
ELF File
Three main types of ELF files:

• relocatable file holds code and data suitable for linking with other object
files, to create an executable or shared object.

• executable file program suitable for execution.
• Shared object file code and data suitable for linking in two contexts. Link

editor may process it with other relocatable and shared object files to create
another object file. Second, dynamic linker combines it with executable
file and other shared objects to create process image.

File Format
For convenience and efficiency, object file format provides different views depend-
ing on environment:

Linking View Execution View

+------------------+ +------------------+
ELF Header		ELF Header
+------------------+ +------------------+		
Program Header		Program Header
Table (optional)		Table
+------------------+ +------------------+		
Section 1		
		Segment 1
+------------------+		
...		
+------------------+ +------------------+		
Section n		
		Segment 2
+------------------+		
...		
+------------------+ +------------------+		
...		...
+------------------+ +------------------+		
Section Header		Section Header
Table		Table (optional)
+------------------+ +------------------+

1

Elf header is at the beginning used as a “road map” describing file’s organization.
Sections are the bulk of object file information for linking view: instructions,
data, symbol table, relocation information, and so on.

A program header table tells system how to create a process image. So files
that will be executed needs from a program header table; relocatable files do
not need one (not intended to be executed). A section header table contains
information describing file’s sections. Every section has an entry; each entry
gives information (section name, size, etc). Files used during linking must have
a section header table.

Important the order of the tables in the figure may differ. Sections and segments
have no specified order. Only ELF header has a fixed position, and this gives
the offsets to the other headers.

Data Representation
Object file format supports various processors (8, 32 or 64 bits) but it’s intended
to be extensible to larger or smaller architectures. Object files therefore represent
some control data with machine-independent format, making possible identify
object files and interpret contents in a common way. So data used will be always
the same regardless of machine on which the file was created:

Name Size Alignment Purpose
Elf32_Addr 4 4 Unsigned program address
Elf32_Half 2 2 Unsigned medium integer
Elf32_Off 4 4 Unsigned file offset
Elf32_Sword 4 4 Signed large integer
Elf32_Word 4 4 Unsigned large integer
unsigned char 1 1 Unsigned small integer

Data structures that object file format defines follow “natural” size and alignment.
If necessary, explicit padding is used to ensure 4-byte alignment for 4-byte objects.
Data also have alignment from the beginning of the file. An structure containing
an Elf32_Addr will be aligned on a 4-byte boundary within the file.

ELF uses no bit fields

Character Representations
When in ELF structure some part mention character constant, the numerical
value should follow the 7-bit ASCII guidelines. Character values outside range
of 0 to 127 may occupy one or more bytes. Applications can control their own
character sets, using different character set extensions for different languages as
appropiate. Guidelines:

• Character between 0 and 127 correspond to 7-bit ASCII code.

2

• Multibyte character encodings with values above 127 should contain only
bytes with values outside range of 0 to 127.

• Multibyte characters should be self-identifying. That allows, any multibyte
character to be inserted between any pair of multibyte characters, without
changing characters’ interpretations.

Elf Header
Some object file control structures can grow, because ELF header contains
their sizes. If object file format changes, a program may encounter control
structures that are larger or smaller than expected. Programs might ignore
“extra” information.

The structure for this header, can be found in elf_generic_types.h structure
Elf_Ehdr :

• e_ident: mark file as object file, provide machine-independent data to
decode and interpret file’s content.

• e_type: identifies object file type as relocatable, executable, shared object
or core (also a no file type).

• e_machine: specifies required architecture for individual file, examples are
AT&T WE 32100, SPARC, Intel, MIPS, etc.

• e_version: identifies object file version, for the moment EV_NONE and
EV_CURRENT are used only.

• e_entry: virtual address of the entry point, if no entry point, zero is
written here.

• e_phoff : program header table’s file offset in bytes.
• e_shoff : section header table’s file offset in bytes.
• e_flags: processor-specific flags associated with file. Flag names take form

EF_machine_flag
• e_ehsize: ELF header’s size in bytes.
• e_phentsize: size in bytes of one entry in file’s program header table, all

entries have same size.
• e_phnum: number of entries in program header table. So e_phentsize x

e_phnum gives table’s size in bytes.
• e_shentsize: section header’s size in bytes. All entries are same size.
• e_shnum: number of entries in section header table. So e_shentsize x

e_shnum gives table’s size in bytes.
• e_shstrndx: holds section header table index of entry associated with

section name string table.

Elf Identification
Initial bytes of file specify how to interpret the file, independent of the processor
on which the inquiry is made and independent of file’s remaining contents. Initial
bytes of ELF header (and object file) correspond to e_ident member:

3

Name Value Purpose
EI_MAG0 0 File identification
EI_MAG1 1 File identification
EI_MAG2 2 File identification
EI_MAG3 3 File identification
EI_CLASS 4 File class
EI_DATA 5 Data encoding
EI_VERSION 6 File version
EI_PAD 7 Start of padding bytes
EI_NIDENT 16 size of e_ident[]

From EI_MAG0 to EI_MAG3 we have the “magic number”, which idenity ELF
object, contain next values:

Name Value Meaning
ELFMAG0 0x7f e_ident[EI_MAG0]
ELFMAG1 ‘E’ e_ident[EI_MAG1]
ELFMAG2 ‘L’ e_ident[EI_MAG2]
ELFMAG3 ‘F’ e_ident[EI_MAG3]

EI_CLASS identifies file’s class or capacity. The class ELFCLASS32 supports
machines with files and virtual address spaces up to 4 gigabytes; it uses basic types
defined above. ELFCLASS64 is incomplete and refers to 64-bit architectures.
Other classes will be necessary, with different basic types and sizes for object
file data.

Name Value Meaning
ELFCLASSNONE 0 Invalid class
ELFCLASS32 1 32-bit objects
ELFCLASS64 2 64-bit objects

The value EI_DATA specifies encoding of processor-specific data (little endian
or big endian)

Name Value Meaning
ELFDATANONE 0 Invalid data encoding
ELFDATA2LSB 1 Little endian
ELFDATA2MSB 2 Big endian

EI_VERSION os ELF header version number. As said previously it must be

4

EV_CURRENT.

EI_PAD beginning of unused bytes. Bytes reserved and set to zero; programs
that read object files should ignore them.

Sections
Object file’s section header table lets one locate all file’s sections. Section header
is an array of Elf32_Shdr structures. Section header table index is a subscript
into this array. ELF header’s e_shoff gives offset from beginning of file to section
header table; e_shnum gives number of entries section header table contains;
e_shentsize gives size in bytes of each entry.

There are some special section table header indexes reserved, and no sections
exist for them:

Name Value
SHN_UNDEF 0
SHN_LORESERVE 0xff00
SHN_LOPROC 0xff00
SHN_HIPROC 0xff1f
SHN_ABS 0xfff1
SHN_COMMON 0xfff2
SHN_HIRESERVE 0xffff

• SHN_UNDEF : undefined, missing, irrelevant or meaningless. Exist an
index 0 as it starts the section indexes by 0.

• SHN_LORESERVE : lower bound of range of reserved indexes.
• SHN_LOPROC -SHN_HIPROC : values in inclusive range, reserved for

processor-specific semantics.
• SHN_ABS : absolute values for corresponding reference. Symbols defined

relative to section number SHN_ABS have absolute values, not affected
by relocation.

• SHN_COMMON : Symbols defined relative to this section are common
symbols (e.g. unallocated C external variables).

• SHN_HIRESERVE : upper bound of range of reserved indexes. Values do
not reference section header table. Section header table does not contain
entries for reserved indexes.

Section contains all information in object file (except ELF header, program
header table and section header table). Object files’ sections satisfy conditions:

• Every section has exactly one section header describing it. Can exist
section header without section.

• Each section occupies one contiguous sequence of bytes within a file.
• Sections in a file may not overlap. No byte in file resides in more than one

section.

5

• Object file may have inactive space. Various headers and sections might
not “cover” every byte in object file.

Structure of section header can be found in elf_generic_types.h in structure
Elf_Shdr :

• sh_name: name of section; index into section header string table section,
location of null-terminated string.

• sh_type: categorizes section’s contents and semantics. Different values can
be used for sh_type:
– SHT_NULL (0): value marks section header as inactive; no associated

section. Other members may have undefined values.
– SHT_PROGBITS (1): Section holds information defined by program,

format and meaning determined by program. This section exist on
disk.

– SHT_SYMTAB (2) and SHT_DYNSYM (11): symbol tables (useful
for parsing symbols).

– SHT_STRTAB: string table. Three different can be found by name:
.dynstr (Dynamic Symbols names), .strtab (Symbols names), .shstrtab
(section header names).

– SHT_RELA: Relocation entries with explicit addends (type
Elf32_Rela). Object file may have multiple relocation sections.

– SHT_HASH : symbol hash table.
– SHT_DYNAMIC : Information for dynamic linking.
– SHT_NOTE : information that marks file in some way.
– SHT_NOBITS : type that occupies no space in the file, only in memory
(example .bss), sh_offset contains conceptual file offset.

– SHT_REL: relocation entries without explicit addends (type
Elf32_Rel).

– SHT_SHLIB: reserved without unspecified semantics.
– SHT_LOPROC to SHT_HIPROC : values in this range, reserved for

processor-specific semantics.
– SHT_LOUSER: lower bound of range of indexes reserved for applica-

tion programs.
– SHT_HIUSER: upper bound of range of indexes reserved for applica-

tion programs. Section types between previous and this one, can be
used without conflicting with current or future system-defined section
names.

As we said there was an index 0, but all its values are 0, sh_type equals to
SHT_NULL and sh_link equals to SHN_UNDEF.

• sh_flags: miscellaneous attributes. This are 1 bit flag, values can be:

– SHF_WRITE (0x1): data should be writable during process execu-
tion.

