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We prove oracle inequalities for a penalized log-likelihood criterion that
hold even if the data are not independent and not stationary, based on a mar-
tingale approach. The assumptions are checked for various contexts: density
estimation with independent and identically distributed (i.i.d) data, hidden
Markov models, spiking neural networks, adversarial bandits. In each case,
we compare our results to the literature, showing that, although we lose some
logarithmic factors in the most classical case (i.i.d.), these results are compa-
rable or more general than the existing results in the most dependent cases.

1. Introduction. Maximum likelihood estimator (MLE) (see [13] and references therein)
is often considered the default approach to construct estimators, although it has been debated,
particularly with regard to robustness [8]. In the i.i.d. setting, it is known to be asymptoti-
cally efficient (its variance is asymptotically minimal w.r.t. the Cramer-Rao bound) under
mild conditions (typically differentiability of the density) [41]. In 1973, Akaike [1] proposed
his famous penalized log-likelihood criterion (AIC) stating that to select a model from a
finite set of models, one must penalize the log-likelihood of any model m by Dm, the num-
ber of parameters describing m. There exists a large variety of variants of AIC, for which
the asymptotic properties are more or less precise (see [19] and references therein). Under
additional differentiability assumptions, the Wilks phenomenon [55] more precisely quan-
tifies (asymptotically) how the recentered maximal log-likelihood behaves as a chi-square
distribution with Dm degrees of freedom. This phenomenon makes it possible to construct
asymptotic likelihood ratio tests and therefore to carry out model selection by multiple testing
[57]. This idea has been used in many contexts, most recently in combination with asymptotic
model selection ℓ1 [52, 50, 49]. In short, with AIC type penalties and the Wilks phenomenon,
there is a fairly clear understanding of how the maximum likelihood behaves asymptotically
in the i.i.d. setting in terms of dimension and how the log-likelihood should be penalized to
find the correct model in a finite fixed set of smooth enough models.

If we move on to the non-asymptotic framework, things are more difficult to study. There
are concentration inequalities that mimic the Wilks phenomenon [16] and provide a non-
asymptotic understanding of what the MLE does in an exponential family [47], or how to
penalize it so that it works even in infinite-dimensional settings with finite effective dimension
[48]. It is even possible to penalize the log-likelihood in order to perform model selection
[20, 42] for a particular family of models in the i.i.d. framework. However, in these works,
model selection “à la Birgé-Massart” [15] is usually based on some form of linearity between
the contrast and the family of models considered, which leads to a very fine tuning of the
penalty constants [2] but, at the same time, prevents the results from being applied to more
general contexts.

If we drop the independence hypothesis but keep the stationarity of the data, there is a
wide variety of model selection results obtained by minimizing penalized contrasts, with
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ℓ0 or ℓ1 penalty, with or without log-likelihood. These include Markov chains [37], hidden
Markov models [38, 24, 40], spiking neuronal networks with unobserved components [43],
point processes [35]. In each case, the arguments are a combination of a martingale approach
and non-asymptotic exponential inequalities, which derive from the ergodicity of the process
and mixing properties.

However, the Akaike criterion (minus log-likelihood plus penalization proportional to Dm)
is often used even outside the frameworks mentioned above [23, 56]. For instance, in learning
experiments where an individual has to learn to perform a task and learn it only once, the data
are neither independent nor stationary. Some authors [45] have tried to assume that individu-
als are identically distributed, but this is a very strong and quite unlikely setting in practice. In
a first work [5], we proved meaningful bounds for the maximum likelihood estimator on an
individual learning trajectory. But, to our knowledge, there is no theoretical work on model
selection in this framework or, more generally, for dependent and non-stationary data.

The aim of this work is to derive a non-asymptotic oracle inequality for AIC-type model
selection that is general enough to cover all the configurations listed above: i.i.d. samples,
hidden Markov models, partially observed neural networks, learning models and more.

The proof relies on an exponential inequality that holds for a supremum of empiri-
cal centered processes that are stochastically normalized under a Hölder condition on the
parametrization. It is a variant of the Lipschitz case, that we recently proved [4]. This expo-
nential inequality generalizes the works of [7], [51], and is inspired by the works on renor-
malized martingales due to [10, 12] and [26]. The Hölder case is especially useful to derive
bounds for hidden Markov models.

The rest of the article is organized as follows. In Section 2, we introduce notations and
the general framework. In Section 3, we state our assumptions and oracle inequalities in
probability and in expectation, in the bounded and unbounded frameworks. We also discuss
how the penalty in Dm is obtained with respect to more conventional proof techniques. In
Section 4, we examine various cases covered by these general results in the light of existing
results in the literature. The appendices are devoted to proofs and to the exponential inequality
under Hölder parametrization.

2. Framework and notation. Given two integers a⩽ b and a sequence (xs)s∈Z, write
xba = (xa, . . . , xb) (with xba being the empty sequence when a > b). For any two real numbers
x, y, write x ∨ y their maximum and x ∧ y their minimum. Let N∗ be the set of positive
integers, and for any n ∈N∗, write [n] the set of integers {1, . . . , n}. Finally, log denotes the
natural logarithm.

Let n ⩾ 3 be an integer. We observe a process (Xt)1⩽t⩽n defined on a polish measure
space (X ,F , µ) and adapted to a filtration (Ft)1⩽t⩽n. Let us write P the corresponding prob-
ability and E the corresponding expectation. The abbreviation "a.s." is used for "almost surely
under the true distribution P" (unless stated otherwise).

The objects of study are the successive conditional distributions of Xt. If X is discrete and
µ is the counting measure, they are defined by the sequence

p⋆t (.) = P(Xt = .|Ft−1), ∀t ∈ [n].

More generally, in the sequel, we denote by µ a fixed measure on X . For general mea-
sured spaces (X ,F , µ), we always assume that the conditional density of Xt given Ft−1

with respect to µ exists and we denote it by p⋆t (.). Therefore, for all x ∈ X , (p⋆t (x))1⩽t⩽n

is predictable with respect to the filtration—we say that p⋆t is predictable for short. Let
p⋆ = (p⋆t )t∈[n] be the vector of all the successive conditional densities.

2.1. Some examples. Let us give some examples of the filtration Ft.
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The filtration depends only on past observations. The emblematic case is when the filtra-
tion Ft = σ(Xt

1) for t⩾ 1 and F0 is the trivial σ-algebra. Here, for t > 1, p⋆t can be written
as the conditional density of Xt given Xt−1

1 and p⋆1 as the density of X1 (in this case p⋆1 is
deterministic). To emphasize this fact, in this case we note p⋆t (.|Xt−1

1 ) instead of just p⋆t . The
density of the vector Xn

1 with respect to µ⊗n is therefore

(1) xn1 7→
n∏

i=1

p⋆t (xt|Xt−1
1 = xt−1

1 ).

In the even simpler case that the coordinates of Xn
1 are independent, for all t⩾ 1, p⋆t is the

(deterministic) density of Xt w.r.t. to µ.

The filtration depends on past observations and additional covariates. Another example
is an enlargement of the previous filtration. For instance, the conditional distribution of Xt

can be a function not only of past realizations of Xt, but also of additional covariates: at each
step t, the distribution of Xt depends not only on the past but also on an observed variable
Ct, so that conditional densities can be written

(2) p⋆t (xt) = p⋆t (xt|Xt−1
1 ,Ct

1).

Any decent model of evolution for Xt depends on Xt−1
1 but also on Ct

1. The natural filtration
in this context is Ft−1 = σ(Xt−1

1 ,Ct
1).

The filtration is not fully observed. Chains with infinite memory, which can model po-
tentially infinite neural networks [30, 31, 32, 43], are another example in which the filtration
may not be completely observed. Even if the chain is not observed over the entire network
with infinite past, p⋆t still exists as a function of the infinite network. However p⋆t is approx-
imated by functions that involve only a smaller subset of the observed neurons (see Section
4.3 for more details).

2.2. Models and penalized (partial) log-likelihood. We model p⋆ by models that de-
pend on a finite number of parameters. Consider a sequence of models ({pmθ : θ ∈ Θm ⊂
RDm})m∈M for some countable set M. Each pmθ is a sequence pmθ = (pmθ,t)t∈[n], with pmθ,t
being a candidate at being p⋆t . In particular, the candidate pmθ,t must be predictable.

2.2.1. Partial log-likelihood. For any m ∈M, define the (partial) log-likelihood of pa-
rameter θ ∈Θm given the observations by

ℓn(θ) =

n∑
t=1

log pmθ,t(Xt).

In the case mentioned in Section 2.1 where Ft = σ(Xt
1) for t ⩾ 1 and F0 is the trivial

σ-algebra, because of (1), ℓn(θ) is exactly the log-likelihood log pmθ (Xn
1 ). For models as

in (2), this partial log-likelihood still has the convenient form of a conditional log-likelihood:
ℓn(θ) = log pmθ (Xn

1 |Cn
1 ), and it matches Cox’s partial likelihood [22]. This might no longer

be the case for larger filtrations.

2.2.2. Penalized log-likelihood criterion. For each m ∈M, define the maximum likeli-
hood estimator of model m by

θ̂m ∈ arg max
θ∈Θm

1

n
ℓn(θ).
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We assume for simplicity in the sequel that the previous estimator always exists, but the
following results hold up to an additional error term in ϵ0 in the oracle inequalities, if we
only have:

sup
θ∈Θm

1

n
ℓn(θ)− ϵ0 ⩽

1

n
ℓn(θ̂

m).

Finally, take a penalty pen :M→ R+ and select a model m̂ that minimizes the penalized
log-likelihood:

m̂ ∈ arg min
m∈M

(
− 1

n
ℓn(θ̂

m) + pen(m)

)
.

The penalized likelihood estimator of p⋆ is therefore p̃ = pm̂
θ̂m̂

. We want to understand how
good is the estimator p̃ with respect to p⋆.

2.3. Stochastic risk function. Classical approaches [42, 47, 48], generally use an expec-
tation of the contrast to define the risk. For instance, in i.i.d. examples, the log-likelihood is
naturally related to the Kullback-Leibler divergence between the distributions.

Here, because we want to keep the inherent martingale structure that comes with the fil-
tration and with the object of interest p⋆, we use the stochastic risk function Kn defined as
follows. For any sequence of conditional densities p= (pt)t∈[n], let

Kn(p) =
1

n

n∑
t=1

E
[
log

p⋆t (Xt)

pt(Xt)

∣∣∣Ft−1

]
.

This can be seen as the mean of the conditional Kullback-Leibler divergence in the sense that

E
[
log

p⋆t (Xt)

pt(Xt)

∣∣∣Ft−1

]
is a predictable quantity which corresponds to the Kullback-Leibler divergence between the
distributions with densities p⋆t and pt w.r.t µ, conditionally to Ft−1.

In the case where Ft = σ(Xt
1) for t ⩾ 1 and F0 is the trivial σ-algebra, because of (1),

nE[Kn(p)] is exactly the Kullback-Leibler divergence between the distributions defined re-
spectively by p⋆ and p.

The oracle inequalities presented below are bounds on the stochastic risk Kn(p̃) in prob-
ability and in expectation respectively.

3. Main results.

3.1. Main assumptions. Let us first discuss the main assumptions. Because we use a
Kullback-Leibler-like divergence as a risk function, we need to ensure that it does not diverge.
A natural assumption is that p⋆ and the candidates pmθ stay far from 0 and do not explode. This
is done almost surely in Assumption 1 and with high probability only in Assumption 1bis.

ASSUMPTION 1. There exists ε > 0 such that almost surely, for all t ∈ [n] and x ∈ X ,
p⋆t (x) ∈ (ε, ε−1) and for all m ∈ M and all θ ∈ Θm, pmθ,t(x) ∈ (ε, ε−1). Without loss of
generality, we assume that log ε <−1.

A weaker version of this assumption is the following.
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ASSUMPTION 1bis. For all m ∈M, there exists a finite constant Bm such that almost
surely, for all y ⩾ 1 and t ∈ [n],

P

(
∃m ∈M, sup

δ,θ∈Θm∪{⋆}

∣∣∣∣∣log pmδ,t(Xt)

pmθ,t(Xt)

∣∣∣∣∣⩾Bmy
∣∣∣Ft−1

)
⩽ e−y,

with the convention pm⋆ = p⋆. Without loss of generality, we assume that Bm ⩾ 1 for all
m ∈M.

The second category of assumptions replaces the exponential family assumption of the
classic asymptotic results on MLE. It states that the parameterization of the models is Hölder
w.r.t. some norm that is bounded on Θm.

ASSUMPTION 2. For all m ∈M, there exist a norm ∥ · ∥m on RDm and finite, positive
constants Lm, Mm and 0< βm such that a.s., for all t ∈ [n] and x ∈ X , for all m ∈M and
all δ, θ ∈Θm, ∣∣∣∣∣log pmδ,t(x)

pmθ,t(x)

∣∣∣∣∣<Lm∥δ− θ∥βm
m

and

∥δ− θ∥m ⩽Mm.

Without loss of generality, we assume that LmMβm
m ⩾ 1 for all m ∈M.

The case βm < 1 corresponds to the classic Hölder condition and the case βm = 1 to the
Lipschitz one. The case βm > 1 on the other hand does not correspond to the classical Hölder
definition. In simple cases such as when Θm is an interval of R, taking βm > 1 entails that the
likelihoods are constant, case which is of little interest, but the situation might be different if
Θm is discrete for instance.

Likewise, a weaker version of this assumption is

ASSUMPTION 2bis. There exists α ⩾ 1 such that for all m ∈ M, there exist a norm
∥ · ∥m on RDm and finite, positive constants Lm, Mm and βm such that almost surely, for all
t ∈ [n],

P

∃m ∈M, sup
δ ̸=θ∈Θm

∣∣∣log pm
δ,t(Xt)

pm
θ,t(Xt)

∣∣∣
∥δ− θ∥βm

m

⩾ Lm logn
∣∣∣Ft−1

⩽ n−(1+α)

and

∥δ− θ∥m ⩽Mm.

Without loss of generality, we assume that LmMβm
m ⩾ 1 for all m ∈M.

3.2. Measurability assumptions. This section is concerned with checking the measura-
bility of the quantities involved in our proofs and the previous assumptions. It can be skipped
by readers not concerned with this issue.

First, the events in Assumptions 1, 1bis, 2 and 2bis are not necessarily measurable. A
simple way to solve this is the following assumption:
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ASSUMPTION 3. For all x ∈ X , t ∈ [n] and m ∈M, the functions

(δ, θ) ∈Θ2
m with δ ̸= θ 7→

∣∣∣log pm
θ,t(x)

pm
δ,t(x)

∣∣∣
∥δ− θ∥βm

m

and θ ∈Θm 7→
∣∣∣∣log pmθ,t(x)

p⋆t (x)

∣∣∣∣
are continuous.

The next potential issue is as follows. In the proof, we define a random distance R∞
in (21) (Section C.2) as a supremum over X of functions involving x 7→ p⋆t (x) and pmθ,t(x).
The following assumption ensures that it is defined in a way that it is measurable w.r.t. the
filtration.

First, if Assumptions 1 and 2 hold, the following assumption is enough:

ASSUMPTION 4. There exists a countable dense subset Q of X such that almost surely,
for all t ∈ [n], m ∈M and θ, δ ∈Θm ∪ {⋆},

sup
x∈Q

∣∣∣∣∣log pmθ,t(x)

pmδ,t(x)

∣∣∣∣∣= sup
x∈X

∣∣∣∣∣log pmθ,t(x)

pmδ,t(x)

∣∣∣∣∣
with the convention pm⋆ = p⋆.

For instance, this holds for any dense set Q as soon as the functions x 7→ | log pm
θ,t(x)

pm
δ,t(x)

| are
lower semi-continuous for all θ, δ ∈ Θm ∪ {⋆}, and it is possible to take Q countable since
X is separable.

When Assumptions 1bis and 2bis hold, we need a different assumption, such as the fol-
lowing.

ASSUMPTION 4bis. For all x ∈ X , there exists an open set Ox ⊂ X such that x ∈ Ox,
the closure of Ox, and for all t ∈ [n], the set of functionsy ∈Ox ∪ {x} 7→

∣∣∣log pm
θ,t(y)

pm
δ,t(y)

∣∣∣
Lm∥δ− θ∥βm

m

, m ∈M, δ, θ ∈Θm, δ ̸= θ


∪
{
y ∈Ox ∪ {x} 7→ 1

Bm

∣∣∣∣log pmθ,t(y)

p⋆t (y)

∣∣∣∣ , m ∈M, θ ∈Θm

}
is equicontinuous at x.

For instance, when X is discrete, both Assumptions 4 and 4bis hold.
For general X , a convenient situation for Assumptions 4 and 4bis is when the densities

are piecewise continuous, that is there exists a family of disjoint open sets (Oi)i∈I for an at
most countable set I whose closures cover X and such that the restriction of the densities
on each of these sets can be extended into a continuous function over X . We actually need
something a bit stronger than piecewise continuous to deal with the possible discontinuity
at the border of each open set: Assumption 4bis holds as soon as there exists a partition
(Ai)i∈I of X with Oi ⊂ Ai ⊂Oi (for the open sets Oi discussed above) such that the func-
tions y 7→

∣∣∣log pm
θ,t(y)

pm
δ,t(y)

∣∣∣/(Lm∥δ − θ∥βm
m ) and y 7→

∣∣∣log pm
θ,t(y)

p⋆
t (y)

)
∣∣∣/Bm (for all m and δ, θ) are

equicontinuous on each Ai. The partition (Ai)i∈I must be the same for all densities of all
models.
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EXAMPLE 1. Take X = R, n= 1 and the single model Θ= {pλ : x 7→ λe−λx1x⩾0, λ ∈
[a, b]} with a, b ∈ R∗

+, and assume y 7→ p⋆(y) is zero on R∗
− and continuous and positive on

R+. These densities satisfy the condition discussed above with O1 = R∗
−, O2 = R∗

+, A1 =
R∗
− and A2 =R+, with Hölder regularity β = 1.

When M is finite, the following assumption suffices and is typically easier to check.

ASSUMPTION 4ter. The set M is finite and for all x ∈ X , there exists an open set Ox ⊂
X such that x ∈Ox and for all t ∈ [n] and m ∈M, the functions

(δ, θ, y) ∈Θ2
m×(Ox∪{x}) 7→

∣∣∣log pm
θ,t(y)

pm
δ,t(y)

∣∣∣
∥δ− θ∥βm

m

and (θ, y) ∈Θm×(Ox∪{x}) 7→
∣∣∣∣log pmθ,t(y)

p⋆t (y)

∣∣∣∣
are continuous at (δ′, θ′, x) (with a continuous extension when δ′ = θ′) and (θ′, x) respec-
tively, for all δ′, θ′ ∈Θm.

