{ "cells": [ { "cell_type": "markdown", "source": [ "# Polarizability using automatic differentiation\n", "\n", "Simple example for computing properties using (forward-mode)\n", "automatic differentiation.\n", "For a more classical approach and more details about computing polarizabilities,\n", "see Polarizability by linear response." ], "metadata": {} }, { "outputs": [], "cell_type": "code", "source": [ "using DFTK\n", "using LinearAlgebra\n", "using ForwardDiff\n", "using PseudoPotentialData\n", "\n", "# Construct PlaneWaveBasis given a particular electric field strength\n", "# Again we take the example of a Helium atom.\n", "function make_basis(ε::T; a=10., Ecut=30) where {T}\n", " lattice = T(a) * I(3) # lattice is a cube of $a$ Bohrs\n", " # Helium at the center of the box\n", " pseudopotentials = PseudoFamily(\"cp2k.nc.sr.lda.v0_1.semicore.gth\")\n", " atoms = [ElementPsp(:He, pseudopotentials)]\n", " positions = [[1/2, 1/2, 1/2]]\n", "\n", " model = model_DFT(lattice, atoms, positions;\n", " functionals=[:lda_x, :lda_c_vwn],\n", " extra_terms=[ExternalFromReal(r -> -ε * (r[1] - a/2))],\n", " symmetries=false)\n", " PlaneWaveBasis(model; Ecut, kgrid=[1, 1, 1]) # No k-point sampling on isolated system\n", "end\n", "\n", "# dipole moment of a given density (assuming the current geometry)\n", "function dipole(basis, ρ)\n", " @assert isdiag(basis.model.lattice)\n", " a = basis.model.lattice[1, 1]\n", " rr = [a * (r[1] - 1/2) for r in r_vectors(basis)]\n", " sum(rr .* ρ) * basis.dvol\n", "end\n", "\n", "# Function to compute the dipole for a given field strength\n", "function compute_dipole(ε; tol=1e-8, kwargs...)\n", " scfres = self_consistent_field(make_basis(ε; kwargs...); tol)\n", " dipole(scfres.basis, scfres.ρ)\n", "end;" ], "metadata": {}, "execution_count": 1 }, { "cell_type": "markdown", "source": [ "With this in place we can compute the polarizability from finite differences\n", "(just like in the previous example):" ], "metadata": {} }, { "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "n Energy log10(ΔE) log10(Δρ) Diag Δtime\n", "--- --------------- --------- --------- ---- ------\n", " 1 -2.770859815902 -0.53 9.0 177ms\n", " 2 -2.772140634348 -2.89 -1.31 1.0 114ms\n", " 3 -2.772169899236 -4.53 -2.57 1.0 110ms\n", " 4 -2.772170706547 -6.09 -3.53 2.0 127ms\n", " 5 -2.772170722269 -7.80 -4.12 1.0 114ms\n", " 6 -2.772170722951 -9.17 -4.93 1.0 161ms\n", " 7 -2.772170723014 -10.20 -5.41 2.0 496ms\n", " 8 -2.772170723015 -12.04 -6.25 1.0 114ms\n", " 9 -2.772170723015 -14.31 -6.79 1.0 139ms\n", " 10 -2.772170723015 -14.12 -7.47 1.0 115ms\n", " 11 -2.772170723015 -14.07 -8.22 2.0 136ms\n", "n Energy log10(ΔE) log10(Δρ) Diag Δtime\n", "--- --------------- --------- --------- ---- ------\n", " 1 -2.770755627493 -0.53 8.0 155ms\n", " 2 -2.772053846938 -2.89 -1.31 1.0 109ms\n", " 3 -2.772082926712 -4.54 -2.55 1.0 108ms\n", " 4 -2.772083368510 -6.35 -3.45 1.0 111ms\n", " 5 -2.772083416412 -7.32 -3.96 2.0 127ms\n", " 6 -2.772083417755 -8.87 -5.19 1.0 117ms\n", " 7 -2.772083417807 -10.28 -5.28 2.0 131ms\n", " 8 -2.772083417811 -11.50 -6.30 1.0 121ms\n", " 9 -2.772083417811 -13.23 -6.56 2.0 539ms\n", " 10 -2.772083417811 -14.18 -7.40 1.0 114ms\n", " 11 -2.772083417811 + -14.10 -8.00 1.0 116ms\n", " 12 -2.772083417811 -13.82 -8.66 2.0 154ms\n" ] }, { "output_type": "execute_result", "data": { "text/plain": "1.7735579730013822" }, "metadata": {}, "execution_count": 2 } ], "cell_type": "code", "source": [ "polarizability_fd = let\n", " ε = 0.01\n", " (compute_dipole(ε) - compute_dipole(0.0)) / ε\n", "end" ], "metadata": {}, "execution_count": 2 }, { "cell_type": "markdown", "source": [ "We do the same thing using automatic differentiation. Under the hood this uses\n", "custom rules to implicitly differentiate through the self-consistent\n", "field fixed-point problem. This leads to a density-functional perturbation\n", "theory problem, which is automatically set up and solved in the background." ], "metadata": {} }, { "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "n Energy log10(ΔE) log10(Δρ) Diag Δtime\n", "--- --------------- --------- --------- ---- ------\n", " 1 -2.770657324401 -0.53 9.0 180ms\n", " 2 -2.772053993343 -2.85 -1.30 1.0 106ms\n", " 3 -2.772082856401 -4.54 -2.65 1.0 110ms\n", " 4 -2.772083415438 -6.25 -4.03 2.0 127ms\n", " 5 -2.772083417616 -8.66 -4.45 2.0 128ms\n", " 6 -2.772083417803 -9.73 -5.42 1.0 600ms\n", " 7 -2.772083417810 -11.12 -5.99 2.0 148ms\n", " 8 -2.772083417811 -13.01 -6.50 1.0 152ms\n", " 9 -2.772083417811 -13.64 -7.01 2.0 145ms\n", " 10 -2.772083417811 + -15.35 -7.92 1.0 116ms\n", " 11 -2.772083417811 + -14.35 -8.56 2.0 130ms\n", "Solving response problem\n", "[ Info: GMRES linsolve starts with norm of residual = 4.19e+00\n", "[ Info: GMRES linsolve in iteration 1; step 1: normres = 2.49e-01\n", "[ Info: GMRES linsolve in iteration 1; step 2: normres = 3.76e-03\n", "[ Info: GMRES linsolve in iteration 1; step 3: normres = 2.84e-04\n", "[ Info: GMRES linsolve in iteration 1; step 4: normres = 4.67e-06\n", "[ Info: GMRES linsolve in iteration 1; step 5: normres = 1.08e-08\n", "┌ Info: GMRES linsolve converged at iteration 1, step 6:\n", "│ * norm of residual = 7.68e-10\n", "└ * number of operations = 8\n", "\n", "Polarizability via ForwardDiff: 1.7725349649275122\n", "Polarizability via finite difference: 1.7735579730013822\n" ] } ], "cell_type": "code", "source": [ "polarizability = ForwardDiff.derivative(compute_dipole, 0.0)\n", "println()\n", "println(\"Polarizability via ForwardDiff: $polarizability\")\n", "println(\"Polarizability via finite difference: $polarizability_fd\")" ], "metadata": {}, "execution_count": 3 } ], "nbformat_minor": 3, "metadata": { "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", "version": "1.11.4" }, "kernelspec": { "name": "julia-1.11", "display_name": "Julia 1.11.4", "language": "julia" } }, "nbformat": 4 }