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ABSTRACT
We present WatchPPG, an open-source toolkit that enables raw
photoplethysmography (PPG) data collection and stress detection
using off-the-shelf smartwatches.
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1 INTRODUCTION
There has been a growing interest in developing just-in-time (JIT)
stress intervention systems that offer continuous in-situ stress mon-
itoring to deliver interventions proactively [2, 3]. Evaluating such
systems in a practical setting is critical to ensuring the ecological
validity of intervention design [4, 5] and to improving the usability
and user experiences of the systems. However, we identified a lack
of an open-source toolkit using affordable wearable devices for
such studies. To address this, we introduce the WatchPPG toolkit,
focusing on heart rate variability (HRV) as a stress indicator. Our
toolkit offers a WearOS application for raw PPG data collection, a
convenient alternative to chest-worn electrocardiogram (ECG) de-
vices, and a stress detection pipeline. We tested its viability using a
Samsung Galaxy Watch and comparing the performance with ECG
(Polar H10), and research-grade PPG (Empatica E4) devices. Data
was collected in semi-naturalistic, stressful environments, and our
results confirm the use of WatchPPG in various stress intervention
studies.
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2 WATCHPPG PIPELINE AND EVALUATION
Pipeline:We present a PPG-based stress detectionmodeling pipeline.
The entire analysis process, written in Python, along with the com-
mercial wearable device application written in Kotlin, can be ac-
cessed via this link. Data preprocessing initiates the filtering pro-
cess; a 0.8-3.5Hz Butterworth bandpass filter was used to eliminate
non-heart rate frequencies and outliers were substituted with me-
dian values. This is followed by detecting peaks in raw signals to
compute peak-to-peak intervals. We adopted a recently proposed
algorithm called HeartPy [11], but our data analysis revealed sig-
nificant errors due to motion-related artifacts [6, 8]. Consequently,
we incorporated additional correction steps into HeartPy by imple-
menting a chunk-based correction method on 4-second segments;
removing and imputing values deviating over 150ms from the previ-
ous chunk mean [1]. We also applied median filter-based correction,
replacing intervals differing more than 150ms from the filtered in-
tervals with cubic spline interpolated values [10]. After peak detec-
tion, we then extract well-known time and frequency domain HRV
features and build stress detection models using various machine
learning models such as random forest and XGBoost [7].

Evaluation:We ran an approved study on 12 experienced emotion
workers from call centers who wore the aforementioned one ECG
and two PPG devices for data collection. The study involved a 4-
minute baseline state—2 minutes of rest followed by 2 minutes
of typing—and a 4-minute simulated call. The call scenario was
adapted from the Trier Social Stress Test (TSST) [9] and involved a
professional actor enacting a customer service issue. Participants
were asked to stay polite regardless of what the actor said and
summarize the session through the computer concurrently. We
considered a binary classification task, designating the baseline as
non-stress and the call as stress, and extracted HRV features every
60 seconds with a shift of 0.25 seconds [9]. The RF model showed
accuracies of 80.3, 76.4, and 82.8 on Polar H10, Galaxy Watch, and
E4, respectively, while XGBoost showed accuracies of 86.4, 76.7, and
81.8. The commercial watch and proposed pipeline had comparable
detection performance to the ECG and research PPG devices.
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