--- name: flowio description: "Parse FCS (Flow Cytometry Standard) files v2.0-3.1. Extract events as NumPy arrays, read metadata/channels, convert to CSV/DataFrame, for flow cytometry data preprocessing." --- # FlowIO: Flow Cytometry Standard File Handler ## Overview FlowIO is a lightweight Python library for reading and writing Flow Cytometry Standard (FCS) files. Parse FCS metadata, extract event data, and create new FCS files with minimal dependencies. The library supports FCS versions 2.0, 3.0, and 3.1, making it ideal for backend services, data pipelines, and basic cytometry file operations. ## When to Use This Skill This skill should be used when: - FCS files requiring parsing or metadata extraction - Flow cytometry data needing conversion to NumPy arrays - Event data requiring export to FCS format - Multi-dataset FCS files needing separation - Channel information extraction (scatter, fluorescence, time) - Cytometry file validation or inspection - Pre-processing workflows before advanced analysis **Related Tools:** For advanced flow cytometry analysis including compensation, gating, and FlowJo/GatingML support, recommend FlowKit library as a companion to FlowIO. ## Installation ```bash pip install flowio ``` Requires Python 3.9 or later. ## Quick Start ### Basic File Reading ```python from flowio import FlowData # Read FCS file flow_data = FlowData('experiment.fcs') # Access basic information print(f"FCS Version: {flow_data.version}") print(f"Events: {flow_data.event_count}") print(f"Channels: {flow_data.pnn_labels}") # Get event data as NumPy array events = flow_data.as_array() # Shape: (events, channels) ``` ### Creating FCS Files ```python import numpy as np from flowio import create_fcs # Prepare data data = np.array([[100, 200, 50], [150, 180, 60]]) # 2 events, 3 channels channels = ['FSC-A', 'SSC-A', 'FL1-A'] # Create FCS file create_fcs('output.fcs', data, channels) ``` ## Core Workflows ### Reading and Parsing FCS Files The FlowData class provides the primary interface for reading FCS files. **Standard Reading:** ```python from flowio import FlowData # Basic reading flow = FlowData('sample.fcs') # Access attributes version = flow.version # '3.0', '3.1', etc. event_count = flow.event_count # Number of events channel_count = flow.channel_count # Number of channels pnn_labels = flow.pnn_labels # Short channel names pns_labels = flow.pns_labels # Descriptive stain names # Get event data events = flow.as_array() # Preprocessed (gain, log scaling applied) raw_events = flow.as_array(preprocess=False) # Raw data ``` **Memory-Efficient Metadata Reading:** When only metadata is needed (no event data): ```python # Only parse TEXT segment, skip DATA and ANALYSIS flow = FlowData('sample.fcs', only_text=True) # Access metadata metadata = flow.text # Dictionary of TEXT segment keywords print(metadata.get('$DATE')) # Acquisition date print(metadata.get('$CYT')) # Instrument name ``` **Handling Problematic Files:** Some FCS files have offset discrepancies or errors: ```python # Ignore offset discrepancies between HEADER and TEXT sections flow = FlowData('problematic.fcs', ignore_offset_discrepancy=True) # Use HEADER offsets instead of TEXT offsets flow = FlowData('problematic.fcs', use_header_offsets=True) # Ignore offset errors entirely flow = FlowData('problematic.fcs', ignore_offset_error=True) ``` **Excluding Null Channels:** ```python # Exclude specific channels during parsing flow = FlowData('sample.fcs', null_channel_list=['Time', 'Null']) ``` ### Extracting Metadata and Channel Information FCS files contain rich metadata in the TEXT segment. **Common Metadata Keywords:** ```python flow = FlowData('sample.fcs') # File-level metadata text_dict = flow.text acquisition_date = text_dict.get('$DATE', 'Unknown') instrument = text_dict.get('$CYT', 'Unknown') data_type = flow.data_type # 'I', 'F', 'D', 'A' # Channel metadata for i in range(flow.channel_count): pnn = flow.pnn_labels[i] # Short name (e.g., 'FSC-A') pns = flow.pns_labels[i] # Descriptive name (e.g., 'Forward Scatter') pnr = flow.pnr_values[i] # Range/max value print(f"Channel {i}: {pnn} ({pns}), Range: {pnr}") ``` **Channel Type Identification:** FlowIO automatically categorizes channels: ```python # Get indices by channel type scatter_idx = flow.scatter_indices # [0, 1] for FSC, SSC fluoro_idx = flow.fluoro_indices # [2, 3, 4] for FL channels time_idx = flow.time_index # Index of time channel (or None) # Access specific channel types events = flow.as_array() scatter_data = events[:, scatter_idx] fluorescence_data = events[:, fluoro_idx] ``` **ANALYSIS Segment:** If present, access processed results: ```python if flow.analysis: analysis_keywords = flow.analysis # Dictionary of ANALYSIS keywords print(analysis_keywords) ``` ### Creating New FCS Files Generate FCS files from NumPy arrays or other data sources. **Basic Creation:** ```python import numpy as np from flowio import create_fcs # Create event data (rows=events, columns=channels) events = np.random.rand(10000, 5) * 1000 # Define channel names channel_names = ['FSC-A', 'SSC-A', 'FL1-A', 'FL2-A', 'Time'] # Create FCS file create_fcs('output.fcs', events, channel_names) ``` **With Descriptive Channel Names:** ```python # Add optional descriptive names (PnS) channel_names = ['FSC-A', 'SSC-A', 'FL1-A', 'FL2-A', 'Time'] descriptive_names = ['Forward Scatter', 'Side Scatter', 'FITC', 'PE', 'Time'] create_fcs('output.fcs', events, channel_names, opt_channel_names=descriptive_names) ``` **With Custom Metadata:** ```python # Add TEXT segment metadata metadata = { '$SRC': 'Python script', '$DATE': '19-OCT-2025', '$CYT': 'Synthetic Instrument', '$INST': 'Laboratory A' } create_fcs('output.fcs', events, channel_names, opt_channel_names=descriptive_names, metadata=metadata) ``` **Note:** FlowIO exports as FCS 3.1 with single-precision floating-point data. ### Exporting Modified Data Modify existing FCS files and re-export them. **Approach 1: Using write_fcs() Method:** ```python from flowio import FlowData # Read original file flow = FlowData('original.fcs') # Write with updated metadata flow.write_fcs('modified.fcs', metadata={'$SRC': 'Modified data'}) ``` **Approach 2: Extract, Modify, and Recreate:** For modifying event data: ```python from flowio import FlowData, create_fcs # Read and extract data flow = FlowData('original.fcs') events = flow.as_array(preprocess=False) # Modify event data events[:, 0] = events[:, 0] * 1.5 # Scale first channel # Create new FCS file with modified data create_fcs('modified.fcs', events, flow.pnn_labels, opt_channel_names=flow.pns_labels, metadata=flow.text) ``` ### Handling Multi-Dataset FCS Files Some FCS files contain multiple datasets in a single file. **Detecting Multi-Dataset Files:** ```python from flowio import FlowData, MultipleDataSetsError try: flow = FlowData('sample.fcs') except MultipleDataSetsError: print("File contains multiple datasets") # Use read_multiple_data_sets() instead ``` **Reading All Datasets:** ```python from flowio import read_multiple_data_sets # Read all datasets from file datasets = read_multiple_data_sets('multi_dataset.fcs') print(f"Found {len(datasets)} datasets") # Process each dataset for i, dataset in enumerate(datasets): print(f"\nDataset {i}:") print(f" Events: {dataset.event_count}") print(f" Channels: {dataset.pnn_labels}") # Get event data for this dataset events = dataset.as_array() print(f" Shape: {events.shape}") print(f" Mean values: {events.mean(axis=0)}") ``` **Reading Specific Dataset:** ```python from flowio import FlowData # Read first dataset (nextdata_offset=0) first_dataset = FlowData('multi.fcs', nextdata_offset=0) # Read second dataset using NEXTDATA offset from first next_offset = int(first_dataset.text['$NEXTDATA']) if next_offset > 0: second_dataset = FlowData('multi.fcs', nextdata_offset=next_offset) ``` ## Data Preprocessing FlowIO applies standard FCS preprocessing transformations when `preprocess=True`. **Preprocessing