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Abstract
In cognitive modeling, understanding how an agent leverages contextual informa-1

tion to learn about an adversarial environment and take what it considers good2

decisions is a fundamental investigation. By observing the agent’s learning pro-3

cess, can we estimate how the agent is using this contextual information? One4

way of doing this is to approximate the agent’s learning behavior by contextual5

bandit algorithms. The aim of this work is to provide model selection procedures6

that will pick the contextual bandit procedure that best fits the agent’s learning7

process. We introduce a hold-out estimator and a penalized maximum likelihood8

estimator and show that both satisfy oracle inequalities. We give several examples9

of bandit algorithms for which the assumptions are satisfied, and assess our results10

on both synthetic and experimental learning data in a human categorization task.11

We also discuss why bandits with expert advice satisfy the same type of oracle12

inequalities and how they can be used to model metalearning in cognition.13

1 Introduction14

1.1 Cognitive models15

Imagine an agent (human or animal) learning sequentially to make good decisions and having ac-16

cess at each time step to some contextual information. By looking at the agent’s successive actions,17

can we estimate the agent’s learning strategy, that is the way the agent used this contextual infor-18

mation to make its decisions? This problem belongs to the more general framework of cognitive19

modeling [12]. Cognitive models help to understand the mechanisms that occur while for instance20

learning, remembering or predicting tasks. They have been widely studied in the cognition liter-21

ature [32, 15] and have a major impact on education for example. Usually in cognitive modeling22

[42, 16], maximum likelihood estimation (MLE) is applied and the best cognitive model is selected23

by cross-validation or an Akaike information criterion (AIC). One of the main challenges of cog-24

nitive modeling on learning data is that, since the agent remembers its past actions to learn, the25

data are not stationary and not independent. There are very few theoretical statistical works in this26

context: in [5], the properties of the MLE are studied for the Exp3 model on learning data; in [6], a27

very general model selection procedure is presented that can be applied to non stationary data, but28

nothing in the setup of learning with contextual information. Our present goal is to provide model29

selection procedures that are valid for learning data in this contextual setup.30

1.2 Contextual bandits31

The purpose of a contextual bandit algorithm [28] is to find an optimal policy for selecting actions32

based on additional information (the context) given at each time step. In Machine Learning, contex-33

tual bandits have many applications [10] such as recommendation, patient follow-up in healthcare,34

etc. Here, we use them as learning models. Although not traditionally employed in cognition for35

modeling real behavioral data, contextual bandits are gaining popularity in the cognition literature36

[27, 41] and most of the cognitive psychology models of learning with contextual data such as Com-37

ponent Cue [20] or Alcove [26] can be expressed as contextual bandit algorithms since they treat the38

same problem: bandit feedback and choice based on past decisions and present context.39
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Let us formalize the statistical problem we treat. We observe a sequence of contexts and actions40

(X1, A1, . . . , XT , AT ) for an integer T ⩾ 1, where the contexts Xt belong to some finite space X41

and the actions At belong to a finite set [K] = {1, ...,K} for some integer K ⩾ 1. Let F0 be the42

trivial sigma-algebra and for t ⩾ 1, let Ft = σ(X1, A1, . . . , Xt, At) be the sigma-algebra generated43

by observations until time t. Let p⋆ = (p⋆t )t∈[T ] be the successive conditional probability distribu-44

tions: ∀x ∈ X ,∀a ∈ [K], p⋆t (a, x) = P(At = a|Xt = x,Ft−1). In reinforcement learning, this45

vector is called the policy of the agent. Recall that here, p⋆ is fixed, but unknown.46

Our goal is to select the best model approximating p⋆ among a family of models ({pm =47

(pmt )t∈[T ]})m∈M, where M is a countable set. Each pmt is a conditional distribution over [K]48

given (Xt,Ft−1) and a candidate at being p⋆t .49

1.3 Partition-based contextual bandits: an example of parametric models50

The leading example of contextual bandit algorithm that we use here is partition-based contextual51

bandits [28, Chapter 18]. It consists in assuming that the agent partitions the context space X into52

disjoint cells C. This may typically happen if the agent is already familiar with the contexts and53

has already built a personal opinion on their meaning. The agent only has to learn the new task54

thanks to this fixed view of the space by updating elementary bandit algorithms in each cell C, that55

we denote CellBandit(C), each time the context belongs to the corresponding cell. Our goal is to56

estimate the partitioning of the context space that the agent is using, i.e. understanding how the agent57

uses the contexts for the learning task. As an example, we illustrate numerically our approach on a58

categorization task, see Section 5 where contexts are objects to classify. By selecting the partition59

that best fits the learning data of a given individual, we have access to the similarity between objects60

as perceived by the learner.61

To formalize partition-based contextual bandits, let gt = (g1,t, . . . , gK,t) ∈ [0, 1]K be the vector of62

losses (or rewards) at time t, which models the feedback of the environment. We make no particular63

assumptions on the way losses are generated, except that gt needs to be σ(Xt,Ft−1)-measurable.64

They may be adversarial or stochastic (see Section 4 for some examples). In the same way, the gen-65

eration of the contexts Xt does not need to be specified: they can be independent of past actions or66

the result of the past actions. Then, each model m ∈ M corresponds to a partition Pm of X into Dm67

cells. The model m is parameterized by a vector θm = (θC)C∈Pm
, where each CellBandit(C) is68

using a procedure parameterized by a parameter θC – for instance, the learning rate in Exp3. The re-69

sulting candidate for p⋆ is therefore pmθm = (pmθm,t)t∈[T ]. For a given cell C ∈ Pm, CellBandit(C)70

is updated each time Xt ∈ C, and therefore its decision at time t only depends on the contexts and71

actions happening at times in Ft(C) = {s ∈ [t], Xs ∈ C}, which is of cardinality TC
t = |Ft(C)|.72

We write a 7→ πθC
C,TC

t
(a) the distribution over the set of actions [K] at time t for the procedure73

CellBandit(C) with parameter θC (see Algorithm 1). With this notation,74

∀t ∈ [T ],∀a ∈ [K], pmθm,t(a,Xt) = Pm
θm(At = a|Xt,Ft−1) =

∑
C∈Pm

πθC
C,TC

t
(a)1Xt∈C . (1)

Algorithm 1 Partition-based contextual bandit for model m [28]

Inputs: partition Pm of the context space X ,
parameters θm = (θC)C∈Pm ∈ Θm = ⊗

C∈Pm

ΘC , with ΘC compact parametric set.

Initialization: For all C ∈ Pm, for all a ∈ [K], πθC
C,1(a) = 1/K.

for t = 1, 2, . . . do
Learner observes context Xt ∈ X and finds C ∈ Pm such that Xt ∈ C.
Learner plays CellBandit(C) with parameter θC and samples action At ∼ πθC

C,TC
t

.

Learner observes loss gAt,t and updates the probability distribution πθC
C,TC

t
in

CellBandit(C).

1.4 Contributions75

We provide two model selection procedures for modeling learning with contextual information,76

based on the partial log-likelihood ℓT (p
m) of the observations (X1, A1, . . . , XT , AT ), defined77
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by78

ℓT (p
m) =

T∑
t=1

log (pmt (At, Xt)) . (2)

We prove oracle inequalities for the conditional Kullback-Leibler divergence DKL between p⋆t (·, Xt)79

and pmt (·, Xt):80

DKL (p
⋆
t (·, Xt), p

m
t (·, Xt)) = E

[
log

p⋆t (·, Xt)

pmt (·, Xt)

∣∣∣Xt,Ft−1

]
.

In Section 2 we consider a finite family of general models {pm = (pmt )t∈[T ],m ∈ M} and show that81

a hold-out estimator satisfies an oracle inequality with an O ((log T + log |M|)/T ) error bound,82

regardless of the nature of the models. In Section 3, we focus on the partition-based contextual83

bandit models defined in (1) with possibly infinite countable family of partitions and consider a84

log-likelihood criterion penalized by Dm times some logarithmic terms. Under some assumptions85

on the CellBandit algorithms that are used, we show an oracle inequality with an O
(
log(T )3/T

)
86

error bound. In Section 4, we prove that Stochastic Gradient Bandits and Exp3-IX are examples of87

CellBandit for which assumptions of Section 3 are satisfied. Section 5 is devoted to numerical88

illustrations on both synthetic and experimental learning data in a categorization task. In Section 6,89

we discuss how bandits with expert advice can be used to model metalearning [9], which refers90

to the processes by which an agent acquires knowledge about its own learning abilities, strategies,91

and preferences. In Appendix B, we give the details required to obtain model selection results for92

metalearning. The complete proofs of the theoretical results are given in Appendix C.93

1.5 Related work94

Our objective is not to provide a method that improves the regret [11]. Similarly, our work is not95

to be misunderstood with [17, 18, 37] in which authors develop model selection algorithms for96

contextual bandits that aim at finding the relation between context and action that best optimizes97

rewards. Our goal is to understand how an agent learns, not to tell it how to learn better. Thanks98

to the learning data of an agent, we select the contextual bandit algorithm that best fits the learning99

curve of the agent – without necessarily assuming that the agent understands the relation between100

context and actions. Hence we are not trying to find an optimal model, but the most realistic one101

w.r.t. learning data. To our knowledge, this theoretical statistical problem was studied for the first102

time in [5]. But in contrast with [5], which assumes Exp3 to be true and studies MLE performances,103

we want to perform model selection with contexts.104

From an Imitation Learning (IL) or Inverse Reinforcement Learning (IRL) point of view, this prob-105

lem could be seen as a learner trying to reproduce the learning curve of an expert. Usually in IL [23],106

we observe an expert who has already mastered the task, so the input data of a classic IL algorithm107

are not learning data. In IRL [4], MLE might be used on data [38] but the IRL learner’s goal is108

to infer the underlying reward function that best explains the expert’s observed behavior thanks to109

multiple trajectories and then use this inferred reward function to guide its own decision-making. In110

our setting, the experimentalist already knows the reward function and the goal is to infer the agent’s111

perception of the contexts, thanks to a single learning trajectory.112

Our goal is close to [24], who estimate how a learner’s behavior evolves over time and how it priori-113

tises choices for applications to healthcare, except that [24] is in a Bayesian framework. Similarly,114

authors in [40] and [41] try to predict the behavior of participants in contextual multi-armed bandit115

tasks. The main difference is that they work in specific stochastic bandit settings with a Bayesian116

approach whereas we do model selection in a non-stationary and adversarial framework.117

On a more technical level, hold-out estimators are often used in cognition for learning data [33, 25].118

Hold-out procedures have been studied theoretically in the literature in a stationary and independent119

data framework [29, 3, 2]. Few results exist for time dependent data [36] and they are quite far from120

our setup. Here, the main issue is that the training set is not independent from the validation set, so121

more advanced tools such as V -fold cross-validation cannot be used.122

Section 1.3 is very similar in design to the framework of [13] for selecting the best histogram for123

density estimation or more generally to non asymptotic model selection [29]. The main difference124

is that we are in a non stationary and non independent framework. Therefore, to prove the oracle125

inequality of Section 3,we use instead a recent result for penalized log-likelihood estimators which126

is valid in this framework [6].127
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2 Hold-out estimator128

In this section, we assume that M is finite as it is often the case for hold-out estimators [29, Chapter129

8], and |M| ⩾ 2. Let T > N ⩾ 1 and select m̂ ∈ arg max
m∈M

∑T
t=N log pmt (At, Xt).130

Theorem 1. Assume that for all m ∈ M and for all t ∈ {N, ..., T}, pmt depends only on (Xt,Ft−1).131

There exists a positive numerical constant ♢, such that for any κ ∈ (0, 1),132

(1− κ)E

[
1

T −N + 1

T∑
s=N

DKL

(
p⋆s(·, Xs),

p⋆s(·, Xs) + pm̂s (·, Xs)

2

) ∣∣∣∣∣XN ,FN−1

]

⩽ (1 + κ) inf
m∈M

E

[
1

T −N + 1

T∑
s=N

DKL (p
⋆
s(·, Xs), p

m
s (·, Xs))

∣∣∣∣∣XN ,FN−1

]

+
♢
κ

log(T −N + 1) + log |M|
T −N + 1

.