This assumption implies both Assumptions 3 and 4bis.

3.3. Oracle inequality, bounded case.

THEOREM 2. Assume that n ⩾ 3 and that Assumptions 1, 2, 3 and 4 hold. For each
m ∈M, let Am = LmMβm

m + 2 log(ε−1), and assume that

Σ=
∑
m∈M

log(Am)e−Dm <+∞.

Let κ ∈ (0,1]. There exist positive numerical constants C and C ′ such that the following
holds. If for all m ∈M,

pen(m)⩾
C

κ
A2

m log(ε−1)

(
1 +

1

βm

)
log(nAm)2

Dm

n
,

then for all x⩾ 0, with probability at least 1− 24 log(n)Σe−x,

(1− κ)Kn(p̃)

⩽ inf
m∈M

(
(1 + κ) inf

θ∈ΘDm

Kn(p
m
θ ) + 2pen(m) +

C ′

κ
(Am +Am̂) log(ε−1)

x

n

)
.

PROOF. See Section A.

This result is an oracle inequality in probability. The penalty term is proportional to Dm/n,
as in classical oracle inequalities for nested or not too complex families of models (e.g.
Gaussian model selection [15]). This is ensured by the summability condition on Σ (see
[15, 42] for instance for a discussion about the complexity of a family of models). The risk
is—up to a constant factor and a residual term—smaller than the best bias-variance trade-off
in the family of models, with a variance of order Dm/n.

Due to the generality of the result, the penalty is a bit larger than in the original AIC
criterion, with additional logarithmic factors, and depends on the lower bound ε and the
Hölder constants Lm and Mm. Because M might be infinite, there is a residual term de-
pending on m̂. Additional assumptions are required to get rid of it, such as a uniform bound
on (Am)m∈M introduced in the following corollary which gives a result in expectation and
whose proof can be found in Section B.
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COROLLARY 3. Under the same assumptions and with the constants and notations of
Theorem 2, if there exists A(n)> 0 such that

sup
m∈M

Am ⩽A(n),

then

(1− κ)E [Kn(p̃)]⩽ E
[
inf

m∈M

(
(1 + κ) inf

θ∈ΘDm
Kn(p

m
θ ) + 2pen(m)

)]
+

36C ′

κ
ΣA(n) log(ε−1)

logn

n
.

3.4. Oracle inequality, unbounded case. The bounded case can be restrictive for some
applications, so we can relax the assumptions, up to additional logarithmic factors.

THEOREM 4. Assume that n⩾ 3 and that Assumptions 1bis, 2bis, 3 and 4bis hold. For
each m ∈M, let Am = LmMβm

m + (1+ α)Bm, and assume that

Σ=
∑
m∈M

log(Am)e−Dm <+∞

Let κ ∈ (0,1]. There exist positive constants C and C ′ such that the following holds. If for all
m ∈M,

pen(m)⩾
(1 + α)C

κ
A2

mBm(logn)3
(
1 +

1

βm

)
log(nAm)2

Dm

n

then for all x⩾ 0, with probability at least 1− 2n−α − 24 log(n)Σe−x,

(1− κ)Kn(p̃)

⩽ inf
m∈M

(
(1 + κ) inf

θ∈ΘDm
Kn(p

m
θ ) + 2pen(m) +

(1 + α)C ′

κ
(AmBm +Am̂Bm̂)

x(logn)2

n

)
.

PROOF. See Section A.

Except for extra logarithmic factors, Theorem 4 is essentially the same as Theorem 2. An
expectation version of this result holds under the same assumptions as for Corollary 3. Its
proof can be found in Section B.

COROLLARY 5. Under the assumptions and with the same constants and notations of
Theorem 4, if α⩾ 1 and there exist A(n)> 0 and B(n)> 0 such that

sup
m∈M

Am ⩽A(n) and sup
m∈M

Bm ⩽B(n),

then

(1− κ)E [Kn(p̃)]⩽ E
[
inf

m∈M

(
(1 + κ) inf

θ∈ΘDm

Kn(p
m
θ ) + 2pen(m)

)]
+

52(1 + α)C ′

κ
ΣA(n)B(n)

(logn)3

n
.
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3.5. Origin of the penalty in Dm/n. The common crucial point to all non-asymptotic
controls of log-likelihood estimators [42, 20, 47, 48] lies in the control of the recentered con-
trast at the estimation point. In our framework, with the above notation, it means controlling

ν(H) =
1

n

n∑
t=1

[Ht(Xt)−E(Ht(Xt)|Ft−1)],

where Ht is equal to

Ht =Hm
θ,t =− log

(
pmθ,t(Xt)

p⋆t (Xt)

)
.

As long as θ is fixed and deterministic, this is a martingale and various exponential tail bounds
are applicable. For now, without going into details, let us just say that with high probability,

(3) ν(H) =O
(√

V (H)/n
)

where typically,

V (H) =
1

n

n∑
t=1

E(Ht(Xt)
2|Ft−1).

In the i.i.d. framework, where V (H) is deterministic, of the order of the variance of H1,
we recover what the central limit theorem implies, i.e. that the fluctuations of the empirical
process are of order n−1/2 multiplied by the standard deviation. In more general settings,
V (H) is random and it is usually necessary to restrict oneself to an event where V (H) is
bounded to obtain such non-asymptotic control of ν(H) (see for instance [11]).

However, this is still not sufficient to conclude. To understand what happens for the max-
imum likelihood estimator, we need to control ν(Hm

θ̂m,t
) and because θ̂m depends on the

whole trajectory, the classical inequalities for centered processes do not apply. In addition to
that, the order of magnitude of V (H) in n−1/2 is not even the good order of magnitude for
the penalty.

3.5.1. Talagrand inequality and Wilks phenomenon in the i.i.d. setting. In the classical
i.i.d. setting, and as a first approach, Talagrand’s inequality (see [42] for various model se-
lection contexts) leads to this kind of control:

sup
θ∈Θm

ν(Hm
θ )

∥θ∥
=O

(
E

(
sup

θ∈Θm,∥θ∥⩽1
ν(Hm

θ )

))
+O

√supθ∈Θm,∥θ∥⩽1 V (Hm
θ )

n

 .

It turns out that in many models used in [42], ν(Hm
θ ) is linear or close to linear with

respect to θ, so that the first term is of order
√

Dm/n, the dimension of the model m. As a
result, non-asymptotically, it holds that

ν(Hm
θ̂m

) =O
(
∥θ̂m∥

√
Dm/n

)
.

Beyond the i.i.d. setting, similar results can be obtained by replacing Talagrand’s inequality
with Baraud’s inequality [7].

In comparison, the Wilks phenomenon predicts that the order of magnitude of ν(Hm
θ̂m

)

is in Dm/n, and not
√

Dm/n (at least if the model m is well specified, that is there exists
θ⋆m such that p⋆ = pmθ⋆

m
): this non-asymptotic Talagrand-like bound is pessimistic. But the

trick above with linearity with respect to θ shows that this pessimistic bound can be multi-
plied by the norm of θ̂m. In itself, this is not much, but by carefully choosing the set over
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which the supremum is taken, ∥θ̂m∥ can be replaced by the distance to a pivot θ⋆m such that,
approximately,

(4) ν(Hm
θ̂m

) =O
(
∥θ̂m − θ⋆m∥

√
Dm/n

)
⩽O

(
∥θ̂m − θ⋆m∥2

)
+O

(
Dm

n

)
.

It remains to be in a sufficiently convenient setting (such as the Hölder parameterization of
θ 7→ pmθ ) for O

(
∥θ̂m − θ⋆m∥2

)
to be a small fraction of the risk we are using (here Kn(p

m
θ̂m

)).
Overall, up to a constant, the remainder that the penalty is supposed to take into account is
indeed in Dm/n up to multiplicative constants.

Before going further, let us make a remark about the pivot θ⋆m. If the model m is well
specified, it is easy to use the θ⋆m such that p⋆ = pmθ⋆

m
. If this is not the case, people generally

use the best approximation of p⋆ by a pmθ for a certain risk function (say the Kullback-
Leibler divergence). So, even in non-i.i.d. cases, the classical method of choosing a pivot is
deterministic, because the risk is too.

3.5.2. Non-asymptotic Wilks-like results. In more complex models, the trick given
above (4) cannot work as well because it relies mainly on linearity. The brute force con-
centration inequality “à la Talagrand” becomes too pessimistic. To obtain similar results, we
would like, in an ideal, over-simplified world, for (3) to hold with a variance term that would
be directly V (Hm

θ̂m
), without having to take (and pay for) the supremum over all Hm

θ .
In [16], authors restrict the previous supremum to nice small balls, so that one gets the

correct behavior in Dm/n for ν(Hm
θ̂m

) directly. This can be useful when one wants to produce
sharp constants in the penalty [3].

Another way to think about this, is to provide an upper function of the process, that is to
prove that

sup
θ∈Θm

[
ν(Hm

θ )−O
(√

V (Hm
θ )/n

)]
is negative with high probability. This is Spokoiny’s approach [47, 48], whose statistical
results are closest to ours for their generality, even though the author does not perform model
selection per se.

3.5.3. Self-normalized martingales. It is far from obvious to obtain an inequality such
as (3) when V (H) is random. It is possible for martingales, in which case V (H) is usually a
random quantity called the bracket of the martingale. Exponential inequalities for martingales
have been developed. For instance, for point processes, one can move from a control of the
martingale with a deterministic upper bound on the bracket, which already tells a lot on
the properties of the maximum likelihood estimator [53], to a control where the bracket of
the martingale can replace the deterministic upper bound in the deviation [35] (up to some
corrections).

In the same line, many works on self-normalization of martingales try to directly control
the ratio of the martingale by its bracket [11, 27]. To our knowledge, nothing exists in this
direction for a supremum of the ratios (with random renormalization) except the recent result
[4] and its extension to the Hölder parametrization that we use here.

3.5.4. Deterministically renormalized empirical process. From a more deterministic
point of view, several works aim to choose the correct deterministic renormalization of the
empirical process in an i.i.d. setting. There are two main ways in which this can be used for
model selection.
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On the one hand, if the empirical process itself, once renormalized by a deterministic
quantity of the form d2(θ, θ⋆) 1, satisfies a convenient exponential inequality, then this can
be chained to either directly obtain a Talagrand-like concentration on the supremum [7], or
used to get nice upper-functions [47].

On the other hand, one can refine the renormalization inside the supremum and replace

(5) sup
θ∈Θm

ν(Hm
θ )

∥θ∥
by sup

θ∈Θm

ν(Hm
θ )

d2(θ, θ⋆) + x2
,

for a positive real number x to be chosen later. With the latter, Massart [42] proposed a fairly
general approach to model selection with penalty proportional to Dm even in non linear
settings. Here, the order of magnitude of the Wilks phenomenon cannot be obtained directly,
but since, as before, d2(θ, θ⋆) is close to the risk, it is still possible to get a penalty in Dm/n.
The main advantage is the possibility to move away from the linearity assumption, adding
more flexibility to the family of models by using d2(., .) instead of the Euclidean norm.

3.5.5. Our method and the difference with existing works. In our case, even the risk is
stochastic in the most general case. We do not have access to a deterministic d2(., .) and
we cannot properly define a deterministic pivot θ⋆m if the model is misspecified. Only the
martingale structure and the bracket of the martingale V (Hθ) remain. In fact, V (Hm

θ̂m
) is

conveniently comparable to Kn(p
m
θ̂m

). The recent concentration inequality for the supremum
of stochastically normalized processes [4] and the extension we derive here in the appendix
makes it possible to use an argument similar to [42] after replacing d2(., .) with the bracket
of the martingales in (5). The problem of the pivot is solved by working directly in the
probability space and using p⋆ as pivot, thus bypassing the misspecification issue.

Let us now compare our set of assumptions to Spokoiny’s work [47, 48] which consti-
tute, to our knowledge, the most general non-asymptotic results on maximum likelihood
estimation. Spokoiny works with the Kullback-Leibler divergence as a reference. He uses a
deterministic pivot defined as the closest point to the truth inside the model for the determin-
istic distance [47] or with additional quadratic corrections [48]. His main assumptions rely
on renormalized exponential inequalities on the gradient of the likelihood in a neighborhood
of the pivot, where the normalization is quadratic. He proves a quadratic-like behavior for
ν(Hm

θ̂m
), demonstrating the non-asymptotic Wilks phenomenon rather sharply in this sense,

which we cannot do with our method.
On the other hand, our method is applicable to more general settings: we do not need to

use a deterministic risk or deterministic parametric pivots, nor do we need to assume that the
log-likelihood is differentiable or that its gradient satisfies exponential inequalities. We only
assume that the parameterization is Hölder. Thanks to the properties of martingales, the log-
likelihood (and not its gradient) automatically satisfies (3), which is the key to proving the
results on the supremum. In the end, we obtain a generalized AIC criterion (that is, a penalty
proportional to Dm/n) and prove non-asymptotic oracle inequalities in settings where none
of the existing work applies.

4. Applications. The preceding oracle inequalities are very general. The aim of this
section is to explain how they compare with existing results. Let us look at their applications
in various contexts.

1for a nice deterministic d distance on Θm, that can be linked to V (Hm
θ )
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4.1. The i.i.d. sample case. Let us begin with the original AIC setting in its i.i.d. format.
Let X1, . . . ,Xn be i.i.d. real valued random variables with density p⋆1. Consider the simple
case where the filtration is generated by the observations, so that all the p⋆t are deterministic
and equal to p⋆1.

Assume that under each model, the variables X1, . . . ,Xn are also modeled as i.i.d., so that
pmθ,t = pmθ,1 for all t and these functions are deterministic.

In this case, Kn(p
m
θ ) is directly KL(p⋆1dµ, p

m
θ,1dµ), the Kullback-Leibler divergence be-

tween the distribution of X1 and the distribution with density pmθ,1.

4.1.1. Validation of the assumptions. Assumption 1 is classic in this setting, see e.g. [42],
at least for the lower bound. In [42] or [20], there is no upper bound assumption but there is
a difference: the Hellinger distance is controlled instead of the Kullback-Leibler divergence.
The lower bound assumption can also be relaxed by using Assumption 1bis.

Assumption 2—the Lm part—can be a consequence of the fact that pmθ,1 is Hölder with
constant Lmε−1 and exponent βm, or of directly assuming that log(pmθ,1) is Hölder with
constant Lm and exponent βm. It can be relaxed with Assumption 2bis. Classical asymptotic
results (Wilks phenomenon or even just the consistency of the MLE) require very strong
differentiability assumptions, that are not needed here.

The bound Mm in Assumptions 2 and 2bis entails that the models Θm are compact,
which is assumed in general to obtain consistency in M-estimation, whether explicitely or
implicitely by assuming that the estimator converges to some limit, see e.g. [54].

The classical model selection “à la Birgé-Massart” for densities assumes that the models
are close to linear, which might seem at first glance incompatible with our boundedness
assumption [42]. However this is not the case because the parameterization is forced to be a
density that satisfies Assumption 1. To illustrate this fact and compare our assumptions with
theirs, let us restrict ourselves to a well known case: the histogram selection [42, 20]. In this
setup, X1, . . . ,Xn are i.i.d. with density p⋆1 with respect to the Lebesgue measure on [0,1]
and the model m is based on a partition with Dm intervals of [0,1] of equal length. Then, for
θ ∈Θm ⊂RDm ,

pmθ,1 =
∑
I∈m

θI1I .

Since this must be a density, the model is in fact

Θm =

{
θ = (θI)I∈m such that for all I, ε⩽ θI ⩽ ε−1 and

∑
I∈m

θI
Dm

= 1

}
.

In this particular case, pmθ,1 is Lipschitz with constant Lm = 1 w.r.t. ∥θ∥∞ and Mm = ε−1− ε
is an upper bound of the diameter of Θm for this norm.

Assumption 3 is straightforward. Assumption 4 is automatically fulfilled with Q = Q ∩
[0,1], the set of rational numbers, or any other dense countable subset of [0,1].

4.1.2. Result. Following Theorem 2 and its Corollary, Am does not depend on m any-
more. Therefore, our oracle inequality holds as soon as

pen(m) =O
(
(logn)2

Dm

n

)
.

Our penalty is larger than the one in [42] due to extra logarithmic factors and looks more
like a BIC criterion. At this price, we prove an oracle inequality directly on the Kullback-
Leibler divergence, instead of a mixed oracle inequality involving both the Kullback-Leibler
divergence and the Hellinger distance.
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4.2. Hidden Markov models. A hidden Markov model is a stochastic process (St,Xt)t
where only the observations (Xt)t are observed, such that the hidden process (St)t is a
Markov chain and such that all the Xs’s are independent conditionally to (St)t with a distri-
bution depending only on the corresponding Ss. These models have been widely used since
their formalization by [9], as they are able to account for complex dependencies in time
processes while keeping a very simple and easily interpretable structure.

In this section, we observe the process (Xt)t and want to approximate p⋆t (Xt) as before,
where the filtration Ft is the one generated by the Xt’s. The process Xt takes values in a
measured Polish space (X , µ). The hidden Markov models are a family of models used to
approximate p⋆, we do not assume that p⋆ itself is a hidden Markov model: this is what is
called a misspecified HMM [40]. We only consider finite state space hidden Markov models,
that is St ∈ [h] for some h ∈ N∗. In particular, the number of hidden states h is a parameter
of the models.

The parameters of a hidden Markov model of index m are the number of hidden states hm,
the initial distribution πm, the transition kernel Qm of the hidden process (St)t (on [hm]) and
the emission densities, that is the family νm = (νms )s∈[hm], where νms is the density of the
distribution of X1 conditionally to S1 = s w.r.t. the dominating measure µ.

4.2.1. Validation of the assumptions. In what follows, we only assume that the models
are HMM, while the true distribution of (Xt)t may not be one. As such, we treat the true
distribution separately, before introducing the models.

First, assume that p⋆t is continuous and positive; this will be used to check Assump-
tion 4bis.

Concerning Assumption 1bis for the true distribution, the lower tails of log p⋆t (Xt) are al-
ways automatically sub-exponential by direct application of Markov’s inequality. The control
of the upper tails follows from the assumption that the conditional densities of (Xt)t admit a
finite moment, that is, there exist constants δ > 0 and Mδ > 0 such that a.s.,

(6) sup
t∈[n]

E[p⋆t (Xt)
δ |Ft−1]⩽Mδ <+∞.

