{ "cells": [ { "cell_type": "code", "execution_count": 33, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "import numpy as np\n", "%matplotlib inline\n", "sns.set(color_codes=True)\n", "pal = sns.color_palette(\"viridis\", 10)\n", "sns.set_palette('muted')" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "data1 = pd.read_excel(\"test.xlsx\")\n", "data2 = pd.read_excel(\"test2.xlsx\")" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "RangeIndex: 14229 entries, 0 to 14228\n", "Data columns (total 5 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 Time 14229 non-null datetime64[ns]\n", " 1 data 14229 non-null datetime64[ns]\n", " 2 Time2 14229 non-null object \n", " 3 Temperature_of_system1 14228 non-null float64 \n", " 4 Temperature_of_system2 14229 non-null float64 \n", "dtypes: datetime64[ns](2), float64(2), object(1)\n", "memory usage: 555.9+ KB\n" ] } ], "source": [ "data1.info()" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "RangeIndex: 240 entries, 0 to 239\n", "Data columns (total 10 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 data 240 non-null datetime64[ns]\n", " 1 Time3 240 non-null object \n", " 2 index_A 240 non-null float64 \n", " 3 index_B 240 non-null float64 \n", " 4 index_C 240 non-null float64 \n", " 5 index_D 240 non-null float64 \n", " 6 Mineral_parameter1 240 non-null float64 \n", " 7 Mineral_parameter2 240 non-null float64 \n", " 8 Mineral_parameter3 240 non-null float64 \n", " 9 Mineral_parameter4 240 non-null float64 \n", "dtypes: datetime64[ns](1), float64(8), object(1)\n", "memory usage: 18.9+ KB\n" ] } ], "source": [ "data2.info()" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
TimedataTime2Temperature_of_system1Temperature_of_system2
02022-01-13 00:01:002022-01-1300:01:001173.81814.93
12022-01-13 00:02:002022-01-1300:02:001172.70813.51
22022-01-13 00:03:002022-01-1300:03:001172.92813.71
32022-01-13 00:04:002022-01-1300:04:001173.19813.69
42022-01-13 00:05:002022-01-1300:05:001173.06813.80
..................
142242022-01-22 23:55:002022-01-2223:55:001405.78932.26
142252022-01-22 23:56:002022-01-2223:56:001404.50931.11
142262022-01-22 23:57:002022-01-2223:57:001406.13931.68
142272022-01-22 23:58:002022-01-2223:58:001404.02931.04
142282022-01-22 23:59:002022-01-2223:59:001405.74931.81
\n", "

14229 rows × 5 columns

\n", "
" ], "text/plain": [ " Time data Time2 Temperature_of_system1 \\\n", "0 2022-01-13 00:01:00 2022-01-13 00:01:00 1173.81 \n", "1 2022-01-13 00:02:00 2022-01-13 00:02:00 1172.70 \n", "2 2022-01-13 00:03:00 2022-01-13 00:03:00 1172.92 \n", "3 2022-01-13 00:04:00 2022-01-13 00:04:00 1173.19 \n", "4 2022-01-13 00:05:00 2022-01-13 00:05:00 1173.06 \n", "... ... ... ... ... \n", "14224 2022-01-22 23:55:00 2022-01-22 23:55:00 1405.78 \n", "14225 2022-01-22 23:56:00 2022-01-22 23:56:00 1404.50 \n", "14226 2022-01-22 23:57:00 2022-01-22 23:57:00 1406.13 \n", "14227 2022-01-22 23:58:00 2022-01-22 23:58:00 1404.02 \n", "14228 2022-01-22 23:59:00 2022-01-22 23:59:00 1405.74 \n", "\n", " Temperature_of_system2 \n", "0 814.93 \n", "1 813.51 \n", "2 813.71 \n", "3 813.69 \n", "4 813.80 \n", "... ... \n", "14224 932.26 \n", "14225 931.11 \n", "14226 931.68 \n", "14227 931.04 \n", "14228 931.81 \n", "\n", "[14229 rows x 5 columns]" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data1" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
dataTime3index_Aindex_Bindex_Cindex_DMineral_parameter1Mineral_parameter2Mineral_parameter3Mineral_parameter4
02022-01-1300:50:0078.2625.5412.2414.1449.2490.3846.1328.16
12022-01-1301:50:0078.1625.2712.2414.3249.2490.3846.1328.16
22022-01-1302:50:0078.1526.2112.9314.5949.2490.3846.1328.16
32022-01-1303:50:0078.3925.2212.9314.2849.2490.3846.1328.16
42022-01-1304:50:0079.2224.6012.4113.7049.2490.3846.1328.16
.................................
2352022-01-2219:50:0079.7622.0011.7218.8454.7493.0549.0321.48
2362022-01-2220:49:0080.5122.0011.3718.5354.7493.0549.0321.48
2372022-01-2221:50:0080.1621.7810.8517.9054.7493.0549.0321.48
2382022-01-2222:50:0079.7922.5811.2017.0554.7493.0549.0321.48
2392022-01-2223:50:0080.1921.6910.6817.1954.7493.0549.0321.48
\n", "

