--- name: pytdc description: "Therapeutics Data Commons. AI-ready drug discovery datasets (ADME, toxicity, DTI), benchmarks, scaffold splits, molecular oracles, for therapeutic ML and pharmacological prediction." --- # PyTDC (Therapeutics Data Commons) ## Overview PyTDC is an open-science platform providing AI-ready datasets and benchmarks for drug discovery and development. Access curated datasets spanning the entire therapeutics pipeline with standardized evaluation metrics and meaningful data splits, organized into three categories: single-instance prediction (molecular/protein properties), multi-instance prediction (drug-target interactions, DDI), and generation (molecule generation, retrosynthesis). ## When to Use This Skill This skill should be used when: - Working with drug discovery or therapeutic ML datasets - Benchmarking machine learning models on standardized pharmaceutical tasks - Predicting molecular properties (ADME, toxicity, bioactivity) - Predicting drug-target or drug-drug interactions - Generating novel molecules with desired properties - Accessing curated datasets with proper train/test splits (scaffold, cold-split) - Using molecular oracles for property optimization ## Installation & Setup Install PyTDC using pip: ```bash pip install PyTDC ``` To upgrade to the latest version: ```bash pip install PyTDC --upgrade ``` Core dependencies (automatically installed): - numpy, pandas, tqdm, seaborn, scikit_learn, fuzzywuzzy Additional packages are installed automatically as needed for specific features. ## Quick Start The basic pattern for accessing any TDC dataset follows this structure: ```python from tdc. import data = (name='') split = data.get_split(method='scaffold', seed=1, frac=[0.7, 0.1, 0.2]) df = data.get_data(format='df') ``` Where: - ``: One of `single_pred`, `multi_pred`, or `generation` - ``: Specific task category (e.g., ADME, DTI, MolGen) - ``: Dataset name within that task **Example - Loading ADME data:** ```python from tdc.single_pred import ADME data = ADME(name='Caco2_Wang') split = data.get_split(method='scaffold') # Returns dict with 'train', 'valid', 'test' DataFrames ``` ## Single-Instance Prediction Tasks Single-instance prediction involves forecasting properties of individual biomedical entities (molecules, proteins, etc.). ### Available Task Categories #### 1. ADME (Absorption, Distribution, Metabolism, Excretion) Predict pharmacokinetic properties of drug molecules. ```python from tdc.single_pred import ADME data = ADME(name='Caco2_Wang') # Intestinal permeability # Other datasets: HIA_Hou, Bioavailability_Ma, Lipophilicity_AstraZeneca, etc. ``` **Common ADME datasets:** - Caco2 - Intestinal permeability - HIA - Human intestinal absorption - Bioavailability - Oral bioavailability - Lipophilicity - Octanol-water partition coefficient - Solubility - Aqueous solubility - BBB - Blood-brain barrier penetration - CYP - Cytochrome P450 metabolism #### 2. Toxicity (Tox) Predict toxicity and adverse effects of compounds. ```python from tdc.single_pred import Tox data = Tox(name='hERG') # Cardiotoxicity # Other datasets: AMES, DILI, Carcinogens_Lagunin, etc. ``` **Common toxicity datasets:** - hERG - Cardiac toxicity - AMES - Mutagenicity - DILI - Drug-induced liver injury - Carcinogens - Carcinogenicity - ClinTox - Clinical trial toxicity #### 3. HTS (High-Throughput Screening) Bioactivity predictions from screening data. ```python from tdc.single_pred import HTS data = HTS(name='SARSCoV2_Vitro_Touret') ``` #### 4. QM (Quantum Mechanics) Quantum mechanical properties of molecules. ```python from tdc.single_pred import QM data = QM(name='QM7') ``` #### 5. Other Single Prediction Tasks - **Yields**: Chemical reaction yield prediction - **Epitope**: Epitope prediction for biologics - **Develop**: Development-stage predictions - **CRISPROutcome**: Gene editing outcome prediction ### Data Format Single prediction datasets typically return DataFrames with columns: - `Drug_ID` or `Compound_ID`: Unique identifier - `Drug` or `X`: SMILES string or molecular representation - `Y`: Target label (continuous or binary) ## Multi-Instance Prediction