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Abstract—For my senior project, I wanted to learn
about computerized theorem proving, with an end goal
of building my very own theorem prover. Specifically,
I wanted to learn how computerized theorem proving
is typically done, what scope of problems are able to
be solved, and what sort of infrastructure is needed to
prove simple theorems. In the end, I successfully built a
simple Automated Theorem Prover called JATP (Justin’s
Automated Theorem Prover) from the ground up. It is able
to do the following: given a set of assumptions A and a set
of conclusions B, it can discover the proof with the fewest
number of steps that a mathematician would accept proves
A→ B. I decided to narrow the scope of problems JATP
would solve to proving facts about the parity of integers,
which is a rather uncomplicated area, suitable for this sort
of proof of concept. In this paper we will discuss briefly
what computerized theorem proving entails, and in much
more detail how JATP works.

I. INTRODUCTION

What is computerized theorem proving? It is as
it sounds; namely, a subfield of mathematical logic
and automated reasoning that deals with proving
mathematical theorems using computer programs
[1]. This can be realized in a multitude of different
ways. One of those ways is through what is called
Intuitionistic Logic and Type Theory (ITT). ITT is
an alternative foundation of mathematics [2]. There
are some variations, but the core design is based
on constructive logic. Constructive logic is centered
around the idea that it is necessary to construct or
find an example of a mathematical object in order
to show its existence [3]. In classical mathematics,
to prove the existence of an object, it is typically
sufficient to prove that it is not possible for it not
to exist. This notion of proof by contradiction is
normally rejected by mathematical constructivism
[4]. To realize this goal of constructivism, ITT uses
what is called the Brouwer-Heyting-Kolmogorov
(BHK) interpretation (of ITT) [5]. For a given
logical formula, the BHK interpretation states what

a valid proof of that formula should look like. For
example, the following are three of the BHK rules:

• A proof of P ∧Q is a pair < a, b > where a is
a proof of P and b is a proof of Q.

• A proof of P ∨ Q is a pair < a, b > where a
is 0 and b is a proof of P , or a is 1 and b is a
proof of Q.

• A proof of P → Q is a function f that converts
a proof of P into a proof of Q.

There are additional rules that cover the quanti-
fiers as well as negation. I chose these three rules to
give a general sense of how the BHK interpretation
works. The BHK interpretation has the added bonus
of turning proofs into mathematical objects [6].

• A proof of (A ∧ B) → C is a function f that
converts a proof of (A ∧B) into a proof of C.

• A proof of A∧B is a pair < a, b > where a is
a proof of A and b is a proof of B.

• Putting it together, a proof of (A ∧ B)→ C is
a function f that converts a pair < a, b > into
a proof c of C, where a is a proof of A and b
is a proof of B.

Instead of reasoning about proofs as abstract
arguments, we can now look at them as functions,
pairs, and other objects. This creates a very concrete
notion of what constitutes a proof of a given log-
ical formula, which opens the door to tackling the
problem of theorem proving with computers.

Many computerized theorem provers are what are
called proof assistants [6]. Essentially, a human will
guide the search for a proof, aided by a computer.
The computer will work on searching for a proof
until it gets stuck, and the human will push it in the
right direction. This process continues until a proof
is found. Coq, Idris, Twelf, and Agda are some of
the most well known proof assistants. During my
time working on this project, I had the opportunity
to work with two proof assistants, Proust and Agda.



Proust is a proof assistant built using Racket [6].
It is designed for educational purposes, and a large
portion of ”Logic and Computation Intertwined”
(LaCI), by Prabhakar Ragde, is devoted to guiding
the reader in adding functionality to Proust. Proust is
built to be bare-bones, because the point is to teach
the reader about proof assistants and ITT. By the end
of LaCI, Coq and Agda are introduced. I had some
time to experiment with Agda, which is a functional
programming language and also a proof assistant. I
also had the opportunity to read ”The Little Typer”
by Dan Friedman, which again discusses this idea
of proofs as mathematical objects, or in this case,
programs, and serves as another introduction to ITT
[7].

