 723.595 46.212 723.595 Q37.4273 723.595 32.4621 719.266 Q27.4968 714.905 27.4968 707.235 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M14.479 681.167 L14.479 675.311 L64.0042 675.311 L64.0042 681.167 L14.479 681.167 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M49.9359 663.661 L28.3562 663.661 L28.3562 657.805 L49.7131 657.805 Q54.7739 657.805 57.3202 655.832 Q59.8346 653.858 59.8346 649.911 Q59.8346 645.169 56.8109 642.432 Q53.7872 639.663 48.5673 639.663 L28.3562 639.663 L28.3562 633.806 L64.0042 633.806 L64.0042 639.663 L58.5296 639.663 Q61.7762 641.795 63.3676 644.628 Q64.9272 647.429 64.9272 651.153 Q64.9272 657.296 61.1078 660.479 Q57.2883 663.661 49.9359 663.661 M27.4968 648.925 L27.4968 648.925 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M18.2347 615.95 L28.3562 615.95 L28.3562 603.887 L32.9077 603.887 L32.9077 615.95 L52.2594 615.95 Q56.6199 615.95 57.8613 614.773 Q59.1026 613.563 59.1026 609.903 L59.1026 603.887 L64.0042 603.887 L64.0042 609.903 Q64.0042 616.683 61.4897 619.261 Q58.9434 621.839 52.2594 621.839 L32.9077 621.839 L32.9077 626.136 L28.3562 626.136 L28.3562 621.839 L18.2347 621.839 L18.2347 615.95 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M44.7161 565.693 L47.5806 565.693 L47.5806 592.62 Q53.6281 592.238 56.8109 588.992 Q59.9619 585.713 59.9619 579.889 Q59.9619 576.515 59.1344 573.364 Q58.3069 570.181 56.6518 567.062 L62.1899 567.062 Q63.5267 570.213 64.227 573.523 Q64.9272 576.833 64.9272 580.239 Q64.9272 588.769 59.9619 593.766 Q54.9967 598.731 46.5303 598.731 Q37.7774 598.731 32.6531 594.021 Q27.4968 589.278 27.4968 581.257 Q27.4968 574.064 32.1438 569.895 Q36.7589 565.693 44.7161 565.693 M42.9973 571.55 Q38.1912 571.613 35.3266 574.255 Q32.4621 576.865 32.4621 581.194 Q32.4621 586.095 35.2312 589.055 Q38.0002 591.984 43.0292 592.429 L42.9973 571.55 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M44.7161 504.869 L47.5806 504.869 L47.5806 531.796 Q53.6281 531.414 56.8109 528.167 Q59.9619 524.889 59.9619 519.064 Q59.9619 515.691 59.1344 512.54 Q58.3069 509.357 56.6518 506.238 L62.1899 506.238 Q63.5267 509.389 64.227 512.699 Q64.9272 516.009 64.9272 519.415 Q64.9272 527.945 59.9619 532.942 Q54.9967 537.907 46.5303 537.907 Q37.7774 537.907 32.6531 533.196 Q27.4968 528.454 27.4968 520.433 Q27.4968 513.24 32.1438 509.07 Q36.7589 504.869 44.7161 504.869 M42.9973 510.725 Q38.1912 510.789 35.3266 513.431 Q32.4621 516.041 32.4621 520.369 Q32.4621 525.271 35.2312 528.231 Q38.0002 531.159 43.0292 531.605 L42.9973 510.725 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M33.8307 474.6 Q33.2578 475.587 33.0032 476.764 Q32.7167 477.91 32.7167 479.311 Q32.7167 484.276 35.9632 486.949 Q39.1779 489.591 45.2253 489.591 L64.0042 489.591 L64.0042 495.479 L28.3562 495.479 L28.3562 489.591 L33.8944 489.591 Q30.6479 487.745 29.0883 484.785 Q27.4968 481.825 27.4968 477.592 Q27.4968 476.987 27.5923 476.255 Q27.656 475.523 27.8151 474.632 L33.8307 474.6 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M33.8307 448.946 Q33.2578 449.933 33.0032 451.11 Q32.7167 452.256 32.7167 453.657 Q32.7167 458.622 35.9632 461.296 Q39.1779 463.937 45.2253 463.937 L64.0042 463.937 L64.0042 469.826 L28.3562 469.826 L28.3562 463.937 L33.8944 463.937 Q30.6479 462.091 29.0883 459.131 Q27.4968 456.171 27.4968 451.938 Q27.4968 451.333 27.5923 450.601 Q27.656 449.869 27.8151 448.978 L33.8307 448.946 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M32.4621 430.422 Q32.4621 435.133 36.1542 437.87 Q39.8145 440.607 46.212 440.607 Q52.6095 440.607 56.3017 437.902 Q59.9619 435.164 59.9619 430.422 Q59.9619 425.743 56.2698 423.006 Q52.5777 420.269 46.212 420.269 Q39.8781 420.269 36.186 423.006 Q32.4621 425.743 32.4621 430.422 M27.4968 430.422 Q27.4968 422.783 32.4621 418.423 Q37.4273 414.062 46.212 414.062 Q54.9649 414.062 59.9619 418.423 Q64.9272 422.783 64.9272 430.422 Q64.9272 438.093 59.9619 442.453 Q54.9649 446.782 46.212 446.782 Q37.4273 446.782 32.4621 442.453 Q27.4968 438.093 27.4968 430.422 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M33.8307 383.698 Q33.2578 384.684 33.0032 385.862 Q32.7167 387.008 32.7167 388.408 Q32.7167 393.374 35.9632 396.047 Q39.1779 398.689 45.2253 398.689 L64.0042 398.689 L64.0042 404.577 L28.3562 404.577 L28.3562 398.689 L33.8944 398.689 Q30.6479 396.843 29.0883 393.883 Q27.4968 390.923 27.4968 386.69 Q27.4968 386.085 27.5923 385.353 Q27.656 384.621 27.8151 383.729 L33.8307 383.698 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><polyline clip-path=\"url(#clip032)\" style=\"stroke:#009af9; stroke-linecap:round; stroke-linejoin:round; stroke-width:12; stroke-opacity:1; fill:none\" points=\"310.845,86.1857 707.333,656.634 1103.82,740.191 1500.31,1103.15 1896.8,1271.57 2293.28,1384.24 \"/>\n",
       "<path clip-path=\"url(#clip032)\" d=\"M310.845 102.186 L299.533 97.4977 L294.845 86.1857 L299.533 74.8737 L310.845 70.1857 L322.157 74.8737 L326.845 86.1857 L322.157 97.4977 Z\" fill=\"#009af9\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"#000000\" stroke-opacity=\"1\" stroke-width=\"3.2\"/>\n",
       "<path clip-path=\"url(#clip032)\" d=\"M707.333 672.634 L696.021 667.946 L691.333 656.634 L696.021 645.322 L707.333 640.634 L718.645 645.322 L723.333 656.634 L718.645 667.946 Z\" fill=\"#009af9\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"#000000\" stroke-opacity=\"1\" stroke-width=\"3.2\"/>\n",
       "<path clip-path=\"url(#clip032)\" d=\"M1103.82 756.191 L1092.51 751.503 L1087.82 740.191 L1092.51 728.879 L1103.82 724.191 L1115.13 728.879 L1119.82 740.191 L1115.13 751.503 Z\" fill=\"#009af9\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"#000000\" stroke-opacity=\"1\" stroke-width=\"3.2\"/>\n",
       "<path clip-path=\"url(#clip032)\" d=\"M1500.31 1119.15 L1489 1114.46 L1484.31 1103.15 L1489 1091.83 L1500.31 1087.15 L1511.62 1091.83 L1516.31 1103.15 L1511.62 1114.46 Z\" fill=\"#009af9\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"#000000\" stroke-opacity=\"1\" stroke-width=\"3.2\"/>\n",
       "<path clip-path=\"url(#clip032)\" d=\"M1896.8 1287.57 L1885.48 1282.88 L1880.8 1271.57 L1885.48 1260.26 L1896.8 1255.57 L1908.11 1260.26 L1912.8 1271.57 L1908.11 1282.88 Z\" fill=\"#009af9\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"#000000\" stroke-opacity=\"1\" stroke-width=\"3.2\"/>\n",
       "<path clip-path=\"url(#clip032)\" d=\"M2293.28 1400.24 L2281.97 1395.55 L2277.28 1384.24 L2281.97 1372.93 L2293.28 1368.24 L2304.59 1372.93 L2309.28 1384.24 L2304.59 1395.55 Z\" fill=\"#009af9\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"#000000\" stroke-opacity=\"1\" stroke-width=\"3.2\"/>\n",
       "<path clip-path=\"url(#clip030)\" d=\"M2020.14 196.789 L2282.71 196.789 L2282.71 93.1086 L2020.14 93.1086  Z\" fill=\"#ffffff\" fill-rule=\"evenodd\" fill-opacity=\"1\"/>\n",
       "<polyline clip-path=\"url(#clip030)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"2020.14,196.789 2282.71,196.789 2282.71,93.1086 2020.14,93.1086 2020.14,196.789 \"/>\n",
       "<polyline clip-path=\"url(#clip030)\" style=\"stroke:#009af9; stroke-linecap:round; stroke-linejoin:round; stroke-width:12; stroke-opacity:1; fill:none\" points=\"2043.49,144.949 2183.58,144.949 \"/>\n",
       "<path clip-path=\"url(#clip030)\" d=\"M2113.54 166.568 L2098.25 160.233 L2091.92 144.949 L2098.25 129.664 L2113.54 123.329 L2128.82 129.664 L2135.16 144.949 L2128.82 160.233 Z\" fill=\"#009af9\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"#000000\" stroke-opacity=\"1\" stroke-width=\"4.55111\"/>\n",
       "<path clip-path=\"url(#clip030)\" d=\"M2220.77 164.636 Q2218.97 169.266 2217.25 170.678 Q2215.54 172.09 2212.67 172.09 L2209.27 172.09 L2209.27 168.525 L2211.77 168.525 Q2213.53 168.525 2214.5 167.692 Q2215.47 166.858 2216.65 163.756 L2217.42 161.812 L2206.93 136.303 L2211.44 136.303 L2219.55 156.581 L2227.65 136.303 L2232.16 136.303 L2220.77 164.636 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip030)\" d=\"M2239.45 158.293 L2247.09 158.293 L2247.09 131.928 L2238.78 133.595 L2238.78 129.335 L2247.05 127.669 L2251.72 127.669 L2251.72 158.293 L2259.36 158.293 L2259.36 162.229 L2239.45 162.229 L2239.45 158.293 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /></svg>\n"
      ],
      "image/svg+xml": [
       "<?xml version=\"1.0\" encoding=\"utf-8\"?>\n",
       "<svg xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"600\" height=\"400\" viewBox=\"0 0 2400 1600\">\n",
       "<defs>\n",
       "  <clipPath id=\"clip000\">\n",
       "    <rect x=\"0\" y=\"0\" width=\"2400\" height=\"1600\"/>\n",
       "  </clipPath>\n",
       "</defs>\n",
       "<path clip-path=\"url(#clip000)\" d=\"M0 1600 L2400 1600 L2400 0 L0 0  Z\" fill=\"#ffffff\" fill-rule=\"evenodd\" fill-opacity=\"1\"/>\n",
       "<defs>\n",
       "  <clipPath id=\"clip001\">\n",
       "    <rect x=\"480\" y=\"0\" width=\"1681\" height=\"1600\"/>\n",
       "  </clipPath>\n",
       "</defs>\n",
       "<path clip-path=\"url(#clip000)\" d=\"M251.372 1423.18 L2352.76 1423.18 L2352.76 47.2441 L251.372 47.2441  Z\" fill=\"#ffffff\" fill-rule=\"evenodd\" fill-opacity=\"1\"/>\n",
       "<defs>\n",
       "  <clipPath id=\"clip002\">\n",
       "    <rect x=\"251\" y=\"47\" width=\"2102\" height=\"1377\"/>\n",
       "  </clipPath>\n",
       "</defs>\n",
       "<polyline clip-path=\"url(#clip002)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"310.845,1423.18 310.845,47.2441 \"/>\n",
       "<polyline clip-path=\"url(#clip002)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"707.333,1423.18 707.333,47.2441 \"/>\n",
       "<polyline clip-path=\"url(#clip002)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"1103.82,1423.18 1103.82,47.2441 \"/>\n",
       "<polyline clip-path=\"url(#clip002)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"1500.31,1423.18 1500.31,47.2441 \"/>\n",
       "<polyline clip-path=\"url(#clip002)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"1896.8,1423.18 1896.8,47.2441 \"/>\n",
       "<polyline clip-path=\"url(#clip002)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"2293.28,1423.18 2293.28,47.2441 \"/>\n",
       "<polyline clip-path=\"url(#clip002)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"251.372,1218.22 2352.76,1218.22 \"/>\n",
       "<polyline clip-path=\"url(#clip002)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"251.372,465.474 2352.76,465.474 \"/>\n",
       "<polyline clip-path=\"url(#clip000)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"251.372,1423.18 2352.76,1423.18 \"/>\n",
       "<polyline clip-path=\"url(#clip000)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"310.845,1423.18 310.845,1404.28 \"/>\n",
       "<polyline clip-path=\"url(#clip000)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"707.333,1423.18 707.333,1404.28 \"/>\n",
       "<polyline clip-path=\"url(#clip000)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"1103.82,1423.18 1103.82,1404.28 \"/>\n",
       "<polyline clip-path=\"url(#clip000)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"1500.31,1423.18 1500.31,1404.28 \"/>\n",
       "<polyline clip-path=\"url(#clip000)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"1896.8,1423.18 1896.8,1404.28 \"/>\n",
       "<polyline clip-path=\"url(#clip000)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"2293.28,1423.18 2293.28,1404.28 \"/>\n",
       "<path clip-path=\"url(#clip000)\" d=\"M301.227 1481.64 L308.866 1481.64 L308.866 1455.28 L300.556 1456.95 L300.556 1452.69 L308.82 1451.02 L313.496 1451.02 L313.496 1481.64 L321.135 1481.64 L321.135 1485.58 L301.227 1485.58 L301.227 1481.64 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M701.986 1481.64 L718.305 1481.64 L718.305 1485.58 L696.361 1485.58 L696.361 1481.64 Q699.023 1478.89 703.606 1474.26 Q708.212 1469.61 709.393 1468.27 Q711.638 1465.74 712.518 1464.01 Q713.421 1462.25 713.421 1460.56 Q713.421 1457.8 711.476 1456.07 Q709.555 1454.33 706.453 1454.33 Q704.254 1454.33 701.8 1455.09 Q699.37 1455.86 696.592 1457.41 L696.592 1452.69 Q699.416 1451.55 701.87 1450.97 Q704.324 1450.39 706.361 1450.39 Q711.731 1450.39 714.925 1453.08 Q718.12 1455.77 718.12 1460.26 Q718.12 1462.39 717.31 1464.31 Q716.523 1466.2 714.416 1468.8 Q713.837 1469.47 710.736 1472.69 Q707.634 1475.88 701.986 1481.64 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M1108.07 1466.95 Q1111.42 1467.66 1113.3 1469.93 Q1115.2 1472.2 1115.2 1475.53 Q1115.2 1480.65 1111.68 1483.45 Q1108.16 1486.25 1101.68 1486.25 Q1099.5 1486.25 1097.19 1485.81 Q1094.9 1485.39 1092.44 1484.54 L1092.44 1480.02 Q1094.39 1481.16 1096.7 1481.74 Q1099.02 1482.32 1101.54 1482.32 Q1105.94 1482.32 1108.23 1480.58 Q1110.54 1478.84 1110.54 1475.53 Q1110.54 1472.48 1108.39 1470.77 Q1106.26 1469.03 1102.44 1469.03 L1098.42 1469.03 L1098.42 1465.19 L1102.63 1465.19 Q1106.08 1465.19 1107.91 1463.82 Q1109.73 1462.43 1109.73 1459.84 Q1109.73 1457.18 1107.84 1455.77 Q1105.96 1454.33 1102.44 1454.33 Q1100.52 1454.33 1098.32 1454.75 Q1096.12 1455.16 1093.48 1456.04 L1093.48 1451.88 Q1096.15 1451.14 1098.46 1450.77 Q1100.8 1450.39 1102.86 1450.39 Q1108.18 1450.39 1111.29 1452.83 Q1114.39 1455.23 1114.39 1459.35 Q1114.39 1462.22 1112.74 1464.21 Q1111.1 1466.18 1108.07 1466.95 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M1503.32 1455.09 L1491.51 1473.54 L1503.32 1473.54 L1503.32 1455.09 M1502.09 1451.02 L1507.97 1451.02 L1507.97 1473.54 L1512.9 1473.54 L1512.9 1477.43 L1507.97 1477.43 L1507.97 1485.58 L1503.32 1485.58 L1503.32 1477.43 L1487.72 1477.43 L1487.72 1472.92 L1502.09 1451.02 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M1887.07 1451.02 L1905.43 1451.02 L1905.43 1454.96 L1891.36 1454.96 L1891.36 1463.43 Q1892.37 1463.08 1893.39 1462.92 Q1894.41 1462.73 1895.43 1462.73 Q1901.22 1462.73 1904.6 1465.9 Q1907.98 1469.08 1907.98 1474.49 Q1907.98 1480.07 1904.5 1483.17 Q1901.03 1486.25 1894.71 1486.25 Q1892.54 1486.25 1890.27 1485.88 Q1888.02 1485.51 1885.61 1484.77 L1885.61 1480.07 Q1887.7 1481.2 1889.92 1481.76 Q1892.14 1482.32 1894.62 1482.32 Q1898.62 1482.32 1900.96 1480.21 Q1903.3 1478.1 1903.3 1474.49 Q1903.3 1470.88 1900.96 1468.77 Q1898.62 1466.67 1894.62 1466.67 Q1892.74 1466.67 1890.87 1467.08 Q1889.02 1467.5 1887.07 1468.38 L1887.07 1451.02 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M2293.69 1466.44 Q2290.54 1466.44 2288.69 1468.59 Q2286.86 1470.74 2286.86 1474.49 Q2286.86 1478.22 2288.69 1480.39 Q2290.54 1482.55 2293.69 1482.55 Q2296.84 1482.55 2298.66 1480.39 Q2300.52 1478.22 2300.52 1474.49 Q2300.52 1470.74 2298.66 1468.59 Q2296.84 1466.44 2293.69 1466.44 M2302.97 1451.78 L2302.97 1456.04 Q2301.21 1455.21 2299.41 1454.77 Q2297.62 1454.33 2295.86 1454.33 Q2291.23 1454.33 2288.78 1457.45 Q2286.35 1460.58 2286 1466.9 Q2287.37 1464.89 2289.43 1463.82 Q2291.49 1462.73 2293.97 1462.73 Q2299.17 1462.73 2302.18 1465.9 Q2305.22 1469.05 2305.22 1474.49 Q2305.22 1479.82 2302.07 1483.03 Q2298.92 1486.25 2293.69 1486.25 Q2287.69 1486.25 2284.52 1481.67 Q2281.35 1477.06 2281.35 1468.33 Q2281.35 1460.14 2285.24 1455.28 Q2289.13 1450.39 2295.68 1450.39 Q2297.44 1450.39 2299.22 1450.74 Q2301.03 1451.09 2302.97 1451.78 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M1213.52 1518.52 L1219.41 1518.52 L1219.41 1547.77 L1236.88 1532.4 L1244.36 1532.4 L1225.45 1549.07 L1245.15 1568.04 L1237.52 1568.04 L1219.41 1550.63 L1219.41 1568.04 L1213.52 1568.04 L1213.52 1518.52 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M1248.53 1547.58 L1265.68 1547.58 L1265.68 1552.8 L1248.53 1552.8 L1248.53 1547.58 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M1298.47 1549.81 Q1298.47 1543.44 1295.83 1539.94 Q1293.22 1536.44 1288.47 1536.44 Q1283.76 1536.44 1281.12 1539.94 Q1278.51 1543.44 1278.51 1549.81 Q1278.51 1556.14 1281.12 1559.64 Q1283.76 1563.14 1288.47 1563.14 Q1293.22 1563.14 1295.83 1559.64 Q1298.47 1556.14 1298.47 1549.81 M1304.32 1563.62 Q1304.32 1572.72 1300.28 1577.15 Q1296.24 1581.6 1287.9 1581.6 Q1284.81 1581.6 1282.08 1581.13 Q1279.34 1580.68 1276.76 1579.72 L1276.76 1574.03 Q1279.34 1575.43 1281.85 1576.1 Q1284.37 1576.76 1286.98 1576.76 Q1292.74 1576.76 1295.6 1573.74 Q1298.47 1570.75 1298.47 1564.67 L1298.47 1561.77 Q1296.65 1564.92 1293.82 1566.48 Q1290.99 1568.04 1287.04 1568.04 Q1280.48 1568.04 1276.47 1563.05 Q1272.46 1558.05 1272.46 1549.81 Q1272.46 1541.53 1276.47 1536.53 Q1280.48 1531.54 1287.04 1531.54 Q1290.99 1531.54 1293.82 1533.1 Q1296.65 1534.66 1298.47 1537.81 L1298.47 1532.4 L1304.32 1532.4 L1304.32 1563.62 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M1337.04 1537.87 Q1336.06 1537.3 1334.88 1537.04 Q1333.73 1536.76 1332.33 1536.76 Q1327.37 1536.76 1324.69 1540 Q1322.05 1543.22 1322.05 1549.27 L1322.05 1568.04 L1316.16 1568.04 L1316.16 1532.4 L1322.05 1532.4 L1322.05 1537.93 Q1323.9 1534.69 1326.86 1533.13 Q1329.82 1531.54 1334.05 1531.54 Q1334.66 1531.54 1335.39 1531.63 Q1336.12 1531.7 1337.01 1531.85 L1337.04 1537.87 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M1343.19 1532.4 L1349.04 1532.4 L1349.04 1568.04 L1343.19 1568.04 L1343.19 1532.4 M1343.19 1518.52 L1349.04 1518.52 L1349.04 1525.93 L1343.19 1525.93 L1343.19 1518.52 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M1384.75 1537.81 L1384.75 1518.52 L1390.61 1518.52 L1390.61 1568.04 L1384.75 1568.04 L1384.75 1562.7 Q1382.91 1565.88 1380.08 1567.44 Q1377.27 1568.97 1373.33 1568.97 Q1366.87 1568.97 1362.79 1563.81 Q1358.75 1558.65 1358.75 1550.25 Q1358.75 1541.85 1362.79 1536.69 Q1366.87 1531.54 1373.33 1531.54 Q1377.27 1531.54 1380.08 1533.1 Q1382.91 1534.62 1384.75 1537.81 M1364.8 1550.25 Q1364.8 1556.71 1367.44 1560.4 Q1370.11 1564.07 1374.76 1564.07 Q1379.41 1564.07 1382.08 1560.4 Q1384.75 1556.71 1384.75 1550.25 Q1384.75 1543.79 1382.08 1540.13 Q1379.41 1536.44 1374.76 1536.44 Q1370.11 1536.44 1367.44 1540.13 Q1364.8 1543.79 1364.8 1550.25 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><polyline clip-path=\"url(#clip000)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"251.372,1423.18 251.372,47.2441 \"/>\n",
       "<polyline clip-path=\"url(#clip000)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"251.372,1218.22 270.27,1218.22 \"/>\n",
       "<polyline clip-path=\"url(#clip000)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"251.372,465.474 270.27,465.474 \"/>\n",
       "<path clip-path=\"url(#clip000)\" d=\"M115.232 1238.01 L122.871 1238.01 L122.871 1211.65 L114.561 1213.31 L114.561 1209.06 L122.825 1207.39 L127.501 1207.39 L127.501 1238.01 L135.14 1238.01 L135.14 1241.95 L115.232 1241.95 L115.232 1238.01 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M154.584 1210.47 Q150.973 1210.47 149.144 1214.03 Q147.339 1217.57 147.339 1224.7 Q147.339 1231.81 149.144 1235.37 Q150.973 1238.92 154.584 1238.92 Q158.218 1238.92 160.024 1235.37 Q161.852 1231.81 161.852 1224.7 Q161.852 1217.57 160.024 1214.03 Q158.218 1210.47 154.584 1210.47 M154.584 1206.76 Q160.394 1206.76 163.45 1211.37 Q166.528 1215.95 166.528 1224.7 Q166.528 1233.43 163.45 1238.04 Q160.394 1242.62 154.584 1242.62 Q148.774 1242.62 145.695 1238.04 Q142.64 1233.43 142.64 1224.7 Q142.64 1215.95 145.695 1211.37 Q148.774 1206.76 154.584 1206.76 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M166.528 1200.87 L190.64 1200.87 L190.64 1204.06 L166.528 1204.06 L166.528 1200.87 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M202.113 1211.34 L215.372 1211.34 L215.372 1214.54 L197.542 1214.54 L197.542 1211.34 Q199.705 1209.1 203.429 1205.34 Q207.172 1201.56 208.131 1200.47 Q209.956 1198.42 210.67 1197.01 Q211.404 1195.58 211.404 1194.21 Q211.404 1191.97 209.824 1190.56 Q208.263 1189.15 205.743 1189.15 Q203.956 1189.15 201.962 1189.77 Q199.987 1190.39 197.73 1191.65 L197.73 1187.81 Q200.025 1186.89 202.019 1186.42 Q204.012 1185.95 205.667 1185.95 Q210.031 1185.95 212.626 1188.13 Q215.222 1190.31 215.222 1193.96 Q215.222 1195.69 214.563 1197.25 Q213.924 1198.8 212.212 1200.9 Q211.742 1201.45 209.222 1204.06 Q206.702 1206.66 202.113 1211.34 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M114.931 485.267 L122.57 485.267 L122.57 458.901 L114.26 460.568 L114.26 456.308 L122.524 454.642 L127.2 454.642 L127.2 485.267 L134.839 485.267 L134.839 489.202 L114.931 489.202 L114.931 485.267 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M154.283 457.721 Q150.672 457.721 148.843 461.285 Q147.038 464.827 147.038 471.957 Q147.038 479.063 148.843 482.628 Q150.672 486.169 154.283 486.169 Q157.917 486.169 159.723 482.628 Q161.552 479.063 161.552 471.957 Q161.552 464.827 159.723 461.285 Q157.917 457.721 154.283 457.721 M154.283 454.017 Q160.093 454.017 163.149 458.623 Q166.227 463.207 166.227 471.957 Q166.227 480.683 163.149 485.29 Q160.093 489.873 154.283 489.873 Q148.473 489.873 145.394 485.29 Q142.339 480.683 142.339 471.957 Q142.339 463.207 145.394 458.623 Q148.473 454.017 154.283 454.017 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M166.227 448.118 L190.339 448.118 L190.339 451.316 L166.227 451.316 L166.227 448.118 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M199.197 458.594 L205.404 458.594 L205.404 437.172 L198.652 438.526 L198.652 435.066 L205.366 433.711 L209.166 433.711 L209.166 458.594 L215.372 458.594 L215.372 461.791 L199.197 461.791 L199.197 458.594 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M44.7161 1053.69 L47.5806 1053.69 L47.5806 1080.62 Q53.6281 1080.23 56.8109 1076.99 Q59.9619 1073.71 59.9619 1067.88 Q59.9619 1064.51 59.1344 1061.36 Q58.3069 1058.18 56.6518 1055.06 L62.1899 1055.06 Q63.5267 1058.21 64.227 1061.52 Q64.9272 1064.83 64.9272 1068.23 Q64.9272 1076.76 59.9619 1081.76 Q54.9967 1086.73 46.5303 1086.73 Q37.7774 1086.73 32.6531 1082.02 Q27.4968 1077.27 27.4968 1069.25 Q27.4968 1062.06 32.1438 1057.89 Q36.7589 1053.69 44.7161 1053.69 M42.9973 1059.54 Q38.1912 1059.61 35.3266 1062.25 Q32.4621 1064.86 32.4621 1069.19 Q32.4621 1074.09 35.2312 1077.05 Q38.0002 1079.98 43.0292 1080.42 L42.9973 1059.54 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M42.4881 1014.44 L64.0042 1014.44 L64.0042 1020.3 L42.679 1020.3 Q37.6183 1020.3 35.1038 1022.27 Q32.5894 1024.25 32.5894 1028.19 Q32.5894 1032.94 35.6131 1035.67 Q38.6368 1038.41 43.8567 1038.41 L64.0042 1038.41 L64.0042 1044.3 L28.3562 1044.3 L28.3562 1038.41 L33.8944 1038.41 Q30.6797 1036.31 29.0883 1033.48 Q27.4968 1030.61 27.4968 1026.89 Q27.4968 1020.75 31.3163 1017.59 Q35.1038 1014.44 42.4881 1014.44 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M44.7161 972.271 L47.5806 972.271 L47.5806 999.198 Q53.6281 998.816 56.8109 995.569 Q59.9619 992.291 59.9619 986.466 Q59.9619 983.093 59.1344 979.942 Q58.3069 976.759 56.6518 973.64 L62.1899 973.64 Q63.5267 976.791 64.227 980.101 Q64.9272 983.411 64.9272 986.817 Q64.9272 995.347 59.9619 1000.34 Q54.9967 1005.31 46.5303 1005.31 Q37.7774 1005.31 32.6531 1000.6 Q27.4968 995.856 27.4968 987.835 Q27.4968 980.642 32.1438 976.472 Q36.7589 972.271 44.7161 972.271 M42.9973 978.127 Q38.1912 978.191 35.3266 980.833 Q32.4621 983.443 32.4621 987.771 Q32.4621 992.673 35.2312 995.633 Q38.0002 998.561 43.0292 999.007 L42.9973 978.127 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M33.8307 942.002 Q33.2578 942.989 33.0032 944.166 Q32.7167 945.312 32.7167 946.713 Q32.7167 951.678 35.9632 954.351 Q39.1779 956.993 45.2253 956.993 L64.0042 956.993 L64.0042 962.881 L28.3562 962.881 L28.3562 956.993 L33.8944 956.993 Q30.6479 955.147 29.0883 952.187 Q27.4968 949.227 27.4968 944.994 Q27.4968 944.389 27.5923 943.657 Q27.656 942.925 27.8151 942.034 L33.8307 942.002 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M45.7664 913.547 Q39.4007 913.547 35.8996 916.189 Q32.3984 918.799 32.3984 923.541 Q32.3984 928.252 35.8996 930.894 Q39.4007 933.504 45.7664 933.504 Q52.1003 933.504 55.6014 930.894 Q59.1026 928.252 59.1026 923.541 Q59.1026 918.799 55.6014 916.189 Q52.1003 913.547 45.7664 913.547 M59.58 907.691 Q68.683 907.691 73.1071 911.733 Q77.5631 915.775 77.5631 924.114 Q77.5631 927.202 77.0857 929.939 Q76.6401 932.676 75.6852 935.254 L69.9879 935.254 Q71.3884 932.676 72.0568 930.162 Q72.7252 927.647 72.7252 925.037 Q72.7252 919.276 69.7015 916.412 Q66.7096 913.547 60.6303 913.547 L57.7339 913.547 Q60.885 915.361 62.4446 918.194 Q64.0042 921.027 64.0042 924.974 Q64.0042 931.53 59.0071 935.541 Q54.01 939.551 45.7664 939.551 Q37.491 939.551 32.4939 935.541 Q27.4968 931.53 27.4968 924.974 Q27.4968 921.027 29.0564 918.194 Q30.616 915.361 33.7671 913.547 L28.3562 913.547 L28.3562 907.691 L59.58 907.691 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M67.3143 880.796 Q73.68 883.278 75.6216 885.634 Q77.5631 887.989 77.5631 891.936 L77.5631 896.614 L72.6615 896.614 L72.6615 893.177 Q72.6615 890.758 71.5157 889.421 Q70.3699 888.084 66.1048 886.461 L63.4312 885.411 L28.3562 899.829 L28.3562 893.623 L56.238 882.483 L28.3562 871.343 L28.3562 865.136 L67.3143 880.796 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M46.0847 820.13 Q46.0847 827.228 47.7079 829.966 Q49.3312 832.703 53.2461 832.703 Q56.3653 832.703 58.2114 830.666 Q60.0256 828.597 60.0256 825.064 Q60.0256 820.194 56.5881 817.266 Q53.1188 814.306 47.3897 814.306 L46.0847 814.306 L46.0847 820.13 M43.6657 808.449 L64.0042 808.449 L64.0042 814.306 L58.5933 814.306 Q61.8398 816.311 63.3994 819.303 Q64.9272 822.295 64.9272 826.624 Q64.9272 832.098 61.8716 835.345 Q58.7843 838.559 53.6281 838.559 Q47.6125 838.559 44.5569 834.549 Q41.5014 830.507 41.5014 822.518 L41.5014 814.306 L40.9285 814.306 Q36.8862 814.306 34.6901 816.979 Q32.4621 819.621 32.4621 824.427 Q32.4621 827.483 33.1941 830.379 Q33.9262 833.276 35.3903 835.949 L29.9795 835.949 Q28.7381 832.735 28.1334 829.711 Q27.4968 826.687 27.4968 823.823 Q27.4968 816.088 31.5072 812.269 Q35.5176 808.449 43.6657 808.449 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M46.212 770.796 Q39.7508 770.796 36.0905 773.47 Q32.3984 776.112 32.3984 780.759 Q32.3984 785.406 36.0905 788.079 Q39.7508 790.721 46.212 790.721 Q52.6732 790.721 56.3653 788.079 Q60.0256 785.406 60.0256 780.759 Q60.0256 776.112 56.3653 773.47 Q52.6732 770.796 46.212 770.796 M33.7671 790.721 Q30.5842 788.875 29.0564 786.074 Q27.4968 783.241 27.4968 779.326 Q27.4968 772.833 32.6531 768.791 Q37.8093 764.717 46.212 764.717 Q54.6147 764.717 59.771 768.791 Q64.9272 772.833 64.9272 779.326 Q64.9272 783.241 63.3994 786.074 Q61.8398 788.875 58.657 790.721 L64.0042 790.721 L64.0042 796.609 L14.479 796.609 L14.479 790.721 L33.7671 790.721 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M29.4065 732.284 L34.9447 732.284 Q33.6716 734.766 33.035 737.44 Q32.3984 740.114 32.3984 742.978 Q32.3984 747.339 33.7352 749.535 Q35.072 751.699 37.7456 751.699 Q39.7826 751.699 40.9603 750.14 Q42.1061 748.58 43.1565 743.869 L43.6021 741.864 Q44.9389 735.626 47.3897 733.016 Q49.8086 730.374 54.1691 730.374 Q59.1344 730.374 62.0308 734.321 Q64.9272 738.236 64.9272 745.111 Q64.9272 747.975 64.3543 751.094 Q63.8132 754.182 62.6992 757.619 L56.6518 757.619 Q58.3387 754.373 59.198 751.222 Q60.0256 748.071 60.0256 744.983 Q60.0256 740.846 58.6251 738.618 Q57.1929 736.39 54.6147 736.39 Q52.2276 736.39 50.9545 738.013 Q49.6813 739.604 48.5037 745.047 L48.0262 747.084 Q46.8804 752.527 44.5251 754.946 Q42.138 757.365 38.0002 757.365 Q32.9713 757.365 30.2341 753.8 Q27.4968 750.235 27.4968 743.678 Q27.4968 740.432 27.9743 737.567 Q28.4517 734.703 29.4065 732.284 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M32.4621 707.235 Q32.4621 711.945 36.1542 714.683 Q39.8145 717.42 46.212 717.42 Q52.6095 717.42 56.3017 714.714 Q59.9619 711.977 59.9619 707.235 Q59.9619 702.556 56.2698 699.819 Q52.5777 697.081 46.212 697.081 Q39.8781 697.081 36.186 699.819 Q32.4621 702.556 32.4621 707.235 M27.4968 707.235 Q27.4968 699.596 32.4621 695.235 Q37.4273 690.875 46.212 690.875 Q54.9649 690.875 59.9619 695.235 Q64.9272 699.596 64.9272 707.235 Q64.9272 714.905 59.9619 719.266 Q54.9649 723.595 46.212 723.595 Q37.4273 723.595 32.4621 719.266 Q27.4968 714.905 27.4968 707.235 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M14.479 681.167 L14.479 675.311 L64.0042 675.311 L64.0042 681.167 L14.479 681.167 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M49.9359 663.661 L28.3562 663.661 L28.3562 657.805 L49.7131 657.805 Q54.7739 657.805 57.3202 655.832 Q59.8346 653.858 59.8346 649.911 Q59.8346 645.169 56.8109 642.432 Q53.7872 639.663 48.5673 639.663 L28.3562 639.663 L28.3562 633.806 L64.0042 633.806 L64.0042 639.663 L58.5296 639.663 Q61.7762 641.795 63.3676 644.628 Q64.9272 647.429 64.9272 651.153 Q64.9272 657.296 61.1078 660.479 Q57.2883 663.661 49.9359 663.661 M27.4968 648.925 L27.4968 648.925 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M18.2347 615.95 L28.3562 615.95 L28.3562 603.887 L32.9077 603.887 L32.9077 615.95 L52.2594 615.95 Q56.6199 615.95 57.8613 614.773 Q59.1026 613.563 59.1026 609.903 L59.1026 603.887 L64.0042 603.887 L64.0042 609.903 Q64.0042 616.683 61.4897 619.261 Q58.9434 621.839 52.2594 621.839 L32.9077 621.839 L32.9077 626.136 L28.3562 626.136 L28.3562 621.839 L18.2347 621.839 L18.2347 615.95 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M44.7161 565.693 L47.5806 565.693 L47.5806 592.62 Q53.6281 592.238 56.8109 588.992 Q59.9619 585.713 59.9619 579.889 Q59.9619 576.515 59.1344 573.364 Q58.3069 570.181 56.6518 567.062 L62.1899 567.062 Q63.5267 570.213 64.227 573.523 Q64.9272 576.833 64.9272 580.239 Q64.9272 588.769 59.9619 593.766 Q54.9967 598.731 46.5303 598.731 Q37.7774 598.731 32.6531 594.021 Q27.4968 589.278 27.4968 581.257 Q27.4968 574.064 32.1438 569.895 Q36.7589 565.693 44.7161 565.693 M42.9973 571.55 Q38.1912 571.613 35.3266 574.255 Q32.4621 576.865 32.4621 581.194 Q32.4621 586.095 35.2312 589.055 Q38.0002 591.984 43.0292 592.429 L42.9973 571.55 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M44.7161 504.869 L47.5806 504.869 L47.5806 531.796 Q53.6281 531.414 56.8109 528.167 Q59.9619 524.889 59.9619 519.064 Q59.9619 515.691 59.1344 512.54 Q58.3069 509.357 56.6518 506.238 L62.1899 506.238 Q63.5267 509.389 64.227 512.699 Q64.9272 516.009 64.9272 519.415 Q64.9272 527.945 59.9619 532.942 Q54.9967 537.907 46.5303 537.907 Q37.7774 537.907 32.6531 533.196 Q27.4968 528.454 27.4968 520.433 Q27.4968 513.24 32.1438 509.07 Q36.7589 504.869 44.7161 504.869 M42.9973 510.725 Q38.1912 510.789 35.3266 513.431 Q32.4621 516.041 32.4621 520.369 Q32.4621 525.271 35.2312 528.231 Q38.0002 531.159 43.0292 531.605 L42.9973 510.725 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M33.8307 474.6 Q33.2578 475.587 33.0032 476.764 Q32.7167 477.91 32.7167 479.311 Q32.7167 484.276 35.9632 486.949 Q39.1779 489.591 45.2253 489.591 L64.0042 489.591 L64.0042 495.479 L28.3562 495.479 L28.3562 489.591 L33.8944 489.591 Q30.6479 487.745 29.0883 484.785 Q27.4968 481.825 27.4968 477.592 Q27.4968 476.987 27.5923 476.255 Q27.656 475.523 27.8151 474.632 L33.8307 474.6 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M33.8307 448.946 Q33.2578 449.933 33.0032 451.11 Q32.7167 452.256 32.7167 453.657 Q32.7167 458.622 35.9632 461.296 Q39.1779 463.937 45.2253 463.937 L64.0042 463.937 L64.0042 469.826 L28.3562 469.826 L28.3562 463.937 L33.8944 463.937 Q30.6479 462.091 29.0883 459.131 Q27.4968 456.171 27.4968 451.938 Q27.4968 451.333 27.5923 450.601 Q27.656 449.869 27.8151 448.978 L33.8307 448.946 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M32.4621 430.422 Q32.4621 435.133 36.1542 437.87 Q39.8145 440.607 46.212 440.607 Q52.6095 440.607 56.3017 437.902 Q59.9619 435.164 59.9619 430.422 Q59.9619 425.743 56.2698 423.006 Q52.5777 420.269 46.212 420.269 Q39.8781 420.269 36.186 423.006 Q32.4621 425.743 32.4621 430.422 M27.4968 430.422 Q27.4968 422.783 32.4621 418.423 Q37.4273 414.062 46.212 414.062 Q54.9649 414.062 59.9619 418.423 Q64.9272 422.783 64.9272 430.422 Q64.9272 438.093 59.9619 442.453 Q54.9649 446.782 46.212 446.782 Q37.4273 446.782 32.4621 442.453 Q27.4968 438.093 27.4968 430.422 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M33.8307 383.698 Q33.2578 384.684 33.0032 385.862 Q32.7167 387.008 32.7167 388.408 Q32.7167 393.374 35.9632 396.047 Q39.1779 398.689 45.2253 398.689 L64.0042 398.689 L64.0042 404.577 L28.3562 404.577 L28.3562 398.689 L33.8944 398.689 Q30.6479 396.843 29.0883 393.883 Q27.4968 390.923 27.4968 386.69 Q27.4968 386.085 27.5923 385.353 Q27.656 384.621 27.8151 383.729 L33.8307 383.698 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><polyline clip-path=\"url(#clip002)\" style=\"stroke:#009af9; stroke-linecap:round; stroke-linejoin:round; stroke-width:12; stroke-opacity:1; fill:none\" points=\"310.845,86.1857 707.333,656.634 1103.82,740.191 1500.31,1103.15 1896.8,1271.57 2293.28,1384.24 \"/>\n",
       "<path clip-path=\"url(#clip002)\" d=\"M310.845 102.186 L299.533 97.4977 L294.845 86.1857 L299.533 74.8737 L310.845 70.1857 L322.157 74.8737 L326.845 86.1857 L322.157 97.4977 Z\" fill=\"#009af9\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"#000000\" stroke-opacity=\"1\" stroke-width=\"3.2\"/>\n",
       "<path clip-path=\"url(#clip002)\" d=\"M707.333 672.634 L696.021 667.946 L691.333 656.634 L696.021 645.322 L707.333 640.634 L718.645 645.322 L723.333 656.634 L718.645 667.946 Z\" fill=\"#009af9\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"#000000\" stroke-opacity=\"1\" stroke-width=\"3.2\"/>\n",
       "<path clip-path=\"url(#clip002)\" d=\"M1103.82 756.191 L1092.51 751.503 L1087.82 740.191 L1092.51 728.879 L1103.82 724.191 L1115.13 728.879 L1119.82 740.191 L1115.13 751.503 Z\" fill=\"#009af9\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"#000000\" stroke-opacity=\"1\" stroke-width=\"3.2\"/>\n",
       "<path clip-path=\"url(#clip002)\" d=\"M1500.31 1119.15 L1489 1114.46 L1484.31 1103.15 L1489 1091.83 L1500.31 1087.15 L1511.62 1091.83 L1516.31 1103.15 L1511.62 1114.46 Z\" fill=\"#009af9\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"#000000\" stroke-opacity=\"1\" stroke-width=\"3.2\"/>\n",
       "<path clip-path=\"url(#clip002)\" d=\"M1896.8 1287.57 L1885.48 1282.88 L1880.8 1271.57 L1885.48 1260.26 L1896.8 1255.57 L1908.11 1260.26 L1912.8 1271.57 L1908.11 1282.88 Z\" fill=\"#009af9\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"#000000\" stroke-opacity=\"1\" stroke-width=\"3.2\"/>\n",
       "<path clip-path=\"url(#clip002)\" d=\"M2293.28 1400.24 L2281.97 1395.55 L2277.28 1384.24 L2281.97 1372.93 L2293.28 1368.24 L2304.59 1372.93 L2309.28 1384.24 L2304.59 1395.55 Z\" fill=\"#009af9\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"#000000\" stroke-opacity=\"1\" stroke-width=\"3.2\"/>\n",
       "<path clip-path=\"url(#clip000)\" d=\"M2020.14 196.789 L2282.71 196.789 L2282.71 93.1086 L2020.14 93.1086  Z\" fill=\"#ffffff\" fill-rule=\"evenodd\" fill-opacity=\"1\"/>\n",
       "<polyline clip-path=\"url(#clip000)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"2020.14,196.789 2282.71,196.789 2282.71,93.1086 2020.14,93.1086 2020.14,196.789 \"/>\n",
       "<polyline clip-path=\"url(#clip000)\" style=\"stroke:#009af9; stroke-linecap:round; stroke-linejoin:round; stroke-width:12; stroke-opacity:1; fill:none\" points=\"2043.49,144.949 2183.58,144.949 \"/>\n",
       "<path clip-path=\"url(#clip000)\" d=\"M2113.54 166.568 L2098.25 160.233 L2091.92 144.949 L2098.25 129.664 L2113.54 123.329 L2128.82 129.664 L2135.16 144.949 L2128.82 160.233 Z\" fill=\"#009af9\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"#000000\" stroke-opacity=\"1\" stroke-width=\"4.55111\"/>\n",
       "<path clip-path=\"url(#clip000)\" d=\"M2220.77 164.636 Q2218.97 169.266 2217.25 170.678 Q2215.54 172.09 2212.67 172.09 L2209.27 172.09 L2209.27 168.525 L2211.77 168.525 Q2213.53 168.525 2214.5 167.692 Q2215.47 166.858 2216.65 163.756 L2217.42 161.812 L2206.93 136.303 L2211.44 136.303 L2219.55 156.581 L2227.65 136.303 L2232.16 136.303 L2220.77 164.636 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip000)\" d=\"M2239.45 158.293 L2247.09 158.293 L2247.09 131.928 L2238.78 133.595 L2238.78 129.335 L2247.05 127.669 L2251.72 127.669 L2251.72 158.293 L2259.36 158.293 L2259.36 162.229 L2239.45 162.229 L2239.45 158.293 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /></svg>\n"
      ]
     },
     "metadata": {},
     "execution_count": 4
    }
   ],
   "cell_type": "code",
   "source": [
    "using Plots\n",
    "plot(result.nkpts, result.errors, dpi=300, lw=3, m=:o, yaxis=:log,\n",
    "     xlabel=\"k-grid\", ylabel=\"energy absolute error\")"
   ],
   "metadata": {},
   "execution_count": 4
  },
  {
   "cell_type": "markdown",
   "source": [
    "We continue to do the convergence in Ecut using the suggested $k$-point grid."