Tasks Multi-instance prediction involves forecasting properties of interactions between multiple biomedical entities. ### Available Task Categories #### 1. DTI (Drug-Target Interaction) Predict binding affinity between drugs and protein targets. ```python from tdc.multi_pred import DTI data = DTI(name='BindingDB_Kd') split = data.get_split() ``` **Available datasets:** - BindingDB_Kd - Dissociation constant (52,284 pairs) - BindingDB_IC50 - Half-maximal inhibitory concentration (991,486 pairs) - BindingDB_Ki - Inhibition constant (375,032 pairs) - DAVIS, KIBA - Kinase binding datasets **Data format:** Drug_ID, Target_ID, Drug (SMILES), Target (sequence), Y (binding affinity) #### 2. DDI (Drug-Drug Interaction) Predict interactions between drug pairs. ```python from tdc.multi_pred import DDI data = DDI(name='DrugBank') split = data.get_split() ``` Multi-class classification task predicting interaction types. Dataset contains 191,808 DDI pairs with 1,706 drugs. #### 3. PPI (Protein-Protein Interaction) Predict protein-protein interactions. ```python from tdc.multi_pred import PPI data = PPI(name='HuRI') ``` #### 4. Other Multi-Prediction Tasks - **GDA**: Gene-disease associations - **DrugRes**: Drug resistance prediction - **DrugSyn**: Drug synergy prediction - **PeptideMHC**: Peptide-MHC binding - **AntibodyAff**: Antibody affinity prediction - **MTI**: miRNA-target interactions - **Catalyst**: Catalyst prediction - **TrialOutcome**: Clinical trial outcome prediction ## Generation Tasks Generation tasks involve creating novel biomedical entities with desired properties. ### 1. Molecular Generation (MolGen) Generate diverse, novel molecules with desirable chemical properties. ```python from tdc.generation import MolGen data = MolGen(name='ChEMBL_V29') split = data.get_split() ``` Use with oracles to optimize for specific properties: ```python from tdc import Oracle oracle = Oracle(name='GSK3B') score = oracle('CC(C)Cc1ccc(cc1)C(C)C(O)=O') # Evaluate SMILES ``` See `references/oracles.md` for all available oracle functions. ### 2. Retrosynthesis (RetroSyn) Predict reactants needed to synthesize a target molecule. ```python from tdc.generation import RetroSyn data = RetroSyn(name='USPTO') split = data.get_split() ``` Dataset contains 1,939,253 reactions from USPTO database. ### 3. Paired Molecule Generation Generate molecule pairs (e.g., prodrug-drug pairs). ```python from tdc.generation import PairMolGen data = PairMolGen(name='Prodrug') ``` For detailed oracle documentation and molecular generation workflows, refer to `references/oracles.md` and `scripts/molecular_generation.py`. ## Benchmark Groups Benchmark groups provide curated collections of related datasets for systematic model evaluation. ### ADMET Benchmark Group ```python from tdc.benchmark_group import admet_group group = admet_group(path='data/') # Get benchmark datasets benchmark = group.get('Caco2_Wang') predictions = {} for seed in [1, 2, 3, 4, 5]: train, valid = benchmark['train'], benchmark['valid'] # Train model here predictions[seed] = model.predict(benchmark['test']) # Evaluate with required 5 seeds results = group.evaluate(predictions) ``` **ADMET Group includes 22 datasets** covering absorption, distribution, metabolism, excretion, and toxicity. ### Other Benchmark Groups Available benchmark groups include collections for: - ADMET properties - Drug-target interactions - Drug combination prediction - And more specialized therapeutic tasks For benchmark evaluation workflows, see `scripts/benchmark_evaluation.py`. ## Data Functions TDC provides comprehensive data processing utilities organized into four categories. ### 1. Dataset Splits Retrieve train/validation/test partitions with various strategies: ```python # Scaffold split (default for most tasks) split = data.get_split(method='scaffold', seed=1, frac=[0.7, 0.1, 0.2]) # Random split split = data.get_split(method='random', seed=42, frac=[0.8, 0.1, 0.1]) # Cold split (for DTI/DDI tasks) split = data.get_split(method='cold_drug', seed=1) # Unseen drugs in test split = data.get_split(method='cold_target', seed=1) # Unseen targets in test ``` **Available split strategies:** - `random`: Random shuffling - `scaffold`: Scaffold-based (for chemical diversity) - `cold_drug`, `cold_target`, `cold_drug_target`: For DTI tasks - `temporal`: Time-based splits for temporal datasets ### 2. Model Evaluation Use standardized metrics for evaluation: ```python from tdc import Evaluator # For binary classification evaluator = Evaluator(name='ROC-AUC') score = evaluator(y_true, y_pred) # For regression evaluator = Evaluator(name='RMSE') score = evaluator(y_true, y_pred) ``` **Available metrics:** ROC-AUC, PR-AUC, F1, Accuracy, RMSE, MAE, R2, Spearman, Pearson, and more. ### 3. Data Processing TDC provides 11 key processing utilities: ```python from tdc.chem_utils import MolConvert # Molecule format conversion converter = MolConvert(src='SMILES', dst='PyG') pyg_graph = converter('CC(C)Cc1ccc(cc1)C(C)C(O)=O') ``` **Processing utilities include:** - Molecule format conversion (SMILES, SELFIES, PyG, DGL, ECFP, etc.) - Molecule filters (PAINS, drug-likeness) - Label binarization and unit conversion - Data balancing (over/under-sampling) - Negative sampling for pair data - Graph transformation - Entity retrieval (CID to SMILES, UniProt to sequence) For comprehensive utilities documentation, see `references/utilities.md`. ### 4. Molecule Generation Oracles TDC provides 17+ oracle functions for molecular optimization: ```python from tdc import Oracle # Single oracle oracle = Oracle(name='DRD2') score = oracle('CC(C)Cc1ccc(cc1)C(C)C(O)=O') # Multiple oracles oracle = Oracle(name='JNK3') scores = oracle(['SMILES1', 'SMILES2', 'SMILES3']) ``` For complete oracle documentation, see `references/oracles.md`. ## Advanced Features ### Retrieve Available Datasets ```python from tdc.utils import retrieve_dataset_names # Get all ADME datasets adme_datasets = retrieve_dataset_names('ADME') # Get all DTI datasets dti_datasets = retrieve_dataset_names('DTI') ``` ### Label Transformations ```python # Get label mapping label_map = data.get_label_map(name='DrugBank') # Convert labels from tdc.chem_utils import label_transform transformed = label_transform(y, from_unit='nM', to_unit='p') ``` ### Database Queries ```python from tdc.utils import cid2smiles, uniprot2seq # Convert PubChem CID to SMILES smiles = cid2smiles(2244) # Convert UniProt ID to amino acid sequence sequence = uniprot2seq('P12345') ``` ## Common Workflows ### Workflow 1: Train a Single Prediction Model See `scripts/load_and_split_data.py` for a complete example: ```python from tdc.single_pred import ADME from tdc import Evaluator # Load data data = ADME(name='Caco2_Wang') split = data.get_split(method='scaffold', seed=42) train, valid, test = split['train'], split['valid'], split['test'] # Train model (user implements) # model.fit(train['Drug'], train['Y']) # Evaluate evaluator = Evaluator(name='MAE') # score = evaluator(test['Y'], predictions) ``` ### Workflow 2: Benchmark Evaluation See `scripts/benchmark_evaluation.py` for a complete example with multiple seeds and proper evaluation protocol. ### Workflow 3: Molecular Generation with Oracles See `scripts/molecular_generation.py` for an example of goal-directed generation using oracle functions. ## Resources This skill includes bundled resources for common TDC workflows: ### scripts/ - `load_and_split_data.py`: Template for loading and splitting TDC datasets with various strategies - `benchmark_evaluation.py`: Template for running benchmark group evaluations with proper 5-seed protocol - `molecular_generation.py`: Template for molecular generation using oracle functions ### references/ - `datasets.md`: Comprehensive catalog of all available datasets organized by task type - `oracles.md`: Complete documentation of all 17+ molecule generation oracles - `utilities.md`: Detailed guide to data processing, splitting, and evaluation utilities ## Additional Resources - **Official Website**: https://tdcommons.ai - **Documentation**: https://tdc.readthedocs.io - **GitHub**: https://github.com/mims-harvard/TDC - **Paper**: NeurIPS 2021 - "Therapeutics Data Commons: Machine Learning Datasets and Tasks for Drug Discovery and Development"