This result can hold for arbitrary pm as long as it is adapted to Ft, for t ⩾ N . In particular it allows,133

as usual for hold-out estimator, to use pm = pm
θ̃m

, where θ̃m ∈ arg max
θm∈Θm

∑N−1
t=1 log pmθm,t(At, Xt),134

whatever the parameterization of the model m – not necessarily partition-based. This result is the135

equivalent of Theorem 8.9 in [29] for this learning framework, adding only a multiplicative log T136

factor in the error bound. It justifies the use of hold-out procedures to model learning data in cogni-137

tive experiments such as [33, 25], using classical cognitive models as Alcove [26], Component-Cue138

[20] or Activity-based Credit Assignment (see [25] and the references therein).139

Limitations. Due to the strongly dependent structure of the data, we perform a single split of the140

sample between training and testing data at t = N , unlike the classical hold-out. As usual, a careful141

trade-off has to be performed between N large enough to properly estimate each model and not too142

large, in order to reliably compare them. This also means that this approach is unsuited to situations143

where the learner learns differently at the start and at the end of the experiment, for instance by144

switching models once it has grasped how the task worked.145

3 Penalized maximum likelihood estimator146

In this section, we restrict ourselves to partition-based contextual bandit (see (1)). Following [5], we147

need to assume that the probabilities do not vanish.148

Assumption 1. There exists ε > 0 and an integer Tε ⩾ 2, such that, almost surely,149

∀t ⩽ Tε, ∀x ∈ X , ∀a ∈ [K], p⋆t (a, x) ⩾ ε (3)

and that for all m ∈ M and all C ∈ Pm, the CellBandit(C) satisfies, for all parameter θC ∈ ΘC150

∀t ⩽ Tε, ∀a ∈ [K], πθC
C,TC

t
(a) ⩾ ε. (4)

Let pen : M → R+ be a penalty function. For each m ∈ M, let θ̂m ∈ arg max
θm∈Θm

ℓTε(p
m
θm) be151

a MLE of model m, with ℓ defined as in (2), and select a model m̂ that minimizes the penalized152

log-likelihood stopped at Tε:153

m̂ ∈ arg min
m∈M

(
−
ℓTε

(pm
θ̂m

)

Tε
+ pen(m)

)
. (5)

To prove oracle inequalities, we also need a smoothness assumption on the parameterization of154

CellBandit(C) which can then be propagated to the pm in Proposition 2.155

Assumption 2. With the notation of Assumption 1, there exists Lε > 0 such that, almost surely, for156

all m ∈ M, all C ∈ Pm,157

∀δC , θC ∈ ΘC , ∀t ⩽ Tε, sup
a∈[K]

∣∣∣∣∣∣log
πδC

C,TC
t
(a)

πθC
C,TC

t
(a)

∣∣∣∣∣∣ ⩽ Lε∥δC − θC∥2. (6)
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Proposition 2. Assume that pm is a partition-based contextual bandit as in (1) or Algorithm 1 and158

that there exists Tε such that for all C ∈ Pm, CellBandit(C) satisfies (4) and (6). Then, almost159

surely, for all θm, δm ∈ Θm, for all t ⩽ Tε, for all x ∈ X , for all a ∈ [K],160

pmθm,t(a, x) ⩾ ε and sup
a∈[K]

∣∣∣∣∣log
(
pmδm,t(a, x)

pmθm,t(a, x)

)∣∣∣∣∣ ⩽ Lε sup
C∈Pm

∥δC − θC∥2.

Assume that the numbers of parameters of all CellBandit procedures are uniformly bounded, and161

let d = supm∈M supC∈Pm
dim(ΘC). Since the models are smooth enough and the probabilities162

are lower bounded, by applying [6], one can prove the following result.163

Theorem 3. Let M be a countable set, and for each m ∈ M, consider a partition-based contextual164

bandit model {pmθm , θm ∈ Θm} (see Algorithm 1 and (1)). Let R and r be such that all coordinates165

θi,C’s of θC ∈ ΘC , for C ∈ Pm and m ∈ M, satisfy r ⩽ θi,C ⩽ R and let Aε = Lε

√
d(R −166

r) + 2 log(ε−1). Let Σε = log(Aε)
∑

m∈M e−Dm < +∞. Under Assumptions 1 and 2, there exist167

positive numerical constants c and c′ such that for all κ ∈ (0, 1], the following holds: if for all168

m ∈ M,169

pen(m) ⩾
c

κ
A2

ε log(ε
−1)3/2 log(TεAε)

2Dm

Tε
,

then,170

1− κ

Tε

Tε∑
t=1

E
[
DKL

(
p⋆t (·, Xt), p

m̂
θ̂m̂,t

(·, Xt)
)]

⩽ inf
m∈M

(
(1 + κ) inf

θm∈Θm

1

Tε

Tε∑
t=1

E
[
DKL

(
p⋆t (·, Xt), p

m
θm,t(·, Xt)

)]
+ 2 pen(m)

)

+
18c′

κ
AεΣε log(ε

−1)3/2 log(TεAε)
2 log(Tε)

Tε
.

This result is very similar to model selection "à la Birgé-Massart" [29, Section 7.4] with a trade-off171

between bias and variance represented by the penalty in Dm/Tε, with additional logarithmic terms172

in log2 Tε in the penalty and in log3 Tε in the residual error. It is obtained by applying the recent and173

very general result of [6] which holds even for dependent non stationary data. However it is quite174

tedious to validate the assumptions of [6]. The partition-based contextual bandits are an example175

where this holds easily thanks to the partition which involves easier assumptions (namely (4) and176

(6)) to check on the CellBandit (see Section 4 for examples of CellBandit that satisfy them).177

Another example of contextual bandit where the assumptions of [6] are satisfied is given Section 6178

in metalearning.179

Limitations. Compared to the hold-out procedure, this approach does not require to split the sample.180

While this estimator can still work well when using all data, as shown in Section 5, the oracle181

inequality only holds when using the data from the time interval [Tε], which can be significantly182

less: in the models of Section 4, Tε is of order
√
T . Moreover, this theorem does not cover every183

kind of cognitive models. Finally, while the penalty is in c log2(Tε)Dm/Tε, the constant c in this184

theoretical result is not known a priori and one needs to calibrate it by numerical simulations (see185

Section 5). We could use the hold-out procedure described in Section 2 to choose it, with similar186

issues, or other heuristics such as the dimension jump method or slope heuristics [7, 1].187

4 Examples of CellBandit188

In this section we provide examples of CellBandit satisfying (4) and (6). All the algorithms below189

are written for a cell C and a CellBandit(C) parameterized by θC ∈ ΘC compact subset of Rd190

such that R ⩾ supθC∈ΘC
∥θC∥∞.191

4.1 Example 1: Exp3-IX192

This algorithm is a generalization of Exp3 and was introduced in [35]. Following [5], we write193

Exp3-IX with parameters decreasing as a square root of the sample size to ensure a good MLE194

estimation of the parameters. Note in addition that, for Exp3 and its variants, it is well known that195
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sublinear convergence of the regret occurs when the learning rate η and the exploration term γ are196

decreasing as a square root of the sample size. This renormalization ensures that the learner is able197

to learn at a good pace and at the same time be robust to changes in the environment.198

Algorithm 2 Exp3-IX[35] as a CellBandit(C)

Inputs: T (Sample size), θC = (η, γ) ∈ ΘC (Parameter), K (Number of actions).
Initialization: πθC

C,1 =
(

1
K , . . . , 1

K

)
.

for t ∈ FT (C), the set of times where Xs ∈ C, do
Draw an action At ∼ πθC

C,TC
t

and receive a loss gAt,t ∈ [0, 1].
Update for all a ∈ [K],

πθC
C,TC

t +1
(a) =

exp
(
− η√

T

∑
s∈Ft(C) ĝ

θC
a,s

)
∑

b∈[K] exp
(
− η√

T

∑
s∈Ft(C) ĝ

θC
b,s

) where ĝθCb,s =
gb,s

γ/
√
T + πθC

C,TC
s
(b)

1As=b

In this case, ΘC ⊂ R2. When γ = 0, we recover the classical Exp3 algorithm, studied from the199

MLE point of view in [5]. Note that while gAt,t is observed and known, the estimated loss ĝθb,s200

depends on the parameterization. The following result shows that one can choose Exp3-IX as a201

CellBandit in the partition-based contextual bandits to perform partition selection.202

Proposition 4. Let ε ∈ (0, 1/K) and let ΘC ⊂ [0, R]2 with R > 0. Then Exp3− IX can be a203

CellBandit(C) with parameterization θC ∈ ΘC that satisfies (4) and (6), as soon as204

Tε =

⌊(
1

K
− ε

) √
T

R

⌋
∧ T and Lε =

√
R2/T + ε2

ε3R
e1/ε

2

.

This shows that one can apply Theorem 3 with Exp3-IX as CellBandit as long as we stop us-205

ing observations after
√
T time steps. The dependence in ε in not very critical, since it has been206

proved at least for Exp3 in [5], that in practice, we may take ε quite large (non-vanishing) with207

almost no impact on Tε. This is a good thing since the theoretical dependency of Lε in ε is quite208

pessimistic.209

Limitations. This algorithm considers the horizon T fixed in order to renormalize the parameteriza-210

tion. From Proposition 4, it follows that Theorem 3 holds when only the first
√
T observations are211

used in the MLE, but this in no way means that the estimator will perform poorly when based on212

all data. Taking
√
T observations compounds on the usual issue that if the number of cells is large,213

only a small amount of data may be available for each cell, making estimation difficult.214

4.2 Example 2: Gradient Bandit215

Gradient Bandit is another possible algorithm. We still choose for similar reason a parameteri-216

zation in η/
√
T , which echoes the Robbins-Monro conditions [39] even if [31] proved convergence217

in a stochastic bandit framework even for non renormalized parameters.218

Algorithm 3 Gradient Bandit [31] as a CellBandit

Inputs: T (Sample size), θC ∈ [r,R] (Parameter), K (Number of actions).
Initialization: πθC

C,1 =
(

1
K , . . . , 1

K

)
.

for t ∈ FT (C) do
Draw an action At ∼ πθC

C,TC
t

and receive a reward gAt,t ∈ [0, 1].
Update for all a ∈ [K],

πθC
C,TC

t +1
(a) =

exp
(
− θC√

T

∑
s∈Ft(C) ĝ

θC
a,s

)
∑

b∈[K] exp
(
− θC√

T

∑
s∈Ft(C) ĝ

θC
b,s

) where ĝθCb,s =
(
1As=b − πθC

C,TC
s
(b)
)
gAs,s

6



Proposition 5. Let ε ∈ (0, 1) and let ΘC ⊂ [0, R]2 with R > 0. Then, Gradient Bandit can be a219

CellBandit(C) with parameterization θC ∈ ΘC that satisfies (4) and (6), as soon as220

Tε :=

⌊
log

(√
1

Kε

) √
T

R

⌋
∧ T and Lε =

√
2

Rε

log
(√

1
Kε

)
√
Kε

.