   ],
   "metadata": {}
  },
  {
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "nkpt = 5 Ecut = 10\n",
      "n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime\n",
      "---   ---------------   ---------   ---------   ----   ------\n",
      "  1   -25.57872512129                   -0.16    3.8   71.9ms\n",
      "  2   -25.77769551126       -0.70       -0.77    1.9   62.2ms\n",
      "  3   -25.78625859012       -2.07       -1.84    2.0   55.0ms\n",
      "  4   -25.78631683642       -4.23       -2.92    1.0   39.8ms\n",
      "nkpt = 5 Ecut = 12\n",
      "n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime\n",
      "---   ---------------   ---------   ---------   ----   ------\n",
      "  1   -25.78654140009                   -0.12    3.5   72.4ms\n",
      "  2   -26.07741828524       -0.54       -0.72    2.0   51.7ms\n",
      "  3   -26.09341840274       -1.80       -1.68    2.1   58.5ms\n",
      "  4   -26.09373823994       -3.50       -2.34    1.0   47.6ms\n",
      "  5   -26.09375339053       -4.82       -2.69    1.2   44.1ms\n",
      "nkpt = 5 Ecut = 14\n",
      "n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime\n",
      "---   ---------------   ---------   ---------   ----   ------\n",
      "  1   -25.86811691876                   -0.11    3.8   57.8ms\n",
      "  2   -26.20928967215       -0.47       -0.72    2.0   43.6ms\n",
      "  3   -26.22669884375       -1.76       -1.65    2.1   46.4ms\n",
      "  4   -26.22700683213       -3.51       -2.29    1.0   30.6ms\n",
      "  5   -26.22702540241       -4.73       -2.67    1.1   33.5ms\n",
      "nkpt = 5 Ecut = 16\n",
      "n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime\n",
      "---   ---------------   ---------   ---------   ----   ------\n",
      "  1   -25.89739755582                   -0.11    4.0    140ms\n",
      "  2   -26.25750588653       -0.44       -0.72    2.0    107ms\n",
      "  3   -26.27559557448       -1.74       -1.65    2.1    114ms\n",
      "  4   -26.27587559648       -3.55       -2.29    1.0   84.1ms\n",
      "  5   -26.27589251535       -4.77       -2.69    1.0   83.3ms\n",
      "nkpt = 5 Ecut = 18\n",
      "n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime\n",
      "---   ---------------   ---------   ---------   ----   ------\n",
      "  1   -25.90595596209                   -0.11    4.1    143ms\n",
      "  2   -26.27276495544       -0.44       -0.72    2.0    106ms\n",
      "  3   -26.29101700489       -1.74       -1.64    2.2    126ms\n",
      "  4   -26.29128601834       -3.57       -2.29    1.0   82.4ms\n",
      "  5   -26.29130327946       -4.76       -2.69    1.0    112ms\n",
      "nkpt = 5 Ecut = 20\n",
      "n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime\n",
      "---   ---------------   ---------   ---------   ----   ------\n",
      "  1   -25.90859517574                   -0.11    4.0    142ms\n",
      "  2   -26.27703098050       -0.43       -0.72    2.0    104ms\n",
      "  3   -26.29532779943       -1.74       -1.64    2.3    117ms\n",
      "  4   -26.29558675868       -3.59       -2.28    1.0   88.4ms\n",
      "  5   -26.29560492317       -4.74       -2.70    1.0    117ms\n",
      "nkpt = 5 Ecut = 22\n",
      "n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime\n",
      "---   ---------------   ---------   ---------   ----   ------\n",
      "  1   -25.90925442621                   -0.11    4.0    160ms\n",
      "  2   -26.27822851988       -0.43       -0.73    2.0    119ms\n",
      "  3   -26.29617887456       -1.75       -1.65    2.2    132ms\n",
      "  4   -26.29641976381       -3.62       -2.31    1.0   89.9ms\n",
      "  5   -26.29643485241       -4.82       -2.70    1.2   98.6ms\n",
      "nkpt = 5 Ecut = 24\n",
      "n     Energy            log10(ΔE)   log10(Δρ)   Diag   Δtime\n",
      "---   ---------------   ---------   ---------   ----   ------\n",
      "  1   -25.90938405562                   -0.11    4.1    143ms\n",
      "  2   -26.27826346980       -0.43       -0.73    2.0    113ms\n",
      "  3   -26.29625175155       -1.75       -1.64    2.2    114ms\n",
      "  4   -26.29649519193       -3.61       -2.30    1.0   82.1ms\n",
      "  5   -26.29651079827       -4.81       -2.70    1.2   88.1ms\n"
     ]
    },
    {
     "output_type": "execute_result",
     "data": {
      "text/plain": "18"
     },
     "metadata": {},
     "execution_count": 5
    }
   ],
   "cell_type": "code",
   "source": [
    "function converge_Ecut(Ecuts; nkpt, tol)\n",
    "    energies = [run_scf(; nkpt, tol=tol/100, Ecut).energies.total for Ecut in Ecuts]\n",
    "    errors = abs.(energies[1:end-1] .- energies[end])\n",
    "    iconv = findfirst(errors .< tol)\n",
    "    (; Ecuts=Ecuts[1:end-1], errors, Ecut_conv=Ecuts[iconv])\n",
    "end\n",
    "result = converge_Ecut(Ecuts; nkpt=nkpt_conv, tol)\n",
    "Ecut_conv = result.Ecut_conv"
   ],
   "metadata": {},
   "execution_count": 5
  },
  {
   "cell_type": "markdown",
   "source": [
    "… and plot it:"
   ],
   "metadata": {}
  },
  {
   "outputs": [
    {
     "output_type": "execute_result",
     "data": {
      "text/plain": "Plot{Plots.GRBackend() n=1}",
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABwgAAASwCAIAAABggIlUAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzde1xVdb7w8e+6bFAQ8UJ4IVFUFFPDvJQXUk8ic2zU0RRvFVaToD6TNDPPGX2aOaN1ZjpyzumkzqmEakqd8kKZSVMnhdJRy0IwEhVFRShMExUUUNzr8vwB05TjlHu7YW/Yn/dfi81ei6+9El5++K31U2zbFgAAAAAAAADwJ6q3BwAAAAAAAACApkYYBQAAAAAAAOB3CKMAAAAAAAAA/A5hFAAAAAAAAIDfIYwCAAAAAAAA8DuEUQAAAAAAAAB+hzAKAAAAAAAAwO8QRgEAAAAAAAD4HcIoAAAAAAAAAL9DGAUAAAAAAADgdwijAAAAAAAAAPwOYRQAAAAAAACA3yGMAgAAAAAAAPA7hFEAAAAAAAAAfocwCgAAAAAAAMDvEEYBAAAAAAAA+B3CKAAAAAAAAAC/QxgFAAAAAAAA4HcIowAAAAAAAAD8DmEUAAAAAAAAgN8hjAIAAAAAAADwO4RRAAAAAAAAAH6HMAoAAAAAAADA7xBGAQAAAAAAAPgdwigAAAAAAAAAv0MYBQAAAAAAAOB3CKMAAAAAAAAA/A5hFAAAAAAAAIDfIYwCAAAAAAAA8DuEUQAAAAAAAAB+hzAKAAAAAAAAwO8QRgEAAAAAAAD4HcIo3FFbW+vtEQAAAAAAAAD3EUbhst/85jchISGzZs3y9iAAAAAAAACAmxTbtr09A5qZzp07nzlzRkQqKytDQ0O9NcaVK1cMw2jTpo23BgDwj9i2XV1dHRgYGBAQ4O1ZAFyrrq7u6tWrISEh3h4EwHVcunQpICAgMDDQ24MAuJbT6bxy5UqbNm0URfH2LAA8hhWjcJlhGNcceEVdXR139AM+q7q62ul0ensKANdx9erV6upqb08B4Ppqamrq6uq8PQWA63A6ndXV1ZZleXsQAJ5EGAUAAAAAAADgdwijAAAAAAAAAPwOYRQAAAAAAACA3yGMAgAAAAAAAPA7hFEAAAAAAAAAfocwCgAAAAAAAMDvEEYBAAAAAAAA+B3CKAAAAAAAAAC/QxgFAAAAAAAA4HcIowAAAAAAAAD8DmEUAAAAAAAAgN8hjAIAAAAAAADwO4RRAAAAAAAAAH6HMAoAAAAAAADA7xBG0SzV1tZu2LDhxRdf/OKLL7w9CwAAAAAAAJofwiiamSNHjvz85z+PiIiYP3/+b37zm6ioqKlTp27fvt22bW+PBgAAAAAAgGaDMIrmwTCMzZs3jx8/vl+/fitWrKisrBQRUVTTNLds2ZKQkBATE/Pss89euHDB25MCAAAAAACgGSCMwtedOXMmLS2td+/e06ZNy87Otm1b9EAZOk1+8Z7850mZ9nvp0E1Ejh49+otf/KJLly4zZsz46KOPvD01AAAAAAAAfJrCDchwVVhY2Llz50SkoqKiY8eOjfq1Pvzww3vvvffKlSsNH4f3ktHzJO4hCe7wtzeZTvksS3asliM75a//P//617/+3e9+16izAfhHbNs+ffp027Ztg4ODvT0LgGtdunSpurq6S5cu3h4EwHWcPn06KCiobdu23h4EwLVqa2urqqrCw8M1TfP2LAA8hjAKlzVlGB0xYsTevXtF1WTgBBmbIv3Hi/KPlzl/VSQ70uXjP8nlKofDUVpayr/6AK8gjAK+jDAK+DLCKOCzCKNAi8St9PBd+/fv37t3r4jI7BXys80y4EffV0VFpEuMzH5Wlu4TVXM6nS+99FLTzAkAAAAAAIBmhzAK3/Xcc8+JiLQKkeFzXDitY3cZOEFEVq9e7XQ6G2c0AAAAAAAANG+EUfioysrKDRs2iIiMTJJWIa6dPDZFRE6dOpWVldUIowEAAAAAAKDZI4zCR73yyis1NTUiIqMfdfnk/gnSKVpEXnjhBU/PBQAAAAAAgJaAMApfZNt2enq6iEjMWIno7/L5iiJ3/1REcnJyjhw54unpAAAAAAAA0OwRRuGLsrOzG4LmmBQ3L3H3wxIQZNv26tWrPTgYAAAAAAAAWgbCKHxRwy3woV3kjsluXiKovQydLiKvvvpqwy35AAAAAAAAwF8RRuGLtm/fLiIyLFE0h/tXGT5HRCorK3Nzcz00FwAAAAAAAFoIwih8Ub9+/UREju66qavUn67qS7+MeuukZVgeGAwAAAAAAAAtA2EUvmj+/PkiImX75cQnbl7CdMruP4qIDJr0lytd78s2e2w0ntpvnaq1PTYlAAAAAAAAmi3CKHzR7NmzO3ToICKyI93NS+RvkcqvRETGNmzfVF5jL80ze2wwEnPMD07Z9FEAAAAAAAB/pnt7AOA6Wrdu/dBDD/33f/+35GZK4nIJCXf5EvVFtXNfifmnb7/stOSNEuuNEiumnTI/Rp3bR20X4KGhAQAAAABoHKtXr/7ggw+8PQVajoiIiKeeeiokJMTbg3gZYRQ+auHChStWrLCMOtmzVv75/7p28ldFUrxLRGRsiijKdd9SVGk/vtdckmtOilRTB6ijOl3/bQAAAAAAeFdhYeGCBQu8PQVamo4dO/7mN7/x9hRexq308FG9evUaP368iMiO1WKZrp384Qti2xIQJCPu//43XjEls8SKyzKGbjEyiqwaw91xAQAAAABoHGfPnvX2CGiBKioqvD2C97FiFL5rwYIF77//vpwrk4PbZOCEGz2trlr2viYiMnyOBLW/wZPyKuyU3eavPjVn9lQX9Vf7t2cBKQAAAADAt/Tv33/p0qXengLN27vvvvvqq696ewpfQRiF75o4cWJkZGRZWZm8nio/KpXh90ur7334hW1J4fuybYVcvigiMibZ1a9YdVUyiqyMImtUJyV1gDqlu+pgUTUAAAAAwDeEh4cnJiZ6ewo0b6dOnfL2CD6E6gPfpWnaL3/5SxGRipPy2iL5lx7y2mNSfvA6b62ukP/9L3kiRlb9RIo+FJHb4+LjR9zh9rLPPWfsGTlm9w3OJblmWTU72AMAAAAAALQ0hFH4tEWLFq1fv37kyJEiIlcuyY50WXaH/Oc4yc0U46qIyIlP5I8Py696yptPSMVJEYmMjPz973+/+93N2yfoh6bri2PV9oFufvWvaiWtwIraaIx/z8gqs+ijAAAAAAAALQa30sPXzZo1a9asWZ999tkLL7zw2muv1dTUyNFdcnSXhHaWtuHyxef1b1MUZfz48QsXLpw4caKmafUvxrRTlg/Tfj1IW3/cev6QVXDenbZp2ZJdbmeXm9Gh1k/7qI/GqB3dLa0AAAAAAADwEawYRfMwaNCg9PT08vLyVatWxcTEiIhUna6voh06dPjFL35x5MiR999//yc/+ck3VfQbIQ5JjlE/u0/fN0VPjlFbu/vrgOIqe0muGfG6c0aOuecM60cBAAAAAACaMcIompPQ0NDHHnvs0KFDOTk5iYmJ8fHxf/zjH7/88stnnnkmOjr6B08fEqakx2nlsx0rhmtRIW4+gLTOlMwSKy7LGLrFyCiyagz3LgMAAAAAAABv4lZ6ND+Kotxzzz1Dhgypq6sLDw939fT2gZI6QH2sv/rBKTujyHqr1DIsd8bIq7BTdpu/+tSc2VNd1F/t397trZ4AAAAAAADQ1FgxCj+lKhIfoWwap52cqS8drIa3dvM6VVclo8ga8KYRl2VkllhOtxorAAAAAAAAmhhhFP4uIlhZNlj7YrZj0zgtPkJxe9nnnjP2jBwzcr1zSa5ZVs0TSAEAAAAAAHwaYRQQEQlQJTFK3T5BPzRdXxyrtnd33/nTlyWtwIraaIx/z8gqs+ijAAAAAAAAvokwCnxHTDtl+TCtdJYjPU6L7eDm+lHLluxye/I2s2+mkVZgnavz7IwAAAAAAAC4WYRR4DpCHJIco352n75vip4co7Z2d5ey4ip7Sa4Z8bpzRo655wzrRwEAAAAAAHwFYRT4PkPClPQ47dQcx4rhWlSImwtI60zJLLHisoyhW4yMIqvG8OyMAAAAAAAAcBlhFPhh7QIkdYB6bIa+fYKeGKXq7v69yauwU3abEa87U3abhRdYQAoAAAAAAOA1hFHgRqmKxEcom8ZpJ2fqSwer4a3dvE7VVckosga+acRlGZklltPy6JQAAAAAAAC4AYRRwGURwcqywdoXsx2bxmnxEYqbN9iL7Dljz8gxI9c7l+SaZdUsIAUAAAAAAGg6hFHATQGqJEap2yfohxP1xbFq+0A3r3P6sqQVWFEbjfHvGVllFn0UAAAAAACgCRBGgZvVN1RZPkwrneVIj9MGdXRz/ahlS3a5PXmb2WeTkVZgVVzx7IwAAAAAAAD4DsIo4BkhDkmOUfdP1fdN0ZNj1Na6m9c5dtFekmveut45I8fMLmf9KAAAAACgBbp06dLx48e9PQX8HWEU8LAhYUp6nHZqjmPFcK1niJsLSOtMySyxxr9nDN1iZBRZNYZnZwQAAAAAwDvy8vJSUlK6dOnSu3fvfv36paWlVVZWenso+CnCKNAo2gVI6gC1eIa+fYKeGKXq7v5Vy6uwU3abXV9zpuw2Cy+wgBQAAAAA0CxduXLl1Vdfveuuu4YOHZqRkVFTUyMiRUVFS5Ys6d69+89+9rNDhw55e0b4HcIo0IhUReIjlE3jtJMz9eXDtFuD3VxAetEpGUXWwDeNuCwjs8RyWp4dEwAAAACAxnL8+PElS5Z069bt4Ycf/vTTT//+DRcvXnzuuef69+8/dOjQtWvXOp3Oph8S/okwCjSFiGBlcax6fKa+aZwWH6G42UdF9pyxZ+SYkeudS3LN0moWkAIAAAAAfJRpmllZWRMmTOjTp09aWlpFRcXfPqc5ZOg0mbJMbon69il5eXlz587t3r370qVLy8vLm3pi+B93N4gB4LoAVRKj1MQo9UiV/cpRK6PIulDnznVOX5a0Aus/P7fu6aos6q9OjFTdLq0AAAAAAHhWdXX1H/7wh/T09NLS0ms/166rjH5URv9UQruIiNy7RArflx3pcuB/xW64O/Krr7566qmnnn766cmTJ//yl78cOXJk047vc86ePXvw4EHDMEQkODh4xIgR3p6o5SCMAl7QN1RZPkz79SBt/XHrhcPWZ+fcWftp2ZJdbmeXm73bWo/2VX/aVw1r5fFJAQAAAABwzaxZs/785z9/5yVFkZh/krHzZdBEUb8VoxRVBk6QgROk4qTsfFH2vCqXztZ/xjCMzZs3b9269aOPPho2bFjTTe8DqqqqDhw4kPdXhw8ftu2GbtCvXz8exupBhFHAa0IckhyjJseoeRV2RpG17ph12a3d549dtJfkmkvzzcmRanKMGh/B+lEAAAAAgHccOnTo3Xff/dvHQe1kxIMyNkU69/m+08J6yLTfy09+K/velB2r5fje+pcNw3j22Wdff/31xhzZ5wwePPjEiRPensIv8IxRwPuGhCnpcdqpOY4Vw7WeIW5mzTpTMkus8e8ZQ7cYGUVWjVuNFQAAAACAm/HCCy80LG9UVHngOfmPEpn1zA9U0W/ogTJ8jiz5i/zrp9Ln7vrX3nzzzTNnzjTavM2DqlLwGgX/WQFf0S5AUgeoxTP07RP0xChVd/dvZ16FnbLb7PqaM2W3WXiBDZoAAAAAAE2kurp63bp1DR8MnCBj5klgsDsXihwk056uP7x69epLL73koQGbjdDQ0FGjRi1atGjNmjWFhYX333+/tydqmbiVHvAtqiLxEUp8hHaqVl1XbP/PIevLGnfi5kWnZBRZGUXWkDBlUX91di/Vwe9BAAAAAACN6U9/+lNVVVXDB2OTb+paPe+S7oOlNF9E0tPTlyxZomnaTQ/YPOzZs6dz587ffkVReGheo6CUAD6qa5CyOFY9PlPfNE6Lj3D/W2BehT13pxm53rkk1yytZgEpAAAAAKCxZGRkNBx1jJT+CTd7uTENafWLL7545513bvZqzcc1VRSNhzAK+LQAVRKj1O0T9MOJ+uJYtX2gm9c5fVnSCqyeG43x7xlZZRZ9FAAAAADgWbt3796/f3/DB2Pni3rTCzyHz5bgDvWHL7zwws1erfE9/fTTQ4cOHTp06MMPP/yDb/7zn/9c/+aRI0fW1tY2wXj4e4RRoHnoG6osH6aVzXKkx2mDOrq5ftSyJbvcnrzN7LPJSCuwKq54dkYAAAAAgP96/vnnG470QBmV5IErOlrLyAfrD7dt23b06FEPXLMxjRkzJi8vLy8vb82aNcXFxd//5pUrV9a/uXv37kFBQU0zIa7BM0aB5qSNQ5Jj1OQYNa/Cziiy1h2zLru1+/yxi/aSXHNpvjk5Uk2OUeMjeFgJAAAAALQcB87bq4us/ArbaTXRVzQunv38jc0NHwxLlJBwz1x37HzJ/oPYlm3bo3+1+taH/sMzl/0hbRzSLkD551uVR/qqATe8qnDUqFF33HHH/v37bdt++eWXly9f/o/eWVJSkpOTU3+ckpJy8wPDPYRRoFkaEqakx2lpd2prjlqrDlonLrlzc3ydKZklVmaJNThMSYlR7++tBvMtAQAAAACauTXF1rxdZpMl0QZ/flGcdQ3HYz1X+sJ7Sb975FC2iJzZ/sqZhKUS0GSLK+23S+WVo9a2CXpowI2ek5ycvGDBAhF5+eWXn3zyycDA6z8R78UXX7QsS0T69u07ZswYDw0Ml3ErPdCMtQuQ1AFq8Qx9+wQ9MUrV3f0LnV9hp+w2u77mTNltFl7gAaQAAAAA0FwdrrS9UEUtU3b9seG4W6z0vMuTF/8ms9ZWyqebPHnlG/DpWfuxj8wbf/8DDzzQtm1bEamoqHj77bev+x7DMNasWVN/nJyczI7zXkQYBZo9VZH4CGXTOK10lr58mHZrsJvfUi86JaPIGvimMXSLsbbYauqfowAAAACAm5ZR5I1/zX3+rpwrbTj+pwUevnjsROkY2XD84fPf+9ZGsf6Edb7uh99Wr02bNvfff3/98Ysvvnjd92zZsuXUqVMiEhgY+OCDD3piRriJMAq0HF2DlMWx6vGZ+qZxWnyE+79yyquw5+40I9c7l+SapdUsIAUAAACAZuNwpTf+Eff5uw0HeqDcOdPDF1c1uWtOw3HZZ1L1lYev/0MMS4qrXPiv+rOf/ax+EWhOTs51t2D6JphOnz79lltu8ciQcA9hFGhpAlRJjFK3T9APJ+qLY9UO13+eyQ87fVnSCqyeG43x7xlZZRZ9FAAAAAB8X7sAb9yXHd6r4cCok/JCz1+/NK/hIKi9BHf0/PV/SHtX/mV92223jRo1SkTqt2C65rMlJSXZ2dn1x2y75HWEUaDF6huqLB+mlc9xrBmjDero5o9Gy5bscnvyNrPPJiOtwKq44tkZAQAAAACeNLm7N8LoqLmi/7Ud7kj38MW/Pi6HGjZwl7iHRL/hjZA8JKad0ifUtf+q9fsvicjLL79cV/ed+/C/2XYpJiYmLi7OU0PCPYRRoIVrpUlStLp/qr5vip4cowa5u+/8sYv2klzz1vXOGTlmdjnrRwEAAADAF83qqY7r2uRtNOQWGTK14Tg3Uy597cmL71gttiUioigy+lFPXvkGOFR5bqTm6lnTp08PDw8XkYqKiq1bt37z+re3XUpJSWHbJa8jjAL+YkiYkh6nlc9xrBiu9Qxx85tvnSmZJdb494whW4yMIqvG8OyMAAAAAICboirydoL+s9vUVi7XvJvzzd7xRp3sWeuxyzovy0frGo5vGy+doj125RswoL2ybYJ+j+uhOSAg4OGHH64/zsjI+Ob1t99+u37bpVatWiUlJXlqTrjN3cVjAJqndgGSOkB9rL/6wSk7o8h6q9Qy3NqvML/CTtlt/ssn5qxe6s9uUwd24NdcAAAAAOATgnX5w0gt7U7taJVtNt39fmPuf/eOIwf2i4jsWC0JPxfVE2n2kw1Sc77+8JnFC8ZMaLqQ1TFQeri7qEhEFixY8F//9V+madZvwRQdHS3f2nYpMTGxQ4cOnhkUN4EwCvgjVZH4CCU+QjtVq64rtv/nkPVljTs/LS86JaPIyiiyhoQpi/qrs3upDpahAwAAAIAPCNLF7d0m3PP4wuSGZ2ueK5OD22TgBA9c9K9PLO3WrVvqnEma1mwW5XTv3v1HP/rRu+++a9v2H//4x3//938vKSnZvn17/WfZdslH0DAAv9Y1SFkcqx6fqW8ap8VHuP90k7wKe+5OM3K9c0muWVrNE0gBAAAAwO888MADoaGhDR/syPje996YE59IaX79YUpKiqY18dMBbtY1WzC99NJL9dsu9evXb+TIkV4dDQ0IowAkQJXEKHX7BP1wor44Vu0Q+MOnXNfpy5JWYPXcaIx/z8gssZrwlg0AAAAAgJe1adPmwQcfbPjgwHtScfJmr/jX5aIBAQGPPtrU2y7dvHvvvbdHjx4icvbs2c2bN7/66qv1ry9YsIBtl3wEYRTA3/QNVZYP08rnONaM0dy+58KyJbvcnpFjxmQaaQVWxRXPzggAAAAA8FELFy5sSH62JX956aauVX1O9r1Rfzh9+vROnTrd9HRNTVXVefPm1R8/9thj9dsutW7d+oEHHvDqXPgbnjEK4FqtNEmKVpOi1bwKO6PI+tMxq9at3eePXbSX5JpL883JkWpyjBofwS/EAAAAAKAl69ev35gxY3bs2CEisvsV+fESCWzj5rX+8qI4GxbazJ8/3zPzNbl58+Y99dRTdXV1586dq39l5syZ7du3//6zvvrqq4MHD17zSv1BTU1Ndnb2tz/VrVu3vn37em5k/0IYBfAPDQlT0uO0tDu1TSesFYXW4Up37o2vMyWzxMossQaHKSkx6v291WC+8QAAAABAC7VgwYKGMHrprPyql4xKkjHJ0in6Rs836iTvLdmxWo59VP/CwIED77777kaZtfHdcsstU6dO3bBhwzev3Mi2S9nZ2UlJSdf9VFlZ2fjx47/9Smpq6ooVK25yTr/FrfQAfkC7AEmOUQun6dsn6IlRqu7ut438Cjtlt9n1NWfKbvPAeZ4/CgAAAAAt0NSpU7t27drwQe0F2b5S/nWAPHuv7N8qlvl9Z54rk7f+VX7VS15K+qaKisjChQsbc95G980WTCJy++23Dx8+3IvD4Bos3AJwQ1RF4iOU+AjtVK26rtj+n0PWlzXuxM2LTskosjKKrCFhyqL+6uxeqoNf0AAAAABAS+FwOF555ZV58+aVlZU1vGTbcihbDmVLh1tl9KMS94iEdv7bCbYlB7fLjtVy4H+vKaeapt1///2PPPJIE47veXfddVerVq2uXLkiIsnJyTdySvfu3RMTE2/w+oMGDXJ/OL9HGAXgmq5ByuJY5ecD1bdLrYwiK6fcdm/xZ16FPXenufhTc24fdUE/tXsbnkAKAAAAAC1BQkJCSUnJBx98kJGRsXnzZtP8a+48/6VsWSbvPC2DJsnoR6X7ENn3hmSvkq+KrrlCp06dHnrooQULFnTv3r2pp/e0LVu21FfR4ODgG9x2afTo0aNHj27kuSBCGAXgngBVEqPUxCj1aJX9x6PWi0XW+Tp3rnP6sqQVWP/5uXVPVyU5Rr2vh6oRSAEAAACgmVNVNT4+Pj4+vri4ePXq1a+88sqFCxcaPmdclX1vyr43RdX+/ub60aNHL1y4cOrUqQEBAU09dOP4wx/+UH8we/bs0NBQ7w6Da3ALK4Cb0idUWT5MK5/jWDNGu6Ojm1HTsiW73J6RY/bNNNIKrIornp0RAAAAAOAd0dHRzzzzTHl5+csvvzx06NDvfO5bVTQkJGThwoUHDhzYuXPnzJkzW0wV/eijj/bs2SMiqqr+8pe/9PY4uBZhFIAHtNIkKVrNn6rvm6Inx6hB7i5GP37RXpJr3rreOSPHzC5ngyYAAAAAaAlat279yCOP5Obm7tu3Lzk5OSgo6JtP9e3bd/ny5aWlpc8999yAAQO8OKTHnT9//tFHH60/njJlSkxMjHfnwd/jVnoAnjQkTEmP09Lu1DadsFYUWocr3YmbdaZklliZJdbgMCUlRp3TS23j8PikAAAAAICmNmTIkPT09KeffvpPf/rTyZMnp06d2sIepmnb9vz580XkzJkzO3furKysFBFd13/72996ezRcB2EUgOe1C5DkGPXRvuoHp+yMIuutUsuw3LlOfoWdstv8l0/MWb3Un92mDuzA80cBAAAAoNnr2LFjamqqt6doLBkZGde8snz58tjYWK8Mg+/HrfQAGouqSHyEsmmcVjpLXz5M6xbsZta86JSMIuv2zcbQLcbaYsvpVmMFAAAAAKAptWvX7u677968eTNPF/VZrBgF0Oi6BimLY5WfD1TfLrUyiqycctu9p4fmVdhzd5q/+tR8qI86P0btEcICUgAAAACAD1EU5fz58yKi63pISIi3x8EPYMUogCYSoEpilLp9gl6UqC+OVTsEunmdM5clrcDqtckY/56RWWKZbNEEAAAAAPAZ7du3b9++PVW0WSCMAmhqfUKV5cO08jmONWO0Ozq6uerTsiW73J6RY/bNNNIKrIornp0RAAAAAAC0cIRRAN7RSpOkaDV/qr5vip4cowa5+2CP4xftJbnmreudM3LM7HKWjwIAAAAAgBtCGAXgZUPClPQ4rXyOIz1Ou62dmwtI60zJLLHGv2fc9oaxstCqdnp2RgAAAAAA0NIQRgH4hHYBkhyjHpimb5+gJ0apurvfnA5X2o/vNSNed6bsNg+cZwEpAAAAAAC4PsIoAB+iKhIfoWwap5XO0pcP07oFu7mA9KJTMoqs2zcbQ7cYa4stp+XZMQEAAAAAQLNHGAXgi7oGKYtj1ZJZ+tYELT5CcbOPiuRV2HN3mt3WO5fkmicvsYAUAAAAAAA0IIwC8F2aIpMi1e0T9KJEfXGs2iHQzeucuSxpBVavTcb494zMEsskkAIAAAAA4PcIowCagT6hyvJhWvkcx5ox2h0d3Vw/atmSXW7PyDH7ZhppBdbZK56dEQAAAAAANCeEUQDNRitNkqLV/Kn6vil6cowapLt5neMX7SW5Zrf1zhk5ZnY5y0cBAAAAAPBHhFEAzc+QMCU9Tjs1x5Eep93Wzs0FpHWmZJZY498zbnvDWAnaMvMAACAASURBVFloVTs9OyMAAAAAAPBphFEAzVVogCTHqIXT9e0T9MQoVXf3+9nhSvvxvWbE686U3ebn51lACgAAAACAXyCMAmjeFJH4CGXTOK1slmP5MK1bsJsLSC86JaPIit1sDN1iZBRZV0zPjgkAAAAAAHwLYRRAC9ElSBbHqiWz9K0JWnyE4mYfFcmrsFN2mz02OJfkmicvsYAUAAAAAICWiTAKoEXRFJkUqW6foBcl6otj1Q6Bbl7nzGVJK7B6bTLGv2dkllgmgRQAAAAAgJaFMAqgZeoTqiwfppXPcawZo93R0c31o5Yt2eX2jByzb6aRVmCdveLZGQEAAAAAgNfo3h4AABpRK02SotWkaDWvws4osv50zKo13LnO8Yv2klxzab45OVJNjlHjI9y+Ux8AAAAA3LRr164OHTp4ewo0b3V1dd4ewYcQRgH4hSFhSnqc9h93ahtPWCsLrUOV7twbX2dKZomVWWL1a6ekxKg/7au2cXh8UgAAAAD4Dl1vqDeGYVy4cMG7w6DF0DTN2yN4H7fSA/AjoQGSHKMWTte3T9ATo1Td3W+Bhyvtx/eaEa87U3abn5/n+aMAAAAAGtGQIUMGDhzo7SnQooSEhEybNs3bU3gfK0YB+B1FJD5CiY/QvqrV1hZbzx2yvqhxJ25edEpGkZVRZA0JU5Jj1KRotRW/bwMAAADgaUFBQZ999llVVZW3B0HLERQUFBjo7m7FLQhhFID/6hIki2PV/3u7+u4X1qqDVk657d7iz7wKO2W3+ds886E+6vwYtUcITyAFAAAA4EmqqrZv397bUwAtDbfSA/B3miKTItXtE/SiRH1xrNrB3d+ZnbksaQVWr03G+PeMzBLL5A57AAAAAAB8GGEUABr0CVWWD9PK5zg2jdNGdnJz1adlS3a5PSPH7JtppBVYZ694dkYAAAAAAOAZhFEA+I5WmiRGqXsm6fum6MkxapC7Txw5ftFekmt2W++ckWNml7uzfLSgoOC3v/3tCy+8cPHiRTeHAAAAAAAA/wBhFACub0iYkh6nnZrjSI/Tbmvn5gLSOlMyS6zx7xm3vWGsLLSqnTdwSl3d66+/HhcXN2jQoH/7t39buHBhRETE/PnzP//8c/dmAAAAAAAAf48wCgDfJzRAkmPUwun69gl6YpSqu/td83Cl/fhes+vrzpTd5ufnr7+AtLS09IknnoiMjLz//vv37NkjIuJoJSLV1dXp6emxsbF3333366+/fvXqVTeHAAAAAAAAf6XYbm7CDP8VFhZ27tw5EamoqOjYsaO3xqiqqqqrqwsPD/fWAPBPX9XK2mLruUPWFzU39c1zSJiSHKMmRautNLEs64MPPsjIyHjrrbcMw2h4R+c+MmqujH5ULp6VPWvkLy9KbWX9Z8LDwx9++OH58+f36NHj5v40jcW27dOnT7dt2zY4ONjbswC41qVLl6qrq7t06eLtQQBcx+nTp4OCgtq2bevtQQBcq7a2tqqqKjw8XNM0b88CwGMIo3AZYRQwbXn3C2vVQSun/Ka+h3ZqLQ/1UYuffWTz+rUNL2kOGTxFxqZIn9Hfeevli7L3NdmxWk4drn+hVatW27Ztu/vuu2/i6zcWwijgywijgC8jjAI+izAKtEiEUbiMMAp8o7jKfvmo9VKRda7O3UucOizLBoltS/sIGTNP4h6R0M7f9/4jO2VHuux/W0znPffck5OT4+4XbkSEUcCXEUYBX0YYBXwWYRRokXjGKAC4LzpUWT5M+3KOY9M4bWQntzZo2pkuti0BQbJsv/z4iR+ooiLSd4ykvC7Tfi8iH374YVFRkTtfFAAAAAAAv0cYBYCb1UqTxCh1zyR93xQ9OUYN0m/4zLpq+fhPIiJ3zZagdi58yVEPSUCQbdsvvPCCq9MCAAAAAAAhjAKABw0JU9LjtFNzHOlxWv/2N7CA9OPX5PJFEZEx81z7SkHt5M4ZIrJmzZqamho3RgUAAAAAwM8RRgHAw0IDJDlGPTBNf3+CPrWHqn/PN9qdGSIivYZL98Euf5l/WigiVVVVr732mruTAgAAAADgvwijANAoFJGECGVzvFY2y7F8mBbZ5u8WkBbvli8PiIiMSXHnC0QOkqhhIvL888/f5KgAAAAAAPghwigANK4uQbI4Vj0xU9+aoMVHKH/rozvSRUTahMnQaW5eemyKiBQUFHz00UceGBQAAAAAAH9CGAWApqApMilS3T5BP5KoL45V2189K/lbRETiHhZHKzcveudMCblFRNiCCQAAAAAAVxFGAaBJRYcqy4dpz4d/IkadiMiw6e5fSw+U2+8VkQ8//NBD0wEAAAAA4C8IowDgBcPuuF1VVRGRg9vdv4plStGHIhLW+3bT9tBkAAAAAAD4B8IoAHhBr169fvSjH4mI7EgXy3TzKp+/K+fKRKQgdn6fTcbKQqvO3SsBAAAAAOBvCKMA4B0LFiwQETn/hRT+r5uXqN++qWOk9E84ccl+fK/ZJ9NYWWjVGh4bEgAAAACAloowCgDe8eMf/zgqKkpE5MN0d84/e0IOZYuIjJ0vqlb/Wlm1/fhes+dGZ1qBdcnpqUkBAAAAAGiBCKMA4B2qqs6bN09E5OD78vUxl8//cLXYluiBMirpms+cuSxLcs2I152pH5unL3tiVgAAAAAAWhzCKAB4zbx581q1aiW2LX952bUznZflo7UiIsMSJST8um+55JRVB63eG52pH5tf1rA3EwAAAAAA30EYBQCvCQsLmzZtmojInlfFecWFM3Mzpea8iMiY5O9/Y40hqw5avTYaSTvMo1XkUQAAAAAAGhBGAcCbGrZgqj4nK34s+W+J9UMbJ1V+JVn/Jm/8PxGRyEHSa/iNfJWrlqw7ZvV7w5i0zcivII8CAAAAACC6twcAAL82atSosWPH7tixQ47ukqO7pF1XGf2ojP6phHb5zvtsW47slB2r5bMsMZ0iIoqiTFjsUuO0bHmnzP5zmfHjSOXXg7Th4YoH/yAAAAAAADQvrBgFAC/Lysp65plnoqOjRUQqT8nWp2Rxb0mfLUd2iohcrpIPnpOlsfJMguRtFtOpadqUKVM+yMnJ//3MB3urmot50xZ5p8wesdWIyzKyyizP/3kAAAAAAGgOFNvmnkq4Jiws7Ny5cyJSUVHRsWNHb41RVVVVV1cXHn79bWeAZse27e3btz///PPvvPOOaZoNr4b3lqrTUldd/1Hnzp1/+tOfpqSkdOvW7ZsTD16w0wqs9Scsw63IeUdH5f8NUqdHqR5cPmrb9unTp9u2bRscHOy5qwLwjEuXLlVXV3fp0uWH3wqgyZ0+fTooKKht27beHgTAtWpra6uqqsLDwzVN8/YsADyGFaMA4BMURUlISNiyZcuJEyeeeOKJTp06iYh8fay+io4ePXr9+vWlpaW/+93vvl1FRaR/e2XtWK04UV/UX23t+vNR9p+zZ+SYsZuNtcVuplUAAAAAAJojVozCZawYBZrA1atX33zzzaysrFtuuWXevHkDBgy4kbO+vizPHzZXFFpVV935olEhSmp/NaWf2urmfgvOilHAl7FiFPBlrBgFfBYrRoEWiTAKlxFGAR93rk7+cND8w0HrfJ07p3dqLT8foD3WXw1yd38+wijgywijgC8jjAI+izAKtEjcSg8ALU3HQFk2WCud5VgxXIsIdvnZoWcuy5Jcs/sG57J884JbaRUAAAAAAN9HGAWAlqmNQ1IHqCdm6mvGaNGhLufRiivyZL7VfYMz9WPzq9rGGBAAAAAAAG8ijAJASxagSlK0enCavmaM1q+dy3n0klNWHbSiNjpTdptf1PDoFQAAAABAy0EYBYCWz6FKUrRaOE3fmqDdeYvLebTOlIwiq9dGI2mHWVRJHgUAAAAAtASEUQDwF6oikyLVT36i75qoT4x0OY86LVl3zOr/pjFpm7GvgjwKAAAAAGjeCKMA4HfiOitZCQ151NU+atnyTpk9bIsx/j3j46/JowAAAACA5oowCgB+qj6Pfnaf/mBvVXN5/ahkl9sjtxpxWUZWmdUI0wEAAAAA0LgIowDg127voKwdqx1J1Bf1VwM1l0/fc8aevM284y1jbbFlsn4UAAAAANB8EEYBANKrrbJyREMeba27fPpn5+y5O83YzcbaYstg/SgAAAAAoDkgjAIAGnRvo6wcoZXOciwdrLYLcPn0gxfsuTvN6ExjZaF1xXT95nwAAAAAAJoQYRQA8B23tJJlg7XS2Y4Vw7XOrV0+/eQl++efWHd+2P7pQq3qaiPMBwAAAACAJxBGAQDX0dYhqQPUYzMdK4Zrtwa7vPyzok59+oDWa6NzWb55vq4xBgQAAAAA4KYQRgEA/1CwLqkD1OMz9TVjtD6hLufRc3XyZL7VfYMz9WPzVC17MwEAAAAAfAhhFADwAwJUSYpWD0/XtyZog8NczqPVTll10Oq50UjaYR67SB4FAAAAAPgEwigA4IaoikyKVPdN0bcmaHeFu5xH60xZd8y67Q0jaYd5uJI8CgAAAADwMsIoAMAFisikSHXvZH3XRH1ipMt51GnJumPWgDeNSduM3LPkUQAAAACA1xBGAQDuiOusZCXoeVP0xCjV1T5q2fJOmX3n20ZclpFzijwKAAAAAPACwigAwH2Dw5RN47SC+/QHe6u66z9S9pyx49814rKMrDKLPgoAAAAAaEqEUQDAzRrYQVk7VjuSqC/qr7bSXD59zxl78jbzjs3G2mLLpI8CAAAAAJoEYRQA4Bk9Q5SVI7SSWY7FsWprzeXAWXDenrvT7JtpZBRZTqsxBgQAAAAA4G8IowAAT+rcWv59qJp7z4UnBprtA10+/fhFO2W3Gb3JWFloXTYaYT4AAAAAAESEMAoAaAwdAqwnBpilsxwrhmtdglw+vbTafnyv2WOjc1m+WXm1EeYDAAAAAPg9wigAoLGEOCR1gFoy05Eep3ULdnXvevn6sjyZb3Vf71ySa56ra4wBAQAAAAD+izAKAGhcgZokx6jHZuprxmh9Q13OoxedklZgdV/vTP3YLK9hbyYAAAAAgGcQRgEATSFAlaRo9dB0fWuCNiTM5TxaY8iqg1bPjUbSDvNoFXkUAAAAAHCzCKMAgKajKjIpUt03Rd8+QR8R7nIevWrJumNWvzeMGTnmoUryKAAAAADAfYRRAIAXxEcoH03Wd03UJ0a6nEctWzJLrAFvGJO2GZ98TR4FAAAAALiDMAoA8Jq4zkpWgr5/qv5gb1V1MZDaIu+U2cO3GnFZRlaZ1TgDAgAAAABaLMIoAMDLBnVU1o7VCu7TH+yt6q7/XNpzxp68zazPoywfBQAAAADcIMIoAMAnDGivrB2rFSfqi/qrrTSXT6/Po7GbjbXFlkkfBQAAAAD8EMIoAMCH9AhRVo7QTs5yLB2stnW4fPqB8/bcnWafTcbKQuuK2QjzAQAAAABaCsIoAMDndGotywZrx2c6lg5WOwS6fPqJS/bje82+mcbKQqvWaIT5AAAAAADNH2EUAOCjwlrJssFa6SzHiuFa1yCXN68vq7Yf32v22OBclm9WXm2MAQEAAAAAzRhhFADg09o4JHWAemKmvmaM1ruty3n07BV5Mt+KXO9M/dj8qrYxBgQAAAAANEuEUQBAMxCoSVK0emi6vmaM1q+dy3n0klNWHbSiNzlTPza/qGFvJgAAAAAAYRQA0Hw4VEmKVgun6VsTtGG3uJxHawxZddDqvdFI2mEeqSKPAgAAAIBfI4wCAJoZVZFJkeqnP9F3TdTHdXU5j161ZN0x67Y3jEnbjLwK8igAAAAA+CnCKACguYrrrGTfq++aqE+MVFzto5Yt75TZw7YYk7YZe78mjwIAAACA3yGMAgCat7jOSlaCvv8+/cHequZiH7VF3imzR2w14rKMrDKrcQYEAAAAAPgiwigAoCWI7aCsHasdSdSTY1Td9R9ue87Yk7eZg98yMksslo8CAAAAgD8gjAIAWo5ebZX0OO3YDH1Rf7W17vLp+8/ZM3LM29801hZbButHAQAAAKBFI4wCAFqa7m2UlSO0kzMdSweroQEun154wZ670+yTaawstK6YjTAfAAAAAMAHEEYBAC1TeGtZNlgrm+1YPkzrEOjy6SWX7Mf3mj02ONMKrBqjEeYDAAAAAHgVYRQA0JK1dcjiWLV0lmPFcC0i2NW96+XMZVmSa/bY4FyWb16oa4wBAQAAAADeQRgFALR8bRySOkA9MVNfM0aLDnU5j1ZckSfzre4bnKkfm6dq2ZwJAAAAAFoCwigAwF8EqJIUrRZN1zeN025r53IeveSUVQetnhuNlN1mWTV5FAAAAACaN8IoAMC/qIokRqkHpulbE7Q7b3E5j9aZklFk9d5kJO0wiyrJowAAAADQXBFGAQD+SFVkUqT6yU/0XRP1iZEu51GnJeuOWf3fNCZtM3LPkkcBAAAAoPkhjAIA/FpcZyUrQd89SZ8YqbjaRy1b3imz73zbiMsyPjhFHgUAAACA5oQwCgCAjOqkZCXon92nP9hb1VxePyp7ztjj3jXisoysMos+CgAAAADNAmEUAIAGt3dQ1o7Vjs7QF/VXAzWXT99zxp68zbxjs7G22DLpowAAAADg2wijAAB8R88QZeUI7Wiivqi/GqS7fHrBeXvuTjMm08gosgyrEeYDAAAAAHgCYRQAgOuIbKOsHKGdnOVYOlhtF+Dy6ccu2im7zehMY2WhddlohPkAAAAAADeHMAoAwD90SytZNlgrm+1YMVzr3Nrl009esh/fa/bY6FyWb1ZdbYT5AAAAAADuIowCAPADQhySOkA9NtOxYrh2a7DLezN9fVmezLci1zuX5Jrn6xpjQAAAAACAywijAADckGBdUgeox2fqa8ZofUJdzqMXnZJWYHXf4Ez92CyvYW8mAAAAAPAywigAAC4IUCUpWj08Xd+aoA0OczmPVjtl1UGr50YjaYdZXEUeBQAAAACvIYwCAOAyVZFJkeq+KfrWBG14uMt59Kol645ZMW8YM3LMQ5XkUQAAAADwAsIoAABuUkQmRaofT9Z3TdQnRrqcRy1bMkusgW8ak7YZn54ljwIAAABAkyKMAgBws+I6K1kJev5UPTFKdbWPWra8U2bf9bYRl2VklVmNMh8AAAAA4O8QRgEA8Iw7OiqbxmmfT9Mf7K3qrv+A3XPGnrzNrM+jLB8FAAAAgMZGGAUAwJMGtFfWjtWOJuqL+qutNJdPr8+jgzYba4stkz4KAAAAAI2GMAoAgOdFhSgrR2gnZzkWx6pBusunf37enrvT7JtprCy06sxGmA8AAAAA/B5hFACAxtKptSwfppXOciwdrLYPdPn04xftx/c25NFaoxHmAwAAAAA/RhgFAKBxhbWSZYO10lmOFcO1LkEun15abT++1+yxwbks36y82gjzAQAAAIBfIowCANAUQhySOkAtmelIj9O6Bbu6d72cvSJP5lvd1ztTPzZPX26MAQEAAADAvxBGAQBoOoGaJMeox2fqa8ZoMe1czqMXnbLqoNV7ozP1Y/PLGvZmAgAAAAD3EUYBAGhqDlWSotWD0/StCdrQMJfzaI0hqw5avTYaSTvMo1XkUQAAAABwB2EUAADvUBWZFKnmTtG3T9BHhLucR69asu6Y1e8NY9I2I7+CPAoAAAAAriGMAgDgZfERykeT9V0T9YmRLudRy5Z3yuyhW4xJ24y9X5NHAQAAAOBGEUYBAPAJcZ2VrAR9/1T9wd6q5mIgtUXeKbNHbDXisoysMqtxBgQAAACAFoUwCgCADxnUUVk7Viu4T3+wt6q7/lN6zxl78jZzyBYjs8Ri+SgAAAAAfA/CKAAAPqd/e2XtWK04UV/UX22tu3x6foU9I8eM3WysLbYM1o8CAAAAwPUQRgEA8FE9QpSVI7STMx1LB6uhAS6ffuC8PXen2SfTWFloXTEbYT4AAAAAaM4IowAA+LTw1rJssHZ8pmPpYLVDoMunl1yyH99rRm1wphVYtUYjzAcAAAAAzRNhFACAZqBjoCwbrJXOcqwYrnUNcnnz+tOXZUmu2X2Dc1m+eaGuMQYEAAAAgGaGMAoAQLPRxiGpA9QTM/U1Y7TebV3OoxVX5Ml8q/sGZ+rH5le1jTEgAAAAADQbhFEAAJqZQE2SotVD0/U1Y7R+7VzOo5ecsuqgFbXRmbLb/KKGvesBAAAA+CnCKAAAzZJDlaRotXCavjVBG3aLy3m0zpSMIqvXRiNph3mkijwKAAAAwO8QRgEAaMZURSZFqp/+RN81UR/X1eU86rRk3THrtjeMSduMfRXkUQAAAAB+hDAKAEBLENdZyb5X3zVRnxipuNpHLVveKbOHbTHGv2d8/DV5FAAAAIBfIIwCANByxHVWshL0/ffpD/ZWNZfXj0p2uT1yqxGXZWSVWY0wHQAAAAD4EMIoAAAtTWwHZe1Y7UiinhyjOlz/Ub/njD15m3nHW8baYsti/SgAAACAFoowCgBAy9SrrZIepxXP0Bf1V1vrLp/+2Tl77k4zdrOxttgyWD8KAAAAoMUhjAIA0JJ1b6OsHKGdnOlYOlhtF+Dy6YUX7Lk7zehMY2WhdcVshPkAAAAAwEsIowAAtHzhrWXZYK10tmP5MK1joMunn7xkP77X7LHBuSzfvOhshPkAAAAAoMkRRgEA8BdtHbI4Vi2d7VgxXIsIdnlvpjOX5cl8q9dG57J883xdYwwIAAAAAE2HMAoAgH8J1iV1gHpipr5mjNYn1OU8WnFFnsy3um9wpn5snqplbyYAAAAAzRVhFAAAfxSgSlK0eni6vmmcdls7l/NotVNWHbR6bjSSdpjHLpJHAQAAADQ/hFEAAPyXqkhilFo4Xd+aoN0V7nIerTNl3THrtjeMpB3m4UryKAAAAIDmhDAKAIC/U0QmRap7J+u7JuoTI13Oo05L1h2zBrxpTNpm5J51LY9euHAhLy+vtrbW1S8KAAAAADeJMAoAABrEdVayEvQ9k/SJkYqrfdSy5Z0y+863jbgsI+fUD+fRvLy8Rx999NZbbx06dOitt976i1/8ori42L2xAQAAAMANhFEAAPAdIzspWQl6wX36g71VzeX1o7LnjB3/rhGXZWSVWX/fR+vq6jIzM8ePHz906NCXX365fq3ohQsXnn322T59+sTFxWVmZhqG4YE/BgAAAAB8L8IoAAC4joEdlLVjtaMz9EX91Vaay6fvOWNP3mbesdlYW2yZtojI8ePHf/WrX0VERMyYMSM7O1tEpHWo3PN/ZNHbMuIBcbQSkT179syYMaNnz56///3vT58+7dk/EQAAAAB8m2LbbJUA14SFhZ07d05EKioqOnbs6K0xqqqq6urqwsPDvTUAgH/Etu3Tp0+3bds2ODjY27PAM8qq7WcOWC8dsWrdWsrZM8gZtv7Rfe9utCyr4aVut8vY+XLXLAls0/BKdYXsWSM7M+RsSf0LAQEBqampaWlpisu39eP7XLp0qbq6ukuXLt4eBMB1nD59OigoqG3btt4eBMC1amtrq6qqwsPDNc313xgD8FWEUbiMMArg+/1/9u48rso67//451oQBUEFJNGycEXFBQ0TNZfQ1NTKFOy+p7G6p8HSFse5J22ZsplstGmabLHgnn5ZNtMomWaWlnuamguGuaCiWG6ooB5AFM61/P6gOeOYyzlcBw/C6/nXl8P1vc7bx/wxV2+u7/dLMVpTnTgnb+00Z2y3Tpf7OHPNu/LBIyIierB0u0f6Pywtky5+pW3Jjq9kZbp8v1hsS0RWrFjRv39/Z8HxHyhGgeqMYhSotihGgRqJpfQAAMArjevKlK7aj/8V9FoPLSbEl5mr0kVEmneRl/fJQ+9fshUVEUWV+MHy2Hz5024Jv05EZs6c6Sw1AAAAAFwcxSgAAPBBWJA8Ea/uTQ16rYd2Q6gXi9z3rZcfvxMRSX5Mwrx+zT/yRrn1VyKyYMGCw4cPVzotAAAAAFwKxSgAAPBZqC5PxKu5o/X3+2ptG1y2Hl35johISCO5eaRv39HnIVF1wzD+9re/VT4oAAAAAFwCxSgAAKikOqqMaa3uGKX/vb/WMeJi9WhJgWTNFxG59X+kjk/L70UirpfOd4hIenq62+12nhYAAAAAzkcxCgAAHNEU+e+WavY9+sLbtR7R/1mPfv2uuM+JokifX1Xm1n3HisjRo0c//fRTfyQFAAAAgH+jGAUAAH6giAxvrq6/U18zTB/WXBERsS1Z866ISIdBEt2qMjdtP0Cuay0ib7/9th+jAgAAAIBQjAIAAP/q3UT57HY9a4Te69gSKTggItJvbCXvpSjS99cismLFih07dvgtIgAAAABQjAIAgKqQEKnclJMpIhJxvXQcXPkb9bpfguqKSGZmpp+iAQAAAIAIxSgAAKgiYWFhIiJni8V9rvJ3OXNajPJ/3w0AAAAA/IRiFAAAVIm0tDQRkbMu+fajyt9ldYbYlqrX6TrsF/4KBgAAAADisBg9d+7clvOcPn3aX7EAAMC1LiEhoXv37iIiq96p5C2MMln3gYhY3UYOWBuZutw8UGz7LyAAAACAWs1RMbp58+ab/6V79+7FxcX+igUAAGqAcePGiYgc3Cb71ldm/sa5UnxCRKT/w5YtmXlWh3nGM5tNV7k/QwIAAAConRwVo4cPH/aMe/bsecMNNzjOAwAAao577723cePGIiIrK/XSaMWrpjd0kpZJFR+UGvLSd1aLOe7p2dY5018xAQAAANRGjopRt9vtGbds2dJxGAAAUKMEBwc/8MADIiJb5knRMd8m//id5G0SEen38AW/OVkmkzeZbeYaGTmWydp6AAAAAJXiqBht2LDhRccAAAAVHn74YVVVxSiXtbN8m7lypohI3TDpPvqivz94xh671uz8iZGZZzlNCQAAAKD2cVSMtm7d2jMuLCx0HAYAANQ0LVq0GDRokIjIyrdl+xKxvSgxjXLZNFc2zhUR6TlG6oZd5todp+zU5ebAxUZWAe+OAgAAAPCB02I0Ojq6Yrxt2zZ/5AEAADXN+PHjRUROjiqSmgAAIABJREFUH5EZd8oz7eTLv0jJJf6eevKQLHheJrWUjPukvFRUTfqN9eYrlh22b15gpC439xVRjwIAAADwiqNiVFXVkSNHVoy3bduWm5vrj0gAAKBGGTp06MyZM386pPFEnnz8lDwZK+/9SvI2/nSFbcvOZTJzlDzVWj7/U8VupM1atYue8JHExHn5LbZIZp7V7mNj7Frz2Nkq+YcAAAAAqEkcFaMiMnHixODg4Irx008/7TgPAACogR555JG8vLz58+cPHDhQURRxn5N1s+Wl3vJiD5n/nPw+Xv56h2xdKJYZFBQ0atSoFStWHNyz4+CfU17roTUK9uGL3JZk5Fit5ronbzKL3Ve+HgAAAECt5bQYbdWq1QsvvFAxzszM/POf/+w4EgAAqIE0Tbv77ru/+uqrnJyc3/zmN40aNRIR+SFLvpgmx/aKSNOmTadMmXLgwIHMzMz+/fsrilJHlSfi1X2pQZM6q/V0H76rxC3Ts624TCMjxzI4mQkAAADAxTgtRkXkySef/GnvMJEnn3zywQcf5CAmAABwKW3atHn11VePHj06d+7cnj17iki3bt3ef//9AwcOPP/8802bNr3g+kbBMi1R25Oip8WpmuLDFx0ptceuNePnGZl5FjuPAgAAALiAYtv++S+Fd95558knnywuLhaRevXqjRw5cuDAgV26dLnhhhsaNGigqn5oYFFNREVFVXTfBQUFkZGRgYrhcrnKyso8x38BqD5s287Pzw8PDw8NDQ10FtQ0O0/bU7ZYmXk+vwV6S7TycnetTxNfitUaqri4uKSkJCYmJtBBAFxEfn5+SEhIeHh4oIMAuFBpaanL5YqOjtY0LdBZAPiN02J04MCBy5Yt81caEbEsS1H4j5ZqjWIUwOVRjKKqrTtmP7nR/OaYz88wA5opr96idYyo1U8aFKNAdUYxClRbFKNAjcSLnAAA4BrT8zplzXB9brLWKty3inPZYbvLfGPMKvNIKWvrAQAAgNqOYhQAAFx7FJGUWHXnKD29t9akng8TLVtm51qt5xqTN5mu8irLBwAAAKDaoxgFAADXqiBV0uLU3NFB0xK18CAfJpYaMj3bajnHPT3bOmdWWT4AAAAA1ZjucP5DDz00YMAAv0SpwAajAADAJ6G6TOqs/qqt+sr35l+/t8q9PpmpsEwmbzJn7rKe6aI+1FZVeQYBAAAAahOnxejo0aP9kgMAAMCJqLoyLVH7nzbqs5utj/Ms7/cQ/bHEHrvWfGOH9adEbVhzylEAAACgtmApPQAAqDnaNFDmJmsb7tL7xfhWcW4/ZQ//yhi42Mgq4FwmAAAAoFagGAUAADVN98bKyqH60iF65wifj62/eYGRutzcX0w9CgAAANRwFKMAAKBmGtBMyRqhz03WbgrzoR61RTLzrHaZxti15vGzVZcOAAAAQIBRjAIAgBpLVSQlVt2dor/WQ2tYx4eJ5ZZk5Fgt57qnZJlnjSrLBwAAACBwKEYBAEANV0eVJ+LVfaODJnVW62o+TCxxywtZVutMIyPHMrw+7B4AAADANcHpqfSXUVpa+t133x07duz06dMulyskJKRRo0aRkZEdOnS47rrrqu57AQAAfi4iWKYlauPbqy9utd7dbZlebyJ6+Iw9dq351+3WH7qpKbH8URkAAACoIfxfjB46dCg9PX3x4sXZ2dmGcfG1Zy1atOjTp09aWlpSUpLfAwAAAFzKDaFKem/t8Q7qC1lWZp4Pb4HmnLZTl5s9oq2Xu2u3NvHtTCcAAAAA1ZA/33o4fvz4L37xi9jY2BdffHHLli2XakVFZP/+/bNmzerZs2diYuK6dev8mAEAAOCKOjRS5iZry+7Qu0X5VnFuOG73WWQMXGxsP8Wx9QAAAMC1zW/F6OLFizt16vSPf/zjMn3oz23evLlPnz6///3vTdP0VxIAAABvJDdVNt2tz03WWoX7Vo8uO2wnzDfGrjWPllZRNAAAAABVzj/F6KJFi+68885jx45VYq5pmi+++OK4ceP8kgQAAMB7ikhKrLpzlJ7eW7uung8TDUsycqxWc92TN5mu8irLBwAAAKDK+GGP0c2bN6empl7womhwcPCAAQMSExPbtWsXERHRoEGDM2fOFBcX79+/f+vWrV9++WV+fv7512dkZNx4441PP/208zwAAAA+CVIlLU7975bqWzutqd+ZxW5vJ5YaMj3b+luO9btO2oR4NdiXI+8BAAAABJZi2452yLJtOykp6dtvv/V80qBBg2efffZXv/pVo0aNLjXLNM0lS5Y8/fTT27Zt83xYt27dXbt23XTTTU7y4CqIiooqLCwUkYKCgsjIyEDFcLlcZWVl0dHRgQoA4FJs287Pzw8PDw8NDQ10FsBnJ87Ji1vNmbssw4eTmUREbqyvPN1Ffaitqlbvk5mKi4tLSkpiYmICHQTAReTn54eEhISHhwc6CIALlZaWulyu6OhoTeMPoUDN4XQp/SeffHJ+K9q9e/ddu3b97//+72VaURHRNG3o0KFbtmyZNGmS58Nz5879/ve/d5gHAADAicZ1ZUaStn2knhLrW8P5Q4k9dq15y6fGiiOcywQAAABcA5wWo3//+98944SEhBUrVnj/AoKu69OmTZs8ebLnk08++eTs2bMOIwEAADjUtoEyN1lbf6feN8a39z83F9jJXxgDFxtbC6lHAQAAgGrNUTFaVla2bNmyn26kqrNmzarEqsk//OEPHTp0qBiXlpauWrXKSSQAAAB/uSVaWTVUXzpE7xTh87H1Ny8wUpeb+4upRwEAAIBqylExmpOTU1xcXDHu27dvp06dKnGToKCgtLQ0z4+bNm1yEgkAAMC/BjRTto7Q5yZrN9b3oR61bMnMs9plGmPXmsdZDwMAAABUP46K0ePHj3vGycnJlb7P+XPPvycAAEB1oCqSEqvuHKVPS9Qa1vFhYrklGTlWq7nuKVnmWaPK8gEAAADwnaNitKCgwDN2crZps2bNPGOKUQAAUD2F6DKps7pvdNCkzmpdXw6kLXbLC1lWm0wjI8cyWVsPAAAAVA+OitHg4GDP+Ny5c5W+T2lpqWdcr149J5EAAACqVESwTEvU9qTqaXGq5svWo4fO2GPXmh3nGZl5VpWlAwAAAOAtR8Vo48aNPeP9+/dX+j7nzz3/ngAAANXTDaFKem8t+x59WHPfzmXaddpOXW72XGiszefdUQAAACCQHBWj5y+Bnz9/vm1X8vl+wYIFF70nAABAddahkfLZ7frSIXrXKN/q0fXH7VsXGcO/Mva6qEcBAACAwHBUjLZo0aJly5YV4/3797/33nuVuMmRI0feffddz49ODnECAAC4+gY0Uzbfrc9N1lqG+1aPLvrR7jDPGLvWPFp65YsBAAAA+JejYlREBg8e7BlPnDjx22+/9Wl6SUnJvffee/r06Yofr7/++o4dOzqMBAAAcJUpIimx6q5Renpv7Tpf9kt3W5KRY7We6568ySxyV1k+AAAAAD/jtBgdP368rusVY5fLNWDAgA8++MDLNfU7d+687bbb1qxZ4/nkiSeeUBTfXrUAAACoJoJUSYtTc1ODpiVqYUE+TDxjyPRsq+Uc9/Rsq8yssnwAAAAAzuO0GG3Xrt1DDz3k+bGkpOT+++9PSkqaNWtWUVHRRaeYprlq1aoHH3ywc+fOmzZt8nweGxv72GOPOcwDAAAQWPWDZFJnNSdFT4tTdV8etQrOyeRNZttM44O9FjuPAgAAAFVNqfSJSR4ul6tv377Z2dkXfK5pWuvWrdu1axcVFRUeHl5SUlJUVJSXl7dt27bS0gt30goJCVm2bFlSUpLDMLgKoqKiCgsLRaSgoCAyMjJQMVwuV1lZWXR0dKACALgU27bz8/PDw8NDQ0MDnQUIsJzT9nNbrI/zfC46Exsr07tr/WP8v5KmuLi4pKQkJibG73cG4Fx+fn5ISEh4eHiggwC4UGlpqcvlio6O1jQt0FkA+I3u/BYNGjRYvHhxnz59cnNzz//cNM2cnJycnJwr3qFOnTpz5syhFQUAADVMXENlbrK24bg6aaP5db4P7eimE/ZtnxsDmil/7q51iWSjIQAAAMD/nC6lrxATE7Nly5a0tLRKzG3fvv369euHDRvmlyQAAADVTY9oZfUwfekQvWOEbxXnssN2twVG6nIzr5i19QAAAICf+acYFZHw8PD09PTFixfffvvtXh6g1KZNmxkzZmRlZXXt2tVfMQAAAKqnAc2U70bo7/fVmob4UI9atmTmWXGZxti15olzVZcOAAAAqHX8sJT+fIMHDx48ePCePXu+/PLLDRs2bN68+dixYy6Xq+K39erVi4iI6NSpU48ePfr06dO3b1/OoAcAALWHqsiY1uqoWPWNHdafsk1XubcTyy3JyLEy86xJnbTHO6j1/PwEBwAAANRGfjh86Yosy3K5XPXq1atbt25VfxeuAg5fAnB5HL4EeKOwTP68zXxtu1Vm+jbx+lDl9wnqr9qqWqX+vszhS0B1xuFLQLXF4UtAjeTofYMzZ86sX7/e82Pnzp0bN27888tUVW3UqJGTLwIAAKhhIoNlWqI2rp069Tvrb7st78+tP3TGHrvWnLHdmtJNTYn127ZIAAAAQG3jqBjdsmXLwIEDK8ZBQUEHDx70RyQAAIDaonl9Jb239lgHdfJG8/ODPqzj2XnaTl1u9rzOmp6o9W7C3kQAAACAzxy9ZXDkyBHPuFevXtddd53jPAAAALVOfCNl0SB96RA9IdK3inPdMbvPIiN1ubnXxbH1AAAAgG8cFaOm+e89sWJjYx2HAQAAqL0GNFO2jNDnJmstwnyoR22RzDyrwzxj7Foz/2zVpQMAAABqGkfF6Pk7h7JBOAAAgEOKSEqsuitFT++tRdfzYaLbkowcq9Uc9+RNZpG7yvIBAAAANYijYrR169ae8YkTJxyHAQAAgNRRJS1O3Zca9HxXtZ4vG8KfMWR6ttVyjnt6tlVuVVk+AAAAoEZwVIy2atWqadOmFeOtW7f6Iw8AAABEROoHyZSu2t4UPS1O1X15ZCs4J5M3mR3nGZl53p91DwAAANQ6jopRRVFSUlIqxrt27dq5c6c/IgEAAOAnzUKV9N7a9/foKbG+Pbbtcdmpy81bPjVWHaUdBQAAAC7CUTEqIhMnTgwJCakYT5o0yXEeAAAAXCiuoTI3WVt/p35rE9+Ord90wu7/uTFwsZF9knoUAAAA+A9Oi9HmzZu//PLLFeNFixY988wzjiMBAADgInpEK18P05cO0eMb+VaPLjtsd51vpC43DxRTjwIAAAA/cVqMisj48eM9fehLL700YsSIgwcPOr8tAAAAfm5AM2XrCD29txYT4sMsy5bMPKttpvFkll5k+OEJEAAAALjWKbbt6MWBkpISt9stIv/85z8nTZpUXFwsIpqmDRkyZODAgQkJCc2aNWvYsKGiePteQ6NGjZzkwVUQFRVVWFgoIgUFBZGRkYGK4XK5ysrKoqOjAxUAwKXYtp2fnx8eHh4aGhroLEBNVmrIGzusP2WbrnLfJjYMsiZ3CXoiXq2rVU0yAJWVn58fEhISHh4e6CAALlRaWupyuaKjozWN//sEag6nxejAgQOXLVvmrzQiYlmW9y0qAoJiFMDlUYwCV1Nhmfx5m/nadqvM9G3iDaHKswnqr9qqGk9eQLVBMQpUWxSjQI3EQioAAIBrWGSwTEvUdqfoaXGq6kvFefCMPXat2WmekZlnVVk6AAAAoPqiGAUAALjm3VhfSe+tfXuXfltT397/3HnaTl1u9v7M+OYY5zIBAACgdqEYBQAAqCFujlKW36EvHaInRPpWj35zzL71MyN1uZlbRD0KAACA2kJ3OH/ChAkpKSl+iVKBDUYBAACcGNBM2Xy3Pu+ANXmjtb/Y26LTFsnMsxb8YD3YRv1DN+26elWaEQAAAAg8p8Xo0KFD/ZIDAAAA/qIqkhKr3nWjOmuP9exm88Q5bye6LcnIsf6eaz3aQX26ixYeVJUpAQAAgIBiKT0AAEDNVEeVtDh1d0rQpM5qPV/+Gn7GkOnZVss57hnbLYOTmQAAAFBD+aEYPfUv5eXlzu8GAAAAP2oULNMStT0pelqcqvmyZVHBOZmwwYyfZ2TmWew8CgAAgJrHUTG6ceNGRVEi/iU3N9dfsQAAAOBH14cq6b2170fqI27w7RXQ3S47dbnZ41Nj9VHaUQAAANQojorRgwcPesYJCQnt27d3nAcAAABVpV1D5f2e5Z/1cvVu4ttxlxtP2P0+NwYuNradpB4FAABADeGoGD179qxnHBcX5zgMAAAAqly3hu41w/SFt2utG/hWjy47bCfMN1KXmwe8PuweAAAAqLYcFaP169f3jKOjox2HAQAAwFUyvLm6Y6Se3ltrUs+HWZYtmXlWh3nG5E3mabaXBwAAwLXMUTEaGxvrGbtcLsdhAAAAcPUEqZIWp+aODpqWqIUH+TCx9F/H1k/Pts6ZVZYPAAAAqEqOitF27dqFhYVVjPfs2eOPPAAAALiqQnWZ1FndNzpoUmc1WPNh4skymbzJbDPXyMixTNbWAwAA4FrjqBitU6fOHXfcUTH+9ttvT5w44Y9IAAAAuNqi6sq0RG13iv7LVqpPO48ePGOPXWt2/sTIzPPtvHsAAAAgsBwVoyIyceJERVFExDTNl156yR+RAAAAEBg31lc+6Kd9e5feP8a3c5l2nLJTl5sDFxtZBbw7CgAAgGuD02K0e/fuaWlpFeM333zz008/dRwJAAAAgZTYWFkxVF86RO8S6fOx9TcvMFKXm/uKqEcBAABQ3TktRkVkxowZAwYMEBHDMEaPHv3qq6+aJpvwAwAAXNsGNFO23K3PTdZiw3yoR22RzDyr3cfG2LXmsbNVlw4AAABwyg/FaHBw8Oeffz5u3DhFUcrKyn7729+2b9/+5Zdf/u6779xut/P7AwAAICBURVJi1ZwUPb231riuDxPdlmTkWK3muidvMot5HgQAAEC1pNi2o4VO48aN27hxY8V47969RUVF5/82ODi4cePGDRo0qFvX20fpTZs2VWxaimorKiqqsLBQRAoKCiIjIwMVw+VylZWVRUdHByoAgEuxbTs/Pz88PDw0NDTQWQBcqLi4uKSkJCYmxteJp8pk+jbz9R3WWcO3iY3ryjNdtPHtVd0Pf5EHarj8/PyQkJDw8PBABwFwodLSUpfLFR0drWlaoLMA8Bvd4fy9e/du2bLlUr8tKys7dOjQoUOHHH4LAAAAAqtRsExL1B5tr/5xq/Xubsv0+m/rJ87JhA3m27usP96sjor17ch7AAAAoOrwh3sAAAB46/pQJb23tm2knhLr22PkbpedutxMWmh8nc+5TAAAAKgWKEYBAADgm/YNlbnJ2jfD9V7X+fYC6LfH7b6LjIGLje9PUo8CAAAgwJwupR86dGiLFi38EgUAAADXkJ7XKWuG6x/nWc9stva6fCg6lx22u8w3ftFSndZdbRrC2noAAAAEhtNidMKECX7JAQAAgGuOIpISq959o/reHuv5LWb+WW8nWrbMzrXmHbAe66A+1VlrUKcqUwIAAAAXw1J6AAAAOBKkSlqcmjs6aFqiFh7kw8RSQ6ZnWy3nuKdnW+fMKssHAAAAXAzFKAAAAPwgVJdJndV9o4MmdVbr+PKMWVgmkzeZbTONjBzLYutRAAAAXC0UowAAAPCbqLoyLVH7fqSeEqv6tHvojyX22LVm50+MRT9SjgIAAOBqoBgFAACAn7VpoMxN1jbcpfeL8e1spe2n7OFfGQMXG1kF1KMAAACoWhSjAAAAqBLdGysrh+pLh+idI3yrR5cdtm9eYKQuN/cVUY8CAACgqjg9lf4yjh49evDgwVOnThUVFYlIs2bNevbsWXVfBwAAgGpoQDMla4Q+74D15EbrQLG3RactkplnLfjBerCN+sduWnS9Ks0IAACA2sj/xejKlStnzZq1Zs2avLy88z8fMWLEJ598csHFe/bsyc7Orhg3bdq0V69efs8DAACAwFIVSYlV77pRfXunNSXLPF3u7US3JRk51j/2WePbq8900cJ8OfIeAAAAuDx/FqNr1659/PHHt27d6v0URVH+67/+yzRNEYmKijp8+HCdOnX8GAkAAADVRB1VnohXf9lafXmbOWO7dc70dmKJW6ZnWx/m2s8lqP/TRtXZCwoAAAD+4J/nStu2p06d2r9/f59aURFp3br13XffXTEuKCj44osv/JIHAAAA1VNEsExL1Pak6mlxqubL1qOHz9hj15odPzEy86wqSwcAAIBaxD/F6LPPPvvss88ahlGJuWlpaZ7xvHnz/JIHAAAA1dkNoUp6b23bSD0l1rfH0ZzTdupyM2mh8XU+5zIBAADAET8Uo7NmzXrppZfO/yQhIeEvf/nLxo0bDx8+fMVtQ/v37x8REVExXrFihW3zjAsAAFArtG+ozE3Wlt2hd4vy7dj6DcftvouMgYuN70/y6AgAAIBKclqMFhcXT5o0yfNjw4YN58yZk5WVNXHixMTExKZNmwYFXWGT/KCgoCFDhlSMjxw5smfPHoeRAAAAcA1Jbqpsulufm6y1CvetHl122O66wBi71jxaWkXRAAAAUJM5LUbfeOON48ePV4wbNmz49ddfp6am+nqTm2++2TPesWOHw0gAAAC4tigiKbHqzlF6em/tuno+TDQsycixWs11T95kurw+7B4AAAAQ58XoJ5984hnPnDmzY8eOlbhJQkKCZ5yTk+MwEgAAAK5FQaqkxam5qUHTErWwKyw6+g+lhkzPtlrOcU/Ptsq8PuweAAAAtZyjYvT48eNZWVkV47Zt2957770/v0ZRrrwkqlmzZp7x4cOHnUQCAADANa1+kEzqrO4bHfR4B1X35Vm1sEwmbzLbZBoZOZbF1qMAAAC4EkfFaG5uruespGHDhnnTgV5Uw4YNPeOioiInkQAAAFADNK4rM5K07SP1lFjVp0fMH0vssWvNWz41VhyhHAUAAMDlOCpGT5w44Rm3bNnyotd405bWrVvXMy4tZfN8AAAAiIi0baDMTdY23KX3jfHtD/CbC+zkL4yBi42thdSjAAAAuDhHxWhJSYlnHBoaWun7nDx50jMODw93EgkAAAA1TPfGyqqh+tIheqcIn4+tv3mBkbrc3F9MPQoAAIALOSpGIyMjPePzy83zefPG6Pn7ikZFRTmJBAAAgBppQDNl6wh9brJ2U5gP9ahlS2ae1S7TGLvWPH626tIBAADg2uOoGI2OjvaMnZwm/80333jGTZo0cRIJAAAANZWqSEqsumOkPi1Ra1jHh4nllmTkWC3nuqdkmWeNKssHAACAa4qjYrRly5a6rleMly9f7jmI6XzevDE6f/58z7hnz55OIgEAAKBmC9F/OrZ+Ume1rubDxBK3vJBltc40MnIsk7X1AAAAtZ6jYrRBgwZJSUkV49zc3MWLF1fiJqtXr163bl3FOCwsLDEx0UkkAAAA1AYRwTItUduTqqfFqZovW48ePmOPXWt2nGdk5llVlg4AAADXAEfFqIgMHTrUM37iiSeKiop8mu5yuR566CHPj8OGDfO8ggoAAABc3g2hSnpvLfsePSXWt8faXaft1OVmz4XGmnzeHQUAAKilnBajY8eOjYiIqBjn5ubefffdp0+fPv+CyyylP3bs2NChQ3Nzc3+KoqpPP/20wzwAAACobTo0UuYma0uH6F2jfDu2fv1xu88iY+BiY/sp6lEAAIBax2kx2rBhw6eeesrz48qVK7t16/bxxx9b1uWWJrnd7v/7v//r2rXr+ccupaSkxMfHO8wDAACA2mlAM2Xz3frcZK1luG/16LLDdtf5xti15tHSKooGAACA6sgP69YnTJiwfPnyJUuWVPy4f//+lJSUmJiYYcOGdenS5fjx4xWfu1yuFStW7N+//+uvv16yZMmJEyfOv0nLli3ffvtt52EAAABQaykiKbHq3Teq7+2xnttiHjvr7US3JRk51t9zrUc7qE930cKDqjIlAAAAqgflokfJ+6q4uLhv375bt26t3PSGDRuuXr26U6dOzpPgKoiKiiosLBSRgoKCyMjIQMVwuVxlZWXR0dGBCgDgUmzbzs/PDw8PDw0NDXQWABcqLi4uKSmJiYkJdJAqV+KWt3ZaU78zi92+TYyqK//bUZsQrwb7cuQ94Bf5+fkhISHh4eGBDgLgQqWlpS6XKzo6WtP4vweg5nC6lL5CWFjY6tWr77vvvkrMbdOmzbp162hFAQAA4Ef1g2RSZzUnRU+LU3VfnnkLzsnkTWbbTOODvRY7jwIAANRg/ilGRSQsLGz27NkffvhhmzZtvJwSEhIyceLEzZs3t2vXzl8xAAAAAI+mIUp6b237SD0lVvVp59EfSuz7V5u3fGqsPEo7CgAAUDP5rRit8Itf/GLXrl0LFiwYPXr0pZZo6breo0eP559/Pi8v7y9/+UtYWJh/MwAAAADna9tAmZusrb9T79PEt3OZNp2wb/vcGLjY+K6QehQAAKCm8cPhSxdQVfWuu+666667RGT//v0//PBDYWHhyZMng4KCIiMjo6Ki4uPj2TQHAAAAV9kt0crqYfqyw/bEb83vT/pQdC47bHdbYIy8SZ3eXY0N861aBQAAQLXl/2L0fC1atGjRokWVfgUAAADgvQHNlO9G6B/mWk9tso6UeluPWrZk5lmf/mA90EZ98Watcd0qzQgAAICrwc9L6QEAAIBqTlVkTGt1b6o+LVFrUMeHieWWZORYbTPd07Ots0aV5QMAAMBVQTEKAACA2ihEl0md1X2jgyZ1VutqPkw8VSaTN5ltMo2MHMu87Cun+/btmzx5cuPGjevVq5eamrp+/XqHmQEAAOBHFKMAAACovSKDZVqitjtFT4tTfTq3/tAZe+xas+M8IzPPuuBXpmkuXLhw8ODBbdq0mT59ekFBwblz5zIzM3v27NmzZ8/Zs2eXlZX5898AAACASqEYBQAAQG3XvL6S3lvLvkcfeoNvZyvtOm2nLjcmt0LBAAAgAElEQVR7fWaszbdF5Pjx43/6059atmx51113ffnll5ZliR4sPf5b+j8i9cJFZP369WPGjLnhhhsmT56cl5dXJf8YAAAAeEexbR9O5AREJCoqqrCwUEQKCgoiIyMDFcPlcpWVlUVHRwcqAIBLsW07Pz8/PDw8NDQ00FkAXKi4uLikpCQmJibQQaqvZYftSZvMrAIfH5JLTzX79DfH137sLi//6ZOom6Tvr6XXAxLWWETkXLF8+5GsfEcOb6/4vaqqQ4YMeeONN2JjY/2YH9e0/Pz8kJCQ8PDwQAcBcKHS0lKXyxUdHa1pvmy/AqB6q9pT6QEAAIBry4BmyuZm+sd51uSN1v5ir+vRDx89vClTRERRJX6Q9BsrHQeLct7yrLph0jdN+qbJ3rWyKl2y5ltG+eeff56fn79582b//zMAAABwJSylBwAAAP6DIpISq+5K0dN7a9H1vJjgOipZC0REuo6Qqbvk8U+l0x3/0Yqer3Vv+fVsmb5PbhsnIlu2bNmwYYP/sgMAAMBbFKMAAADARdRRJS1O3Zca9HxXtd7l11mt/puYblE1Sf2zNPZuXXz4dTLqT1I/UkRmzpzph7gAAADwEcUoAAAAcEn1g2RKV21vip4Wp+oXfXa2DFnzrohI56ES2dyHWwfVk55jRGTu3LnHjx/3R1gAAAD4gGIUAAAAuIJmoUp6b+37e/SU2J89P29dKKePiIj0HevzffuNFUUtKyt77733/JASAAAAvqAYBQAAALwS11CZm6x9PUzvEa38+9NV6SIijVtI+2Sf79i4hbQfICJvv/22aZr+ygkAAABvUIwCAAAAPri1ibL+Tn3pED2+kSL5u2X3KhGR/g9f8rSly+s3VkR++OGHJUuW+DMlAAAAroRiFAAAAPDZgGbK1hH6bXsyxLY9u4VWRqc7JPJGEXn77bf9mQ8AAABXQjEKAAAAVIplZH02W0Ske6qERlTyJqomfX4lIosXLz5y5Ij/wgEAAOAKKEYBAACAyrAsq7S0VESkfpSjG9WP+o+7AQAA4KqgGAUAAAAqo06dOiNHjhQR+eZ9cZ+r/I1W/5+IdO/evVWrVn6KBgAAgCujGAUAAAAqady4cSIiJQWyeV4lb7Fvvfy4VUQa3P5wsdt/yQAAAHAlFKMAAABAJfXu3TshIUFEZHV6JW+xKl1EJKTR0ph72n9sfHLA8ls4AAAAXBbFKAAAAFB5aWlpIiL7NsgPWT5PLimQLZ+IiNz6P1In5NAZe+Qyc+iXxv5i288pAQAA8DN6Vdy0tLR048aN69atO3jw4KlTp06ePGnbdq9evaZMmVIVXwcAAAAEyn333Td58mSXyyWrM2TMO75N/vpdcZ8TRak4mL7CFwftlfOMJzupT3XWgjU/pwUAAICHn4vR77777tVXX50zZ055efkFvwoLC/v59cuXL582bVrFOD4+/q9//at/8wAAAABVqn79+r/85S/ffPNN2fCRjHxJQiO8nWlbsuZdEZEOgyT6P45dOmvIC1nWP/bZb/bUbm+m+DsyAAAARPy4lP7s2bNjx45NSEiYPXv2z1vRS0lKSsrOzl62bNmyZcveeOONo0eP+isPAAAAcHU88sgjIiLus/LVX8X07gQl25I1/08KDoiI9Eu76CV7Xfagxcbwr4xDZ1hZDwAA4H/+KUbz8/O7d++ekZHh68SQkJCfniNFTNP86KOP/JIHAAAAuGrat2/fr18/EZEvpsukVrLwD3L6yCWvPnNSvvqrPNtBZo8TEYlsLh2HXObmi360O84zZmy3TNpRAAAAv/JDMVpUVHTHHXds3779P+6rqu3btx80aFDjxo0vP/0Xv/iFZ/zFF184zwMAAABcZTNnzoyLixMRcR2Vz16USa3k7VTZtULs8+rMA1tk1q/ld7GSOUmO7xMRadhUHnxX1CvsJHq6XCZsMBMXGBtPUI4CAAD4jR+K0ccff3zr1q2eH6+//vrXX3/9+PHjO3bsWLJkSfv27S8/vU2bNp06daoYf/PNN2fPnnUeCQAAALia2rVrt3PnzqVLl95zzz26rotlSNYCeXWwPNdRlr8h6z6QqT1lapJ88764zyqKkpyc/Pc5H//+q/112vX18iu2FtpJC42xa02Xt9tWAQAA4HKcHr6UnZ09e/Zsz49Dhw6dPXt2o0aNPJ8oypV3i09OTt62bZuInDt3buvWrT179nSYCgAAALjKFEUZMGDAgAEDjh49+sEHH7z11lsHDx6U/D3yz996rgkPD7/33nsfe+yx+Pj4ik9GtbQf+cZcd8yrV0EtWzJyrIU/WNO7a2Na++20AAAAgNrJ6ePUjBkzLMuqGPfp02fevHnnt6JeSkhI8Ix3797tMBIAAAAQQDExMZMmTdq3b9+cOXN+2ntUJCEhISMj48iRI+np6Z5WVEQ6RShrh+vv99Wi6np7//yzcv9qs//nxq7TrKwHAACoPEdvjNq2vWTJkp9upOsZGRnBwcEXXOPNG6PnPxru2bPHSSQAAACgOggKCkpNTU1NTd2/f39ZWVm7du0udaUiMqa1Oqy5+kKW+eZOy/Ku7Vx11O78iTGxozqlq1b3CpuUAgAA4CIcvTG6e/fuo0ePVoyTk5Pbtm1buftERkZ6xoWFhU4iAQAAANVKixYtLtOKekQEy4wkbdVQPb7RlV8sqOC2ZHq2FT/PWHKIV0cBAAB85qgYPXLkiGfcp0+fSt+nYcOGnnFRUZGTSAAAAMC169YmStYI/bUeWv0gb6fsK7KHLDGGf2UcPEM9CgAA4ANHxeiJEyc845iYmIte481SesMwPGPPjqUAAABALRSkyhPxas4ofVSsD8/qi36022Ua07Mtk3YUAADAO46KUVX993TTNCt9n/OXz0dFRTmJBAAAANQAzUKVzGRt4e3aTWHerqw/Y8jkTWa3+cb645SjAAAAV+aoGI2OjvaMjx8/ftFrvHljdNeuXZ7x+fuNAgAAALXZ8ObqjpH6813VOl4/tmeftHstNMasMgvOVWUyAACAa5/fitGNGzdW+j6rV6/2jFu0aOEkEgAAAFCThOgypav2/Ug9uam3r47aIrNzrbaZ7owcL4+4BwAAqI0cFaNt2rTxvOC5YsUKl8v182uu+Mbo2bNn//73v3t+7N+/v5NIAAAAQM3TpoGy9A79/b5adD1vp5wsk7FrzX6LjB2naEcBAAAuwlExqmnawIEDK8bFxcUzZsyoxE1mzJhx7NixinGLFi1uuukmJ5EAAACAGkkRGdNazRkV9HgHVfX25VH5Ot9OmG88sd4scVdlOAAAgGuQo2JUREaPHu0Zv/jii+vWrbvggsu/Mfr1118/99xznh9//etfO8wDAAAA1GCNgmVGkrbxLv3mKG/LUbclr++w2n1szMuzqjQbAADAtcVpMXrXXXfdcsstFWO32z1o0KAFCxZ4OfeDDz4YPHiw2/3TH68jIiLGjx/vMA8AAABQ43WLUtbfqb/WQwsP8nbKoTP2qOXm8K+MH0pYWQ8AACDivBhVFOWVV17Rdb3ix5KSkhEjRtxxxx1ffPFFeXm5XOyN0TNnzsyfP79nz57333//2bNnPZ9PnTo1LCzMYR4AAACgNtBVeSJe3ZWi/7KVD4/0i360239sTMkyy3l5FAAA1HqKbfvhL8YZGRljx4694MOQkJC4uLiDBw+eOHFCRFq1anXLLbfs27dv69atZWVlF1x8//33z5o1y3kSXAVRUVGFhYUiUlBQ4Dl96+pzuVxlZWXR0dGBCgDgUmzbzs/PDw8PDw0NDXQWABcqLi4uKSmJiYkJdBD404oj9rhvzN0uHx7sO0UoM3tpva7zerNSXBX5+fkhISHh4eGBDgLgQqWlpS6XKzo6WtO0QGcB4De6X+6SlpZWWFj47LPPWta///RcWlqalZXl+TE3Nzc3N/ei04cPH/7OO+/4JQkAAABQ29zWVNk6Qp++zZyWbZWZXk3ZdtK+9TPjvlbqX3pojetWcT4AAIBqyelSeo+nnnpqyZIl1113nU+zFEV57rnnFixYULcuj2MAAABAJdXTZUpXbftI/fZm3r4EaovMzrXaZrpnbLcs9h0FAAC1j9+KUREZOHDgrl27XnrpJW8WZ6mqmpKSkp2d/cILL6iqP2MAAAAAtVOrcOXLIfrC27XrQ72tR0+VyYQNZt/Pje9PUo4CAIDaxT97jF6grKxs1apVa9euXbNmzYEDB06ePFlcXKwoSlRUVGRkZOfOnZOTkwcOHHjTTTf5/atxFbDHKIDLY49RoDpjj9Fa4nS5PL/FfGunZXr9sK+rMq6d+uLNWpjXJ93D79hjFKi22GMUqJH8s8foBYKDgwcNGjRo0CDPJ263W9f1n59QDwAAAMDvGtaRGUnaA23Uh9eaG094VY4alry+w/o4z/5TojqmNSu6AABAzXeVnniCgoJoRQEAAICrKSFSWX+nnt5ba1DH2ylHSu37V5vDvzIOFLOyHgAA1HD8KRgAAACosVRF0uLUnJSgX7by4cl/0Y92+3nGlCzTyzPuAQAArkVOi9GSkpJTp06dOnWqpKSk0jc5c+bMqX9xmAcAAADABZrUkw/6aSuH6u0aeruK66whL2RZHT8xlh3m1VEAAFAzOS1GR4wYERERERERcf/991f6Jg888EDEv1TFYVAAAAAA+sUo2ffo0xK1ul4fHLLXZQ9cbKQuN4+frcpkAAAAgcBSegAAAKC2CFJlUmd1+0h98PU+HACQmWe1zXTP2O7DGfcAAADVH8UoAAAAULu0DFcWD9YX3q7dEOptPXq6XCZsMLt/amzy7ox7AACA6o9iFAAAAKiNhjdXd6Xokzqrmtcvj2YV2D0WGmPXmkXuqkwGAABwVVSLYtTt/unBSlVVRfFhUQ8AAACASgvVZVqitmWEnhTt7UO4ZUtGjhWX6f5gr1Wl2QAAAKpatShG8/PzKwb169cPbBIAAACgtukcoXxzp/5+Xy2qrrdTjpbK/avN2z43ck6zsh4AAFyrqkUxeujQoYpBeHh4YJMAAAAAtZAiMqa1ujslKC1O9X4B18qjdsJ8Y0qWec6swmwAAABVJPDF6Jo1aw4fPlwxbtWqVWDDAAAAALVWRLCk99ZWDdM7NPK2HT1nygtZVsd5xpeHeHUUAABcY3QvrysvLz9z5szPP/dsD1peXn7q1Ckv72bb9okTJwoKCr755ptXXnnF83lCQoKXdwAAAABQFfo0UbaO0GfutJ7dYpZ4d8hSbpE9eIkxrLnydi/teq9PugcAAAgsb4vRzz77bNSoUZe5YNGiRREREQ7TXP4rAAAAAFwFQao8Ea+OjFUmbLDm5Xl7yNKiH+01+cYLXbVHO/hw0j0AAECgBH4pvUfv3r2TkpICnQIAAACAiMj1ocrHydrC27Ub63tbc7rKZcIGM3GB8e1xVtYDAIDqrroUo23btp09e7ai8JdlAAAAoBoZ3lzdOUp/vqtax+v/dNhaaPf8zBizyiwsq8pkAAAAzgS+GI2Li5s2bdrmzZtvuummQGcBAAAAcKEQXaZ01Tbdrfe6ztv3GCxbZuda8R+7P9hr8e4oAAConrzdY7Rr167p6ek///y1117btWuXiCQkJDz88MNe3i0kJCQsLCwiIiI+Pr5Ro0ZezgIAAAAQKJ0ilDXD9dl7rf/91jxxzqsp+Wfl/tXm/9tjzeyltW/I4jAAAFC9eFuMxsbGpqWl/fzzzMzMimL0UhcAAAAAqBkUkTGt1eHN1SlZ5ps7LS/fBV191O7yifFIO/WlRC3U2//+AAAAqHKBX0oPAAAA4BrSKFhmJGmrh+odI7x9CdRtyes7rE7zjC8OsrAeAABUF07/Yjt06NAWLVqISEJCgj/yAAAAALgG9G6iZN2tv7XT+v0Ws9jt1ZT9xfbQL41hzZW3emrNvT7pHgAAoIo4LUYnTJjglxwAAAAAri26Kk/EqyktlMkbrdm5lpezFv1orzhi/K6T+nQXzfuT7gEAAPyOJxEAAAAAldc0RPmgn/bZ7fpNYd6+BFpqyAtZVuICY90xVtYDAICAoRgFAAAA4NSw5srOkfrzXdVgzdsp207avT8zxqwyC7w74x4AAMC/KEYBAAAA+EE9XaZ01b6/Rx/QzNtXR22R2blW20x3Ro6XR9wDAAD4DcVozWEYxsGDB/fv33/8+PFAZwEAAEAt1bqBsnSIPjdZi67n7ZSTZTJ2rdl3kbH9FO0oAAC4epwevvTHP/7x+++/90uUCnPmzFEUTqj0wd69e+fNm/fpp59u3bq1rKys4sPGjRvffvvtv/nNb7p16xbYeAAAAKiFUmLVgc3U57eYb+20TO/azjX5dtf5xiPt1Kk3a/WDqjgfAACAiGLbjv4qO3DgwGXLlvkrjYhYlkUx6r1HH330rbfeutRvNU177rnnnnvuOf9+aVRUVGFhoYgUFBRERkb69+bec7lcZWVl0dHRgQoA4FJs287Pzw8PDw8NDQ10FgAXKi4uLikpiYmJCXQQ1BZZBfbD35ibTvjwHx3NQpXXeqijYmvj4rb8/PyQkJDw8PBABwFwodLSUpfLFR0drWleb6UMoNpz+sYoAqugoEBEdF1PTk5OTk6Oi4sLCgo6cODAokWLPv/8c9M0n3/++YiIiEcffTTQSQEAAFAbdY1SNtyp/2239btvzSK3V1MOn7FTlpvDmltvJGnen3QPAADgK4rRa1v9+vWffvrpRx999IL3Ph5++OE333zzscceE5FnnnnmwQcf5L0tAAAABISqSFqcOry5OmmjOTvX8nLWoh/tFUeM33VSn+6i1amNL48CAIAq57QY7dq1q/cXu93uU6dOHTp06OTJk54PFUXp27evrlPRVkZ6evqlXuN/9NFHFyxYsHz58qKiohUrVgwfPvwqZwMAAAA8YkLkg37ag23Vcd+YOae9WllfasgLWdZH++yZvbTkprw6CgAA/MxpHTl9+nRfp9i2nZOT8+GHH77zzjsnT560bVtRlI8++igqKsphmFro8pubDBo0aPny5SJy4MCBqxQIAAAAuLT+McrWEfq0bHN6tnXO9GrKHpc98AvjvlbqK7f4cNI9AADAFQVgUYqiKO3atZs6deqOHTtuu+02EVm5cmX37t3z8vKufpiazTR/etisV49HSAAAAFQLdTWZ0lX7fqQ+6HpvXwK1RWbnWnEfu2dstyxHZ8cCAAD8WyB362nSpMnnn39+6623ikheXt6wYcPOnj0bwDw1z5o1ayoGHTt2DGwSAAAA4HytwpUlg/WFt2vXh3pbj54qkwkbzO6fGpsLKEcBAIAfBHgb87p1677//vvBwcEisnPnzqlTpwY2T02yZcuWL7/8UkTatm2bmJgY6DgAAADAhYY3V7eP1B/voGpe7yC6pcBOWmg8sd4s9u6MewAAgEsJ/PmOsbGxo0ePrhi/8cYbZ86cCWyemuHMmTMPPvhgxVL6l19+WVUD/z80AAAA8HMN6siMJG3z3XqPaG/LUcOS13dYcZnGB3u9PeMeAADg56pFXzZ48OCKQVFRUcVLjnDCsqwHHnjg+++/F5Ff//rXd955Z6ATAQAAAJfTJVL5Zrj+fl8tMtjbKUdK7ftXm8lfGLtdrKwHAACVUS2K0VatWnnGmzZtCmCSq6aoqKhOpbjdV1gyZNv2I4888vHHH4tI//79X3/99avyDwIAAAAcURUZ01rdPirol61UrxfWy4ojdsJ8Y0qWWebdGfcAAAAe1aIYbdCggWd88ODBACa5amzbdleKbV/h7+FPPvlkRkaGiNxyyy2ffvpp3bp1r8o/CAAAAPCDJvXkg37ayqF6+4betqNnDXkhy+r4ifHVYV4dBQAAPtADHUBEpLCw0DM+d+5cAJNcNfXq1XvzzTcrMVHXL/c/2eTJk1955RUR6dKly+LFi8PCwiqZDwAAAAicvjHKd/foM3daz2w2zxheTdnrsgctNlJi1Td6atfVq+J8AACgRqgWxei6des848aNGwcwyVVTp06d8ePH+/eeU6ZMmT59uojEx8cvXbq0UaNG/r0/AAAAcNUEqfJEvDr8RuWxdeYXB719FTQzz1p62JrSVXvUl5PuAQBA7RT4YrS8vDw9Pd3zY9OmTQMYpoJlWS6Xq2Jcp06d0NBQX+/w3Xffffvtt0ePHhWRZs2aJSUlxcfH+znlf3rllVdeeOEFEWnTps1XX30VFRVVpV8HAAAAXAUtwpTPB+mf/Wg9us76scSrevR0uUzYYH6Qa73dS+vemHIUAABcUoCLUcMwHnroob1793o+6d+/f0CSHDlyZMu/rF+/3rO6PyUlZe7cud7fZ8WKFU888cT27dsv+DwhIeHNN9/s2bOn3xKf59VXX/3d734nIq1bt165cmVMTExVfAsAAAAQEMObq8lN1Ze3mX/6ziq3vJqSVWAnLTQeaqv++RYtPKiK8wEAgGtTwIrRs2fPfvbZZ1OnTt22bZvnw+uvv75Hjx5XOcm5c+eaNGnieUXUienTpz/99NOWdZGHta1bt/bp02fGjBl+X0H/2muv/fa3vxWRG2+8cenSpdXhlVsAAADAv0J0mdJVu+cm9ZFvzHXHvHp11LIlI8da+IM1vbs2pnW1OHUWAABUK06L0T/+8Y/ff/+9T1POnDlz+PDhnTt3ut3uC341derUyx8uVBVs2/ZLK/rPf/7zqaeeqjg1Pjo6evz48YmJibZtb9iw4e233y4oKDBN8/HHH2/evPnw4cOdf12FN998c+LEiSLSqFGj9957zzTN/fv3//yy8PBwFtcDAADgWtcpQlk7XJ+91/rtt2aBd4e25p+V+1eb7+2xZvbS2nl90j0AAKgNnLaQX3/99bJly/wS5b777rvvvvv8cqtKUBSldevW3bp169at28033zx+/PgdO3Z4P/3UqVPjxo2raEXbt29//pubd9xxx0MPPTRgwIC9e/dalpWWlpabm1uJfUsvatasWRVfeurUqdtuu+1Slz322GOvv/66X74RAAAACCBFZExrdVhz9alN5v/lWF6eyrTqqN35E2NiR3VKV62uVrUJAQDAtaJarChRVfXxxx9/7733VDUAeerUqbNy5crTp0/v3r37H//4x29/+9u+ffsGBwf7dJNXXnnl1KlTIhIUFPTRRx9dsJ69efPmH374oaZpIpKfn//GG2/4MT8AAABQ20QES3pvbfUwPb6Rty+Bui2Znm3FzzOWHPL2jHsAAFCzBfjwpaCgoGHDhv3ud79LSkoKVAZN0/r16+fkDrZtv//++xXje+65p1OnTj+/pnv37nfcccdnn30mIu++++7kyZOdfKPHzJkzi4qKrnjZDTfc4JevAwAAAKqPW5soWSP0mTutZ7eYJRdu03Vx+4rsIUuMYc2Vmb20G0JZWQ8AQK3mtBjt2rWrr1PCwsIaNGhw4403du3aNSkpqXHjxg4zBNzGjRsPHz5cMf7lL395qcvGjBlTUYzm5ubu3Lmzffv2zr+6e/fuzm/iK8/pUq+//npISMgVr+/Xr98tt9xSxaEAAABQGwWp8kS8OipWmbDB+jjPuxPrRRb9aK88Yvw+QfvfTqpGOwoAQG3ltBidPn26X3Jc01atWlUxUFW1d+/el7qsT58+iqJUbAm6cuVKvxSjAVFcXFwx+MMf/uDN9UFBQVu2bGnWrJl/YxQVFZWXl/9/9u47Pqoq///4mbk3pAdCwhBCl07oJNTQCR3pERXRtcBXxfp9rGR1l2L5SWwr6roLWBZQV3ovEiIBCZ1AkCqhtxDSJj3k3rm/P8bvmIWEmeRO+uv515mZc28+7Pdr8rjv+Zxzyv+0LgB2aZqWnp6uqmp+fn5F1wLgXllZWdnZ2SXdNQio5NyFWNRVTAiQ/nLC/Wq2Q0lntiIiDqvfny/4qEtecF21rCt0UHp6en5+vqIoFV0IgHvl5uZmZGTIsmzdJQ9A2XFzc3OkD88pCJWc4MyZM9ZBixYtateuXdw0k8nUuHHjq1evFr6kJlBV9e7du7Y+U2ex/B/n3haAfpqm8V8oUGnxnyeqsWH1Lf0GK5+fr7XwN7e7jv3/+K/pxhExHlMaF7zTMbdurYrfe5T/QoFKy/afp8FAnzlQtqw9heWDYNQJzp49ax00bdr0wTObNm1aDYJRLy+v9PR0IcTLL7/s7u5ud/7AgQO7d+/u9DJcXFzy8/P9/f2dfmcAOmmapiiKj4+Pp6dnRdcC4F6urq6urq78AUU19kF98WxH7YVYNfqmQ49VmhArr7nsTHJ5P0R6rq2xYgMPRVE8PDx8fHwqtAoARcjJyZFl2d/fn45RoDohGHWCO3fuWAf3HEZ/P9uEpKSksq2pLNn+DMyZM8fPz69iiwEAAADu0bq2IWqUvPy85c+H1KRchy5JzRcz96rfJ1i+7CsFOXzSPQAAqNKMFV1AdZCVlWUd2O2Nsm2RkJ2dXbY1AQAAADWYQYjprYxnJ7u8HGR0vAt0T6LWdZ3yyn5Hz7gHAABVGsGoE9hSTrvnGNiCUdv5RQAAAADKiK+rWNhbOjRODvZ3NBwtsIjPTlk6rVW2Xqv4LUcBAECZIhh1AtvWy3Z3h7Vto86mJAAAAED56O5v2P+w/GkvydvF0UsuZWqjf1LG7lCuZBGPAgBQbRGMOoGXl5d1kJeX9+CZOTk591wCAAAAoKzJRvFKB+PZKfITLUvwBLT5qtZ+tTIvTnXwjHsAAFC12Dl8KTU19ZNPPimfUqzefffd8vxxTmFLOe0ukLftRkowCgAAAJSzQA/DsoHSU62NL8Sq58wOtYLmKGJ+nGXdZe3LvlLf+hzKBABAtWI/GH3vvffKpxSrd955x7YyvaoIDAxMSEgQQly/fv3BM69du2YdNGrUqMzLAgAAAHCfwYGGYxPkyBPqgnhLvurQJSdStX6blGktjR/3kuq5lXF9AACgvLCU3gnat29vHVy6dOnBM20T2rZtW7Y1AQAAACiGuyzmdZN+nSgPa+hoT4YmxPIES5tVBQtPWizsO8lI32sAACAASURBVAoAQLVAMOoEtmD02rVrt27dKm7axYsX79y5Yx0HBQWVR2UAAAAAitGqtuGnkfLKIVJ9d0cvScsXrx5QB2xRfk0lHAUAoMqzs5TexcWladOm5VOKVZVbRy+EGD58uG0cHR09bdq0IqdFR0dbBwaDYdiwYeVRGQAAAIAHmtLcGNbQOPeo+o/TFtWxtHNvotZtvfJCO+O7wSU46R4AAFQ2doLRpk2bXr58uVwqqcJat27drl27M2fOCCG++eab4oLRb775xjro0aNHw4YNy68+AAAAAMWrU0ss7C092cr4fKx66I5D4ahiEZ+dsqy+pL0fYpzeinV4AABUSfwJd44XX3zROti1a9f69evvn7By5coDBw5Yx7NmzSq/ygAAAAA4oJu/Yf/D8qJQycfhJtCbOdqTu9WxO5TLmaysBwCg6rHTMVpDpKampqenF34nPz/fOsjKyrp48WLhj/z9/X18fO65w3PPPffxxx9bz1Z65pln/Pz8+vXrZ/v0559/njFjhnUcFBT06KOPOv2fAAAAAEAno0HMaGt8uKnxjYPq8gSLg1dtvqpF31Te6GT8S2fJVSrTAgEAgDMZNI3vNsVf/vKXBQsWODh50aJFtpSzsEOHDg0cODA3N1f83y6iPXv21DRt//790dHR1v+dfXx89u7d27FjRycWX/78/f1TUlKEEMnJyX5+fhVVhtlszs/PN5lMFVUAgOJompaYmOjj4+Pp6VnRtQC4V2ZmZlZWVoMGDSq6EKCyi7mlvRCrnkkvweNSq9qGL/tIQx0+6f5+iYmJHh4e9/dhAKhwOTk5ZrPZZDJJEl+AANUHHaNO06NHj9WrVz/xxBOpqamapv30008//fRT4Qkmk+nHH3+s6qkoAAAAUBMMbGCInyh/8qtlXpyapzp0yXmzFrZNmdLc+EUfyeTwSfcAAKCiEIwKIUTdunUfeughByc/4PvbUaNGnThxYv78+atWrSq8Nr9u3bpTp06dO3cu7Y0AAABAVeFiFLM7Gyc3N8zap26/7mjr6KpLlqgblnndpFlBRqn0zaMAAKDMsZS+TOTl5Z0/f/7q1asGg6FJkyatW7euVatWRRflNCylB/BgLKUHKjOW0gOls+mq5cVYy7XsEjw9dfM3/KuvFFKvBOEoS+mBSoul9EC1VCYdo4qinDx5ct++fYcPH75z5056enpGRoabm5uvr2/dunU7dOjQp0+fkJAQLy+vsvjplYGbm1vHjh1ZNQ8AAABUD2ObGAcHGt85pn50wqI6lo7GJWt9NikvtDO+E1yCk+4BAEC5cXIwmpSU9O2333755ZdXr1598ExXV9eHH3749ddf79Wrl3NrAAAAAACn85TFghBp6kPGF2LV/UkOhaOKRXx2yrLqkmVBiDS9lbGsKwQAACXizL/Ny5Yta9myZUREhN1UVAiRn5+/atWq3r17T58+PSsry4llAAAAAEAZ6eJniH1YXjpA8ndz9JJbOeLJ3ergLcrZkpxxDwAAyppzglFFUaZOnfrkk09mZmaW9Nrly5d37dr14sWLTqkEAAAAAMqUQYjprYznprjMaGt0fAPRXbe0rusUx8+4BwAAZc0Jwaimac8888yKFSuK/NTb2/uhhx7q1KlTixYtTCaT0VjET0xISBg+fPjt27f1FwMAAAAA5aCuq1gUKsWMkYN8HU1H81QxP87ScY3yk8Nn3AMAgLLjhGB04cKFy5YtK/yOu7v7Y489tm7dumvXrmVkZFy4cCE+Pj4hIeH27dvp6el79uyJiIho3Lhx4UsSEhKmTp2qvxgAAAAAKDf9AwzHJsif9pK8HD5eKSFDG7FdGbtDuV6SM+4BAIDT6Q1GU1NT33777cLvPProowkJCd9///348eMbNWp0z3xvb+9+/fq9//77Fy5c+OSTT7y9vW0fxcTErF+/Xmc9AAAAAFCeXIzilQ7GExPl0Y0dX1gvNl/VOqxRFp509Ix7AADgdHqD0X/84x9paWnWscFg+OSTT3744YfAwEC7F7q4uLz22mu7d+82mUy2N9955x2d9QAAAABA+Wvubdg8XN44TGrq5Wg8ar4rXj2ghqxXDjp2xj0AAHAuvcHohg0bbONXX331tddeK9HlXbt2Xbt2rW3j0bi4OEdOtAcAAACASmhsE+PpyfLcbsZaDj9pHUvR+mxSpseoKfllWRkAALiPrmA0KSkpLi7OOq5Tp867775bipv07ds3PDzc9nLHjh16SgIAAACACuQhi3ndpMPj5b71HW0dtWhieYKlw+qCVddd6R0FAKDc6ApGL168qGm//+GeOHGih4dH6e7z2GOP2cYXLlzQUxIAAAAAVLhOdQ2/jJWXDpDquTl6SWKuePm415gY19PppKMAAJQHvR2jtnHHjh1LfZ9OnToVeU8AAAAAqKIMQkxvZTw3xeXlIKPR4WOZ9iYZu6xVXtmvZitlWRwAANAZjGZmZtrGvr6+pb5P4WvNZrOekgAAAACg8vB1FQt7S7tHyx3rOhqOFljEZ6csndYo267ROgoAQBnSFYwWDjTv3LlT6vsU7hL19/fXUxIAAAAAVDahAYa48fKnvSRvF0cvuZipjfpJGbtDuZpFPAoAQJnQFYzWq1fPNj5y5Eip73P06FHbmGAUAAAAQPUjG8UrHYxnp8hPtCzBU9jmq1r71cq8OLXAUnalAQBQQ+kKRlu1aiXLsnW8adOmlJSU0t1n2bJltnG7du30lAQAAAAAlVagh2HZQGnTMLmZt6Mr67MVMT/OErJe2Z9E6ygAAM6kKxitU6dOnz59rOOcnJyXX365FDfZsGHD1q1brWNJkoYPH66nJAAAAACo5MY0MZyeJM/tZnSVHL0kPlXru1GZHqMm55VlZQAA1CS6glEhxIQJE2zjH3744bXXXtO0EnyNuWvXrieeeML2MjQ0lKX0AAAAAKo9d1nM6yb9OlEe2tDR1lFNiOUJljarChaftdA7CgCAfnqD0RkzZjRq1Mj28tNPPx04cOCJEyfsXpiRkfHGG2+MGDGi8NH277zzjs56AAAAAKCqaFXbEDVSXjlEMrk7eklqvpi5Vx2wWTmVRjoKAIAueoNRDw+PyMjIwu/s2bOnS5cuoaGhCxcujI2NLbzxaE5OzsmTJ7/77rtp06YFBgZ++OGHd+/etX0aHh7er18/nfUAAAAAQNUypbnx3BSXl4OMkqPNo+KXRK3rOuWV/WpWQVlWBgBAtWYo0cr34vz1r3997733HjChTp06WVlZiqIUN6FHjx7R0dFeXl76i0FZ8/f3t+bdycnJfn5+FVWG2WzOz883mUwVVQCA4mialpiY6OPj4+npWdG1ALhXZmZmVlZWgwYNKroQAEWIOpcccco7LrUE/SsNPQ2f9jJObq635QXAg+Xk5JjNZpPJJEkO7w0MoNJzzp/Pd955JyIiwmgs9m7p6ekPSEVDQ0O3bNlCKgoAAACgJutYW4kekr8oVPJxcfSSG9nalGh17A7lShYr6wEAKBnnBKMGg+H999/fuXNns2bNSnShu7v7ggULYmJiOHMJAAAAAIwGMaOt8ewUlydaluBhbfNVrf1qZV6cetdSdqUBAFDdOHPBxaBBg3777bcVK1YMGDDAbm95y5YtIyMjr127Nnv2bBrRAQAAAMCmgYdYNlD6ebTcto6j247mKGJ+nKXjGiX6Jq2jAAA4RHbu7VxcXMLDw8PDw7Oysg4fPnzo0KGkpKS0tLSsrCxXV1dfX19fX99OnTr17t07MDDQuT8aAAAAAKqTQQ0MxybIC+LVyHhLnurQJb+ZtbCtyrSWxo97SfXcyrg+AACqOCcHozZeXl6DBg0aNGhQGd0fAAAAAKo9N0nM6yZNa2mctU/96bpDraCaEMsTLJuvWeZ2lV4KMhodPukeAICahrMLAQAAAKBSa+lj2D5C3jhMauTpaMyZli9ePaD23KAcSWZlPQAARSMYBQAAAIAqYGwT48lJ8stBRsnhJtAjyVrvjcor+9XMgrKsDACAqolgFAAAAACqhtq1xMLe0uHxck+To+GoYhGfnbK0XaUsO8+J9QAA/JcKCEZVVb106dLRo0cvXbqUn59f/gUAAAAAQNXV1c+wb6y8dIDk5+roJTdztCd3q0O2KufMrKwHAOB35RqMXrt2bcaMGSaT6aGHHgoODn7ooYf8/PymTZt27ty58iwDAAAAAKo0o0FMb2U8OdnliZYlOF3p55ta13XKvDg137Ez7gEAqN70BqPp6ekhISHBwcHBwcF9+vTJzMwsbub+/fu7du26ZMmS1NRU25vZ2dnff/99165dly9frrMSAAAAAKhRAtzFsoHSrtFy+zqOpqO5ipgfZ+m4Vtlxg9ZRAEBNpzcY3bBhw5EjR44ePXr06NEWLVp4e3sXOe3GjRvjx49PSUkp8tPc3Nw//elPmzZt0lkMAAAAANQ0AxoYjk+UP+0lecqOXnLerA3fpoRHq7dzy7IyAAAqN73B6LZt22zjp59+urhpb775ZlJS0gPuo6rqc889ZzabddYDAAAAADWNi1G80sF4YpI8srHjC+vFqkuWtqsKFp60qDSPAgBqJL3B6MGDB60DX1/ffv36FTnn8uXL33//ve2lq6vrrFmzVq5c+d13302dOtX2/u3btz/++GOd9QAAAABAzfSQt2HrcHnjMKmJl6PxaPpd8eoBtccG5dAdwlEAQI2jKxg1m82XL1+2jvv27SvLRa/cWL58uar+vrm30WjcuHHj559/PmXKlMcff/w///nPF198YZu5bNkyi8WipyQAAAAAqMnGNjGenizP7WZ0cfhpLy5Z671RmblXzSgoy8oAAKhkdAWjtlRUCNGpU6fipq1Zs8Y2Dg8PHzZsWOFPX3zxxb59+1rHV65cOX78uJ6SAAAAAKCG85TFvG7S4fFyb5OjraMWTSw+a2mzsmDZeVpVAAA1ha5g9MaNG7Zx8+bNi5yTnJz866+/2l4+88wz98956qmnbONjx47pKQkAAAAAIIToXNcQ+7C8dIDk7+boJYm54snd6qAtypl0VtYDAKo/XcFodna2bezj41PknF9++cW2Ot7Dw6PIfUi7detmG58+fVpPSQAAAAAAK4MQ01sZz01xmdHW6PipTDG3tM5rlYjDap5ahrUBAFDhdAWjubm5tnFxG4zu27fPNu7Xr5+rq+v9cwICAmzjtLQ0PSUBAAAAAAqr6yoWhUq7x8hBvo6mowUWERlv6bBG2X6d1lEAQLWlKxh1c/tjSUZSUlKRc2JiYmzjoUOHFjnHZDIZDL//hc7IyNBTEgAAAADgfv0CDMcmyJ/2krxcHL3kQoY2crsydodyLbvYeHTv3r3h4eG1atVq1apVZGRkSkqKc8oFAKDs6QpGvb29beMig9Hk5OS4uDjbywEDBhR5n4KCAk37/Q9tcZ2nAAAAAAA9XIzilQ7Gs5Plyc1L8CS4+arWbpUSGW9RC6Wj6enpCxcubNu2bb9+/VatWlVQUJCQkBAREdGkSZPnnnuu8GMgAACVlq5gtHHjxrZxkXuDRkVF2TYY9fLy6tKlS5H3Kbx8vnDYCgAAAABwroaehlVDpI3DpGbejq6sz1ZExGE1eL1yIEk7duzYjBkzGjVq9Oqrr547d04IIWo3EMNfF20GCCFycnK++uqr7t279+7de/ny5Xl5eWX3DwEAQCdd7Zlt27Z1c3Oz/qnbvn17RkbGPUcw/etf/7KN+/fv7+JS9JqNy5cv28b169fXUxIAAAAAwK6xTYxDAo0fnFDfP265a3HokuMHY3v/OUJcOPDHW637i0H/I7qOE5KLEELcPCN2LxL7vxO5GQcOHDhw4MDrr7/+4osvzpkzx2jU1ZQDAEBZ0PXHSZbl/v37W8dms/kvf/lL4U+joqL27Nljezl69Oji7lN4nUWLFi30lAQAAAAAcISHLOZ1k36dJA8JdKB1NCddLBz7eyrq7iMGPS/mHxd/3imCJ/+eigohAtuJRz8VH14W0/4hGnUUQiQnJ8+fP/+LL74ou38FAAClpvdbuyeeeMI2/vLLL8eMGbNq1aqff/75vffemzRpku0jV1fXRx55pLibHDjwx1eObdu21VkSAAAAAMBBrWsbokbJSwdIJvcHztv/ncjLFEKIqZ+IDy6JxxaKwPZFz3T1EgOeE3OPitm7rPHol19+aTtVAgCAykNvMDp16tTOnTvbXm7ZsiU8PHzIkCF//etfMzMzbe8///zzfn5+Rd4hPz9/8+bN1rGLi0tx+5ACAAAAAMqCQYjprYxnJ7u8HGQ0Ftc8umeJEEK0GSCGzBJujp0M0bKvGP2mEOLcuXM7d+50UrEAADiN3mBUluWvvvrKy8vrAXOaNWv2t7/9rbhPt2/fbjabreOuXbu6uz/4a0oAAAAAgPP5uoqFvaVD4+Rg//vC0TPR4uYZIYQYOLNkN+02TtQJFEL885//dEqRAAA4kRM2wA4ODt66dWvDhg2L/LRly5ZbtmypW7ducZf/4x//sI3DwsL01wMAAAAAKJ3u/ob9D8uf9pK8Cx+dG7NICCFqB4iu40p2O6Ms+j0jhNi4ceOVK1ecVyYAAE7gnJMB+/Xrd/r06cjIyN69e1uXzPv4+PTt2/eTTz45fvx4+/bFbD0jxPHjx6OiomwvR44c6ZR6AAAAAAClIxvFKx2MpybLE5sZhRAi/ZaI3yKEEP2f/eOcJccNeFZILqqqfv31104uFAAAfQwVuwf27du3r1+/bnvZpUsXSZIqsB44wt/fPyUlRQiRnJxc3Nax5cBsNufn55tMpooqAEBxNE1LTEz08fHx9PSs6FoA3CszMzMrK6tBgwYVXQiAIiQmJnp4ePj4+FR0IX/4+aYW/sqclNXvCqMsFpwXvkWvFLTjn4+IuHUBAQFXrlypVauWs2sEykNOTo7ZbDaZTKQWQHUiV+yPr1+/fv369Su2BgAAAABAkfqbVNf93wohRJcxpUxFhRADZ4q4dYmJievWrXvkkUecWB4AAHo4Zyk9AAAAAKD62bJly80bN4Qo+bFLhbUdJALaCCFYTQ8AqFQIRgEAAAAARcvMzPx95BNQ+rsYDMKnvhAiIyPDGUUBAOAcBKMAAAAAgKKNHTv2903Ddy8u/V1unRXnfxFCTJ061Ul1AQDgBGW4x2h2dvaJEydu3LhhNpvT09M9PT3r1Knj5+fXsWPHgAAdXzYCAAAAAMpF7dq1H3vssSVLloj934kJ7wj3Uh0MFfMvoWnu7u7Tp093doEAAJSe84PRy5cvf/3115s2bTp16pSiKEXOadKkyaBBg55++un+/fs7vQAAAAAAgLO8+OKLS5YsEXmZ4uB/SrPTaH6W2P+9ECJ4zGN169Z1fn0AAJSWM5fSX79+fdKkSS1atHj33Xfj4+OLS0WFEFevXl26dOmAAQM6dOgQHR3txBoAAAAAAE7UuXPnPn36CCHEri+FppX4+gM/iFyzEOKXNs9Nj1Fzin1MBACgvDktGP33v/8dFBS0du1ai8Xi+FWnTp0KCwt79tln8/LynFUJAAAAAMCJnn/+eSGEuHlGJMSW+OI9XwkhRIteomm35QmW0E3KpcySp6sAAJQB5wSjH3744dNPP126EwY1Tfv6669HjhyZlZXllGIAAAAAAE4UHh5uMpmEEGLXv0p25fm94upxIYQY8Psa/GMpWsh6Zft1slEAQMVzQjD67bffvvHGG9p/L6lo0qTJSy+99M033+zfv//MmTMXL15MSEg4cuTImjVr5syZ07t3b4PBUHh+TEzMtGnT9BcDAAAAAHCuWrVq/elPfxJCiGPrfw86HZGfJX76WAghvPxF8CTb2yn5YtR2JeKwaiEdBQBUKINWij1iCrl582ZQUFB6errtnaCgoI8//jgsLMxofFDqeuHChb/97W8//vhj4QJ++OGHRx99VE89KAf+/v4pKSlCiOTkZD8/v4oqw2w25+fn//7FNYDKRNO0xMREHx8fT0/Piq4FwL0yMzOzsrIaNGhQ0YUAKEJiYqKHh4ePT6lOfi9jly9fbtGixe87p7XuLwb9j+g6TkguRc++eUbE/Esc+F7kZgghxPD/FZPfv3/WqMaG7wbKvq5lVzXgNDk5OWaz2WQySZJU0bUAcBq9HaMfffRR4VT0ueeeO378+PDhwx+cigohWrRo8cMPP6xevdrNzc325l//+ledQS0AAAAAwOmaNWv297///fdvPX/bIxY9Jma3FBvmi7Qbf0xSC8SRNeKjMDG3s9j1z99T0bYDxag3irzn1mtal3XK4Ts8AwIAKoaujlGLxdK4ceObN29aXz7++OPfffddSW+ybt26iRMn2l4eOHCgZ8+epS4J5YCOUQAPRscoUJnRMQpUZpW5Y9QqPT196dKl//rXv86ePfv7W0ZZdB4t+j4lrhwVe74W5lvWt13dPSw9phb0/x/RpMuD7+kmiS/6SM+0cdrJwEBZoGMUqJZ0/e05ffq0LRWtXbv2559/XoqbTJgwYfz48baXO3fu1FMSAAAAAKCM1KlT55VXXjlz5swvv/wyZcoUFxcXYVHEsQ3iiwli07vWVLRVq1YLFiy4ce3qrxu+at+pq9175qni2V/UmXvVu5ay/wcAAFCIrmD0xo0/Fk1MmjTJ19e3dPd5+umni7wnAAAAAKASCg0NXbly5aVLl+bMmWNtQpdleeLEiVFRUefOnZs9e7afn1+b2oYD4+TJzR166lx81tJno3I5k2X1AIDyoysYvXPnjm3co0ePUt8nJCTENk5KStJTEgAAAACgfDRs2HD+/PlXrlyJi4u7evXqmjVrhg4dajAYbBO8XcTKIdKnvSQXBx49jyZrIRuUqBtkowCAcqIrGC18blK9evVKfZ969erZ/na6u7vrKQkAAAAAUJ5cXFy6du1a3ObFBiFe6WDcOUoOcOBRLzlPjNyuzItTLaSjAICypysYbdq0qW2cmppa6vukpqbazoBq0qSJnpIAAAAAAJVN/wDDkfFyb5PB7kxVE/PjLOOj1PS75VAXAKBG0xWMdujQwdbgeeLEiVLfp/C13bt311MSAAAAAKASauhp2DNGnt3ZoYfQTVctPTYov6bSOAoAKEO6glF3d/eRI0daxytXrszLyyvdfb7//nvrwMvLKywsTE9JAAAAAIDKSTaKBSHSdwMlT9n+5PNmredG5d+/cVY9AKCs6ApGhRB//vOfrduD3r59e86cOaW4Q2xs7LJly6zjGTNmeHt76ywJAAAAAFBpPd7SGPuw3MLH/rL6XEX8aY86c696l3QUAFAG9AajvXr1evHFF63jjz766KOPPirR5UePHp0wYYKqqkKIVq1azZs3T2c9AAAAAIBKrnNdQ9wEeWIzhx5IF5+1DN6i3MxhWT0AwMn0BqNCiL///e+TJk0SQmia9uc//3ncuHHnz5+3e1V2dva8efP69+9/584dIUSzZs22bdtGuygAAAAA1AQ+LmL1UGlBiCTZ7xwVsbe1LmuV6JtkowAAZ3JCMCrL8sqVK99+++1atWoJITZu3Ni2bduBAwd++umnMTExSUlJd+/eFUJompaWlnbs2LGlS5c+8cQTAQEB8+fPz8nJEUKMGTPm4MGDLVq00F8MAAAAAKBKMAgxu7MxapRscrc/+U6eGLFdiYy3EI4CAJzFzpbXly5dcvyYeE37/S+UxWLZvXv37t27bR9JkmRdL1+k2NjYtm3bWscpKSnWTUsBAAAAANXeoAaGI+PlKdHqwSQ7madiERGH1f1J2tIBUu1a5VMdAKA6sxOMqqqalpam/8c8IBUVQjjlRwAAAAAAqqLGnobdo+U3DqmfnbJ/ytKGK5aeG7Q1Q6UgX1pqAAC6OGEpPQAAAAAAerhKYmFvaekAycNO944QQpwza702KqsucVY9AEAXglEAAAAAQKUwvZVx71j5IW/7raBZBSI8Wp25Vy0gHQUAlJadL+P8/PwWLFhQPqVYscEoAAAAANRYXf0Mh8fLj+9Stl+3f8zS4rOWs+naiiFygAPHNwEAcA87waivr+/s2bPLpxQAAAAAAOq6iq0j5A/iLW8eUe0eQr8nUQter6wcLPWpT5MNAKBkWEoPAAAAAKhcDELM7mzcNEz2dbU/+Ua2NmCLEhnPonoAQMkQjAIAAAAAKqNRjQ3HJ8gh9ey3gioWEXFYfXyXmq2UQ10AgGqCYBQAAAAAUEk18TLsGSM/08ahR9cfLliC1ytn0u1vTgoAgCAYBQAAAABUZm6S+KqftHSA5G7njAwhhDibrvXcoKy5xLJ6AIB9BKMAAAAAgMpueivjL2PkZt72l9VnFogp0WrEYVWlcxQA8EAEowAAAACAKqC7v+HwODmsof1sVBMiMt4ydKtyO7cc6gIAVFUEowAAAACAqsHfTWwbIc/tZjTaT0dFzC0teL1yIInGUQBA0RzYo6WEVFU9efLkwYMHL126ZDab09PTFaUE5wKuWLHCYHDgTxwAAAAAoOaRDGJeNynY3/hEjJJ+187k69nawC1KZIj0Sge6ggAA93JmMHrhwoV//OMf3377bXp6eqlvsmLFCieWBAAAAACofsY0MRwaJ0+KVn9NtdMQmq+KVw+oR5K1RaGSh/NbgwAAVZhzvjTTNG3hwoXt27f/+9//ricVBQAAAADAEa1qGw4+LD/V2qGn2u8SLH03KRczWVYPAPiDc4LRmTNnvvrqq3fv2lvGAAAAAACAk7jL4tv+0qJQqZYDj7bHU7Sua5X1VyxlXxcAoGpwwkKCzz//fMmSJYXfMRqNbdq0MZlMBw8ezMvLE0I0adKkdevWZrP5zp07V65c0bT/+pquT58+Hh4e+isBAAAAANQ0M9oag3wN4dHqzRw7DaEZBWJilPpGZ+3/BUuOHN8EAKje9HaMpqWlvfXWW7aXtWrVevPNN2/dunX69OmYmJiAgADr+xMnToyKijp06NClS5eSkpJWrFgxaNAg21WpqakLFy6MioqKiori5CUAAAAAQIn0rW84Wn6hEwAAIABJREFUPlEeEmj/cVITIjLeMmaHkppfDnUBACo1vcHol19+mZmZaR27uLisW7fuvffeM5lMD7jE398/PDz8559/3rhxY/369YUQZ8+e7dev34kTJ3QWAwAAAAComeq5ie0j5NmdHeoE3XZN67JWOXSHLUcBoEbTG4yuX7/eNn7rrbdGjRrl+LVjx46NjY0NDAwUQqSmpo4bN86WsQIAAAAAUCKyUSwIkdaFSbVr2Z98LVsbsFn56hxbjgJAzaUrGM3MzDx+/Lh17OXl9dprr5X0Di1atFi9erV1+fzly5ffffddPfUAAAAAAGq4cU2Nh8bJQb72O0fzVPHcL+r0GDVXKYe6AACVjq5g9PTp04ry+x+QsLAwHx+f4mbapt2vd+/eU6ZMsY4XL16cm5urpyQAAAAAQA3XurbhwMNy+EMOPfAuT7CEblYuZbKsHgBqHF3BaGpqqm3cvXv3B8zMz3/QvtZTp061DtLT0/fs2aOnJAAAAAAAvFzEisHSolDJxYGn3rhkLWS9suMG2SgA1Cy6gtG0tDTbuMgDl9zc3KyDnJycB9ynZ8+etvGRI0f0lAQAAAAAgNWMtsboUXIDD/szU/LFiG1KxGHVQjoKADWGrmDUaPzjclsGWpi3t7d1cPPmzQfcx2QyWbcZFUJcvHhRT0kAAAAAANj0CzAcGS/3qW9/y1FNiMh4y8M7lLQHrXgEAFQfuoLRwpuKZmRkPGDClStXHnAfRVE0TXvAfQAAAAAAKJ1AD8Pu0fLszg49/265pvXYoJxIpXEUAKo/XcFoYGCgbVx4Wb1Nq1atrINLly4lJycXd5+EhATbWJZlPSUBAAAAAHAP2SgWhEg/DJI8HXjiTMjQem5QvvnNUvZ1AQAqkq5gtE2bNrbV9KdOnbp/QocOHawDTdO2bdtW3H22bNliG/v7++spCQAAAACAIj3awnhkvNyujv1l9XmqeGaPOnOvepd0FACqL13BqLu7e5s2bazj48eP3z+hf//+tvFHH31U5Nn0d+7c+eSTT2wvbVkqAAAAAADO1baO4eA4eVJzh56FF5+19N2oXMliWT0AVE+6glFRKPo8d+7c5cuX7/m0Y8eO7du3t45PnDjx+OOPm83mwhMSEhKGDRuWlJRke2fw4ME6SwIAAAAAoDjeLmLVEOnTXpLswAPxkWQteL2y8wbZKABUQ3qD0UGDBlkHmqatXbv2/gmzZs2yjdesWdOsWbPHHntszpw5b7311pgxY4KCggq3mg4fPty2LSkAAAAAAGXBIMQrHYw7R8r13e1PTs4TI7Yr8+JUwlEAqGYMtuPgSyczM7N+/fq5ublCiDZt2pw+fdq266iVqqrBwcFFLrS/h5ub2/79+7t06aKnHpQDf3//lJQUIURycrKfn19FlWE2m/Pz800mU0UVAKA4mqYlJib6+Ph4enpWdC0A7pWZmZmVldWgQYOKLgRAERITEz08PHx8fCq6kBrkerY2JVo9kOTQc/HDTY1LB0h1apV1UaiMcnJyzGazyWSSJKmiawHgNHo7Rr29vSdNmuTr6+vr65uUlLR9+/Z7JkiStG7duiZNmjz4PrIsL1q0iFQUAAAAAFBuGnkaYkbLLwc59Gi88Yql5wblZBqdowBQTegNRoUQy5cvT/0/o0aNun9Cs2bN9uzZM3r06OLu0KxZsy1btkyfPl1/MQAAAAAAOM5VEgt7S8sHSh6y/cm/mbXeG5UVFzmrHgCqAwd+8TtD06ZNN2/evG/fvvXr1x84cCApKSkrK8vf379Dhw6jRo2aPHlyrVqsRgAAAAAAVIxpLY0dfA2TdqoXM+00hGYViKk/qz/f1L7oI7k4odcIAFBhyikYterTp0+fPn3K8ycCAAAAAOCILn6GYxPlJ2PU9VfsN4QuPms5na6tHCw38CiH0gAAZYKvtwAAAAAAEEIIHxexNkxaECIZDfYn703Uuqwr+PkmW44CQFVFMAoAAAAAwO8MQszubNw8TK7ran9yUq4Yvl2JjGfLUQCokghGAQAAAAD4LyMbG45PlHvUs984qlhExGH10V1qtlIOdQEAnIlgFAAAAACAezX2NOwZIz/X1qGn5h8vWILXK6fTWVYPAFUJwSgAAAAAAEVwlcTiUGnpAMndgXOLz6ZrvTYoqy+xrB4AqgyCUQAAAAAAijW9lXHvGLm5t/1l9ZkFIjxafWW/WkA6CgBVAcEoAAAAAAAP0s3fcHi8PLyR/WxUE+KzU5ahW5XE3HKoCwCgC8EoAAAAAAB2+LmKbSPkBSGS0X46KvYkasHrlf1JbDkKAJUawSgAAAAAAPYZhJjd2bhxmOzran/yjWyt/2YlMp5F9QBQeRGMAgAAAADgqNGNDYfGyZ3q2m8cVSwi4rA6LUbNUcqhLgBAiRGMAgAAAABQAi19DAfHyU+3duiB+vsES5+NyoUMltUDQKVDMAoAAAAAQMm4SeLr/tKiUKmWA0/V8alat3XKusssqweAyoVgFAAAAACA0pjR1hj7sNzUy/6y+owCMWmnGnFYVekcBYBKg2AUAAAAAIBSCvY3HBkvD21oPxvVhIiMt4RtVZJyy6EuAIB9BKMAAAAAAJSev5vYPkKe281oPxwVYtctLXi9cjCJxlEAqHgEowAAAAAA6CIZxLxu0vowqU4t+5OvZWsDtigLT7LlKABUMIJRAAAAAACc4OGmxoPj5A6+9jtH81Xx6gF1eoyao5RDXQCAohGMAgAAAADgHK1rG/Y/LD/ykEPP2ssTLKGblEuZLKsHgIqhNxjNz893Sh0AAAAAAFQDXi7ix8HSolDJxYEH7mMpWsh6Zft1slEAqAB6g9GJEyeGh4fv3LlT0/g9DgAAAACAEELMaGv8eZTcwMP+zJR8MWq7EnFYtfBUDQDlS28wevfu3VWrVoWFhbVp0yYyMvLOnTtOKQsAAAAAgCotNMAQP9FlcKD9LUc1ISLjLWN3KGmsyQSAcuS0PUbPnz8fERHRuHFjGkgBAAAAABBC1HMTP42QZ3d26NF76zWtyzrl8B2epgGgnDj58KX8/HxrA2m7du0iIyOTk5Ode38AAAAAAKoQ2SgWhEjrwiQfF/uTr2Zp/TcrX5+zlH1dAADdwejAgQO9vb3vf//cuXPWBtInn3wyNjZW508BAAAAAKDqGt/UeGi83L6O/WX1eap49hd15l71LukoAJQxvcHoW2+9dePGjUWLFvXt2/f+T/Py8pYtWxYaGmptIE1JSdH54wAAAAAAqIra1DYcGCdPbu7QY/jis5Y+G5XLmSyrB4Ay5ISl9N7e3jNmzNi7d+/Jkydnz57t6+t7/5yzZ89GREQ0atTIugOp/h8KAAAAAEDV4u0iVg6RPu0luTjwLH40WQvZoETdIBsFgLLizD1Gg4KCFixYcOPGjZUrVw4dOvT+CXl5edYdSNu3bx8ZGZmamurEnw4AAAAAQCVnEOKVDsado+QAd/uTk/PEyO3KvDjVQjoKAGXAyYcvCSHc3d2nTJkSFRV16tSp4hpIz5w5ExER0bBhQxpIAQAAAAA1Tf8Aw5Hxcm+T/S1HVU3Mj7OMj1LT75ZDXQBQszg/GLVp3779ggULbt68abeBNCgoKDIyMi0treyKAQAAAACg8mjoadgzRp7d2aGn8k1XLT02KL+m0jgKAM5UhsGolZubW+EG0rp1694/5/Tp0xEREYGBgeHh4RxhDwAAAACoCWSjWBAifTdQ8pTtTz5v1npuVP79G2fVA4DTlHkwamNtIL1y5cqSJUtCQkLun2BtIA0NDQ0ODv7qq69ycnLKrTYAAAAAACrE4y2NsQ/LLXzsL6vPVcSf9qgz96p3SUcBwBnKLxi18vLyevbZZw8dOhQXFzdz5kxJku6fc/To0eeee65Ro0ZvvPHG7du3y7lCAAAAAADKU+e6hrgJ8sRmDj2hLz5rGbxFuZnDsnoA0Ku8g1Gr27dv79ixIzo6WlXV4uakpaV9+OGHLVq0mDt3bn5+fnmWBwAAAABAefJxEauHSgtCJMl+56iIva11WatE3yQbBQBdyjUY1TRt586d4eHhTZo0iYiISEhIsHtJdnb222+/3aNHj+vXr5dDhQAAAAAAVAiDELM7G6NGySZ3+5Pv5IkR25XIeAvhKACUWjkFo7dv346MjGzVqlVYWNiqVavu3r17z4SGDRvOnTv39OnTn3/+eadOne759MSJE0OHDmXXUQAAAABA9TaogeHIeLmnyX7jqGIREYfVCVGq+d4nbACAQ8o2GLVYLFFRUVOmTLG2iF64cOGeCQaDYejQoWvWrLl8+fK8efPatWs3a9as+Pj46OjoMWPGGI1/lHfu3LmFCxeWabUAAAAAAFS4xp6G3aPll4McemDfcMXSc4NyKo3OUQAosbIKRm/fvr1gwYLWrVsPGzZs9erV97eI1q1b9/XXXz979mxUVNTEiRNlWS786eDBgzdt2rR///6WLVva3ly2bFkZVQsAAAAAQOXhKomFvaVlAyUP2f7kc2at10Zl1SXOqgeAknHgV2xJWCyW6OjoxYsXb9iwoaCgoMg5PXr0eP755x955BF3dzv7pvTo0WPLli1BQUGKogghzp07l5GR4ePj49yaAQAAAACohJ5oaezga5i8U72YaachNKtAhEerM9pqX/SRXCrmlGUAqHqc9vsyMTHx/fffb9WqlbVF9P5U1MPD49lnnz1y5MjBgwefeuopu6moVevWrYcPH24da5qWlJTkrIIBAAAAAKjkuvoZDo+XRzRy4Kx6IRaftQzZqtzieA4AcIzeYNRisezYsWPy5MlNmjR58803L168eP+cdu3aLVy48MaNG0uWLOnevXtJf0Tr1q1t47y8PF3lAgAAAABQpdR1FVtHyAtCJKMD6egviVrwemXfbbYcBQD79C6lDw8PX7NmTZEfubi4jB8//vnnnx84cKDB4NC3W0Vi7TwAAAAAoCYzCDG7s7FjXcO0GCUt387kmznagC3Ku92l2Z1ZVA8AD6I3GDWbzfe/GRgY+MQTT7z44ouNGzfWeX8AAAAAACCEGNXYcHyCPDlaPXzHTkOoYhERh9X4VG1JP8nTyWeLAED14cxfkEajMSws7Pnnnx8zZowkSc667dChQ20bkgYEBDjrtgAAAAAAVC1NvAx7xsgv7VO/Omf/DPr/XLAcS9HWDpXa1Sn9Ik4AqMacE4zWqVMnPDz81VdfbdeunVNuWFhoaGhoaKjTbwsAAAAAQJXjJokl/aR+AYb/iVVzFTuTz6ZrPTco3/aXJjVnWT0A3Evvb8bg4OBly5bdunVr0aJFZZGKAgAAAACAe0xvZdw7Rm7mbb8VNLNATIlWX9mvKvZ7TAGgZtHbMfr+++87pQ4AAAAAAOC4bv6Gw+Pkx3cpO27Y2XJUE+KzU5YTqdqPg+X67uVTHQBUAfTSAwAAAABQJfm7ia0j5LndjEYHNhGNuaUFr1cOJNlJUQGg5iAYBQAAAACgqpIMYl43aUOYXKeW/cnXs7WBW5SFJ1lUDwBCEIwCAAAAAFDVjWliODRO7ljXfuNovipePaA+EaPm2Du4CQCqPYJRAAAAAACqvFa1DQcflp9q7dBj/ncJlr6blIuZLKsHUKPpPXzp/PnzGRkZTqhDlmvXrl2nTp06derovxsAAAAAADWNuyy+7S/1Nhle2qfetbdc/niK1nWtsnSgNL4pLVMAaii9wegLL7ywc+dOp5RiZTKZgoODe/XqNW3atObNmzvxzgAAAAAAVHsz2hqDfA3h0erNHDsNoRkFYmKU+kZn7f8FS44c3wQA1Uyl+14oKSlp69atc+bMadmy5ejRo0+ePFnRFQEAAAAAUJX0rW84PlEeEmg/7NSEiIy3jNmhpOaXQ10AULlUumDUxmKxbN26NSQk5PPPP6/oWgAAAAAAqErquYntI+TZnR3qBN12TeuyVjl0hy1HAdQslTcYtcrLy3v55ZfJRgEAAAAAKBHZKBaESOvCpNq17E++lq0N2KwsOWtva1IAqEb07jG6bNmy3NxcIcTmzZvffPPN7Oxs6/stW7YcMWJEly5dmjVrVqdOHVmWc3Jy0tLSTp06deTIkS1btthmdurU6YsvvvD39zebzSkpKceOHdu9e3d0dLSm/fFV1WuvvdapU6cBAwborBYAAAAAgBplXFPjoXGGiTvVU2l2GkLzVDFjr/pLorYoVHLXmxYAQBVgKJw/lto777wzd+5c66169Ojx0Ucf9evX7wHzs7Ozv/nmm7lz56alpQkhAgICNm/e3L17d9uE33777aWXXtqxY4ftnd69e+/bt09/qdDP398/JSVFCJGcnOzn51dRZZjN5vz8fJPJVFEFACiOpmmJiYk+Pj6enp4VXQuAe2VmZmZlZTVo0KCiCwFQhMTERA8PDx8fn4ouBNVQVoF45hd15UWHGkK7+RtWD5Gae3Me0x9ycnLMZrPJZJIkqaJrAeA0TlhK//nnn8+ZM8eair7xxhv79+9/cCoqhPD09HzppZdOnjzZsWNHIURiYuLIkSMvX75sm9C6dett27a98MILtnf2798fExOjv1oAAAAAAGoaLxexYrC0KFRycSAGiEvWQtYrP11ny1EA1ZzeYPTChQtvvPGGdTxjxozIyEij0dF7BgYG7tq1KyAgQAhx586dmTNn/ldlRuPChQt79+5te2fz5s06qwUAAAAAoMaa0dYYPUpu4GF/Zkq+GLldiTisWkhHAVRfeoPRDz74IC8vTwjh6+v7wQcflPRyPz+/yMhI63jHjh0HDhwo/Kksy2+//bbt5e7du/UVCwAAAABAjdYvwHBkvNy3vv1l8poQkfGWh3coafnlUBcAVABdwaiiKKtXr7aOx48fX7t27VLcZPLkybZN6H788cd7Ph06dKi1pVQIER8f75QdUQEAAAAAqLECPQwxo+XZnR0KBLZc03psUE6k8jAOoBrSFYyePXs2NTXVOu7Ro0fpbuLh4REUFGQdx8bG3j8hNDTUOigoKMjIyCjdTwEAAAAAAFayUSwIkX4YJHk6cPp8QobWc4PyzW8OHdwEAFWIrmA0ISHBNq5Xr16p71O/fn3r4MKFC/d/2rRpU9vYlsMCAAAAAAA9Hm1hPDJeblfH/rL6PFU8s0eduVe9SzoKoBrRFYxmZWXZxnp6Oc1ms3WQmZl5/6e+vr628d27d0v9UwAAAAAAQGFt6xgOjpMnNXcoHFh81tJ3o3Ili2X1AKoJXcFo4U1Fz507V7qbWCyW33777f4b2hQOQz08HDg8DwAAAAAAOMbbRawaIn3aS5IdSAiOJGvB65WdN8hGAVQHuoLRwMBA23jt2rWlOxkpNjY2MTHROm7QoMH9Ewovny/d+U4AAAAAAKA4BiFe6WDcOVKu725/cnKeGLFdmRenEo4CqOp0BaPt2rWzHSh//vz5xYsXl/QOFoslIiLC9jI4OPj+OWfOnLEOfH19fXx8SlUpAAAAAAB4kAENDEfGy71M9rccVTUxP84yPkpNZ7s7AFWZrmDUw8Nj9OjRtpf/+7//Gx0d7fjlFotl1qxZ+/bts70zZcqUe+aoqhoXF2cdt2zZUkexAAAAAADgQRp5GmJGyy8HOZQVbLxi6blBOZlG5yiAqkpXMCqEeOmllwyG379Nys7OHjNmzDvvvJOXl2f3wt9++23UqFH//Oc/be+0b98+LCzsnml79uxJS0uzjovsJwUAAAAAAM7iKomFvaXlAyUP2f7k38xa743KioucVQ+gStIbjIaGhj777LO2l3l5eXPmzGnatOnLL7+8bdu2mzdvFp6sKMqpU6eWLl06ZsyYoKCgn3766Y86jMbFixe7uLjcc/8ffvjBNu7Tp4/OagEAAAAAgF3TWhpjx8otfOwvq88qEFN/VmfuVQtIRwFUNYbSnZhUmLVRNCYmpshPXV1dvb29PT09MzIy0tPTi/xxBoPhs88+mzVr1j3vJyYmNm/e3Np/KstyYmKin5+fzmqhn7+/f0pKihAiOTm5Av8vYjab8/PzTSZTRRUAoDiapiUmJvr4+Nj2oQZQeWRmZmZlZRV54iWACpeYmOjh4cHJCqg8MgrEU7vVdZcdijxDAwwrB8sNPMq6qIqRk5NjNptNJpMkSRVdCwCncaAz3h5PT8/NmzdPmTJl27Zt93+an5+fn5+fnJxc3OW1atX67LPPZs6cef9Ht27dmjdvnnXs7+9PKgoAAAAAQLnxcRFrhkofxBvePKJa7HVV7U3Uuqwr+M8geXCg/T5TAKgMnBCMCiE8PT23bt26atWq559/3tpL6KCuXbt+/fXXXbt2Le7T4j4CAAAAAABlzSDE7M7GHibD1J+VpFw7k5NyxfDtyrvdpdmd9W7cBwDlwJm/qqZMmXLx4sUvv/zSbprp5uYWHh6+c+fOo0ePEn0CAAAAAFCZDWpgODJe7lHPfiuoYhERh9VHd6lZBeVQFwDo4oQ9RouUmpp68ODBX3/99c6dO+np6dnZ2b6+vr6+vg0bNgwJCencufP95yyhqmCPUQAPxh6jQGXGHqNAZcYeo6jk8lXx0n51yVmHthxtU9uwNkxqX6eaLKtnj1GgWnLOUvr71a1bd+TIkSNHjiyj+wMAAAAAgPLkKonFoVJofcP/xKq5ip3J58xarw3KN/2lyc1ZVg+gktIVjCYnJ3/99de2l4888kizZs30VgQAAAAAACqr6a2MHXwNk6PVS5l2VqBmFojwaPWlIO2jnpIL6SiAykdXMHrs2LGIiAjr2Nvbe9asWc4oCQAAAAAAVF7d/A2Hx8uP71J+um4nG9WE+OyU5XiKtmKIHOBePtUBgKN0fWWTlJRkG4eGhrKXHAAAAAAANYGfq9g2Ql4QIhkd2ER0T6IWvF7Zn1QmZ5wAQKnpCkYLbzncpEkT3cUAAAAAAICqwSDE7M7GjcNkX1f7k29ka/03K5HxDh3cBADlQ1cw6u/vbxtzyjwAAAAAADXN6MaGQ+PkTnXtN44qFhFxWJ0Wo2bbO7gJAMqHrmC0Xbt2tnFiYqLuYgAAAAAAQBXT0sdwcJz8dGuHEobvEyx9NyoXMlhWD6Di6QpGGzZs2KZNG+s4NjZW0/i9BgAAAABAjeMmia/7S4tCpVoOxAzxqVq3dcrayyyrB1DBdAWjQoinnnrKOrh169auXbv0lgMAAAAAAKqmGW2NsQ/LTb3sL6vPKBCTd6oRh1WVDisAFUdvMPrCCy8EBgZax6+//npeXp7ukgAAAAAAQJUU7G84Ml4e2tB+NqoJERlvCduqJOWWQ10AUAS9waiPj8+///1vWZaFEPHx8VOmTMnN5VcaAAAAAAA1lL+b2D5CntvNaLSfjopdt7Tg9crBJBpHAVQAvcGoECIsLOzHH390d3cXQmzevLlTp07r169XVVX/nQEAAAAAQJUjGcS8btL6MKlOLfuTr2VrA7YoC0+y5SiA8ibrvD4uLi41NbV27drvv//+nDlzMjIyEhISJkyYEBgYOGTIkC5dujRq1Kh27dqSJDl4w6FDh+osCQAAAAAAVLixTYyHxhkm7lRPptlpCM1XxasH1KPJ2r9CJQ+9QQUAOMqg8yj5sLCwnTt3OqsaIYTFYjEYHOi2R8Xx9/dPSUkRQiQnJ/v5+VVUGWazOT8/32QyVVQBAIqjaVpiYqKPj4+np2dF1wLgXpmZmVlZWQ0aNKjoQgAUITEx0cPDw8fHp6ILAZwpq0A8+4u64qJDDaFd/Qyrh0oPeVe6WCAnJ8dsNptMJscbvwBUfk5YSg8AAAAAAFAkLxfx42BpUajk4kACcSxFC1mvbL/OlqMAygPBKAAAAAAAKFsz2hp/HiU38LA/MzVfjNquRBxWLaSjAMoYwSgAAAAAAChzoQGG+IkugwPtL5PXhIiMt4zdoaTll0NdAGouvXsaL1u2LDc31ymlWLHBKAAAAAAA1VI9N/HTCPmvR9XIePtbjm69pnVZp6weIoXUIygAUCb0BqPs3A8AAAAAABwkG8WCEKmXyfDUbtV8187kq1la/83KF32kZ9qw4BWA8/GbBQAAAAAAlKvxTY0Hx8nt69hvBc1TxbO/qNNj1FylHOoCULMQjAIAAAAAgPLWprbhwDh5SnOHconlCZZ+m5XLmZzHBMCZCEYBAAAAAEAF8HYRK4ZIn/aSXBwIJ44mayEblKgbZKMAnIZgFAAAAAAAVAyDEK90MO4cJQe425+cnCdGblfmxakW0lEAzkAwCgAAAAAAKlL/AMOR8XJvk/0tR1VNzI+zjItS0u0d3AQAduk9lb5ISUlJsbGx+/btu3btWlpaWlpamsViGTRo0IcfflgWPw4AAADA/2fvvuOrKPPFj3/nzISENCAJgVBEkCaCCIigIJ0UigjKIoquqHRRd/2tq653ZV2v5a5Y1raIgii6KCIqJYTeq4AgIFJEQCSGJJBOkim/Pw4bkSVzkpyT0/J5/zU5PGf4eveqLz88Mw8ABLTGEcr6IdpTO40X95guFy8+Yd3wpb6gv9ohxnVLBYDyeDiMrlmz5uWXX166dKlpXvoPsiuuuOK/1y9fvvzJJ590Xnfo0GH27NmenQcAAAAAAAQEzSEvdFU71FMmbDQKXJ1BfzjH6vaV/tZN6r2teRYWQBV57B8fubm5d955Z79+/RYvXvzfVbQ8vXv3Pn369M6dO3fu3PnBBx+cOHHCU/MAAAAAAICAc1dLx6ZbtKuiXW8FLdJl7HpjwkajpKIRAgB+wzNh9Pjx49ddd92///3vyn4xNDR0ypQpzmvTND/++GOPzAMAAAAAAAJUxxhl13BtxJUVShbvHDT7LdF/LuQ8JgCV5oEwmpmZmZycfOzYsYs/DAsL69mz5+jRoxMSEuy/Pnr0aEW58AdBqamp7s8DAAAAAAACWnSIfDZAfaGrqlbgJaKbfrGu+1xf9TNtFEDleCCMTpky5eDBg2U/tmnT5sMPPzx79uyGDRs+/vjj1q1b23+9efPmnTt3dl5v3bq1oKDA/ZEAAAAAAEBAU0T+3NHLFQ+xAAAgAElEQVSxcpDWoLbrxWfOS/Iy/cU9JnEUQMW5G0a3b98+f/78sh9Hjx69a9euMWPGhIWFOT8p2w1qo2/fvs6LkpKSXbt2uTkSAAAAAAAIDn0SlK9v1brFu24LuimP7zCGrzBySrwwF4Bg4G4Yff311y3rwp/HpKSkfPDBB+Hh4ZW9SadOncquv//+ezdHAgAAAAAAQaNJhLJusPbQNRUqGF8eN2/4Ut9/lp2jAFxzK4yappmWlua8Dg0NffPNNzVNu2RNRXaMtmvXruz68OHD7owEAAAAAACCTKgqr92oftBHDb+0OlzGoRyr+1f6pz9wVj0AF9wKo999992ZM2ec1wMHDmzevHnV7hMbG1t2nZ2d7c5IAAAAAAAgKN3d0rFxqNYiyvUGrPxSGbXamLDRKKWOAiifW2E0PT297Lpnz56XXVORHaN169Ytu87NzXVnJAAAAAAAEKw6xSo7btWSm1TgrHqRdw6a/ZfqpwureygAgcqtMFq2XVREGjRoUOX7lJTwYmQAAAAAAOBaTKgsTdZe6Ko6KlBHN6Rb13+hb/6FV44CuAy3wmhISEjZdWlpaZXvk5WVVXZ98WP1AAAAAAAAl1BE/tzRsShRiwl1vfjnQqv3Ev3FPTxUD+BSboXR+vXrl13/8ssvl11TkUfp9+3bV3YdFxfnzkgAAAAAAKAmGNRU2T1c61rfdXbQTXl8h3HnGqNA98JcAAKGW2H04sfnt27dWuX7rF27tuy6VatW7owEAAAAAABqiCsilfVDtAfaVChu/Puoef0X+nfneKwewAVuhdFWrVrFx8c7r9esWXPxE/FlXO4Yzc/P/+ijj8p+7Nu3rzsjAQAAAACAmiNMlZk3q3N6q7U114sPnrO6fakvOMZj9QBE3AyjDocjKSnJeV1YWPiPf/yjCjd58cUXs7Oznddt2rRp0qSJOyMBAAAAAICa5p5Wjo1DtCujXD9Wn1cqI1cZD28xdOooUOO5FUZF5M477yy7fumll5YvX37JAvsdo0uWLHnuuefKfpw4caKb8wAAAAAAgBqoc5yyY5iW2Nh1G7VE/rnfHJCq/1LkhbkA+C93w2hycnLv3r2d14Zh3HLLLe+//75luX5hh2mar7322q233mqaF/6MpkGDBuPHj3dzHgAAAAAAUDPFhcnSZO3pzg6H6zoq605b13+hb83glaNAzeVuGBWR6dOnh4aGOq+Li4vHjh3bo0ePjz76KDc3Vy63YzQjI2PWrFkdOnR45JFHdP3XA+Feeuml8PBw9+cBAAAAAAA1k6rItM7qlwO1urVcL/6pwOqzRH9tHw/VAzVUBV5N7EqXLl1mz5591113lW0U3bJly5YtWxwOR7Nmzc6ePev8cNeuXYMHDz569Ojhw4fLdomWmTp16pgxY9wfBgAAAAAA1HBDrlC2D9NuW2V8m+1iQ2ixIY9sNb7OtGb0VMM90EgABBIP7BgVkdGjR7/xxhshISEXf2ia5rFjx86dO+f88fjx40uXLv3+++//u4refffd06dP98gkAAAAAAAAreoo24dpY1tXqHvMPWL2WKT/kMdj9UDN4pkwKiKTJ0/esGHDlVdeWalvhYSEvPLKKx988MElURUAAAAAAMAdYarM6qXO6KnWqkD8+CbL6vS5/sXxyzxWv3PnzkmTJg0ePPjZZ589ffq05wcF4CMeC6Mi0q1bt4MHD86ZM+fqq692uTgkJOTuu+8+cODAI4884sEZAAAAAAAAyoxv69h0i3ZFpOvzmHJLZcQK4/EdhmmJiJw/f37OnDndunW7/vrrP/jgg927d0+bNq1Zs2ajRo1au3ZtdY8NwAuUipwgX1mmaX799dcbN27csGHDjz/+mJ2dnZ2dHRISUr9+/djY2I4dO/bv379v376xsbEe/63hBXFxcVlZWSKSmZnpw/8Rc3JyiouL