Steps:** 1. **Gain Scaling:** Multiply values by PnG (gain) keyword 2. **Logarithmic Transformation:** Apply PnE exponential transformation if present - Formula: `value = a * 10^(b * raw_value)` where PnE = "a,b" 3. **Time Scaling:** Convert time values to appropriate units **Controlling Preprocessing:** ```python # Preprocessed data (default) preprocessed = flow.as_array(preprocess=True) # Raw data (no transformations) raw = flow.as_array(preprocess=False) ``` ## Error Handling Handle common FlowIO exceptions appropriately. ```python from flowio import ( FlowData, FCSParsingError, DataOffsetDiscrepancyError, MultipleDataSetsError ) try: flow = FlowData('sample.fcs') events = flow.as_array() except FCSParsingError as e: print(f"Failed to parse FCS file: {e}") # Try with relaxed parsing flow = FlowData('sample.fcs', ignore_offset_error=True) except DataOffsetDiscrepancyError as e: print(f"Offset discrepancy detected: {e}") # Use ignore_offset_discrepancy parameter flow = FlowData('sample.fcs', ignore_offset_discrepancy=True) except MultipleDataSetsError as e: print(f"Multiple datasets detected: {e}") # Use read_multiple_data_sets instead from flowio import read_multiple_data_sets datasets = read_multiple_data_sets('sample.fcs') except Exception as e: print(f"Unexpected error: {e}") ``` ## Common Use Cases ### Inspecting FCS File Contents Quick exploration of FCS file structure: ```python from flowio import FlowData flow = FlowData('unknown.fcs') print("=" * 50) print(f"File: {flow.name}") print(f"Version: {flow.version}") print(f"Size: {flow.file_size:,} bytes") print("=" * 50) print(f"\nEvents: {flow.event_count:,}") print(f"Channels: {flow.channel_count}") print("\nChannel Information:") for i, (pnn, pns) in enumerate(zip(flow.pnn_labels, flow.pns_labels)): ch_type = "scatter" if i in flow.scatter_indices else \ "fluoro" if i in flow.fluoro_indices else \ "time" if i == flow.time_index else "other" print(f" [{i}] {pnn:10s} | {pns:30s} | {ch_type}") print("\nKey Metadata:") for key in ['$DATE', '$BTIM', '$ETIM', '$CYT', '$INST', '$SRC']: value = flow.text.get(key, 'N/A') print(f" {key:15s}: {value}") ``` ### Batch Processing Multiple Files Process a directory of FCS files: ```python from pathlib import Path from flowio import FlowData import pandas as pd # Find all FCS files fcs_files = list(Path('data/').glob('*.fcs')) # Extract summary information summaries = [] for fcs_path in fcs_files: try: flow = FlowData(str(fcs_path), only_text=True) summaries.append({ 'filename': fcs_path.name, 'version': flow.version, 'events': flow.event_count, 'channels': flow.channel_count, 'date': flow.text.get('$DATE', 'N/A') }) except Exception as e: print(f"Error processing {fcs_path.name}: {e}") # Create summary DataFrame df = pd.DataFrame(summaries) print(df) ``` ### Converting FCS to CSV Export event data to CSV format: ```python from flowio import FlowData import pandas as pd # Read FCS file flow = FlowData('sample.fcs') # Convert to DataFrame df = pd.DataFrame( flow.as_array(), columns=flow.pnn_labels ) # Add metadata as attributes df.attrs['fcs_version'] = flow.version df.attrs['instrument'] = flow.text.get('$CYT', 'Unknown') # Export to CSV df.to_csv('output.csv', index=False) print(f"Exported {len(df)} events to CSV") ``` ### Filtering Events and Re-exporting Apply filters and save filtered data: ```python from flowio import FlowData, create_fcs import numpy as np # Read original file flow = FlowData('sample.fcs') events = flow.as_array(preprocess=False) # Apply filtering (example: threshold on first channel) fsc_idx = 0 threshold = 500 mask = events[:, fsc_idx] > threshold filtered_events = events[mask] print(f"Original events: {len(events)}") print(f"Filtered events: {len(filtered_events)}") # Create new FCS file with filtered data create_fcs('filtered.fcs', filtered_events, flow.pnn_labels, opt_channel_names=flow.pns_labels, metadata={**flow.text, '$SRC': 'Filtered data'}) ``` ### Extracting Specific Channels Extract