{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "_StoreAction(option_strings=['-outputH'], dest='outputH', nargs=None, const=None, default=2, type=, choices=None, help=None, metavar=None)" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from model.MSVR import MSVR\n", "from model.utility import create_dataset,rmse\n", "\n", "from sklearn.preprocessing import MinMaxScaler\n", "import numpy as np\n", "import argparse\n", "\n", "\n", "\n", "dataPath = './data/MackeyGlass_t17.txt'\n", "rawData = np.loadtxt(dataPath)\n", "rawData\n", "\n", "parser = argparse.ArgumentParser(\n", " description='MSVR for Time Series Forecasting')\n", "parser.add_argument('-inputDim', type=int, default=10, metavar='N',\n", " help='steps for prediction (default: 1)')\n", "parser.add_argument('-outputH', type=int, default=2)\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "opt, unknown = parser.parse_known_args()\n", "\n", "dim = opt.inputDim\n", "h = opt.outputH\n", "\n", "ts = rawData.reshape(-1)\n", "segmentation = int(len(ts)*2/3)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.028964804423148662 0.028874542451566572\n" ] } ], "source": [ "dataset = create_dataset(ts,dim,h)\n", "scaler = MinMaxScaler(feature_range=(-1, 1))\n", "dataset = scaler.fit_transform(dataset)\n", "X, Y = dataset[:, :(0 - h)], dataset[:, (0-h):]\n", "train_input = X[:segmentation, :]\n", "train_target = Y[:segmentation].reshape(-1, h)\n", "test_input = X[segmentation:, :]\n", "test_target = Y[segmentation:].reshape(-1, h)\n", "\n", "msvr = MSVR()\n", "msvr.fit(train_input,train_target)\n", "trainPred = msvr.predict(train_input)\n", "testPred = msvr.predict(test_input)\n", "\n", "trainMetric = rmse(train_target,trainPred)\n", "testMetric = rmse(test_target,testPred)\n", "\n", "print(trainMetric, testMetric)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "interpreter": { "hash": "b3ba2566441a7c06988d0923437866b63cedc61552a5af99d1f4fb67d367b25f" }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" } }, "nbformat": 4, "nbformat_minor": 2 }