The thought I had when working with proof
assistants was this: oftentimes, when either Proust
or Agda would get stuck and need human input to
solve a problem, there would be a relatively small
number of options that constituted valid input. What
if, instead of waiting for a human to prod it in the
right direction, it tried each of the possible options
until it found one that would lead to a correct proof?
This was my motivating idea for developing JATP:
When searching for a proof, when the program gets
to a point where there are multiple paths to take, it
will try each path, running each path side-by-side
until one of them signals completion, and a valid
proof has been found.

II. RELATED WORK

One of the more relevant theorem provers to this
topic is called Coq, released in 1989 [8]. It helps
create formal proofs of mathematical assertions,
and has its roots in mathematical constructivism.
However, it is not an automated theorem prover,
but includes tactics to help automate parts of proofs.
It is both a functional programming language that
implements ITT. The name is from the French word
for ”rooster”. One of the largest results proven using
Coq is the Four-Color Theorem [9].

Another proof assistant related to this subject
is Agda, which is a dependently typed functional
programming language, first released in 1999. It
interprets mathematical propositions as types, and
it is able to assist with proving such propositions
as long as there is minimal branching in the proofs
[10].

III. SYSTEM DESIGN

This section will discuss what JATP does and how
it works. JATP is a very simple theorem prover,
built using Racket, capable of producing proofs of
statements about the parity of integers. These proofs
will take the form of a list of steps, where each
step is the result of applying a particular axiom to
the conclusions reached in the previous step. The
following is an example of a proof of the following
statement, generated by JATP: Given x = y and
y = 2 ∗ z for some z, prove x is even.

Example 1:
0) Given:

x = y
y = (* 2 z)

1) Applying even-reverse:
y is even

2) Applying subst:
x is even

Disambiguation:
0) This step lists the assumptions we are given

to start with. In this case, this consists of the
facts ”x = y” and ”y = 2 * z” for some z.

1) This step shows the result of applying what is
called the ”even-reverse” axiom. Even-reverse
is shorthand for this: if a = 2 * b, then a is
even. Similarly, even-forward is shorthand for
this: if a is even, then a = 2 * b for some b.
In this case, even-reverse was applied, so we
were able to conclude that because y = 2 * z,
that y must be even. JATP only prints the new
statements that have been discovered, instead
of printing all of the known information. At
this stage, JATP ”knows” about 3 statements,
the two from step 0 and the newly discovered
”y is even” from the current step.

2) Finally, step 2 applies ”subst”, which is short-
hand for substitution: if a = b and a appears
within another statement, then a can be re-
placed with b within that statement. In this
case, x = y and y appears within the statement
”y is even” from step 1. Applying substitution,
we can replace y with x within ”y is even”,
yielding ”x is even”. This was our desired
conclusion from the beginning, so the proof
is complete.

Now that we have seen a short example, we are
ready to discuss system design in greater detail.



Input

There are three inputs to JATP. We require some
sort of representation of our initial assumptions as
well as a representation of our desired conclusion.
The other piece is the axioms. JATP must know
which axioms it has at its disposal in order for it
to find a proof of the conclusion given the initial
assumptions.

First we will discuss how JATP represents as-
sumptions and conclusions. Both of these are a set
of statements, which will now be defined rigorously.
A statement is a relation, and there are two kinds
of allowed relations.

parity ::= even | odd
expr ::= c | x | (+ expr expr)

| (* expr expr)

where c is a constant and x is an identifier.
Relations can take the form of expr1 = expr2 or

expr is parity.
Statements can be encoded quite naturally. ”x is

even and equal to y and y is equal to 7 + z * 3” is
encoded as ”x is even” and ”x = y” and ”y = 7 + z
* 3”.

The other component is the axioms. Axioms are
envisioned here as functions. These functions will
take a set of statements and map them to a new
set of statements, where the output set represents
the result of applying the axiom to the input set of
facts.

In the case that an axiom is not applicable, it
will reproduce the input set of assumptions with
no changes. An example of this would be trying
to apply even-reverse, from earlier, to this set of
statements:

x = y + 3
y is even

Because none of these statements are of the form
”a = (* 2 b)”, even-reverse cannot be applied.

In the case that the current axiom is applicable,
the output will be the result of applying the axiom.
That will look like this:

Given this set of assumptions as input:
x = y
y = (* 2 z)

Applying ”even-reverse” here will produce the fol-
lowing set of statements as output:

x = y
y = (* 2 z)
y is even

So axioms never take any information away; they
only either add information or preserve the existing
information. This example takes the inputs from
Example 1. You can see above in Example 1 that
after even-reverse is applied, only the final line of
the outputs, ”y is even”, is printed. This is done to
prevent printing useless information that is already
known to the user.

Finally, in the case that the axiom is applicable
to the set of statements multiple times, the output
will be multiple sets of statements, where each is
the result of applying the axiom once. For example:

Given this set of assumptions as input:
x is even
y is even
z is even

Applying even-forward to this set of statements will
yield 3 different sets of statements:

set1:
x is even
y is even
z is even
x = 2 * a

set2:
x is even
y is even
z is even
y = 2 * a

set3:
x is even
y is even
z is even
z = 2 * a

This is done so that axioms can be applied precisely
where they need to be applied in order to find the
shortest proof of the given conclusion using the
given assumptions.

Process

We will now discuss how proofs are discovered.
The goal is to discover some composition of ax-
ioms (remember, in this context, axioms are viewed
as functions from sets of statements to sets of
statements) that will yield a correct proof, or will
map the set of statements representing the given



assumptions to the set of statements representing
the desired conclusion. To do this, JATP builds a
tree, where each node of the tree contains a set of
statements, as well as a String containing the name
of the axiom used to arrive at its set of facts. To
start, the given statements are packed into a node,
which acts as the root of the tree.

def reach-conclusion(index, tree)
curr = get_node_by_index(index, tree)
if conclusions is a subset of

curr.statements
return path_to_root(index, tree)

else
new_children = apply_axioms(axioms,

curr)
return reach_conclusion(index + 1,

tree.add_leaves(new_children))

At this point, recursive calls simultaneously build
the tree and search for the conclusion in the follow-
ing manner: For each node in the tree, JATP will first
check whether the set of statements within that node
contains the desired set of conclusions. If so, then
we are done. Otherwise JATP applies applicable
axioms to the set of statements within the current
node, yielding new sets of statements, which are
stored in new children of the current node. The tree
is updated and the next node is visited, repeating
these steps until the conclusion is found. The nodes
are visited in the order of Breadth First Search. This
ensures that the first time the conclusion is found,
the path from the node containing the conclusion to
the root of the tree is the shortest possible path.

Now we will discuss how these paths become
proofs. When JATP has found the answer, it traces
a path back to the root of the tree, making a list of
each of the sets of statements as well as the Strings
with the names of the axioms applied to reach those
sets of statements. Once this list is formed, it is a
simple matter of formatting it for printing, which is
discussed below.

Output

At this point, our path is represented as a list of
pairs, where each pair contains a set of statements
and the name of an axiom used to reach that
set of statements. To output a proof which looks
like the examples shown above, the list must be
reversed, so that the root node’s statements are the
first item in the list. Then each pair in the list
can be printed, with the axiom name followed by

the relevant statements from the set of statements.
Because each axiom only adds one statement to
the set of statements, it suffices to only print the
most recently added statement. Sets of statements
are represented internally as lists, so it is a simple
matter to find the most recently added item, since
it will be the last item in the list. This produces
proofs formatted as seen above and in the examples
to follow:

Example 2:
Given x = (+ y z) for some y even and z even,

prove x is even.
0) Given:

x = (+ y z)
y is even
z is even

1) Applying even-forward:
(* 2 b) = z

2) Applying even-forward:
(* 2 c) = y

3) Applying subst:
(+ (* 2 c) z) = x

4) Applying subst:
(+ (* 2 c) (* 2 b)) = x

5) Applying factor:
(* 2 (+ c b)) = x

6) Applying even-reverse:
x is even

This first example demonstrates a more compli-
cated proof. The only axiom we have not yet seen
is factor, which factors expressions.

Example 3:
Given x = (+ 1 (+ (+ 2 3) 4)), show x = (+ (+

1 2) (+ 3 4))
0) Given:

x = (+ 1 (+ (+ 2 3) 4))
1) Applying assoc:

(+ 1 (+ 2 (+ 3 4))) = x
2) Applying assoc:

(+ (+ 1 2) (+ 3 4)) = x

This next example illustrates another new axiom,
associativity. JATP is able to push the numbers
around to match the form it needs to.

Example 4:
Given x = (+ y z) for some y even and z odd,

prove x is odd.
0) Given:

x = (+ y z)
y is even
z is odd

1) Applying even-forward:
(* 2 a) = y

2) Applying odd-forward:
(+ (* 2 c) 1) = z

3) Applying subst:
(+ (* 2 a) z) = x



4) Applying subst:
(+ (* 2 a) (+ (* 2 c) 1)) = x

5) Applying assoc:
(+ (+ (* 2 a) (* 2 c)) 1) = x

6) Applying factor:
(+ (* 2 (+ a c)) 1) = x

7) Applying odd-reverse:
x is odd

This last example shows the longest proof so far,
incorporating many of the previously seen axioms.

IV. DISCUSSION, OPTIMIZATION, AND TESTING

The approach taken by JATP is reminiscent of
that of the BHK interpretation discussed earlier [5].
Consider once again what constitutes a proof of
an implication in BHK: A proof of P → Q is a
function f that transforms a proof of P into a proof
of Q. In our case, we are given a set of assumptions
A and a set of conclusions B, and the task of JATP is
to find a proof of A→ B. A valid proof of A→ B,
in my system, is considered to be a function that
maps A to B, or transforms A into B. This function
is a composition of smaller functions, which are rep-
resented internally as axioms, discussed previously.
While not identical to the BHK interpretation of
logic, JATP has not strayed too far away. JATP has
the added bonus of producing results that look much
more familiar to those comfortable with proofs in
classical mathematics.

Optimization

The largest problem in JATP is the vastness of the
search space. Every time a new axiom is added, the
search tree expands dramatically, leading to much
longer runtimes. JATP becomes able to prove more
advanced things, but at great cost.

The next logical step was to optimize JATP. The
guiding principle behind JATP is to produce proofs
that look similar to what a mathematician might
produce. But the methodology is obviously very
different; a human will use intuition to determine
the best sequence of steps that might lead to the
right answer, while JATP tries every combination of
all available axioms until it comes up with the best
solution. To optimize JATP, I attempted to bridge the
gap. In the context of parity and integers, there are
certain steps a human will take first in almost every
proof. More specifically, a human will attempt to
unpack definitions. For example, if a human saw the
statements ”x is even” and ”x = y”, their first step

Fig. 1. A plot of runtime in seconds versus axioms. On the far left
JATP is running with just 4 axioms, the evenness axioms, substitution, and
factorization. What is being run are 8 fairly straightforward proofs, which only
require the first 4 axioms listed in the prior sentence. As we move to the right,
new axioms are added. The most significant data point is the rightmost point,
as commutativity is an expensive axiom since it is applicable very often.

Fig. 2. A plot of search tree size in number of nodes versus axioms. On the
far left JATP is running with just 4 axioms, the evenness axioms, substitution,
and factorization. The same set of proofs is being run as in the prior chart.
As we move to the right, new axioms are added. The most significant data
point is the rightmost point, as commutativity is an expensive axiom since
it is applicable very often. The search tree size very closely resembles the
runtime.

would likely be to conclude that ”x = 2 * a”. Given
information is almost always useful, and anything
that can be unpacked right away ought to be. With
this guiding idea, I turned to implementation. JATP
now takes a fourth input, a list containing a subset
of the axioms. This input is referred to internally
as the ”cheats”. These axioms are to be applied
straight away before beginning the main recursion,
as described earlier. Every axiom of the cheats that
can be applied will be, and only one is applied at
a time. The result is a tree in which each node has
only one child, except for the singular leaf node. A
better way to describe this state is that the tree is
simply a linked list.