This theoretical result has the same interpretation as before: the theoretical guarantees of Theorem221

3 with Gradient Bandit as CellBandit hold when we stop using observations after
√
T time222

steps. In practice, we can use the observations up to time T (see Section 5).223

5 Numerical illustrations224

We consider an experiment on the following categorization task: learners have to classify nine ob-225

jects in two categories A and B in a sequential way. Figure 1 presents the objects and the classifica-226

tion rule the learners have to learn. It is a quite difficult task that has been experimented for instance227

in [34], where the learners needed about 300 trials to learn the classification rule.228

Color
Size

Pattern

Shape

(a) Representation in 4D space

A A

A

B A

B A

B B

(b) Category attribution

Figure 1: Experiment presentation: classic 5-4 category structure, widely used in cognition [30].
In 1a, the 9 objects to classify represented in a 4D space with respect to their attributes: Color, Size,
Filling Pattern, and Shape. In 1b, by position in the 4D space, the category attribution (A or B).

The reward is fixed: 1 if the learner finds the good category and 0 in the other case. We focus on 6229

different models (described in Table 1) that have a good cognitive interpretation.

Table 1: Description of models and their learning abilities

Model
Number
of
cells

Description of the cells Learns cate-
gorization

OneForAll 1 One giant cell No

ByShape 2 One for circles, one for squares Partly

ByPattern 2 One for striped items, one for plain items Partly

ByShapeExc 4 Cells from ByShape model with exceptions iso-
lated Yes

ByPatternExc 4 Cells from ByPatternmodel with exceptions iso-
lated Yes

OnePerItem 9 One cell for each item Yes

230

On synthetic data. We have not been able to run the simulation with Exp3-IX. Indeed, as also231

shown practically in [5] for the simple Exp3 case, the probabilities πθC
C,TC

t
can go to zero extremely232

fast. When the agent learns over an horizon T = 500, only
√
T = 22 observations would be usable233

and the estimations even of just the MLE is unreliable. So all the simulations were performed with234
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T = 500 and for Gradient Bandit as CellBandit, for all the 6 models described in Table 1. The235

way synthetic data are generated can be found in Appendix A.1.236

Figure 2a shows that despite the conservative theoretical bound given in Proposition 5 with Tε237

of order
√
T , Gradient Bandit provides good results when the MLE is applied to all T data238

points. The truncation at
√
T ≃ 20 required in the theoretical results does not seem necessary in239

practice, and actually looks suboptimal for Gradient Bandit. Figures 2b and 2c show that the240

hold-out is almost systematically outperformed by the penalized MLE. Both struggle to identify the241

significantly more complex model OnePerItem, preferring simpler alternatives.242

(a) (b) (c)

Figure 2: Errors of the procedures as a function of the tuning parameters. In 2a, average of the |θ̂C−
θC |/θC over all cells C in model OneForAll and OnePerItem for the data generated respectively
by the same models, where θ̂C is the MLE with likelihood truncated at N (in abscissa). In 2b and 2c,
percentage of mismatch between m̂ and the simulated model over 100 simulations. The colors for
each model are the ones given in Figure 3 whereas the average error on the models in the dash
line. In 2b, for the hold-out estimator as a function of N/T . In 2c, for the penalized MLE with
pen(m) = c log(T )2Dm/T , as a function of c.

Figure 3: Distribution of the model choices. In a, hold-out with N = 250 over 100 simulations.
In b, penalized MLE with c = 0.012 over 100 simulations. In c, hold-out on the data recorded in
[34]–176 participants. In d, penalized MLE on the same experimental data.

Given these results on simulated data, we use N = 250 for the hold-out and c = 0.012 for the243

penalized MLE. The proportion of mismatches for each model are reported in Figure 3a for the244

hold-out and 3b for the penalized MLE. Both methods manage to recover the true model with less245

than 35% of mistakes, except for the model OnePerItem, for which only the penalized MLE is able246

to achieve a successful match more than 60% of the time. The models that are confused the most247

are the ones that are able to correctly learn the categorization, that is ByPatternExc, ByShapeExc248

and OnePerItem.249
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On real data. The data have been collected for [34]1 and we focus only on the learning data. We250

use only the 176 participants that needed at least T = 100 trials. In Figure 3d, we see that most251

of participants are attributed one of the 3 models able to learn. The most frequent is OnePerItem252

(about 70% for the penalized MLE) and this percentage is larger than the one obtained on sim-253

ulation, probably meaning that a significant proportion of the participants do not see the division254

along the dimensions Shape or Pattern. It would be interesting for further study to see if this is255

linked to the presentation order of the objects, as it has been proved for Alcove and Component Cue256

in [34].257

6 Metalearning258

By looking at the experiment above, it is hard to believe that learners start directly with a model like259

ByPatternExc. It is more likely that they start with a model like ByPattern and realize that there260

are too many exceptions, so that they progressively end up with ByPatternExp. One way to model261

this progressive switch from one strategy to the other is to use bandits with expert advice. In this262

framework, there is a finite set E of randomized policies called experts, (ξj,t(.))t∈[T ], probabilities263

over the set of actions [k], that are modeling the different strategies the learner might have. No264

assumptions are made here on the way experts compute their randomized predictions: they might265

be the result of contextual bandits like ByPattern or more generally any kind of computations that266

depend on the learner’s past choices. Exp4 (see Algorithm 4) is an adaptation of Exp3 to this case267

(see [28] for regret convergence and variants such as Exp4.P [8]).268

Algorithm 4 Exp4 [11]

Inputs: T (Sample size), θ ∈ [r,R] (Parameter), K (Number of actions), E (Set of experts).
Initialization: qθE,1 uniform distribution over the experts E.
for t = 1, 2, . . . do

Receive experts advice a 7→ ξj,t(a) probability distribution over [K] for all j.
Draw an action At ∼ πθ

E,t(.) =
∑

j∈E qθE,t(j)ξj,t(.) and receive a reward gAt,t ∈ [0, 1].
Update for all j ∈ E,

qθE,t+1(j) =
exp

(
− θ√

T

∑t
s=1 ŷ

θ
j,s

)
∑

i∈E exp
(
− θ√

T

∑t
s=1 ŷ

θ
i,s

) with ŷθi,s =
∑

a∈[K]

ξi,t(a)
ga,s

πθ
E,s(a)

1As=a

In this setting, a model m is defined by a finite set Em representing the different experts/strategies269

the learner is learning from. Since there is only one parameter by model (namely θ ∈ [r,R]), the270

penalty plays no role, nor the calibration of c. So there is no need for hold-out and one can prove271

that the model with the smallest log-likelihood on the first Tε ∼
√
T time steps satisfies an oracle272

inequality if M is finite, as well as |F | := maxm∈M |Em|. Details are given in the Appendix B.273

This shows that one can select the set Em of strategies which is the closest to reality among the sets274

of strategies that are put in competition.275

Limitations. The only limitation with this approach is that we need at first to know the eventual276

parameters of each strategy. Again we could split the data in a hold-out fashion to make the injection277

of estimated parameters possible. However, it would be then nearly impossible to correctly estimate278

the parameters of strategies that are not used at the beginning of the learning. We refer to [9] for279

other methods in meta-learning for cognition.280
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whether the code and data are provided or not.468

13



• If the contribution is a dataset and/or model, the authors should describe the steps469

taken to make their results reproducible or verifiable.470

• Depending on the contribution, reproducibility can be accomplished in various ways.471

For example, if the contribution is a novel architecture, describing the architecture472

fully might suffice, or if the contribution is a specific model and empirical evaluation,473

it may be necessary to either make it possible for others to replicate the model with474

the same dataset, or provide access to the model. In general. releasing code and data475

is often one good way to accomplish this, but reproducibility can also be provided via476

detailed instructions for how to replicate the results, access to a hosted model (e.g., in477

the case of a large language model), releasing of a model checkpoint, or other means478

that are appropriate to the research performed.479

• While NeurIPS does not require releasing code, the conference does require all sub-480

missions to provide some reasonable avenue for reproducibility, which may depend481

on the nature of the contribution. For example482

(a) If the contribution is primarily a new algorithm, the paper should make it clear483

how to reproduce that algorithm.484

(b) If the contribution is primarily a new model architecture, the paper should describe485

the architecture clearly and fully.486
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In the case of closed-source models, it may be that access to the model is limited in493

some way (e.g., to registered users), but it should be possible for other researchers494

to have some path to reproducing or verifying the results.495

5. Open access to data and code496

Question: Does the paper provide open access to the data and code, with sufficient instruc-497
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material?499

Answer: [Yes]500
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• While we encourage the release of code and data, we understand that this might not509

be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not510

including code, unless this is central to the contribution (e.g., for a new open-source511
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• The authors should provide scripts to reproduce all experimental results for the new518
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should state which ones are omitted from the script and why.520

• At submission time, to preserve anonymity, the authors should release anonymized521

versions (if applicable).522

• Providing as much information as possible in supplemental material (appended to the523

paper) is recommended, but including URLs to data and code is permitted.524
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the527

results?528

Answer: [Yes]529
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detail that is necessary to appreciate the results and make sense of them.536
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material.538
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Question: Does the paper report error bars suitably and correctly defined or other appropri-540

ate information about the statistical significance of the experiments?541

Answer: [Yes]542
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• For asymmetric distributions, the authors should be careful not to show in tables or563

figures symmetric error bars that would yield results that are out of range (e.g. negative564

error rates).565

• If error bars are reported in tables or plots, The authors should explain in the text how566

they were calculated and reference the corresponding figures or tables in the text.567

8. Experiments Compute Resources568

Question: For each experiment, does the paper provide sufficient information on the com-569

puter resources (type of compute workers, memory, time of execution) needed to reproduce570

the experiments?571

Answer: [Yes]572

Justification: It is not central in our analysis so it is just mentionned in the supplementary573

material in Appendix A.574
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• The answer NA means that the paper does not include experiments.576