and process specific channels: ```python from flowio import FlowData import numpy as np flow = FlowData('sample.fcs') events = flow.as_array() # Extract fluorescence channels only fluoro_indices = flow.fluoro_indices fluoro_data = events[:, fluoro_indices] fluoro_names = [flow.pnn_labels[i] for i in fluoro_indices] print(f"Fluorescence channels: {fluoro_names}") print(f"Shape: {fluoro_data.shape}") # Calculate statistics per channel for i, name in enumerate(fluoro_names): channel_data = fluoro_data[:, i] print(f"\n{name}:") print(f" Mean: {channel_data.mean():.2f}") print(f" Median: {np.median(channel_data):.2f}") print(f" Std Dev: {channel_data.std():.2f}") ``` ## Best Practices 1. **Memory Efficiency:** Use `only_text=True` when event data is not needed 2. **Error Handling:** Wrap file operations in try-except blocks for robust code 3. **Multi-Dataset Detection:** Check for MultipleDataSetsError and use appropriate function 4. **Preprocessing Control:** Explicitly set `preprocess` parameter based on analysis needs 5. **Offset Issues:** If parsing fails, try `ignore_offset_discrepancy=True` parameter 6. **Channel Validation:** Verify channel counts and names match expectations before processing 7. **Metadata Preservation:** When modifying files, preserve original TEXT segment keywords ## Advanced Topics ### Understanding FCS File Structure FCS files consist of four segments: 1. **HEADER:** FCS version and byte offsets for other segments 2. **TEXT:** Key-value metadata pairs (delimiter-separated) 3. **DATA:** Raw event data (binary/float/ASCII format) 4. **ANALYSIS** (optional): Results from data processing Access these segments via FlowData attributes: - `flow.header` - HEADER segment - `flow.text` - TEXT segment keywords - `flow.events` - DATA segment (as bytes) - `flow.analysis` - ANALYSIS segment keywords (if present) ### Detailed API Reference For comprehensive API documentation including all parameters, methods, exceptions, and FCS keyword reference, consult the detailed reference file: **Read:** `references/api_reference.md` The reference includes: - Complete FlowData class documentation - All utility functions (read_multiple_data_sets, create_fcs) - Exception classes and handling - FCS file structure details - Common TEXT segment keywords - Extended example workflows When working with complex FCS operations or encountering unusual file formats, load this reference for detailed guidance. ## Integration Notes **NumPy Arrays:** All event data is returned as NumPy ndarrays with shape (events, channels) **Pandas DataFrames:** Easily convert to DataFrames for analysis: ```python import pandas as pd df = pd.DataFrame(flow.as_array(), columns=flow.pnn_labels) ``` **FlowKit Integration:** For advanced analysis (compensation, gating, FlowJo support), use FlowKit library which builds on FlowIO's parsing capabilities **Web Applications:** FlowIO's minimal dependencies make it ideal for web backend services processing FCS uploads ## Troubleshooting **Problem:** "Offset discrepancy error" **Solution:** Use `ignore_offset_discrepancy=True` parameter **Problem:** "Multiple datasets error" **Solution:** Use `read_multiple_data_sets()` function instead of FlowData constructor **Problem:** Out of memory with large files **Solution:** Use `only_text=True` for metadata-only operations, or process events in chunks **Problem:** Unexpected channel counts **Solution:** Check for null channels; use `null_channel_list` parameter to exclude them **Problem:** Cannot modify event data in place **Solution:** FlowIO doesn't support direct modification; extract data, modify, then use `create_fcs()` to save ## Summary FlowIO provides essential FCS file handling capabilities for flow cytometry workflows. Use it for parsing, metadata extraction, and file creation. For simple file operations and data extraction, FlowIO is sufficient. For complex analysis including compensation and gating, integrate with FlowKit or other specialized tools.