4+PjfTUAgPJYlpWenh4dHR0REeHrWQBcKi8vLz8/PyEhwdeDALiM9PT08PDw6OhoXw8CBKEz52X0an3VzxVqIL21Yx32zvz3B7Od//ErIlK7jjTrJIc2iGk4P2jXrt3kyZPvvvtu/p4FAle1hFEEN8IoAHuEUcCfEUYBf0YYBaqVbspTO43/22PadZDvVsvyV2X/crH+80x9047SZ4J0Gy2hEZJ1Qta/KxtmSV6G8xcjIyPHjBnz2GOPNW/evLrnB+BxhFFUGmEUgD3CKODPCKOAPyOMAl7w5XHz9+uMnJLL/drBtfJKyoU9oVqodBkhfSfKVTdeukwvkV0LZc2/5Mgm5wcJCQmHDh2KjIyszsEBeJ4n3zEKAAAAAADgz4Y1c2wfpl1T73KvHF3xmpiGRMTIiGfl/36QB+ZcpoqKiFZLbhglf14jT++UXg+IyOnTp+fOnVvNgwPwPMIoAAAAAACoQVrXUbbeov2uxW+TSNYJ2bdMRGTgw5LymETVd32jJh3k7rekRTcReeONN6pjVADVijAKAAAAAABqlsgQ+aSfOqOnGlLWRdbOENMQrZbcfF/l7tVngojs379/48aNHp4SQDUjjAIAAAAAgJpofFvHqkFaQriIXiyb5oiIdB4u0Q0qd5euIyUqXkTefvvtapgRQDXSqum+RUVFuf9RqS926dKlmkYCAAAAAAC42M0NlR3DtL7/89Fh50HzfSdW+hZaqPT4vSz7x2efffbyyy83aFDJrgrAdzwZRvPy8j799NPU1NSdO3f++OOPVbuJaZqKcrlXIAMAAAAAAHha4wglZssMEZFG7aRlj6rcos8EWf5ySUnJe++99+STT3p2PADVxzOP0uu6/uKLLzZq1OiBBx5YsGBBlasoAAAAAACAN33zzTfbtm4VEek3uYq3iL1C2ieJyL/+9S/DMDw3GoDq5YEwWlhYOGDAgMcffzw/P9/9uwEAAAAAAHjNhXeD1o6WbqOrfpfe40Xk5MmTS5cu9dBcAKqdB8LoyJEj161b5/59AAAAAAAAvOzQoUMiIo3bS1hU1e9yVXdRHL/eDUAgcPcdo59//vklfxhSu3btIUOGdO/evXXr1uHh4XXq1KnUDXnBKAAAAAAA8Jrk5OS1a9fK0S3yy2Fp0KqKd9kyVyxTRJKSkjw5HIDq5G4YnT59+sU/jh079qWXXoqJiXHztgAAAAAAAF5w//33T5s27fz587L+XRn5YlVuYVmy7h0R6dOnT/v27T08H4Bq49aj9NnZ2du2bSv78cEHH5w1axZVFAAAAAAABIq4uLiRI0eKiGycLSWFVbnFwdWSfkhEJk2a5NHRAFQvt8Lovn37yk5bi4uLe+GFFzwxEgAAAAAAgPdcCJqF52TH/Kp8f+0MEWnYsOHw4cM9OheA6uVWGD1z5kzZdXJyckREhNvzAAAAAAAAeNWNN97YpUsXEZHVb1b6y+dOy54lIjLs7vEhISGeHg1ANXIrjBYVFZVdt2pV1fcTAwAAAAAA+NSECRNERE58Iz9+Xblvrp8pRqk4tC+bjT2eb1XHbACqiVthtF69emXX/KkIAAAAAAAIUHfeeWfdunVFRFa/VYmv6cWy4T0RkY6D00MbD1pmZBdXy3gAqoNbYfTqq68uu774sXoAAAAAAIAAEhER8fvf/15EZMtc+fsNsmGWFBfYfSH7J/niaXm8lZw7LSLSd6KIHDhnDUrTC3QvzAvAA9wKoy1atCh7gv7i4+kBAAAAAAACy6OPPnrFFVeIiJz4Rj6YKI81l3mPOo+b/5Vlyf4V8tbt8kQrWfK85KSLiHQcIm37OX99W4Z1x2pdN708O4CqcCuMish9993nvNi2bduxY8fcngcAAAAAAMAHmjZtevDgwVmzZnXt2lVEpPCcrHpd/tpBXk6WXV9I3hlZ8Zo8dY28Olh2fyWmIWqIdBkhjy6XKQtEUcrus/iEdd96g7eNAv5PsSy3/lbNz89v37798ePHRWTkyJGffvqphwaD/4qLi8vKyhKRzMzM2NhYX42Rk5NTXFwcHx/vqwEAlMeyrPT09Ojo6IiICF/PAuBSeXl5+fn5CQkJvh4EwGWkp6eHh4dHR0f7ehAAsmPHjrfffnvevHkXnztdJjyuUeFN98vND0jdcv+V+pfrHM9er1bnjADc5e6O0cjIyI8//jgsLExE5s+fP23aNA8MBQAAAAAA4Dtdu3adNWvWTz/99NJLL7Vs2dL5oaIo/fr1mz9/fvbPx0dMfdqmiorI/35jvrqPJ+oBv+bujlGn1atX/+53v3PuIrz99tunT59+4a0cCEbsGAVgjx2jgD9jxyjgz9gxCvgn0zQXL1789ddfjxo16pprrnF+WKRL4jJ9Y7pdVHEo8u++6u9auLspDUA1cTeMHj58ODc3V0R++OGHiRMnZmdni4imaSkpKX379m3Tpk1MTExISEjFb9ilSxd35oEXEEYB2COMAv6MMAr4M8Io4LcKCwtzcnLi4+NV9den43NKpPdifU+2XVep5ZBFSVpiY8VmDQBf0dz8/uTJk1euXHnJh7quL1q0aNGiRVW4oWmaisI/LwAAAAAAgF+rU0uWJKk9FhnH88ttoyWm3L5SXztY6xxH6wD8Dtu5AQAAAAAAqqJxhLI0WY0JtVuTVyrJy/RDORxTD/gdwigAAAAAAEAVtaurpCZrEbZP5J45L4PSjF8uc749AF8ijAIAAAAAAFTdDfWVT/prmm1iOZprJabqOSXemglABbj7jtG33nrLefiSp/CCUQAAAAAAEFgGN1Vm91LvWWvYPDC/N9savkJPTdZC1fIXAfAid8Noq1atPDIHAAAAAABA4BrT0nEiX/7ytWGzZs1p6971xkd9VAe7wgA/wKP0AAAAAAAAHvDkdY5H2rsoLfOOmlO32MVTAF5DGAUAAAAAAPCMl7urd7d0EVveOmC+uMf0zjwAbBBGAQAAAAAAPEMRea+XmtjYxaPyT+wwZh2ijQI+RhgFAAAAAADwmBCHfDZA6xxn10YtkfEbjC+O00YBXyKMAgAAAAAAeFJUiCxL1lrXsWujhiV3rjE2/WJzjj2A6uXuqfSXVVBQsG3bti1btpw8efLs2bPZ2dki0qNHj2nTplXHbwcAAAAAAOBX6odJarLa4ys9vajcNUW6DFuubxiqXV2XU+oBH/BwGN29e/fLL7/86aeflpSUXPJLUVFR/71+9erVzz//vPO6ffv2r7zyimfnAQAAAAAA8IkWUUpaitZ7sX7u0kbyq6xiSUw1Ng1Vr4ikjQLe5rFH6YuKisaPH9+5c+e5c+f+dxUtT/fu3ffs2bNy5cqVK1e+/vrrp0+f9tQ8AAAAAAAAvnVtjPL5QC1UtVvzU4E1KM3ILvbWTAD+wzNhND09/YYbbpg5c2ZlvxgeHj558mTntWEYH3/8sUfmAQAAAAAA8Ad9E5Q5vVWH7X7Q/WetwWl6oe6tmQCIiEfCaG5ubkpKyr59+35zX4fjmmuuSU5Orl+/vv3X77zzzrLrpUuXuj8PAAAAAACA/xjVwvH6jba7RkW2Zlh3rDZ0jqkHvMgDYfShhx765ptvyn5s2rTp66+/fubMmX379qWmprZr187+661bt7722mud15s3by4qKv+lxAAAAAAAAAFocjvH4x1dRJhFJ8zJmw3vzANA3A+je/bs+fDDD8t+HDJkyN69ex988MGYmBjnJ4ri+uXB/fv3d16cP39+9+7dbo4EAAAAAADgb57rqt7fxkWHmXnQfHonbRTwEnfD6GuvvWaaF/Z59+7d+7PPPqtbt25lb9KpU6ey64MHD7o5EgAAAAAAgL9RRGb0VIdf6SLFPLPb/Od+nqgHvMGtMGpZVmpqqvM6JCRkxowZoaGhl6ypyI7R9u3bl10fPnzYnZEAAAAAAAD8k6rIR33Ung1dpJI/bDXmH6ONAtXOrTB68ODB9PR053W/fv3atGlTtfvExsaWXWdlZbkzEgAAAAAAgN+qrckXA7Wr69q1UdOSMWuMFacsr00F1ExuhdHTp0+XXffu3bvK97n46fvc3Fx3RgIAAAAAAPBnsaGyIkW9ItKujZaYcvtKfXcWbRSoRm6F0TNnzpRdN2zY8LJrKvIova7rZddlbywFAAAAAAAISo0jlNRkNebS9xH+Rm6pJC/TD+fQRoHq4lYYdTh+/bphVP3QtMzMzLLruLg4d0YCAAAAAADwf+3qKkuTtAjNbk1GkaSkGb8UeWsmoIZxK4zGx8eXXWdkZFx2TUV2jF58Ev3F7xsFAAAAAAAIVt3ilXn9NM22zRzNtYak6fml3poJqEk8Fka3b99e5fusW7eu7LpFixbujAQAAAAAABAohlyhzOql2u8p+zrTGrZCL676k7oALs+tMNq6deuyDZ6rV6/Oycn57zUud4wWFRXNnTu37Me+ffu6MxIAAAAAAEAAubul45kuqv2a1T9bY9cbJq8bBTzKrTCqqmpiYqLzOi8v77XXXqvCTV599dWyx/BbtGhx5ZVXujMSAAAAAABAYHmqk+Ph9i4Szb+Pmg9tYdco4EluhVERGTVqVNn1s88+u2nTpksW2O8YXbdu3dNPP13247hx49ycBwAAAAAAIOC83E0d2dxFpXnzgPnSt6Z35gFqAnfD6C233NKtWzfndWlpaXJy8sKFCyv43Tlz5iQnJ5eWXniBcGxs7JQpU9ycBwAAAAAAIOA4FJnbVx3Y2MULCR/bZsw+RBsFPMPdMKooyvTp0zVNc/6Yn58/YsSIlJSUJUuWFBcXy+V2jObn53/++ec33njjvffee/78+bLPn3322aioKDfnAQAAAAAACES1HPLZAK1TrF0btUQmbDRST/K2UcAD3A2jItKjR4+33nrr4k+WLVs2ZMiQmJiYzp0779q1y/nht99+e9ddd3Xv3j0uLu62227bunXrxV+59957J06c6P4wAAAAAAAAASo6RNJStFZ17NpoqSm3r9I3/0IbBdyleeQu48aNy8zMfOqpp0zz1+3chYWFu3fvLvvxyJEjR44cuezXb7nllrffftsjkwAAAAAAAASu+mGSmqT2WKT/UlTumkJdblmubxyqta3r4tF7ADY8sGPU6YknnkhLS2vYsGHlfnuH4+mnn164cGFYWJinJgEAAAAAAAhcV0Uri5O0qBC7NVnFMjDVOFnAvlGg6jwWRkVkwIABBw4ceP755xMSElz/xg7HqFGj9uzZM23aNIfDk2MAAAAAAAAEtOvjlC8GaqGq3ZqfCqxBy4yzxd6aCQg6imV5/s8WSkpK1q5du3Hjxo0bNx47diw7Ozs3N9fhcMTFxcXGxnbs2LF///4DBw5s1qyZx39reEFcXFxWVpaIZGZmxsbG+mqMnJyc4uLi+Ph4Xw0AoDyWZaWnp0dHR0dERPh6FgCXysvLy8/Pr8gfYwPwvvT09PDw8OjoaF8PAuBShYWFOTk58fHxqmqbKj1t3lHzrrWGaVtuejVU0lK0MK/OBQQJz7xj9BK1atVKTExMTEws+0TX9bKT6wEAAAAAAODSHVc5sotlymbDZs36dGvUamNBf1XjcVygkrz0Nw1VFAAAAAAAoLImt3M8dq2LevPVcdM+ngK4LP40AQAAAAAAwH+9cIM6trWLgPPOQfNvu0zvzAMEDcIoAAAAAACA/1JEZvRUBzVV7JdN22W8vp82ClQCYRQAAAAAAMCvhTjks/7aTQ1ctNFHthqfHaONAhVFGAUAAAAAAPB3tTX5KlG7uq5dGzUtuWuNsfKU7TH2AP6DMAoAAAAAABAAYkNleYraNMKujZaYcttK/Zss2ijgGmEUAAAAAAAgMDSJUFKT1XqhdmtyS2VwmvFjHm0UcIEwCgAAAAAAEDCuqacsTdLCNbs1PxdaA1ONjCJvzQQEJsIoAAAAAABAIOker8zrp2q2UedIrjVkuZ5f6q2ZgABEGAUAAAAAAAgwQ69wvHWTar9mxxnr1hV6CcfUA+UgjAIAAAAAAASecW0d0zq7aKOrfrbGrjNMXjcKXA5hFAAAAAAAICA93dnx0DUu2s7HR83HdxjemQcILIRRAAAAAACAQPVKd3Vkcxd55x97zenf8kQ9cCnCKAAAAAAAQKByKDK3rzqgsWK/7E/bjDmHaaPAbxBGAQAAAAAAAlgthywYoHWKtWujlsi4Dcayn3jbKPArwigAAAAAAEBgiw6RJUnalVF2bbTUlNtW6lsyaKPABYRRAAAAAACAgJcQLitS1Aa17dYU6nLLcv37HNooIEIYBQAAAAAACA4to5XFSVpkiN2azPOSssw4XeitmQA/RhgFAAAAAAAIEtfHKV8M1EJVuzXH8qykZfrZYm/NBPgrwigAAAAAAEDw6N9Imd1LddgeU/9ttjV8pX7e8NZMgF8ijAIAAAAAAASV0Vc5XrvRdteoyLrT1h2rDYPXjaIGI4wCAAAAAAAEmwfbOR7t4CL7fHncnLKJXaOouQijAAAAAAAAQegf3dR7W7soPzMOmn/fbXpnHsDfEEYBAAAAAACCkCLyTk81pant20ZF/rrTeOMAbRQ1EWEUAAAAAAAgOIU45LP+2k0NXLTRR7YYC47RRlHjEEYBAAAAAACCVrgmXw7U2ta1a6OGJWPWGhvSOYkJNQthFAAAAAAAIJjFhcnyFLVphF0bPW/I0OX6nmzaKGoQwigAAAAAAECQaxqhLE1W64XarckpkUHLjOP5tFHUFIRRAAAAAACA4Ne+nrJwgBam2q35udAamGpkFHlrJsCnCKMAAAAAAAA1Qu8E5ZN+qmp7FNPhHGvocr1A99ZMgO8QRgEAAAAAAGqKW5o53uxhu2tUZPsZa9QqXeeYegQ7wigAAAAAAEANMqGt46+dXBShJSete9cbvG0UwY0wCgAAAAAAULP8rYs69RoXUeijI+aTOwzvzAP4BGEUAAAAAACgxnmlu3pbcxdd6IU95iv7eKIeQYswCgAAAAAAUOOoiszto/ZqaHsSk8ijW40PDtNGEZwIowAAAAAAADVRmCqLkrTrYu3aqCXywAYj7SdeN4ogRBgFAAAAAACooaJDZEmSemWUXRstNWXkKn1nJm0UwYYwCgAAAAAAUHM1CldWpKjxte3W5JVK8jL9+xzaKIIKYRQAAAAAAKBGaxmtLE7UIkPs1mSel0HLjPQib80EVD/CKAAAAAAAQE3Xtb6ycIBWyzYU/ZBnJabq50q8NRNQzQijAAAAAAAAkAGNlVm9VPtT6r/Ntoav0IsNL40EVCvCKAAAAAAAAERE7mrpeOEG1X7N2tPWHasNg9eNIvARRgEAAAAAAHDBY9c6/tjBRS/64rg5dTO7RhHwCKMAAAAAAAD41Uvd1N+3cpGM3v7OfO4b0zvzANWEMAoAAAAAAIBfKSIzb1aTm9i/blSe+tp473vaKAIYYRQAAAAAAAC/EeKQBQO0G+Pt2qglMmGj8fmPtFEEKsIoAAAAAAAALhWuyVeJWps6dm3UsGTMWmNjOicxISARRgEAAAAAAHAZcWGSmqwmhNutKdJlyHJ9bzZtFIGHMAoAAAAAAIDLax6lpCVrdWvZrckpkUFpxvF82igCDGEUAAAAAAAA5eoQoywcqIWpdmtOFViDlhnZxd6aCfAEwigAAAAAAADs9ElQ5vVTVdtj6g+cswal6QW6t2YC3EYYBQAAAAAAgAvDmjneuMl216jItgxr1Cpd55h6BAjCKAAAAAAAAFybeLXjqU4uUtKSk9bY9QZvG0VAIIwCAAAAAACgQp7poj7QxkVNmnvEfOprwzvzAO4gjAIAAAAAAKBCFJF/9VRHXOkiKD33jfnqPp6oh78jjAIAAAAAAKCiVEXm9lFvbmh7EpPIH7caHx6hjcKvEUYBAAAAAABQCbU1WZSodYyxa6OWyAPrjeWneN0o/BdhFAAAAAAAAJVTp5YsTVabRdq10RJTbl+p78qkjcJPEUYBAAAAAABQaY3ClRUpanxtuzV5pZK8TD+UQxuFPyKMAgAAAAAAoCpa1VEWJWoRmt2aM+clZZmRXuStmYAKI4wCAAAAAACgim6or3zSX9NsC9MPeVZSqn6uxFszARVDGAUAAAAAAEDVDW6qzO6l2p9SvzfbGrFCLza8NBJQEYRRAAAAAAAAuGVMS8f/dlXt16w5bd273jB53Sj8BmEUAAAAAAAA7nqio+MP7V2EpnlHzalb2DUKf0EYBQAAAAAAgAdM767e08pFa3rrgPnCHtM78wD2CKMAAAAAAADwAEXk3ZvVpCb2rxuVJ3cYsw7RRuF7hFEAAAAAAAB4RohD5vfXusTZtVFLZPwGY+GPtFH4GGEUAAAAAAAAHhMVIqnJWus6dm3UsOSutcamXziJCb5EGAUAAAAAAIAn1Q+T1GS1YW27NUW6DFuuf3eONgqfIYwCAAAAAADAw1pEKctTtLq17NZkFcvAVONEPm0UvkEYBQAAAAAAgOd1iFE+H6iFqnZrThVYg9KM7GJvzQRchDAKAAAAAACAatE3QZnTW3XYHlO//6w1KE0v0L01E/AfhFEAAAAAAABUl1EtHG/cZLtrVGRbhnXHal3nmHp4F2EUAAAAAAAA1WjS1Y4nOrpoUItPWPetN3jbKLyJMAoAAAAAAIDq9b9d1fvbuMhQHx4xn95peGceQAijAAAAAAAAqG6KyIye6vArXZSov+82X9vHE/XwEsIoAAAAAAAAqp2qyEd91J4NbU9iEvnjNmP+MdoovIEwCgAAAAAAAG+orcniRO3aGLs2aloyZo2x4hSvG0W1I4wCAAAAAADAS+rUkqVJarNIuzZaYsrtK/XdWbRRVC/CKAAAAAAAALyncYSyNFmNCbVbk1sqSan64RzaKKoRYRQAAAAAAABe1a6usjRJi9Ds1pw5Lylpxi9F3poJNQ9hFAAAAAAAAN7WLV6Z10/TbNPU0VxrSJqeX+qtmVDDEEYBAAAAAADgA0OuUGb1Uu1Pqf860xq2Qi82vDQSahTCKAAAAAAAAHzj7paOv1+v2q9Z/bN173rD5HWj8DTCKAAAAAAAAHzmL9c5HmnvolDNO2o+tIVdo/Awwld5onUAACAASURBVCgAAAAAAAB8aXo39XctXESqNw+Y/9hremce1BCEUQAAAAAAAPiSQ5EP+6iJje1fNyp/3m7MPkQbhccQRgEAAAAAAOBjtRzy2QCtc5xdG7VEJmw0Uk/ytlF4BmEUAAAAAAAAvhcVIsuStdZ17NpoqSm3r9I3/0IbhQcQRgEAAAAAAOAX6ofJ0iS1QW27NYW63LJcP3iONgp3EUYBAAAAAADgL66KVpanaHVq2a3JKpaBqcbJAtoo3EIYBQAAAAAAgB+5NkZZOFALVe3W/FRgpSwzzhZ7ayYEI8IoAAAAAAAA/EvfBOX9XqrD9pj6/WetQWl6oe6tmRB0CKMAAAAAAADwO3dc5Xj9RttdoyJbM6w7Vhu66Z2JEGwIowAAAAAAAPBHk9s5/tzRRbxadMKcstnwzjwIMoRRAAAAAAAA+Knnu6r3tXbRr945aE7bRRtFpRFGAQAAAAAA4KcUkXduVm9t5iJh/W2X+c/9PFGPyiGMAgAAAAAAwH+pinzcV+3RwPYkJpE/bDU+O0YbRSUQRgEAAAAAAODXamvyZaJ2dV27NmpactcaY+Upy2tTIdARRgEAAAAAAODvYkNleYp6RaRdGy0x5baV+jdZtFFUCGEUAAAAAAAAAaBJhLI0SY0JtVuTWyqD04wf82ijcI0wCgAAAAAAgMBwTT1lSZIWrtmt+bnQGphq/FLkrZkQsAijAAAAAAAACBjd45V5/VTNtmkdybWGLtfzS701EwITYRQAAAAAAACBZOgVjrduUu3X7Dhj3bpCL+GYepSPMAoAAAAAAIAAM66t429dXLTRVT9bY9cZJq8bRTkIowAAAAAAAAg8f+3keOgaF2nr46Pmn7cb3pkHAYcwCgAAAAAAgID0Snd1ZHMXdeulb83p3/JEPS6DMAoAAAAAAICA5FBkbl91YGPFftmfthnvH6KN4lKEUQAAAAAAAASqWg75bIDWKdaujVoi4zcaqSd52yh+gzAKAAAAAACAABYdIsuStVZ17NpoqSm3r9K3ZNBG8SvCKAAAAAAAAAJbfG1JTVIb1LZbU6jLLcv1g+doo7iAMAoAAAAAAICAd1W0sjhJiwyxW5N5XhJTjZMFtFGIEEYBAAAAAAAQHK6PU74cqIWqdmtOFliDlhlni701E/wYYRQAAAAAAABBol8jZXYv1WF7TP2+s9bwlfp5w1szwV8RRgEAAAAAABA8Rl/l+OeNtrtGRdadtkatNgweqa/ZCKMAAAAAAAAIKlPaOf5fBxfV66vj5pRN7Bqt0QijAAAAAAAACDb/100d29pF+Jpx0Hxmt+mdeeCHCKMAAAAAAAAINorIjJ5qSlPbt42KPL3TeOMAbbSGIowCAAAAAAAgCIU45LP+2k0NXLTRR7YYC47RRmsiwigAAAAAAACCU7gmXyVqbevatVHDkjFrjQ3pnMRU4xBGAQAAAAAAELRiQ2VFito0wq6Nnjdk6HL9myzaaM1CGAUAAAAAAEAwaxKhLE1W64XarckpkcFpxo95tNEahDAKAAAAAACAINe+nvLFQC1MtVvzc6E1MNXIKPLWTPA1wigAAAAAAACCX6+Gyif9VM02hh3JtYYs1/NLvTUTfIowCgAAAAAAgBrhlmaON2+y3TUqsuOMNXylXsIx9TUAYRQAAAAAAAA1xfi2jqc7uwhiK09Z9603eNto0COMAgAAAAAAoAaZ1lmdeo2LJvbREfOJHYZ35oGvEEYBAAAAAABQs7zaXb29uYss9uIe8+VveaI+mBFGAQAAAAAAULM4FPmorzqgsWK/7P9tM+Ycpo0GLcIoAAAAAAAAapxaDlkwQLsu1q6NWiLjNhhpP/G60eBEGAUAAAAAAEBNFB0iS5LUK6Ps2mipKSNW6lsyaKNBiDAKAAAAAACAGqpRuLIiRY2vbbemUJdbluvf59BGgw1hFAAAAAAAADVXy2hlcaIWGWK3JvO8pCwzThd6ayZ4BWEUAAAAAAAANVrX+soXA7Vatp3sWJ6VtEw/V+KtmVD9CKMAAAAAAACo6fo3Umb3Vh22x9R/m20NX6GfN7w1E6oZYRQAAAAAAACQO69yvNBVtV+z9rR1x2rD4HWjQYEwCgAAAAAAAIiI/Olax6MdXOSyL4+bD25m12gwIIwCAAAAAAAAF/yjm/r7Vi6K2b++M//3G9M786D6EEYBAAAAAACACxSRmTeryU1s3zYq8j9fG+9+TxsNbIRRAAAAAAAA4FchDlkwQLsx3q6NWiITNxqf/0gbDWCEUQAAAAAAAOA3wjX5KlFrU8eujRqWjFlrbEjnJKZARRgFAAAAAAAALhUXJqnJakK43ZoiXYYu1/dk00YDEmEUAAAAAAAAuIzmUUpaslYv1G5NTokMTjOO59NGAw9hFAAAAAAAALi8DjHKwgFamGq35lSBNTDVOHPeWzPBQwijAAAAAAAAQLl6Jyjz+qmq7TH1h3OsIWl6ge6tmeAJhFEAAAAAAADAzrBmjjd72O4aFdl+xhq1Stc5pj5wEEYBAAAAAAAAFya0dfxPJxclbclJa+x6g7eNBgrCKAAAAAAAAODaM13UB9u5iGlzj5h/2WF4Zx64iTAKAAAAAAAAVMirN6q3NXfR057fY76yjyfqAwBhFAAAAAAAAKgQVZEPe6s3N7Q9iUnk0a3Gh0doo/6OMAoAAAAAAABUVG1NFiVqHWPs2qglcv96I+0nXjfq1wijAAAAAAAAQCXUqSVLk9VmkXZttNSUkav0XZm0Uf9FGAUAAAAAAAAqp1G4siJFja9ttyavVJKX6YdyaKN+ijAKAAAAAAAAVFqrOsqiRC1Cs1tz5rykLDPSi7w1EyqDMAoAAAAAAABUxQ31lU/6a5ptYPshz0pK1c+VeGsmVBhhFAAAAAAAAKiiwU2V93up9qfU7822RqzQiw0vjYQKIowCAAAAAAAAVXdXS8dzXVX7NWtOW79fZ5i8btSfEEYBAAAAAAAAtzze0fGH9i462yc/mA9uZteoHyGMAgAAAAAAAO6a3l29p5WL1Pb2d+bze0zvzAOXCKMAAAAAAACAuxSRd29Wk5rYv25U/rLDeO972qhfIIwCAAAAAAAAHhDikPn9tS5xdm3UEpmw0Vj4I23U9wijAAAAAAAAgGdEhciyZK1NHbs2alhy11pjYzonMfkYYRQAAAAAAADwmLgwWZqsNqxtt6ZIlyHL9b3ZtFFfIowCAAAAAAAAntQiSlmeotWtZbcmp0QGpRkn8mmjPkMYBQAAAAAAADysQ4yycKAWqtqtOVVgpSwzsou9NRN+izAKAAAAAAAAeF6fBGVeP1W1Pab+wDlrUJpeoHtrJlyEMAoAAAAAAABUi1ubOV6/yXbXqMi2DOuO1brOMfVeRxgNQmf/o7Cw0NezAAAAAAAA1GiTrnY8eZ2LBLf4hHXfeoO3jXoZYTTYvP/++zH/8cQTT/h6HAAAAAAAgJru2evV+9u4qHAfHjH/utPwzjxwIowGlfT09EcffdTXUwAAAAAAAOBXisiMnuqIK12EuGd3m6/t44l67yGMBpXJkydnZ2cnJCT4ehAAAAAAAAD8SlVkbh+1Z0Pbk5hE/rjN+PQH2qiXEEaDx7x58xYuXBgdHf3cc8/5ehYAAAAAAAD8Rm1NFidq18bYtVHTkrvXGitO8bpRbyCMBonMzMyHH35YRJ5//vkmTZr4ehwAAAAAAABcqk4tWZqkNou0a6Mlpty+Ut+VSRutdoTRIDF16tSMjIzu3btPnDjR17MAAAAAAADg8hpHKEuT1ZhQuzW5pZK8TD+cQxutXoTRYLB48eJ58+bVqlXrvffeczj43xQAAAAAAMB/taurLE3SIjS7NWfOS0qa8UuRt2aqkYhoAS8nJ8e5S/TJJ59s166dr8cBAAAAAACAC93ilU/6a5ptmTuaaw1O0/NKvTVTzUMYDXiPPPLIqVOn2rZt+/jjj/t6FgAAAAAAAFTI4KbK7F6q/Sn1OzOtW1foxYaXRqppCKOBbdWqVXPmzHE4HO+++25oqO3bKQAAAAAAAOBPxrR0PHu9ar9m9c/WvesNk9eNVgPblxmgemRlZX333XeV/VadOnU6dOhw8Se5ubn33XefZVkPPvhgjx49PDcgAAAAAAAAvOHJ6xxnzluv7jNt1sw7asaEyps3uUioqCzCqA+sWbNm5MiRlf1Wr1691q1bd/Enf/7zn0+cONGoUaO///3vnpsOAAAAAAAA3vNydzXrvHx4xK6NvnXAbBapPHYtD397Ev/XDFRr166dMWOGiLz99tt16tTx9TgAAAAAAACoCkXk3V5qYmP7143K49uNWYfs4ikqix2jPpCUlLR///7KfisiIuLiH5955hnLstq2bVtcXDx//vyLf+nbb791Xhw+fNj5Sy1btuzUqZMbIwMAAAAAAKC61HLIZwO0Pkv0XZnlvkzUEhm/wYgJlVubsdPRMwijPhAVFdWuXTs3b1JcXCwiBw8e/N3vflfemtTU1NTUVBGZOnUqYRQAAAAAAMBvRYXIsmSt5yL9UE65bdSw5M41xooUpUcDF9tLURGE0d84d+7czp07s7OznT926dKlRYsWlbrD3r17582bt3///oyMjKioqCZNmqSkpAwdOjQsLKwa5gUAAAAAAECQqB8mqclqj6/09KJy1xTpMmy5vmGodnVd2qi7anoYLSws3LZt29dff71z586dO3ceOXLk4l+dMWPG+PHjK3irjIyMcePGffXVV5d8Pnv27IYNG86aNSslJcUzQ4uIyLJly3Rdv+wvrVu3bvjw4SIyfvz4F154QURCQ0M9+FsDAAAAAACgOrSIUtJStN6L9XMl5a7JKpbEVGPTUPWKSNqoW2p6GF25cuWwYcPcv8/p06e7d+9+4sSJy/5qenr64MGDZ8yYMW7cOPd/L6eoqKjyfikyMtJ5ERYWVq9ePU/9jgAAAAAAAKhu18Yonw/UUpbpxUa5a34qsAalGRuGaPXYC+cG3tV6qejo6Mp+pbS0dNiwYc4qqijK5MmTv/vuu9LS0qysrDlz5jRp0kRELMuaMmXKhg0bPD8xAAAAAAAAgkjfBOX9XqrDdj/o/rPWoDS98PKPE6NCCKMSHR3do0ePhx56aM6cOfv27Tt69Ghl7/Dee+/t2LHDef3qq6+++eabbdu21TQtJibmnnvu2bJlS+PGjUWktLT04YcftqxyX6ALAAAAAAAAiMgdVzlev1G1X7M1w7pjtaGb3pkoCNX0R+lTUlLOnTunKL8W+KysrErdQdf1Z5991nndv3//qVOnXrKgSZMmr7/++ogRI0Rk9+7dX3zxhfMFoAAAAAAAAEB5JrdznCywXthjFz4XnTAnb5Z3erpIqLismr5jNCQk5OIqWgXr168/deqU8/rRRx+97N1uvfXWVq1aOa/nzZvnzm9XEQMGDLAsy7Ks1157rbp/LwAAAAAAAFST57qq97V2ke9mHjSf3ln+60hRvpq+Y9R9ZcfQ16lTJzEx8bJrFEW57bbbnAfEp6amFhcXB/Qx8aWlpc6L2267LSQkxH5xWFhYnz59Hn300eqfCwAAAAAAIKgoIu/crJ4tkYU/2u0bfWa3GRumPHRNTd8BWVmEUXdt377dedG9e3dVLXffcs+ePZ0XeXl5Bw4c6NSpkzeGqx4FBQXOi3Xr1lVk/eLFizt37ty2bVvPjpGbm1tSUmIY/JEI4Hcsy8rIyCgsLAwPD/f1LAAulZ+fX/avcgD+JiMjo3bt2vxNCvihoqKi3NxcwzBs/sMfqD7T2yo/5UTvOGu3O+0PW42w4rNDE0q8NlU1iYiIqMLR6FVDGHXXwYMHnRcdOnSwWda+ffuy6++++y6gw6iqqpXKkTExMS1atIiMjPTsGKZpFhcXe/y2ANxnWVZBQUFkZCRhFPBb/AsU8E8FBQXh4eH8HQr4Ied/CEdGRhJG4RORIvP7mEmrrO9zy30hpGnJ1G+iG0aX9m0Q2HvIXD6d7EGEUbdkZGScPXvWed2kSROblY0bN9Y0Tdd1ETl06JA3hqs2UVFRziOqFixYUJGE36FDhwYNGnh8DNM0Q0JCoqKiPH5nAG4qC6MRERG+ngXA5fEvUMA/OcMof4cCfsgZRqOiogij8JUokVWDrZsWGSfyrfLWlJhy96aQtUNqd4p160CdmoMw6pZz586VXcfHx9us1DQtJiYmIyNDRMpaaqDr3bt3bGysr6cAAAAAAAAIfo0jlKVJaq/FenZxuWtyS2Vwmr5pqNY8ijbqGu9kdUt+fn7Zde3ate0Xly24+FsAAAAAAABARVxTT1mapEXYbnQ8XSgDU41firw1UyAjjLqlsLCw7NrlQfNhYWHOC16mDgAAAAAAgCroFq/8u5+q2Sa9o7nWkDQ9v9RbMwUswqhbLo6hzveH2igpuXAuWFkhBQAAAAAAACpl6BWOWb1U+0flv860hq3QiwP7HKZqRxh1y8XnihQVudijXLaAUyYBAAAAAABQZXe3dPyti4ujwFb/bI1db5jlntUEwqh7Lj6T3f5IJcuycnJynNecMgkAAAAAAAB3/E8nx8PtXZS9fx81H9rCrtFyEUbdkpCQUPZc/MmTJ21WZmRklO0YbdGiRbVPBgAAAAAAgKD2cjd1ZHMXce/NA+ZL35remSfgEEbdoqpq69atndeHDx+2WXnxr1599dXVOxYAAAAAAACCnUORuX3VgY3tXzcqj20z3j9EG70Mwqi7Onbs6LzYvHmzzbJNmzY5LzRNa9++fbWPBQAAAAAAgGBXyyGfDdA6xdq1UUtk/EYj9SRvG70UYdRdQ4YMcV789NNPe/fuLW/Z0qVLnRc9e/asW7euNyYDAAAAAABAsIsOkbQUrVUduzZaasrtq/TNv9BGf4Mw6q7k5OTatWs7r99+++3Lrtm/f/+GDRuc1yNGjPDSZAAAAAAAAKgB6odJapLaoLbdmkJdhq3QD56jjf6KMOqu6OjoSZMmOa9nzpy5devWSxbouj5x4kTLskQkPj5+7Nix3h4RAAAAAAAAQe2qaGVxkhYZYrcm87wMTDVOFtBGL9B8PYDvff7555mZmWU/FhQUlF2XbfMsM3r06KioqEs+fOKJJ95///3s7GzDMFJSUmbPnj1s2DBFUUTk5MmTEydO3Lhxo3PlX//618jIyGr5ywAAAAAAAEANdn2c8uVAbVCaXmyUu+anAmvQMmP9EK1eqBcn81eKcydjTXb99dfv3Lmzgot/+OGH5s2b//fn69atS0xMLCkpcf7YtGnTVq1a5eTk7N27t7S01PnhPffc8/777zuDaUCLi4vLysoSkczMzNjYWF+NkZOTU1xcHB8f76sBAJTHsqz09PTo6OiIiAhfzwLgUnl5efn5+QkJCb4eBMBlpKenh4eHR0dH+3oQAJcqLCzMycmJj49XVdXXswAuzDtq3rXWMG2DX6+GSlqKFlbj/9+ZR+k9o3fv3kuWLGncuLHzx5MnT65evXrnzp3OKupwOP74xz/OnDkzCKooAAAAAAAA/NYdVzn+eaOL5Lk+3Rq12tBN70zkv3iUXoYPH96lS5cKLv7v5+jLDBgw4Ntvv509e/Ynn3yyf//+goICTdMaNWqUkpJy//33d+3a1UPzAgAAAAAAAOWa0s5xPN/6x1678PnVcXPKZpnRUxWRU6dOzZw5c86cOYqi3HvvvQ888ECjRo28Nawv8Sh9dcnLywsPDw/KPfY8Sg/AHo/SA/6MR+kBf8aj9IDf4lF6BBxL5P71xuxDtptCLev35ob8FW9/+eWXuq6XfRwSEnLrrbdOmjSpT58+wf30MztGq4vN3lIAAAAAAACg+igiM3qq6UVW6snL7YksypHNH8raGXPSv7/wiUOVjkPEMmXv0tLS0vnz58+fP79du3aTJk265557gvUP7XjHKAAAAAAAABBsQhzyWX/tpga/3fJZeFY+nCx/ulLm/VGcVbROQxn8pLxwRCbPlykL5PlDMvgJiW4gIgcOHJg6dWrjxo0nTpx47tw5X/xFVC92jAIAAAAAAABBKFyTrxK1nov0g+f+s2901n2yZ8mF69Y3S5+J0mmYaLV+/U5MU7n1bzLkL7JroaydIYc35ufnz5gxIyMj4/PPP/f2X0A1Y8coAAAAAAAAEJxiQ2VFito0QhEROXNM9qaKiHQaJtN2y59WSdeRv6miZbRacsMoeWy1TNsl1w0Vka+++ur48ePenNwLCKMAAAAAAABA0GoSoaQmq/VCRda9I5YpWi25+01pfE2Fvty4vYx5U7RahmG888471TyptxFGAQAAAAAAgGB2TT3ly76GsvkDEZHrb5eo+Ep8uU5D6TRMRGbOnFlcXFw9A/oGYRQAAAAAAAAIcj+s+sTKOyMi0mdCpb/cZ4KInDlzZsGCBZ6ey5cIowAAAAAAAECQe+utt0REml4rV91Y6S+37iWN2/96k2BBGAUAAAAAAACC2e7du7dv3y4i0mdiFW/Re5yIbNq0adeuXZ6by8cIowAAAAAAAEAwe+ONN0REwqLkhlFVvMWNY6R2tIgE0xFMhFEAAAAAAAAgaOXl5c2bN09E5KZ7JCyqincJi5Juo0Xko48+Kiws9Nx0vkQYBQAAAAAAAIJWYWHhhZRZv7lbN4prLiIFBQWEUQAAAAAAAAD+rkGDBjfffLOIyPp3xbKqeBfLkg3viUjfvn3j4uI8N50vEUYBAAAAAACAYDZp0iQRkdMH5ft1VbzFgZXyy+FfbxUUCKMAAAAAAABAMLv99tsbNWokIrJuRhVvsW6GiCQkJAwbNsxzc/kYYRQAAAAAAAAIZiEhIWPHjhUR2fWlnPu50t/P/kn2LBWR8ePHh4SEeHo6nyGMAgAAAAAAAEFuwoQJmqaJqTtfFVo5698VU9c0bdy4cdUwms8QRgEAAAAAAIAg17Rp0yFDhoiIrHtXjNJKfNMolU2zRWT48OGNGzeunul8gzAKAAAAAAAABL8L5yblnJbNH1biaxtny7nTIjJx4sTqmctnCKMAAAAAAABA8Bs4cGCrVq1ERD6YKM90lQ3vSXFBuauL82XdTHnmepn7oIi0bdu2b9++3prUSwijAAAAAAAAQPBTFOVf//pXbGysiMjJPfLBJPnTlTLvj/+/vXuPi6raGz++Z0BCuQlC4IWb5C3MAPOaR0NFU/OS9WRpejTzkpe8ncp8no69ylKP2cmO+Zh6TH20KBW1UjADzQveFfMCiBoICAOD3O8M8/tj/579TDAMcwFmnPm8/1p7Zu31XfBis2Z/Z621hezkP9XLShK+Wyy8Eyjsni+k/y4Igqen5+bNm2UymTl63Yzszd0BAAAAAAAAAC1h6NChGRkZkZGRmzZtunjxolBeKMRuFOK+ErqHC8/NEdRq4cRmIfk3Qa0W6/fr12/evHmvvPKKo6OjeXveHEiMAgAAAAAAALbC0dFx+vTp06dPv3Tp0qZNmyIjI8vLy4XEOCExTqrTpk2b1157bd68eWFhYWbsanNjKT0AAAAAAABgc5555pnt27dnZGSsX7/+/+89Kghdu3b9/PPPMzMzt23bZt1ZUYHEKB5d6enp165dM3cvAGhRW1t78eJFpVJp7o4A0EKhUFy+fFn9v2ujAFiUK1euPHjwwNy9AKBFQUHB+fPna2pqzN0RoOl5eHgsXbo0OTn57Nmz586dS0pKWrJkSdu2bc3dr5ZAYhSPpJSUlD59+owYMWLz5s3m7guAuv72t7+NHz++X79+xcXF5u4LgD9RKpV9+/YdO3bsypUrzd0XAHWtW7duzJgxffr0ycjIMHdfAPxJZWXlgAEDXnzxxXnz5pm7L0Bzkclk/fv379evn/U9YUkHEqN4JF26dKmiokIQhNOnT5u7LwDqEi9MhUKRkpJi7r4A+JObN2/m5+cLDKCARRIvzJKSkoSEBHP3BcCf3L9///79+4IgnDlzxtx9AdCUSIzikSQtAGQlIGCBuEIBi8XlCVgyrlDAYnF5AtaKxCgAAAAAAAAAm0NiFAAAAAAAAIDNITEKAAAAAAAAwOaQGAUAAAAAAABgc0iMAgAAAAAAALA5JEYBAAAAAAAA2BwSowAAAAAAAABsDolRAAAAAAAAADaHxCgAAAAAAAAAm0NiFAAAAAAAAIDNsTd3B/AIS0tLKywsNEvonJwcsVBSUnLv3j2z9AFAQyorK8VCZmamu7u7eTsDQFNWVpZYKC8vZwAFLE1ZWZlYyM7O5goFLEp6erpYqKqq4vIEmlubNm18fHxaJpZMrVa3TCRYjdatW1dUVJi7FwAAAAAAALBCY8eO/fHHH1sgEIlRGMze3l6lUpm7FwAAAAAAALBCcrm8vLzcwcGhuQOxlB4Gmzlz5o4dO5ycnMy4QlatVufk5NTU1Hh5ebXAdQLAIOXl5Xl5eY6Ojp6enubuC4C6cnNzKysrPT09HR0dzd0XAH9SWVmZm5vr4ODg5eUlk8nM3R0Af5KXl1dWVubh4eHk5GTuvgBWTi6Xz5gxo2WyPcwYBQAAAAAAAGBzeCo9AAAAAAAAAJtDYhQAAAAAAACAzSExCgAAAAAAAMDmkBgFAAAAAAAAYHNIjAIAAAAAAACwOSRGAQAAAAAAANgcEqMAAAAAAAAAbA6JUQAAAAAAAAA2h8QoAAAAAAAAAJtDYhQAAAAAAACAzSExCgAAAAAAAMDmkBgFAAAAAAAAYHNIjAIAAAAAAACwOSRGAQAAAAAAANgcEqMAAAAAAAAAbA6JUQAAAAAAAAA2h8QoAAAAAAAAAJtjb+4OAI3Lzc3Nzs52c3Pz8fFxcHBopigKhUKhUHh4eHh7e7dq1aqZogDWpLS0NCsrq7Cw0N3d3dvb28nJydw9AmAGSqUyOzvbxcXFx8fnscceM3d3AAC2S6VSZWRk5OfnOzo6tmvXzsvLy7h21Gq1QqHIyclp166dt7e3vX2zZE5UKpVCoVAqlV5eXt7e3nI5E9cAMyAximZRVFR05cqVy5cvX7p0SalUii8uXrx4zJgxFX5EXQAAIABJREFU+jdy7969L774IjIyMjc3V3zFzs5u2LBhs2bNevnll5uqq7du3dqwYcPevXvz8/PFV1q1avX888/PnTt39OjRTRUFsCj5+fmXL18Wr9CCggLxxb///e9/+ctfGj23rKzsyJEjR48ePXny5J07d2pra8XX5XL5k08+OW7cuLlz5/r6+prYw0mTJj18+LDRau3bt9+1a5eJsQCLUlpampCQIF6eWVlZ4otTp06dNm1ao+euXr06Li5Onyi7d+/29vY2qaOCkJqaKg7TCoVCfEUulw8dOvTNN9+cNGmSiY0Dlqm4uFj6iCt9QJ0/f/6ECRN0n6j/5SmJjo42Ihczb968lJSURqs5ODgcPnzY0MYBy6RWq+Pj448cORIbG/v777+Xl5dLb3Xo0GHo0KFz58599tln9WztypUrX375ZVRUVHFxsfiKo6PjCy+8MG/evPDw8Kbq85kzZ7766quDBw9KvXVycpowYcLChQv79evXVFEA6EUNNJ3ExMTJkyd369ZN65ddmzdv1r+pXbt2ubi4NPR3O3HixMLCQtM7/OWXXzo6OjYUZfr06eXl5aZHASzE5cuXX3nllaCgIK1/8Hv37m20hYULF+q4MEWtW7f+5z//aWJX27dvrzuKqHPnziYGAixEZmbmX//61549e9rZ2dX/U1+5cqU+jUyePFmfC0cQhNTUVBM7/O2337q6ujbU/rhx4/Lz800MAViOlJSU119/vXv37lo/4m7YsKHRFqZMmaLn5SmSy+VVVVVGdLV37976tO/o6GhE44AF+v777wMCAhr9m3/ttdf0GZhWrVrV0NpBmUy2YMGC6upqEzusUqnefffdhiaH2tnZ/ed//mdtba2JUQDojxmjaEopKSnffvut6e1ERUVNnz5dnIkmk8kGDRrUpUuXwsLC48ePi5PIoqKiSktLf/75Z1MWNWzduvXtt98Wy3K5/LnnngsMDMzLy4uLiysqKhIEYceOHRUVFd9++61MJjP9hwLM7tq1az/88IMpLRw6dEj68lwQBBcXFz8/P3d394KCgqSkpJqaGkEQysvLlyxZkpOT8+mnn5raY8BmZGVl7dy509y90NdPP/30+uuvS8P0wIEDu3btWlxcfOLECXGZyI8//vjSSy/FxMSwNQ2sw927d3fv3t2SEcPDw7l8AH2cPn06NTVVOrS3tw8MDPTy8qqurk5KSpI+uH733Xf37t07duyYju/4165d+1//9V9SO+Hh4f7+/tnZ2XFxcWVlZWq1euPGjSqVatOmTaZ0ePny5evWrRPLjz322NChQzt16pSenn78+PHKykqVSvXJJ5/I5fKPPvrIlCgA9EdiFM3F1dU1LCzsySefNHTkSE9PnzZtmni75efnd+DAgbCwMPGt0tLSJUuWbN26VRCEo0ePrl69+oMPPjCuezdv3pw/f75Y7t69+4EDB7p37y4eFhYWzpo1a+/evYIgREZGDh48+K233jIuCmCx3N3de/fuHRAQsG3bNkPP7dSp01//+tcJEyaEhIRIX048fPjwiy++WL16tZgeXb16dXh4eEREhIn9XL9+/ZAhQxp6l90MYZWcnJxCQkJ69+69adMm8YIy1GuvvbZs2TIdFfSclK1VVlbWlClTxGG6Y8eOUVFRffv2Fd8qKyt75513xHE/Li7uo48++vjjj40OBFgmV1fX0NDQp556auPGjfqf9fHHHy9ZskR3nV9++WXFihVi+Y033jC+i4IgCMLy5ct17D3FVoawMm3atHnppZdee+21QYMGSanPmpqa/fv3L1myRNya5vz58ytWrPjXv/6ltYX4+HjpAgwNDd2/f39gYKB4qFQqp06dGhMTIwjCf//3fw8ZMsToHWMOHz4sZUX/8pe/fP/999KI/ODBg1deeeXMmTOCIKxatWrw4MHDhw83LgoAw5h7yiqsysWLF5ctW/btt98mJyeL8//z8vKkPzY9l9K/+eabYn1HR8fExMT6FcaNGydWcHV1zc3NNa6r0lZQbm5uGRkZdd5VqVSDBg0SK7Rv376kpMS4KIBFiYuLe++993744Ye7d++Kr9y+fVu6QvVZSj98+PDdu3fX1NQ0VGHfvn3SDOtBgwYZ3VXpM+LBgweNbgR4hNy5c+ftt9/euXPnjRs3pEtM2uzF0KX0ixcvbr6uzps3T4zi4OBw/fr1+hWkXIyTk1N2dnbz9QRoMVevXl2yZMmePXuSkpJUKpVarS4pKZEGUH2W0utD+ojr5uYmTk8zgrSUftOmTU3SK8DCrVix4oMPPnj48GFDFdLS0jp06CBeF/b29gqFQmu1wYMHi3V8fHyUSmWddysrK3v16iVW6NKli3E7XahUqqeeekpsJCgoqLS0tE6F4uJiKRv7zDPPsKAeaBkkRtG8DE2MKpVKaQLaO++8o7VOamqqtAXbp59+akSvUlJSpNzN2rVrtda5evWq1PMtW7YYEQWwfIYmRvX5fPbiiy+KDcrl8ry8POM6RmIUUFtkYrSgoMDBwUGMsmjRIq11MjIypCXAH374YTP1BDCvJk+MZmdnSxfO/PnzjW6HxChsjT6fTnfs2CFdsDt27Khf4cKFC43e+sXGxkp19u3bZ0RXo6OjpRb279+vtY7mtlfHjx83IgoAQ7GGApbl559/lpYNzp49W2sdf3//kSNHiuUDBw4YEeXQoUNqtVoQhFatWs2YMUNrnZCQEGltoHFRAOujz3670nTs2tpazS2fAFiBI0eOVFVVieWGhumOHTuOGTNGLDOAAnrauXNndXW1WJ45c6Z5OwM8Qgz6dCoIwr179+pXOHjwoFhwcXFp6EmG4eHhXbp0EcvGjW5SlPbt20szxOt39fHHHzclCgBDkRiFZTly5IhYCAoKeuKJJxqqJiVGL126lJOTY2gU6cu60NBQLy+vRqPExcVVVFQYGgWwTe3atZPKXDiAlZGGaV9f3yeffLKhatIAeu3atczMzJboGfCIk2a09erVKzQ01Kx9AayNq6urNCNb66dT6fbw2WefdXJy0tqITCYbMWKEVF+cZ2MQKcrQoUMbeoZwq1athg4dKpalMRdAsyIxCsty48YNsdC/f38d1QYMGCAW1Gq1dIr+rl+/Xqcd3VEqKys1VxwD0EFzlqi0oxMA62DoMC1ojLkAGnL69OnExESxPGvWLPN2BrA+mZmZ0ozs+p9OVSrVrVu3xLLu28OBAweKhYcPHxr6tV9BQcH9+/cNinL37t3S0lKDogAwAolRWJDq6uo7d+6IZR3TRQVBCAoKksrS50g95eXlSZNMNdtp2iiAzdq3b59Y8Pf3DwgIMLG1PXv2PP/884GBgR4eHp07dx48ePC77757+vRpU3sJWLXz589PmjSpR48e7dq18/PzCwsLmz179t69e6XbQuPU1tZKXxMygAJNaPv27WLBwcHh1VdfbZI2Dx8+PHbs2C5dunh4eAQEBPTv33/x4sVHjx41Ypob8KiTPp0KghAeHl7n3Xv37lVWVopl3aNb586dpbKho1tSUpJU1jOKWq1OTk42KAoAI2ifvw2YRVZWlrRzWadOnXTU9PDwcHZ2Fre9T0tLMyiK9E1do1H8/PyksqFRANsUFxf322+/ieXp06eb3uDevXulcn5+/h9//HHq1Kl169YNGDBg69atwcHBpocArM/Zs2fPnj0rlh8+fJienn716tWtW7f6+/t//vnnEydONK7ZnJycsrIysax7AHV2dvbw8Hj48KHAAAo0pqSkRMraTJw40dPTs0maPXz4sFTOz89PS0s7f/78hg0bnnrqqc2bN0tT0gCrV1RU9Nlnn4nl0NBQ6eHykvT0dKncsWNHHU2Zcnto3E1oampqWFiYQYEAGIoZo7Agms/3dHV11V1ZqqB5lj6Ki4v1jOLo6Cg9e9fQKIANKioqmjNnjjgVxdvbe9myZc0X6+zZs3379v3555+bLwRgfdLS0l566aUPPvjAuNNbZpgGbE1kZKT06bQFHrt0/fr155577ptvvmnuQICFWLZsmbTsfe3atfUraN4eurm56WhK813Ns/RhXBTGUKAFkBiFBdH8v+/o6Ki7cuvWreufZTlRAFtTW1s7ZcoUcTcMmUy2ZcsWFxcXUxoMDQ1ds2bNuXPncnNzVSpVUVHRjRs3vvjiC2mfjbKysldffTUhIaEJeg9YC19f36VLlx47diwzM7OysrK8vDwtLW3Pnj1DhgyR6qxatWrLli1GNM4ACjQHaR29r69v/UW+RujRo8eHH3546tQphUJRXV1dUlKSnJz89ddfSxPlqqurZ8+eHRsba3oswMJ9880327ZtE8tz586NiIioX0f/0U0a2oTmvAk1JQoAI7CUHhakpqZGKjf0nD6J9GBBafV9s0aR9p0BoNWiRYuk+ZvvvPPOuHHjTGnt3LlzmsuIBEFwcXEJDg4ODg6eM2fOggUL/v3vfwuCUFpaumjRImnxPmDj1qxZ07FjR7n8T197+/n5TZ48efLkyVu3bn3rrbdUKpUgCO++++7LL7/s4eFhUPstM0wDNiU5OfncuXNieebMmXZ2diY2GBUVVWcAtbe379q1a9euXWfOnPnBBx+sXr1aEISampr58+ffuHGj0WsZeHQdOXJkzpw5YjkkJOTzzz/XWk3/0U0ul8vl8traWsG0m1DdV7pmHxhDgRbAjFFYkDZt2kjliooK3ZXLy8vFgrOzcwtEMXHuG2Dd3n///Y0bN4rlqVOnijddpqhzU6fJ0dFxy5Yto0aNEg9Pnjx54cIFE8MB1sHX17dOVlTTrFmzPvnkE7FcWFgozaDRX8sM04BN2bp1q7gFjVwub5K9uXUMoHZ2dp9++umMGTPEw+TkZHakgRWLjY196aWXxKcOPvHEE9HR0ZozMTXpP7pVVlaKWVHBtJtQ3XNupAHUiCgAjEBiFBZE8/++5niglfT8BycnJ4OiaKY4dUdRq9XS0GhoFMB2rFy5cs2aNWL5xRdf3L59u47UTJOQy+VSREEQYmJimjUcYDWWLFnSvn17sWzEhdMywzRgO2pqavbs2SOWhw8f7u/v3wJBP/30U2k+GgMorFV8fPyECRPEWzlfX99jx475+Pg0VFnz9lAavLQyJWXZMlEAGIHEKCxIu3btpHJWVpaOmtXV1Xl5efXP0ofmysHs7GwdNXNycsQlh0ZEAWzEmjVrPvroI7E8evToyMjIllmU16tXL2lSzK1bt1ogImAFHBwcpO3Vbt68aejpHh4eMplMLOseQGtra3NycsQyAyjQkJ9++km6lN54442WCerj49O7d2+xzAAKq3T+/PlRo0aJu3O2b98+Li4uICBAR33N20OFQqGjpuYtavPdhJoSBYARSIzCgri7uz/++ONiOT09XUfNjIwMaRVD9+7dDYoSGBgoPWv+/v37OmpqvmtoFMAWfPHFF++//75YjoiI2L9/v3RxtQApMZqbm9tiQYFHnTQlLS8vTxpJ9eTs7NyxY0exrHuYzsrKElcvCgygQMPE/bIFQfDw8Bg/fnyLxZX+DzCAwvpcvXp11KhRRUVFgiB4e3vHxsZKz+1sSNeuXaVy890eduvWrQWiADACiVFYFulf/7Vr13RUu3r1qlR+8sknDQphb28vjY6///57M0UBrN62bduWLl0qlgcNGnTgwIFGn1LdtKTtmVoyGws86qQLx97e3ohdL1pgmAZsRHZ29tGjR8XylClTWnIMZQCFtfr9999HjBiRn58vCIKnp+evv/7ao0ePRs9q27attNBez9tDuVyumU7VR2BgoLTJqe4oCQkJYsHZ2blTp04GRQFgBBKjsCyDBg0SCxcvXtSxKfXp06fFQrt27Yz4Gk2KcubMGXHDe91RgoKCdOxKA9ig7du3z5kzR7x8Bg4cGB0d3cLbCKpUqjt37ohlLy+vlgwNPNKSkpLEgnEXjjSAXrlyRcc2o9IA6ubm1rNnTyMCAVbvm2++kZ5S3WLr6EUm/h8ALFNycvLIkSOVSqUgCG3bto2JidF/AJJGN2n80kp6NywsTPNhSvqQy+X9+/fXJ8qpU6fEwrPPPivtYAOg+ZAYhWWRlhGVlZUdOnRIax2VSrVv3z6xPHbsWCM2NJSiZGdnHz9+XGud8vLyn376SSy/+OKLhoYArNiOHTtmzZolLsLt379/TExMy28MHx0dLU4HEAShb9++LRwdeETl5OTExsaKZeMuHGkArays3L9/v9Y6tbW133//vVgeM2YMU9KA+tRq9TfffCOWe/fuHRIS0mKhr1y5kpycLJYZQGE1bt++HR4eLu7d6ebm9ssvv0h76epDGt0SExM1Fz1oysvL+/XXX8WycbeHUpT4+PjU1FStdf74448LFy6YEgWAoUiMwrL06dNH2n5l3bp10rOPNP3P//yPtLXZlClT6lcoLy+P/19aN0EbNmyY9FjeNWvWaJ00+tVXXxUUFAiCIJPJJk+ebNRPA1ih77///s033xSzoqGhoUeOHNF8yKY+iouLpStU997zDcnPz1+2bJlYlsvlo0ePNqIRwNao1eqFCxeWlpaKh2PHjq1fR6VSSZfnvXv36lcICQmRJuB89tln0kaimiIjI6X7Pa3DNICTJ0+mpKSIZf2ni1ZWVkpXqO49ChtSXl4+b9486VDr/wHgkZOSkhIeHi4+s8jV1fXo0aN9+vQxqIUXXnjBzc1NLK9du1ZrnfXr14srGu3t7SdNmlS/Qn5+vnSFihNX63j55Zcfe+wxQRBqa2vXrVunNcqaNWvEj9lt2rQhMQq0EDXQnKRnxwuCsHnzZn1OiYyMlE555513amtrNd+9du2au7u7+O7gwYO1tqD5pN2VK1dqrbNx40apztq1a+u8e+bMGWkLmIkTJ+rTbeBRdPv2belC2Lt3b6P1f/jhB2mO9tNPP61UKo0IevLkSSnol19+Wb/C6NGjf/31V5VKpfX0mzdvas6smTZtmhF9AB4J0p6DDY1lmhYuXLhz587S0lKt7z58+PDVV1+VLpygoKCqqqr61aSJ2IIgzJo1S2tTUVFRUp3FixfXGaZv3rzp6ekpvtu/f//Gf0jg0SQ+8Fq0YcMGQ0+fNm2aeK6jo+PDhw/1PEvaQ0YQhOXLl9evMGnSpEOHDlVXV2s9PTU1dfDgwVILERERhnYbsECpqanS88TatGlz4sQJ49r56KOPpKvj66+/rvNuTEyM9Bl45syZWls4ePCg1MLu3bu11lm0aJFYQS6X79u3r867kZGR0tr59957z7gfBIChZOqGN1gEjDB//nzNVEt1dfVvv/0mlnv06CE9zVa0a9cuaeampLa2dvTo0dJu9KNHj16wYEG3bt0KCgoOHz68fv36wsJCQRCcnJxOnz6tdeXRrVu3goODxfLKlSs//PDD+nWqqqqGDBly7tw58fA//uM/Zs+eHRQUpFQqDxw4sGHDhrKyMkEQPDw8Lly4EBQUZPAvArBIr7/+ukKhkA7Lysri4+PFcq9evR5//HHNygcPHtTcObSkpMTd3V3aEC0sLMzDw0N3uMWLF48ZM6bOi6dOnZJuzL788suFCxfWqSCXy9VqtY+PT0RExNNPP+3n5+fm5lZWVpaWlnbs2LHo6GjpUdpBQUHx8fF1ug08ov7+97+fPXtW85W4uDjxr71z586dO3fWfOuf//xnna3Thg0bFhcX16ZNm+HDh/fu3btLly5ubm61tbUKheL06dP79u2T8jiOjo7Hjh2T9lPTVFBQIH37OGvWrC1bttSvo1arx48fL+02M3LkyLfffrt79+6FhYXR0dGfffaZmF1t3br1yZMnn3nmGeN+G4ClWbRo0a1bt6RDlUolbcfUrVs3X19fzcrbt2+v84qmoqKi9u3bix81p0yZsnv3bj37cPfuXekJosuXL1+9enWdCp06dcrMzPTw8IiIiAgNDQ0MDHRzc6usrExPTz9x4oSYMxVrPv744/Hx8XzEhRUYOXLkL7/8IpZ9fX01H/6uVb9+/VatWlX/9ZKSkgEDBty4cUMQBJlMNm3atOnTpwcGBmZlZf3www9fffVVVVWVIAgdOnS4dOlS/XtYQRAOHTo0YcIEsbx7926tayaUSmXfvn3/+OMPQRDs7Oxmz549ZcqUTp06paen7969e+vWreK436VLlwsXLrRt21b/3wMA45k5MQurY9At0N27d7U2UlhYqHuvJQcHh4MHDzbUB31mjKrV6uzs7C5duuiIYspXjoBlCggI0P8KLSgo0DxX3FzCIPW/b1frMWNUz23me/XqdefOneb6TQEtbty4cfpfXKdOnapz+tChQ/U5sV27dkeOHGmoD/rMGFWr1cXFxbqH+1atWukzCR14hAwcOFD/KzQxMVFHU5s3b5ZqxsbG6t+HRmeM1pmC0JDOnTtfuXLF4F8BYJGee+45/a9NQRDGjBnTUFN//PGH7qfAt23b9vLlyw2drs+MUbVafePGDWlphVbe3t7Jycmm/l4A6I09RmGJXF1d4+PjFy1apPWJDSEhIefPn5f2rjaat7f3pUuX3njjDTs7u/rvPvvss1evXh0yZIiJUQAYauzYsbrnonbq1Gn16tXM5gY0DRkyRPc3H87Ozm+99db169dHjRplYixnZ+dTp04tW7ZM3Cutjl69ep09e/bll182MQpgrbZv3y4WAgICDM3p6Pb88897e3vrqODl5bVixYqEhITQ0NAmjAtYh4CAgISEhEmTJsnlWvIkERER165dCwsLMzFKcHDwtWvXXnjhhfpTAWQy2YQJE65du9a1a1cTowDQH0vp0cQSExPFlUH66Nmzp9Z7KkleXl5UVNStW7cUCoWzs7Ovr++oUaManZRaWVmZlJQkln18fHR/QBQEITs7Oyoq6vbt29nZ2W3btvX393/hhReeeuopPX8K4BFy/fp1cR2QPkJCQjS/NlCpVAkJCQaF8/f3r/+VeGlpqTTnpWPHjlq/M1er1Tdv3jx37tyDBw9yc3OVSqWdnZ27u3tQUFC/fv369OkjbfMEWI27d+/qPy+7W7duzs7O9V/PyMg4ffr0vXv3lEplbm5udXW1u7t7x44d+/TpM3DgwEYflVZbW3v9+nWx3K5dO90TZwRByM/Pj4qKunHjhkKhcHJy8vPzGzlyJM+5hlVKTk7W3FdUt+DgYGmP4DrUavWVK1fEsoeHR2BgoP59qKqqSkxMFMve3t4+Pj4NdfXcuXP3799XKpXibuDu7u7+/v79+/fv27dvQx0DHlG3b98uLi7Wv76bm5u0JUVD0tPTo6Ki7t69q1AoPD09/f39x48f3+gi/aKiInGNvCAI/v7+jS6Ev3fv3oEDB1JTUxUKhbe3d2Bg4MSJEw1a3QWgSZAYBQAAAAAAAGBzWEoPAAAAAAAAwOaQGAUAAAAAAABgc0iMAgAAAAAAALA5JEYBAAAAAAAA2BwSowAAAAAAAABsDolRAAAAAAAAADaHxCgAAAAAAAAAm0NiFAAAAAAAAIDNITEKAAAAAAAAwOaQGAUAAAAAAABgc0iMAgAAAAAAALA5JEYBAAAAAAAA2BwSowAAAAAAAABsDolRAAAAAAAAADaHxCgAAAAAAAAAm0NiFAAAAAAAAIDNITEKAAAAAAAAwOaQGAUAAAAAAABgc0iMAgAAAAAAALA5JEYBAAAAAAAA2BwSowAAAAAAAABsDolRAAAAAAAAADaHxCgAAAAAAAAAm0NiFAAAAAAAAIDNsTd3BwAAAICm8be//a2wsNCUFgYOHDhjxoym6g8AAAAsGYlRAAAAWIndu3crFApTWqiqqrKCxGhGRkZSUpJ0OHz4cDN2BgAAwGKRGAUAAACsyqFDhxYsWCAdqtVqM3YGAADAYrHHKAAAAAAAAACbw4xRAAAAWCFnZ+cPP/zQ0LOCg4OboS8AAACwRCRGAQAAYIVat269bNkyc/cCAAAAloul9AAAAAAAAABsDolRAAAAAAAAADaHpfQAAACA8TIyMh48eJCXl1dSUuLi4uLh4dGjRw8XFxdz9wsAAACNIDEKAAAAGOzIkSP79u07duxYRkZG/Xe7dOkybNiwCRMmREREyOVaFmm9/fbbiYmJYnnUqFFLly7VJ+jChQuTkpIaOmvNmjWxsbGCINTpUkREREMN/vjjj61bt9YnNAAAgPUhMQoAAAAY4Pjx4++///758+d11ElJSUlJSdm8ebO/v39KSkqrVq3qVLh48eK5c+fEckBAgJ6hL168KMWtf9bNmzd//fXX+mdpfVGkUqn0DA0AAGB9SIwCAAAA+tqwYcPSpUtra2v1rJ+WlqZSqeonRgEAAGB2JEYBAAAAvcyfP3/Tpk11XuzZs2d4eLifn5+rq2tpaWlOTs7FixcvXLhQXFzcwt0LDg4ePny4IAgZGRnSintBEMQXtbKzs2uJngEAAFgkEqMAAABA47Zv314nKzpixIh//OMfTz/9dP3KFRUVR48e/fe///3zzz+3VAeF5cuXL1++XBCEr776asGCBdLrx44da7E+AAAAPEK07AQPAAAAQNOdO3c0U42CIKxYsSImJkZrVlQQBEdHx/Hjx//4448JCQmsowcAALBMJEYBAABghXJzc2UG8vPza6i1devWlZeXS4dz5sz55JNPZDJZo93o1asXy9UBAAAsE4lRAAAAQBAEQa1Wa309Ozt7165d0mFAQMD69etbqlMAAABoLiRGAQAAAF0OHz5cUVEhHS5cuNDJycmM/QEAAECTIDEKAAAA6HLy5EmpLJPJpk6dasbOAAAAoKnwVHoAAABYIU9Pzzt37hh0ilyufdJAfHy8VO7atauXl5dJPQMAAIBlIDEKAAAAKySTydzc3JqkqQcPHkjlkJCQJmkTAAAAZsdSegAAAKBBFRUVZWVl0qGnp6cZOwMAAIAmRGIUAAAAaFB+fr7moYuLi7l6AgAAgKZFYhQAAABoUJs2bTQPNR9PDwAAgEcaiVEAAACgQa6urvb2/7cvf0FBgRk7o1KpzBgdAADAypAt9VsRAAAEmUlEQVQYBQAAABokk8k8PDykQ0OfdN8Qufz/Pofrn+6ss64fAAAApiAxCgAAAOgSFhYmlS9dulRVVWV6m87OzlK5pKREn1NqamqysrJMDw0AAAARiVEAAABAlyFDhkjlioqKY8eOmd6mm5ubVM7MzNTnlISEhLKyMn1qaq79FwShSTK5AAAA1ofEKAAAAKDLiBEjNA83btxoept+fn5S+fr16zU1NY2e8t133+nZuIuLi+ahUqk0qG8AAAA2gsQoAAAAoEtYWJjmpNGYmJi9e/ea3qZULi4ujo2N1V0/IyNj27Ztejbu7u6ueZibm2to9wAAAGwBiVEAAACgEe+9957m4bx58xISEvQ8V61W139x0KBBms9f+vjjj7VWE1VUVEyZMqWoqEjPiMHBwZqH58+f1/NEAAAAm0JiFAAAANapyihamxo1atTrr78uHSqVyueee+67777Tkc1UqVQHDhzo06dPZWVl/Xf9/PzCw8OlwzNnzixatEjr4+lTU1OHDRt28uRJQRBkMpk+P7ifn1+HDh2kw1WrVumfxgUAALAdMh0f5gAAAIBHiI+Pj0KhMLGRgoICzScjSUpKSvr27ZuYmKj5Yu/evV999dVhw4Z16NDBy8ursLAwOzv7999/P3Xq1L59+8TOlJeXOzo61m/w6NGjzz//vOYrISEhc+fO7devX9u2bYuLi5OTk6Ojo/fs2SOmVgcMGFBZWXnlyhWx8ptvvrl169aGfooVK1asXr1a85UnnniiQ4cO3t7emi/u2rVLa98AAABsAYlRAAAAWIlmTYwKgpCVlTVu3LhLly4Z1GBDiVFBEKZPn75z5059GgkICDhz5szEiROldfG6E6P5+fmhoaFpaWm6my0uLnZ2dtanAwAAANaHpfQAAACAXtq3b3/ixImpU6fquaS9UV9//fWECRMardazZ88TJ05oro5vlLu7e3R09NNPP21C7wAAAKwciVEAAABAX05OTrt27bp8+fLYsWMdHBx01PTw8JgxY8bZs2d1rFV/7LHH9u7d+69//cvT01NrBRcXl/fff//ChQv+/v6GdrVHjx6XL1+OiYmZM2dOv379PD09W7VqZWgjAAAAVoyl9AAAALASlZWVpn+41X/PzZKSkuPHj1+8eDEnJ0ehUNTU1Dg7O/v4+HTr1i00NPSZZ56xs7PTs6mKiorffvvtxIkTmZmZSqXSycnJz8+vb9++o0ePdnFxMfZHAQAAgC4kRgEAAAAAAADYHJbSAwAAAAAAALA5JEYBAAAAAAAA2BwSowAAAAAAAABsDolRAAAAAAAAADaHxCgAAAAAAAAAm0NiFAAAAAAAAIDNITEKAAAAAAAAwOaQGAUAAAAAAABgc0iMAgAAAAAAALA5JEYBAAAAAAAA2BwSowAAAAAAAABsDolRAAAAAAAAADaHxCgAAAAAAAAAm0NiFAAAAAAAAIDNITEKAAAAAAAAwOaQGAUAAAAAAABgc0iMAgAAAAAAALA5JEYBAAAAAAAA2BwSowAAAAAAAABsDolRAAAAAAAAADaHxCgAAAAAAAAAm0NiFAAAAAAAAIDN+X/LKMOLqrO/kwAAAABJRU5ErkJggg==",
      "text/html": [
       "<?xml version=\"1.0\" encoding=\"utf-8\"?>\n",
       "<svg xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"600\" height=\"400\" viewBox=\"0 0 2400 1600\">\n",
       "<defs>\n",
       "  <clipPath id=\"clip090\">\n",
       "    <rect x=\"0\" y=\"0\" width=\"2400\" height=\"1600\"/>\n",
       "  </clipPath>\n",
       "</defs>\n",
       "<path clip-path=\"url(#clip090)\" d=\"M0 1600 L2400 1600 L2400 0 L0 0  Z\" fill=\"#ffffff\" fill-rule=\"evenodd\" fill-opacity=\"1\"/>\n",
       "<defs>\n",
       "  <clipPath id=\"clip091\">\n",
       "    <rect x=\"480\" y=\"0\" width=\"1681\" height=\"1600\"/>\n",
       "  </clipPath>\n",
       "</defs>\n",
       "<path clip-path=\"url(#clip090)\" d=\"M252.764 1423.18 L2352.76 1423.18 L2352.76 47.2441 L252.764 47.2441  Z\" fill=\"#ffffff\" fill-rule=\"evenodd\" fill-opacity=\"1\"/>\n",
       "<defs>\n",
       "  <clipPath id=\"clip092\">\n",
       "    <rect x=\"252\" y=\"47\" width=\"2101\" height=\"1377\"/>\n",
       "  </clipPath>\n",
       "</defs>\n",
       "<polyline clip-path=\"url(#clip092)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"312.198,1423.18 312.198,47.2441 \"/>\n",
       "<polyline clip-path=\"url(#clip092)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"724.932,1423.18 724.932,47.2441 \"/>\n",
       "<polyline clip-path=\"url(#clip092)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"1137.67,1423.18 1137.67,47.2441 \"/>\n",
       "<polyline clip-path=\"url(#clip092)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"1550.4,1423.18 1550.4,47.2441 \"/>\n",
       "<polyline clip-path=\"url(#clip092)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"1963.13,1423.18 1963.13,47.2441 \"/>\n",
       "<polyline clip-path=\"url(#clip092)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"252.764,1343.71 2352.76,1343.71 \"/>\n",
       "<polyline clip-path=\"url(#clip092)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"252.764,665.385 2352.76,665.385 \"/>\n",
       "<polyline clip-path=\"url(#clip090)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"252.764,1423.18 2352.76,1423.18 \"/>\n",
       "<polyline clip-path=\"url(#clip090)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"312.198,1423.18 312.198,1404.28 \"/>\n",
       "<polyline clip-path=\"url(#clip090)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"724.932,1423.18 724.932,1404.28 \"/>\n",
       "<polyline clip-path=\"url(#clip090)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"1137.67,1423.18 1137.67,1404.28 \"/>\n",
       "<polyline clip-path=\"url(#clip090)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"1550.4,1423.18 1550.4,1404.28 \"/>\n",
       "<polyline clip-path=\"url(#clip090)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"1963.13,1423.18 1963.13,1404.28 \"/>\n",
       "<path clip-path=\"url(#clip090)\" d=\"M264.27 1481.64 L271.909 1481.64 L271.909 1455.28 L263.598 1456.95 L263.598 1452.69 L271.862 1451.02 L276.538 1451.02 L276.538 1481.64 L284.177 1481.64 L284.177 1485.58 L264.27 1485.58 L264.27 1481.64 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M303.621 1454.1 Q300.01 1454.1 298.182 1457.66 Q296.376 1461.2 296.376 1468.33 Q296.376 1475.44 298.182 1479.01 Q300.01 1482.55 303.621 1482.55 Q307.256 1482.55 309.061 1479.01 Q310.89 1475.44 310.89 1468.33 Q310.89 1461.2 309.061 1457.66 Q307.256 1454.1 303.621 1454.1 M303.621 1450.39 Q309.431 1450.39 312.487 1455 Q315.566 1459.58 315.566 1468.33 Q315.566 1477.06 312.487 1481.67 Q309.431 1486.25 303.621 1486.25 Q297.811 1486.25 294.732 1481.67 Q291.677 1477.06 291.677 1468.33 Q291.677 1459.58 294.732 1455 Q297.811 1450.39 303.621 1450.39 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M323.783 1479.7 L328.668 1479.7 L328.668 1485.58 L323.783 1485.58 L323.783 1479.7 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M348.853 1454.1 Q345.241 1454.1 343.413 1457.66 Q341.607 1461.2 341.607 1468.33 Q341.607 1475.44 343.413 1479.01 Q345.241 1482.55 348.853 1482.55 Q352.487 1482.55 354.292 1479.01 Q356.121 1475.44 356.121 1468.33 Q356.121 1461.2 354.292 1457.66 Q352.487 1454.1 348.853 1454.1 M348.853 1450.39 Q354.663 1450.39 357.718 1455 Q360.797 1459.58 360.797 1468.33 Q360.797 1477.06 357.718 1481.67 Q354.663 1486.25 348.853 1486.25 Q343.042 1486.25 339.964 1481.67 Q336.908 1477.06 336.908 1468.33 Q336.908 1459.58 339.964 1455 Q343.042 1450.39 348.853 1450.39 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M677.502 1481.64 L685.14 1481.64 L685.14 1455.28 L676.83 1456.95 L676.83 1452.69 L685.094 1451.02 L689.77 1451.02 L689.77 1481.64 L697.409 1481.64 L697.409 1485.58 L677.502 1485.58 L677.502 1481.64 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M710.881 1481.64 L727.2 1481.64 L727.2 1485.58 L705.256 1485.58 L705.256 1481.64 Q707.918 1478.89 712.501 1474.26 Q717.108 1469.61 718.288 1468.27 Q720.534 1465.74 721.413 1464.01 Q722.316 1462.25 722.316 1460.56 Q722.316 1457.8 720.372 1456.07 Q718.451 1454.33 715.349 1454.33 Q713.15 1454.33 710.696 1455.09 Q708.265 1455.86 705.488 1457.41 L705.488 1452.69 Q708.312 1451.55 710.765 1450.97 Q713.219 1450.39 715.256 1450.39 Q720.626 1450.39 723.821 1453.08 Q727.015 1455.77 727.015 1460.26 Q727.015 1462.39 726.205 1464.31 Q725.418 1466.2 723.312 1468.8 Q722.733 1469.47 719.631 1472.69 Q716.529 1475.88 710.881 1481.64 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M737.015 1479.7 L741.899 1479.7 L741.899 1485.58 L737.015 1485.58 L737.015 1479.7 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M752.131 1451.02 L770.487 1451.02 L770.487 1454.96 L756.413 1454.96 L756.413 1463.43 Q757.432 1463.08 758.45 1462.92 Q759.469 1462.73 760.487 1462.73 Q766.274 1462.73 769.654 1465.9 Q773.034 1469.08 773.034 1474.49 Q773.034 1480.07 769.561 1483.17 Q766.089 1486.25 759.77 1486.25 Q757.594 1486.25 755.325 1485.88 Q753.08 1485.51 750.673 1484.77 L750.673 1480.07 Q752.756 1481.2 754.978 1481.76 Q757.2 1482.32 759.677 1482.32 Q763.682 1482.32 766.02 1480.21 Q768.358 1478.1 768.358 1474.49 Q768.358 1470.88 766.02 1468.77 Q763.682 1466.67 759.677 1466.67 Q757.802 1466.67 755.927 1467.08 Q754.075 1467.5 752.131 1468.38 L752.131 1451.02 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M1089.74 1481.64 L1097.38 1481.64 L1097.38 1455.28 L1089.07 1456.95 L1089.07 1452.69 L1097.33 1451.02 L1102.01 1451.02 L1102.01 1481.64 L1109.65 1481.64 L1109.65 1485.58 L1089.74 1485.58 L1089.74 1481.64 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M1119.14 1451.02 L1137.49 1451.02 L1137.49 1454.96 L1123.42 1454.96 L1123.42 1463.43 Q1124.44 1463.08 1125.46 1462.92 Q1126.47 1462.73 1127.49 1462.73 Q1133.28 1462.73 1136.66 1465.9 Q1140.04 1469.08 1140.04 1474.49 Q1140.04 1480.07 1136.57 1483.17 Q1133.09 1486.25 1126.78 1486.25 Q1124.6 1486.25 1122.33 1485.88 Q1120.09 1485.51 1117.68 1484.77 L1117.68 1480.07 Q1119.76 1481.2 1121.98 1481.76 Q1124.21 1482.32 1126.68 1482.32 Q1130.69 1482.32 1133.03 1480.21 Q1135.36 1478.1 1135.36 1474.49 Q1135.36 1470.88 1133.03 1468.77 Q1130.69 1466.67 1126.68 1466.67 Q1124.81 1466.67 1122.93 1467.08 Q1121.08 1467.5 1119.14 1468.38 L1119.14 1451.02 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M1149.25 1479.7 L1154.14 1479.7 L1154.14 1485.58 L1149.25 1485.58 L1149.25 1479.7 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M1174.32 1454.1 Q1170.71 1454.1 1168.88 1457.66 Q1167.08 1461.2 1167.08 1468.33 Q1167.08 1475.44 1168.88 1479.01 Q1170.71 1482.55 1174.32 1482.55 Q1177.96 1482.55 1179.76 1479.01 Q1181.59 1475.44 1181.59 1468.33 Q1181.59 1461.2 1179.76 1457.66 Q1177.96 1454.1 1174.32 1454.1 M1174.32 1450.39 Q1180.13 1450.39 1183.19 1455 Q1186.27 1459.58 1186.27 1468.33 Q1186.27 1477.06 1183.19 1481.67 Q1180.13 1486.25 1174.32 1486.25 Q1168.51 1486.25 1165.43 1481.67 Q1162.38 1477.06 1162.38 1468.33 Q1162.38 1459.58 1165.43 1455 Q1168.51 1450.39 1174.32 1450.39 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M1502.97 1481.64 L1510.61 1481.64 L1510.61 1455.28 L1502.3 1456.95 L1502.3 1452.69 L1510.56 1451.02 L1515.24 1451.02 L1515.24 1481.64 L1522.88 1481.64 L1522.88 1485.58 L1502.97 1485.58 L1502.97 1481.64 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M1531.14 1451.02 L1553.36 1451.02 L1553.36 1453.01 L1540.82 1485.58 L1535.93 1485.58 L1547.74 1454.96 L1531.14 1454.96 L1531.14 1451.02 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M1562.48 1479.7 L1567.37 1479.7 L1567.37 1485.58 L1562.48 1485.58 L1562.48 1479.7 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M1577.6 1451.02 L1595.96 1451.02 L1595.96 1454.96 L1581.88 1454.96 L1581.88 1463.43 Q1582.9 1463.08 1583.92 1462.92 Q1584.94 1462.73 1585.96 1462.73 Q1591.74 1462.73 1595.12 1465.9 Q1598.5 1469.08 1598.5 1474.49 Q1598.5 1480.07 1595.03 1483.17 Q1591.56 1486.25 1585.24 1486.25 Q1583.06 1486.25 1580.79 1485.88 Q1578.55 1485.51 1576.14 1484.77 L1576.14 1480.07 Q1578.22 1481.2 1580.45 1481.76 Q1582.67 1482.32 1585.15 1482.32 Q1589.15 1482.32 1591.49 1480.21 Q1593.83 1478.1 1593.83 1474.49 Q1593.83 1470.88 1591.49 1468.77 Q1589.15 1466.67 1585.15 1466.67 Q1583.27 1466.67 1581.4 1467.08 Q1579.54 1467.5 1577.6 1468.38 L1577.6 1451.02 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M1919.29 1481.64 L1935.61 1481.64 L1935.61 1485.58 L1913.67 1485.58 L1913.67 1481.64 Q1916.33 1478.89 1920.91 1474.26 Q1925.52 1469.61 1926.7 1468.27 Q1928.95 1465.74 1929.82 1464.01 Q1930.73 1462.25 1930.73 1460.56 Q1930.73 1457.8 1928.78 1456.07 Q1926.86 1454.33 1923.76 1454.33 Q1921.56 1454.33 1919.11 1455.09 Q1916.68 1455.86 1913.9 1457.41 L1913.9 1452.69 Q1916.72 1451.55 1919.18 1450.97 Q1921.63 1450.39 1923.67 1450.39 Q1929.04 1450.39 1932.23 1453.08 Q1935.43 1455.77 1935.43 1460.26 Q1935.43 1462.39 1934.62 1464.31 Q1933.83 1466.2 1931.72 1468.8 Q1931.14 1469.47 1928.04 1472.69 Q1924.94 1475.88 1919.29 1481.64 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M1955.43 1454.1 Q1951.82 1454.1 1949.99 1457.66 Q1948.18 1461.2 1948.18 1468.33 Q1948.18 1475.44 1949.99 1479.01 Q1951.82 1482.55 1955.43 1482.55 Q1959.06 1482.55 1960.87 1479.01 Q1962.69 1475.44 1962.69 1468.33 Q1962.69 1461.2 1960.87 1457.66 Q1959.06 1454.1 1955.43 1454.1 M1955.43 1450.39 Q1961.24 1450.39 1964.29 1455 Q1967.37 1459.58 1967.37 1468.33 Q1967.37 1477.06 1964.29 1481.67 Q1961.24 1486.25 1955.43 1486.25 Q1949.62 1486.25 1946.54 1481.67 Q1943.48 1477.06 1943.48 1468.33 Q1943.48 1459.58 1946.54 1455 Q1949.62 1450.39 1955.43 1450.39 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M1975.59 1479.7 L1980.47 1479.7 L1980.47 1485.58 L1975.59 1485.58 L1975.59 1479.7 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M2000.66 1454.1 Q1997.05 1454.1 1995.22 1457.66 Q1993.41 1461.2 1993.41 1468.33 Q1993.41 1475.44 1995.22 1479.01 Q1997.05 1482.55 2000.66 1482.55 Q2004.29 1482.55 2006.1 1479.01 Q2007.93 1475.44 2007.93 1468.33 Q2007.93 1461.2 2006.1 1457.66 Q2004.29 1454.1 2000.66 1454.1 M2000.66 1450.39 Q2006.47 1450.39 2009.52 1455 Q2012.6 1459.58 2012.6 1468.33 Q2012.6 1477.06 2009.52 1481.67 Q2006.47 1486.25 2000.66 1486.25 Q1994.85 1486.25 1991.77 1481.67 Q1988.71 1477.06 1988.71 1468.33 Q1988.71 1459.58 1991.77 1455 Q1994.85 1450.39 2000.66 1450.39 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M1234.79 1520.52 L1264.84 1520.52 L1264.84 1525.93 L1241.22 1525.93 L1241.22 1540 L1263.85 1540 L1263.85 1545.41 L1241.22 1545.41 L1241.22 1562.63 L1265.41 1562.63 L1265.41 1568.04 L1234.79 1568.04 L1234.79 1520.52 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M1301.38 1533.76 L1301.38 1539.24 Q1298.89 1537.87 1296.38 1537.2 Q1293.9 1536.5 1291.35 1536.5 Q1285.65 1536.5 1282.5 1540.13 Q1279.35 1543.73 1279.35 1550.25 Q1279.35 1556.78 1282.5 1560.4 Q1285.65 1564 1291.35 1564 Q1293.9 1564 1296.38 1563.33 Q1298.89 1562.63 1301.38 1561.26 L1301.38 1566.68 Q1298.92 1567.82 1296.28 1568.39 Q1293.67 1568.97 1290.71 1568.97 Q1282.66 1568.97 1277.92 1563.91 Q1273.18 1558.85 1273.18 1550.25 Q1273.18 1541.53 1277.95 1536.53 Q1282.76 1531.54 1291.09 1531.54 Q1293.8 1531.54 1296.38 1532.11 Q1298.96 1532.65 1301.38 1533.76 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M1310.96 1553.98 L1310.96 1532.4 L1316.81 1532.4 L1316.81 1553.75 Q1316.81 1558.81 1318.79 1561.36 Q1320.76 1563.87 1324.71 1563.87 Q1329.45 1563.87 1332.19 1560.85 Q1334.95 1557.83 1334.95 1552.61 L1334.95 1532.4 L1340.81 1532.4 L1340.81 1568.04 L1334.95 1568.04 L1334.95 1562.57 Q1332.82 1565.82 1329.99 1567.41 Q1327.19 1568.97 1323.46 1568.97 Q1317.32 1568.97 1314.14 1565.15 Q1310.96 1561.33 1310.96 1553.98 M1325.69 1531.54 L1325.69 1531.54 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M1358.67 1522.27 L1358.67 1532.4 L1370.73 1532.4 L1370.73 1536.95 L1358.67 1536.95 L1358.67 1556.3 Q1358.67 1560.66 1359.84 1561.9 Q1361.05 1563.14 1364.71 1563.14 L1370.73 1563.14 L1370.73 1568.04 L1364.71 1568.04 Q1357.93 1568.04 1355.36 1565.53 Q1352.78 1562.98 1352.78 1556.3 L1352.78 1536.95 L1348.48 1536.95 L1348.48 1532.4 L1352.78 1532.4 L1352.78 1522.27 L1358.67 1522.27 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><polyline clip-path=\"url(#clip090)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"252.764,1423.18 252.764,47.2441 \"/>\n",
       "<polyline clip-path=\"url(#clip090)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"252.764,1343.71 271.662,1343.71 \"/>\n",
       "<polyline clip-path=\"url(#clip090)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"252.764,665.385 271.662,665.385 \"/>\n",