240 rows × 10 columns

\n", "
" ], "text/plain": [ " data Time3 index_A index_B index_C index_D \\\n", "0 2022-01-13 00:50:00 78.26 25.54 12.24 14.14 \n", "1 2022-01-13 01:50:00 78.16 25.27 12.24 14.32 \n", "2 2022-01-13 02:50:00 78.15 26.21 12.93 14.59 \n", "3 2022-01-13 03:50:00 78.39 25.22 12.93 14.28 \n", "4 2022-01-13 04:50:00 79.22 24.60 12.41 13.70 \n", ".. ... ... ... ... ... ... \n", "235 2022-01-22 19:50:00 79.76 22.00 11.72 18.84 \n", "236 2022-01-22 20:49:00 80.51 22.00 11.37 18.53 \n", "237 2022-01-22 21:50:00 80.16 21.78 10.85 17.90 \n", "238 2022-01-22 22:50:00 79.79 22.58 11.20 17.05 \n", "239 2022-01-22 23:50:00 80.19 21.69 10.68 17.19 \n", "\n", " Mineral_parameter1 Mineral_parameter2 Mineral_parameter3 \\\n", "0 49.24 90.38 46.13 \n", "1 49.24 90.38 46.13 \n", "2 49.24 90.38 46.13 \n", "3 49.24 90.38 46.13 \n", "4 49.24 90.38 46.13 \n", ".. ... ... ... \n", "235 54.74 93.05 49.03 \n", "236 54.74 93.05 49.03 \n", "237 54.74 93.05 49.03 \n", "238 54.74 93.05 49.03 \n", "239 54.74 93.05 49.03 \n", "\n", " Mineral_parameter4 \n", "0 28.16 \n", "1 28.16 \n", "2 28.16 \n", "3 28.16 \n", "4 28.16 \n", ".. ... \n", "235 21.48 \n", "236 21.48 \n", "237 21.48 \n", "238 21.48 \n", "239 21.48 \n", "\n", "[240 rows x 10 columns]" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data2" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "data = data1\n" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
TimedataTime2Temperature_of_system1Temperature_of_system2dataTime3index_Aindex_Bindex_Cindex_DMineral_parameter1Mineral_parameter2Mineral_parameter3Mineral_parameter4
02022-01-13 00:01:002022-01-1300:01:001173.81814.932022-01-1300:50:0078.2625.5412.2414.1449.2490.3846.1328.16
12022-01-13 00:02:002022-01-1300:02:001172.70813.512022-01-1301:50:0078.1625.2712.2414.3249.2490.3846.1328.16
22022-01-13 00:03:002022-01-1300:03:001172.92813.712022-01-1302:50:0078.1526.2112.9314.5949.2490.3846.1328.16
32022-01-13 00:04:002022-01-1300:04:001173.19813.692022-01-1303:50:0078.3925.2212.9314.2849.2490.3846.1328.16
42022-01-13 00:05:002022-01-1300:05:001173.06813.802022-01-1304:50:0079.2224.6012.4113.7049.2490.3846.1328.16
................................................
2352022-01-13 03:56:002022-01-1303:56:00854.81767.302022-01-2219:50:0079.7622.0011.7218.8454.7493.0549.0321.48
2362022-01-13 03:57:002022-01-1303:57:00854.63768.052022-01-2220:49:0080.5122.0011.3718.5354.7493.0549.0321.48
2372022-01-13 03:58:002022-01-1303:58:00854.59767.302022-01-2221:50:0080.1621.7810.8517.9054.7493.0549.0321.48
2382022-01-13 03:59:002022-01-1303:59:00854.68767.702022-01-2222:50:0079.7922.5811.2017.0554.7493.0549.0321.48
2392022-01-13 04:00:002022-01-1304:00:00854.68767.432022-01-2223:50:0080.1921.6910.6817.1954.7493.0549.0321.48
\n", "