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,577

or cloud provider, including relevant memory and storage.578

• The paper should provide the amount of compute required for each of the individual579

experimental runs as well as estimate the total compute.580

• The paper should disclose whether the full research project required more compute581

than the experiments reported in the paper (e.g., preliminary or failed experiments582

that didn’t make it into the paper).583

9. Code Of Ethics584

Question: Does the research conducted in the paper conform, in every respect, with the585

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?586

Answer: [Yes]587

Justification: Up to the real data that are used in this paper, there is absolutely nothing that588

would be in violation to the Code of Ethics. For the real data that are used, they are human589

categorization data. They have been recorded for another publication and just transmitted to590

us. The experimental procedure was approved by the local ethics committee of the authors.591

We do not want to share these data publicly since we do not want to breach the Privacy rule592

of the Code of Ethics.593
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.595
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deviation from the Code of Ethics.597

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-598

eration due to laws or regulations in their jurisdiction).599

10. Broader Impacts600

Question: Does the paper discuss both potential positive societal impacts and negative601

societal impacts of the work performed?602

Answer: [NA]603

Justification: This work is theoretical. The methods that are validated theoretically here604

have already been in use in practice for a long time (see for instance the rules to follow605

for cognitive modeling in [42]) and so the expected societal impact of the present work is606

negligible.607
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• If the authors answer NA or No, they should explain why their work has no societal610

impact or why the paper does not address societal impact.611

• Examples of negative societal impacts include potential malicious or unintended uses612

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations613

(e.g., deployment of technologies that could make decisions that unfairly impact spe-614

cific groups), privacy considerations, and security considerations.615

• The conference expects that many papers will be foundational research and not tied616

to particular applications, let alone deployments. However, if there is a direct path to617

any negative applications, the authors should point it out. For example, it is legitimate618

to point out that an improvement in the quality of generative models could be used to619

generate deepfakes for disinformation. On the other hand, it is not needed to point out620

that a generic algorithm for optimizing neural networks could enable people to train621

models that generate Deepfakes faster.622

• The authors should consider possible harms that could arise when the technology is623

being used as intended and functioning correctly, harms that could arise when the624

technology is being used as intended but gives incorrect results, and harms following625

from (intentional or unintentional) misuse of the technology.626

• If there are negative societal impacts, the authors could also discuss possible mitiga-627

tion strategies (e.g., gated release of models, providing defenses in addition to attacks,628

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from629

feedback over time, improving the efficiency and accessibility of ML).630

11. Safeguards631

Question: Does the paper describe safeguards that have been put in place for responsible632

release of data or models that have a high risk for misuse (e.g., pretrained language models,633

image generators, or scraped datasets)?634

Answer: [NA]635

Justification: We do not think this applies to our research.636

Guidelines:637

• The answer NA means that the paper poses no such risks.638

• Released models that have a high risk for misuse or dual-use should be released with639

necessary safeguards to allow for controlled use of the model, for example by re-640

quiring that users adhere to usage guidelines or restrictions to access the model or641

implementing safety filters.642

• Datasets that have been scraped from the Internet could pose safety risks. The authors643

should describe how they avoided releasing unsafe images.644

• We recognize that providing effective safeguards is challenging, and many papers do645

not require this, but we encourage authors to take this into account and make a best646

faith effort.647

12. Licenses for existing assets648

Question: Are the creators or original owners of assets (e.g., code, data, models), used in649

the paper, properly credited and are the license and terms of use explicitly mentioned and650

properly respected?651

Answer: [Yes]652

Justification: We clearly stated that the real data come from [34]. The code has been653

developed by us solely, using classical packages in R that are clearly mentioned in the code654

and supplementary material.655

Guidelines:656

• The answer NA means that the paper does not use existing assets.657

• The authors should cite the original paper that produced the code package or dataset.658
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• The authors should state which version of the asset is used and, if possible, include a659

URL.660

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.661

• For scraped data from a particular source (e.g., website), the copyright and terms of662

service of that source should be provided.663

• If assets are released, the license, copyright information, and terms of use in the pack-664

age should be provided. For popular datasets, paperswithcode.com/datasets has665

curated licenses for some datasets. Their licensing guide can help determine the li-666

cense of a dataset.667

• For existing datasets that are re-packaged, both the original license and the license of668

the derived asset (if it has changed) should be provided.669

• If this information is not available online, the authors are encouraged to reach out to670

the asset’s creators.671

13. New Assets672

Question: Are new assets introduced in the paper well documented and is the documenta-673

tion provided alongside the assets?674

Answer: [NA]675

Justification: We do not provide new packages associated to our results.676

Guidelines:677

• The answer NA means that the paper does not release new assets.678

• Researchers should communicate the details of the dataset/code/model as part of their679

submissions via structured templates. This includes details about training, license,680

limitations, etc.681

• The paper should discuss whether and how consent was obtained from people whose682

asset is used.683

• At submission time, remember to anonymize your assets (if applicable). You can684

either create an anonymized URL or include an anonymized zip file.685

14. Crowdsourcing and Research with Human Subjects686

Question: For crowdsourcing experiments and research with human subjects, does the pa-687

per include the full text of instructions given to participants and screenshots, if applicable,688

as well as details about compensation (if any)?689

Answer: [No]690

Justification: We did not collect data for the present article but used data collected for [34],691

a work that is already published. In this article, all the details are given and we do not think692

it makes sense to reproduce it here for our illustration. We only kept the main description693

of the task so that the readers can understand what was done.694

Guidelines:695

• The answer NA means that the paper does not involve crowdsourcing nor research696

with human subjects.697

• Including this information in the supplemental material is fine, but if the main contri-698

bution of the paper involves human subjects, then as much detail as possible should699

be included in the main paper.700

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-701

tion, or other labor should be paid at least the minimum wage in the country of the702

data collector.703

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human704

Subjects705
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Question: Does the paper describe potential risks incurred by study participants, whether706

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)707

approvals (or an equivalent approval/review based on the requirements of your country or708

institution) were obtained?709

Answer: [No]710

Justification: The data collection done for [34] had the approval of the local ethic committee711

as mentioned in their article. Here we do not feel necessary to reproduce this here but rather712

point towards [34] for additional information about the task and its ethic agreement.713

Guidelines:714

• The answer NA means that the paper does not involve crowdsourcing nor research715

with human subjects.716

• Depending on the country in which research is conducted, IRB approval (or equiva-717

lent) may be required for any human subjects research. If you obtained IRB approval,718

you should clearly state this in the paper.719

• We recognize that the procedures for this may vary significantly between institutions720

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the721

guidelines for their institution.722

• For initial submissions, do not include any information that would break anonymity723

(if applicable), such as the institution conducting the review.724
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A Code and data description725

A.1 Details on numerical illustrations726

In this section, we give details on the numerical illustrations of Section 5. The images were obtained727

using the ggplot2 package of R. Two types of analyses were conducted, on synthetic data and on728

real data.729

On synthetic data. The simulations of the synthetic data helped us calibrate the tuning parameters730

choices for the hold-out and the penalized log-likelihood procedure. In Section 2, the parameter N731

must be calibrated for choosing the correct training data sample size. In Section 3, as said in the732

Limitations, since the constant c in the penalty term is not known a priori, it must be calibrated as733

well. To do this, we follow the guidelines of [42]. The procedure is as follows.734

1) Sample size: T = 500. It is of the same order of magnitude as real data.735

2) Objects generation: periodic sequence of the nine objects repeated through the T trials. We736

generate a sequence of objects following the same structure as in [34]. Due to the periodic737

pattern, each object is therefore seen roughly the same number of times for all time t.738

3) Actions generation: for each model in Table 1, we generated 100 sequences of actions739

called synthetic agents with respect to the procedure given in Algorithm 1 with Gradient740

Bandit as CellBandit. The parameters θC we used were the same for each model and741

the same for each cell, equal to 0.03 ×
√
T , except for the OnePerItem model where we742

changed slightly the values of the parameter in each cell to make the model identifiable.743

For m =OnePerItem, we took θm = ((0.03/10 + k × 0.007)×
√
T )k∈{0,...,8} following744

the same order of presentation of the sequence of objects defined earlier.745

4) Parameters estimation: we then fitted each of the six models on all the synthetic agents746

generated data, and we estimated the associated parameters using (MLE) and the pack-747

age DEoptim in R with range (0, 1) for the parameters θC/
√
T and with the default748

parameters and a maxiter value equal to 20. We then computed the log-likelihood as-749

sociated to the estimated parameters. We did this for the likelihood stopped at time750

N ∈ {25, 50, 100, 150, 200, 250, T}.751

- With such data, we were able to plot Figure 2a and Figure 2b with the hold-out crite-752

rion defined in Section 2. In Figure 2a, we computed the average error made in each753

cell by the model fitting of the same model that generated the data. For the Figure 2b,754

we simply counted the number of times each model verified the hold-out criterion for755

all the synthetic agent and for each model that generated the data.756

- With the log-likelihood stopped at time T for the estimated parameters, we were able757

to plot Figure 2c according to the penalized log-likelihood criterion defined in (5).758

In the same way we counted the number of times each model satisfied the penalized759

log-likelihood criterion for all the synthetic agent and for each model that generated760

the data.761

5) Choice of the parameters N and c for the real data: Given the results of Figure 2b and762

Figure 2c, we chose to use N to be equal to half of the data length and c = 0.012 to763

account for a reasonable error for model OnePerItem, even if in average c = 0.04 gives764

better results. With this data, we were able plot the two first chart of Figure 3.765

On real data. For the real experimental data, here is the process we followed.766

1) Sample size: dependent on each agent, the average data sample size is 300.767

2) Objects and Actions: we collected for each agent their objects sequence and associated768

choices.769

3) For each agent, we fitted the 6 models and estimated the parameters associated to each770

model. To perform hold-out and penalized log-likelihood model selection, we used the771

parameters N and c chosen thanks to the synthetic data. With this data, we were able to772

plot Figure 3.773
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A.2 About the code and the data774

In this section, we give explanations about the code and data (e.g. computation time, link between775

code and data). All the data, code and images used are provided in the zip file associated to sub-776

mission, called ContextualBanditsCode. We run all the simulations in R and used the following777

packages: DEoptim, crayon, magrittr, dplyr, tidyr, ggplot2, gridExtra.778

For the sample size we chose, all the simulations can run on a PC in a reasonable time of execution779

(detailed hereafter). Overall, computing the different data and running the code took approximately780

6 hours excluding the time needed for the real data. The biggest file is 373 kilobytes. The PC781

we used was a Gigabyte - AORUS 15G XC, with processor: Intel(R) Core(TM) i7-10870H CPU782