Fig. 3. Adding the optimizations described in this section drastically reduced
runtime.

def cheat(index, cheats, tree)
curr = get_node_by_index(index, tree)
if any_axioms_applicable(cheats, curr)

new_child =
apply_first_applicable_axiom(cheats,
curr)

return cheat(index + 1,
tree.add_leaves(new_child))

else
return tree

At this point, the tree is given to the main re-
cursive function, reach-conclusion, described previ-
ously. Then the process continues as normal. The
only difference is that the tree should have a long
trunk of nodes each with singular children. Because
all this work has been done to unpack definitions,
in theory, finding proofs should be faster.

Testing and Validation

Aside from unit testing the various components,
the main way of testing JATP is to ask it to prove
things that are known to be provable. The idea
behind JATP is to produce proofs that look correct
from the standpoint of a mathematician, so the best
way of checking for correctness of results is to look
through the proofs JATP produces and verify that
they indeed are correct. So testing comes down to
either comparing proofs JATP produces to known
correct proofs it has output previously as well as

Fig. 4. Adding the optimizations described in this section drastically reduced
the search tree size.

coming up with new problems for it to solve, and
verifying that those solutions are also correct.

V. LIMITATIONS AND FUTURE WORK

JATP is a proof-of-concept, and as such has
several severe limitations. Mainly, the consequence
of a vast search space is that many facts which
are true take an unreasonable amount of time and
computational power to prove, and so the problems
that can be solved using JATP are rather small. Were
I to continue there are several approaches I would
take to continue optimizing JATP:

• ”cheat” on conclusions as well as initial as-
sumptions. In the optimization section of this
paper I discussed what that means for initial
assumptions. If JATP could both work forwards
from assumptions and backwards from conclu-
sions and meet somewhere in the middle, that
would cut down significantly on search time.

• Support normal forms for expressions [7]. Con-
fining myself to binary expressions was costly,
as axioms like commutativity and associativity
are very often applicable, and grow the search
tree very quickly. If expressions instead had
variable numbers of elements and were repre-
sented as normal forms, it would be much easier



to manipulate them and find answers quickly,
instead of randomly applying axioms.

• Ideally, I would expand functionality so that it is
possible to prove things not just about integers
and parity, but about other mathematical objects
such as sets or groups.

If I decided instead to start from scratch instead of
using what I have, it is likely I would build a new
ATP more closely inspired by ITT, perhaps using
Agda or Proust as a base.

VI. CONCLUSION

In conclusion, throughout the duration of my
senior project I gained an understanding of com-
puterized theorem proving. I had the opportunity to
learn about Intuitionistic Type Theory and Logic, as
well as see it in action while working with Proust
and Agda. I then gained experience with theorem
provers by building my own, which helped me to
understand both what sorts of problems can be
solved and what sort of infrastructure is required
to solve them.
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APPENDIX A: AXIOMS

• even-forward: The forward direction for the
evenness definition.

– a is even → a = (∗ 2 b)

• even-reverse: The reverse direction for the even-
ness definition.

– a = (∗ 2 b) → a is even
• odd-forward: The forward direction for the odd-

ness definition.
– a is odd → a = (+ (∗ 2 b) 1)

• odd-reverse: The reverse direction for the odd-
ness definition.

– a = (+ (∗ 2 b) 1)→ a is odd
• subst: Substitution.

– (a = b) ∧ (a ∈ S ∃ statement S), → any
instance of a ∈ S can be replaced with b

• comm: Commutativity. Elements can be
swapped in binary expressions.

– (+ a b) = x→ (+ b a) = x
– (∗ a b) = x→ (∗ b a) = x

• assoc: Associativity.
– (+ a (+ b c))→ (+ (+ a b) c)
– (∗ a (∗ b c))→ (∗ (∗ a b) c)

• factor:
– (+ (∗ a b) (∗ a c))→ (∗ a (+ b c))
– (+ (∗ a b) a)→ (∗ a (+ b 1))

• simp: Simplification. Consider n1, n2 to be
integers.

– (+ n1 n2) = x→ n1 + n2 = x
– (∗ n1 n2) = x→ n1 ∗ n2 = x

APPENDIX B: SOURCE CODE

Source code for this project can be found at
https://github.com/JustinPrivitera/ATP2


