FLATTENING THE BLUE MARBLE

This is what earth looks like when you take a picture of it from 29,000 kilometers away. This is the original **Blue Marble** photo, taken from Apollo 17.

EARTH

Multiple distortions from idealized sphere:

- -Topography
- -Gravity Differentials
- -Centrifugal Force

IGNORE TOPOGRAPHY!?

In most applications, topography isn't explicitly needed.

- We can account for it separately if necessary using digital elevation models or contour lines.

DIGITAL ELEVATION MODEL

CONTOUR LINES

GEOID

Simplification of Earth:

- -Smooths topography
- -Gravity differences measured by satellites
- -Differences in surface heights (180 m)

THE OBLATE SPHEROID

A close approximation of Earth's shape

- -Topography
- -Gravity Differentials
- -Centrifugal Force

A DATUM

A system to link the oblate spheroid to the geoid

-Connect the coordinates to the earth's surface

LOCAL DATUM

Fits geoid very well in a particular Fits the geoid fairly well region

GLOBAL DATUM

everywhere

LOCAL DATUM

Fits geoid very well in a particular region

GLOBAL DATUM

Fits the geoid fairly well everywhere

ONLY MINOR DIFFERENCES

For some cases, either datum is suitable.

ONLY MINOR DIFFERENCES

A local datum is better for small areas like a city. For global maps, you **always** need a global datum.

GEOGRAPHIC COORDINATE SYSTEM (GCS)

Spherical Coordinate System for identifying locations on the spheroid.

-All GCS are tied to a specific datum.

GEOGRAPHIC COORDINATE SYSTEM (GCS)

Latitude/Longitude

- Fixed to the surface of spheroid
- Angular distance from equator and prime meridian
- Location on a 3D object with just 2 numbers

LATITUDE

Distance in degrees form Equator: -90°(South) to +90°(North)

LONGITUDE

Distance in degrees Prime Meridian: -180° (West); to +180° (East)

LATITUDE/LONGITUDE

Decimal Degrees

- Vancouver BC: 49.261111, -123.113889
- Sydney NSW: -33.865, 151.209444

Degrees Minutes Seconds

- Vancouver BC: 49°15′40″N 123°06′50″W
- Sydney NSW: 33°51′54″S 151°12′34″E

AN IMPORTANT CAVEAT!

Meridians converge!

• Distance between degrees of longitude decreases with increasing latitude

MAKING A FLAT MAP

MAKING A FLAT MAP

Displaying Lat/Lon in 2D doesn't work well

• Causes things to look "scrunched"

MAKING A FLAT MAP

We have to apply a projection

- Converts to linear units
- Allows distance/area calculations
- Makes things look better

PROJECTED COORDINATE SYSTEMS

A map projection is a flattened GCS. Imagine sending rays of light through the ellipsoid onto a flat surface, the resulting image is a projection.

STEPS OF ABSTRACTION