2.20GHz, 2208 MHz, 8 cores, 16 logical processors.783

On real data. As mentioned earlier, we could not provide the experimental data used in [34],784

since they have already been published in another paper and we do not want to break the ethic785

agreement. We can only provide the results and estimated data resulting from the experimental786

data. Note however that the procedures to obtain the following RData files are the same as for787

the synthetic data which we detail later. The three RData files on the real data are realdatamle,788

realdata_holdout_trainingset, realdata_holdout_testingset.789

• realdatamle is a list of estimators and associated log-likelihood for each model and each790

agent.791

• realdata_holdout_trainingset is a list of estimators and associated log-likelihood on792

the first half of the sample for each model and each agent.793

• realdata_holdout_testingset is a list of log-likelihood on the testing part794

of the sample for each agent and each model with parameters estimated in795

realdata_holdout_trainingset.796

On synthetic data. All the synthetic data obtained in the other files can be computed by running797

the code ContextualbanditsCodebis. The code is commented and starts with a list of functions798

which are necessary to run the different procedures. In the code, we explain how the different799

procedures lead to the following list of files. We have commented with # the parts of the code that800

would modify the files so that running the code now would give the same images as the ones used in801

the article. If one wants to generate new data, one should uncomment these lines of code. However,802

we advise the reader that some of the procedures take a certain time, and would recommend not to803

do so. We detail hereafter the content of the different csv and RData files and the time it took to run804

them.805

• To begin with, we generate a csv file called databis_500.csv of 500 trials and associated806

list of objects in the file synthetic_data.807

• In the same synthetic_data file we create the different model files and within each of808

them generate 100 csv files of actions, rewards, and objects according to the procedure809

described in A.1. This procedure takes around 5 minutes. Then, we begin to compute the810

MLE for each of the synthetic data csv file.811

• Datalikelihood100agents6modeletabis500horizon is a nested list of estimators,812

associated log-likelihood stopped at time T for each model fitted to the data of all the813

synthetic agents. Computing these data took approximately 2 hours .814

• holdoutbis100agents6models_horizon_20 is the same nested list of estimators but815

computed on a log-likelihood stopped at time N = 20. Computing these data took approx-816

imately 10 minutes .817

• holdoutbis100agents6models_horizon_50 is the same nested list of estimators but818

computed on a log-likelihood stopped at time N = 50. Computing these data took approx-819

imately 20 minutes .820

• holdoutbis100agents6models_horizon_100 is the same nested list of estimators but821

computed on a log-likelihood stopped at time N = 100. Computing these data took ap-822

proximately 30 minutes .823
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• holdoutbis100agents6models_horizon_150 is the same nested list of estimators but824

computed on a log-likelihood stopped at time N = 150. Computing these data took ap-825

proximately 40 minutes .826

• holdoutbis100agents6models_horizon_200 is the same nested list of estimators but827

computed on a log-likelihood stopped at time N = 200. Computing these data took ap-828

proximately 50 minutes .829

• holdoutbis100agents6models_horizon_250 is the same nested list of estimators but830

computed on a log-likelihood stopped at time N = 250. Computing these data took ap-831

proximately 1 hour .832

• alldataholdoutbis is a nested list of errors on estimation for the training data and log-833

likelihood function on the testing data for all synthetic agents, all models and all training834

data sample size N ∈ {20, 50, 100, 150, 200, 250}. Computing these data took approxi-835

mately 10 minutes .836

B Assumptions for metalearning837

Since we work in a more general setting and not simply with contexts, we assume that we observe838

a process (At)1⩽t⩽T adapted to a general filtration (Ft)1⩽t⩽T where for all t ∈ [T ], At ∈ [K]. In839

particular, for all t ∈ [T ], Ft is generated by the past actions (A1, . . . , At) and any other additional840

variable which might be observed or not – such as a context at time t+1 for instance. We write, for841

all a ∈ [K], and all t ∈ [T ]842

p⋆t (a) = P(At = a|Ft−1)

the true conditional distribution we wish to estimate.843

Additionally, we consider the family of models {(πθm

Em,t)t∈T ,m ∈ M} where M is a finite set,844

θm ∈ [r,R], and for all m ∈ M, (πθm

Em,t)t∈[T ] is the sequence of mixtures of probability distribu-845

tions over actions defined recursively in Algorithm 4 for the finite set Em. Each model m is thus846

defined by a set of experts (ξj,t(.))j∈Em,t∈[T ] where for all m ∈ Em, t ∈ [T ], ξj,t can be any847

probability distribution over arms [K] as long as it is measurable with respect to Ft−1.848

Let |F | := maxm∈M |Em|. The goal is to select the set Em of policies – that we see as learning849

strategies – with which the agent learns to learn. This approach is again based on partial log-850

likelihood ℓT (π
θm

Em
) of the observations (A1, . . . , AT ) defined by851

ℓT (π
θm

Em
) =

T∑
t=1

log
(
πθm

Em
(At)

)
. (7)

To achieve a model selection result, we need the following assumption on the policies given by the852

experts.853

Assumption 3. There exists ρ > 0, such that almost surely, for all m ∈ M, for all t ∈ [T ] and all854

i ∈ [K],
∑

j∈Em
ξj,t(i) ⩾ ρ.855

Then, with Assumption 3, we can deduce a result similar to Propositions 4 and 5 because of the very856

structure of Algorithm 4 which mimics Exp3.857

Proposition 6. Assume Assumption 3 holds. Let ρ be the associated constant. Let ε ∈ (0, ρ/|F |),858

and let859

Tε =

⌊(
1

|F |
− ε

ρ

) √
T

R

⌋
∧ T and Lε =

1

Rε2
exp

(
1

ε2

)
.

Then, for all t ∈ [Tε], for all m ∈ M, θm, δm ∈ [r,R], for all k ∈ [K],860

πθm

Em,t(k) ⩾ ε and sup
k∈[K]

∣∣∣∣∣log
(
πθm

Em,t(k)

πδm
Em,t(k)

)∣∣∣∣∣ ⩽ Lε|θm − δm|.

Finally, we still assume that the true distribution is bounded away from 0 (as in (3)).861

22



Assumption 4. Assume that Assumption 3 holds. Let ε and Tε be the constants of Proposition 6.862

Assume that863

∀t ⩽ Tε,∀a ∈ [K], p⋆t (a) ⩾ ε.

Assumptions 3 and 4 allow us to verify Assumptions 1 and 2 of [6]. As for Section 3, it is thus864

possible to put into competition different sets of experts. Let Aε = Lε(R − r) + 2 log(ε−1). Since865

all the models have the same dimension, there is no penalty term to account for. So the term Σε in866

Theorem 3 becomes log(Aε)|M|e−1. The result of [6, Corollary 2] states that there exist constants867

c, c′ such that, for all κ ∈ (0, 1],868

1− κ

Tε

Tε∑
t=1

E
[
DKL

(
p⋆t , π

θ̂m̂

Em̂,t

)]
⩽ inf

m∈M

(
(1 + κ) inf

θ∈ΘDm

1

Tε

Tε∑
t=1

E
[
DKL

(
p⋆t , π

θm

Em,t

)])

+
c

κ
A2

ε log(ε
−1)3/2 log(TεAε)

2 1

Tε

+
18e−1c′

κ
Aε log(Aε)|M| log(ε−1)3/2 log(TεAε)

2 log(Tε)

Tε
.

C Proofs869

C.1 Proof of Section 2870

Proof of Theorem 1. For any m ∈ M, and k ∈ [K], let871 
gm(k,Xt) = −1

2
log

(
pmt (k,Xt)

p⋆t (k,Xt)

)
fm(k,Xt) = − log

(
p⋆t (k,Xt) + pmt (k,Xt)

2p⋆t (k,Xt)

)
.

For any function h : [K]×X → R, let872 

ν̃T (h) =
1

T −N + 1

T∑
t=N

K∑
k=1

h(k,Xt) (1At=k − p⋆t (k,Xt)) ,

P̃T (h) =
1

T −N + 1

T∑
t=N

K∑
k=1

h(k,Xt)1At=k,

C̃T (h) =
1

T −N + 1

T∑
t=N

K∑
k=1

h(k,Xt)p
⋆
t (k,Xt).

From the definition of m̂,873

P̃T (gm̂) ⩽ P̃T (gm) .

Since, fm̂(k,Xt) ⩽ gm̂(k,Xt) by concavity of log, it holds that874

ν̃T (fm̂) + C̃T (fm̂) = P̃T (fm̂) ⩽ P̃T (gm) = ν̃T (gm) + C̃T (gm) .

That is875

ν̃T (fm̂ − fm) + C̃T (fm̂) ⩽ ν̃T (gm − fm) + C̃T (gm) .

Let Um = ν̃T (gm − fm), then876

C̃T (fm̂) ⩽ C̃T (gm)− ν̃T (fm̂ − fm) + Um. (8)

Note that Um is centered. For m′ ∈ M, let Mm′

N = 0, and for t ⩾ N + 1, let877

Mm′

t = −
t−1∑
s=N

K∑
k=1

(fm′(k,Xs)− fm(k,Xs)) (1As=k − p⋆s(k,Xs)) .
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For all t ⩾ N , let Ht = σ(Xt,Ft−1). Then, (Mm′

t )t⩾N is an (Ht)t⩾N -martingale. For ℓ ⩾ 2, let878

Bℓ
N = 0, and for t ⩾ N + 1, let879

Bℓ
t :=

t−1∑
s=N

E

[(
Mm′

s+1 −Mm′

s

)ℓ ∣∣∣∣Hs

]
.

For t ∈ {N, . . . , T − 1}, note that880

|Mm′

t+1 −Mm′

t | ⩽ 2

K∑
k=1

|fm′(k,Xt)− fm(k,Xt)|
1At=k + p⋆t (k,Xt)

2
,

so that, by convexity of x 7→ xℓ on [0,+∞),881

|Mm′

t+1 −Mm′

t |ℓ ⩽ 2ℓ
K∑

k=1

|fm′(k,Xt)− fm(k,Xt)|ℓ
1At=k + p⋆t (k,Xt)

2

Thus,882

Bℓ
t =

t−1∑
s=N

E

[(
Mm′

s+1 −Mm′

s

)ℓ ∣∣∣∣Hs

]

⩽ 2ℓ
t−1∑
s=N

K∑
k=1

|fm′(k,Xs)− fm(k,Xs)|ℓ p⋆s(k,Xs)

= 2ℓ
t−1∑
s=N

K∑
k=1

∣∣∣∣∣log
(
p⋆s(k,Xs) + pm

′

s (k,Xs)

p⋆s(k,Xs) + pms (k,Xs)

)∣∣∣∣∣
ℓ

p⋆s(k,Xs). (9)

We now need the following Lemma to continue.883

Lemma 7. [29, Lemma 7.26] For all ℓ ⩾ 2 and all x > 0,884

| log(x)|ℓ

ℓ!
⩽

9

64

(
x− 1

x

)2

.

Proof. The complete Lemma and proof of the Lemma can be found in [29].885

Applying Lemma 7 to x =

√
p⋆s(k,Xs) + pm′

s (k,Xs)

p⋆s(k,Xs) + pms (k,Xs)
leads to, for all k ∈ [K],886

∣∣∣∣∣log
(
p⋆s(k,Xs) + pm

′

s (k,Xs)

p⋆s(k,Xs) + pms (k,Xs)

)∣∣∣∣∣
ℓ

⩽
9

64
2ℓℓ!

(
pms (k,Xs)− pm

′

s (k,Xs)
)2

(pms (k,Xs) + p⋆s(k,Xs)) (p⋆s(k,Xs) + pm′
s (k,Xs))

.