Under this assumption, there exists B⋆ > 0 depending on δ and Mδ such that for all y ⩾ 1
and t ∈ [n],

P(| log p⋆t (Xt)|⩾B⋆y |Ft−1)⩽ e−y.

Let us now introduce the models. Let CQ > 0 and α ⩾ 1. For all m, let Gm = {gη, η ∈
Em ⊂ Rem} be a parametric set of probability densities on X satisfying the following as-
sumption.

ASSUMPTION 4-HMM. For all m ∈ M, writing ∥ · ∥∞ the supremum norm on Rem ,
there exists Lg

m,Cg
m > 0 such that for all m ∈M, all γ, η ∈Em and all x ∈ X ,

|log gγ(x)− log gη(x)|⩽ Lg
m∥γ − η∥∞,

∥γ − η∥∞ ⩽ 1

and

(Cg
m)−1 < gη(x)<Cg

m.

Moreover, the map

(γ, η,x) ∈E2
m ×X with γ ̸= η 7→ gγ(x)− gη(x)

γ − η

is continuous and can be extended into a continuous function over E2
m ×X .



14

Let CQ ⩾ 1. The model Θm is defined as the set

Θm =
{
(πm

θ ,Qm
θ , (ηθi )i∈[hm]) ∈Rhm ×Rhm×hm × (Em)hm

s.t. πm
θ probability vector, Qm

θ transition matrix and

(CQ)
−1 ⩽ hmπm

θ (i)⩽CQ for all i ∈ [hm],

(CQ)
−1 ⩽ hmQm

θ (i, j)⩽CQ for all i, j ∈ [hm],

the emission densities are νmθ,i = gηθ
i
∈Gm for i ∈ [hm]

}
.

This model is of dimension Dm = hmem + h2m − 1. By abuse of notations, and only for
the HMM example, we use the notation pmθ for not only the conditional densities of Xt

given Xt−1
1 as before, but also all other possible densities, even those involving the hidden

variables; which (conditional) density is used will be clear from its arguments. For instance,
the likelihood of the observations Xn

1 under the parameter θ ∈Θm is

pmθ (Xn
1 ) =

∑
(i1,...,in)∈[hm]n

πm
θ (i1)ν

m
θ,i1(X1)

n∏
t=2

Qm
θ (it−1, it)ν

m
θ,it(Xt).

We endow Θm with the norm

∥θ− δ∥m =max(hm∥Qm
θ −Qm

δ ∥∞, hm∥πm
θ − πm

δ ∥∞,Lg
mmax

i
∥ηθi − ηδi ∥∞),

where Lg
m is defined in Assumption 4-HMM. Note that these norms of differences are always

smaller than Mm = 2max(Lg
m,CQ).

We assume that M is finite. In practice, M is allowed to grow with n, so this is not
much of a restriction. Recall that p⋆t is assumed continuous and positive. Given that for all
t, pmθ,t(x) is a C∞ function of πm

θ , Qm
θ , νmθ,i(x) and νmθ,i(Xs) for all i and s < t, the last part

of Assumption 4-HMM implies that Assumption 4ter holds with βm = 1 and thus for all
βm ⩽ 1, thus ensuring Assumptions 3 and 4bis.

Given the upper and lower bounds on the initial distribution and transition matrix, As-
sumptions 1 and 1bis can be replaced by equivalent assumptions on the average ν̄mθ =
1
hm

∑
i∈[hm] ν

m
θ,i of the emission densities (νmθ,i)i∈[hm], since

pmθ,t(Xt) =
∑

i,i′∈[hm]

pmθ (St−1 = i|Xt−1
1 )Qm

θ (i, i′)νmθ,i′(Xt)

∈
[
(CQ)

−1ν̄mθ (Xt),CQν̄
m
θ (Xt)

]
,

and under Assumption 4-HMM, this show that pmθ,t(Xt) ∈ (ε, ε−1) a.s., with ε= (CQC
g
m)−1.

Assumption 1bis follows with Bm =B⋆∨ (2 log(CQC
g
m)). Note that the filtering distribution

pmθ (St−1 = i|Xt−1
1 ) can be computed using the Forward algorithm [44], although it is not

required to know it to reduce checking Assumption 1bis to the control of ν̄mθ (Xt).
While the log-densities at time t are Lipschitz in the parameter, their Lipschitz constant

grows exponentially with t, which makes the terms in the oracle inequality explode as n
grows. The following Lemma, proved in Appendix D, establishes a Hölder bound that holds
uniformly for all t, with a Hölder constant depending on the bound on the transition matrix
(and initial distribution) of the Markov chain.

LEMMA 6. Assume Assumption 4-HMM holds, then Assumption 2 holds with (βm)−1 =

1+
log(2C2

Q)

− log(1−(CQ)−2) ∈ (0,1], Mm = 2(Lg
m ∨CQ), and Lm logn= (112C8

Q)∨ (3 logCg
m).
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To prove Lemma 6, we approximate pmθ by its Markov version of order k, which is Lips-
chitz with a constant growing exponentially with k, and the Hölder regularity follows from
a trade-off on k. This is the main reason for introducing Hölder conditions in the main as-
sumptions instead of only Lipschitz ones.

4.2.2. Result. The closest result to ours in this setting is the one from [40], which proves
an oracle inequality for a penalized maximum likelihood estimator on misspecified hidden
Markov models. Assumptions and proofs are similar to ours, although with a slightly different
risk, and the author needs additional assumptions on the true distribution and relies on tools
specific to hidden Markov models to obtain the oracle inequality.

To get an order of magnitude of the terms in the oracle inequality, let us take com-
parable quantities to [40] in the assumptions: up to multiplicative constants, CQ = logn,
logCg

m = logn, Lg
m = logn, and thus Bm = logn, Lm = (logn)7, Mm = logn, βm =

((logn)2 log logn)−1, and thus Am ⩽ (logn)7 and Σ = log logn, still up to multiplicative
constants.

With these quantities, Corollary 5 results in a penalty of order (logn)22 log log(n)Dm/n
and an error term of order (logn)11 log log(n)/n, compared to a penalty in (logn)17 log log(n)Dm/n
and an error term in (logn)10/n in [40]. Up to polylog factors, this is the expected order of
magnitude for the penalty and residual.

Let us go into more details about the assumptions. First, [40] relies on two assumptions
for the true distribution with no equivalent in our article: a ρ-mixing assumption [A⋆mixing],
which in particular imply that the process (Xt)t⩾1 is ergodic, to obtain concentration inequal-
ities, and a forgetting assumption [A⋆forget], to truncate the dependencies in the past, that is
to approximate p⋆t (Xt|Xt−1

1 ) by p⋆t (Xt|Xt−1
t−k) for k < t. These assumptions are not required

for our results: we do not even need the process to be ergodic.
The other assumptions are similar in our article and [40]. The analog to the Lipschitz

part of Assumption 4-HMM are Assumptions [Aentropy] and [Agrowth], and Section B.2
follows a proof similar to the one of Lemma 6 in order to control the entropy of the class
of log-likelihoods. The analogs of our assumptions that p⋆t (Xt) has a finite moment and
that the gη’s are lower and upper bounded in Assumption 4-HMM are [A⋆tail] and [Atail];
[Atail] is actually slightly more general and could be used as is here, but we chose to keep
Assumption 4-HMM simple. Finally, [Aergodic] is an integral part of the way the models
Θm are defined.

If the process (Xt)t is ergodic, the risk K used by [40] is actually the limit of E[Kn] when
n→+∞. If in addition a forgetting assumption such as [A⋆forget] in [40] holds for p⋆, then

|K−E[Kn]|=O((logn)4/n),

which is negligible compared to the residual term of our oracle inequalities, so that both risks
can be used interchangeably.

4.3. Models of neuronal networks in discrete-time. Neurons are electrical cells that com-
municate via the emission of action potentials, also called spikes [32]. The shape of the action
potential is essentially constant and the important information is the time at which the spikes
are emitted. Time is discretized, so the network is represented by a process (Xi

t)t∈Z,i∈I ,
where I is the set of all neurons constituting the network and Xi

t = 1 if the neuron i spikes
at time t and Xi

t = 0 otherwise. We consider the filtration Ft = σ((Xi
s)s⩽t,i∈I).

Since communication between neurons is not instantaneous, most authors [32, 43] usually
assume that conditionally to Ft−1, the (Xi

t)i∈I are independent, so that the whole activity
can be described by just giving the distributions p⋆,it with

∀i ∈ I, ∀t ∈ Z, p⋆,it = P(Xi
t = 1 |Ft−1).
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We assume the process to be stationary.
One of the main neuronal model in discrete-time is the discrete Hawkes process [43],

which can be modeled by

pi,Ht = ϕi

∑
j∈I

∑
s<t

hj→i(t− s)Xj
s

 ,

where ϕi is a rate function that is usually assumed to be Lipschitz, increasing and taking
values in [0,1], and where hj→i are interaction functions: if it is positive at delay δ, neuron
j excites neuron i after a delay δ; if it is negative, neuron j inhibits neuron i after a delay δ.
For instance, the linear case is the situation where ϕi(x) = µi + x. In the sequel, to simplify,
ϕi(.) is supposed to be fixed and known. Only the functions hj→i are unknown.

The Galves-Löcherbach neuronal model [32, 31] is slightly different, here

pi,GL
t = ϕi

∑
j∈I

t−1∑
s=Li

t

hj→i(t− s)Xj
s

 ,

where Li
t is the time of the last spike of neuron i. In contrast to the Hawkes process, the

neurons of this model essentially reset their memory each time they spike.
In practice, only a small finite subset F of I is observed on a finite time duration, say t=

−A, . . . , n, for some positive A. For a fixed i ∈ F , we are interested by estimating (p⋆,it )t∈[n]
based on the observations of (Xj

t )−A⩽t⩽n,j∈F .
We are interested in a specific neuron of interest i ∈ F , so the process (Xt)t∈[n] from our

oracle inequalities is taken to be (Xi
t)t=1,...,n. The filtration Ft is the one defined above and

generated by the whole network. Finally, in order to define the models, we have access to
more information that (Xi

t)t=1,...,n but less than the whole network: we may only use the
observations (Xj

t )j∈F,t=−A,...,n, which are indeed Ft adapted.
Whatever the neuronal model (pH for Hawkes or pGL for Galves-Löcherbach) that we

choose, we need to parameterize it. We define model m by choosing a finite subset of F ,
called Vm, which is the proposed neighborhood for neuron i in model m, and by choosing
Am ⩽A a maximal lag of interaction. In model m, all the hj→i(u) are null if j /∈ Vm or u >

Am, so the model is parameterized by (θj,u := hj→i(u))j∈Vm,u=1,...,Am
∈ RAm|Vm|. Given

this parameterization, the conditional distributions are defined by

pi,m,H
t = ϕi

∑
j∈Vm

Am∑
u=1

θj,uX
j
t−u


and

pi,m,GL
t = ϕi

∑
j∈Vm

min(Am,t−Li
t)∑

u=1

θj,uX
j
t−u

 .

4.3.1. Validation of the assumptions. Assumption 1 means that p⋆,it as well as pi,m,H
t or

pi,m,GL
t are in [ε,1− ε]. This is a very common assumption in these settings (see [30, 43]).

In this sense, Assumption 1bis can be seen as a relaxation with respect to previous works.
The assumption that ϕi is Lipschitz with constant L is a very classical one [30]. Together

with Assumption 1, it implies that log(ϕi) (probability of a spike) and log(1− ϕi) (proba-
bility of no spike) are Lipschitz with constant 2ε−1L. Thus, the first part of Assumption 2 is
satisfied with Lm = 2ε−1L and the ℓ1 norm ∥θ∥1.
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For the second part of Assumption 2, it depends on ϕi. Indeed, since ϕi is increasing, we
can define

Θm =

θ ∈RAm|Vm| such that ε⩽ ϕi

∑
j,u

θj,u1θj,u<0

 and ϕi

∑
j,u

θj,u1θj,u>0

⩽ 1− ε

 ,

to ensure that Assumption 1 is satisfied. Since ϕi is increasing and Lipschitz, we can define
its inverse, so that if ε and 1− ε are possible values for ϕi (as is typically the case for linear
or sigmoid functions) then it automatically follows that for all θ ∈Θm

∥θ∥1 ⩽ |ϕ−1
i (ε)|+ |ϕ−1

i (1− ε)|,

and so the second part of Assumption 2 is satisfied with Mm = |ϕ−1
i (ε)|+ |ϕ−1

i (1− ε)|.
Assumption 3 is fulfilled since the parametrizations are continuous. Assumption 4 is au-

tomatically fulfilled in each of the models because pi,m,H
t and pi,m,GL

t only depend on a
finite set of Xj

s . Assumption 4 for p⋆ can be solved by assuming the following continuity
assumption, which is standard in this setting (see [30, 32]). Let x be a past configuration, i.e.
a possible value for (Xj

s )j∈I,s<t, and let us remark that by stationarity, p⋆,it can be seen as a
function of x and not of t:

p⋆,i(x) = P(Xi
t = 1|(Xj

s )j∈I,s<t = x).

The continuity assumption of the neuronal model assumes that there exists a nested sequence
(Sk)k⩾1 of finite subsets of I ×Z− such that Sk −→

k→∞
I ×Z and such that

sup{|p⋆,it (x)− p⋆,it (y)| such that x|Sk
= y|Sk

} −→
k→∞

0,

where x|Sk
is the configuration restricted to the indices in Sk. Informally, this continuity

assumption states that one can approximate p⋆,i(x) by what happens on a finite number of
xjs. To check Assumption 4, it is sufficient to take as Q the countable set of x such that there
exists k for which x is null outside of Sk.

4.3.2. Result. Following Theorem 2 or its corollary, and since Am does not depend on
m, one can take

pen(m) =O
(
log(n)2

Dm

n

)
.

Under mild conditions (see for instance [32] or [43]), these processes are stationary and
E(Kn(p

m
θ )) does not depend on n. However we need to compare Kn(p

m
θ ) with the ℓ2 dis-

tance to compare our results with existing ones. To do so, let us use the following result.

LEMMA 7. Suppose that Assumption 1 holds for some ε > 0. Let p = (pt)t∈[n] be any
sequence of conditional densities satisfying for all t ∈ [n], pt(Xt) ∈ [ε, ε−1]. Then, for all
t ∈ [n],

ε2

2
E
[
log2

p⋆t (Xt)

pt(Xt)

∣∣∣Ft−1

]
⩽ E

[
log

p⋆t (Xt)

pt(Xt)

∣∣∣Ft−1

]
⩽

1

2ε2
E
[
log2

p⋆t (Xt)

pt(Xt)

∣∣∣Ft−1

]
.

Since − log(pmθ,t/p
⋆
t ) is upper and lower bounded, Lemma 7 shows that

(7) E

[
log2

p⋆t (Xt)

pmθ,t(Xt)

∣∣∣Ft−1

]
≲ E

[
log

p⋆t (Xt)

pmθ,t(Xt)

∣∣∣Ft−1

]
≲ E

[
log2

p⋆t (Xt)

pmθ,t(Xt)

∣∣∣Ft−1

]
,
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where ≲ means that the inequality holds up to positive multiplicative constant.
Moreover, whatever the neuronal model (Hawkes or Galves-Löcherbach), we can expand

θm ∈ Θm with zeroes so that it is defined on I × N∗. If ϕi has a derivative that is upper
and lower bounded by some positive constant, so do log(ϕi) and log(1− ϕi), and therefore,
whatever the value of Xt,∣∣∣∣∣∣
∑
j∈I

∑
s<t

(hj→i(t− s)− θmj,t−s)X
j
s

∣∣∣∣∣∣≲
∣∣∣∣log(pmθm,t(Xt)

p∗t (Xt)

)∣∣∣∣
≲

∣∣∣∣∣∣
∑
j∈I

∑
s<t

(hj→i(t− s)− θmj,t−s)X
j
s

∣∣∣∣∣∣
(for the Hawkes case and with a restricted sum in the lower bound in the Galves-Löcherbach
case). Both upper and lower bounds are Ft−1 measurable. Hence, going back to the oracle
inequality, we can express both the upper bound and the lower bound in terms of the average
square distance

1

n

n∑
t=1

∣∣∣∣∣∣
∑
j∈I

∑
s<t

(hj→i(t− s)− θmj,t−s)X
j
s

∣∣∣∣∣∣
2

,

and the upper bound of the oracle inequality is a trade-off between the bias measured by the
average square distance above and the penalty in Dm/n up to logarithmic terms.

Let us compare this result to the ones in [43] for Hawkes and Galves-Löcherbach process.
In [43], the authors can only consider linear models (i.e. ϕi is linear) and use least-square
contrast on the p. They perform variable selection thanks to an ℓ1 penalization, whereas in
our case the summability condition on Σ makes it impossible to perform variable selection by
considering the full set of subsets of variables. Despite this difference, their oracle inequality
is for the exact same average square distance as mentioned above with, in the upper bound,
a trade-off between the bias and a term in Dm/n up to logarithmic terms. However, in their
case, the dimension Dm has to be smaller than a given a priori level of sparsity s. Moreover,
their constant in front of Dm is given by an RE inequality on the Gram matrix. In the most
general case considered by [43], this constant depends on the size of the observed network
F and explodes with the size of F ; in the Hawkes case, this bound depends on s, and ex-
plodes for moderate s, whereas in our case the penalty can handle large Dm thanks to the
summability condition in Σ which ensures that the number of models remains reasonable.

For the Galves-Löcherbach model, we can also compare this result with the ones of [30].
In [30] (see also [28] for recent improvements), the authors envision the estimation of the
interaction neighborhood of a neuron i. In these two articles, the authors assume that the set
of observed neurons F contains the interaction neighborhood of i. In other words, with their
assumptions on the process, at least one model is well specified. Our result shows that we
can estimate the conditional probability of spiking for i with parametric rate in Dm/n up to
logarithmic terms, as the Wilks phenomenon would predict if it was applicable in this case,
but without even knowing in advance which is the true model. However, it is not clear if this
means that the neighborhood of interaction is correctly estimated by Vm̂. We cannot manage
variable selection per se because the complexity of the family of models would be too large
for our general result. But we can at least hope that Vm̂ would contain the true interaction
neighborhood of neuron i with high probability 2. On the other hand, our procedure is much

2This would probably require additional assumptions, such as minimal strength of the interaction inside the
neighborhood as in [30] and [28].
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less demanding on computing resources than theirs and does not require the precise exami-
nation of 0 and 1 patterns, which in practice usually prevents them from using it with more
than 4 observed neurons [17]. Thus, our method could at least be used to restrict the set of
observed neurons before using the methods developed in [30, 28].