       "<path clip-path=\"url(#clip090)\" d=\"M114.931 1363.5 L122.57 1363.5 L122.57 1337.14 L114.26 1338.8 L114.26 1334.54 L122.524 1332.88 L127.2 1332.88 L127.2 1363.5 L134.839 1363.5 L134.839 1367.44 L114.931 1367.44 L114.931 1363.5 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M154.283 1335.96 Q150.672 1335.96 148.843 1339.52 Q147.038 1343.06 147.038 1350.19 Q147.038 1357.3 148.843 1360.86 Q150.672 1364.4 154.283 1364.4 Q157.917 1364.4 159.723 1360.86 Q161.552 1357.3 161.552 1350.19 Q161.552 1343.06 159.723 1339.52 Q157.917 1335.96 154.283 1335.96 M154.283 1332.25 Q160.093 1332.25 163.149 1336.86 Q166.227 1341.44 166.227 1350.19 Q166.227 1358.92 163.149 1363.53 Q160.093 1368.11 154.283 1368.11 Q148.473 1368.11 145.394 1363.53 Q142.339 1358.92 142.339 1350.19 Q142.339 1341.44 145.394 1336.86 Q148.473 1332.25 154.283 1332.25 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M166.227 1326.35 L190.339 1326.35 L190.339 1329.55 L166.227 1329.55 L166.227 1326.35 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M208.978 1315.26 L199.386 1330.25 L208.978 1330.25 L208.978 1315.26 M207.981 1311.95 L212.758 1311.95 L212.758 1330.25 L216.764 1330.25 L216.764 1333.41 L212.758 1333.41 L212.758 1340.03 L208.978 1340.03 L208.978 1333.41 L196.301 1333.41 L196.301 1329.74 L207.981 1311.95 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M116.624 685.178 L124.263 685.178 L124.263 658.812 L115.953 660.479 L115.953 656.219 L124.217 654.553 L128.893 654.553 L128.893 685.178 L136.531 685.178 L136.531 689.113 L116.624 689.113 L116.624 685.178 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M155.976 657.631 Q152.365 657.631 150.536 661.196 Q148.73 664.738 148.73 671.867 Q148.73 678.974 150.536 682.539 Q152.365 686.08 155.976 686.08 Q159.61 686.08 161.416 682.539 Q163.244 678.974 163.244 671.867 Q163.244 664.738 161.416 661.196 Q159.61 657.631 155.976 657.631 M155.976 653.928 Q161.786 653.928 164.841 658.534 Q167.92 663.117 167.92 671.867 Q167.92 680.594 164.841 685.201 Q161.786 689.784 155.976 689.784 Q150.166 689.784 147.087 685.201 Q144.031 680.594 144.031 671.867 Q144.031 663.117 147.087 658.534 Q150.166 653.928 155.976 653.928 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M167.92 648.029 L192.032 648.029 L192.032 651.226 L167.92 651.226 L167.92 648.029 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M203.504 658.505 L216.764 658.505 L216.764 661.702 L198.934 661.702 L198.934 658.505 Q201.097 656.267 204.821 652.505 Q208.564 648.725 209.523 647.634 Q211.347 645.584 212.062 644.173 Q212.796 642.744 212.796 641.371 Q212.796 639.133 211.216 637.722 Q209.655 636.312 207.134 636.312 Q205.348 636.312 203.354 636.932 Q201.379 637.553 199.122 638.813 L199.122 634.976 Q201.417 634.055 203.41 633.585 Q205.404 633.115 207.059 633.115 Q211.423 633.115 214.018 635.296 Q216.613 637.478 216.613 641.127 Q216.613 642.857 215.955 644.418 Q215.316 645.96 213.604 648.067 Q213.134 648.612 210.614 651.226 Q208.094 653.822 203.504 658.505 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M44.7161 1053.69 L47.5806 1053.69 L47.5806 1080.62 Q53.6281 1080.23 56.8109 1076.99 Q59.9619 1073.71 59.9619 1067.88 Q59.9619 1064.51 59.1344 1061.36 Q58.3069 1058.18 56.6518 1055.06 L62.1899 1055.06 Q63.5267 1058.21 64.227 1061.52 Q64.9272 1064.83 64.9272 1068.23 Q64.9272 1076.76 59.9619 1081.76 Q54.9967 1086.73 46.5303 1086.73 Q37.7774 1086.73 32.6531 1082.02 Q27.4968 1077.27 27.4968 1069.25 Q27.4968 1062.06 32.1438 1057.89 Q36.7589 1053.69 44.7161 1053.69 M42.9973 1059.54 Q38.1912 1059.61 35.3266 1062.25 Q32.4621 1064.86 32.4621 1069.19 Q32.4621 1074.09 35.2312 1077.05 Q38.0002 1079.98 43.0292 1080.42 L42.9973 1059.54 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M42.4881 1014.44 L64.0042 1014.44 L64.0042 1020.3 L42.679 1020.3 Q37.6183 1020.3 35.1038 1022.27 Q32.5894 1024.25 32.5894 1028.19 Q32.5894 1032.94 35.6131 1035.67 Q38.6368 1038.41 43.8567 1038.41 L64.0042 1038.41 L64.0042 1044.3 L28.3562 1044.3 L28.3562 1038.41 L33.8944 1038.41 Q30.6797 1036.31 29.0883 1033.48 Q27.4968 1030.61 27.4968 1026.89 Q27.4968 1020.75 31.3163 1017.59 Q35.1038 1014.44 42.4881 1014.44 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M44.7161 972.271 L47.5806 972.271 L47.5806 999.198 Q53.6281 998.816 56.8109 995.569 Q59.9619 992.291 59.9619 986.466 Q59.9619 983.093 59.1344 979.942 Q58.3069 976.759 56.6518 973.64 L62.1899 973.64 Q63.5267 976.791 64.227 980.101 Q64.9272 983.411 64.9272 986.817 Q64.9272 995.347 59.9619 1000.34 Q54.9967 1005.31 46.5303 1005.31 Q37.7774 1005.31 32.6531 1000.6 Q27.4968 995.856 27.4968 987.835 Q27.4968 980.642 32.1438 976.472 Q36.7589 972.271 44.7161 972.271 M42.9973 978.127 Q38.1912 978.191 35.3266 980.833 Q32.4621 983.443 32.4621 987.771 Q32.4621 992.673 35.2312 995.633 Q38.0002 998.561 43.0292 999.007 L42.9973 978.127 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M33.8307 942.002 Q33.2578 942.989 33.0032 944.166 Q32.7167 945.312 32.7167 946.713 Q32.7167 951.678 35.9632 954.351 Q39.1779 956.993 45.2253 956.993 L64.0042 956.993 L64.0042 962.881 L28.3562 962.881 L28.3562 956.993 L33.8944 956.993 Q30.6479 955.147 29.0883 952.187 Q27.4968 949.227 27.4968 944.994 Q27.4968 944.389 27.5923 943.657 Q27.656 942.925 27.8151 942.034 L33.8307 942.002 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M45.7664 913.547 Q39.4007 913.547 35.8996 916.189 Q32.3984 918.799 32.3984 923.541 Q32.3984 928.252 35.8996 930.894 Q39.4007 933.504 45.7664 933.504 Q52.1003 933.504 55.6014 930.894 Q59.1026 928.252 59.1026 923.541 Q59.1026 918.799 55.6014 916.189 Q52.1003 913.547 45.7664 913.547 M59.58 907.691 Q68.683 907.691 73.1071 911.733 Q77.5631 915.775 77.5631 924.114 Q77.5631 927.202 77.0857 929.939 Q76.6401 932.676 75.6852 935.254 L69.9879 935.254 Q71.3884 932.676 72.0568 930.162 Q72.7252 927.647 72.7252 925.037 Q72.7252 919.276 69.7015 916.412 Q66.7096 913.547 60.6303 913.547 L57.7339 913.547 Q60.885 915.361 62.4446 918.194 Q64.0042 921.027 64.0042 924.974 Q64.0042 931.53 59.0071 935.541 Q54.01 939.551 45.7664 939.551 Q37.491 939.551 32.4939 935.541 Q27.4968 931.53 27.4968 924.974 Q27.4968 921.027 29.0564 918.194 Q30.616 915.361 33.7671 913.547 L28.3562 913.547 L28.3562 907.691 L59.58 907.691 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M67.3143 880.796 Q73.68 883.278 75.6216 885.634 Q77.5631 887.989 77.5631 891.936 L77.5631 896.614 L72.6615 896.614 L72.6615 893.177 Q72.6615 890.758 71.5157 889.421 Q70.3699 888.084 66.1048 886.461 L63.4312 885.411 L28.3562 899.829 L28.3562 893.623 L56.238 882.483 L28.3562 871.343 L28.3562 865.136 L67.3143 880.796 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M46.0847 820.13 Q46.0847 827.228 47.7079 829.966 Q49.3312 832.703 53.2461 832.703 Q56.3653 832.703 58.2114 830.666 Q60.0256 828.597 60.0256 825.064 Q60.0256 820.194 56.5881 817.266 Q53.1188 814.306 47.3897 814.306 L46.0847 814.306 L46.0847 820.13 M43.6657 808.449 L64.0042 808.449 L64.0042 814.306 L58.5933 814.306 Q61.8398 816.311 63.3994 819.303 Q64.9272 822.295 64.9272 826.624 Q64.9272 832.098 61.8716 835.345 Q58.7843 838.559 53.6281 838.559 Q47.6125 838.559 44.5569 834.549 Q41.5014 830.507 41.5014 822.518 L41.5014 814.306 L40.9285 814.306 Q36.8862 814.306 34.6901 816.979 Q32.4621 819.621 32.4621 824.427 Q32.4621 827.483 33.1941 830.379 Q33.9262 833.276 35.3903 835.949 L29.9795 835.949 Q28.7381 832.735 28.1334 829.711 Q27.4968 826.687 27.4968 823.823 Q27.4968 816.088 31.5072 812.269 Q35.5176 808.449 43.6657 808.449 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M46.212 770.796 Q39.7508 770.796 36.0905 773.47 Q32.3984 776.112 32.3984 780.759 Q32.3984 785.406 36.0905 788.079 Q39.7508 790.721 46.212 790.721 Q52.6732 790.721 56.3653 788.079 Q60.0256 785.406 60.0256 780.759 Q60.0256 776.112 56.3653 773.47 Q52.6732 770.796 46.212 770.796 M33.7671 790.721 Q30.5842 788.875 29.0564 786.074 Q27.4968 783.241 27.4968 779.326 Q27.4968 772.833 32.6531 768.791 Q37.8093 764.717 46.212 764.717 Q54.6147 764.717 59.771 768.791 Q64.9272 772.833 64.9272 779.326 Q64.9272 783.241 63.3994 786.074 Q61.8398 788.875 58.657 790.721 L64.0042 790.721 L64.0042 796.609 L14.479 796.609 L14.479 790.721 L33.7671 790.721 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M29.4065 732.284 L34.9447 732.284 Q33.6716 734.766 33.035 737.44 Q32.3984 740.114 32.3984 742.978 Q32.3984 747.339 33.7352 749.535 Q35.072 751.699 37.7456 751.699 Q39.7826 751.699 40.9603 750.14 Q42.1061 748.58 43.1565 743.869 L43.6021 741.864 Q44.9389 735.626 47.3897 733.016 Q49.8086 730.374 54.1691 730.374 Q59.1344 730.374 62.0308 734.321 Q64.9272 738.236 64.9272 745.111 Q64.9272 747.975 64.3543 751.094 Q63.8132 754.182 62.6992 757.619 L56.6518 757.619 Q58.3387 754.373 59.198 751.222 Q60.0256 748.071 60.0256 744.983 Q60.0256 740.846 58.6251 738.618 Q57.1929 736.39 54.6147 736.39 Q52.2276 736.39 50.9545 738.013 Q49.6813 739.604 48.5037 745.047 L48.0262 747.084 Q46.8804 752.527 44.5251 754.946 Q42.138 757.365 38.0002 757.365 Q32.9713 757.365 30.2341 753.8 Q27.4968 750.235 27.4968 743.678 Q27.4968 740.432 27.9743 737.567 Q28.4517 734.703 29.4065 732.284 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M32.4621 707.235 Q32.4621 711.945 36.1542 714.683 Q39.8145 717.42 46.212 717.42 Q52.6095 717.42 56.3017 714.714 Q59.9619 711.977 59.9619 707.235 Q59.9619 702.556 56.2698 699.819 Q52.5777 697.081 46.212 697.081 Q39.8781 697.081 36.186 699.819 Q32.4621 702.556 32.4621 707.235 M27.4968 707.235 Q27.4968 699.596 32.4621 695.235 Q37.4273 690.875 46.212 690.875 Q54.9649 690.875 59.9619 695.235 Q64.9272 699.596 64.9272 707.235 Q64.9272 714.905 59.9619 719.266 Q54.9649 723.595 46.212 723.595 Q37.4273 723.595 32.4621 719.266 Q27.4968 714.905 27.4968 707.235 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M14.479 681.167 L14.479 675.311 L64.0042 675.311 L64.0042 681.167 L14.479 681.167 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M49.9359 663.661 L28.3562 663.661 L28.3562 657.805 L49.7131 657.805 Q54.7739 657.805 57.3202 655.832 Q59.8346 653.858 59.8346 649.911 Q59.8346 645.169 56.8109 642.432 Q53.7872 639.663 48.5673 639.663 L28.3562 639.663 L28.3562 633.806 L64.0042 633.806 L64.0042 639.663 L58.5296 639.663 Q61.7762 641.795 63.3676 644.628 Q64.9272 647.429 64.9272 651.153 Q64.9272 657.296 61.1078 660.479 Q57.2883 663.661 49.9359 663.661 M27.4968 648.925 L27.4968 648.925 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M18.2347 615.95 L28.3562 615.95 L28.3562 603.887 L32.9077 603.887 L32.9077 615.95 L52.2594 615.95 Q56.6199 615.95 57.8613 614.773 Q59.1026 613.563 59.1026 609.903 L59.1026 603.887 L64.0042 603.887 L64.0042 609.903 Q64.0042 616.683 61.4897 619.261 Q58.9434 621.839 52.2594 621.839 L32.9077 621.839 L32.9077 626.136 L28.3562 626.136 L28.3562 621.839 L18.2347 621.839 L18.2347 615.95 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M44.7161 565.693 L47.5806 565.693 L47.5806 592.62 Q53.6281 592.238 56.8109 588.992 Q59.9619 585.713 59.9619 579.889 Q59.9619 576.515 59.1344 573.364 Q58.3069 570.181 56.6518 567.062 L62.1899 567.062 Q63.5267 570.213 64.227 573.523 Q64.9272 576.833 64.9272 580.239 Q64.9272 588.769 59.9619 593.766 Q54.9967 598.731 46.5303 598.731 Q37.7774 598.731 32.6531 594.021 Q27.4968 589.278 27.4968 581.257 Q27.4968 574.064 32.1438 569.895 Q36.7589 565.693 44.7161 565.693 M42.9973 571.55 Q38.1912 571.613 35.3266 574.255 Q32.4621 576.865 32.4621 581.194 Q32.4621 586.095 35.2312 589.055 Q38.0002 591.984 43.0292 592.429 L42.9973 571.55 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M44.7161 504.869 L47.5806 504.869 L47.5806 531.796 Q53.6281 531.414 56.8109 528.167 Q59.9619 524.889 59.9619 519.064 Q59.9619 515.691 59.1344 512.54 Q58.3069 509.357 56.6518 506.238 L62.1899 506.238 Q63.5267 509.389 64.227 512.699 Q64.9272 516.009 64.9272 519.415 Q64.9272 527.945 59.9619 532.942 Q54.9967 537.907 46.5303 537.907 Q37.7774 537.907 32.6531 533.196 Q27.4968 528.454 27.4968 520.433 Q27.4968 513.24 32.1438 509.07 Q36.7589 504.869 44.7161 504.869 M42.9973 510.725 Q38.1912 510.789 35.3266 513.431 Q32.4621 516.041 32.4621 520.369 Q32.4621 525.271 35.2312 528.231 Q38.0002 531.159 43.0292 531.605 L42.9973 510.725 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M33.8307 474.6 Q33.2578 475.587 33.0032 476.764 Q32.7167 477.91 32.7167 479.311 Q32.7167 484.276 35.9632 486.949 Q39.1779 489.591 45.2253 489.591 L64.0042 489.591 L64.0042 495.479 L28.3562 495.479 L28.3562 489.591 L33.8944 489.591 Q30.6479 487.745 29.0883 484.785 Q27.4968 481.825 27.4968 477.592 Q27.4968 476.987 27.5923 476.255 Q27.656 475.523 27.8151 474.632 L33.8307 474.6 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M33.8307 448.946 Q33.2578 449.933 33.0032 451.11 Q32.7167 452.256 32.7167 453.657 Q32.7167 458.622 35.9632 461.296 Q39.1779 463.937 45.2253 463.937 L64.0042 463.937 L64.0042 469.826 L28.3562 469.826 L28.3562 463.937 L33.8944 463.937 Q30.6479 462.091 29.0883 459.131 Q27.4968 456.171 27.4968 451.938 Q27.4968 451.333 27.5923 450.601 Q27.656 449.869 27.8151 448.978 L33.8307 448.946 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M32.4621 430.422 Q32.4621 435.133 36.1542 437.87 Q39.8145 440.607 46.212 440.607 Q52.6095 440.607 56.3017 437.902 Q59.9619 435.164 59.9619 430.422 Q59.9619 425.743 56.2698 423.006 Q52.5777 420.269 46.212 420.269 Q39.8781 420.269 36.186 423.006 Q32.4621 425.743 32.4621 430.422 M27.4968 430.422 Q27.4968 422.783 32.4621 418.423 Q37.4273 414.062 46.212 414.062 Q54.9649 414.062 59.9619 418.423 Q64.9272 422.783 64.9272 430.422 Q64.9272 438.093 59.9619 442.453 Q54.9649 446.782 46.212 446.782 Q37.4273 446.782 32.4621 442.453 Q27.4968 438.093 27.4968 430.422 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M33.8307 383.698 Q33.2578 384.684 33.0032 385.862 Q32.7167 387.008 32.7167 388.408 Q32.7167 393.374 35.9632 396.047 Q39.1779 398.689 45.2253 398.689 L64.0042 398.689 L64.0042 404.577 L28.3562 404.577 L28.3562 398.689 L33.8944 398.689 Q30.6479 396.843 29.0883 393.883 Q27.4968 390.923 27.4968 386.69 Q27.4968 386.085 27.5923 385.353 Q27.656 384.621 27.8151 383.729 L33.8307 383.698 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><polyline clip-path=\"url(#clip092)\" style=\"stroke:#009af9; stroke-linecap:round; stroke-linejoin:round; stroke-width:12; stroke-opacity:1; fill:none\" points=\"312.198,86.1857 642.385,222.108 972.573,379.847 1302.76,558.803 1632.95,761.493 1963.13,1019.11 2293.32,1384.24 \"/>\n",
       "<path clip-path=\"url(#clip092)\" d=\"M312.198 102.186 L300.886 97.4977 L296.198 86.1857 L300.886 74.8737 L312.198 70.1857 L323.51 74.8737 L328.198 86.1857 L323.51 97.4977 Z\" fill=\"#009af9\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"#000000\" stroke-opacity=\"1\" stroke-width=\"3.2\"/>\n",
       "<path clip-path=\"url(#clip092)\" d=\"M642.385 238.108 L631.073 233.42 L626.385 222.108 L631.073 210.796 L642.385 206.108 L653.697 210.796 L658.385 222.108 L653.697 233.42 Z\" fill=\"#009af9\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"#000000\" stroke-opacity=\"1\" stroke-width=\"3.2\"/>\n",
       "<path clip-path=\"url(#clip092)\" d=\"M972.573 395.847 L961.261 391.159 L956.573 379.847 L961.261 368.535 L972.573 363.847 L983.885 368.535 L988.573 379.847 L983.885 391.159 Z\" fill=\"#009af9\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"#000000\" stroke-opacity=\"1\" stroke-width=\"3.2\"/>\n",
       "<path clip-path=\"url(#clip092)\" d=\"M1302.76 574.803 L1291.45 570.115 L1286.76 558.803 L1291.45 547.491 L1302.76 542.803 L1314.07 547.491 L1318.76 558.803 L1314.07 570.115 Z\" fill=\"#009af9\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"#000000\" stroke-opacity=\"1\" stroke-width=\"3.2\"/>\n",
       "<path clip-path=\"url(#clip092)\" d=\"M1632.95 777.493 L1621.64 772.805 L1616.95 761.493 L1621.64 750.181 L1632.95 745.493 L1644.26 750.181 L1648.95 761.493 L1644.26 772.805 Z\" fill=\"#009af9\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"#000000\" stroke-opacity=\"1\" stroke-width=\"3.2\"/>\n",
       "<path clip-path=\"url(#clip092)\" d=\"M1963.13 1035.11 L1951.82 1030.42 L1947.13 1019.11 L1951.82 1007.8 L1963.13 1003.11 L1974.45 1007.8 L1979.13 1019.11 L1974.45 1030.42 Z\" fill=\"#009af9\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"#000000\" stroke-opacity=\"1\" stroke-width=\"3.2\"/>\n",
       "<path clip-path=\"url(#clip092)\" d=\"M2293.32 1400.24 L2282.01 1395.55 L2277.32 1384.24 L2282.01 1372.93 L2293.32 1368.24 L2304.63 1372.93 L2309.32 1384.24 L2304.63 1395.55 Z\" fill=\"#009af9\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"#000000\" stroke-opacity=\"1\" stroke-width=\"3.2\"/>\n",
       "<path clip-path=\"url(#clip090)\" d=\"M2020.33 196.789 L2282.76 196.789 L2282.76 93.1086 L2020.33 93.1086  Z\" fill=\"#ffffff\" fill-rule=\"evenodd\" fill-opacity=\"1\"/>\n",
       "<polyline clip-path=\"url(#clip090)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"2020.33,196.789 2282.76,196.789 2282.76,93.1086 2020.33,93.1086 2020.33,196.789 \"/>\n",
       "<polyline clip-path=\"url(#clip090)\" style=\"stroke:#009af9; stroke-linecap:round; stroke-linejoin:round; stroke-width:12; stroke-opacity:1; fill:none\" points=\"2043.66,144.949 2183.66,144.949 \"/>\n",
       "<path clip-path=\"url(#clip090)\" d=\"M2113.66 166.553 L2098.39 160.223 L2092.05 144.949 L2098.39 129.674 L2113.66 123.344 L2128.93 129.674 L2135.26 144.949 L2128.93 160.223 Z\" fill=\"#009af9\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"#000000\" stroke-opacity=\"1\" stroke-width=\"4.55111\"/>\n",
       "<path clip-path=\"url(#clip090)\" d=\"M2220.84 164.636 Q2219.03 169.266 2217.32 170.678 Q2215.6 172.09 2212.73 172.09 L2209.33 172.09 L2209.33 168.525 L2211.83 168.525 Q2213.59 168.525 2214.56 167.692 Q2215.53 166.858 2216.71 163.756 L2217.48 161.812 L2206.99 136.303 L2211.51 136.303 L2219.61 156.581 L2227.71 136.303 L2232.22 136.303 L2220.84 164.636 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip090)\" d=\"M2239.52 158.293 L2247.15 158.293 L2247.15 131.928 L2238.84 133.595 L2238.84 129.335 L2247.11 127.669 L2251.78 127.669 L2251.78 158.293 L2259.42 158.293 L2259.42 162.229 L2239.52 162.229 L2239.52 158.293 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /></svg>\n"
      ],
      "image/svg+xml": [
       "<?xml version=\"1.0\" encoding=\"utf-8\"?>\n",
       "<svg xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"600\" height=\"400\" viewBox=\"0 0 2400 1600\">\n",
       "<defs>\n",
       "  <clipPath id=\"clip060\">\n",
       "    <rect x=\"0\" y=\"0\" width=\"2400\" height=\"1600\"/>\n",
       "  </clipPath>\n",
       "</defs>\n",
       "<path clip-path=\"url(#clip060)\" d=\"M0 1600 L2400 1600 L2400 0 L0 0  Z\" fill=\"#ffffff\" fill-rule=\"evenodd\" fill-opacity=\"1\"/>\n",
       "<defs>\n",
       "  <clipPath id=\"clip061\">\n",
       "    <rect x=\"480\" y=\"0\" width=\"1681\" height=\"1600\"/>\n",
       "  </clipPath>\n",
       "</defs>\n",
       "<path clip-path=\"url(#clip060)\" d=\"M252.764 1423.18 L2352.76 1423.18 L2352.76 47.2441 L252.764 47.2441  Z\" fill=\"#ffffff\" fill-rule=\"evenodd\" fill-opacity=\"1\"/>\n",
       "<defs>\n",
       "  <clipPath id=\"clip062\">\n",
       "    <rect x=\"252\" y=\"47\" width=\"2101\" height=\"1377\"/>\n",
       "  </clipPath>\n",
       "</defs>\n",
       "<polyline clip-path=\"url(#clip062)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"312.198,1423.18 312.198,47.2441 \"/>\n",
       "<polyline clip-path=\"url(#clip062)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"724.932,1423.18 724.932,47.2441 \"/>\n",
       "<polyline clip-path=\"url(#clip062)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"1137.67,1423.18 1137.67,47.2441 \"/>\n",
       "<polyline clip-path=\"url(#clip062)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"1550.4,1423.18 1550.4,47.2441 \"/>\n",
       "<polyline clip-path=\"url(#clip062)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"1963.13,1423.18 1963.13,47.2441 \"/>\n",
       "<polyline clip-path=\"url(#clip062)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"252.764,1343.71 2352.76,1343.71 \"/>\n",
       "<polyline clip-path=\"url(#clip062)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:2; stroke-opacity:0.1; fill:none\" points=\"252.764,665.385 2352.76,665.385 \"/>\n",
       "<polyline clip-path=\"url(#clip060)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"252.764,1423.18 2352.76,1423.18 \"/>\n",
       "<polyline clip-path=\"url(#clip060)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"312.198,1423.18 312.198,1404.28 \"/>\n",
       "<polyline clip-path=\"url(#clip060)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"724.932,1423.18 724.932,1404.28 \"/>\n",
       "<polyline clip-path=\"url(#clip060)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"1137.67,1423.18 1137.67,1404.28 \"/>\n",
       "<polyline clip-path=\"url(#clip060)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"1550.4,1423.18 1550.4,1404.28 \"/>\n",
       "<polyline clip-path=\"url(#clip060)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"1963.13,1423.18 1963.13,1404.28 \"/>\n",
       "<path clip-path=\"url(#clip060)\" d=\"M264.27 1481.64 L271.909 1481.64 L271.909 1455.28 L263.598 1456.95 L263.598 1452.69 L271.862 1451.02 L276.538 1451.02 L276.538 1481.64 L284.177 1481.64 L284.177 1485.58 L264.27 1485.58 L264.27 1481.64 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M303.621 1454.1 Q300.01 1454.1 298.182 1457.66 Q296.376 1461.2 296.376 1468.33 Q296.376 1475.44 298.182 1479.01 Q300.01 1482.55 303.621 1482.55 Q307.256 1482.55 309.061 1479.01 Q310.89 1475.44 310.89 1468.33 Q310.89 1461.2 309.061 1457.66 Q307.256 1454.1 303.621 1454.1 M303.621 1450.39 Q309.431 1450.39 312.487 1455 Q315.566 1459.58 315.566 1468.33 Q315.566 1477.06 312.487 1481.67 Q309.431 1486.25 303.621 1486.25 Q297.811 1486.25 294.732 1481.67 Q291.677 1477.06 291.677 1468.33 Q291.677 1459.58 294.732 1455 Q297.811 1450.39 303.621 1450.39 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M323.783 1479.7 L328.668 1479.7 L328.668 1485.58 L323.783 1485.58 L323.783 1479.7 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M348.853 1454.1 Q345.241 1454.1 343.413 1457.66 Q341.607 1461.2 341.607 1468.33 Q341.607 1475.44 343.413 1479.01 Q345.241 1482.55 348.853 1482.55 Q352.487 1482.55 354.292 1479.01 Q356.121 1475.44 356.121 1468.33 Q356.121 1461.2 354.292 1457.66 Q352.487 1454.1 348.853 1454.1 M348.853 1450.39 Q354.663 1450.39 357.718 1455 Q360.797 1459.58 360.797 1468.33 Q360.797 1477.06 357.718 1481.67 Q354.663 1486.25 348.853 1486.25 Q343.042 1486.25 339.964 1481.67 Q336.908 1477.06 336.908 1468.33 Q336.908 1459.58 339.964 1455 Q343.042 1450.39 348.853 1450.39 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M677.502 1481.64 L685.14 1481.64 L685.14 1455.28 L676.83 1456.95 L676.83 1452.69 L685.094 1451.02 L689.77 1451.02 L689.77 1481.64 L697.409 1481.64 L697.409 1485.58 L677.502 1485.58 L677.502 1481.64 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M710.881 1481.64 L727.2 1481.64 L727.2 1485.58 L705.256 1485.58 L705.256 1481.64 Q707.918 1478.89 712.501 1474.26 Q717.108 1469.61 718.288 1468.27 Q720.534 1465.74 721.413 1464.01 Q722.316 1462.25 722.316 1460.56 Q722.316 1457.8 720.372 1456.07 Q718.451 1454.33 715.349 1454.33 Q713.15 1454.33 710.696 1455.09 Q708.265 1455.86 705.488 1457.41 L705.488 1452.69 Q708.312 1451.55 710.765 1450.97 Q713.219 1450.39 715.256 1450.39 Q720.626 1450.39 723.821 1453.08 Q727.015 1455.77 727.015 1460.26 Q727.015 1462.39 726.205 1464.31 Q725.418 1466.2 723.312 1468.8 Q722.733 1469.47 719.631 1472.69 Q716.529 1475.88 710.881 1481.64 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M737.015 1479.7 L741.899 1479.7 L741.899 1485.58 L737.015 1485.58 L737.015 1479.7 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M752.131 1451.02 L770.487 1451.02 L770.487 1454.96 L756.413 1454.96 L756.413 1463.43 Q757.432 1463.08 758.45 1462.92 Q759.469 1462.73 760.487 1462.73 Q766.274 1462.73 769.654 1465.9 Q773.034 1469.08 773.034 1474.49 Q773.034 1480.07 769.561 1483.17 Q766.089 1486.25 759.77 1486.25 Q757.594 1486.25 755.325 1485.88 Q753.08 1485.51 750.673 1484.77 L750.673 1480.07 Q752.756 1481.2 754.978 1481.76 Q757.2 1482.32 759.677 1482.32 Q763.682 1482.32 766.02 1480.21 Q768.358 1478.1 768.358 1474.49 Q768.358 1470.88 766.02 1468.77 Q763.682 1466.67 759.677 1466.67 Q757.802 1466.67 755.927 1467.08 Q754.075 1467.5 752.131 1468.38 L752.131 1451.02 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M1089.74 1481.64 L1097.38 1481.64 L1097.38 1455.28 L1089.07 1456.95 L1089.07 1452.69 L1097.33 1451.02 L1102.01 1451.02 L1102.01 1481.64 L1109.65 1481.64 L1109.65 1485.58 L1089.74 1485.58 L1089.74 1481.64 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M1119.14 1451.02 L1137.49 1451.02 L1137.49 1454.96 L1123.42 1454.96 L1123.42 1463.43 Q1124.44 1463.08 1125.46 1462.92 Q1126.47 1462.73 1127.49 1462.73 Q1133.28 1462.73 1136.66 1465.9 Q1140.04 1469.08 1140.04 1474.49 Q1140.04 1480.07 1136.57 1483.17 Q1133.09 1486.25 1126.78 1486.25 Q1124.6 1486.25 1122.33 1485.88 Q1120.09 1485.51 1117.68 1484.77 L1117.68 1480.07 Q1119.76 1481.2 1121.98 1481.76 Q1124.21 1482.32 1126.68 1482.32 Q1130.69 1482.32 1133.03 1480.21 Q1135.36 1478.1 1135.36 1474.49 Q1135.36 1470.88 1133.03 1468.77 Q1130.69 1466.67 1126.68 1466.67 Q1124.81 1466.67 1122.93 1467.08 Q1121.08 1467.5 1119.14 1468.38 L1119.14 1451.02 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M1149.25 1479.7 L1154.14 1479.7 L1154.14 1485.58 L1149.25 1485.58 L1149.25 1479.7 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M1174.32 1454.1 Q1170.71 1454.1 1168.88 1457.66 Q1167.08 1461.2 1167.08 1468.33 Q1167.08 1475.44 1168.88 1479.01 Q1170.71 1482.55 1174.32 1482.55 Q1177.96 1482.55 1179.76 1479.01 Q1181.59 1475.44 1181.59 1468.33 Q1181.59 1461.2 1179.76 1457.66 Q1177.96 1454.1 1174.32 1454.1 M1174.32 1450.39 Q1180.13 1450.39 1183.19 1455 Q1186.27 1459.58 1186.27 1468.33 Q1186.27 1477.06 1183.19 1481.67 Q1180.13 1486.25 1174.32 1486.25 Q1168.51 1486.25 1165.43 1481.67 Q1162.38 1477.06 1162.38 1468.33 Q1162.38 1459.58 1165.43 1455 Q1168.51 1450.39 1174.32 1450.39 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M1502.97 1481.64 L1510.61 1481.64 L1510.61 1455.28 L1502.3 1456.95 L1502.3 1452.69 L1510.56 1451.02 L1515.24 1451.02 L1515.24 1481.64 L1522.88 1481.64 L1522.88 1485.58 L1502.97 1485.58 L1502.97 1481.64 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M1531.14 1451.02 L1553.36 1451.02 L1553.36 1453.01 L1540.82 1485.58 L1535.93 1485.58 L1547.74 1454.96 L1531.14 1454.96 L1531.14 1451.02 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M1562.48 1479.7 L1567.37 1479.7 L1567.37 1485.58 L1562.48 1485.58 L1562.48 1479.7 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M1577.6 1451.02 L1595.96 1451.02 L1595.96 1454.96 L1581.88 1454.96 L1581.88 1463.43 Q1582.9 1463.08 1583.92 1462.92 Q1584.94 1462.73 1585.96 1462.73 Q1591.74 1462.73 1595.12 1465.9 Q1598.5 1469.08 1598.5 1474.49 Q1598.5 1480.07 1595.03 1483.17 Q1591.56 1486.25 1585.24 1486.25 Q1583.06 1486.25 