Plugging this in Equation (9) leads to887

|Bℓ
t | ⩽

9

4
22(ℓ−2)ℓ!

t−1∑
s=N

K∑
k=1

(
pms (k,Xs)− pm

′

s (k,Xs)
)2

p⋆s(k,Xs)

(pms (k,Xs) + p⋆s(k,Xs)) (p⋆s(k,Xs) + pm′
s (k,Xs))

.

For all x, y, z ⩾ 0,888 (√
x+

√
y
)2

z ⩽ (z + y)(z + x),

therefore, with z = p⋆s(k,Xs), x = pms (k,Xs) and y = pm
′

s (k,Xs),889

|Bℓ
t | ⩽

9

4
4ℓ−2ℓ!

t−1∑
s=N

K∑
k=1

(√
pms (k,Xs)−

√
pm′
s (k,Xs)

)2

⩽
1

2
4ℓ−2ℓ!V m′

t , (10)
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where890

V m′

t :=
9

2

t−1∑
s=N

K∑
k=1

(√
pms (k,Xs)−

√
pm′
s (k,Xs)

)2

= 9

t−1∑
s=N

H
(
pms (·, Xs), p

m′

s (·, Xs)
)2

(11)

where H is the Hellinger distance between the two probability distributions pms (·, Xs) and891

pm
′

s (·, Xs). Lemma 3.3 of [22] gives that for all λ > 0,892

Et = exp

λMm′

t −
∑
ℓ⩾2

λℓ

ℓ!
Bℓ

t


is a supermartingale and that in particular E(ET+1) ⩽ 1. By Equation (10), for λ ∈ (0, 1/4),893 ∑

ℓ⩾2

λℓ

ℓ!
Bℓ

t ⩽
λ2

2

∑
ℓ⩾2

(4λ)ℓ−2V m′

t =
λ2

2(1− 4λ)
V m′

t .

Let Ψ(λ) = λ2

2(1−4λ) for λ ∈ (0, 1/4). Then,894

E

[
eλM

m′
T+1−Ψ(λ)V m′

T+1

∣∣∣∣HN

]
⩽ 1.

By Markov’s inequality, for all x ⩾ 0 and λ ∈ (0, 1/4),895

P

(
Mm′

T+1 ⩾ V m′

T+1

Ψ(λ)

λ
+

x

λ

∣∣∣∣HN

)
⩽ e−x. (12)

Therefore, for all x, u ⩾ 0 and λ ∈ (0, 1/4),896

P

(
Mm′

T+1 ⩾
Ψ(λ)

λ
u+

x

λ
and V m′

T+1 ⩽ u

∣∣∣∣HN

)
⩽ e−x.

To choose the optimal λ, we use Lemma 2 from [21].897

Lemma 8. [21, Lemma 2] Let a, b and x be positive constants and let us consider on (0, 1/b),898

g(ξ) =
aξ

1− bξ
+

x

ξ
.

Then minξ∈(0,1/b) g(ξ) = 2
√
ax+ bx and the minimum is achieved in ξ(a, b, x) =

√
x√

xb+
√
a

.899

For a = u
2 and b = 4, Lemma 8 shows that for all x, u ⩾ 0,900

P

(
Mm′

T+1 ⩾
√
2ux+ 4x and V m′

T+1 ⩽ u

∣∣∣∣HN

)
⩽ e−x.

Let us use a peeling argument similar to [21]:901

Lemma 9. Let X,V be real-valued random variables and α, b, v, w be positive numbers such that902

V ∈ [w, v] a.s. and such that for all x ⩾ 0 and u ∈ [w, v],903

P(X ⩾
√
ux+ bx and (1 + α)−1u ⩽ V ⩽ u) ⩽ e−x,

then for any x ⩾ 0,904

P(X ⩾
√
(1 + α)V x+ bx) ⩽

(
1 +

log(v/w)

log(1 + α)

)
e−x.
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Proof. Let v0 = w, vd+1 = (1+α)vd, and D the smallest integer such that vD ⩾ v. For all d ∈ [D]905

and x ⩾ 0,906

P (X ⩾
√
vdx+ bx and vd−1 ⩽ V ⩽ vd) ⩽ e−x.

In particular, since V ⩾ vd−1 = (1 + α)−1vd on this event,907

P
(
X ⩾

√
(1 + α)V x+ bx and vd−1 ⩽ V ⩽ vd

)
⩽ e−x.

Taking the union bound,908

P
(
X ⩾

√
(1 + α)V x+ bx

)
⩽ De−x,

and by definition D ⩽
log(v/w)

log(1 + α)
+ 1.909

We may apply Lemma 9 to X = Mm′

T+1 and b = 4. Since V m′

T+1 does not have an obvious lower910

bound, we consider V = 2(V m′

T+1 + β) for some β > 0 to be chosen later. We may therefore take911

w = 2β. For the upper bound v on V , by (11), since the Hellinger distance is upper bounded by 1,912

we may take v = 2(β + 9(T −N + 1)). With these choices, for any β, α, x > 0,913

P

(
Mm′

T+1 ⩾
√
2(1 + α)(V m′

T+1 + β)x+ 4x

∣∣∣∣HN

)
⩽

 log
(

9(T−N+1)
β + 1

)
log(1 + α)

+ 1

 e−x.

For α =
√
2,914

P

(
Mm′

T+1 ⩾
√
5(V m′

T+1 + β)x+ 4x

∣∣∣∣HN

)
⩽

(
2 log

(
9(T −N + 1)

β
+ 1

)
+ 1

)
e−x. (13)

By definition of V m′

T+1 and the triangle inequality,915

V m′

T+1 = 9

T∑
s=N

H
(
pms (·, Xs), p

m′

s (·, Xs)
)2

⩽ 18

T∑
s=N

(
H (p⋆s(·, Xs), p

m
s (·, Xs))

2
+H

(
p⋆s(·, Xs), p

m′

s (·, Xs)
)2)

. (14)

We now use [29, Lemma 7.23] giving a connection between the Kullback-Leibler divergence DKL916

and the Hellinger distance H .917

Lemma 10. [29, Lemma 7.23] Let P and Q be some probability measures. Then,918

DKL

(
P,

P +Q

2

)
⩾ (2 log 2− 1)H2(P,Q).

Moreover, whenever P ≪ Q,919

2H2(P,Q) ⩽ DKL(P,Q).

Since
18

2 log(2)− 1
⩽ 48,920

V m′

T+1 ⩽ 48

T∑
s=N

(
DKL

(
p⋆s(·, Xs),

p⋆s(·, Xs) + pm
′

s (·, Xs)

2

)
+

1

2
DKL (p

⋆
s(·, Xs), p

m
s (·, Xs))

)
=: 9Wm′

T . (15)

Let β = 9(T −N + 1)y2, where y > 0 is to be chosen later. Replacing x by x+ log(|M|) leads to921

P

(
Mm′

T+1

T −N + 1
⩾ 3

√
5

(
Wm′

T

T −N + 1
+ y2

)
x+ log(|M|)
T −N + 1

+ 4
x+ log(|M|)
T −N + 1

∣∣∣∣HN

)
⩽
(
2 log

(
y−2 + 1

)
+ 1
)
e−(x+log(|M|)).
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Let κ1 ∈ (0, 1/(8
√
5)], then, using 2

√
ab ⩽ κ1a+ κ−1

1 b and taking y2 = x+log(|M|)
(T−N+1) log 2 ⩾ 1

T−N+1922

since x ⩾ 0 and |M| ⩾ 2,923

P

(
Mm′

T+1

T −N + 1
⩾

3
√
5

2
κ1

Wm′

T

T −N + 1
+

(
4 +

3
√
5

2

(
κ1

log 2
+ κ−1

1

))
x+ log(|M|)
T −N + 1

∣∣∣∣HN

)
⩽ (2 log (T −N + 2) + 1) e−(x+log(|M|)). (16)

By the union bound on all m′ ∈ M, the previous inequality holds with probability at least 1 −924

(2 log(T −N + 2) + 1)e−x for all m′ ∈ M. It holds in particular for m̂. Recall with (8) that,925

1

T −N + 1

T∑
s=N

DKL

(
p⋆s(·, Xs),

p⋆s(·, Xs) + pm̂s (·, Xs)

2

)
− Um

⩽
1

2(T −N + 1)

T∑
s=N

DKL (p
⋆
s(·, Xs), p

m
s (·, Xs)) +

M m̂
T+1

T −N + 1
. (17)

Plugging (15) and (16) in (17) leads to, conditionally on HN , with probability at least 1−(2 log(T−926

N + 2) + 1)e−x927

(1− Cκ1)

T −N + 1

T∑
s=N

DKL

(
p⋆s(·, Xs),

p⋆s(·, Xs) + pm̂s (·, Xs)

2

)
− Um

⩽
(1 + Cκ1

)

T −N + 1

T∑
s=N

1

2
DKL (p

⋆
s(·, Xs), p

m
s (·, Xs)) + C ′

κ1

x+ log(|M|)
T −N + 1

,

where928

• Cκ1 = 8
√
5κ1,929

• C ′
κ1

= 4 +
3
√
5

2

(
κ1

log 2
+ κ−1

1

)
⩽ 13κ−1

1 =
104

√
5

Cκ1

,930

Integrating on x ⩾ 0 and noting that E[Um|HN ] = 0 leads to, for all m ∈ M,931

(1− Cκ1
)

T −N + 1
E

[
T∑

s=N

DKL

(
p⋆s(·, Xs),

p⋆s(·, Xs) + pm̂s (·, Xs)

2

) ∣∣∣∣∣HN

]

⩽
(1 + Cκ1

)

T −N + 1
E

[
1

2

T∑
s=N

DKL (p
⋆
s(·, Xs), p

m
s (·, Xs))

∣∣∣∣∣HN

]

+
104

√
5

Cκ1

2 log(T −N + 2) + 1 + log(|M|)
T −N + 1

.

To conclude κ = κ1

8
√
5

, so that Cκ1
= κ.932

C.2 Proof of Section 3933

Proof of Proposition 2. The proof is straightforward with the definition of pmθm,t in (1). Let934

θm, δm ∈ Θm, t ⩽ Tε, x ∈ X , and k ∈ [K].935

pmθm,t(k, x) =
∑

C∈Pm

πθC
C,TC

t
(k)1x∈C ⩾

∑
C∈Pm

ε1x∈C = ε.

For the second part of the proof, it holds that, almost surely, for all t ⩽ Tε936 ∣∣∣∣∣log
(
pmδm,t(k, x)

pmθm,t(k, x)

)∣∣∣∣∣ = ∑
C∈Pm

∣∣∣∣∣∣log
πδC

C,TC
t
(k)

πθC
C,TC

t
(k)

∣∣∣∣∣∣1x∈C

⩽ Lε

∑
C∈Pm

∥δC − θC∥2 1x∈C ⩽ Lε sup
C∈Pm

∥δC − θC∥2.