4.4. Adversarial multi-armed bandits as a cognitive learning model. All previous appli-
cations concerned the stationary case, enabling comparisons to be made with existing results.
To illustrate that the oracle inequalities of Section 3 apply even in a non-stationary frame-
work, let us look at another configuration: learning data. Here, the goal is to estimate how
an individual or system learns to perform a task by observing its training as it unfolds. The
data produced cannot, in essence, be independent or stationary. Although many authors have
advocated the use of MLE in practice [23, 56], this problem was studied theoretically for the
first time in [5]. In this previous work, only the property of the MLE on one model is studied,
without the model selection part.

The single model studied in [5] is the Exp3 algorithm [6]. In the Machine Learning lit-
erature, this algorithm was originally proposed to solve the adversarial multi-armed bandit
problem, which is a game played sequentially between a learner and an adversary (the envi-
ronment) [18, 39] . At each round the learner must choose an action Xt from a set of actions
[K] for some integer K ⩾ 1 and the adversary returns a loss gXt,t for this action. The term
“adversarial” comes from the fact that the loss gXt,t incurred in round t may depend on the
player’s past actions.

Algorithm 1 Exp3 with learning rate η

Initialization: pη,1 =
(

1
K , . . . , 1

K

)
.

for t= 1,2, . . . do
Draw an action Xt ∼ pη,t and receive a loss gXt,t ∈ [0,1].
Update for all k ∈ [K]:

pη,t+1(k) =
exp

(
−η

∑t
s=1 L̂η,s(k)

)
∑K

j=1 exp
(
−η

∑t
s=1 L̂η,s(j)

) where L̂η,s(j) =
gj,s

pη,s(j)
1Xs=j

The fact that the learner plays as if the environment is adversarial makes it a realistic model
for cognitive processes where humans or animals need to adapt to a changing environment.
However, in a cognitive experiment, most of the time the environment is not adversarial, even
if the learner does not know it and uses an adversarial strategy anyway.

4.4.1. Comparison with recent work. In [5], we consider situations where gk,t = gk de-
pends only on k for all k ∈ [K], as is often the case for cognitive experiments. We show that
if the learning rate η = θ is fixed, no estimator can achieve polynomial rates of convergence.
This is mainly due to the fact that pη,t(k) can rapidly become absurdly small, and as a con-
sequence, only an extremely small number of Xt are relevant for estimation. If an individual
has finished learning and is no longer making mistakes, it is impossible to improve the esti-
mate of his learning behavior, even by continuing to observe him. Therefore, in [5], another
asymptotic in T is proposed. The goal is to estimate a new parameter θ ∈ [r,R] such that the
learning rate η in Exp3 is equal to η = θ/

√
T . The estimation is based on the first

Tε =
⌊( 1

K
− ε

)√
T

R

⌋
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observations because up to Tε, all the p θ√
T
,t(k) are greater than ε, a fixed constant in (0,1)

meant to prevent the various probabilities from vanishing. The choice of the rate
√
T can

be relaxed by other powers of T , but for the purpose of this illustration, we consider only
this case, which also corresponds to the renormalization of the learning rate for which Exp3
satisfies sublinear regret bounds [18].

With this renormalization, we proved in [5] a convergence in T
−1/2
ε for

1

Tε

Tε∑
t=1

K∑
k=1

(p θ√
T
,t(k)− p θ̂√

T
,t
(k))2,

with θ the true parameter and θ̂ the MLE. Let us compare this with Theorem 2 or its corollary
in the case of a single, well specified model, where p⋆t = p θ√

T
,t for some θ ∈ [r,R]. Take

Ft = σ(Xt
1) and n = Tε, so that Assumption 1 is directly satisfied. Since log is Lipschitz

on [ε,1], Assumption 2 follows as a direct consequence of Lemma 4.3 of [5], with respect
to ∥θ∥∞, with a constant L that only depends on R and ε. Moreover, we can always take
M =R. Finally, Assumption 4 is trivial since there is only a finite set of values for Xt.

Along with Lemma 8, Theorem 2 shows that Kn(p̃) is of order log(Tε)
2/Tε, which is

faster than [5]. Indeed, Lemma 8 shows that Kn(p) is comparable to the square norm used in
[5].

LEMMA 8. Let ε ∈ (0,1). Assume that for all t ∈ [Tε] and k ∈ [K], p⋆t (k)⩾ ε. Let p=
(pt)t∈[n] be a sequence of conditional distributions over [K] satisfying for all t ∈ [Tε] and all
k ∈ [K], pt(k)⩾ ε. Then,

Kn(p)⩾
1

8Tε

Tε∑
t=1

K∑
k=1

(p⋆t (k)− pt(k))
2 .

4.4.2. A model selection framework. Theorem 2 or its corollary go further than [5] by
also allowing for model selection and bias. An important application in a cognitive learning
experience is to estimate the reward and to identify the granularity or precision the learner is
capable of achieving in his actions. Indeed, it is rarely obvious to assign a precise numerical
value to a real-life reward, so that it really reflects the impact it has on the learner. For exam-
ple, what is the value of crabmeat to an octopus or chocolate to a rodent? Nor is it obvious
how precise the learner is when choosing an action, whether the number of possible actions
is continuous or very high. Since it is impossible to reproduce a given action perfectly, almost
identical actions should provide almost identical rewards; how different actions have to be to
be considered distinct?

One possibility is to use Exp3 with a different parameterization. For a given model m,
consider a partition Im of the set of possible actions (which may even be continuous). Let
Dm be the number of disjoint sets in Im. The parameters of model m are the rewards of
each possible set I of the partition, that we call gmI . Since the role of the learning parameter
η introduced in Algorithm 1 is redundant with that of the (unknown) rewards g, we remove
it from the model. Thus, under model m, the learner proceeds as follows:

• Initialize pm1 = (1/Dm, . . . ,1/Dm)
• for t⩾ 1,

– pick the set It according to pmt and pick Xt inside It uniformly
– update for all I ∈ Im

(8) pmt+1(I) =
exp

(
−
∑t

s=1 L̂
m
s (I)

)
∑Dm

J=1 exp
(
−
∑t

s=1 L̂
m
s (J)

) where L̂m
s (J) =

gmJ
ps(J)

1Xs∈J .
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First, it is important to note that for such model, L̂m
t (J) is still an unbiased estimator of the

loss gmJ with respect to the distribution ps, as it is the case for Exp3-type bandit algorithms
(see Section F for more details). Thus, these models make sense from a pure adversarial
bandit point of view.

To obtain a meaningful renormalization as before, we call pmθm,t the distribution of Xt

given Ft−1 = σ(Xt−1
1 ) when gmJ = θm

J√
T

and let L̂m
θm,s(J) be the expected loss instead of

L̂m
s (J).

4.4.2.1. Validation of the assumptions. The following proposition shows that Assumption 1
is satisfied provided that the number of sets Dm in the partition Im is uniformly bounded for
all m ∈M. A proof of this result is available in Section F.2.2.

PROPOSITION 9. Assume that D := supm∈MDm <+∞. Then, Assumption 1 is satis-
fied for any ε ∈ (0,1/D) as long as n= Tε where

Tε =

⌊(
1

D
− ε

)√
T

R

⌋
.

The following proposition is an adaptation of Lemma 4.3 of [5] to show that Assumption 2
is satisfied as long as all the θmJ are in [r,R]. Its proof is available in Section F.2.3.

PROPOSITION 10. Let D and Tε be the constants of Proposition 9. Assumption 2 is
satisfied for the norm ∥ · ∥∞ on RDm for any ε ∈ (0,1/D) as long as n= Tε, Mm =M =R
and

Lm = L=
1

Dε2
exp

(
1

Dε2

)
.

Assumptions 3 and 4 are again easily satisfied even if the set of actions is continuous.

4.4.2.2. Result. One can choose a penalty of order

pen(m) =O
(
log(n)2

Dm

n

)
,

and obtain an oracle inequality on Kn(p̃), which as seen above implies an oracle inequality
on the square distance. In the end, we obtain a way of estimating at the same time

• with the partition Im̂: the precision in the perception and execution of actions, i.e. which
sets of actions are confused and which are considered distinct, and how precise the learner
is able to be when choosing actions,

• with the resulting θ̂m̂J /
√
Tε: the estimated reward, i.e. the numerical value that quantifies

the average impact of the action result on the learner’s behavior, modeled by a piecewise
constant function on the partition Im̂.

Up to our knowledge, this is the first model selection result of this type for learning data.

5. Conclusion. In summary, our work presents some oracle inequalities based on a pe-
nalized log-likelihood criterion under weak assumptions, which are effective even for de-
pendent, non-ergodic and non-stationary processes. Although these assumptions may seem
restrictive, they allow us to draw significant conclusions. In fact, these assumptions are often
comparable to the regularity conditions generally assumed to obtain consistency and asymp-
totic normality in MLE, such as the Hölder conditions.
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Our results have been applied in a variety of contexts, including i.i.d. processes, hidden
Markov models (HMMs), neural networks and reinforcement learning (RL). However, our
approach has certain limitations. Firstly, the penalty is only known up to a constant, which
is a common problem, but there are data-driven heuristics to overcome this. Secondly, our
stochastic risk Kn is generally difficult to understand intuitively. Nevertheless, in the simplest
cases, it is related to more familiar criteria such as classical Kullback-Leibler divergence or
more traditional ℓ2 distance (as shown in Lemma 8).

In the future, it would be interesting to study similar results using other criteria, such
as empirical risk minimization, instead of focusing solely on likelihood maximization. This
would help us to understand the extent to which we are relying on the specific properties of
log-likelihood, and to consider extensions to other types of risk.
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APPENDIX A: PROOF OF THEOREMS 2 AND 4

In the sequel to visually keep track of important dependencies, we denote, for any t ∈ [n],
m ∈ M, θ ∈ Θm, xt 7→ pmθ,t(xt|Ft−1) the density of Xt conditionally to Ft−1 under the
parameter θ, and likewise for p⋆t (xt|Ft−1), instead of pmθ,t(xt) and p⋆t (xt) respectively.

The proofs of both Theorems are nearly identical. Let us introduce the following notations
in order to show both at the same time in a unified framework: for all m ∈M,

• under Assumptions 1 and 2, let F∞
m = 2 log(ε−1), F höl

m = Lm and qn = 0,
• under Assumptions 1bis and 2bis, let F∞

m = (1 + α)Bm logn, F höl
m = Lm logn and qn =

2n−α,

and for all t ∈ [n], let

f t
A : x ∈ X 7→ sup

m∈M
max

 sup
δ,θ∈Θm∪{⋆}

∣∣∣log pm
θ,t(x|Ft−1)

pm
δ,t(x|Ft−1)

∣∣∣
F∞
m

, sup
δ,θ∈Θm

δ ̸=θ

∣∣∣log pm
θ,t(x|Fs−1)

pm
δ,t(x|Ft−1)

∣∣∣
F höl
m ∥δ− θ∥βm

m

 .

Note that since the models Θm′′ are parametric, they are separable. Therefore, by Assump-
tion 3, the supremum over δ, θ in the definition of f t

A can be replaced by a supremum of a
countable family of measurable functions, thus ensuring that f t

A is measurable since M is
countable by definition.

Under either set of assumptions, almost surely, for all t ∈ [n],

(9) P(f t
A(Xt)< 1 |Ft−1)⩾ 1− qn

n
.

Moreover, let A be the event {f t
A(Xt)< 1 for all t ∈ [n]}.

P(A) = P

⋂
t∈[n]

{f t
A(Xt)< 1}


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= 1− P

⋃
t∈[n]

{f t
A(Xt)⩾ 1}


⩾ 1−

∑
t∈[n]

P
(
f t
A(Xt)⩾ 1

)
⩾ 1−

∑
t∈[n]

E
[
P
(
f t
A(Xt)⩾ 1|Ft−1

)]
⩾ 1− qn,

where

• the first inequality holds by the subadditivity property of a probability measure,
• the second inequality holds by the law of total expectation,
• the third inequality holds by (9).

In what follows, fix m ∈M and θ̄m ∈Θm. Consider the following functions, defined for
all t ∈ [n], xt1 ∈ X t, m′ ∈M and δ ∈Θm′ by

gm
′

δ,t (xt,Ft−1) =− log

(
pm

′

δ,t (xt|Ft−1)

p⋆t (xt|Ft−1)

)
1f t

A(xt)<1

and write gm
′

δ = (gm
′

δ,t )t∈[n].
For all m′ ∈M, let θ̂m

′
be a maximizer of θ ∈Θm′ 7→ 1

nℓn(θ), let crit(m′) be

crit(m′) =− 1

n
ℓn(θ̂

m′
) + pen(m′),

and define the set M′ as

M′ = {m′ ∈M, crit(m′)⩽ crit(m)}.
For any family h = (ht)t∈[n] of functions of Xt that may depend on the past, that is
ht(Xt,Ft−1), we write

P (h) =
1

n

n∑
t=1

ht(Xt,Ft−1),

C(h) =
1

n

n∑
t=1

E[ht(Xt,Ft−1) |Ft−1] the compensator of P (h),

ν(h) = P (h)−C(h) =
1

n

n∑
t=1

(ht(Xt,Ft−1)−E[ht(Xt,Ft−1) |Ft−1]) .

On the event A, it holds that for all t ∈ [n], xt1 ∈ X t, m′ ∈M and δ ∈Θm′ ,

gm
′

δ,t (xt,Ft−1) =− log

(
pm

′

δ,t (xt|Ft−1)

p⋆t (xt|Ft−1)

)
.

Therefore, by definition of crit, on the event A, for every m′ ∈M′,

P (gm
′

θ̂m′ ) + pen(m′)⩽ P (gm
θ̂m

) + pen(m)⩽ P (gmθ̄m) + pen(m).

Since P =C + ν, on the event A, for every m′ ∈M′,

C
(
gm

′

θ̂m′

)
+ ν(gm

′

θ̂m′ )⩽C
(
gmθ̄m

)
+pen(m) + ν(gmθ̄m)− pen(m′).
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Define the stochastic risk

K̃n(p) =
1

n

n∑
t=1

E
[
log

p⋆t (Xt)

pt(Xt)
1f t

A(Xt)<1

∣∣∣Ft−1

]
.

Then, plugging the definition of gm
θ̄m in the above leads to, on the event A, for every m′ ∈M′,

K̃n(p
m′

θ̂m′ )⩽ K̃n(p
m
θ̄m) + pen(m)− ν(gm

′

θ̂m′ )− pen(m′) + ν(gmθ̄m).

Note that K̃n is not quite the stochastic risk Kn used in the Theorems, which is defined by

Kn(p) =
1

n

n∑
t=1

E
[
log

p⋆t (Xt)

pt(Xt)

∣∣∣Ft−1

]
.

Under Assumptions 1 and 2, almost surely, K̃n(p
m′

θ ) = Kn(p
m′

θ ) for all m′ ∈ M and θ ∈
Θm′ . On the other hand, under Assumptions 1bis and 2bis, the following Lemma ensures a
control on the difference between the two riks.

LEMMA 11. Under Assumptions 1bis and 2bis, for α⩾ 1 and n⩾ 3, almost surely, for
any m′ ∈M and θ ∈Θm′

|Kn(p
m′

θ )− K̃n(p
m′

θ )|⩽ 6Bm′(1 + α)
logn

n1+α
=

6F∞
m′

n1+α
.

PROOF. See Section C.1

Therefore, on the event A,

(10) Kn(p
m′

θ̂m′ )⩽Kn(p
m
θ̄m)+pen(m)−ν(gm

′

θ̂m′ )−pen(m′)+ν(gmθ̄m)+Res(m)+Res(m′)

with Res(m′) = 0 under Assumptions 1 and 2 and Res(m′) = 6F∞
m′n−(1+α) under Assump-

tions 1bis and 2bis.

So far everything is similar to [42]. The goal is now to control −ν(gm
′

θ̂m′ ) and ν(gm
θ̄m)

in (10).
For any m′ ∈M and δ ∈Θm′ , let

Vn(p
m′

δ ) =
1

n

n∑
t=1

E

(log p⋆t (Xt|Ft−1)

pm
′

δ,t (Xt|Ft−1)

)2

1f t
A(Xt)<1

∣∣∣Ft−1

 ,
(11) Åm′ = F höl

m′ M
βm′
m′ + F∞

m′ and vm′ = Åm′

√
2n.

and let σm′ be the solution of the equation

(12) σ =
(
1∧ vm′

σ

)√
Dm′

(
1 +

1

βm′
log
(vm′

σ
∨ e
))

+
Åm′

σ
Dm′

(
1 +

1

βm′
log
(vm′

σ
∨ e
))

.
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LEMMA 12. Assume Assumption 4 holds, as well as either Assumptions 1 and 2
or Assumptions 1bis and 2bis. For any family (ηm′)m′∈M taking values in (0,1), let-
ting ym′ = η−1

m′

√
σ2
m′ + x+Dm′ for each m′ ∈ M, it holds with probability at least

1− 6e−x
∑

m′∈M
log(vm′)e−Dm′ that for all m′ ∈M,

(13) sup
δ∈Θm′

(
|ν(gm′

δ )|
2Vn(pm

′

δ ) + 1
ny

2
m′

)
⩽ 80(2ηm′ + η2m′Åm′).

PROOF. See Section C.2.

LEMMA 13. Under either Assumptions 1 and 2 or Assumptions 1bis and 2bis, almost
surely, for all m′ ∈M and δ ∈Θm′ ,

Vn(p
m′

δ )⩽ 16(F∞
m′)2Kn(p

m′

δ ).

PROOF. See Section C.3.

Fix some sequence (ηm′)m′∈M in (0,1) to be determined later and for all m′ ∈ M let
ym′ = η−1

m′

√
σ2
m′ + x+Dm′ . By definition of Åm′ , it holds that

log(vm′) = log(Åm′) +
1

2
log(2n) =

{
log(Am′) + log(2n)

2 in Theorem 2,
log(Am′) + log(logn) + log(2n)

2 in Theorem 4.

In any case, since n⩾ 3 and Am′ ⩾ 2,

log(vm′)⩽ 4 log(n) log(Am′).

