--- name: scanpy description: "Single-cell RNA-seq analysis. Load .h5ad/10X data, QC, normalization, PCA/UMAP/t-SNE, Leiden clustering, marker genes, cell type annotation, trajectory, for scRNA-seq analysis." --- # Scanpy: Single-Cell Analysis ## Overview Scanpy is a scalable Python toolkit for analyzing single-cell RNA-seq data, built on AnnData. Apply this skill for complete single-cell workflows including quality control, normalization, dimensionality reduction, clustering, marker gene identification, visualization, and trajectory analysis. ## When to Use This Skill This skill should be used when: - Analyzing single-cell RNA-seq data (.h5ad, 10X, CSV formats) - Performing quality control on scRNA-seq datasets - Creating UMAP, t-SNE, or PCA visualizations - Identifying cell clusters and finding marker genes - Annotating cell types based on gene expression - Conducting trajectory inference or pseudotime analysis - Generating publication-quality single-cell plots ## Quick Start ### Basic Import and Setup ```python import scanpy as sc import pandas as pd import numpy as np # Configure settings sc.settings.verbosity = 3 sc.settings.set_figure_params(dpi=80, facecolor='white') sc.settings.figdir = './figures/' ``` ### Loading Data ```python # From 10X Genomics adata = sc.read_10x_mtx('path/to/data/') adata = sc.read_10x_h5('path/to/data.h5') # From h5ad (AnnData format) adata = sc.read_h5ad('path/to/data.h5ad') # From CSV adata = sc.read_csv('path/to/data.csv') ``` ### Understanding AnnData Structure The AnnData object is the core data structure in scanpy: ```python adata.X # Expression matrix (cells × genes) adata.obs # Cell metadata (DataFrame) adata.var # Gene metadata (DataFrame) adata.uns # Unstructured annotations (dict) adata.obsm # Multi-dimensional cell data (PCA, UMAP) adata.raw # Raw data backup # Access cell and gene names adata.obs_names # Cell barcodes adata.var_names # Gene names ``` ## Standard Analysis Workflow ### 1. Quality Control Identify and filter low-quality cells and genes: ```python # Identify mitochondrial genes adata.var['mt'] = adata.var_names.str.startswith('MT-') # Calculate QC metrics sc.pp.calculate_qc_metrics(adata, qc_vars=['mt'], inplace=True) # Visualize QC metrics sc.pl.violin(adata, ['n_genes_by_counts', 'total_counts', 'pct_counts_mt'], jitter=0.4, multi_panel=True) # Filter cells and genes sc.pp.filter_cells(adata, min_genes=200) sc.pp.filter_genes(adata, min_cells=3) adata = adata[adata.obs.pct_counts_mt < 5, :] # Remove high MT% cells ``` **Use the QC script for automated analysis:** ```bash python scripts/qc_analysis.py input_file.h5ad --output filtered.h5ad ``` ### 2. Normalization and Preprocessing ```python # Normalize to 10,000 counts per cell sc.pp.normalize_total(adata, target_sum=1e4) # Log-transform sc.pp.log1p(adata) # Save raw counts for later adata.raw = adata # Identify highly variable genes sc.pp.highly_variable_genes(adata, n_top_genes=2000) sc.pl.highly_variable_genes(adata) # Subset to highly variable genes adata = adata[:, adata.var.highly_variable] # Regress out unwanted variation sc.pp.regress_out(adata, ['total_counts', 'pct_counts_mt']) # Scale data sc.pp.scale(adata, max_value=10) ``` ### 3. Dimensionality Reduction ```python # PCA sc.tl.pca(adata, svd_solver='arpack') sc.pl.pca_variance_ratio(adata, log=True) # Check elbow plot # Compute neighborhood graph sc.pp.neighbors(adata, n_neighbors=10, n_pcs=40) # UMAP for visualization sc.tl.umap(adata) sc.pl.umap(adata, color='leiden') # Alternative: t-SNE sc.tl.tsne(adata) ``` ### 4. Clustering ```python # Leiden clustering (recommended) sc.tl.leiden(adata, resolution=0.5) sc.pl.umap(adata, color='leiden', legend_loc='on data') # Try multiple resolutions to find optimal granularity for res in [0.3, 0.5, 0.8, 1.0]: sc.tl.leiden(adata, resolution=res, key_added=f'leiden_{res}') ``` ### 5. Marker Gene Identification ```python # Find marker genes for each cluster sc.tl.rank_genes_groups(adata, 'leiden', method='wilcoxon') # Visualize results sc.pl.rank_genes_groups(adata, n_genes=25, sharey=False) sc.pl.rank_genes_groups_heatmap(adata, n_genes=10) sc.pl.rank_genes_groups_dotplot(adata, n_genes=5) # Get results as DataFrame markers = sc.get.rank_genes_groups_df(adata, group='0') ``` ### 6. Cell Type Annotation ```python # Define marker genes for known cell types marker_genes = ['CD3D', 'CD14', 'MS4A1', 'NKG7', 'FCGR3A'] # Visualize markers sc.pl.umap(adata, color=marker_genes, use_raw=True) sc.pl.dotplot(adata, var_names=marker_genes, groupby='leiden') # Manual annotation cluster_to_celltype = { '0': 'CD4 T cells', '1': 'CD14+ Monocytes', '2': 'B cells', '3': 'CD8 T cells', } adata.obs['cell_type'] = adata.obs['leiden'].map(cluster_to_celltype) # Visualize annotated types sc.pl.umap(adata, color='cell_type', legend_loc='on data') ``` ### 7. Save Results ```python # Save processed data adata.write('results/processed_data.h5ad') # Export metadata adata.obs.to_csv('results/cell_metadata.csv') adata.var.to_csv('results/gene_metadata.csv') ``` ## Common Tasks ### Creating Publication-Quality Plots ```python # Set high-quality defaults sc.settings.set_figure_params(dpi=300, frameon=False, figsize=(5, 5)) sc.settings.file_format_figs = 'pdf' # UMAP with custom styling sc.pl.umap(adata, color='cell_type', palette='Set2', legend_loc='on data', legend_fontsize=12, legend_fontoutline=2, frameon=False, save='_publication.pdf') # Heatmap of marker genes sc.pl.heatmap(adata, var_names=genes, groupby='cell_type', swap_axes=True, show_gene_labels=True, save='_markers.pdf') # Dot plot sc.pl.dotplot(adata, var_names=genes, groupby='cell_type', save='_dotplot.pdf') ``` Refer to `references/plotting_guide.md` for comprehensive visualization examples. ### Trajectory Inference ```python # PAGA (Partition-based graph abstraction) sc.tl.paga(adata, groups='leiden') sc.pl.paga(adata, color='leiden') # Diffusion pseudotime adata.uns['iroot'] = np.flatnonzero(adata.obs['leiden'] == '0')[0] sc.tl.dpt(adata) sc.pl.umap(adata, color='dpt_pseudotime') ``` ### Differential Expression Between Conditions ```python # Compare treated vs control within cell types adata_subset = adata[adata.obs['cell_type'] == 'T cells'] sc.tl.rank_genes_groups(adata_subset, groupby='condition', groups=['treated'], reference='control') sc.pl.rank_genes_groups(adata_subset, groups=['treated']) ``` ### Gene Set Scoring ```python # Score cells for gene set expression gene_set = ['CD3D', 'CD3E', 'CD3G'] sc.tl.score_genes(adata, gene_set, score_name='T_cell_score') sc.pl.umap(adata, color='T_cell_score') ``` ### Batch Correction ```python # ComBat batch correction sc.pp.combat(adata, key='batch') # Alternative: use Harmony or scVI (separate packages) ``` ## Key Parameters to Adjust ### Quality Control - `min_genes`: Minimum genes per cell (typically 200-500) - `min_cells`: Minimum cells per gene (typically 3-10) - `pct_counts_mt`: Mitochondrial threshold (typically 5-20%) ### Normalization - `target_sum`: Target counts per cell (default 1e4) ### Feature Selection - `n_top_genes`: Number of HVGs (typically 2000-3000) - `min_mean`, `max_mean`, `min_disp`: HVG selection parameters ### Dimensionality Reduction - `n_pcs`: Number of principal components (check variance ratio plot) - `n_neighbors`: Number of neighbors (typically 10-30) ### Clustering - `resolution`: Clustering granularity (0.4-1.2, higher = more clusters) ## Common Pitfalls and Best Practices 1. **Always save raw counts**: `adata.raw = adata` before filtering genes 2. **Check QC plots carefully**: Adjust thresholds based on dataset quality 3. **Use Leiden over Louvain**: More efficient and better results 4. **Try multiple clustering resolutions**: Find optimal granularity 5. **Validate cell type annotations**: Use multiple marker genes 6. **Use `use_raw=True` for gene expression plots**: Shows original counts 7. **Check PCA variance ratio**: Determine optimal number of PCs 8. **Save intermediate results**: Long workflows can fail partway through ## Bundled Resources ### scripts/qc_analysis.py Automated quality control script that calculates metrics, generates plots, and filters data: ```bash python scripts/qc_analysis.py input.h5ad --output filtered.h5ad \ --mt-threshold 5 --min-genes 200 --min-cells 3 ``` ### references/standard_workflow.md Complete step-by-step workflow with detailed explanations and code examples for: - Data loading and setup - Quality control with visualization - Normalization and scaling - Feature selection - Dimensionality reduction (PCA, UMAP, t-SNE) - Clustering (Leiden, Louvain) - Marker gene identification - Cell type annotation - Trajectory inference - Differential expression Read this reference when performing a complete analysis from scratch. ### references/api_reference.md Quick reference guide for scanpy functions organized by module: - Reading/writing data (`sc.read_*`, `adata.write_*`) - Preprocessing (`sc.pp.*`) - Tools (`sc.tl.*`) - Plotting (`sc.pl.*`) - AnnData structure and manipulation - Settings and utilities Use this for quick lookup of function signatures and common parameters. ### references/plotting_guide.md Comprehensive visualization guide including: - Quality control plots - Dimensionality reduction visualizations - Clustering visualizations - Marker gene plots (heatmaps, dot plots, violin plots) - Trajectory and pseudotime plots - Publication-quality customization - Multi-panel figures - Color palettes and styling Consult this when creating publication-ready figures. ### assets/analysis_template.py Complete analysis template providing a full workflow from data loading through cell type annotation. Copy and customize this template for new analyses: ```bash cp assets/analysis_template.py my_analysis.py # Edit parameters and run python my_analysis.py ``` The template includes all standard steps with configurable parameters and helpful comments. ## Additional Resources - **Official scanpy documentation**: https://scanpy.readthedocs.io/ - **Scanpy tutorials**: https://scanpy-tutorials.readthedocs.io/ - **scverse ecosystem**: https://scverse.org/ (related tools: squidpy, scvi-tools, cellrank) - **Best practices**: Luecken & Theis (2019) "Current best practices in single-cell RNA-seq" ## Tips for Effective Analysis 1. **Start with the template**: Use `assets/analysis_template.py` as a starting point 2. **Run QC script first**: Use `scripts/qc_analysis.py` for initial filtering 3. **Consult references as needed**: Load workflow and API references into context 4. **Iterate on clustering**: Try multiple resolutions and visualization methods 5. **Validate biologically**: Check marker genes match expected cell types 6. **Document parameters**: Record QC thresholds and analysis settings 7. **Save checkpoints**: Write intermediate results at key steps