937
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Proof of Theorem 3. Our goal is to apply [6].938

Assumption 1 of [6] is satisfied for n = Tε since with Proposition 2, there exists ε > 0 such that939

a.s., for all t ∈ [Tε], for all k ∈ [K], p⋆t (k,Xt) ∈ [ε, 1] and for all m ∈ M and all θm ∈ ΘDm ,940

pmθm,t(k,Xt) ∈ [ε, 1].941

Assumption 2 of [6] is satisfied since with Proposition 2, there exists a positive constants Lε such942

that a.s., for all t ∈ [Tε], for all m ∈ M and all δm, θm ∈ ΘDm ,943

sup
k∈[K]

∣∣∣∣∣log
(
pmδm,t(k,Xt)

pmθm,t(k,Xt)

)∣∣∣∣∣ ⩽ Lε sup
C∈Pm

∥δC − θC∥2

and by Assumption, for all θm, δm ∈ ΘDm944

sup
C∈Pm

∥δC − θC∥2 ⩽
√
d(R− r).

Note in particular that the Lipschitz constant in Proposition 2 does not depend on m.945

Assumption 3 in [6] is always satisfied because the set of actions [K] is finite.946

Setting Aε = Lε

√
d(R − r) + 2 log(ε−1), Corollary 2 in [6] simply reads as follows. There exist947

positive numerical constants C and C ′ such that the following holds. Assume that948

Σε = log(Aε)
∑

m∈M
e−Dm < +∞.

Let κ ∈ (0, 1]. If for all m ∈ M,949

pen(m) ⩾
C

κ
A2

ε log(ε
−1)3/2 log(TεAε)

2Dm

Tε
,

then,950

1− κ

Tε

Tε∑
t=1

E
[
DKL

(
p⋆t (·, Xt), p

m̂
θ̂m̂,t

(·, Xt)
)]

⩽ inf
m∈M

(
(1 + κ) inf

θ∈Θm

1

Tε

Tε∑
t=1

E
[
DKL

(
p⋆t (·, Xt), p

m
θm,t(·, Xt)

)]
+ 2 pen(m)

)

+
18C ′

κ
AεΣε log(ε

−1)3/2 log(TεAε)
2 log(Tε)

Tε
.

951

C.3 Proof of Section 4.1952

Proof of Proposition 4. Let θC ∈ ΘC . Write θC,T = (ηC,T , γC,T ) = θC/
√
T ∈ Θ. To ease the953

notations in the proof, we remove the C from the notations. θC becomes θ and θC,T becomes θT .954

In the same way, θT = (ηT , γT ) now.955

Let t ∈ FT (C). Then,956

πθ
C,TC

t +1(k) =
πθ
C,TC

t
(k)e

−ηT gk,t/(γT+πθ

C,TC
t

(k))
1At=k

(1− πθ
C,TC

t
(k)) + πθ

C,TC
t
(k)e

−ηT gk,t/(γT+πθ

C,TC
t

(k))

+

K∑
j=1
j ̸=k

πθ
C,TC

t
(k)1At=j

(1− πθ
C,TC

t
(j)) + πθ

C,TC
t
(j)e

−ηT gj,t/(γT+πθ

C,TC
t

(j))
.

For any q ∈ [0, 1], since gk,t ∈ [0, 1], 1− q + qe−ηgk,t/(q+γ) ⩽ 1. Therefore,957

πθ
C,TC

t +1(k) ⩾ πθ
C,TC

t
(k)e

−ηT gk,t/(γT+πθ

C,TC
t

(k))
1At=k +

K∑
j=1
j ̸=k

πθ
C,TC

t
(k)1At=j .
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Since e
−ηT gk,t/(γT+πθ

C,TC
t

(k))
⩽ 1,958

πθ
C,TC

t +1(k)

⩾ πθ
C,TC

t
(k)e

−ηT gk,t/(γT+πθ

C,TC
t

(k))
1At=k +

K∑
j=1
j ̸=k

πθ
C,TC

t
(k)e

−ηT gk,t/(γT+πθ

C,TC
t

(k))
1At=j

= πθ
C,TC

t
(k)e

−ηT gk,t/(γT+πθ

C,TC
t

(k))
⩾ πθ

C,TC
t
(k)e

−ηT /(γT+πθ

C,TC
t

(k))

since gk,t ∈ [0, 1]. Then,959

πθ
C,TC

t +1(k) ⩾ πθ
C,TC

t
(k)

(
1− ηT gk,t

γT + πθ
C,TC

t
(k)

)
⩾ πθ

C,TC
t
(k)− ηT .

Summing for all s ∈ Ft(C), since πθ
k,1 = 1

K ,960

πθ
C,TC

t
(k) ⩾

1

K
− ηTT

C
t .

Note that TC
t ⩽ t ⩽ Tε. Since, Tε ⩽

⌊(
1

K
− ε

) √
T

R

⌋
, for all t ⩽ Tε and 1 ⩽ k ⩽ K,961

ε ⩽
1

K
− R√

T
Tε ⩽

1

K
− ηTTε ⩽

1

K
− ηT t ⩽ πθ

C,TC
t
(k).

For the second part of the proof, let θ = (η, γ), θ′ = (η′, γ′) ∈ ΘC . For t ⩾ 2 Let hθ
j,t =962

ηT
∑

s∈Ft(C) ĝ
θ
j,s. Then πθ

C,TC
t

= softmax(hθ
·,t). The function softmax is 1-Lipschitz with respect963

to the ∥ · ∥2-norm in RK (see [19] for a proof). Therefore,964

∥πθ
C,TC

t
− πθ′

C,TC
t
∥2 ⩽ ∥hθ

·,t − hθ′

·,t∥2.

Since gj,s ∈ [0, 1], by the triangle inequality965

∥πθ
C,TC

t
− πθ′

C,TC
t
∥2 ⩽

∑
s∈Ft(C)

∥∥∥∥∥
(

ηT
γT + πθ

C,TC
s
(.)

− η′T
γ′
T + πθ′

C,TC
s
(.)

)
1As=·

∥∥∥∥∥
2

.

Again, using the triangle inequality,966

∥πθ
C,TC

t
− πθ′

C,TC
t
∥2 ⩽

∑
s∈Ft(C)

∥∥∥∥∥
(

ηT
γT + πθ

C,TC
s

− η′T
γ′
T + πθ

C,TC
s

)
1As=·

∥∥∥∥∥
2

+
∑

s∈Ft(C)

∥∥∥∥∥
(

η′T
γ′
T + πθ

C,TC
s

− η′T
γ′
T + πθ′

C,TC
s

)
1As=·

∥∥∥∥∥
2

. (18)

For 1 ⩾ q ⩾ ε, let f : (x1, x2) ∈ [0, RT ]× [0, RT ] 7→
x1

x2 + q
where RT = R√

T
. The function f is967

continuously differentiable, and968

∇f =
1

(x2 + q)2

(
x2 + q
−x1

)
.

The ℓ2-norm of the gradient can be upper bounded by969

∥∇f∥2 ⩽
1

ε2

√
R2

T + ε2 =: cε

By the mean value theorem, for all k ∈ [K]970 ∣∣∣∣∣ ηT
γT + πθ

C,TC
s
(k)

− η′T
γ′
T + πθ

C,TC
s
(k)

∣∣∣∣∣ ⩽ cε∥θT − θ′T ∥2.
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As a result,971 ∥∥∥∥∥
(

ηT
γT + πθ

C,TC
s

− η′T
γ′
T + πθ

C,TC
s

)
1As=·

∥∥∥∥∥
2

2

=

K∑
k=1

(
ηT

γT + πθ
C,TC

s
(k)

− η′T
γ′
T + πθ

C,TC
s
(k)

)2

1As=k

⩽ c2ε∥θT − θ′T ∥22
K∑

k=1

1As=k

= c2ε∥θT − θ′T ∥22
Therefore,972 ∑

s∈Ft(C)

∥∥∥∥∥
(

ηT
γT + πθ

C,TC
s

− η′T
γ′
T + πθ

C,TC
s

)
1As=·

∥∥∥∥∥
2

⩽
∑

s∈Ft(C)

cε∥θT − θ′T ∥2 = TC
t cε∥θT − θ′T ∥2 ⩽ Tεcε∥θT − θ′T ∥2. (19)

For (η, γ) ∈ [0, RT ] × [0, RT ], let g : q ∈ [ε, 1] 7→ η

γ + q
. The function g is continuously973

differentiable, and974

0 ⩽ f ′(q) =
η

(γ + q)2
⩽

RT

ε2
.

By the mean value theorem, for all k ∈ [K],975 ∣∣∣∣∣ η′T
γ′
T + πθ

C,TC
s
(k)

− η′T
γ′
T + πθ′

C,TC
s

(k)

∣∣∣∣∣ ⩽ RT

ε2

∣∣∣πθ
C,TC

s
(k)− πθ′

C,TC
s
(k)
∣∣∣ .

Therefore,976 ∥∥∥∥∥
(

η′T
γ′
T + πθ

C,TC
s

− η′T
γ′
T + πθ′

C,TC
s

)
1As=·

∥∥∥∥∥
2

2

=

K∑
k=1
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T + πθ

C,TC
s
(k)

− η′T
γ′
T + πθ′

C,TC
s

)2

1As=k

⩽
R2

T

ε4

K∑
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∣∣∣πθ
C,TC

s
(k)− πθ′

C,TC
s
(k)
∣∣∣2 1As=k

⩽
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T

ε4

(∥∥∥πθ
C,TC

s
− πθ′

C,TC
s

∥∥∥
2

)2
.

Thus,977 ∑
s∈Ft(C)

∥∥∥∥∥
(

η′T
γ′
T + πθ

C,TC
s

− η′T
γ′
T + πθ′

C,TC
s

)
1As=·

∥∥∥∥∥
2

⩽
RT

ε2

∑
s∈Ft(C)

∥∥∥πθ
C,TC

s
− πθ′

C,TC
s

∥∥∥
2

(20)

Plugging Equations (19) and (20) in Equation (18)978

∥πθ
C,TC

t
− πθ′

C,TC
t
∥2 ⩽ Tεcε∥θT − θ′T ∥2 +

RT

ε2

∑
s∈Ft(C)

∥∥∥πθ
C,TC

s
− πθ′

C,TC
s

∥∥∥
2
,

Using the discrete Gronwall Lemma [14] leads to, for all t ⩽ Tε,979

∥πθ
C,TC

t
− πθ′

C,TC
t
∥2 ⩽ Tεcε∥θT − θ′T ∥2

∏
s∈Ft(C)

(
1 +

RT

ε2

)

⩽ Tεcε∥θT − θ′T ∥2 exp
(
RTTε

ε2

)
.

But, since 1
K − ε ⩽ 1,980

Tε ⩽

(
1

K
− ε

) √
T

R
⩽

√
T

R
.
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Therefore, RTTε ⩽ 1 and for t ⩽ Tε,981

∥πθ
C,TC

t
− πθ′

C,TC
t
∥2 ⩽

cε
R
e1/ε

2

∥θ − θ′∥2.

To conclude note that log is 1/ε-Lipschitz on [ε, 1] and that982

sup
k∈[K]

∣∣∣∣∣∣log
πδC

C,TC
t
(k)

πθC
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t
(k)

∣∣∣∣∣∣ ⩽ 1

ε
∥πθ

C,TC
t
− πθ′

C,TC
t
∥2.