By Lemma 12 and 13, using the definition of Σ, for x⩾ 0, it holds with probability at least
1− 24 log(n)Σe−x, for all m′ ∈M′,

−ν(gm
′

θ̂m′ )⩽ 80(2ηm′ + η2m′Åm′)

(
32(F∞

m′)2Kn(p
m′

θ̂m′ ) +
1

n
y2m′

)
and

ν(gmθ̄m)⩽ 80(2ηm + η2mÅm)

(
32(F∞

m )2Kn(p
m
θ̄m) +

1

n
y2m

)
.

Injecting this result in (10), since the event A is of probability at least 1− qn, it holds with
probability at least 1− qn − 24 log(n)Σe−x that for all m′ ∈M′,

(14)
(
1− 2560(F∞

m′)2(2ηm′ + η2m′Åm′)
)
Kn(p

m′

θ̂m′ )

⩽
(
1 + 2560(F∞

m )2(2ηm + η2mÅm)
)
Kn(p

m
θ̄m) + Res(m) + Res(m′)

+ 80

(
2

ηm
+ Åm

)
1

n
(σ2

m + x+Dm) + pen(m)

+ 80

(
2

ηm′
+ Åm′

)
1

n
(σ2

m′ + x+Dm′)− pen(m′).

Let κ ∈ (0,1] and for all m′ ∈M, let

(15) ηm′ =
cκ

Åm′F∞
m′
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for some numerical constant c > 0 to be determined. Let us focus on the first multiplicative
term on the left hand side of (14). With that choice of ηm′ ,

2560(F∞
m′)2(2ηm′ + η2m′Åm′) = 2560(F∞

m′)2

(
2cκ

Åm′F∞
m′

+
c2κ2

Å2
m′(F∞

m′)2
Åm′

)

= 2560

(
2cκF∞

m′

Åm′

+
c2κ2

Åm′

)
⩽ 2560

(
2cκ+ c2κ2

)
since F∞

m′ ⩽ Åm′ and Åm′ ⩾ 2

⩽ 2560
(
2c+ c2

)
κ since κ ∈ (0,1].

Pick c small enough so that 2560
(
2c+ c2

)
⩽ 1. Therefore,

(16) 2560(F∞
m′)2(2ηm′ + η2m′Åm′)⩽ κ.

Let us now turn on the penalty term choice in (14). By the definition of σm′ in (12), it is
smaller than the solution σ′

m′ of

σ =

√
Dm′

(
1 +

1

βm′
log
(vm′

σ
∨ e
))

+
Åm′

σ
Dm′

(
1 +

1

βm′
log
(vm′

σ
∨ e
))

,

which satisfies

σ′
m′ ⩾

√
Åm′Dm′(1 +

1

βm′
)

and therefore

σ′
m′ ⩽

√√√√√Dm′

1 +
1

βm′
log

 √
2nÅm′√

Dm′(1 + 1
βm′

)
∨ e



+

√√√√Åm′Dm′

1 + 1
βm′

(
1 +

1

βm′
log

 √
2nÅm′√

Dm′(1 + 1
βm′

)
∨ e


︸ ︷︷ ︸

T

)

=

√
Dm′(1 +

1

βm′
)


√√√√1 + 1

βm′
T

1 + 1
βm′

+

√
Åm′

1 + 1
βm′

T

1 + 1
βm′

 .

Since T⩾ 1 by its definition and Åm′ ⩾ 1 by assumption,

σ′
m′ ⩽ 2

√
Dm′Åm′(1 +

1

βm′
)
1 + 1

βm′
T

1 + 1
βm′

⩽ 2

√
Åm′Dm′

√1 +
1

βm′
∨
1 + 1

βm′
log
(√

2nÅm′

)
√

1 + 1
βm′

 .

Because log(2nÅm′)⩾ 1,

σ′
m′ ⩽ 2

√√√√Åm′Dm′

1 + 1
βm′

(
1 +

1

βm′
log
(
2nÅm′

))
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⩽ 2

√
Åm′Dm′

√
1 +

1

βm′
log
(
2nÅm′

)
⩽ 4

√
Åm′Dm′

√
1 +

1

βm′
log
(
nÅm′

)
.

There exist numerical constants Cpen and C such that if for all m′ ∈M′,

(17) pen(m′)⩾
Cpen

κ
Å2

m′F∞
m′

(
1 +

1

βm′

)
log(nÅm′)2

Dm′

n
,

with the choice of ηm′ in (15) and (16), and taking into account that (17) ensures that the
term Res(m′) and Res(m) are absorbed by the penalty terms (recall with Lemma 11 that
Res(m′) = 6F∞

m′n−(1+α)), (14) becomes, for all x ⩾ 0, with probability at least 1 − qn −
24 log(n)Σe−x, for all m′ ∈M′,

(18) (1− κ)Kn(p
m′

θ̂m′ )⩽ (1 + κ)Kn(p
m
θ̄m) + 2pen(m) +

C

κ

[
Åm′F∞

m′ + ÅmF∞
m

] x
n
.

Let us distinguish the final result between Theorem 2 and 4.

• For Theorem 2, (17) reads

pen(m′)⩾
Cpen

κ
A2

m′ log(ε−1)

(
1 +

1

βm′

)
log(nAm′)2

Dm′

n

and (18) becomes: for all x⩾ 0, with probability at least 1− 24 log(n)Σe−x, for all m′ ∈
M′,

(1− κ)Kn(p
m′

θ̂m′ )⩽ (1 + κ)Kn(p
m
θ̄m) + 2pen(m) +

2C

κ
(Am′ +Am) log(ε−1)

x

n
.

• For Theorem 4, up to a multiplicative constant, since Åm′′ =Am′′ logn, (17) reads

pen(m′)⩾
(1 + α)Cpen

κ
A2

m′Bm′ (logn)3
(
1 +

1

βm′

)
log(nAm′)2

Dm′

n

and (18) becomes: for all x⩾ 0, with probability at least 1− 2n−α − 24 log(n)Σe−x, for
all m′ ∈M′,

(1−κ)Kn(p
m′

θ̂m′ )⩽ (1+κ)Kn(p
m
θ̄m)+2pen(m)+

(1 + α)C

κ
(Am′Bm′+AmBm)

x(logn)2

n
.

APPENDIX B: PROOF OF COROLLARIES 3 AND 5

Corollary 3 follows directly from the fact that E[Z]⩽ a
∫
t⩾0 P(Z ⩾ at)dt for any positive

random variable Z , and any a > 0.
Under Assumptions 1bis, let us first show that Kn(p

m′

δ ) is bounded for all δ and m′ almost
surely. By Assumption 1bis, almost surely, for any m′ ∈M and δ ∈Θm′ ,

Kn(p
m′

δ )⩽
1

n

n∑
t=1

E

[∣∣∣∣∣log p⋆t (Xt|Ft−1)

pm
′

δ,t (Xt|Ft−1)

∣∣∣∣∣ ∣∣∣Ft−1

]

⩽
1

n

n∑
t=1

(
Bm′ +Bm′

∫ +∞

1
P

(∣∣∣∣∣log p⋆t (Xt|Ft−1)

pm
′

δ,t (Xt|Ft−1)

∣∣∣∣∣⩾Bm′y
∣∣∣Ft−1

)
dy

)
⩽ 2Bm′ .(19)
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To conclude, assume that there exist A(n),B(n) such that supm∈MBm ⩽ B(n),
supm∈MAm ⩽ A(n), so that by Theorem 4, with probability at least 1 − 2n−α −
24 log(n)Σe−x,

(1− κ)Kn(p̃)⩽ inf
m∈M

(
(1 + κ) inf

θ∈ΘDm
Kn(p

m
θ ) + 2pen(m)

)
+

2(1 + α)C ′

κ
A(n)B(n)2

(logn)2x

n
,

and use that for any random variable Z such that Z ⩽ M a.s. for some constant M > 0,
E[Z]⩽

∫M
t=0 P(Z ⩾ t)dt, so that for all κ ∈ (0,1],

(1− κ)E
[
Kn(p

m̂
θ̂m̂

)
]
⩽ E

[
inf

m∈M

(
(1 + κ) inf

θ∈ΘDm
Kn(p

m
θ ) + 2pen(m)

)]
+ 4B(n)n−α +

48(1 + α)C ′

κ
ΣA(n)B(n)2

(logn)3

n
,

and the last term dominates the second to last one when α⩾ 1.

APPENDIX C: PROOF OF THE LEMMAS

C.1. Proof of Lemma 11. For any m′ ∈M and θ ∈Θm′

|Kn(p
m′

θ )− K̃n(p
m′

θ )|⩽ 1

n

n∑
t=1

E

[∣∣∣∣∣log p⋆t (Xt)

pm
′

θ,t(Xt)

∣∣∣∣∣1f t
A(Xt)⩾1

∣∣∣Ft−1

]
.

Let y ⩾ 0 to be determined later. Let Yt =
∣∣∣log p⋆

t (Xt)

pm′
θ,t(Xt)

∣∣∣. Then,

E
[
Yt1f t

A(Xt)⩾1

∣∣∣Ft−1

]
= E

[
Yt1f t

A(Xt)⩾11B−1

m′Yt>y

∣∣∣Ft−1

]
+E

[
Yt1f t

A(Xt)⩾11B−1

m′Yt⩽y

∣∣∣Ft−1

]
⩽ E

[
Yt1B−1

m′Yt>y

∣∣∣Ft−1

]
+Bm′yE

[
1f t

A(Xt)⩾1

∣∣∣Ft−1

]
=Bm′

(
E
[
B−1

m′ Yt1B−1

m′Yt>y

∣∣∣Ft−1

]
+ yE

[
1f t

A(Xt)⩾1

∣∣∣Ft−1

])
.

By Assumption 1bis, conditionally to Ft−1, B
−1
m′ Yt is stochastically dominated by 1 ∨ E

where E is an exponentially distributed random variable with parameter 1. Therefore, for
y ⩾ 1, a.s.,

E
[
B−1

m′ Yt1B−1

m′Yt>y

∣∣∣Ft−1

]
⩽ E[(E ∨ 1)1E∨1⩾y|Ft−1] = E[E1E⩾y|Ft−1]⩽ (1 + y)e−y.

Finally, since P(f t
A(Xt) ⩾ 1 |Ft−1) ⩽ 2n−(1+α) a.s. by assumption, it holds almost surely

that

E
[
Yt1f t

A(Xt)⩾1

∣∣∣Ft−1

]
⩽Bm′

(
(1 + y)e−y + yP

(
f t
A(Xt)⩾ 1

∣∣∣Ft−1

))
⩽Bm′

(
(1 + y)e−y +

2y

n1+α

)
.

Pick y = log
(
n1+α

2

)
⩾ 1. Thus,

E
[
Yt1f t

A(Xt)⩾1

∣∣∣Ft−1

]
⩽

2Bm′

n1+α

(
1 + 2 log

(
n1+α

2

))
⩽ 6Bm′(1 + α)

logn

n1+α
.
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Therefore, |Kn(p
m′

θ )− K̃n(p
m′

θ )|⩽ 6Bm′(1 + α) lognn1+α .

C.2. Proof of Lemma 12. Fix m′ ∈M. Recall that for any δ, η ∈Θm′ ,

ν(gm
′

δ )−ν(gm
′

η ) =
1

n

n∑
t=1

∫
log

(
pm

′

η,t(xt|Ft−1)

pm
′

δ,t (xt|Ft−1)

)
1f t

A(xt)<1(dδXt
(xt)−p⋆t (xt|Ft−1)dµ(xt)),

where δa is the Dirac measure in a.
We extend Θm′ into Θm′ ∪{⋆} by defining pm

′

⋆ = p⋆, so that when η = ⋆, ν(gm
′

η ) = 0 and
the formula above becomes ν(gm

′

δ ). We want to control this uniformly over δ, η ∈Θm′ ∪{⋆}.
Fix δ, η ∈Θm′ ∪ {⋆}. For any t ∈ [n], let

∆t =

∫
log

(
pm

′

η,t(xt|Ft−1)

pm
′

δ,t (xt|Ft−1)

)
1f t

A(xt)<1(dδXt
(xt)− p⋆t (xt|Ft−1)dµ(xt)).

For any t ∈ [n+1], let Mt =
∑t−1

s=1∆s (in particular, M1 = 0), so that 1
nMn+1 = ν(gm

′

δ )−
ν(gm

′

η ).
(Mt)t⩾1 is a (σ(Ft−1))t⩾1-martingale. For ℓ⩾ 2, let Cℓ

1 = 0 and for t⩾ 2, let

Cℓ
t =

t−1∑
s=1

E[∆ℓ
s |Ft−1].

Note that for all s ∈ [n],

|∆s|⩽ 2

∫ ∣∣∣∣∣log pm
′

η,s(xs|Fs−1)

pm
′

δ,s(xs|Fs−1)

∣∣∣∣∣1fs
A(xs)<1

dδXs
(xs) + p⋆s(xs|Fs−1)dµ(xs)

2
,

so that by convexity of x 7→ |x|ℓ,

|Cℓ
t |⩽

t−1∑
s=1

E

2ℓ ∫ ∣∣∣∣∣log pm
′

η,s(xs|Fs−1)

pm
′

δ,s(xs|Fs−1)

∣∣∣∣∣
ℓ

1fs
A(xs)<1

dδXs
(xs) + p⋆s(xs|Fs−1)dµ(xs)

2

∣∣∣∣Fs−1


= 2ℓ

t−1∑
s=1

∫ ∣∣∣∣∣log pm
′

η,s(xs|Fs−1)

pm
′

δ,s(xs|Fs−1)

∣∣∣∣∣
ℓ

1fs
A(xs)<1p

⋆
s(xs|Fs−1)dµ(xs).(20)

Let

(21) R∞,n(δ, η) = max
1⩽s⩽n

sup
x∈X

(∣∣∣∣∣log pm
′

η,s(x|Fs−1)

pm
′

δ,s(x|Fs−1)

∣∣∣∣∣1fs
A(x)<1

)
and

R2,n(δ, η)
2 = 2

n∑
s=1

E

(log pm
′

η,s(Xs|Fs−1)

pm
′

δ,s(Xs|Fs−1)

)2

1fs
A(Xs)<1

∣∣∣∣∣Fs−1

 .
Under Assumptions 1, 2 and 4, almost surely, for all x ∈ X and s ∈ [n], 1fs

A(x)<1 = 1 and
therefore

R∞,n(δ, η) = max
1⩽s⩽n

sup
x∈Q

∣∣∣∣∣log pmθ,s(x)

pmδ,s(x)

∣∣∣∣∣ almost surely.

In what follows, when using the notation R∞(δ, η), we will actually mean the right hand term,
which is Fn−1-measurable as a supremum of a countable family of measurable functions.
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Secondly, under Assumptions 1bis, 2bis and 4bis, for all x ∈ X and s ∈ [n], with Ox the
open set of Assumption 4bis, the restriction of the function fs

A to Ox ∪ {x} is continuous at
x. Therefore, for all s ∈ [n], if f s

A(x)< 1 for all s ∈ [n], the function

y ∈Ox ∪ {x} 7→

∣∣∣∣∣log pm
′

η,s(y|Fs−1)

pm
′

δ,s(y|Fs−1)

∣∣∣∣∣1fs
A(y)<1

is continuous at x. Thus, for any dense countable subset Q of X and any y ∈ X and s ∈ [n],
if fs

A(y)< 1,

sup
x∈Q

(∣∣∣∣∣log pm
′

η,s(x|Fs−1)

pm
′

δ,s(x|Fs−1)

∣∣∣∣∣1fs
A(x)<1

)
⩾

∣∣∣∣∣log pm
′

η,s(y|Fs−1)

pm
′

δ,s(y|Fs−1)

∣∣∣∣∣1fs
A(y)<1,

and if fs
A(y)⩾ 1, then the right hand side is zero and so the inequality still holds. Therefore,

(21) can be rewritten as

R∞,n(δ, η) = max
1⩽s⩽n

sup
x∈Q

(∣∣∣∣∣log pm
′

η,s(x|Fs−1)

pm
′

δ,s(x|Fs−1)

∣∣∣∣∣1fs
A(x)<1

)
,

for any dense countable subset Q of X . Since this is a supremum of a countable family of
Fn−1-measurable functions, R∞,n(δ, η) is Fn−1-measurable.

Injecting these quantities into (20) shows that

|Cℓ
t |⩽ 2ℓ−1R∞,n(δ, η)

ℓ−2R2,n(δ, η)
2,

and since 2ℓ−1 ⩽ ℓ! for all ℓ⩾ 2,

(22) |Cℓ
n+1|⩽

ℓ!

2
R2,n(δ, η)

2R∞,n(δ, η)
ℓ−2.

The next proposition is a direct consequence of Lemma 3.3 in [36] and can be found in [4],

PROPOSITION 14. Let (Mt)t⩾0 be a (Ft)t⩾0-martingale with M0 = 0. Let t ⩾ 1 and
assume that there exists nonnegative random variables R2 and R∞ such that for all ℓ⩾ 2,

t∑
s=1

E
[
(Ms −Ms−1)

ℓ

∣∣∣∣Fs−1

]
⩽

ℓ!

2
R2

2R
ℓ−2
∞ .

Then, for all σ,σ′, x⩾ 0,

(23) P
(
Mt ⩾ σ

√
2x+ σ′x, R2 ⩽ σ and R∞ ⩽ σ′

)
⩽ e−x.

PROOF OF PROPOSITION 14. Let Cℓ
0 = 0 and Cℓ

s =
∑s

u=1E[(Mu −Mu−1)
ℓ |Fu−1] for

all t ⩾ s ⩾ 1 and ℓ ⩾ 2. Lemma 3.3 of [36] gives that for all λ > 0, the sequence (Es)s⩾0

defined by

Es = exp

λMs −
∑
ℓ⩾2

λℓ

ℓ!
Cℓ
s


is a supermartingale. In particular, E(Et)⩽ E(E0) = 1. Therefore,

(24) ∀λ⩾ 0 E

exp
λMt −

(λR2)
2

2

∑
k⩾0

(λR∞)k

⩽ 1.
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By (24), for all σ,σ′, λ⩾ 0,

E

exp
λMt −

(λR2)
2

2

∑
k⩾0

(λR∞)k

1R2⩽σ1R∞⩽σ′

⩽ 1,

and therefore for all λ ∈ [0, (σ′)−1),

(25) E[exp(λMt)1R2⩽σ1R∞⩽σ′ ]⩽ exp

(
λ2σ2

2(1− λσ′)

)
.

Finally, for y ⩾ 0, for all λ⩾ 0,

P
(
Mt ⩾ y, R2 ⩽ σ and R∞ ⩽ σ′)= P

(
eλMt ⩾ eλy, R2 ⩽ σ and R∞ ⩽ σ′

)
= P

(
eλMt1R2⩽σ1R∞⩽σ′ ⩾ eλy

)
where the last equality holds because eλMt and eλy are positive. Therefore, by the Markov
inequality and (25), for all λ ∈ [0, (σ′)−1),

P
(
Mt ⩾ y, R2 ⩽ σ and R∞ ⩽ σ′)⩽ exp

(
λ2σ2

2(1− λσ′)
− λy

)
.

Classic Bernstein inequality’s proofs show that an optimal choice of λ leads to

P
(
Mt ⩾ y, R2 ⩽ σ and R∞ ⩽ σ′)⩽ exp

(
− σ2

(σ′)2
h

(
σ′y

σ2

))
,

where h is the function defined by h(u) = 1 + u−
√
1 + 2u for all u⩾ 0. Since, its inverse

function h−1 is such that h−1(u) = u+
√
2u for all u⩾ 0, choosing y so that

σ2

(σ′)2
h

(
σ′y

σ2

)
= x

leads to

y =
σ2

σ′ h
−1

(
(σ′)2x

σ2

)
= σ′x+ σ

√
2x.

Hence the result.

Applying Proposition 14 to the martingale Mt ensures that for all σ,σ′, x⩾ 0 and for all
δ, η ∈Θm′ ∪ {⋆},

P
(
nν(gm

′

δ )− nν(gm
′

η )⩾ σ
√
2x+ σ′x,R2(δ, η)⩽ σ and R∞(δ, η)⩽ σ′

)
⩽ e−x.

From this control of the increments of the process ν, we aim to apply the following slight
modification of Theorem 5 of [4], to account for a Hölder relation between R2, R∞ and the
norms over Θm′ .

THEOREM 15. Let (Yt)t∈S be a family of real-valued random variables, indexed by a
countable subset S of a linear space E of finite dimension D. Let R2 and R∞ be two non-
negative random functions on S × S that satisfy the triangle inequality. Assume that the
increments Ys − Yu satisfy

(26) ∀σ,σ′, x⩾ 0, ∀s,u ∈ S,

P(Ys − Yu ⩾ σ
√
2x+ σ′x,R2(s,u)⩽ σ and R∞(s,u)⩽ σ′)⩽ e−x.
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Assume that there exists two deterministic seminorms N2 and N∞ on E, a positive constant
β and nonnegative constants v,w, such that for all s,u ∈ S,

(27)

{
R2(s,u)⩽N2(s− u)β ⩽ vβ,

R∞(s,u)⩽N∞(s− u)β ⩽wβ.

Let c⩾ 0. Define for all x,σ ⩾ 0,

Ψ(σ,x) = 30

[
(σ ∧ vβ)

√
x+D+

D

β
log

(
vβ ∨ (cwβ)

σ
∨ e

)

+ (
σ

c
∧wβ)

(
x+D+

D

β
log

(
vβ ∨ (cwβ)

σ
∨ e

))]
,

with the convention σ
0 = +∞. Finally, define for all t, t0 ∈ S, ∆c(t, t0) = R2(t, t0) ∨

(cR∞(t, t0)). Then, for any t0 ∈ S, x⩾ 0 and σ > 0,

(28) P
(
sup
t∈S

Yt − Yt0
∆c(t, t0)2 + σ2

⩾ 4σ−2Ψ(σ,x)

)
⩽ 2

(
log

(
vβ ∨ (cwβ)

σ

)
∨ 0 + 1

)
e−x.

The salient differences in the proof of this Theorem compared to Theorem 5 of [4] are
detailed in Section C.4.

We take S as either Θm′ or a dense countable subset of Θm′ ; the two choices are equivalent
under Assumption 3. Such a dense countable subset always exists since Θm′ is parametric.
Let us now check the assumptions of the theorem.

By definition,

(29)

{
∀δ, η ∈Θm′ ∪ {⋆}, R2,n(δ, η)⩽ F∞

m′

√
2n,

∀δ, η ∈Θm′ , R2,n(δ, η)⩽ F höl
m′ ∥δ− η∥βm′

m′

√
2n.

Since R2,n(δ, η) is the Euclidean norm of the vector whose coordinate s ∈ [n] is the
L2(X , p⋆s(·|Fs−1)dµ) distance between log pm

′

η,s(·|Fs−1)1fs
A(·)<1 and log pm

′

δ,s(·|Fs−1)1fs
A(·)<1,

it satisfies the triangular inequality: for all η, δ, θ ∈Θm′ ∪ {⋆},

(30) R2,n(δ, η)⩽R2,n(δ, θ) +R2,n(θ, η).

Likewise,

(31)

{
∀δ, η ∈Θm′ ∪ {⋆}, R∞,n(δ, η)⩽ F∞

m′ ,

∀δ, η ∈Θm′ , R∞,n(δ, η)⩽ F höl
m′ ∥δ− η∥βm′

m′ ,

and for all η, δ, θ ∈Θm′ ∪ {⋆}

(32) R∞,n(δ, η)⩽R∞,n(δ, θ) +R∞,n(θ, η).

Identify Θm′ ∪ {⋆} with the subset Θ̃m′ of the vector space RDm′+1 of generic element
(δ,u) with δ ∈RDm′ and u ∈R, defined as

Θ̃m′ = {(θ,0) : θ ∈Θm′} ∪ {(θ̄m′
,1)},

for some fixed θ̄m
′ ∈Θm′ . Endow the vector space RDm′+1 with the norms

Ñ∞((δ,u)) = (F höl
m′ ∥δ∥βm′

m′ +F∞
m′ |u|βm′ )1/βm′ and Ñ2((δ,u)) = (2n)1/(2βm′ )Ñ∞((δ,u)).
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Under Assumption 2bis, for any δ, η ∈Θm′ , by (29) and (31),{
R2,n(δ, η)⩽ F höl

m′ ∥δ− η∥βm′
m′

√
2n= Ñ2((δ,0)− (η,0))βm′

R∞,n(δ, η)⩽ F höl
m′ ∥δ− η∥βm′

m′ = Ñ∞((δ,0)− (η,0))βm′ ,

and both inequalities extend to η = ⋆ since, for R2,n,

R2,n(δ, ⋆)⩽ F∞
m′

√
2n

⩽
[
(F höl

m′ )1/βm′∥δ− θ̄m
′∥m′(2n)1/(2βm′ ) + (F∞

m′)1/βm′ (2n)1/(2βm′ )
]βm′

= Ñ2((δ,0)− (θ̄m
′
,1))βm′

and likewise for δ = ⋆ and for R∞,n. Recall that we defined

Åm′ = F höl
m′ M

βm′
m′ + F∞

m′ and vm′ = Åm′

√
2n,

in (11), so that Ñ2(δ− η)βm′ ⩽ vm′ and Ñ∞(δ− η)βm′ ⩽ Åm′ for all δ, η ∈ Θ̃m′ .
We may now apply Theorem 15 to the process Yδ = nν(gm

′

δ ) indexed by δ ∈Θm′ ∪ {⋆},
with c= 0: for all σ > 0 and x⩾ 0, let

Ψ(σ,x) = 30

[
(σ ∧ vm′)

√
x+Dm′ +

Dm′

βm′
log
(vm′

σ
∨ e
)

+ Åm′

(
x+Dm′ +

Dm′

βm′
log
(vm′

σ
∨ e
))]

.

Then, for all θ ∈Θm′ ∪ {⋆}, σ > 0 and x⩾ 0,

P

(
sup

δ∈Θm′∪{⋆}

Yδ − Yθ
R2,n(δ, θ)2 + σ2

⩾ 4σ−2Ψ(σ,x+Dm′)

)

⩽
(
2 log

(vm′

σ

)
∨ 0 + 1

)
e−(x+Dm′ ).

In particular, by taking the union bound over m′ ∈M for θ = ⋆, for any family of positive

numbers (ym′)m′∈M, with probability at least 1−e−x
∑

m′∈M

(
2 log

(
vm′

ym′

)
∨ 0 + 1

)
e−Dm′ ,

for all m′ ∈M,

sup
δ∈Θm′

(
nν(gm

′

δ )

R2,n(δ, ⋆)2 + y2m′

)

⩽
120

y2m′

[
ym′

√
x+Dm′ + (ym′ ∧ vm′)

√
Dm′

(
1 +

1

βm′
log

(
vm′

ym′
∨ e

))

+ Åm′(x+Dm′) + Åm′Dm′

(
1 +

1

βm′
log

(
vm′

ym′
∨ e

))]
.

For each m′ ∈M, let σm′ be the solution of the equation

σ =
(
1∧ vm′

σ

)√
Dm′

(
1 +

1

βm′
log
(vm′

σ
∨ e
))
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+
Åm′

σ
Dm′

(
1 +

1

βm′
log
(vm′

σ
∨ e
))

which exists since the right hand side is positive and non-increasing on (0,+∞). For any
family (ym′)m′∈M such that ym′ ⩾ σm′ for all m′ ∈M, for any x⩾ 0, it holds with proba-

bility at least 1− e−x
∑

m′∈M

(
2 log

(
vm′

ym′

)
∨ 0 + 1

)
e−Dm′ that for all m′ ∈M,

sup
δ∈Θm′

(
nν(gm

′

δ )

R2,n(δ, ⋆)2 + y2m′

)
⩽

120

ym′

(
σm′ +

√
x+Dm′ +

Åm′

ym′
(x+Dm′)

)
.

Let η ∈ (0,1) and x⩾ 0 and fix for each m′ ∈M

ym′ = η−1
√

σ2
m′ + x+Dm′ ,

then with probability at least 1− e−x
∑

m′∈M

(
2 log

(
vm′

ym′

)
∨ 0 + 1

)
e−Dm′ , for all m′ ∈M,

sup
δ∈Θm′

(
ν(gm

′

δ )
1
nR2,n(δ, ⋆)2 +

1
ny

2
m′

)
⩽ 120(2η+ η2Åm′),

where

• the first term on the right hand side is due to the concavity of x ∈ (0,+∞) 7→
√
x,

• the second term on the right hand side holds because x+Dm′ ⩽ x+Dm′ + σ2
m′ = η2y2m′ .

By definition ym′ ⩾ η−1
√
Dm′ ⩾ 1, and vm′ = Åm′

√
2n⩾ e. Therefore,

2 log

(
vm′

ym′

)
∨ 0 + 1⩽ 3 log vm′ .

The control of −ν(gm
′

δ ) is identical, hence we may control all |ν(gm′

δ )| with probability at
least 1− 6e−x

∑
m′∈M

log(vm′)e−Dm′ by union bound. To conclude the proof of the Lemma,

note that 1
nR2,n(δ, ⋆)

2 = 2Vn(pδ).

C.3. Proof of Lemma 13. Let’s begin with a result proved in [46] which we slightly
adapt to our situation. It is proved at the end of this section.

LEMMA 16 (Adaptation of Lemma 4 in [46]). For any probability measures P and Q
with densities p and q, and any λ ∈ (0,1/2],

P

{(
log

p

q

)2

1∣∣∣log( p

q

)∣∣∣⩽log( 1

λ)

}
⩽ 8

(
1 +

(
log

1

λ

)2
)
P

{(
q1/2

p1/2
− 1

)2

1∣∣∣log( p

q

)∣∣∣⩽log( 1

λ)

}
.

Let us apply Lemma 16 to p = p⋆s and q = pm
′

δ,s with λ = exp(−F∞
m′) for all s ∈ [n] and

δ ∈Θm′ . By definition of F∞
m′ , λ⩽ 1/2, so that for all s ∈ [n] and δ ∈Θm′ ,

∫ ∣∣∣∣∣log p⋆s(xs|Fs−1)

pm
′

δ,s(xs|Fs−1)

∣∣∣∣∣
2

1fs
A(Xs)<1 p

⋆
s(xs|Fs−1)dµ(xs)
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⩽
∫ ∣∣∣∣∣log p⋆s(xs|Fs−1)

pm
′

δ,s(xs|Fs−1)

∣∣∣∣∣
2

1∣∣∣∣∣log p⋆s (xs|Fs−1)

pm
′

δ,s
(xs|Fs−1)

∣∣∣∣∣<F∞
m′

p⋆s(xs|Fs−1)dµ(xs)

⩽ 16h2
(
p⋆s(·|Fs−1), p

m′

δ,s(·|Fs−1)
∣∣∣Fs−1

)
(1 + (F∞

m′)2),

where

h2
(
pt(·|Ft−1), qt(·|Ft−1)

∣∣∣Ft−1

)
=

1

2

∫ (√
pt(xt|Ft−1)−

√
qt(xt|Ft−1)

)2
dµ(xt).

Let us recall a classical relation between the Hellinger distance and the Kullback-Leibler
divergence, see for instance in [42, Lemma 7.23]: for any probability measures P and Q,

2h2(P,Q)⩽ KL(P,Q).

Applying this inequality to the probability measures P = p⋆t (·|Xt−1
1 ) and Q= pm

′

t,θ̂m′ (·|Xt−1
1 )

conditionally to Xt−1
1 for all t ∈ [n] shows that

Vn(p
m′

δ )⩽ 8(1 + (F∞
m′)2)Kn(p

m′

δ )⩽ 16(F∞
m′)2Kn(p

m′

δ )

since F∞
m′ ⩾ 1.

PROOF OF LEMMA 16. The proof follows exactly the same steps as [46]. Let r :
(0,+∞)→R be the function defined implicitly by

log(x) = 2(x1/2 − 1)− r(x)(x1/2 − 1)2.

The function r is non-negative, decreasing, and r(x) ⩽ 2 log(1/x) for all x ∈ (0,1/2] (see
e.g. [34]). Let λ ∈ (0,1/2]. Since for any x⩾ 1, | log(x)|⩽ 2|x1/2 − 1|,

P

{(
log

p

q

)2

11⩽ q

p
⩽ 1

λ

}
⩽ 4P

{(
q1/2

p1/2
− 1

)2

11⩽ q

p
⩽ 1

λ

}
.

Moreover, by definition of r,

P

{(
log

p

q

)2

1λ⩽ q

p
⩽1

}

⩽ 8P

{(
q1/2

p1/2
− 1

)2

1λ⩽ q

p
⩽1

}
+ 2P

{
r2
(
q

p

)(
q1/2

p1/2
− 1

)4

1λ⩽ q

p
⩽1

}

⩽ 8P

{(
q1/2

p1/2
− 1

)2

1λ⩽ q

p
⩽1

}
+ 2r2(λ)P

{(
q1/2

p1/2
− 1

)2

1λ⩽ q

p
⩽1

}

⩽ 8P

{(
q1/2

p1/2
− 1

)2

1λ⩽ q

p
⩽1

}
+ 8

(
log

1

λ

)2

P

{(
q1/2

p1/2
− 1

)2

1λ⩽ q

p
⩽1

}
,

where

• the first inequality holds because for any a, b ∈R, (a+ b)2 ⩽ 2a2 + 2b2,

• the second inequality holds because r is decreasing and since 0⩽ q
p ⩽ 1,

(
q1/2

p1/2 − 1
)2

⩽ 1,
• the third inequality holds because r(x)⩽ 2 log(1/x) for x ∈ (0,1/2].
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All in all,

P

{(
log

p

q

)2

1λ⩽ q

p
⩽ 1

λ

}
⩽ 8

(
1 +

(
log

1

λ

)2
)
P

{(
q1/2

p1/2
− 1

)2

1λ⩽ q

p
⩽ 1

λ

}
.

C.4. Proof of Theorem 15. The proof follows the same lines as the proof of Theorem 5
of [4]. The main difference is that their Proposition 8 is changed into the following one:

PROPOSITION 17. Let (Yt)t∈S be a family of real-valued random variables, indexed by
a countable subset S of a linear space E of finite dimension D. Let R2 and R∞ be two
nonnegative random functions on S × S that almost surely satisfy the triangle inequality.
Assume that, for all s,u ∈ S, the increments Ys−Yu satisfy (26) with respect to R2 and R∞.
Assume that there exists two deterministic seminorms N2 and N∞ on E, a positive constant
β and nonnegative constants v,w satisfying (27). Fix t0 ∈ S. For σ,σ′ ⩾ 0, let

B(σ,σ′) =
{
s ∈ S : R2(s, t0)⩽ σ and R∞(s, t0)⩽ σ′} .

Then, there exists a numerical constant κ > 0 (for instance κ = 30) such that for all x ⩾ 0
and σ,σ′ > 0,

P

(
sup

t∈B(σ,σ′)
(Yt − Yt0)⩾ κ

[
(σ ∧ vβ)

√
x+D+

D

β
log

(
vβ

σ
∨ wβ

σ′ ∨ e

)

+ (σ′ ∧wβ)

(
x+D+

D

β
log

(
vβ

σ
∨ wβ

σ′ ∨ e

))])
⩽ e−x.

Following this, the same peeling argument is enough to conclude. Let us now prove this
proposition.

Without loss of generality, we may assume that S is finite (see [4]). Note that B(σ,σ′) =
B(σ ∧ vβ, σ′ ∧wβ) by (27), so, in what follows, we assume σ ⩽ vβ and σ′ ⩽wβ .

LEMMA 18. There exists a sequence of finite partitions (Ak)k∈N of S satisfying A0 =
{S} and

∀k ∈N, Ak+1 ⊂Ak in the sense that: ∀B ∈Ak+1,∃C ∈Ak s.t. B ⊂C,

∀k ⩾ 1, ∀B ∈Ak, ∀s,u ∈B, N2(s− u)⩽ 2−k/βσ1/β and N∞(s− u)⩽ 2−k/β(σ′)1/β,

∀k ⩾ 1, |Ak|⩽
(

vw
(σσ′)1/β

)D
4(3+1/β)Dk.

PROOF OF LEMMA 18. Let us recall a result from [14, Lemma 4.5] also used by [7]. This
result is originally formulated for norms, but extends naturally to seminorms by applying it
to the quotient of E by the kernel of the seminorm.

LEMMA 19. Let N be an arbitrary seminorm on S and BN (0,1) its corresponding unit
ball. For all δ ∈ (0,1], the minimum number of balls of radius δ which is necessary to cover
BN (0,1) is at most (1 + 2δ−1)D .

