--- name: arboreto description: Infer gene regulatory networks (GRNs) from gene expression data using scalable algorithms (GRNBoost2, GENIE3). Use when analyzing transcriptomics data (bulk RNA-seq, single-cell RNA-seq) to identify transcription factor-target gene relationships and regulatory interactions. Supports distributed computation for large-scale datasets. --- # Arboreto ## Overview Arboreto is a computational library for inferring gene regulatory networks (GRNs) from gene expression data using parallelized algorithms that scale from single machines to multi-node clusters. **Core capability**: Identify which transcription factors (TFs) regulate which target genes based on expression patterns across observations (cells, samples, conditions). ## Quick Start Install arboreto: ```bash pip install arboreto ``` Basic GRN inference: ```python import pandas as pd from arboreto.algo import grnboost2 if __name__ == '__main__': # Load expression data (genes as columns) expression_matrix = pd.read_csv('expression_data.tsv', sep='\t') # Infer regulatory network network = grnboost2(expression_data=expression_matrix) # Save results (TF, target, importance) network.to_csv('network.tsv', sep='\t', index=False, header=False) ``` **Critical**: Always use `if __name__ == '__main__':` guard because Dask spawns new processes. ## Core Capabilities ### 1. Basic GRN Inference For standard GRN inference workflows including: - Input data preparation (Pandas DataFrame or NumPy array) - Running inference with GRNBoost2 or GENIE3 - Filtering by transcription factors - Output format and interpretation **See**: `references/basic_inference.md` **Use the ready-to-run script**: `scripts/basic_grn_inference.py` for standard inference tasks: ```bash python scripts/basic_grn_inference.py expression_data.tsv output_network.tsv --tf-file tfs.txt --seed 777 ``` ### 2. Algorithm Selection Arboreto provides two algorithms: **GRNBoost2 (Recommended)**: - Fast gradient boosting-based inference - Optimized for large datasets (10k+ observations) - Default choice for most analyses **GENIE3**: - Random Forest-based inference - Original multiple regression approach - Use for comparison or validation Quick comparison: ```python from arboreto.algo import grnboost2, genie3 # Fast, recommended network_grnboost = grnboost2(expression_data=matrix) # Classic algorithm network_genie3 = genie3(expression_data=matrix) ``` **For detailed algorithm comparison, parameters, and selection guidance**: `references/algorithms.md` ### 3. Distributed Computing Scale inference from local multi-core to cluster environments: **Local (default)** - Uses all available cores automatically: ```python network = grnboost2(expression_data=matrix) ``` **Custom local client** - Control resources: ```python from distributed import LocalCluster, Client local_cluster = LocalCluster(n_workers=10, memory_limit='8GB') client = Client(local_cluster) network = grnboost2(expression_data=matrix, client_or_address=client) client.close() local_cluster.close() ``` **Cluster computing** - Connect to remote Dask scheduler: ```python from distributed import Client client = Client('tcp://scheduler:8786') network = grnboost2(expression_data=matrix, client_or_address=client) ``` **For cluster setup, performance optimization, and large-scale workflows**: `references/distributed_computing.md` ## Installation **Recommended (Conda)**: ```bash conda install -c bioconda arboreto ``` **Alternative (pip)**: ```bash pip install arboreto ``` **For isolated environment**: ```bash conda create --name arboreto-env conda activate arboreto-env conda install -c bioconda arboreto ``` **Dependencies**: scipy, scikit-learn, numpy, pandas, dask, distributed ## Common Use Cases ### Single-Cell RNA-seq Analysis ```python import pandas as pd from arboreto.algo import grnboost2 if __name__ == '__main__': # Load single-cell expression matrix (cells x genes) sc_data = pd.read_csv('scrna_counts.tsv', sep='\t') # Infer cell-type-specific regulatory network network = grnboost2(expression_data=sc_data, seed=42) # Filter high-confidence links high_confidence = network[network['importance'] > 0.5] high_confidence.to_csv('grn_high_confidence.tsv', sep='\t', index=False) ``` ### Bulk RNA-seq with TF Filtering ```python from arboreto.utils import load_tf_names from arboreto.algo import grnboost2 if __name__ == '__main__': # Load data expression_data = pd.read_csv('rnaseq_tpm.tsv', sep='\t') tf_names = load_tf_names('human_tfs.txt') # Infer with TF restriction network = grnboost2( expression_data=expression_data, tf_names=tf_names, seed=123 ) network.to_csv('tf_target_network.tsv', sep='\t', index=False) ``` ### Comparative Analysis (Multiple Conditions) ```python from arboreto.algo import grnboost2 if __name__ == '__main__': # Infer networks for different conditions conditions = ['control', 'treatment_24h', 'treatment_48h'] for condition in conditions: data = pd.read_csv(f'{condition}_expression.tsv', sep='\t') network = grnboost2(expression_data=data, seed=42) network.to_csv(f'{condition}_network.tsv', sep='\t', index=False) ``` ## Output Interpretation Arboreto returns a DataFrame with regulatory links: | Column | Description | |--------|-------------| | `TF` | Transcription factor (regulator) | | `target` | Target gene | | `importance` | Regulatory importance score (higher = stronger) | **Filtering strategy**: - Top N links per target gene - Importance threshold (e.g., > 0.5) - Statistical significance testing (permutation tests) ## Integration with pySCENIC Arboreto is a core component of the SCENIC pipeline for single-cell regulatory network analysis: ```python # Step 1: Use arboreto for GRN inference from arboreto.algo import grnboost2 network = grnboost2(expression_data=sc_data, tf_names=tf_list) # Step 2: Use pySCENIC for regulon identification and activity scoring # (See pySCENIC documentation for downstream analysis) ``` ## Reproducibility Always set a seed for reproducible results: ```python network = grnboost2(expression_data=matrix, seed=777) ``` Run multiple seeds for robustness analysis: ```python from distributed import LocalCluster, Client if __name__ == '__main__': client = Client(LocalCluster()) seeds = [42, 123, 777] networks = [] for seed in seeds: net = grnboost2(expression_data=matrix, client_or_address=client, seed=seed) networks.append(net) # Combine networks and filter consensus links consensus = analyze_consensus(networks) ``` ## Troubleshooting **Memory errors**: Reduce dataset size by filtering low-variance genes or use distributed computing **Slow performance**: Use GRNBoost2 instead of GENIE3, enable distributed client, filter TF list **Dask errors**: Ensure `if __name__ == '__main__':` guard is present in scripts **Empty results**: Check data format (genes as columns), verify TF names match gene names