983

C.4 Proof of Section 4.2984

Proof of Proposition 5. We take the same notations as the previous section. The updated probability985

can be written986

πθ
C,TC

t +1(k) =
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C,TC

t
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θT
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j ̸=At
πθ
C,TC
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.

Therefore,987
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C,TC
t

(At))gAt,t

+
∑

j ̸=At
πθ
C,TC

t
(j)

⩾
πθ
C,TC

t
(k)e−θT

πθ
C,TC

t
(At)eθT + 1− πθ

C,TC
t
(At)

⩾ πθ
C,TC

t
(k)e−2θT

where988

• the first inequality holds because e
−θTπθ

C,TC
t

(j)gAt,t ⩽ 1,989

• the second inequality holds because gj,t ∈ (0, 1), for j ∈ [K],990

• the last inequality holds because πθ
C,TC

t
(At)e

θT + 1− πθ
C,TC

t
(At) ⩽ eθT .991

Thus, for all t ⩽ Tε,992

πθ
C,TC

t
(k) ⩾

1

K
e−2θTTC

t .

Since TC
t ⩽ t and since by definition, Tε ⩽ log

(√
1

Kε

) √
T
R , it holds that for all t ⩽ Tε,993

πθ
C,TC

t
(k) ⩾

1

K
e−2θT t ⩾

1

K
e−2RT t ⩾

1

K
e
−2 R√

T
log

(√
1

Kε

)√
T

R ⩾
1

K
e− log( 1

Kε ) ⩾ ε.

For the second part of the proof, for t ⩾ 2 and j ∈ [K], let hθ
j,TC

t
= θT

∑
s∈Ft(C) ĝ

θ
j,s. Then994

πθ
C,TC

t
= softmax(hθ

·,t). The function softmax is 1-Lipschitz with respect to the ∥ · ∥2-norm in RK995

(see [19] for a proof). Therefore,996

∥πδ
C,TC

t
− πθ

C,TC
t
∥2 ⩽ ∥hδ

·,t − hθ
·,t∥2.

Then,997

∥hδ
·,t − hθ

·,t∥2 ⩽ |δT − θT |
∑

s∈Ft(C)

∥ĝδj,s∥2 + θT
∑

s∈Ft(C)

gAs,s∥πδ
C,TC

s
− πθ

C,TC
s
∥2

⩽
√
2TC

t |δT − θT |+ θT
∑

s∈Ft(C)

∥πδ
C,TC

s
− πθ

C,TC
s
∥2

⩽
√
2Tε|δT − θT |+ θT

∑
s∈Ft(C)

∥πδ
C,TC

s
− πθ

C,TC
s
∥2.

where998
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• the first inequality holds because of the triangle inequality,999

• the second inequality holds because for all j ∈ [K], gj,s ∈ [0, 1] and1000

∥ĝδj,s∥22 = (1− πδ
C,TC

s
(As))

2 +
∑
j ̸=As

(πδ
C,TC

s
(j))2 ⩽ 2,

• the last inequality holds because TC
t ⩽ Tε.1001

By the discrete Gronwall Lemma [14], for all t ⩽ Tε1002

∥πδ
C,TC

t
− πθ

C,TC
t
∥2 ⩽

√
2|δT − θT |Tε

∏
s∈Ft(C)

(1 + θT ) ⩽
√
2|δT − θT |Tεe

θTTε .

Since Tε ⩽
⌊
log
(√

1
Kε

) √
T
R

⌋
, θTTε ⩽ RTTε ⩽ log

(√
1

Kε

)
, therefore,1003

∥πδ
C,TC

t
− πθ

C,TC
t
∥2 ⩽

√
2

R

log
(√

1
Kε

)
√
Kε

|δ − θ|.

Finally, log is 1
ε -Lipschitz on [ε, 1]. Thus, for all k ∈ [K], t ⩽ Tε,1004 ∣∣∣∣∣log
(
πδ
C,TC

t
(k)

πθ
C,TC

t
(k)

)∣∣∣∣∣ ⩽ 1

ε
|πδ

C,TC
t
(k)− πθ

C,TC
t
(k)| ⩽

√
2

Rε

log
(√

1
Kε

)
√
Kε

|δ − θ|.

1005

C.5 Proof of Section B1006

Let us recall that |F | = maxm∈M |Em|. For this Section, we drop the dependence m of the model1007

and simply write E and θ generic set of policies and parameter in [r,R].1008

Proof of Proposition 6. For any θ ∈ [r,R], write θT = θ/
√
T . Assume that Assumption 3 holds.1009

Let’s write qθE,t+1 as1010

qθE,t+1(j) =
qθE,t(j)e

−θT ŷθ
j,t∑

i∈E qθE,t(i)e
−θT ŷθ

i,t

Since qθE,t is a probability distribution over the experts,1011 ∑
i∈E

qθE,t(i)e
−θT ŷθ

i,t ⩽
∑
i∈E

qθE,t(i) = 1.

Therefore, qθE,t+1(j) ⩾ qθE,t(j)e
−θT ŷθ

j,t . By definition,1012

ŷθj,t =

K∑
k=1

ξj,t(k)
gk,t

πθ
E,t(k)

1At=k = ξj,t(At)
gAt,t

πθ
E,t(At)

.

Using that e−x ⩾ 1− x for any x ⩾ 0, leads to1013

qθE,t+1(j) ⩾ qθE,t(j)

(
1− θT ξj,t(At)

gAt,t

πθ
E,t(At)

)
.

Since gAt,t ∈ [0, 1] and qθE,t(j)ξj,t(At) ⩽ πθ
E,t(At),1014

qθE,t+1(j) ⩾ qθE,t(j)− θT .

Summing for all s from 1 to t,1015

qθE,t(j) ⩾
1

|E|
− θT t.
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Since1016

Tε =

⌊(
1

|F |
− ε

ρ

) √
T

R

⌋
∧ T and |F | ⩾ |E|,

it holds that,1017

Tε ⩽

⌊(
1

|E|
− ε

ρ

) √
T

R

⌋
∧ T.

Therefore, for all t ⩽ Tε,1018

qθE,t(j) ⩾
1

|E|
− R√

T
t ⩾

1

|E|
− R√

T

(
1

|E|
− ε

ρ

) √
T

R
=

ε

ρ
.

Finally, for all t ⩽ Tε, for all k ∈ [K],1019

πθ
E,t(k) =

∑
j∈E

qθE,t(j)ξj,t(k) ⩾
ε

ρ

∑
j∈E

ξj,t(k) = ε.

For the second part of the proof, let η, δ ∈ [r,R], and write ηT = η/
√
T and likewise for δT .1020

For t ⩾ 2, let gηj,t = ηT
∑t−1

s=1 ŷ
η
j,s. Then, qηE,t = softmax(gηt ) where gηt = (gηj,t)j∈E . Since the1021

function softmax is 1-Lipschitz with respect to the ∥ · ∥2-norm in R|E|,1022

∥qηE,t − qδE,t∥2 ⩽ ∥gηt − gδt ∥2.

Therefore, by the triangle inequality,1023

∥qηE,t − qδE,t∥2 ⩽
t−1∑
s=1

∥ηT ŷηj,s − δT ŷ
δ
j,s∥2

⩽
t−1∑
s=1

(
|ηT − δT |∥ŷηj,s∥2 + δT ∥ŷηj,s − ŷδj,s∥2

)
. (21)

Since ξj,t is a probability distribution,1024

∥ŷηj,t∥
2
2 =

∑
j∈E

(ŷηj,t)
2 =

∑
j∈E

(
K∑

k=1

ξj,t(k)
gk,t

πη
E,t(k)

1At=k

)2

=
∑
j∈E

(
ξj,t(At)

gAt,t

πη
E,t(At)

)2

⩽ |E|

(
gAt,t

πη
E,t(At)

)2

.

Since gηAt,t
∈ [0, 1] and πη

E,t(At) ⩾ ε for all t ⩽ Tε,1025

∥ŷηj,t∥2 ⩽

√
|E|
ε

. (22)

Similarly,1026

∥ŷηj,s − ŷδj,s∥22 =
∑
j∈E

(
K∑

k=1

ξj,t(k)gk,t

(
1

πη
E,t(k)

− 1

πδ
E,t(k)

)
1At=k

)2

⩽
∑
j∈E

(
K∑

k=1

ξj,t(k)

(
1

πη
E,t(k)

− 1

πδ
E,t(k)

)
1At=k

)2

.

Thus, for all t ⩽ Tε,1027

∥ŷηj,t − ŷδj,t∥22 ⩽
1

ε4

∑
j∈E

(
K∑

k=1

ξj,t(k)
(
πη
E,t(k)− πδ

E,t(k)
)
1At=k

)2

.
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Since ξj,t(k) ⩽ 1,1028

∥ŷηj,t − ŷδj,t∥2 ⩽

√
|E|
ε2

∥πη
E,t − πδ

E,t∥2. (23)

Injecting (22) and (23) in (21) leads to1029

∥qηE,t − qδE,t∥2 ⩽

√
|E|
ε

|ηT − δT |(t− 1) + δT

√
|E|
ε2

t−1∑
s=1

∥πη
E,s − πδ

E,s∥2.

On the other hand,1030

∥πη
E,t − πδ

E,t∥22 =

K∑
k=1

(πη
k,t − πδ

k,t)
2 =

K∑
k=1

∑
j∈E

ξj,t(k)(q
η
E,t(j)− qδE,t(j))

2

⩽
K∑

k=1

∑
j∈E

ξj,t(k)
2
∑
j∈E

(qηE,t(j)− qδE,t(j))
2

⩽ |E|∥qηE,t − qδE,t∥22
⩽ |F |∥qηE,t − qδE,t∥22

where1031

• the first inequality holds by the Cauchy-Schwarz inequality,1032

• the second inequality holds because ξj,t is a probability distribution over the actions set1033

[K],1034

• the last inequality holds because |E| ⩽ |F |1035

Therefore,1036

∥πη
E,t − πδ

E,t∥2 ⩽
|F |
ε2

(
ε|ηT − δT |(t− 1) + δT

t−1∑
s=1

∥πη
E,s − πδ

E,s∥2

)
.

Using the discrete Gronwall Lemma, for all t ⩽ Tε,1037

∥πη
E,t − πδ

E,t∥2 ⩽
|F |
ε

|ηT − δT |Tε

t−1∏
s=1

(
1 +

|F |
ε2

δT

)
⩽

|F |
ε

|ηT − δT |Tε exp

(
|F |
ε2

δTTε

)
.

If Assumption 3 is satisfied, then since δT ⩽ RT = R√
T

and Tε ⩽
(

1
|F | −

ε
ρ

) √
T
R ,1038

∥πη
E,t − πδ

E,t∥2 ⩽
|F |
Rε

(
1

|F |
− ε

ρ

)
exp

(
|F |
ε2

(
1

|F |
− ε

ρ

))
|η − δ|.

To conclude note that x → ln(x) is 1/ε-Lipschitz on [ε,+∞).1039
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