In the following proof, we build separately for each seminorm Nj a sequence of partitions
(Aj,k)k∈N with j ∈ {2,+∞}. The sequence of partitions of Lemma 18 is then obtained by
choosing, for k ⩾ 0, the partition Ak defined by

Ak = {A2 ∩A∞,A2 ∈A2,k,A∞ ∈A∞,k} .
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For the seminorm N2. let A2,0 = S. By (27), S ⊂ BN2
(0, v). Applying Lemma 19 to

the norm v−1N2 and δ = 2−1−1/βv−1σ1/β means that the minimum number of balls
of radius 2−1−1/βσ1/β which are necessary to cover BN2

(0, v) is upper bounded by(
1 + 22+1/βvσ−1/β

)D
⩽
(
23+1/βvσ−1/β

)D
. Let (B1, . . . ,Bp) be such a minimal covering.

Let C1 =B1 and for j ∈ {2, . . . , p}, define the set Cj as

Cj =Bj\
⋃
i<j

Bi.

The sequence A2,1 = (Cj)j∈{1,...,p} forms a partition of S, each set of which has a diameter
at most 2−1/βσ1/β .

For k ⩾ 1, proceed by induction using Lemma 19. Assume that there exists a parti-
tion A2,k such that |A2,k| ⩽ (23+1/βvσ−1/β)D · 2(2+1/β)D(k−1) and such that each ele-
ment of A2,k is a subset of a ball of radius 2−k/β−1σ1/β for the norm N2. By apply-
ing Lemma 19 to 2k/β+1σ−1/βN2 and δ = 2−1/β , each element of A2,k can be cov-
ered by at most (1 + 21+1/β)D ⩽ 2(2+1/β)D balls of radius 2−(k+1)/β−1σ1/β , and there-
fore be partitioned into at most 2(2+1/β)D sets of diameter 2−(k+1)/βσ1/β , each contained
in a ball of radius 2−(k+1)/β−1σ1/β . A2,k+1 is therefore a partition containing at most
(23+1/βvσ−1/β)D · 2(2+1/β)Dk elements.

For the seminorm N∞. the reasoning is the same and produces a partition A∞,k+1 contain-
ing at most (23+1/βw(σ′)−1/β)D · 2(2+1/β)Dk element for all k ⩾ 0.

Final partition. By construction, for all k ∈N, Ak+1 ⊂Ak. Moreover, for all k ⩾ 1, A ∈Ak

and s,u ∈A, N2(s− u)⩽ 2−k/βσ1/β and N∞(s− u)⩽ 2−k/β(σ′)1/β , and finally,

|Ak|⩽ |A2,k| · |A∞,k|⩽ (23+1/βvσ−1/β)D(23+1/βw(σ′)−1/β)D · 4(2+1/β)D(k−1)

⩽

(
vw

(σσ′)1/β

)D

4(3+1/β)Dk

Let (Ak)k⩾0 be a sequence of partitions as in Lemma 18. For all k ∈ N∗ and all A ∈ Ak,
pick a (deterministic) element tk(A) ∈A. For any t ∈ S and k ⩾ 1, there exists a unique A ∈
Ak such that t ∈ A. Let πk(t) = tk(A). Let also π0(t) = t0. Since S is finite, the following
decomposition holds and contains a finite number of non-zero terms:

Yt − Yt0 =
∑
k⩾0

(
Yπk+1(t) − Yπk(t)

)
.

For k ⩾ 0, let Ek = {(πk(t), πk+1(t)), t ∈ S} and for k ⩾ 1, letz0 =
3

2
σ
√

2(x+ log(2|E0|)) +
3

2
σ′(x+ log(2|E0|)),

zk = 2−k
(
σ
√

2(x+ log(2k+1|Ek|)) + σ′(x+ log(2k+1|Ek|))
)
.

Let

H =
3

2
σ
√

2 log(2|E0|) +
3

2
σ′ log(2|E0|) +

∑
k⩾1

2−k

(
σ
√

2 log(2k+1|Ek|) + σ′ log(2k+1|Ek|)
)

=
1

2
σ
√

2 log(2|E0|) +
1

2
σ′ log(2|E0|) +

∑
k⩾0

2−k

(
σ
√

2 log(2k+1|Ek|) + σ′ log(2k+1|Ek|)
)
.
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Finally, let

(33) z =H +
5

2
σ
√
2x+

5

2
σ′x,

so that z ⩾
∑

k⩾0 zk. By definition,

P

(
sup

t∈B(σ,σ′)
(Yt − Yt0)⩾ z

)
⩽ P

(
∃t ∈ B(σ,σ′),∃k ⩾ 0, Yπk+1(t) − Yπk(t) ⩾ zk

)
⩽ P

(
sup

t∈B(σ,σ′)

(
Yπ1(t) − Yt0

)
⩾ z0

)
+
∑
k⩾1

P
(
sup
t∈S

(
Yπk+1(t) − Yπk(t)

)
⩾ zk

)
.

The first term must be handled carefully, since even if t ∈ B(σ,σ′), there is no guarantee that
π1(t) ∈ B(σ,σ′). However, if t is in B(σ,σ′), since π1(t) and t are in the same element of
A1, by the triangle inequality,

R2(π1(t), t0)⩽R2(π1(t), t) +R2(t, t0)⩽
3

2
σ,

and likewise R∞(π1(t), t0)⩽ 3
2σ

′. Therefore,

P

(
sup

t∈B(σ,σ′)
(Yt − Yt0)⩾ z

)
⩽ P

(
sup

u s.t. (t0,u)∈E0 and u∈B(3σ/2,3σ′/2)
(Yu − Yt0)⩾ z0

)

+
∑
k⩾1

P

(
sup

(s,u)∈Ek

(Yu − Ys)⩾ zk

)

⩽
∑

u s.t. (t0,u)∈E0

P
(
(Yu − Yt0)⩾ z0 and u ∈ B(3σ/2,3σ′/2)

)

+
∑
k⩾1

P

(
sup

(s,u)∈Ek

(Yu − Ys)⩾ zk

)

⩽
∑

u s.t. (t0,u)∈E0

P
(
(Yu − Yt0)⩾ z0 and u ∈ B(3σ/2,3σ′/2)

)
+
∑
k⩾1

∑
(s,u)∈Ek

P (Yu − Ys ⩾ zk) .

For k = 0. Using (26) and the definition of z0,

P
(
Yu − Yt0 ⩾ z0 and u ∈ B(3σ/2,3σ′/2)

)
= P

(
Yu − Yt0 ⩾

3

2
σ
√

2(x+ log(2|E0|)) +
3

2
σ′(x+ log(2|E0|))

and R2(u, t0)⩽
3

2
σ, R∞(u, t0)⩽

3

2
σ′

)
⩽

1

2|E0|
e−x.

For k ⩾ 1. Since Ak+1 ⊂Ak, πk(t) and πk+1(t) belong to the same set in Ak. Therefore,
for all (s,u) ∈Ek, N2(s−u)⩽ 2−k/βσ1/β and N∞(s−u)⩽ 2−k/β(σ′)1/β . By assumption,
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R2(s,u)⩽N2(s−u)β and R∞(s,u)⩽N∞(s−u)β . Thus, for (s,u) ∈Ek, R2(s,u)⩽ 2−kσ
and R∞(s,u)⩽ 2−kσ′ almost surely. By definition of zk and (26), for all (s,u) ∈Ek,

P(Yu − Ys ⩾ zk)⩽ 2−(k+1)|Ek|−1e−x.

Summing on all (s,u) ∈Ek and all k ⩾ 0 leads to

P

(
sup

t∈B(σ,σ′)
(Yt − Yt0)⩾ z

)
⩽ e−x.

It remains to compute H in (33). By construction of Ak, the choice of πk+1(t) entirely
determines the choice of πk(t). Therefore, |Ek|⩽ |Ak+1|, that is

2k+1|Ek|⩽ 2k+1

(
vw

(σσ′)1/β

)D

4(3+1/β)D(k+1) ⩽

(
4(4+1/β)(k+1) vw

(σσ′)1/β

)D

and thus

H ⩽
1

2
σ

√
2D log

(
44+1/β

vw

(σσ′)1/β

)
+

1

2
σ′D log

(
44+1/β vw

(σσ′)1/β

)
︸ ︷︷ ︸

E

+
∑
k⩾0

2−kσ

√
2D log

(
4(4+1/β)(k+1)

vw

(σσ′)1/β

)
︸ ︷︷ ︸

F

+
∑
k⩾0

2−kσ′D log

(
4(4+1/β)(k+1) vw

(σσ′)1/β

)
︸ ︷︷ ︸

G

.

Let us calculate the three terms separately. Firstly,

E ⩽
σ

2

√
2D

(
(4 +

1

β
) log 4 +

1

β
log(

(vw)β

σσ′ )

)
+

σ′

2
D

(
(4 +

1

β
) log 4 +

1

β
log(

(vw)β

σσ′ )

)

⩽
σ

2

√
2D

(
6 +

1

β
log(

4(vw)β

σσ′ )

)
+

σ′

2
D

(
6 +

1

β
log(

4(vw)β

σσ′ )

)
.

Secondly,

G= σ′D
∑
k⩾0

2−k

(
(k+ 1)(4 +

1

β
) log 4 +

1

β
log(

(vw)β

σσ′ )

)

= 2σ′D

(
2(4 +

1

β
) log 4 +

1

β
log(

(vw)β

σσ′ )

)
⩽ 2σ′D

(
12 +

1

β
log(

16(vw)β

σσ′ )

)
.

Thirdly, by concavity of x 7→
√
x and Jensen’s inequality,

F ⩽ 2σ

√√√√∑
k⩾0

2−kD log

(
4(4+1/β)(k+1)

vw

(σσ′)1/β

)
⩽ 2σ

√
2D

(
12 +

1

β
log(

16(vw)β

σσ′ )

)
.

Thus,

H ⩽
5

2
σ

√
2D

(
12 +

1

β
log(

16(vw)β

σσ′ )

)
+

5

2
σ′D

(
12 +

1

β
log(

16(vw)β

σσ′ )

)
.
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Finally, using the concavity of x 7→
√
x again,

z =H +
5

2
σ
√
2x+

5

2
σ′x⩽ 5σ

√
x+ 12D+

D

β
log(

16(vw)β

σσ′ ) +
5

2
σ′
(
x+ 12D+

D

β
log(

16(vw)β

σσ′ )

)

⩽ 30

[
σ

√
x+D+

D

β
log

(
vβ

σ
∨ wβ

σ′ ∨ e

)

+ σ′
(
x+D+

D

β
log

(
vβ

σ
∨ wβ

σ′ ∨ e

))]
.

This concludes the proof of Proposition 17.

APPENDIX D: PROOF OF SECTION 4.2

PROOF OF LEMMA 6. Let m ∈M. For any t > k ⩾ 0, any probability distribution λ on
[hm] and any θ ∈Θm, let

Lt,k,λ(θ) = logESt−k∼λ

[
pmθ (Xt|Xt−1

t−k , St−k)
]
,

where pmθ is the conditional distribution according to the parameters of the HMM model m.
This can be seen as the log of the conditional density of a HMM initialized at time t− k with
initial distribution λ. For k = 0, we use the convention pmθ (Xt|Xt−1

t−0 , St−0) = pmθ (Xt|St).
Let ρ= 1− (CQ)

−2. Recall that we assumed πm
θ ,Qm

θ ∈ [(CQ)
−1h−1

m ,CQh
−1
m ] for all θ ∈

Θm. As a consequence, by Lemma 3 of [29], for all t, k, k′, λ and λ′, almost surely,

sup
θ∈Θm

|Lt,k,λ(θ)−Lt,k′,λ′(θ)|⩽ ρk∧k
′−1/(1− ρ).

In particular, for all t > k ⩾ 0, almost surely,

sup
θ∈Θm

| log pmθ,t(Xt)−Lt,k,πm
θ
(θ)|⩽ ρk−1/(1− ρ).

Let t > k ⩾ 0. For all θ ∈Θm, xtt−k ∈ X k+1 and i ∈ [hm], let fθ,i be defined as

fθ,i(x
t
t−k) = pmθ (Sk = i,Xt = xt|Xt−1

t−k = xt−1
t−k, St−k ∼ πm

θ ).

Note that Lt,k,πm
θ
(θ) = log

∑
i∈[hm] fθ,i(X

t
t−k), so that for any θ, δ ∈Θm,

| log pmθ,t(Xt)− log pmδ,t(Xt)|⩽
∣∣∣ log ∑

i∈[hm]

(fθ,i(X
t
t−k)− fδ,i(X

t
t−k))

∣∣∣+ 2ρk−1/(1− ρ).

Note that if t= k+ 1, a simpler equality holds:

| log pmθ,t(Xt)− log pmδ,t(Xt)|=
∣∣∣ log ∑

i∈[hm]

(fθ,i(X
t
t−k)− fδ,i(X

t
t−k))

∣∣∣.
LEMMA 20. Assume ∥θ− δ∥m ⩽ log 2, then for all xk0 ∈ X k+1,∣∣∣ log ∑

i∈[hm]

(fθ,i(x
k
0)− fδ,i(x

k
0))
∣∣∣⩽ 7(2C2

Q)
k+3∥θ− δ∥m.

To simplify this formula, there exists two constants C1,C2 > 1 such that∣∣∣ log ∑
i∈[hm]

(fθ,i(x
k
0)− fδ,i(x

k
0))
∣∣∣⩽ ∥θ− δ∥mC1C

k
2 .
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Therefore, up to changing C1, almost surely,

| log pmθ,t(Xt)− log pmδ,t(Xt)|⩽C1min( inf
k∈N:0⩽k<t

Ck
2 ∥θ− δ∥m + ρk,Ct−1

2 ∥θ− δ∥m).

A possible choice is C2 = 2C2
Q and C1 = 56C6

Q.
Solving Ck

2 ∥θ − δ∥m = ρk results in the trade-off k⋆ = ⌈log(1/∥θ − δ∥m)/ log(C2/ρ)⌉,
which ensures that as long as ∥θ− δ∥m ⩽ log 2, almost surely,

| log pmθ,t(Xt)− log pmδ,t(Xt)|⩽ 2C1C
k⋆

2 ∥θ− δ∥m

⩽ 2C1C2∥θ− δ∥
1− logC2

log(C2/ρ)

m ,

so we may take

β−1
m = 1− logC2

log(C2/ρ)
=

logρ−1

logC2 + logρ−1
=

− log(1− (CQ)
−2)

log(2C2
Q)− log(1− (CQ)−2)

∼CQ→+∞
C−2
Q

2 logCQ

and since Lm ⩾ (2C1C2), it proves that Assumption 2 holds when ∥θ− δ∥m ⩽ log 2. When
∥θ− δ∥m ⩾ log 2, we always have

| log pmθ,t(Xt)− log pmδ,t(Xt)|⩽ 2 logCg
m ⩽ 3 logCg

m∥θ− δ∥βm
m ,

and thus Assumption 2 holds.

D.1. Proof of Lemma 20. Let xk0 ∈ X k+1. Using the approach of Appendix A of [25],
one can write fθ,i as the product of matrices

(34) fθ,i(x
k
0) =

(
µθ
0|k−1F

θ
1|k−1 . . . F

θ
k−1|k−1Q

m
θ

)
i
νmθ,i(xk)

where

βθ
u|k(su) =

∑
sku+1∈[hm]k−u

Qm
θ (su, su+1)ν

m
θ,su+1

(xu+1) . . .Q
m
θ (sk−1, sk)ν

m
θ,sk(xk),

for 0⩽ u⩽ k− 1 and βθ
k|k(i) = 1 for all i ∈ [hm],

µθ
0|k(i) =

πm
θ (i)βθ

0|k(i)ν
m
θ,i(x0)∑

j∈[hm] π
m
θ (j)βθ

0|k(j)ν
m
θ,j(x0)

and F θ
u|k(su−1, su) =

βθ
u|k(su)Q

m
θ (su−1, su)ν

m
θ,su

(xu)∑
i∈[hm] β

θ
u|k(i)Q

m
θ (su−1, i)νmθ,i(xu)

.

An intuition of these quantities, and a way to check (34), is given by the identities

βθ
u|k(su) = pmθ (Xk+1

u+2 = xku+1|Su+1 = su),

µθ
0|k(i) = pmθ (S1 = i|Xk+1

1 = xk0),

F θ
u|k(su−1, su) = pmθ (Su+1 = su|Xk+1

u+1 = xku, Su = su−1),

(keeping in mind that under pmθ , S1 ∼ πm
θ ), so that(

µθ
0|kF

θ
1|k . . . F

θ
k|k

)
i
= pmθ (Sk+1 = i|Xk+1

1 = xk0).

The following Lemmas follow the proofs of Appendix B.2.2 of [40].
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LEMMA 21. Assume ∥θ− δ∥m ⩽ log 2, then

sup
0⩽u⩽k

∑
i∈[hm] |βθ

u|k(i)ν
m
θ,i(xu)− βδ

u|k(i)ν
m
δ,i(xu)|∑

i∈[hm] β
θ
u|k(i)ν

m
θ,i(xu)

⩽ ∥θ− δ∥m(C−1
Q +(log 2)−1)(2C2

Q)
k+1.

PROOF. Using minimalist notations,∑
i∈[hm]

|βθ
u|k(i)ν

m
θ,i(xu)− βδ

u|k(i)ν
m
δ,i(xu)|

=
∑

su∈[hm]

∣∣∣∣∣( ∑
sku+1∈[hm]k−u

Qθ
u,u+1ν

θ
u+1Q

θ
u+1,u+2 . . . ν

θ
k

)
νθu

−
( ∑

sku+1∈[hm]k−u

Qδ
u,u+1ν

δ
u+1Q

δ
u+1,u+2 . . . ν

δ
k

)
νδu

∣∣∣∣∣
⩽

k∑
j=u+1

∑
sku∈[hm]k−u+1

νθuQ
θ
u,u+1ν

θ
u+1 . . . ν

θ
j−1|Qθ

j−1,j −Qδ
j−1,j |νδj . . .Qδ

k−1,kν
δ
k

+

k∑
j=u

∑
sku∈[hm]k−u+1

νθuQ
θ
u,u+1ν

θ
u+1 . . .Q

θ
j−1,j |νθj − νδj |Qδ

j,j+1 . . .Q
δ
k−1,kν

δ
k.

Keep in mind in what follows that Assumption 4-HMM and the definition of ∥ · ∥m entail,
for all j,

(35) |νθj − νδj |⩽ νθj (e
∥θ−δ∥m − 1) and νδj ⩽ νθj e

∥θ−δ∥m .