1580.79 1485.88 Q1578.55 1485.51 1576.14 1484.77 L1576.14 1480.07 Q1578.22 1481.2 1580.45 1481.76 Q1582.67 1482.32 1585.15 1482.32 Q1589.15 1482.32 1591.49 1480.21 Q1593.83 1478.1 1593.83 1474.49 Q1593.83 1470.88 1591.49 1468.77 Q1589.15 1466.67 1585.15 1466.67 Q1583.27 1466.67 1581.4 1467.08 Q1579.54 1467.5 1577.6 1468.38 L1577.6 1451.02 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M1919.29 1481.64 L1935.61 1481.64 L1935.61 1485.58 L1913.67 1485.58 L1913.67 1481.64 Q1916.33 1478.89 1920.91 1474.26 Q1925.52 1469.61 1926.7 1468.27 Q1928.95 1465.74 1929.82 1464.01 Q1930.73 1462.25 1930.73 1460.56 Q1930.73 1457.8 1928.78 1456.07 Q1926.86 1454.33 1923.76 1454.33 Q1921.56 1454.33 1919.11 1455.09 Q1916.68 1455.86 1913.9 1457.41 L1913.9 1452.69 Q1916.72 1451.55 1919.18 1450.97 Q1921.63 1450.39 1923.67 1450.39 Q1929.04 1450.39 1932.23 1453.08 Q1935.43 1455.77 1935.43 1460.26 Q1935.43 1462.39 1934.62 1464.31 Q1933.83 1466.2 1931.72 1468.8 Q1931.14 1469.47 1928.04 1472.69 Q1924.94 1475.88 1919.29 1481.64 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M1955.43 1454.1 Q1951.82 1454.1 1949.99 1457.66 Q1948.18 1461.2 1948.18 1468.33 Q1948.18 1475.44 1949.99 1479.01 Q1951.82 1482.55 1955.43 1482.55 Q1959.06 1482.55 1960.87 1479.01 Q1962.69 1475.44 1962.69 1468.33 Q1962.69 1461.2 1960.87 1457.66 Q1959.06 1454.1 1955.43 1454.1 M1955.43 1450.39 Q1961.24 1450.39 1964.29 1455 Q1967.37 1459.58 1967.37 1468.33 Q1967.37 1477.06 1964.29 1481.67 Q1961.24 1486.25 1955.43 1486.25 Q1949.62 1486.25 1946.54 1481.67 Q1943.48 1477.06 1943.48 1468.33 Q1943.48 1459.58 1946.54 1455 Q1949.62 1450.39 1955.43 1450.39 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M1975.59 1479.7 L1980.47 1479.7 L1980.47 1485.58 L1975.59 1485.58 L1975.59 1479.7 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M2000.66 1454.1 Q1997.05 1454.1 1995.22 1457.66 Q1993.41 1461.2 1993.41 1468.33 Q1993.41 1475.44 1995.22 1479.01 Q1997.05 1482.55 2000.66 1482.55 Q2004.29 1482.55 2006.1 1479.01 Q2007.93 1475.44 2007.93 1468.33 Q2007.93 1461.2 2006.1 1457.66 Q2004.29 1454.1 2000.66 1454.1 M2000.66 1450.39 Q2006.47 1450.39 2009.52 1455 Q2012.6 1459.58 2012.6 1468.33 Q2012.6 1477.06 2009.52 1481.67 Q2006.47 1486.25 2000.66 1486.25 Q1994.85 1486.25 1991.77 1481.67 Q1988.71 1477.06 1988.71 1468.33 Q1988.71 1459.58 1991.77 1455 Q1994.85 1450.39 2000.66 1450.39 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M1234.79 1520.52 L1264.84 1520.52 L1264.84 1525.93 L1241.22 1525.93 L1241.22 1540 L1263.85 1540 L1263.85 1545.41 L1241.22 1545.41 L1241.22 1562.63 L1265.41 1562.63 L1265.41 1568.04 L1234.79 1568.04 L1234.79 1520.52 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M1301.38 1533.76 L1301.38 1539.24 Q1298.89 1537.87 1296.38 1537.2 Q1293.9 1536.5 1291.35 1536.5 Q1285.65 1536.5 1282.5 1540.13 Q1279.35 1543.73 1279.35 1550.25 Q1279.35 1556.78 1282.5 1560.4 Q1285.65 1564 1291.35 1564 Q1293.9 1564 1296.38 1563.33 Q1298.89 1562.63 1301.38 1561.26 L1301.38 1566.68 Q1298.92 1567.82 1296.28 1568.39 Q1293.67 1568.97 1290.71 1568.97 Q1282.66 1568.97 1277.92 1563.91 Q1273.18 1558.85 1273.18 1550.25 Q1273.18 1541.53 1277.95 1536.53 Q1282.76 1531.54 1291.09 1531.54 Q1293.8 1531.54 1296.38 1532.11 Q1298.96 1532.65 1301.38 1533.76 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M1310.96 1553.98 L1310.96 1532.4 L1316.81 1532.4 L1316.81 1553.75 Q1316.81 1558.81 1318.79 1561.36 Q1320.76 1563.87 1324.71 1563.87 Q1329.45 1563.87 1332.19 1560.85 Q1334.95 1557.83 1334.95 1552.61 L1334.95 1532.4 L1340.81 1532.4 L1340.81 1568.04 L1334.95 1568.04 L1334.95 1562.57 Q1332.82 1565.82 1329.99 1567.41 Q1327.19 1568.97 1323.46 1568.97 Q1317.32 1568.97 1314.14 1565.15 Q1310.96 1561.33 1310.96 1553.98 M1325.69 1531.54 L1325.69 1531.54 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M1358.67 1522.27 L1358.67 1532.4 L1370.73 1532.4 L1370.73 1536.95 L1358.67 1536.95 L1358.67 1556.3 Q1358.67 1560.66 1359.84 1561.9 Q1361.05 1563.14 1364.71 1563.14 L1370.73 1563.14 L1370.73 1568.04 L1364.71 1568.04 Q1357.93 1568.04 1355.36 1565.53 Q1352.78 1562.98 1352.78 1556.3 L1352.78 1536.95 L1348.48 1536.95 L1348.48 1532.4 L1352.78 1532.4 L1352.78 1522.27 L1358.67 1522.27 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><polyline clip-path=\"url(#clip060)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"252.764,1423.18 252.764,47.2441 \"/>\n",
       "<polyline clip-path=\"url(#clip060)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"252.764,1343.71 271.662,1343.71 \"/>\n",
       "<polyline clip-path=\"url(#clip060)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"252.764,665.385 271.662,665.385 \"/>\n",
       "<path clip-path=\"url(#clip060)\" d=\"M114.931 1363.5 L122.57 1363.5 L122.57 1337.14 L114.26 1338.8 L114.26 1334.54 L122.524 1332.88 L127.2 1332.88 L127.2 1363.5 L134.839 1363.5 L134.839 1367.44 L114.931 1367.44 L114.931 1363.5 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M154.283 1335.96 Q150.672 1335.96 148.843 1339.52 Q147.038 1343.06 147.038 1350.19 Q147.038 1357.3 148.843 1360.86 Q150.672 1364.4 154.283 1364.4 Q157.917 1364.4 159.723 1360.86 Q161.552 1357.3 161.552 1350.19 Q161.552 1343.06 159.723 1339.52 Q157.917 1335.96 154.283 1335.96 M154.283 1332.25 Q160.093 1332.25 163.149 1336.86 Q166.227 1341.44 166.227 1350.19 Q166.227 1358.92 163.149 1363.53 Q160.093 1368.11 154.283 1368.11 Q148.473 1368.11 145.394 1363.53 Q142.339 1358.92 142.339 1350.19 Q142.339 1341.44 145.394 1336.86 Q148.473 1332.25 154.283 1332.25 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M166.227 1326.35 L190.339 1326.35 L190.339 1329.55 L166.227 1329.55 L166.227 1326.35 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M208.978 1315.26 L199.386 1330.25 L208.978 1330.25 L208.978 1315.26 M207.981 1311.95 L212.758 1311.95 L212.758 1330.25 L216.764 1330.25 L216.764 1333.41 L212.758 1333.41 L212.758 1340.03 L208.978 1340.03 L208.978 1333.41 L196.301 1333.41 L196.301 1329.74 L207.981 1311.95 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M116.624 685.178 L124.263 685.178 L124.263 658.812 L115.953 660.479 L115.953 656.219 L124.217 654.553 L128.893 654.553 L128.893 685.178 L136.531 685.178 L136.531 689.113 L116.624 689.113 L116.624 685.178 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M155.976 657.631 Q152.365 657.631 150.536 661.196 Q148.73 664.738 148.73 671.867 Q148.73 678.974 150.536 682.539 Q152.365 686.08 155.976 686.08 Q159.61 686.08 161.416 682.539 Q163.244 678.974 163.244 671.867 Q163.244 664.738 161.416 661.196 Q159.61 657.631 155.976 657.631 M155.976 653.928 Q161.786 653.928 164.841 658.534 Q167.92 663.117 167.92 671.867 Q167.92 680.594 164.841 685.201 Q161.786 689.784 155.976 689.784 Q150.166 689.784 147.087 685.201 Q144.031 680.594 144.031 671.867 Q144.031 663.117 147.087 658.534 Q150.166 653.928 155.976 653.928 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M167.92 648.029 L192.032 648.029 L192.032 651.226 L167.92 651.226 L167.92 648.029 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M203.504 658.505 L216.764 658.505 L216.764 661.702 L198.934 661.702 L198.934 658.505 Q201.097 656.267 204.821 652.505 Q208.564 648.725 209.523 647.634 Q211.347 645.584 212.062 644.173 Q212.796 642.744 212.796 641.371 Q212.796 639.133 211.216 637.722 Q209.655 636.312 207.134 636.312 Q205.348 636.312 203.354 636.932 Q201.379 637.553 199.122 638.813 L199.122 634.976 Q201.417 634.055 203.41 633.585 Q205.404 633.115 207.059 633.115 Q211.423 633.115 214.018 635.296 Q216.613 637.478 216.613 641.127 Q216.613 642.857 215.955 644.418 Q215.316 645.96 213.604 648.067 Q213.134 648.612 210.614 651.226 Q208.094 653.822 203.504 658.505 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M44.7161 1053.69 L47.5806 1053.69 L47.5806 1080.62 Q53.6281 1080.23 56.8109 1076.99 Q59.9619 1073.71 59.9619 1067.88 Q59.9619 1064.51 59.1344 1061.36 Q58.3069 1058.18 56.6518 1055.06 L62.1899 1055.06 Q63.5267 1058.21 64.227 1061.52 Q64.9272 1064.83 64.9272 1068.23 Q64.9272 1076.76 59.9619 1081.76 Q54.9967 1086.73 46.5303 1086.73 Q37.7774 1086.73 32.6531 1082.02 Q27.4968 1077.27 27.4968 1069.25 Q27.4968 1062.06 32.1438 1057.89 Q36.7589 1053.69 44.7161 1053.69 M42.9973 1059.54 Q38.1912 1059.61 35.3266 1062.25 Q32.4621 1064.86 32.4621 1069.19 Q32.4621 1074.09 35.2312 1077.05 Q38.0002 1079.98 43.0292 1080.42 L42.9973 1059.54 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M42.4881 1014.44 L64.0042 1014.44 L64.0042 1020.3 L42.679 1020.3 Q37.6183 1020.3 35.1038 1022.27 Q32.5894 1024.25 32.5894 1028.19 Q32.5894 1032.94 35.6131 1035.67 Q38.6368 1038.41 43.8567 1038.41 L64.0042 1038.41 L64.0042 1044.3 L28.3562 1044.3 L28.3562 1038.41 L33.8944 1038.41 Q30.6797 1036.31 29.0883 1033.48 Q27.4968 1030.61 27.4968 1026.89 Q27.4968 1020.75 31.3163 1017.59 Q35.1038 1014.44 42.4881 1014.44 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M44.7161 972.271 L47.5806 972.271 L47.5806 999.198 Q53.6281 998.816 56.8109 995.569 Q59.9619 992.291 59.9619 986.466 Q59.9619 983.093 59.1344 979.942 Q58.3069 976.759 56.6518 973.64 L62.1899 973.64 Q63.5267 976.791 64.227 980.101 Q64.9272 983.411 64.9272 986.817 Q64.9272 995.347 59.9619 1000.34 Q54.9967 1005.31 46.5303 1005.31 Q37.7774 1005.31 32.6531 1000.6 Q27.4968 995.856 27.4968 987.835 Q27.4968 980.642 32.1438 976.472 Q36.7589 972.271 44.7161 972.271 M42.9973 978.127 Q38.1912 978.191 35.3266 980.833 Q32.4621 983.443 32.4621 987.771 Q32.4621 992.673 35.2312 995.633 Q38.0002 998.561 43.0292 999.007 L42.9973 978.127 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M33.8307 942.002 Q33.2578 942.989 33.0032 944.166 Q32.7167 945.312 32.7167 946.713 Q32.7167 951.678 35.9632 954.351 Q39.1779 956.993 45.2253 956.993 L64.0042 956.993 L64.0042 962.881 L28.3562 962.881 L28.3562 956.993 L33.8944 956.993 Q30.6479 955.147 29.0883 952.187 Q27.4968 949.227 27.4968 944.994 Q27.4968 944.389 27.5923 943.657 Q27.656 942.925 27.8151 942.034 L33.8307 942.002 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M45.7664 913.547 Q39.4007 913.547 35.8996 916.189 Q32.3984 918.799 32.3984 923.541 Q32.3984 928.252 35.8996 930.894 Q39.4007 933.504 45.7664 933.504 Q52.1003 933.504 55.6014 930.894 Q59.1026 928.252 59.1026 923.541 Q59.1026 918.799 55.6014 916.189 Q52.1003 913.547 45.7664 913.547 M59.58 907.691 Q68.683 907.691 73.1071 911.733 Q77.5631 915.775 77.5631 924.114 Q77.5631 927.202 77.0857 929.939 Q76.6401 932.676 75.6852 935.254 L69.9879 935.254 Q71.3884 932.676 72.0568 930.162 Q72.7252 927.647 72.7252 925.037 Q72.7252 919.276 69.7015 916.412 Q66.7096 913.547 60.6303 913.547 L57.7339 913.547 Q60.885 915.361 62.4446 918.194 Q64.0042 921.027 64.0042 924.974 Q64.0042 931.53 59.0071 935.541 Q54.01 939.551 45.7664 939.551 Q37.491 939.551 32.4939 935.541 Q27.4968 931.53 27.4968 924.974 Q27.4968 921.027 29.0564 918.194 Q30.616 915.361 33.7671 913.547 L28.3562 913.547 L28.3562 907.691 L59.58 907.691 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M67.3143 880.796 Q73.68 883.278 75.6216 885.634 Q77.5631 887.989 77.5631 891.936 L77.5631 896.614 L72.6615 896.614 L72.6615 893.177 Q72.6615 890.758 71.5157 889.421 Q70.3699 888.084 66.1048 886.461 L63.4312 885.411 L28.3562 899.829 L28.3562 893.623 L56.238 882.483 L28.3562 871.343 L28.3562 865.136 L67.3143 880.796 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M46.0847 820.13 Q46.0847 827.228 47.7079 829.966 Q49.3312 832.703 53.2461 832.703 Q56.3653 832.703 58.2114 830.666 Q60.0256 828.597 60.0256 825.064 Q60.0256 820.194 56.5881 817.266 Q53.1188 814.306 47.3897 814.306 L46.0847 814.306 L46.0847 820.13 M43.6657 808.449 L64.0042 808.449 L64.0042 814.306 L58.5933 814.306 Q61.8398 816.311 63.3994 819.303 Q64.9272 822.295 64.9272 826.624 Q64.9272 832.098 61.8716 835.345 Q58.7843 838.559 53.6281 838.559 Q47.6125 838.559 44.5569 834.549 Q41.5014 830.507 41.5014 822.518 L41.5014 814.306 L40.9285 814.306 Q36.8862 814.306 34.6901 816.979 Q32.4621 819.621 32.4621 824.427 Q32.4621 827.483 33.1941 830.379 Q33.9262 833.276 35.3903 835.949 L29.9795 835.949 Q28.7381 832.735 28.1334 829.711 Q27.4968 826.687 27.4968 823.823 Q27.4968 816.088 31.5072 812.269 Q35.5176 808.449 43.6657 808.449 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M46.212 770.796 Q39.7508 770.796 36.0905 773.47 Q32.3984 776.112 32.3984 780.759 Q32.3984 785.406 36.0905 788.079 Q39.7508 790.721 46.212 790.721 Q52.6732 790.721 56.3653 788.079 Q60.0256 785.406 60.0256 780.759 Q60.0256 776.112 56.3653 773.47 Q52.6732 770.796 46.212 770.796 M33.7671 790.721 Q30.5842 788.875 29.0564 786.074 Q27.4968 783.241 27.4968 779.326 Q27.4968 772.833 32.6531 768.791 Q37.8093 764.717 46.212 764.717 Q54.6147 764.717 59.771 768.791 Q64.9272 772.833 64.9272 779.326 Q64.9272 783.241 63.3994 786.074 Q61.8398 788.875 58.657 790.721 L64.0042 790.721 L64.0042 796.609 L14.479 796.609 L14.479 790.721 L33.7671 790.721 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M29.4065 732.284 L34.9447 732.284 Q33.6716 734.766 33.035 737.44 Q32.3984 740.114 32.3984 742.978 Q32.3984 747.339 33.7352 749.535 Q35.072 751.699 37.7456 751.699 Q39.7826 751.699 40.9603 750.14 Q42.1061 748.58 43.1565 743.869 L43.6021 741.864 Q44.9389 735.626 47.3897 733.016 Q49.8086 730.374 54.1691 730.374 Q59.1344 730.374 62.0308 734.321 Q64.9272 738.236 64.9272 745.111 Q64.9272 747.975 64.3543 751.094 Q63.8132 754.182 62.6992 757.619 L56.6518 757.619 Q58.3387 754.373 59.198 751.222 Q60.0256 748.071 60.0256 744.983 Q60.0256 740.846 58.6251 738.618 Q57.1929 736.39 54.6147 736.39 Q52.2276 736.39 50.9545 738.013 Q49.6813 739.604 48.5037 745.047 L48.0262 747.084 Q46.8804 752.527 44.5251 754.946 Q42.138 757.365 38.0002 757.365 Q32.9713 757.365 30.2341 753.8 Q27.4968 750.235 27.4968 743.678 Q27.4968 740.432 27.9743 737.567 Q28.4517 734.703 29.4065 732.284 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M32.4621 707.235 Q32.4621 711.945 36.1542 714.683 Q39.8145 717.42 46.212 717.42 Q52.6095 717.42 56.3017 714.714 Q59.9619 711.977 59.9619 707.235 Q59.9619 702.556 56.2698 699.819 Q52.5777 697.081 46.212 697.081 Q39.8781 697.081 36.186 699.819 Q32.4621 702.556 32.4621 707.235 M27.4968 707.235 Q27.4968 699.596 32.4621 695.235 Q37.4273 690.875 46.212 690.875 Q54.9649 690.875 59.9619 695.235 Q64.9272 699.596 64.9272 707.235 Q64.9272 714.905 59.9619 719.266 Q54.9649 723.595 46.212 723.595 Q37.4273 723.595 32.4621 719.266 Q27.4968 714.905 27.4968 707.235 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M14.479 681.167 L14.479 675.311 L64.0042 675.311 L64.0042 681.167 L14.479 681.167 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M49.9359 663.661 L28.3562 663.661 L28.3562 657.805 L49.7131 657.805 Q54.7739 657.805 57.3202 655.832 Q59.8346 653.858 59.8346 649.911 Q59.8346 645.169 56.8109 642.432 Q53.7872 639.663 48.5673 639.663 L28.3562 639.663 L28.3562 633.806 L64.0042 633.806 L64.0042 639.663 L58.5296 639.663 Q61.7762 641.795 63.3676 644.628 Q64.9272 647.429 64.9272 651.153 Q64.9272 657.296 61.1078 660.479 Q57.2883 663.661 49.9359 663.661 M27.4968 648.925 L27.4968 648.925 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M18.2347 615.95 L28.3562 615.95 L28.3562 603.887 L32.9077 603.887 L32.9077 615.95 L52.2594 615.95 Q56.6199 615.95 57.8613 614.773 Q59.1026 613.563 59.1026 609.903 L59.1026 603.887 L64.0042 603.887 L64.0042 609.903 Q64.0042 616.683 61.4897 619.261 Q58.9434 621.839 52.2594 621.839 L32.9077 621.839 L32.9077 626.136 L28.3562 626.136 L28.3562 621.839 L18.2347 621.839 L18.2347 615.95 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M44.7161 565.693 L47.5806 565.693 L47.5806 592.62 Q53.6281 592.238 56.8109 588.992 Q59.9619 585.713 59.9619 579.889 Q59.9619 576.515 59.1344 573.364 Q58.3069 570.181 56.6518 567.062 L62.1899 567.062 Q63.5267 570.213 64.227 573.523 Q64.9272 576.833 64.9272 580.239 Q64.9272 588.769 59.9619 593.766 Q54.9967 598.731 46.5303 598.731 Q37.7774 598.731 32.6531 594.021 Q27.4968 589.278 27.4968 581.257 Q27.4968 574.064 32.1438 569.895 Q36.7589 565.693 44.7161 565.693 M42.9973 571.55 Q38.1912 571.613 35.3266 574.255 Q32.4621 576.865 32.4621 581.194 Q32.4621 586.095 35.2312 589.055 Q38.0002 591.984 43.0292 592.429 L42.9973 571.55 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M44.7161 504.869 L47.5806 504.869 L47.5806 531.796 Q53.6281 531.414 56.8109 528.167 Q59.9619 524.889 59.9619 519.064 Q59.9619 515.691 59.1344 512.54 Q58.3069 509.357 56.6518 506.238 L62.1899 506.238 Q63.5267 509.389 64.227 512.699 Q64.9272 516.009 64.9272 519.415 Q64.9272 527.945 59.9619 532.942 Q54.9967 537.907 46.5303 537.907 Q37.7774 537.907 32.6531 533.196 Q27.4968 528.454 27.4968 520.433 Q27.4968 513.24 32.1438 509.07 Q36.7589 504.869 44.7161 504.869 M42.9973 510.725 Q38.1912 510.789 35.3266 513.431 Q32.4621 516.041 32.4621 520.369 Q32.4621 525.271 35.2312 528.231 Q38.0002 531.159 43.0292 531.605 L42.9973 510.725 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M33.8307 474.6 Q33.2578 475.587 33.0032 476.764 Q32.7167 477.91 32.7167 479.311 Q32.7167 484.276 35.9632 486.949 Q39.1779 489.591 45.2253 489.591 L64.0042 489.591 L64.0042 495.479 L28.3562 495.479 L28.3562 489.591 L33.8944 489.591 Q30.6479 487.745 29.0883 484.785 Q27.4968 481.825 27.4968 477.592 Q27.4968 476.987 27.5923 476.255 Q27.656 475.523 27.8151 474.632 L33.8307 474.6 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M33.8307 448.946 Q33.2578 449.933 33.0032 451.11 Q32.7167 452.256 32.7167 453.657 Q32.7167 458.622 35.9632 461.296 Q39.1779 463.937 45.2253 463.937 L64.0042 463.937 L64.0042 469.826 L28.3562 469.826 L28.3562 463.937 L33.8944 463.937 Q30.6479 462.091 29.0883 459.131 Q27.4968 456.171 27.4968 451.938 Q27.4968 451.333 27.5923 450.601 Q27.656 449.869 27.8151 448.978 L33.8307 448.946 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M32.4621 430.422 Q32.4621 435.133 36.1542 437.87 Q39.8145 440.607 46.212 440.607 Q52.6095 440.607 56.3017 437.902 Q59.9619 435.164 59.9619 430.422 Q59.9619 425.743 56.2698 423.006 Q52.5777 420.269 46.212 420.269 Q39.8781 420.269 36.186 423.006 Q32.4621 425.743 32.4621 430.422 M27.4968 430.422 Q27.4968 422.783 32.4621 418.423 Q37.4273 414.062 46.212 414.062 Q54.9649 414.062 59.9619 418.423 Q64.9272 422.783 64.9272 430.422 Q64.9272 438.093 59.9619 442.453 Q54.9649 446.782 46.212 446.782 Q37.4273 446.782 32.4621 442.453 Q27.4968 438.093 27.4968 430.422 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M33.8307 383.698 Q33.2578 384.684 33.0032 385.862 Q32.7167 387.008 32.7167 388.408 Q32.7167 393.374 35.9632 396.047 Q39.1779 398.689 45.2253 398.689 L64.0042 398.689 L64.0042 404.577 L28.3562 404.577 L28.3562 398.689 L33.8944 398.689 Q30.6479 396.843 29.0883 393.883 Q27.4968 390.923 27.4968 386.69 Q27.4968 386.085 27.5923 385.353 Q27.656 384.621 27.8151 383.729 L33.8307 383.698 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><polyline clip-path=\"url(#clip062)\" style=\"stroke:#009af9; stroke-linecap:round; stroke-linejoin:round; stroke-width:12; stroke-opacity:1; fill:none\" points=\"312.198,86.1857 642.385,222.108 972.573,379.847 1302.76,558.803 1632.95,761.493 1963.13,1019.11 2293.32,1384.24 \"/>\n",
       "<path clip-path=\"url(#clip062)\" d=\"M312.198 102.186 L300.886 97.4977 L296.198 86.1857 L300.886 74.8737 L312.198 70.1857 L323.51 74.8737 L328.198 86.1857 L323.51 97.4977 Z\" fill=\"#009af9\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"#000000\" stroke-opacity=\"1\" stroke-width=\"3.2\"/>\n",
       "<path clip-path=\"url(#clip062)\" d=\"M642.385 238.108 L631.073 233.42 L626.385 222.108 L631.073 210.796 L642.385 206.108 L653.697 210.796 L658.385 222.108 L653.697 233.42 Z\" fill=\"#009af9\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"#000000\" stroke-opacity=\"1\" stroke-width=\"3.2\"/>\n",
       "<path clip-path=\"url(#clip062)\" d=\"M972.573 395.847 L961.261 391.159 L956.573 379.847 L961.261 368.535 L972.573 363.847 L983.885 368.535 L988.573 379.847 L983.885 391.159 Z\" fill=\"#009af9\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"#000000\" stroke-opacity=\"1\" stroke-width=\"3.2\"/>\n",
       "<path clip-path=\"url(#clip062)\" d=\"M1302.76 574.803 L1291.45 570.115 L1286.76 558.803 L1291.45 547.491 L1302.76 542.803 L1314.07 547.491 L1318.76 558.803 L1314.07 570.115 Z\" fill=\"#009af9\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"#000000\" stroke-opacity=\"1\" stroke-width=\"3.2\"/>\n",
       "<path clip-path=\"url(#clip062)\" d=\"M1632.95 777.493 L1621.64 772.805 L1616.95 761.493 L1621.64 750.181 L1632.95 745.493 L1644.26 750.181 L1648.95 761.493 L1644.26 772.805 Z\" fill=\"#009af9\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"#000000\" stroke-opacity=\"1\" stroke-width=\"3.2\"/>\n",
       "<path clip-path=\"url(#clip062)\" d=\"M1963.13 1035.11 L1951.82 1030.42 L1947.13 1019.11 L1951.82 1007.8 L1963.13 1003.11 L1974.45 1007.8 L1979.13 1019.11 L1974.45 1030.42 Z\" fill=\"#009af9\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"#000000\" stroke-opacity=\"1\" stroke-width=\"3.2\"/>\n",
       "<path clip-path=\"url(#clip062)\" d=\"M2293.32 1400.24 L2282.01 1395.55 L2277.32 1384.24 L2282.01 1372.93 L2293.32 1368.24 L2304.63 1372.93 L2309.32 1384.24 L2304.63 1395.55 Z\" fill=\"#009af9\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"#000000\" stroke-opacity=\"1\" stroke-width=\"3.2\"/>\n",
       "<path clip-path=\"url(#clip060)\" d=\"M2020.33 196.789 L2282.76 196.789 L2282.76 93.1086 L2020.33 93.1086  Z\" fill=\"#ffffff\" fill-rule=\"evenodd\" fill-opacity=\"1\"/>\n",
       "<polyline clip-path=\"url(#clip060)\" style=\"stroke:#000000; stroke-linecap:round; stroke-linejoin:round; stroke-width:4; stroke-opacity:1; fill:none\" points=\"2020.33,196.789 2282.76,196.789 2282.76,93.1086 2020.33,93.1086 2020.33,196.789 \"/>\n",
       "<polyline clip-path=\"url(#clip060)\" style=\"stroke:#009af9; stroke-linecap:round; stroke-linejoin:round; stroke-width:12; stroke-opacity:1; fill:none\" points=\"2043.66,144.949 2183.66,144.949 \"/>\n",
       "<path clip-path=\"url(#clip060)\" d=\"M2113.66 166.553 L2098.39 160.223 L2092.05 144.949 L2098.39 129.674 L2113.66 123.344 L2128.93 129.674 L2135.26 144.949 L2128.93 160.223 Z\" fill=\"#009af9\" fill-rule=\"evenodd\" fill-opacity=\"1\" stroke=\"#000000\" stroke-opacity=\"1\" stroke-width=\"4.55111\"/>\n",
       "<path clip-path=\"url(#clip060)\" d=\"M2220.84 164.636 Q2219.03 169.266 2217.32 170.678 Q2215.6 172.09 2212.73 172.09 L2209.33 172.09 L2209.33 168.525 L2211.83 168.525 Q2213.59 168.525 2214.56 167.692 Q2215.53 166.858 2216.71 163.756 L2217.48 161.812 L2206.99 136.303 L2211.51 136.303 L2219.61 156.581 L2227.71 136.303 L2232.22 136.303 L2220.84 164.636 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /><path clip-path=\"url(#clip060)\" d=\"M2239.52 158.293 L2247.15 158.293 L2247.15 131.928 L2238.84 133.595 L2238.84 129.335 L2247.11 127.669 L2251.78 127.669 L2251.78 158.293 L2259.42 158.293 L2259.42 162.229 L2239.52 162.229 L2239.52 158.293 Z\" fill=\"#000000\" fill-rule=\"nonzero\" fill-opacity=\"1\" /></svg>\n"
      ]
     },
     "metadata": {},
     "execution_count": 6
    }
   ],
   "cell_type": "code",
   "source": [
    "plot(result.Ecuts, result.errors, dpi=300, lw=3, m=:o, yaxis=:log,\n",
    "     xlabel=\"Ecut\", ylabel=\"energy absolute error\")"
   ],
   "metadata": {},
   "execution_count": 6
  },
  {
   "cell_type": "markdown",
   "source": [
    "## A more realistic example.\n",
    "Repeating the above exercise for more realistic settings, namely …"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "tol   = 1e-4  # Tolerance to which we target to converge\n",
    "nkpts = 1:20  # K-point range checked for convergence\n",
    "Ecuts = 20:1:50;"
   ],
   "metadata": {},
   "execution_count": 7
  },
  {
   "cell_type": "markdown",
   "source": [
    "…one obtains the following two plots for the convergence in `kpoints` and `Ecut`."
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "<img src=\"https://docs.dftk.org/stable/assets/convergence_study_kgrid.png\" width=600 height=400 />\n",
    "<img src=\"https://docs.dftk.org/stable/assets/convergence_study_ecut.png\"  width=600 height=400 />"
   ],
   "metadata": {}
  }
 ],
 "nbformat_minor": 3,
 "metadata": {
  "language_info": {
   "file_extension": ".jl",
   "mimetype": "application/julia",
   "name": "julia",
   "version": "1.11.4"
  },
  "kernelspec": {
   "name": "julia-1.11",
   "display_name": "Julia 1.11.4",
   "language": "julia"
  }
 },
 "nbformat": 4
}