– SHF_ALLOC (0x2): section occupies memory during process execu-
tion.

6

– SHF_EXECINSTR (0x4): section contains executable machine in-
structions.

– SHF_MASKPROC (0xf0000000): All bits in this mask are reserved
for processor-specific semantics.

• sh_addr : if section appear in memory image of process, member gives
address which section’s first byte should reside. Otherwise, 0.

• sh_offset: byte offset from beginning of file to first byte in section. A
section type SHT_NOBITS occupies no space in file, its sh_offset
locates conceptual placement in file.

• sh_size: section size in bytes.

• sh_link: section header table index link (points to another section), inter-
pretation depends on section type.

Different interpetation exist from these two section types, next table summarize
the type, the value for link, and the value for info:

sh_type sh_link sh_info
SHT_DYNAMIC The section header

index of the string table
used by entries in the
section

0

SHT_HASH The section header
index of symbol table
to which the hash table
applies

0

SHT_REL
SHT_RELA

Section header index of
associated symbol table

The section header
index of section to
which relocation applies

SHT_SYMTAB
SHT_DYNSYM

Information is
operating system
specific

Information is
operating system
specific

other SHN_UNDEF 0

• sh_info: extra information, interpretation depends on section type.
• sh_addralign: address alignment constraints. sh_addr must be congruent

to 0, modulo the value of sh_addralign. Only 0 and positive integral powers
of two are allowed.

• sh_entsize: Some sections hold table of fixed-size entries, such as symbol
table. For such a section, member gives size in bytes of each entry, member
contains 0 if section does not hold a table of fixed-size entries.

7

Special Sections
Sections pre-defined hold program and control information. Sections used by
operating system, different types and attributes for different operating systems.

Executable files = object files + libraries (through linking process). Linker
resolves references (subroutines and data references) among different object files,
adjusts absolute references in object files, and relocates instructions. Linking
and Loading, require information defined in object files, information is stored in
specific sections such as .dynamic.

Different set of linking models from operating systems:

• Static: set of object files, system libraries and library archives statically
bound, references are resolved, and executable file is created completely
self contained.

• Dynamic: set of object files, libraries, system shared resources and shared
libraries linked together to create executable. When executable is loaded,
other shared resources and dynamic libraries must be available in system
for program to run successfully. Method to resolve references at execution
time will be explained later.

Section exists that support debugging (.debug and .line), and program control
(.bss, .data, .rodata).

• .bss: uninitialized data, contribute to program’s memory image. Data
is initialized with zeros. Section occupies no file space, section type
SHT_NOBITS.

• comment: version control information.
• .data: data that contribute to program’s memory image.
• .debug: information for symbolic debugging. Reserved for future use.
• .dynamic: dynamic linking information, it has attributes such as

SHF_ALLOC and SHF_WRITE.
• .hash: symbol hash table.
• .line: line number information for symbolic debugging, correspondence

between source program and machine code.
• .note: information in a format later explained.
• .rodata: read-only data, commonly contribute to a non-writable segment

in process image.
• .shstrtab: section names table.
• .strtab: strings that represent names associated with symbol table entries.
• .symtab: symbol table.
• .text: executable instructions of a program.

Section names that start with a dot prefix are reserved for system. Applications
may use names without prefix to avoid conflicts with system sections. Object
file format lets one define sections not in the list above, object file may have
more than one section with the same name.

8

String table
default string table, it holds null-terminated character sequences (strings). Object
file uses strings to represent symbol and section names, they reference a string
as an index to their first byte. First byte of string table is a null byte. Last byte
of string table is also a null byte, ensuring null termination for all strings. String
whose index is zero specifies either no name or null name, depending on context.

Section header’s sh_name holds index into section header string table section,
designed by e_shstrndx member of ELF header.

Symbol Table
Information needed to locate and relocate program’s symbolic definitions and
references. Symbol table index is subscript into this array. Index 0 is first entry
in table and serves as undefined symbol index. Structure of symbol is in the file
elf_generic_types.h in the struct Elf_Sym:

• st_name: index into object file’s symbol string table, character representa-
tions of symbol names.

• st_value: value of associated symbol. Depending on context, it maybe
absolute value, address, and so on.

• st_size: many symbols have associated sizes. A data object’s size is number
of bytes contained in object. Member is 0 if symbol has no size or an
unknown size.

• st_info: symbol’s type and binding attributes.

Next code can be used to get the values from st_info:

uint64_t type, bind;

if (is_32_bit_binary())
{

type = ELF32_ST_TYPE(st_info);
bind = ELF32_ST_BIND(st_info);

}
else if (is_64_bit_binary())
{

type = ELF64_ST_TYPE(st_info);
bind = ELF64_ST_BIND(st_info);

}

switch (type)
{
case STT_NOTYPE:

printf("NOTYPE ");
break;

case STT_OBJECT:

9

printf("OBJECT ");
break;

case STT_FUNC:
printf("FUNC ");
break;

case STT_SECTION:
printf("SECTION");
break;

case STT_FILE:
printf("FILE ");
break;

case STT_LOPROC:
printf("LOPROC ");
break;

case STT_HIPROC:
printf("HIPROC ");
break;

}

switch (bind)
{
case STB_LOCAL:

printf("LOCAL ");
break;

case STB_GLOBAL:
printf("GLOBAL ");
break;

case STB_WEAK:
printf("WEAK ");
break;

}

So the info contains a bind, where all symbols with STB_LOCAL precede weak
and global symbols. And the type is a general classification for the associated
entity.

• st_other : no defined meaning.
• st_shndx: every symbol table entry “defined” in relation to some section;

member holds relevant section header table index.

Symbol Values

Different interpretations for st_value:

• In relocatable files, st_value holds alignment constraints for symbols whose
section index is SHN_COMMON.

• In relocatable files, st_value holds a section offset for defined symbol.
st_value is an offset from the beginning of the section that st_shndx

10

identifies.
• In executable and shared object files, st_value holds virtual address. To

make files’ symbols more useful for dynamic linker, section offset gives way
to a virtual address, so it’s easier to work on memory and section number
is irrelevant.

Relocation
Process of connecting symbolic references with symbolic definitions. When a
program calls a function, associated call instruction must transfer control to
proper destination address at execution. Relocatable files must have information
that describes how to modify section contents, allowing executable and shared
object files to hold right information for process’s program image. Two types of
relocations structures are in elf_generic_types.h in Elf_Rel and Elf_Rela.

• r_offset: location at which to apply relocation action. For relocatable
file, value is byte offset from beginning of the section to storage unit
affected by relocation. For executable file or shared object, value is virtual
address of storage unit affected by relocation (check Quenya relocation
mechanism).

• r_info: member gives both symbol table index with respect to which
relocation must be made, and type of relocation to apply. Example,
a call instruction’s relocation entry would hold symbol table index of
function being called. If index is STN_UNDEF, undefined symbol index,
relocation uses 0 as “symbol value”. Relocation types are processor-specific;
description of their behaviour appear in processor supplement.

• r_addend: constant addend used to compute value to be stored into
relocatable field.

Important

Only Elf_Rela entries contain explicit addend. Entries of type Elf_Rel store
implicit addend in location to be modified. Depending on processor architecture,
one form or other might be necessary or more convenient. Implementation for
particular machine may use one form exclusively or either form depending on
context.

A relocation section references two other sections: a symbol table and a section
to modify. Section header’s values sh_info and sh_link members, specify these
relationships. Relocation entries for different object files have slightly different
interpretations for r_offset member.

• In relocatable files, r_offset holds section offset. Relocation section itself
describes how to modify another section in file.

• In executable and shared object files, r_offset holds virtual address. So
make relocation entries more useful for dynamic linker.

11

Quenya relocation mechanism
From the Learning Linux Binary Analysis we extract the next relocation mecha-
nism from author’s program Quenya:

switch(obj.shdr[i].sh_type) /* first going through all the sections checking its type */
{
case SHT_REL: /* Section contains ElfN_Rel records */

/* Point to the array of relocs */
rel = (Elf32_Rel *)(obj.mem + obj.shdr[i].sh_offset);

/* Now go through all of those relocs */
for (j = 0; j < obj.shdr[i].sh_size / sizeof(Elf32_Rel); j++, rel++)
{

/*
* The sh_link from the section of the reloc
* points to a symbol section, so we can use
* this to point to the symbols
*/
/* symbol table */
symtab = (Elf32_Sym *)obj.section[obj.shdr[i].sh_link];

/* symbol we are applying relocation to */
symbol = &symtab[ELF32_R_SYM(rel->r_info)];

/*
* TargetSection = section to apply the reloc
* TargetIndex = index of the previous section
*
* All of them pointed by sh_info of reloc section.
*/
/* section to modify */
TargetSection = &obj.shdr[obj.shdr[i].sh_info];
TargetIndex = obj.shdr[i].sh_info;

/*
* Address or offset where to apply
* the relocation, using the base address
* of target section, and the offset
*/
/* target location */
TargetAddr = TargetSection->sh_addr + rel->r_offset;

/*
* Pointer to where to apply the reloc

12

*/
/* pointer to relocation target */
RelocPtr = (Elf32_Addr *)(obj.section[TargetIndex] + rel->r_offset);

/*
* Get the value we need to modify
*/
/* relocation value */
RelVal = symbol->st_value;
RelVal += obj.shdr[symbol->st_shndx].sh_addr;

printf("0x%08x %s addr: 0x%x\n",RelVal,
&SymStringTable[symbol->st_name], TargetAddr);

/*
* As the info type depends on the
* processor, a macro is needed to
* get the type. Then different values
* are checked.
switch (ELF32_R_TYPE(rel->r_info))
{
/* R_386_PC32 2 word32 S + A - P */
case R_386_PC32:

*RelocPtr += RelVal;
*RelocPtr -= TargetAddr;
break;

/* R_386_32 1 word32 S + A */
case R_386_32:

*RelocPtr += RelVal;
break;

}
}

}

Program Loading and Dynamic Linking
To execute program, system uses files to create dynamic program representations,
or process images. Process image has segments that hold text, data, stack and so
on. This section describes object file structures that relate directly to program
execution. Primary data structure, program header table, locates segment images
within file and contains other information necessary to create memory image for
program. Given object file, system must load it into memory for program to run.
After system loads program, it must complete process image resolving symbolic
references among object files that compose the process.

13

Program Header
Array of structures, each describing a segment or other information system needs
to prepare program for execution. An object file segment contains one or more
sections. Program header are meaningful only for executable and shared object
files. The offset to the program header table is specified by e_phoff, and the
number of structures can be obtained using e_phentsize and e_phnum.

• p_type: What kind of segment this array element describes, or how to
interpret array element’s information.
– PT_NULL (0): array element unused, other values are undefined,

program loader can ignore these segments.
– PT_LOAD (1): loadable segment, described by p_filesz and

p_memsz. Bytes from file, mapped to beginning of memory segment.
If p_memsz > p_filesz padding is done with value 0. File size may
not be larger than memory size. Loadable segment entries in program
header table appear in ascending order, sorted on p_vaddr member.

– PT_DYNAMIC (2): array element specifies dynamic linking infor-
mation.

– PT_INTERP location and size of a null-terminated path name to
invoke as an interpreter.

– PT_NOTE : location and size of auxiliary information.
– PT_PHDR: location and size of program header table itself, both in

file and in memory image. Segment type may not occur more than
once in a file, and only if program header table is part of memory
image. If present, it must precede any loadable segment entry.

– PT_LOPROC to PT_HIPROC : values in this range, reserved for
processor-specific semantics.

• p_offset: offset from beginning of file at which first byte of segment resides.
• p_vaddr : Virtual address at which first byte of segment resides in memory.
• p_paddr : for system which physical addressing is relevant, member is

reserved for segment’s physical address. This member requires operating
system specific information.

• p_filesz: number of bytes in file image of segment; it may be zero.
• p_memsz: number of bytes in memory image of segment.
• p_flags: flags relevant to the segment.
• p_align: loadable process segments must have congruent values for p_vaddr

and p_offset, module page size. Member gives the value to which the
segments are aligned in memory and in the file. Value 0 and 1, no alignment
required.

Note Section
Sometimes necessary mark object file with special information that other pro-
grams will check for conformance, compatibility, etc. Sections SHT_NOTE and
program header of type PT_NOTE can be used for this. Note information in
both, holds any number of entries, each is an array of 4-byte words in format of

14

target processor.

+-----------------------+
| namesz |
+-----------------------+
| descsz |
+-----------------------+
| type |
+-----------------------+
| name |
| ... |
+-----------------------+
| desc |
| ... |
+-----------------------+

namesz and name first namesz bytes in name is a null-terminated character
representation of entry’s owner. No formal mechanism for avoiding name conflicts.
Convention, vendors use their own name (e.g. XYZ Computer Company). If no
name is present, namesz contains 0. Padding is present, if necessary, to ensure
4-byte alignment for descriptor. Padding is not included in namesz.

descsz and desc first descsz bytes in desc hold note descriptor. ELF places no
constraints on descriptor’s contents. No descriptor present, descsz contains 0,
padding is present in case to ensure 4-byte alignment. Padding is not included
in descsz.

type interpretation of descriptor. Each originator controls its own types. A
program must recognize both name and type to “understand” a descriptor.
Types must be non-negative. ELF does not define what descriptors mean.

Program Loading
Process by which operating system creates or augments a process image. The
manner in which process is accomplished and how page management functions
for process are handled are dictated by operating system and processor. (End of
notes)

Dynamic Linking
resolves references either at process initialization time and/or at execution time.
Some basic mechanisms need to be set up for a particular linkage model to work,
there are ELF sections and header elements reserved for this purpose. (End of
notes)

15

Special Section Names
Special Sections

• .bss
• .comment
• .data
• .data1
• .debug
• .dynamic
• .dynstr
• .dynsym
• .fini
• .got
• .hash
• .init
• .interp
• .line
• .note
• .plt
• .relname
• .relaname
• .rodata
• .rodata1
• .shstrtab
• .strtab
• .symtab
• .text

Dynamic Section Names
_DYNAMIC

Dynamic Array Tags

• DT_NULL
• DT_NEEDED
• DT_PLTRELSZ
• DT_PLTGOT
• DT_HASH
• DT_STRTAB
• DT_SYMTAB
• DT_RELA
• DT_RELASZ
• DT_RELAENT
• DT_STRSZ
• DT_SYMENT

16

• DT_INIT
• DT_FINI
• DT_SONAME
• DT_RPATH
• DT_SYMBOLIC
• DT_REL
• DT_RELSZ
• DT_RELENT
• DT_PLTREL
• DT_DEBUG
• DT_TEXTREL
• DT_JMPREL
• DT_BIND_NOW
• DT_LOPROC
• DT_HIPROC

Pre-existing Extensions
Naming conventions for ELF constants that have processor ranges specified.
Names such as DT_, PT_ for processor specific extensions incorporate name of
the processor, example, DT_M32_SPECIAL. Pre-existing processor extensions
not using convention will be suported, example, DT_JMP_REL.

Section names reserved for processor architecture are formed placing an abbre-
viation of architecture name ahead of section name. Name should be taken
from architecture names used for e_machine. Example .FOO.psect is psect
section defined by FOO architecture. Extensions are called by historical names.
Pre-existing extensions: .sdata, .tdesc, .sbss, .lit4, .lit8, .reginfo, .gptab, .liblist,
.conflict.

ELF Header
Machine Identification

For file identification, e_ident in intel requires next values:

Position Value
e_ident[EI_CLASS] ELFCLASS32
e_ident[EI_DATA] ELFDATA2LSB

Processor identification resides in ELF header’s e_machine, must have value
EM_386. ELF header’s e_flags member holds bit flags associated with file. For
intel no flags are defined, so member contains zero.

17

Relocation
Relocation Types

Relocation entries describe how to alter instruction and data fields (bit numbers
appear in lower box corners):

+-------------------------------------+
| |
| WORD32 |
|31 0|
+-------------------------------------+

word32 specifies a 32-bit field occupying 4 bytes with arbitrary byte alignment.
Values use same byte order as other word values in Intel.

Calculations assume actions are transforming a relocatable file into either an
executable or a shared object file. Link editor merges one or more relocatable
files to form the output. First devices how to combine and locate input files,
then updates the symbol values, finally performs relocation. Relocations applies
to executable or shared object files are similar and accomplish same result.
Notation:

• A: addend used to compute the value of the relocatable field.
• P: place (section offset or address) of storage unit being relocated (com-

puted using r_offset).
• S : means the value of the symbol whose index resides in the relocation

entry.

A relocation entry’s r_offset value designates offset or virtual address of first byte
of the affected storage unit. Relocation type specifies which bits to change and
how to calculate their values. Intel architecture uses only Elf32_Rel relocation
entries, field to be relocated holds the addend. Addend and computed result use
same byte order.

Relocation Types

Name Value Field Calculation
R_386_NONE 0 none none
R_386_32 1 word32 S+A
R_386_PC32 2 word32 *S+A-P

Sections
The following sections are UNIX System V Release 4 specific:

SHT_SYMTAB and SHT_DYNSYM : symbol table. Object file may have only
one section of each type, restriction may be relaxed in the future. SHT_SYMTAB
provides symbols for link editing, although it may also be used for dynamic

18

linking. It may contain many symbols unnecessary for dynamic linking. Object
file may also contain a SHT_DYNSYM, which holds a minimal set of dynamic
linking symbols, to have space.

SHT_STRTAB: object file may have multiple string table sections.

SHT_HASH : all objects participating in dynamic linking must contain a symbol
hash table. Currently, an object file may have only one hash table, but restriction
may be relaxed in the future.

SHT_DYNAMIC : Currently, object file may have only one dynamic section,
restriction may be relaxed in the future.

Two members in section header, sh_link and sh_info, hold special information,
depending on section type. Symbol table section’s sh_info holds symbol table
index for first non-local symbol.

sh_link and sh_info Interpretation.

sh_type sh_link sh_info
SHT_SYMTAB
SHT_DYNSYM

The section header
index of the associated
string table.

One greater than the
symbol table index of
the last local symbol.
(binding STB_LOCAL)

Special Sections
hold program and control information used in UNIX System V. Sections in list
below are used by system and have indicated types and attributes. Most of
these sections are required for linking process. Information for dynamic linking
provided in .dynsym, .dynstr, .interp, .hash, .dynamic, .rel, .rela, .got and .plt.
Contents of some of these sections are processor specific, but all support same
linkage model.

• .dynstr (type: SHT_STRTAB, Attributes: SHF_ALLOC): holds strings
needed for dynamic linking, most commonly strings that represent names
associated with symbol table entries.

• .dynsym (type: SHT_DYNSYM, Attributes: SHF_ALLOC): holds the
dynamic linking symbol table.

• .fini (type: SHT_PROGBITS, Attributes: SHF_ALLOC+SHF_EXECINSTR):
holds executable instructions that contribute to the process termination
code. When program exits normally, system executes code in this section.

• .init (type: SHT_PROGBITS, Attributes: SHF_ALLOC+SHF_EXECINSTR):
holds executable instructions that contribute to process initialization code.
When program starts to run, system executes code in this section before
calling main program entry point.

• .interp (type: SHT_PROGBITS): path name of a program interpreter. If
file has a loadable segment that includes section, section’s attributes will

19

include SHF_ALLOC bit, otherwise will be off.
• .relname and .relaname (type: SHT_REL and SHT_RELA): hold reloca-

tion information. If file has a loadable segment that includes relocation,
section’s attributes will include the SHF_ALLOC bit, otherwise will be off.
Conventionally, name is supplies by section to which relocations apply. A
relocation section for .text normally would have name .rel.text or .rela.text

Symbol Table
st_name if value is non-zero, represents a string table index that gives symbol
name. Otherwise symbol table entry has no name.

if (elf_dynsym[i].st_name != 0)
{

if (&DynSymbolStringTable[elf_dynsym[i].st_name])
printf("%s", &DynSymbolStringTable[elf_dynsym[i].st_name]);

}

if (elf_symtab[i].st_name != 0)
{

if (&SymbolStringTable[elf_symtab[i].st_name])
printf("%s", &SymbolStringTable[elf_symtab[i].st_name]);

}

important to know

Function symbols (those with type STT_FUNC) in shared object files have
special significance. When object file references a function from shared ob-
ject, link editor creates a procedure linkage table entry for referenced symbol.
Shared object symbols with types other than STT_FUNC will not be referenced
automatically through procedure linkage table.

Global and weak symbols differ in two major ways:

• When link editor combines relocatable object files, it does not allow multiple
definitions of STB_GLOBAL symbol with same name. On other hand, if
defined global symbol exists, appearance of weak symbol with same name
will not cause error. Link editor honors global definition and ignores weak
ones. Similarly, if common symbol exists (symbol whose st_shndx field
holds SHN_COMMON), appearance of weak symbol with same name will
not cause error. Link editor honors common definition and ignores weak
ones.

• When link editor searches archive libraries, it extracts archive members
that contain definitions of undefined global symbols. Member’s definition
may be either global or a weak symbol. Link editor does not extract archive
members to resolve undefined weak symbols. Unresolved weak symbols
have zero value.

20

Program Header
Following program header information is specific to UNIX System V Release 4.

• p_paddr : on systems for which physical addressing is relevant, member
is reserved for segment’s physical address. It can contains unspecified
contents for executable files and shared objects.

• p_align: loadable process segments must have congruent values for p_vaddr
and p_offset, modulo the page size.

Some entries describe process segments; other give supplementary information
and do not contribute to process image. Segment entries may appear in any
order.

Some p_type values:

• PT_LOAD (1): array element specifies loadable segment, described by
p_filesz and p_memsz.

• PT_DYNAMIC (2): array element specifies for dynamic linking informa-
tion. (check “Dynamic Section”).

• PT_INTERP (3): array element specifies location and size of a null-
terminated path name to invoke as interpreter. Segment type meaningful
for executable files, it may not occur more than once in a file. If it’s
present, it must precede any loadable segment entry. (check “Program
Interpreter”).

• PT_SHLIB (5): reserved but has unspecified semantics.
• PT_PHDR (6): array element if present, specifies location and size of

program header table itself.

Base Address

Virtual address in program headers might not represent actual virtual address
of program’s memory image. Executable files typically contain absolute code.
To let process execute correctly, segments must reside at virtual address used to
build executable file. On other hand, shared object segments contain position-
independent code. This lets a segment’s virtual address change from one process
to another. Though system chooses virtual address for individual processes,
it maintains segments’ relative positions. Because position-independent code
uses relative addressing between segments, difference between virtual address
in memory must match difference between virtual address in file, thus a single
constant value for any one executable or shared object in a given process.
Difference is the base address. One use of base address is to relocate memory
image of program during dynamic linking. Executable or shared object file’s base
address is calculated during execution from three values: virtual memory load
address, maximum page size, and lowest virtual address of program’s loadable
segment. To compute base address, one determines memory address associated
with the lowest p_vaddr value for a PT_LOAD segment. Address is truncated
to nearest multiple of maximum page size. Corresponding p_vaddr value is also

21

truncated to nearest multiple of maximum page size. Base address is difference
between truncated memory address and truncated p_vaadr value.

Segment Permissions

A program to be loaded by system must have at least one loadable segment
(not required by file format). When system creates loadable segments’ memory
images, it gives access permissions as specified in p_flags:

Name Value Meaning
PF_X 0x1 Execute
PF_W 0x2 Write
PF_R 0x4 Read
PF_MASKPROC 0xf0000000 Unspecified

All bits in PF_MASKPROC are reserved for processor-specific semantics. If
meanings are specified, processor supplement explains them. If a permission bit
is 0, type of access is denied. Actual memory permission depend on memory
management unit, which may vary from one system to another. Although all
flag combinations are valid, system may grant more access than requested. In
no case, a segment will have write permission unless it is specified explicitly.
Following table shows exact flag interpretation and allowable flag interpretation.

Flag Value Exact Allowable
none 0 All access denied All access denied
PF_X 1 Execute only Read, execute
PF_W 2 Write only Read, write, execute
PF_W + PF_X 3 Write, execute Read, write, execute
PF_R 4 Read only Read, execute
PF_R + PF_X 5 Read, execute Read, execute
PF_R + PF_W 6 Read, write Read, write, execute
PF_R + PF_W + PF_X 7 Read, write, execute Read write, execute

Text segments have read and execute (but not write). Data normally have read,
write and execute permissions.

Segment Contents

An object file segment comprises one or more sections, fact is transparent
to program header, also it is immaterial to program loading. Nonetheless,
various data must be present for program execution, dynamic linking, and so
on. Diagrams below illustrate segment contents in general terms. Order and
membership of sections within a segment may vary, processor-specific constraints

22

may alter examples below.

Text Segment

Text segments contain read-only instructions and data, includding following
sections. Other sections may also reside in loadable segments.

+-----------------+
| .text |
+-----------------+
| .rodata |
+-----------------+
| .hash |
+-----------------+
| .dynsym |
+-----------------+
| .dynstr |
+-----------------+
| .plt |
+-----------------+
| .rel.got |
+-----------------+

Data Segment

Data segments contain writable data and instructions, includding the following
sections:

+-----------------+
| .data |
+-----------------+
| .dynamic |
+-----------------+
| .got |
+-----------------+
| .bss |
+-----------------+

A PT_DYNAMIC program header element points at .dynamic section (explained
later). .got and .plt sections also hold information related to position-independent
code and dynamic linking. Although .plt appeas in text segment, it may reside
in a text or data segment, depending on the processor.

The .bss section has type SHT_NOBITS. Although it occupies no space in file,
it contributes to segment’s memory image. Normally, uninitialized data reside
at the end of the segment, making p_memsz larger than p_filesz.

23

Dynamic Linking (Based on ELF Specification)
Program Interpreter
Executable file that participates in dynamic linking, shall have a PT_INTERP
program header element. During exec syscall, system retrieves a path name
from PT_INTERP segment and creates initial process image from interpreter
file’s segments. Instead of using original executable file’s segment images, system
composes a memory image for the interpreter. Then, is the interpreter’s respons-
ability to receive control from system and provide an environment for application
program. Interpreter receives control in one of two ways. First, it may receive
a file descriptor to read executable file, positioned at the beginning. It can
use file descriptor to read and/or map executable file’s segments into memory.
Second, depending on executable file format, system may load executable file
into memory instead of giving interpreter an open file descriptor. With the
possible exception of file descriptor, interpreter’s initial process state matches
what executable file would have received. Interpreter itself may not require a
second interpreter. Interpreter may be either a shared obejct or an executable
file.

• A shared object (normal case) loaded as position-independent, with ad-
dresses that may vary from one process to another; system creates its
segments in dynamic segment area used by mmap and related services.
Consequently, a shared object interpreter typically will not conflict with
original executable file’s original segment addresses.

• An executable file is loaded at fixed addresses; system creates its segment
using virtual addresses from program header table. Consequently, an exe-
cutable file interpreter’s virtual addresses may collide with first executable
file; interpreter is responsible for resolving conflicts.

Dynamic Linker
When building an executable file that uses dynamic linking, link editor adds a
program header element of type PT_INTERP, telling system to invoke dynamic
linker as program interpreter.

Executable file and dynamic linker cooperate to create process image for program,
entails following actions:

• Adding executable file’s memory segments to process image;
• Adding shared object memory segments to process image;
• Performing relocations for executable file and its shared objects;
• Closing file descriptor used to read executable file, if one was given to

dynamic linker.
• Transferring control to program, making it look as if program had received

control directly from executable file.

Link editor also constructs data that assist dynamic linker for executable and

24

shared object files. These data reside in loadable segments, making them available
during execution.

• .dynamic section with type SHT_DYNAMIC holds various data. Structure
residing at beginning of section holds addresses of other dynamic linking
information.

• .hash with type SHT_HASH holds a symbol hash table.
• .got and .plt with type SHT_PROGBITS hold two separate tables: global

offset table and procedure linkage table. Programs use the former for
position-independent code.

Because every UNIX System V conforming program imports the basic system
services from a shared object library, dynamic linker participates in every TIS
ELF-conforming program execution. Shared objects may occupy virtual memory
addresses that are different from addresses recorded in file’s program header table.
Dynamic linker relocates memory image, updating absolute addresses before
application gains control. Although absolute address values would be correct if
library were loaded at address specified in program header table (normally, not
the case).

If process environment contains a variable named LD_BIND_NOW with a
non-null value, dynamic linker processes all relocation before transferring control
to program. All these environment entries would specify this behavior:

• LD_BIND_NOW=1
• LD_BIND_NOW=on
• LD_BIND_NOW=off

Otherwise, LD_BIND_NOW does not exist in environment or has null value.
Dynamic linker is permitted to evaluate procedure linkage table entries lazily
(lazy binding), avoiding symbol resolution and relocation overhead for functions
that are not called.

Dynamic Section
If object file participates in dynamic linking, program header table will have
an element of type PT_DYNAMIC. This “segment” contains .dynamic section.
Special symbol, *__DYNAMIC, labels section, contains an array of structures
(Structure Elf_Dyn* in elf_generic_types.h).

d_val: Elf32_Word object represent values with various interpretations. d_ptr :
Elf32_Word objects represent program virtual addresses. A file’s virtual address
might not match memory virtual addresses during execution. When interpreting
addresses contained in dynamic structure, dynamic linker computes actual
addresses, based on original file value and memory base address. For consistency,
files do not contain relocation entries to “correct” addresses in dynamic structure.

Following table summarizes tag requirements for executables and shared objects.
If tag is “mandatory”, dynamic linking array must have an entry of that type.

25

Likewise, “optional” means an entry for tag may appear but is not required.

Name Value d_un Executable Shared Object
DT_NULL 0 ignored mandatory mandatory
DT_NEEDED 1 d_val optional optional
DT_PLTRELSZ 2 d_val optional optional
DT_PLTGOT 3 d_ptr optional optional
DT_HASH 4 d_ptr mandatory mandatory
DT_STRTAB 5 d_ptr mandatory mandatory
DT_SYMTAB 6 d_ptr mandatory mandatory
DT_RELA 7 d_ptr mandatory optional
DT_RELASZ 8 d_val mandatory optional
DT_RELAENT 9 d_val mandatory optional
DT_STRSZ 10 d_val mandatory mandatory
DT_SYMENT 11 d_val mandatory mandatory
DT_INIT 12 d_ptr optional optional
DT_FINI 13 d_ptr optional optional
DT_SONAME 14 d_val ignored optional
DT_RPATH 15 d_val optional ignored
DT_SYMBOLIC 16 ignored ignored optional
DT_REL 17 d_ptr mandatory optional
DT_RELSZ 18 d_val mandatory optional
DT_RELENT 19 d_val mandatory optional
DT_PLTREL 20 d_val optional optional
DT_DEBUG 21 d_ptr optional ignored
DT_TEXTREL 22 ignored optional optional
DT_JMPREL 23 d_ptr optional optional
DT_BIND_NOW 24 ignored optional optional
DT_LOPROC 0x70000000 unspecified unspecified unspecified
DT_HIPROC 0x7fffffff unspecified unspecified unspecified

• DT_NULL: entry with this flag, marks end of *_DYNAMIC* array.
• DT_NEEDED: element holds string table offset of null-terminated string,

giving name of a needed library. Offset is index into table recorded in
DT_STRTAB entry. Dynamic array may contain multiple entries with
this type. Entries’ relative order is significant, though their relation to
entries of other types is not. (Search in here imported libraries)

• DT_PLTRELSZ : total size in bytes, of relocation entries associated with
procedure linkage table. If an entry of type DT_JMPREL is present, a
DT_PLTRELSZ must accompany it.

• DT_PLTGOT : element holds an address associated with procedure linkage
table and/or global offset table.

• DT_HASH : address of symbol hash table. Hash table refers to symbol
table referenced by DT_SYMTAB element.

• DT_STRTAB: address of string table. Symbol names, library names, and

26

other strings reside in this table.
• DT_SYMTAB: address of symbol table.
• DT_RELA: Address of relocation table. Entries in table have explicit

addends, such as Elf32_Rela for 32-bit file class. Object file may have
multiple relocation sections. When building relocation table for executable
or shared object file, link editor catenates those sections to form a single
table. Although sections remain independent in object file, dynamic
linker sees a single table. When dynamic linker creates process image for
executable file or adds a shared object to process image, it reads relocation
table and performs associated actions. If element is present, dynamic
structure must also have DT_RELASZ and DT_RELAENT elements.
When relocation is “mandatory” for a file, DT_RELA or DT_REL may
occur.

• DT_RELASZ : total size, in bytes, of DT_RELA relocation table.
• DT_RELAENT : size, in bytes, of DT_RELA relocation entry. (Number

of entries = DT_RELASZ/DT_RELAENT)
• DT_STRSZ : size, in bytes, of the string table.
• DT_SYMENT : size, in bytes, of symbol table entry.
• DT_INIT : address of initialization function.
• DT_FINI : address of termination function.
• DT_SONAME : string table offset of a null-terminated string, giving name

of shared object. Offset is an index into table recorded in DT_STRTAB
entry. (Search in here exported libraries)

• DT_RPATH : string table offset of null-terminated search library search
path string. Offset is index into table recorded in DT_STRTAB entry.

• DT_SYMBOLIC : element’s presence in shared object library alters dy-
namic linker’s symbol resolution algorithm for references within the library.
Instead of starting a symbol search with executable file, dynamic linker
starts from shared ombject itself. If shared object fails to supply referenced
symbol, dynamic linker searches executable file and other shared objects
as usual.

• DT_REL: similar to DT_RELA, except its table has implicit addends,
such as Elf32_Rel for 32-bit file class. If element is present, dynamic
structure must also have DT_RELSZ and DT_RELENT elements.

• DT_RELSZ : total size, in bytes, of DT_REL relocation table.
• DT_RELENT : size, in bytes, of DT_REL relocation entry. (Number of

entries = DT_RELSZ/DT_RELENT)
• DT_PLTREL: type of relocation entry to which procedure linkage table

refers. d_val member holds DT_REL or DT_RELA, as appropiate.
Relocations in procedure linkage table must use same relocation.

• DT_DEBUG: used for debugging.
• DT_TEXTREL: absence of this signifies that no relocation entry should

cause a modification to a non-writaable segment, as specified by segment
permissions in program header table. If it is present, one or more relocation
entries might request modifications to a non-writable segment, and dynamic
linker can prepare accordingly.

27

• DT_JMPREL: If present, this entries d_ptr member holds address of
relocation entries associated solely with procedure linkage table. Separating
these relocation entries lets dynamic linker ignore them during process
initialization, if lazy binding is enabled. If entry is present, related entries
of types DT_PLTRELSZ and DT_PLTREL must also be present.

• DT_BIND_NOW : if present in shared object or executable, instructs
dynamic linker to process all relocations before transferring control to pro-
gram. Present of entry takes precedence over a directive to use lazy binding
for this object when specified through environment or via dlopen(BA_LIB).

• DT_LOPROC to DT_HIPROC : reserved for processor-specific semantics.

Shared Object Dependencies
When link editor processes an archive library, extracts library members and
copies them into output object file. These statically linked services are available
during execution without involving dynamic linker. Shared objects provide
services, and dynamic linker must attach proper shared object files to process
image for execution.

When dynamic linker creates memory segments for object file, dependiendies
(entries DT_NEEDED of dynamic structure) tell what shared objects are needed
to supply program’s services. By repeatedly connecting referenced shared objects
and their dependencies, dynamic linker builds a complete process image. When
resolving symbolic references, dynamic linker examines symbol tables with a
breadth-first search. It first looks at the symbol table of executable program
itself, then symbol tables of DT_NEEDED entries (in order), then at second
level DT_NEEDED entries, and so on. Shared object files must be readable by
process; other permissions are not required.

Names in the dependency list are copies of DT_SONAME strings or path
names of shared objects used to build object file. Example, if link editor builds
executable file using one shared object with a DT_SONAME entry of lib1 and
another shared object library with path name /usr/lib/lib2, executable file will
contain lib1 and /usr/lib/lib2 in its dependency list.

If a shared object name has one or more slash characters anywhere in name
(e.g. /usr/lib/lib2 above or directory/file), the dynamic linker uses string directly
as path name. If name has no slashes, such as lib1, three facilities specify shared
object path searching, with following precedence.

• First, dynamic array tag DT_RPATH may give a string that holds
a list of directories, separated by colons (:). For example, the string
/home/dir/lib:/home/dir2/lib: tells dynamic linker to search first direc-
tory /home/dir/lib, then /home/dir2/lib, then current directory to find
dependencies.

• Second, a variable called LD_LIBRARY_PATH in process environment
may hold a list of directories as above, optionally followed by a semicolon
(;) and another directory list.

28

All LD_LIBRARY_PATH directories are searched after those from DT_RPATH.
Although some programs (such as link editor) treat the lists before and after
semicolon differently, dynamic linker doesn’t. Dynamic linker accepts semicolon
notation, with semantics described above.

• Finally, if other two groups of directories fail to locate desired library,
dynamic linker searches /usr/lib.

IMPORTANT

For security, dynamic linker ignores environment search specifications for SUID
and SGID programs (this would allow an attacker to inject into them). It does
search DT_RPATH directories and /usr/lib. Same restriction may be applied
to processes that have more than minimal privileges on systems with installed
extended security systems.

Global Offset Table
absolute addresses in private data. This makes it possible to have addresses
available without compromising position-independence and sharability of program
text. Table is essential in System V environment for dynamic linking process to
work.

Procedure Linkage Table
Similar to how global offset table redirects position-independent address calcula-
tions to absolute locations, procedure linkage table redirects position-independent
function calls to absolute locations. Link editor cannot resolve execution trans-
fers, from one executable or shared object to another. Link editor arranges to
have program transfer control to entries in procedure linkage table.

Hash Table
Hash table of Elf32_Word objects support symbol table access. Labels ap-
pear below to help explain hash table organization, but they are not part of
specification.

+----------------------+
| nbucket |
+----------------------+
| nchain |
+----------------------+
| bucket[0] |
| ... |
| bucket[nbucket-1] |
+----------------------+
| chain[0] |
| ... |

29

| chain[nchain-1] |
+----------------------+

bucket and chain hold symbol table indexes. Chain table entries parallel symbol
table. Number of symbol table entries should equal nchain; so symbol table
indexes also select chain table entries. A hashing function accepts a symbol name
and returns a value that may be used to compute a bucket index. If hashing
function returns value x for a name, bucket[x%nbucket] gives an index y into
both symbol table and chain table. If symbol table entry is not the one desired,
chain[y] gives next symbol table entry with same hash value. One can follow
chain links until either selected symbol table entry holds desired name or chain
entry contains value STN_UNDEF.

unsigned long
elf_hash(const unsigned char *name)
{

unsigned long h = 0, g;
while (*name)
{

h = (h << 4) + *name++;
if (g = h & 0xf00000000)

h ^= g >> 24;
h &= ~g;

}
return h;

}

Initialization and Termination Functions
After dynamic linker has built process image and performed relocations, each
shared object gets opportunity to execute some initialization code. All shared
object initializations happen before executable file gains control.

Before initialization code for any object A, initialization code for any other
objects that object A depdens on are called. An object A depends on another
object B, if B appears in A’s list of needed objects (DT_NEEDED entries of
dynamic structure). Order of initialization for circular dependencies is undefined.

Initialization of objects occurs by recursing through the needed entries of each
object. The initialization code for an object is invoked after needed entries
for that object have been processed. Order of processing among entries of a
particular list of needed objects is unspecified.

Following example, two possible correct orderings which can be generated for
example NEEDED lists. In example a.out is dependent on b, d, and e. b is
dependent on d and f, while d is dependent on e and g. From this information,
a dependency graph can be drawn. Above algorithm on initialization will then
allow following specified initialization orderings among others.

30

NEEDED Lists
+-------+ +-------+ +-------+
| a.out | | b | | d |
+---+---+ +---+---+ +---+---+

| | |
v v v

+++ +++ +++
|b| |d| |e|
+++ +++ +++
| | |
v v v

+++ +++ +++
|d| |f| |g|
+++ +-+ +-+
|
v

+++
|e|
+-+

Dependency Graph

+-----+
+----------+a.out+--------+
| +--+--+ |
| | |
v v v

+++ +++ +++
|b+---------->+d+-------->+e|
+++ +++ +-+
| |
v v

+++ +++
|f| |g|
+-+ +-+

Init Orderings

+-+ +-+ +-+ +-+ +-+ +-----+
|e+--->+g+--->+d+--->+f+--->+b+--->+a.out|
+-+ +-+ +-+ +-+ +-+ +-----+

+-+ +-+ +-+ +-+ +-+ +-----+
|g+--->+f+--->+e+--->+d+--->+b+--->+a.out|

31

+-+ +-+ +-+ +-+ +-+ +-----+

Shared objects may have termination functions, executed with atexit mechanism
after base process begins its termination sequence. Order in which dynamic
linker calls termination functions is exact reverse order of their corresponding
initialization functions. If shared object has termination but no initialization,
order is the same as it contains initialization function.

Shared objects designate their initialization and termination functions through
DT_INIT and DT_FINI entries in dynamic structure. Typically, code for these
functions reside in .init and .fini sections.

IMPORTANT

Although atexit termination processing normally will be done, it’s not garanteed
to have executed upon process death. Process will not execute termination
processing if it calls *_exit* or if process dies because it received a signal that it
neither caught nor ignored.

Dynamic linker is not responsible callign executable file’s .init section or register-
ing executable file’s .fini section with atexit. Termination functions specified by
users via atexit mechanism must be executed before any termination functions
of shared objects.

Appendix
ELF features and functions that are both Intel Architecture and System V
Release 4 dependent.

Sections
Special Sections

Varios sections hold program and control information. Next sections are used by
system, and have indicated types and attributes.

Name Type Attributes
.got SHT_PROGBITS SHF_ALLOC+SHF_WRITE
.plt SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR

Symbol Table
Symbol Values

If executable contains reference to a function defined in one of its associated
shared objects, symbol table for that file will contain an entry for that symbol.
st_shndx member of symbol table entry contains SHN_UNDEF. This signals
to dynamic linker that symbol definition for that function is not contained in

32

executable file itself. If that symbol has been allocated a procedure linkage table
entry in executable file, and st_value member for that symbol table entry is
non-zero, value will contain virtual address of first instruction of that procedure
linkage table entry. Otherwise, st_value member contains zero.

Relocation
Relocation Types

Calculations assume actions are transforming a relocatable file into an executable
or a shared object file. Link editor merges one or more relocatable files to form
the output. It first devices how to combine and locate input files, then updates
symbol values, finally performs relocation. Notation:

A: addend used to compute value of relocatable field. B: base address at which
shared object has been loaded into memory during execution. Generally, a shared
object file is built with a 0 base virtual address, but execution address will be
different. G: offset into global offset table at which address of relocation entry’s
symbol will reside during execution. GOT : address of global offset table. L:
place (section offset or address) of procedure linkage table entry for a symbol.
A procedure linkage table entry redirects a function call to proper destination.
Link editor builds initial procedure linkage table, and dynamic linker modifies
the entries during execution time. P: place (section offset or address) of storage
unit being relocated (computed using r_offset). S : value of symbol whose index
resides in relocation entry.

A relocation entry’s r_offset value designates offset or virtual address of first
byte of affected storage unit. Relocation type specifies which bits to change and
how to calculate their values. Intel architecture uses only Elf32_Rel relocation
entries, field to be relocated holds the addend. In all cases, addend and computed
result use same byte order.

Name Value Field Calculation
R_386_GOT32 3 word32 G + A
R_386_PLT32 4 word32 L + A - P
R_386_COPY 5 none none
R_386_GLOB_DAT 6 word32 S
R_386_JMP_SLOT 7 word32 S
R_386_RELATIVE 8 word32 B + A
R_386_GOTOFF 9 word32 S + A - GOT
R_386_GOTPC 10 word32 GOT + A - P

• R_386_GLOB_DAT : used to set a global offset table entry to the address
of specified symbol. Special relocation type allows one to determine the
correspondence between symbols and global offset table entries.

• R_386_JMP_SLOT : link editor creates this relocation type for dynamic

33

linking. Its offset member gives location of a procedure linkage table entry.
Dynamic linker modifies the procedure linkage table entry to transfer
control to the designated symbol’s address.

• R_386_RELATIVE : link editor creates this relocation for dynamic linking.
Its offset member gives a location within a shared object that contains
a value representing a relative address. Dynamic linker computes virtual
address by adding virtual address at which the shared object was loaded to
relative address. Relocation entries for this type must specify 0 for symbol
table index.

• R_386_GOTOFF : relocation type computes difference between a symbol’s
value and address of global offset table. It additionally instructs link editor
to build global offset table.

• R_386_GOTPC : relocation type resembles R_386_PC32, except it uses
address of global offset table in its calculation. Symbol referenced in this
relocation normally is GLOBAL_OFFSET_TABLE, which additionally
instructs link editor to build global offset table.

Program Loading and Dynamic Linking
Program Loading
As system creates a process image, it copies a file’s segment to a virtual memory
segment. When system physically reads the file depends on program’s execution
behavior, system load, and so on. A process does not require a physical page
unless it references logical page during execution, and processes commonly leave
many pages unreferenced. Delaying physical reads frequently obviates them,
improving system performance. To obtain this efficiency, executable and shared
object files must have segment images whose file offsets and virtual addresses
are congruent, module page size.

Virtual addresses and file offsets for Intel segments are congruent modulo 4KB
(0x1000) or larger powers of 2.

File Offset File Virtual Address
0 +-------------------------+

| ELF Header |
+-------------------------+
| Program Header Table |
+-------------------------+
| Other Information |
+-------------------------+

0x100| Text Segment | 0x8048100
| ... |
| 0x2be00 Bytes | 0x8073eff
+-------------------------+

0x2bf00| Data Segment | 0x8074f00

34

| ... |
| 0x4ee00 Bytes | 0x8079cff
+-------------------------+

0x30d00| Other Information |
| ... |
+-------------------------+

Program Header Segments

Member Text Data
p_type PT_LOAD PT_LOAD
p_offset 0x100 0x2bf00
p_vaddr 0x8048100 0x8074f00
p_paddr unspecified unspecified
p_filesz 0x2be00 0x4e00
p_memsz 0x2be00 0x5e24
p_flags PF_R+PF_X PF_R+PF_W+PF_X
p_align 0x1000 0x1000

Although example’s file offset and virtual addresses are congruent modulo 4KB
for both text and data, up to four file pages hold impure text or data. * First
text page contains ELF header, program header table and other information. *
Last text page holds a copy of beginning of data. * First data page has a copy
of end of text. * Last data page may contain file information not relevant to
running process.

System enforces memory permissions as if each segment were complete and
separate; segments’ addresses are adjusted to ensure each logical page in address
space has single set of permissions (using the alignment). So in example, region
of file holding end of text and beginning of data will be mapped twice: at one
virtual address for text and a different virtual address for data.

End of data segment requires special handling for uninitialized data, system
defines to begin with zero values. If a file’s last data page includes information
not in logical memory page, extraneous data must be set to zero, not unknown
content. “Impurities” in other three pages are not logically part of process image.
Memory image for program follows, assuming 4KB (0x1000 pages).

Virtual Address Contents Segment

0x8048000+-----------------+
| Header Padding |
| 0x100 Bytes |
+-----------------+

0x8048100| Text Segment |
| |

35

| ... | Text
| |
| 0x2be00 Bytes |
+-----------------+

0x8073f00| Data Padding |
| 0x100 Bytes |
+-----------------+

+-----------------+
0x8074000| Text Padding |

| 0xf00 Bytes |
+-----------------+

0x8074f00| Data Segment |
| |
| ... | Data
| |
| 0x4e00 Bytes |
+-----------------+

0x8049d00| Uninitialized |
| Data |
| 0x1024 Zero |
| Bytes |
+-----------------+

0x807ad24| Page Padding |
| 0x2dc Zero |
| Bytes |
+-----------------+

One aspect of segment loading differs between executable files and shared objects.
Executable file segments typically contain absolute code. To led process execute
correctly, segments must reside at virtual addresses sued to build executable
file. System uses p_vaddr values unchanged as virtual addresses. On the other
hand, shared object segments typically contain position-independent code. This
lets a segment’s virtual address change from one process to another, without
invalidating execution behavior. Though system chooses virtual addresses for
processes, it maintains segments relative positions. Because position-independent
code uses relative addressing between segments, difference between virtual
addresses in memory must match difference between virtual addresses in file.

Dynamic Linking
Dynamic Section

Dynamic section entries give information to dynamic linker. Some of information
is processor-specific, including interpretation of some entries in dynamic structure.

DT_PLTGOT : this entry’s d_ptr gives address of first entry in global offset

36

table. The first three global offset table entries are reserved, and two are used
to hold procedure linkage table information.

Global Offset Table

Position-independent code cannot contain absolute virtual addresses. Global
offset tables hold absolute addresses in private data, making addresses available
without compromising position-independence and sharability of program’s text.
A program references its global offset table using position-independent addressing
and extracts absolute values.

Initially, global offset table holds information as required by relocation entries.
After system creates memory segments for a loadable object file, dynamic linker
processes relocation entries, some will be type R_386_GLOB_DAT referring
to global offset table. Dynamic linker determines associated symbol values,
calculates absolute addresses, and sets appropiate memory table entries to
proper values. Absolute address unknown when link editor builds object file,
dynamic linker knows addresses of all memory segments and calculate absolute
addresses of symbol contained therein.

If program requires access to absolute address of a symbol, symbol will have
a global offset table entry. Because executable file and shared objects have
separate global offset tables, symbol’s address may appear in several tables.
Dynamic linker processes all global offset table relocations before giving control
to any code in process image, ensuring absolute addresses are available during
execution.

IMPORTANT

Table’s entry zero, reserved to hold address of dynamic structure, referenced
with symbol *_DYNAMIC*. This allows the dynamic linker, to find its own
dynamic structure without having yet processed its relocation entries. Especially
important for dynamic linker, because it must initialize itself without relying on
other programs to relocate its memory image. On Intel, entries one and two in
global offset table also are reserved.

System may choose different memory segment addresses for same shared object
in different programs; it may even choose different library addresses for different
execution of same program (protection of ASLR). Nonetheless, memory segments
do not change addresses once process image is established. As long as process
exists, memory segments are in a fixed virtual addresses.

Global offset table’s format and interpretation are processor specific, for intel
architecture:

extern Elf32_Addr _GLOBAL_OFFSET_TABLE_[];

37

Function Addresses

References to address of a function from executable and shared objects might
not resolve to same value. References from within shared objects will normally
be resolved by dynamic linker to virtual address of function itself. References
from within executable file to a function defined in shared object will normally
be resolved by link editor to address of procedure linkage table entry for that
function within executable file.

If an executable references a function defined in a shared object, link editor
will place address of procedure linkage table entry for function in its associated
symbol table entry. Dynamic linker treats symbol table entries specially. If
dynamic linker is searching for a symbol, and encounters a symbol table entry
for that symbol in executable file, it follows next rules:

• If st_shndx member of symbol table entry is not SHN_UNDEF, dynamic
linker has found a definition for symbol and uses its st_value member as
symbol’s address.

• If st_shndx member is SHN_UNDEF and symbol is type STT_FUNC
and st_value is not zero, dynamic linker recognizes entry as special and
uses st_value member as symbol’s address.

• Otherwise, dynamic linker considers symbol to be undefined within exe-
cutable file and continues processing.

Some relocations are associated with procedure linkage table entries. Entries
are used for direct function calls rather than for references to function addresses.
Relocations are not treated in special way described above because dynamic
linker must not redirect procedure linkage table entries to point to themselves.

Procedure Linkage Table
this table redirects position-independent function calls to absolute locations.
Link editor cannot resolve execution transfer between executable or shared
objects. So link editor arranges to have program transfer control to entries in
procedure linkage table. On Intel, the table reside in shared text, but they use
addresses in private global offset table. Dynamic linker determines destinations’
absolute addresses and modifies global offset table’s memory. Dynamic linker
can redirect entries without compromising position-independence and sharability
of program’s text. Each executable and shared object have their own procedure
linkage table.

Procedure linka table instructions use different operand addressing modes for
absolute code and position-independent code. Interfaces to dynamic linkers are
the same.

Absolute Procedure Linkage Table

.PLT0: pushl got_plus_4
jmp *got_plus_8

38

nop
nop

.PLT1: jmp *name1_in_GOT
pushl $offset
jmp .PLT0@PC

.PLT2: jmp *name2_in_GOT
pushl $offset
jmp .PLT0@PC
...

Position-Independent Procedure Linkage Table

.PLT0: pushl 4(%ebx)
jmp *8(%ebx)
nop
nop

.PLT1: jmp *name1@GOT(%ebx)
pushl $offset
jmp .PLT0@PC

.PLT2: jmp *name2@GOT(%ebx)
pushl $offset
jmp .PLT0@PC

IMPORTANT, HOW FUNCTIONS ARE RESOLVED

Following steps below, dynamic linker and program “cooperate” to resolve
symbolic references through PLT and GOT.

• When creating memory image, dynamic linker sets second and third entries
in got to special values.

• If plt is position-independent, address of got table must reside in %ebx.
Each shared object file in process has its own plt, and control transfers to a
plt entry only from within same object file. Calling function is responsible
for setting got base register before calling plt entry.

• Assume program calls name1, which transfers control to label .PLT1.
• First instruction jumps to address in got entry for name1. Initially this is

0, so jumps to next pushl instruction, not address of name1.
• Program pushes a relocation offset (offset on stack). Relocation offset is

32-bit, non-negative byte offset into relocation table. Relocation entry will
have type R_386_JMP_SLOT and its offset will specify got entry used in
previous jmp. Relocation entry also contains a symbol table index, telling
dynamic linker what symbol is being referenced name1 in this case.

• After pushing relocation offset, program jumps to .PLT0, first entry in plt.
The pushl places value of second got entry (got_plus_4 or 4(%ebx)) on the
stack, giving dynamic linker one word of identifying information. Program
then jumps to address in third got entry (got_plus_8 or 8(%ebx)), which
transfers control to dynamic linker.

• When dynamic linker receives control, it unwinds stack, looks at desginated

39

relocation entry, find symbol’s value, stores “real” address for name1 in
got entry, and transfers control to desired destination.

• Subsequent executions of plt entry will transfer directly to name1, without
calling dynamic linker a second time. jmp instruction at .PLT1 will transfer
to name1, instead of going to pushl instruction.

LD_BIND_NOW environment variable can change behavior. It value is non-null,
dynamic linker evaluates plt entries before transferring control to the program.
Dynamic linker processes relocation entries of type R_3862_JMP_SLOT during
process initialization. Otherwise, dynamic linker evaluates plt entries lazily,
delaying symbol resolution and relocation until first execution of a table entry.

Example PLT

Next code is the plt entries of a binary:

Figure 1: Objdump PLT

As we can see the .PLT0 push GOT + 8 (second entry), and then jumps to
GOT + 10 (third entry) that will make dynamic linker to resolve address of an
imported function, the imported function is obtained from the index pushed by
next PLTs (0x0, 0x1, 0x2) these indexes, are indexes of .rela.plt section:

Figure 2: Parser .rela.plt

So from each one, the offset points to its got entry, and when the symbol is
resolved through its name, address is written in address given by offset.

40

Figure 3: Objdump GOT

ELF Dynamic Linking (Based on Learning Linux
Binary Analysis)
Used when a program is loaded into memory, dynamic linker loads and binds
shared libraries needed to the process space. Dynamic linking is relatively
complex. We will demystify some of its complexities and reveal how it works
and how can be abused.

Shared libraries are compiled as position-independent and can be easily relocated
(this is done using the option -fpic -shared of gcc). Shared library is dynamic
ELF object, with e_type (ELF file type) equals to ET_DYN. Very similar to
executables, but don’t have PT_INTERP segment, as this libraries are loaded by
the program interpreter of another binary, and they will not invoke the program
interpreter.

When a shared library is loaded into process address space, it musy have any
relocations satisfied that reference other shared libraries. Dynamic linker modify
GOT of the executable (located in section .got.plt), table of addresses located in
data segment. It’s in a writable data segment as it will be modified. Dynamic
linker patches the GOT with resolved shared library addresses.

Auxiliary vector
Program mapped by sys_execve() syscall, executable mapped in and given a
stack. Stack for process address space, set up in specific way to pass informa-
tion to dynamic linker. Particular setup and arrangement of information is

41

known as auxiliary vector (auxv). Bottom of the stack loaded with following
information:

^
|
|

+------+------+
| |
| STACK |
| |
+-------------+
| |
| ARGV |
| |
+-------------+
| |
| Environ |
| |
+-------------+
| |
| AUXV |
| |
+-------------+

[ARGC][ARGV][ENVP][Auxiliary][.ascii data for argv/envp]

Auxiliary vector a series of ElfN_auxv_t structs:

typedef struct
{

uint64_t a_type; /* Entry type */
union
{

uint64_t a_val; /* Integer value */
} a_un;

} Elf64_auxv_t;

The a_type value describes auxv entry type. Some of the most important entry
types needed by dynamic linker:

#define AT_EXECFD 2 /* File descriptor of program */

#define AT_PHDR 3 /* Program headers for program */

#define AT_PHENT 4 /* Size of program header entry */

#define AT_PHNUM 5 /* Number of program headers */

42

#define AT_PAGESZ 6 /* System page size */

#define AT_ENTRY 9 /* Entry point of program */

#define AT_UID 11 /* Real uid */

Dynamic linker retrieves information from stack about executing program. Linker
must know where program headers are, entry point of program, and so on.

Auxiliary vector is gets set up by kernel function called created_elf_tables()
binfmt_elf.c.

So execution process from kernel looks like:

• sys_execve()
• do_exexcve_common()
• search_binary_handler()
• load_elf_binary()
• create_elf_tables()

And the next code adds auxv entries (using the previous types):

/* At system page size */
NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);

/*
* At a pointer to the program headers for the program
* done adding the address where program is loaded and
* the offset to the program header.
*/
NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);

/* Size of program header entry */
NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));

/* Number of program headers */
NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);

/* Interpreter base address */
NEW_AUX_ENT(AT_BASE, interp_load_addr);

/* Entry point of the program */
NEW_AUX_ENT(AT_ENTRY, exec->e_entry);

All this data is set onto program stack using a macro in kernel.

So once a program is loaded into memory, and auxiliary vector has been filled
in, control is passed to dynamic linker. Dynamic linker resolves symbols and
relocations for shared libraries linked into process addess space. By default,

43

https://github.com/torvalds/linux/blob/master/fs/binfmt_elf.c

executable is dynamically linked with GNU C library libc.so. The command ldd
show the shared library dependencies of a given executable.

Learning about the PLT/GOT
PLT (Procedure Linkage Table) and GOT (Global Offset Table) found in
executables and shared libraries. We will be focusing on the PLT/GOT of
executable. When a program calls a shared library function (strcpy or printf for
example), these are not resolved until runtime (lazy binding), there must exist
a mechanism to dynamically link shared libraries and resolve addresses to shared
functions. When a dynamically linked program is compiled, it handles shared
library function calls in a way far different from a simple call to a local function.

Example calling a fgets() function in a 32-bit binary, we will see in our code a
call to fgets in plt:

$ objdump -d test
...
8048481: e8 da fe ff ff call 8048360<fgets@plt>
...

As we can see the call is to the plt entry of fgets, and inside of the plt section
we have the next:

$ objdump -d test | grep 8048360
...
08048360<fgets@plt>:
8048360: ff 25 00 a0 04 08 jmp *0x804a000 /* Jump into GOT section */
8048366: 68 00 00 00 00 push $0x0
804836b: e9 e0 ff ff ff jmp 8048350 <_init+0x34>

...

Call to fgets() leads to 8048360, this is an indirect jump to the address stored
at 0x804a000 in preceding disassembled code output. This address is a GOT
entry that holds address to actual fgets() function in libc shared library. Lazy
Binding this is a feature where the first time a function is called, its address has
not been resolved yet by dynamic linker. Functions are not resolved at loading
time. Instead, functions will be resolved as they are called, possible thanks to .plt
and .got.plt sections (procedure linkage table, and global offset table). Behavior
can be changed with strict linking with environment variable LD_BIND_NOW
so dynamic linking happens at program loading time. Lazy linking increases
performance at load time, but can be unpredictable since a linking error may not
occur until after program has been running for some time (not really common).

We can check the relocation entry for fgets():

$ readelf -r test
Offset Info Type SymValue SymName

44

...
0804a000 0000107 R_386_JUMP_SLOT 00000000 fgets
...

Relocation offset is exactly the same address of where PLT fgets jumps into
(0x804a000). Assuming fgets() is called for the first time, dynamic linker has
to resolve address, and place value into the GOT entry. This is what the GOT
contains:

08049ff4 <_GLOBAL_OFFSET_TABLE_>:
8049ff4: 28 9f 04 08 00 00 sub %bl,0x804(%edi)
8049ffa: 00 00 add %al,(%eax)
8049ffc: 00 00 add %al,(%eax)
8049ffe: 00 00 add %al,(%eax)
804a000: 66 83 04 08 76 addw $0x76,(%eax,%ecx,1)
804a005: 83 04 08 86 addl $0xffffff86,(%eax,%ecx,1)
804a009: 83 04 08 96 addl $0xffffff96,(%eax,%ecx,1)
804a00d: 83 .byte 0x83
804a00e: 04 08 add $0x8,%al

The address 0x0804a000 contains the value: 0x08048366, which is the address
in the PLT after the fgets() jump, this is a push $0x0 instruction. That push
is the push for the GOT entry for fgets() onto the stack. GOT entry offset for
fgets() is 0x0, this is the first GOT entry reserved for a shared library symbol
value, but this is the fourth GOT entry, GOT[3]. No shared library is set into
GOT[0] and they begin at GOT[3], the first three are reserved:

• GOT[0]: address that points to dynamic segment of executable, used by
dynamic linker for extracting dynamic linking-related information.

• GOT[1]: address of link_map structure, used by dynamic linker to resolve
symbols.

• GOT[2]: address to dynamic linkers *_dl_runtime_resolve()* function
that resolves actual symbol address for shared library function.

Last instruction in fgets() in PLT is *jmp 8048350 <_init+0x34>. Address
points to very first PLT entry in every executable, the PLT-0*.

PLT-0 contains following code:

8048350: ff 35 f8 9f 04 08 pushl 0x8049ff8
8048356: ff 25 fc 9f 04 08 jmp *0x8049ffc
804835c: 00 00 add %al,(%eax)

The first pushl pushes the address of GOT[1] (the link_map structure). Then
the jmp *0x8049ffc is an indirect jump into third GOT entry (GOT[2]) that
it contains the address to dynamic linkers *_dl_runtime_resolve(), therefore
transferring control to dynamic linker and resolving address for fgets(). Once
address is resolved is written into address 0x804a000 of the GOT* and next calls
to fgets@PLT will directly jump to the fgets address.

45

Dynamic Segment (Where most of important
things from ELF are)
The dynamic segment has a section header referencing it, but it has a program
header because it must be found during runtime by dynamic linker and section
headers are not loaded into memory.

Dynamic segment is an array of this type of struct:

typedef struct {
Elf32_Sword d_tag;
union {

Elf32_Word d_val;
Elf32_Addr d_ptr;

} d_un;
} Elf32_Dyn;

d_tag field contains a tag that matches one of numerous definitions that can be
found in ELF man. Some of the most important one:

• DT_NEEDED: string table offset to name of Interpreter or shared
library.

• DT_SYMTAB: Address of dynamic symbol table, also known by its
section name .dynsym, and its sh_type SHT_DYNSYM.

• DT_HASH: Address of symbol hash table; known by its section name
.hash (or .gnu.hash).

• DT_STRTAB: address of symbol string table, also known by its section
name .dynstr.

• DT_PLTGOT: address of global offset table.

Using these dynamic tags, is possible to recover in memory some of the section
headers, as these are not loaded, but some of them can be extracted with the
dynamic segment values.

d_val member holds an integer value that has various interpretations, such as
size of relocation entry to give one instance. d_ptr virtual memory address that
can point to various locations needed by linker; good example, address to symbol
table for d_tag DT_SYMTAB.

Dynamic linker utilizes the d_tags to locate different parts of dynamic seg-
ment that contain a reference to a part of executable through d_tag such as
DT_SYMTAB, which has a d_ptr to give virtual address to symbol table.

When dynamic linker is mapped into memory, first handles any of its own
relocations (if necessary) as the dynamic linker is a shared library itself. Then
looks executable program’s dynamic segment and searches for DT_NEEDED
tags that contain pointers to strings or pathnames of necessary shared libraries.
When it maps a needed shared library into memory, it accesses library’s dynamic

46

segment and adds library’s dsymbol table to a chain of symbol tables that exists
to hold symbol tables for each mapped library.

Linker creates struct link_map entry for each shared library, stores it in a linked
list:

struct link_map
{

ElfW(Addr) l_addr; /* Base address shared object is loaded at. */
char *l_name; /* Absolute file name object was found in */
ElfW(Dyn) *l_ld; /* Dynamic section of shared object */
struct link_map *l_next, *l_prev; /* Chain of loaded objects. */

};

Once linker has finished building its list of dependencies, it handles relocations
on each library, similar to relocation discussed earlier, as well as fixing up GOT
of each shared library. Lazy linking applies to PLT/GOT of shared libraries,
so GOT relocations (of type R_386_JMP_SLOT) won’t happen until point
when a function has actually been called.

47

	ELF File
	File Format
	Data Representation
	Character Representations
	Elf Header
	Elf Identification
	Sections
	Special Sections
	String table
	Symbol Table
	Relocation

	Quenya relocation mechanism
	Program Loading and Dynamic Linking
	Program Header
	Note Section
	Program Loading
	Dynamic Linking
	Special Section Names
	Special Sections

	Dynamic Section Names
	Dynamic Array Tags

	Pre-existing Extensions
	ELF Header
	Machine Identification

	Relocation
	Relocation Types

	Sections
	Special Sections
	Symbol Table
	Program Header
	Base Address
	Segment Permissions
	Segment Contents

	Dynamic Linking (Based on ELF Specification)
	Program Interpreter
	Dynamic Linker
	Dynamic Section
	Shared Object Dependencies
	Global Offset Table
	Procedure Linkage Table
	Hash Table
	Initialization and Termination Functions

	Appendix
	Sections
	Special Sections

	Symbol Table
	Symbol Values

	Relocation
	Relocation Types

	Program Loading and Dynamic Linking
	Program Loading
	Dynamic Linking
	Dynamic Section
	Global Offset Table
	Function Addresses

	Procedure Linkage Table

	ELF Dynamic Linking (Based on Learning Linux Binary Analysis)
	Auxiliary vector

	Learning about the PLT/GOT
	Dynamic Segment (Where most of important things from ELF are)