By definition of ∥ · ∥m, for all j ∈ {u+ 1, . . . , k},∑
sku∈[hm]k−u+1

νθuQ
θ
u,u+1 . . .Q

θ
j−2,j−1ν

θ
j−1|Qθ

j−1,j −Qδ
j−1,j |νδj . . .Qδ

k−1,kν
δ
k

⩽ ∥θ− δ∥mh−1
m (CQh

−1
m )k−j

∑
sj−1
u ∈[hm]j−u

νθuQ
θ
u,u+1 . . .Q

θ
j−2,j−1ν

θ
j−1

∑
sj∈[hm]

νδj · · ·
∑

sk∈[hm]

νδk

and for all j ∈ {u, . . . , k}∑
i∈[hm]

βθ
u|k(i)ν

m
θ,i(xu) =

∑
sku∈[hm]k−u+1

νθuQ
θ
u,u+1 . . .Q

θ
j−2,j−1ν

θ
j−1Q

θ
j−1,jν

θ
j . . .Q

θ
k−1,kν

θ
k

⩾ (CQhm)−(k−j+1)
∑

sj−1
u ∈[hm]j−u

νθuQ
θ
u,u+1 . . .Q

θ
j−2,j−1ν

θ
j−1

∑
sj∈[hm]

νθj · · ·
∑

sk∈[hm]

νθk ,

so that∑
sku∈[hm]k−u+1 νθuQ

θ
u,u+1 . . . ν

θ
j−1|Qθ

j−1,j −Qδ
j−1,j |νδj . . . νδk∑

sku∈[hm]k−u+1 νθuQ
θ
u,u+1 . . . ν

θ
j−1Q

θ
j−1,jν

θ
j . . . ν

θ
k

⩽ ∥θ− δ∥me(k−j+1)∥θ−δ∥m(CQ)
2(k−j)+1.
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Likewise, for all j ∈ {u, . . . , k},∑
sku∈[hm]k−u+1 νθuQ

θ
u,u+1 . . .Q

θ
j−1,j |νθj − νδj |Qδ

j,j+1 . . .Q
δ
k−1,kν

δ
k∑

sku∈[hm]k−u+1 νθuQ
θ
u,u+1 . . .Q

θ
j−1,jν

θ
jQ

θ
j,j+1 . . .Q

θ
k−1,kν

θ
k

⩽ e(k−j)∥θ−δ∥m(e∥θ−δ∥m − 1)C
2(k−j)
Q .

Therefore,∑
i∈[hm] |βθ

u|k(i)ν
m
θ,i(xu)− βδ

u|k(i)ν
m
δ,i(xu)|∑

i∈[hm] β
θ
u|k(i)ν

m
θ,i(xu)

⩽ ∥θ− δ∥mC−1
Q

k−1∑
j=u

e(k−j)∥θ−δ∥m(CQ)
2(k−j) + (e∥θ−δ∥m − 1)

k∑
j=u

e(k−j)∥θ−δ∥mC
2(k−j)
Q

⩽
(
∥θ− δ∥mC−1

Q + (e∥θ−δ∥m − 1)
) k∑

j=u

(e∥θ−δ∥mC2
Q)

k−j

⩽ ∥θ− δ∥m(C−1
Q + (log 2)−1)

(
2C2

Q

)k−u+1
− 1

2C2
Q − 1

when ∥θ− δ∥m ⩽ log 2

⩽ ∥θ− δ∥m(C−1
Q + (log 2)−1)(2C2

Q)
k−u+1 since CQ ⩾ 1.

LEMMA 22. Assume ∥θ− δ∥m ⩽ log 2, then

∥µθ
0|k − µδ

0|k∥1 ⩽ 3(2C2
Q)

k+2∥θ− δ∥m
and

sup
0⩽u⩽k

sup
i∈[hm]

∥F θ
u|k(i, ·)− F δ

u|k(i, ·)∥1 ⩽ 3(2C2
Q)

k+2∥θ− δ∥m.

PROOF. With minimalist notations,∑
i

|µθ
i − µδ

i |=
∑
i

∣∣∣∣∣ πθ
i β

θ
i ν

θ
i∑

j π
θ
jβ

θ
j ν

θ
j

− πδ
i β

δ
i ν

δ
i∑

j π
δ
jβ

δ
j ν

δ
j

∣∣∣∣∣
⩽

∑
|πθβθνθ − πδβδνδ|∑

πθβθνθ
+

∣∣∣∣ 1∑
πθβθνθ

− 1∑
πδβδνδ

∣∣∣∣∑πδβδνδ

⩽ 2

∑
|πθβθνθ − πδβδνδ|∑

πθβθνθ

⩽ 2CQhm

∑
|πθβθνθ − πδβδνδ|∑

βθνθ
.

Thus,∑
|µθ − µδ|⩽ 2CQhm

(∑
|πθ − πδ|βθνθ∑

βθνθ
+

∑
πδ|βθνθ − βδνδ|∑

βθνθ

)
⩽ 2CQhm

(
∥θ− δ∥mh−1

m +CQh
−1
m

∑
|βθνθ − βδνδ|∑

βθνθ

)
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⩽ ∥θ− δ∥m2CQ

(
1 +CQ(C

−1
Q + (log 2)−1)(2C2

Q)
k+1
)

by Lemma 21

⩽ 3(2C2
Q)

k+2∥θ− δ∥m.

The control of
∑

j∈[K] |F θ
u|k(i, j) − F δ

u|k(i, j)| is exactly the same after replacing πm
θ by

Qm
θ (i, ·) and likewise for δ.

We now have the tools to prove Lemma 20. We again use minimalist notations. First,∑
i∈[hm]

|(µθF θ
1|k . . . F

θ
k|k)i − (µδF δ

1|k . . . F
δ
k|k)i|⩽

∑
i∈[hm]

|((µθ − µδ)F θ
1|k . . . F

θ
k|k)i|

+

k∑
u=1

∑
i∈[hm]

|(µδF δ
1|k . . . F

δ
u−1|k(F

δ
u|k − F θ

u|k)F
θ
u+1|k . . . F

θ
k|k)i|.

Then, since F θ
u|k and F δ

u|k are transition matrices (and thus are 1-Lipschitz linear operators
of L1([hm])),

∥µθF θ
1|k . . . F

θ
k|k − µδF δ

1|k . . . F
δ
k|k∥1 ⩽ ∥µδ − µθ∥1 +

k∑
u=1

sup
i∈[hm]

∥F θ
u|k(i, ·)− F δ

u|k(i, ·)∥1.

By Lemma 22, both ∥µδ − µθ∥1 and sup1⩽u⩽k supi∈[hm] ∥F θ
u|k(i, ·)− F δ

u|k(i, ·)∥1 are upper
bounded by CF ∥θ− δ∥m for CF = 3(2C2

Q)
k+2, so that

∥µθF θ
1|k . . . F

θ
k|k − µδF δ

1|k . . . F
δ
k|k∥1 ⩽ 2CF ∥θ− δ∥m.

Therefore,∑
i∈[hm] |(µθF θ

1|k . . . F
θ
k|kQ

θ)iν
θ
i − (µδF δ

1|k . . . F
δ
k|kQ

δ)iν
δ
i |∑

i∈[hm](µ
θF θ

1|k . . . F
θ
k|kQ

θ)iνθi

⩽

∑
i(µ

θF θ
1|k . . . F

θ
k|kQ

θ)i|νθi − νδi |∑
i∈[hm](µ

θF θ
1|k . . . F

θ
k|kQ

θ)iνθi

+

∑
i |(µθF θ

1|k . . . F
θ
k|kQ

θ)i − (µδF δ
1|k . . . F

δ
k|kQ

δ)i|νδi∑
i∈[hm](µ

θF θ
1|k . . . F

θ
k|kQ

θ)iνθi

⩽ ∥θ− δ∥m(log 2)−1 + 2sup
i

|(µθF θ
1|k . . . F

θ
k|kQ

θ)i − (µδF δ
1|k . . . F

δ
k|kQ

δ)i|
(µθF θ

1|k . . . F
θ
k|kQ

θ)i

by (35) when ∥θ − δ∥m ⩽ log 2. Then, for any i ∈ [hm], since (µθF θ
1|k . . . F

θ
k|kQ

θ)i ⩾

(CQhm)−1,

|(µθF θ
1|k . . . F

θ
k|kQ

θ)i − (µδF δ
1|k . . . F

δ
k|kQ

δ)i|
(µθF θ

1|k . . . F
θ
k|kQ

θ)i

⩽CQhm
∑
j

|(µθF θ
1|k . . . F

θ
k|k)j − (µδF δ

1|k . . . F
δ
k|k)j |Q

δ
j,i

+CQhm
∑
j

(µθF θ
1|k . . . F

θ
k|k)j |Q

θ
j,i −Qδ

j,i|
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⩽C2
Q

∑
j

|(µθF θ
1|k . . . F

θ
k|k)j − (µδF δ

1|k . . . F
δ
k|k)j |

+CQ∥θ− δ∥m
∑
j

(µθF θ
1|k . . . F

θ
k|k)j

⩽ 2C2
QCF ∥θ− δ∥m +CQ∥θ− δ∥m.

As a consequence, by symmetry of the roles of θ and δ,

∣∣∣ log ∑
i∈[hm]

(fθ,i(x
k
0)− fδ,i(x

k
0))
∣∣∣⩽ ∑

i∈[hm] |fθ,i(xk0)− fδ,i(x
k
0)|(∑

i∈[hm] fθ,i(x
k
0)
)
∧
(∑

i∈[hm] fδ,i(x
k
0)
)

⩽ ∥θ− δ∥m[12C2
Q(2C

2
Q)

k+2 + 2CQ + (log 2)−1]⩽ 7(2C2
Q)

k+3∥θ− δ∥m.

APPENDIX E: PROOF OF SECTION 4.3

PROOF OF LEMMA 7. For u ∈R, let ϕ(u) = eu − u− 1. Let t ∈ [n]. By definition,

E
[
log

(
p⋆t (Xt)

pt(Xt)

)∣∣∣Ft−1

]
= E

[
ϕ

(
log

(
pt(Xt)

p⋆t (Xt)

))∣∣∣Ft−1

]
.

Let x= log
(

pt(Xt)
p⋆
t (Xt)

)
. By hypothesis

|x|= log

(
pt(Xt)

p⋆t (Xt)

)
1x⩾0 + log

(
p⋆t (Xt)

pt(Xt)

)
1x<0

If x ⩾ 0, then ε ⩽ p⋆t (Xt) ⩽ pt(Xt) ⩽ ε−1, so that log
(

pt(Xt)
p⋆
t (Xt)

)
⩽ log(ε−2). The same in-

equality holds by symmetry when x < 0. Therefore,

|x|⩽ log(ε−2).

By convexity, note that ϕ is non negative. Let us apply the Taylor Lagrange formula in 0.
There exists c ∈]0, u[ such that

ϕ(u) = ϕ(0) + ϕ′(0)u+ ϕ′′(c)
u2

2
.

Since, ϕ(0) = ϕ′(0) = 0, the previous equation simply reads ϕ(u) = ϕ′′(c)u
2

2 . Since the func-
tion u→ ϕ′′(u) = eu is increasing, it holds that for all u ∈ [− log(ε−2), log(ε−2)]

ϕ′′(− log(ε−2))
u2

2
=

ε2

2
u2 ⩽ ϕ(u)⩽ ϕ′′(log(ε−2))

u2

2
=

1

2ε2
u2.

That is,

ε2

2
E

[
log

(
p⋆t (Xt)

pt(Xt)

)2 ∣∣∣Ft−1

]
⩽ E

[
log

(
p⋆t (Xt)

pt(Xt)

)∣∣∣Ft−1

]
⩽

1

2ε2
E

[
log

(
p⋆t (Xt)

pt(Xt)

)2 ∣∣∣Ft−1

]
.

APPENDIX F: PROOF OF SECTION 4.4

F.1. Proof of Section 4.4.1.
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PROOF OF LEMMA 8. In [42, Lemma 7.23], the author shows that for two densities f and
g, it holds that

2H2(f, g)⩽ KL(f, g)

where H is the Hellinger distance defined by,

H2(f, g) =
1

2

∫ (√
f −√

g
)2

.

Let us apply this result to p⋆t and pt:

K∑
k=1

p⋆t (k) log
p⋆t (k)

pt(k)
⩾

1

2

K∑
k=1

(√
p⋆t (k)−

√
pt(k)

)2
⩾

1

8

K∑
k=1

(p⋆t (k)− pt(k))
2 ,

where the last inequality holds because, by the Taylor-Lagrange formula, for all x, y ∈ [ε,1],

|
√
x−√

y|⩾ 1

2
|x− y|.

Therefore,

Kn(p)⩾
1

8Tε

Tε∑
t=1

K∑
k=1

(p⋆t (k)− pt(k))
2 .

F.2. Proofs of Section 4.4.2.

F.2.1. Unbiased estimator. Let’s first verify the following claim.

PROPOSITION 23. In the procedure described in Section 4.4.2, L̂m
t (J) is an unbiased

estimator of the loss gmJ with respect to the distribution ps.

PROOF. Given the past σ(Xt−1
1 ), taking the conditional expectation with respect to pt

E
[
L̂m
t (J)|Xt−1

1

]
=

gmJ
pt(J)

P(Xt ∈ J |Xt−1
1 )

=
gmJ

pt(J)

P(Xt ∈ J, It = J |Xt−1
1 ) + P(Xt ∈ J, It ̸= J |Xt−1

1 )︸ ︷︷ ︸
=0


=

gmJ
pt(J)

P(It = J |Xt−1
1 )P(Xt ∈ J |It = J,Xt−1

1 )︸ ︷︷ ︸
=1

=
gmJ

pt(J)
pt(J) = gmJ .
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F.2.2. Proof of Proposition 9. Equation (8) can be written

pmθm,t+1(I) =
pmθm,t(I) exp

(
− θm

I /
√
T

pθm,t(I)

)
1Xt∈I

1− pmθm,t(I) + pmθm,t(I) exp
(
− θm

I /
√
T

pθm,t(I)

)
+
∑
J ̸=I

pmθm,t(I)1Xt∈J

1− pmθm,t(J) + pmθm,t(J) exp
(
− θm

J /
√
T

pθm,t(J)

) .
Since for all q > 0, 1− q+ q exp

(
− θm

I /
√
T

q

)
⩽ 1,

pmθm,t+1(I)⩾ pmθm,t(I) exp

(
−
θmI /

√
T

pθm,t(I)

)
1Xt∈I + pmθm,t(I)

∑
J ̸=I

1Xt∈J ,

so that

pmθm,t+1(I)⩾ pmθm,t(I) exp

(
−
θmI /

√
T

pθm,t(I)

)
.

Using that e−x ⩾ 1− x for all x ∈R, leads to, for all θmI ∈ [r,R],

pmθm,t+1(I)⩾ pmθm,t(I)−
θmI√
T

⩾ pmθm,t(I)−
R√
T
.

Summing for s ∈ [t] leads to,

pmθm,t(I)⩾
1

Dm
− R√

T
t⩾

1

D
− R√

T
t.

Therefore, letting Tε = ⌊
(
1
D − ε

) √
T
R ⌋ leads to, for all t ∈ [Tε],

pmθm,t(I)⩾
1

D
− R√

T
Tε ⩾ ε.

F.2.3. Proof of Proposition 10. Let m ∈ M, and let θ, δ ∈ [r,R]Dm . The function
softmax is 1-Lipschitz with respect to the ∥ · ∥2-norm in RDm (see [33] for a proof). There-
fore,

∥pmθ,t+1 − pmδ,t+1∥2 ⩽

∥∥∥∥∥
t∑

s=1

L̂m
θ,s −

t∑
s=1

L̂m
δ,s

∥∥∥∥∥
2

⩽
t∑

s=1

∥L̂m
θ,s − L̂m

δ,s∥2.

Thus,

∥pmθ,t+1 − pmδ,t+1∥2 ⩽
1√
T

t∑
s=1

∥∥∥∥∥
(

θ

pmθ,s
− δ

pmδ,s

)
1Xs∈·

∥∥∥∥∥
2

where ∥∥∥∥∥
(

θ

pmθ,s
− δ

pmδ,s

)
1Xs∈·

∥∥∥∥∥
2

2

=
∑
J∈Im

(
θJ

pmθ,s(J)
− δJ

pmδ,s(J)

)2

1Xs∈J .
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With the triangle inequality, for all t ∈ [Tε]

∥pmθ,t+1 − pmδ,t+1∥2 ⩽
1√
T

t∑
s=1

∥∥∥∥∥
(

θ

pmθ,s
− θ

pmδ,s

)
1Xs∈·

∥∥∥∥∥
2

+
1√
T

t∑
s=1

∥∥∥∥∥
(

θ

pmδ,s
− δ

pmδ,s

)
1Xs∈·

∥∥∥∥∥
2

⩽
R

ε2
√
T

t∑
s=1

∥∥(pmθ,s − pmδ,s
)
1Xs∈·

∥∥
2
+

1√
T

t∑
s=1

∥∥∥∥∥
(

θ

pmδ,s
− δ

pmδ,s

)
1Xs∈·

∥∥∥∥∥
2

⩽
R

ε2
√
T

t∑
s=1

∥∥pmθ,s − pmδ,s
∥∥
2
+

Rt

ε
√
T

∥θ− δ∥∞

⩽
1

Dε
∥θ− δ∥∞ +

R

ε2
√
T

t∑
s=1

∥∥pmθ,s − pmδ,s
∥∥
2
.

where

• the first inequality holds because of the triangle inequality,
• the second inequality holds because x→ 1/x is 1/ε2-Lipschitz on (ε,1] and for all J ∈
Im, θJ ∈ [r,R],

• the third inequality holds because for all J ∈ Im, for all t ∈ [Tε] and all k ∈ [K], pδm,t(k)⩾
ε and because ∥1Xs∈·∥22 =

∑
J∈Im 1Xs∈J = 1,

• the last inequality holds since t⩽ Tε ⩽
√
T

DR .

By the discrete version of Gronwall’s Lemma [21], for all t ∈ [Tε],

∥pmθ,t − pmδ,t∥2 ⩽
1

Dε
∥θ− δ∥∞ exp

(
Rt

ε2
√
T

)
⩽

1

Dε
exp

(
1

Dε2

)
∥θ− δ∥∞.

To conclude, note that log is 1/ε-Lipschitz on [ε,1] and that ∥pmθ,t − pmδ,t∥∞ ⩽ ∥pmθ,t − pmδ,t∥2.
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