240 rows × 15 columns

\n", "
" ], "text/plain": [ " Time data Time2 Temperature_of_system1 \\\n", "0 2022-01-13 00:01:00 2022-01-13 00:01:00 1173.81 \n", "1 2022-01-13 00:02:00 2022-01-13 00:02:00 1172.70 \n", "2 2022-01-13 00:03:00 2022-01-13 00:03:00 1172.92 \n", "3 2022-01-13 00:04:00 2022-01-13 00:04:00 1173.19 \n", "4 2022-01-13 00:05:00 2022-01-13 00:05:00 1173.06 \n", ".. ... ... ... ... \n", "235 2022-01-13 03:56:00 2022-01-13 03:56:00 854.81 \n", "236 2022-01-13 03:57:00 2022-01-13 03:57:00 854.63 \n", "237 2022-01-13 03:58:00 2022-01-13 03:58:00 854.59 \n", "238 2022-01-13 03:59:00 2022-01-13 03:59:00 854.68 \n", "239 2022-01-13 04:00:00 2022-01-13 04:00:00 854.68 \n", "\n", " Temperature_of_system2 data Time3 index_A index_B index_C \\\n", "0 814.93 2022-01-13 00:50:00 78.26 25.54 12.24 \n", "1 813.51 2022-01-13 01:50:00 78.16 25.27 12.24 \n", "2 813.71 2022-01-13 02:50:00 78.15 26.21 12.93 \n", "3 813.69 2022-01-13 03:50:00 78.39 25.22 12.93 \n", "4 813.80 2022-01-13 04:50:00 79.22 24.60 12.41 \n", ".. ... ... ... ... ... ... \n", "235 767.30 2022-01-22 19:50:00 79.76 22.00 11.72 \n", "236 768.05 2022-01-22 20:49:00 80.51 22.00 11.37 \n", "237 767.30 2022-01-22 21:50:00 80.16 21.78 10.85 \n", "238 767.70 2022-01-22 22:50:00 79.79 22.58 11.20 \n", "239 767.43 2022-01-22 23:50:00 80.19 21.69 10.68 \n", "\n", " index_D Mineral_parameter1 Mineral_parameter2 Mineral_parameter3 \\\n", "0 14.14 49.24 90.38 46.13 \n", "1 14.32 49.24 90.38 46.13 \n", "2 14.59 49.24 90.38 46.13 \n", "3 14.28 49.24 90.38 46.13 \n", "4 13.70 49.24 90.38 46.13 \n", ".. ... ... ... ... \n", "235 18.84 54.74 93.05 49.03 \n", "236 18.53 54.74 93.05 49.03 \n", "237 17.90 54.74 93.05 49.03 \n", "238 17.05 54.74 93.05 49.03 \n", "239 17.19 54.74 93.05 49.03 \n", "\n", " Mineral_parameter4 \n", "0 28.16 \n", "1 28.16 \n", "2 28.16 \n", "3 28.16 \n", "4 28.16 \n", ".. ... \n", "235 21.48 \n", "236 21.48 \n", "237 21.48 \n", "238 21.48 \n", "239 21.48 \n", "\n", "[240 rows x 15 columns]" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result = pd.concat([data1, data2], axis=1, join='inner')\n", "result" ] } ], "metadata": { "interpreter": { "hash": "b3ba2566441a7c06988d0923437866b63cedc61552a5af99d1f4fb67d367b25f" }, "kernelspec": { "display_name": "Python 3.8.8 ('base')", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }