ptrace

this system call is highly used when analyzing, debugging, reverse engineering,
and modifying programs that use ELF format. ptrace allows us to attach to a
process and access code, data, stack, heap, and registers.

Once ELF is completely mapped, we can attach to process, parse or modify
ELF similarly as we do in file on disk. ptrace gives access the program instead
of using open/mmap/read/write calls.

ptrace gives full control over program’s execution flow, this allows memory
virus infection, virus analysis or even detection of userland memory rootkits,
hotpatching, reverse engineering.

Importance of ptrace

Someone can attach to a process that they own and modify, analyze, reverse, and
debug it. gdb, strace, and ltrace make use of ptrace. It gives a programmer ability
to attach to a process and modify the memory, which can include injecting and
modifying data structures such as Global Offset Table (GOT) for shared
library redirection.

ptrace requests

ptrace system call has a libc wrapper, you may include ptrace.h and call ptrace
while passing it a request and a process ID.

#include <sys/ptrace.h>

long ptrace(enum __ptrace_request request, pid_t pid,
void *addr, void *data);

Request Types (enum ptrace_ request)
Request Description
PTRACE _ATTACH Attach to process specified by pid, making it

a tracee of calling process. Tracee is sent a
SIGSTOP signal, but will not have stopped
by completion of this call. Use waitpid to
wait for tracee to stop.

PTRACE _TRACEME Indicates this process is to be traced by its
parent. A process shouldn’t make this if its
parent isn’t expecting to trace it.

Request

Description

PTRACE PEEKTEXT
PTRACE_PEEKDATA
PTRACE PEEKUSER

PTRACE _POKETEXT

PTRACE_POKEDATA

PTRACE _POKEUSER
PTRACE GETREGS

PTRACE _SETREGS

PTRACE CONT

PTRACE_DETACH
PTRACE_SYSCALL

PTRACE SINGLESTEP

PTRACE GETSIGINFO

PTRACE_SETSIGINFO

PTRACE_SETOPTIONS

Allow tracing process to read from a virtual
memory address within traced process image;
we can read entire text or data segment into
a buffer for analysis. No difference in
implementation between these requests.
Requests allow tracing process to modify any
location within traced process image.

Allows tracing process to get a copy of
traced process’s registers. Each thread
context has its own register set.

Allows tracing process to set new register
values for traced process, allowing modifying
for example instruction pointer, to point a
shellcode

Tells stopped traced process to resume
execution

resumes traced process and detaches from it
Request resumes traced process but arranges
for it to stop at entrance/exit of next syscall.
Allows us to inspect arguments for syscall
and even modify them. ptrace request
heavily used in code for a program called
straced, which traces all system calls when a
program runs

Resumes process but stops it after next
instruction. Single stepping allows a
debugger to stop after every instruction
executed. Allows a user to inspect values of
registers and state of process after each
instruction

Retrieves information about signal that
caused the stop. It retrieves a copy of
siginfo__t structure, this can be modified and
set (with next request)

Sets signal information. This will affect only
signals that would normally be delivered to
tracee and would be caught by the tracer
(addr ignored)

sets ptrace options from data (addr ignored).
Data is interpreted as a bitmask of options.

Two terms: * tracer process doing the tracing (invoking ptrace). * tracee or
traced: program being traced by tracer.

The process register state and flags

Depending on the architecture we are going to trace we’re gonna have dif-
ferent struct of registers, but mainly we will have general-purpose registers,
segmentation registers, stack pointer, CPU flags, and TLS registers:

x86-64

struct user_regs_struct

{

__extension__
__extension__
__extension__
__extension__
__extension__
__extension__
__extension__
__extension__
__extension__
__extension__
__extension__
__extension__
__extension__
__extension__
__extension__
__extension__
__extension__
__extension__
__extension__
__extension__
__extension__
__extension__
__extension__
__extension__
__extension__
__extension__
__extension__

};
x86-32

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

struct user_regs_struct

{

long int ebx;
long int ecx;

long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long

long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long
long

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

rl5;
rl4;
rl3;
ri2;
rbp;
rbx;
rll;
rl0;

r9;

r3;

rax;
rcx;
rdx;
rsi;
rdi;
orig_rax;
rip;

cs;
eflags;
rsp;

ss;
fs_base;
gs_base;
ds;

es;

fs;

gs;

long int edx;
long int esi;
long int edi;
long int ebp;
long int eax;
long int xds;
long int xes;
long int xfs;
long int xgs;
long int orig_eax;
long int eip;
long int xcs;
long int eflags;
long int esp;
long int xss;

};
Notes

The structure contains an orig_eax which contains in a syscall the number of
the syscall, this can be used in the entry or the exit of a syscall to know the
syscall number. In Linux to search for the thread-local-storage (TLS) we
must use the register %gs in 32 bits, and %fs in 64 bits.

Implementing a simple Debugger

Complete code is in ptrace debugger.c, we’ll see here the most important parts
of the equation.

This code only works on binaries of 64 bits for Intel, and compiled as executables,
so no code in the form of PIC or PIE is found (all the virtual addresses in the
segments are absolute addresses, not relative virtual addresses). So the first
part of the program just retrieves the program name and a function to set a
breakpoint:

if ((h.exec = strdup(argv[1])) == NULL)
{
perror("executable strdup");
exit(-1);
}
args[0] = h.exec;
args[1] = NULL;

if ((h.symname = strdup(argv([2])) == NULL)
{

perror ("symname strdup");

exit(-1);

All the data is stored in a structure developed for the program.

Then, file is read into a buffer and parsed with ELF structures, the only part
we’ll see from here will be the check done to the binary in order to debug it or
not. The first check is done to know if is a 64 bit binary:

if (h.ehdr->e_machine !'= EM_IA 64 && h.ehdr->e_machine != EM_X86_64)
{
fprintf(stderr, "Only supported x86_64 elf binaries\n");
exit(-2);
}

Second one is to know if binary is an EXE, or other type of binary (it could be
a DYN for example). Only those compiled without PIE will be allowed:

if (h.ehdr->e_type != ET_EXEC)

{
fprintf (stderr, "/;s is not an ELF executable\n", h.exec);
exit(-1);

}

Finally, we will check for symbol strings, and sections (in order to retrieve
symbols), this is done to retrieve the address of the function we gave as parameter:

if (h.ehdr->e_shstrndx == || h.ehdr->e_shoff == || h.ehdr->e_shnum == 0)
{
fprintf (stderr, "Section header table not found\n");
exit(-1);
}
if ((h.symaddr = lookup_symbol(&h, h.symname)) == 0)
{
fprintf (stderr, "Unable to find symbol: %s not found in executable\n", h.symname);
exit(-1);
}

How to implement tracer and tracee

Two different implementations can be done to create both tracer and tracee,
both implementations start by the same code, create a child process, this can be
done using the syscall fork, syscall creates a child process as a copy of the parent
from the beginning of the code to that moment, for child process it returns a
value 0, and for parent process return other value greater than 0, which represent
the pid of child process.

e Unusual implementation: in this implementation the parent process is the
tracee, and the child process is the tracer. Parent process can do the next:

prctl(PR_SET_PTRACER, child_pid, 0, 0, 0);
sleep(X);

So in this case, the parent process tells specifically that its child process can
trace it, and sleep some time until child process attach to it.

The child process, must receive the parent process PID in order to call
PTRACE_ATTACH.

ptrace (PTRACE_ATTACH, parent_process, 0x0, 0x0);
This will not be in any case, the way that we will implement it is the next.

e Implementation we will use: in this case, is the most common way for
the implementation, the parent process will trace the child process. The
child process will execute ptrace to indicate that it will be traced by parent
process, and parent process will wait for child process.

First of all create the process with fork:

if ((pid = fork()) < 0)
{
perror ("fork");
exit(-1);
X

Then we will have the check for the child process and the execution of the binary
given as argument:

if (pid == 0) // child process

{
if (ptrace(PTRACE_TRACEME, pid, NULL, NULL) < 0) // ptrace oun
// process (will be catched by parent process)
{
perror ("PTRACE_TRACEME") ;
exit(-1);
}
execve(h.exec, args, envp); // ezecute new process,
// never return (this is like creating a process
// suspended in windows)
exit (0);
}

That code represent all that child process will do in the binary.
Now parent process will wait for child process, nothing more.
wait (&status);

As we gave as input one of the functions, we will set a breakpoint on that
function, previously we obtained the address of the function through the binary
symbols, the process to set a breakpoint is to read the address where we gonna
set the breakpoint so we will have the original byte to restore it later, and we will
set the trap byte. A software breakpoint is implemented using the byte 0xCC

once the program is gonna execute an instruction with this byte (instruction
int 3) it will generate an exception, that exception will be catched by parent
process (and we should know that it has been generated in the address of the
breakpoint).

// read address where to write breakpoint
if ((unsigned int) (orig = ptrace(PTRACE_PEEKTEXT, pid,
h.symaddr, NULL)) < 0)
{
perror ("PTRACE_PEEKTEXT") ;
exit(-1);
}

// set software interruption
trap = (orig & ~Oxff) | Oxcc;

// write instruction with breakpoint
// again into same address
if (ptrace(PTRACE_POKETEXT, pid, h.symaddr, trap) < 0)
{
perror ("PTRACE_POKETEXT") ;
exit(-1);
}

Once with breakpoint set, and in order to continue process execution we will
call again ptrace and we will wait for a new event:

if (ptrace(PTRACE_CONT, pid, NULL, NULL) < 0)

{
perror ("PTRACE_CONT") ;
exit(-1);

}

wait(&status);

The child process will continue, and in the moment that the chosen function
is executed, the breakpoint will halt the process and will wake up the parent
process from the wait. This will return in the status the reason, we can check
the reason with different macros, in here we will use WIFSTOPPED to check if
child is stopped, and with WSTOPSIG we will check the stop status, the reason
should be SIGTRAP.

if (WIFSTOPPED(status) && WSTOPSIG(status) == SIGTRAP)
{

We can now get the register values using one of the previous structures depending
on the architecture:

if (ptrace(PTRACE_GETREGS, pid, NULL, &h.pt_reg) < 0)

perror ("PTRACE_GETREGS") ;
exit(-1);
}

Once the breakpoint has halt the program, we have to follow various steps in
order to:

o recover the original byte from the instruction.

o fix the program counter to point again to the original instruction.
o execute only that instruction.

e set breakpoint again.

o continue the execution.

// write the original byte again back to the address
if (ptrace(PTRACE_POKETEXT, pid, h.symaddr, orig) < 0)
{

perror ("PTRACE_POKETEXT") ;

exit(-1);
}

// fiz the program counter, so point again to the instrucction
h.pt_reg.rip = h.pt_reg.rip - 1;

// Set the values back to the process
if (ptrace(PTRACE_SETREGS, pid, NULL, &h.pt_reg) < 0)
{
perror ("PTRACE_SETREGS") ;
exit(-1);
}

// Ezecute only one instrucction (the one fized)
if (ptrace(PTRACE_SINGLESTEP, pid, NULL, NULL) < 0)
{

perror ("PTRACE_SINGLESTEP") ;

exit(-1);
¥

// watt for single step
wait (NULL) ;

// restore software breakpoint byte
if (ptrace(PTRACE_POKETEXT, pid, h.symaddr, trap) < 0)
{

perror ("PTRACE_POKETEXT") ;

exit(-1);

Finally we should jump to the PTRACE_CONT ptrace call.

Implementing an attacher debugger

In some cases we do want to attach to an already running process. In that case,
we need to get the pid of the process we want to attach to. This time we have
the code in ptrace_attacher.c. The code is similar to the previous one, but this
time we will need code to get the pid, and also to get the path of the binary in
order to parse it and detect if it’s an EXE file of 64 bits.

So this time, we will have a switch statement in order to detect if the user is
giving a pid or exe file (as it can debug both this program), and also to get the
function name. To do that, we will use the getopt function:

while ((c = getopt(argc, argv, "p:e:f:")) != -1)
{

switch(c)

{

case 'p':

pid = atoi(optarg);

h.exec = get_exe_name(pid);

if (h.exec == NULL)

{
printf ("Unable to retrieve executable path for pid: %d\n", pid);
exit(-1);

}

mode = PID_MODE;

break;

'e':
if ((h.exec = strdup(optarg)) == NULL)
{

case

perror ("strdup") ;
exit(-1);

mode = EXE_MODE;
break;
case 'f':
if ((h.symname = strdup(optarg)) == NULL)
{
perror ("strdup") ;
exit(-1);
}
break;
default:
printf ("Unknown option\n");
break;

3

If pid is given instead of exe, the next code is executed in order to retrieve the
exe path from the command line. This is possible in Linux thanks to the path
/proc//cmdline, this would be the code of get_exe name:

charx*
get_exe_name(int pid)
{
char cmdline[255], path[512], *p;
int £d;
snprintf (cmdline, 255, "/proc/%d/cmdline", pid);

if ((fd = open(cmdline, O_RDONLY)) < 0)

{
fprintf (stderr, "Error opening file %s\n", cmdline);
perror("open");
exit(-1);
}
if (read(fd, path, 512) < 0)
{
perror("read");
exit(-1);
}
if ((p = strdup(path)) == NULL)
{
perror ("strdup");
exit(-1);
}
return p;

3

As we will attach to the program, we will set a handler for keyboard codes as
CTRL+C; this handler is set with a call to the function signal giving as first
parameter the signal to handle (in this case SIGINT) and as second parameter
the function. In this function what we would do is to dettach from the traced
process:

void

sighandler(int sig)

{
printf ("Caught SIGINT: Detaching from %d\n", global_pid);
if (ptrace(PTRACE_DETACH, global_pid, NULL, NULL) < O && errno)
{

10

perror ("PTRACE_DETACH");
exit(-1);
}

exit (0);
}

Once we obtain the path to the binary, the process is pretty similar to the
previous one, we have to parse the binary, and obtain the address of the function
from the symbol table of the binary, it could be that no symbol table is present,
so execution could not be possible as in this case we rely on the symbols.

Next step will be easier than in previous case, so in previous debugger we had
to create another process to trace it, this time we have to attach to the remote
process by pid:

// attach to process 'pid'
if (ptrace(PTRACE_ATTACH, pid, NULL, NULL) < 0)

{
perror ("PTRACE_ATTACH") ;
exit(-1);
}
// finally wait for the other process to stop
wait(&status);

The next steps would be exactly the same than in the debugger, as the only part
a little bit different is the use of PTRACE__ATTACH instead of using the
PTRACE_ TRACEME in the child process.

Useful Functions
Read Function

Due to the fact that the ptrace call only reads in words with PTRACE_ PEEKDATA
so in 32 bits we should for example read in blocks of 4 bytes, in case that we
need to read an unaligned size of bytes, we can use the next function:

long * read_data_from_memory(pid_t pid,long *addr,long *buffer,size_t size)
{

size_t size_cpy;

long read_value;

uint last_value;

long remainder;

int 1i;

uint mask_byte;

size_cpy = size;

if ((int)size < 0) {
size_cpy = size + 3;

11

}

i=0;

while (i < (int)size_cpy >> 2) {
// read from remote process
read_value = ptrace(PTRACE_PEEKDATA,pid,addr,0x0) ;
*buffer = read_value;
addr = addr + 1;
buffer = buffer + 1;
i=1+1;

}

/* If size 1s not aligned to long (4)
read the last part as byte, 2 bytes
or 3 bytes */

remainder = size % sizeof(long);

if (remainder == 0x1) {
mask_byte = Oxff;

}

if (remainder == 0x2) {
mask_byte = Oxffff;

}

if (remainder == 0x3) {
mask_byte = Oxffffff;

}

if (remainder != 0x0) {

last_value = ptrace(PTRACE_PEEKDATA,pid,addr, 0x0);
*buffer = xbuffer & ~mask_byte | last_value & mask_byte;
}

return remainder;

Write Function

The same happen with the Write function so we have to go in rounds of 4 bytes
(size of long), instead of using PTRACE__ PEEKDATA to retrieve data (it
will be used at the end), we will use PTRACE__POKEDATA:

void write_in_memory(pid_t current_pid,long *address,void **buffer,size_t size)
{

long last_value;

size_t size_cpy;

int remainder;

int 1i;

12

uint mask;

size_cpy = size;
if ((int)size < 0) {
size_cpy = size + 3;
¥
i=0;
while (i < (int)size_cpy >> 2) {
ptrace (PTRACE_POKEDATA, current_pid,address, *buffer) ;
address = address + 1;
buffer = buffer + 1;
i=1+ 1

}

remainder = size % sizeof(long);

if (remainder == 1) {
mask = Oxff;
}
if (remainder == 2) {
mask = Oxffff;
}
if (remainder == 3) {
mask = Oxffffff;
}
if (remainder '= 0) {
last_value = ptrace(PTRACE_PEEKDATA,current_pid,address, 0x0);
ptrace (PTRACE_POKEDATA, current_pid,address,
(void *) ((uint)+*buffer & mask | ~mask & last_value));
¥
return;
}

Avoid Tracing From Other Programs

In the same way that ptrace can be used to trace/debug a program and get its
state while running, it’s possible to trick ptrace to avoid other processes to exe-
cute ptrace on a given process. So if we call ptrace with PTRACE__ ATTACH
giving as pid our own pid, we will set our own process as the tracer.

current_pid = getpid();

ptrace_output = ptrace(PTRACE_ATTACH, current_pid, 0x0, 0x0);

13

if (ptrace_output == -1)

{
puts("Detected a tracer already attached, killing process\n");
kill(current_pid, 9);

}

Also, in case we want to detect if a tracer is already attached to us, we can get
its pid from one of the files in /proc//status, checking line by line, we will find
one that start by “TracerPid”, reading that line and extracting the value we will
get if there’s no process tracing us (0) or if there’s one process tracing us (pid of
tracert):

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

#define MAX_LEN 256

int

GetTracerPidValue(pid_t current_pid)

{
const char *proc_status = "/proc/%d/status";
const char *tracerpid = "TracerPid:";
const char *tracerpid_value = "TracerPid: %d";

char proc_pid_status[MAX_LEN];
FILE *fd;

char *line_buf;

size_t line_buf_size;

ssize_t line_size;

int tracerpid_found;

size_t tracerpid_len;

int tracerpid_value_int;

memset (proc_pid_status, 0, MAX_LEN);

snprintf (proc_pid_status, MAX_LEN, proc_status, current_pid);
fd = fopen(proc_pid_status, "r");

line_buf = NULL;
line_buf_size = 0;

tracerpid_found = 0;

do
{

14

line_size = getline(&line_buf, &line_buf_size, fd);
if (line_size < 0)

{
free(line_buf);
fclose(fd);
return 0;

}

tracerpid_len = strlen(tracerpid);
tracerpid_found = memcmp(tracerpid, line_buf, tracerpid_len);
} while (tracerpid_found != 0);

sscanf (line_buf, tracerpid_value, &tracerpid_value_int);
free(line buf);

fclose(£fd);

return tracerpid_value_int;

}
int
main()
{
int tracerpid = GetTracerPidValue(getpid());
if (tracerpid '= 0)
{
printf ("Debugger detected, debugger's pid %d\n", tracerpid);
return -1;
}
else
printf("No debugger detected, all fine\n");
return O;
¥

Managing Syscalls

Whenever you want to manage the syscalls in a program you're tracing, we saw
that it’s possible to stop in these syscalls using the flag PTRACE__SYSCALL
in the ptrace function, this works similar to PTRACE__CONT but when a
syscall is executed this will stop at the beginning of the syscall, and with another
PTRACE_SYSCALL the program will stop at the end of the syscall.

Due to the fact that when a syscall is executed, the registers are modified, we
need some way in order to know which syscall is going to be executed, for that
reason in the structures of registers, we have an specific one with this number,

15

if we know from assembly programming, the syscall number is set in eax or
raxz depending on the architecture, well, in the structures we have a field like
orig__eax or orig_rax, these value holds the syscall number. Finally, once a
syscall has finished we will have the return value in eax or raz.

To handle the syscall, it will be the same method than handling a breakpoint,
we will have a SIGSTOP, and the reason will be a SIGTRAP. If we have a
list of breakpoints, we should retrieve the value from the program counter (eip
or rip) in order to check if that value - 1 (because the program counter holds the
next instruction) is one of our breakpoint addresses. Also other way would be
to read the program counter value - 1 memory and check if it contains a 0zCC
(software breakpoint), in that case handle the breakpoint as we saw previously
and nothing more.

In order to know if we are at the beginning of a syscall or at the end, we can
just use a “boolean” value with 1 and 0, these would be an example:

if (WIFSTOPPED(status) && WSTOPSIG(status) == SIGTRAP)
{
// get registers from program
if (ptrace(PTRACE_GETREGS, pid, NULL, &h.pt_reg) < 0)

{
perror ("PTRACE_GETREGS") ;
exit(-1);
b
if (h.pt_reg.rip '= (h.symaddr+1))
{
if (is_entry)
{
printf("Stop in a syscall, number of syscall: %d\n", h.pt_reg.orig_rax);
is_entry = 0O;
X
else
{
printf ("End of syscall, returns: %016x\n", h.pt_reg.rax);
is_entry = 1;
}
X

If you remember in h.symaddr we had the address of the function where we set
the breakpoint, this is just a simple way to manage the syscall.

How to avoid the execution of a syscall

As written by nullprogram we can block the execution of the syscall, setting the
ortg__eax or orig_rax value to -1 as the syscall has not been executed yet at the
entry of the syscall, finally, once the syscall finish, we just set in eax or raz the
value -EPERM so the operation is not permitted:

16

https://nullprogram.com/blog/2018/06/23/

for (55) {
/* Enter next system call */
ptrace (PTRACE_SYSCALL, pid, 0, 0);
waitpid(pid, 0, 0);

struct user_regs_struct regs;
ptrace (PTRACE_GETREGS, pid, 0, ®s);

/* Is this system call permitted? */

int blocked = 0;

if (is_syscall_blocked(regs.orig_rax)) {
blocked = 1;
regs.orig_rax = -1; // set to invalid syscall
ptrace (PTRACE_SETREGS, pid, 0, ®s);

}

/* Run system call and stop on exit */
ptrace (PTRACE_SYSCALL, pid, 0, 0);
waitpid(pid, 0, 0);

if (blocked) {
/* errno = EPERM */
regs.rax = -EPERM; // Operation not permitted
ptrace (PTRACE_SETREGS, pid, 0, ®s);

}

In the previous code, we would check for a given syscall if it appears in a
blacklist. In the moment before returning we can return another value if we
want to emulate for example some behavior.

Managing Exceptions

With ptrace we can also manage exceptions as we did with the breakpoints
and the syscalls, to do that we will have to check for a stop reason equals
to SIGSEGYV, inside of that code, we can get a structure of the exception
with PTRACE_ GETSIGINFO, in here we can get the address where the
exception happened, reason, and so on. Let’s going to see an example of code:

if (WIFSTOPPED(status) && WSTOPSIG(status) == SIGSEGV)
{

siginfo_t siginfo;

if (ptrace (PTRACE_GETSIGINFO, pid, NULL, &siginfo) < 0)
{

perror ("PTRACE_GETSIGINFO");

exit(-1);

17

}

// get registers from program
if (ptrace(PTRACE_GETREGS, pid, NULL, &h.pt_reg) < 0)
{

perror ("PTRACE_GETREGS") ;

exit(-1);

printf("siginfo.si_addr: 0x%081lx\n", siginfo.si_addr);
printf ("Exception in address: Ox%lx\n", h.pt_reg.rip);

printf ("J%rcx: %016x\t%jrdx: %016x\t%jrbx: ’%016x\n"
"Yhrax: %016x\t%krdi: %016x\t%jkrsi: %016x\n"
"%hr8: %016x\t%Ar9: %016x\t%kr10: %016x\n"
"htril: %016x\t%kri2: %016x\t%%r13: J%016x\n"
“hhrld: %016x\t%kri5: %016x\t}%rsp: %016x\n"
"dhrop: %016x\n",
.pt_reg.rcx, h.pt_reg.rdx, h.pt_reg.rbx,
.pt_reg.rax, h.pt_reg.rdi, h.pt_reg.rsi,
.pt_reg.r8, h.pt_reg.r9, h.pt_reg.ri0,
.pt_reg.rll, h.pt_reg.r12, h.pt_reg.ril3,
.pt_reg.rl4, h.pt_reg.r1l5, h.pt_reg.rsp,
.pt_reg.rbp);

[= = = g = g = =

18

	ptrace
	Importance of ptrace
	ptrace requests
	Request Types (enum __ptrace_request)
	The process register state and flags
	Implementing a simple Debugger
	Implementing an attacher debugger
	Useful Functions
	Read Function
	Write Function
	Avoid Tracing From Other Programs
	Managing Syscalls
	Managing Exceptions

