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Smartphone notifications inform users of events to prompt timely engagement. However, there are growing concerns about
messaging behaviors in schools because frequent in-class checking and responding may hinder students’ learning. This study
analyzed a large-scale smartphone usage dataset collected from 81 first-year college students for 14 weeks. We quantified
notification arrival and checking patterns in classrooms and analyzed how notification handling behaviors were correlated
with students’ smartphone usage and academic performance. Our results showed that receiving messages and frequent
checking occur during class. Frequent checking behaviors were positively related to longer app usage, while willful neglect
of incoming messages was positively related to overall academic performance. Our work demonstrates that problematic
behaviors exist related to instant messaging in learning contexts and recommends further study to devise effective intervention
mechanisms.
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1 INTRODUCTION

Behavioral analytics of teachers and students has been one of the important research topics in educational data
mining and learning analytics [44, 70]. Behavioral monitoring provides data-driven insights for improving in-
structional methods and materials, moderating students’ undesired behaviors (e.g., cheating, off-task multitasking,
and dropping out), and predicting students’ wellbeing and academic performance [70, 89]. Ubicomp researchers
actively explored these fields with enabling technologies that offer new methods of behavioral monitoring and
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analytics, such as students’ attention, gesture, and mood tracking with computer vision [2, 66], and students’
lecture engagement tracking with physiological sensing [12, 19].

In recent years, there has been growing interest in using smartphone sensing and usage logging techniques to
understand the relationships among students’ mental wellbeing, behaviors, and academic performance [89, 90, 92].
Behavioral analytics revealed various novel insights; for exmaple, behavioral characteristics (e.g., conversation,
mobility) are correlated with mental wellbeing and academic performance [89, 90]. Students’ multitasking
behaviors are positively correlated with stress [92] and negatively correlated with academic performance [31].
While multitasking behaviors in learning contexts have been extensively studied in the past [47, 91, 92, 103],

we notice a research gap in understanding real-world instant message handling behaviors and their relationship
with academic performance. Multitasking behaviors on instant messaging are considered important for several
reasons. Mobile instant messaging applications (e.g., WhatsApp, Facebook Messenger, and KakaoTalk) are widely
adopted among smartphone users; for example, WhatsApp alone had 1.6 billion active users, about half of the
world’s four billion Internet users [78]. A large fraction of notifications originates from instant messaging [42, 64],
and message checking habits [61] and fear of missing out [65] lead to frequent (sometimes impulsive) engagement
with instant messaging even in learning contexts [52].

Furthermore, prior psychology studies extensively experimented with the disruptive nature of notifications to
primary tasks [35, 79] and the negative effects on learning performance (e.g., note-taking, reading speed, recall
tests, and overall grades) [16, 20, 23, 88]. These studies highlighted the importance of self-regulating phone usage
in learning contexts [30, 75, 83], but lacked real-world insights on students’ actual usage behaviors. Existing in-situ
measurement studies mostly focused on understanding general behavioral characteristics of handling notifications
(e.g., checking delay) and their impacts on user experiences (e.g., satisfaction and disturbance) [55, 63, 85], but
their generalizability to learning contexts is limited.
In this work, we analyzed a long-term measurement dataset collected from 81 first-year college students

in Korea [31]. We focused on the usage behaviors of KakaoTalk, a representative mobile instant messaging
(MIM) app used by more than 94% of Korean smartphone users (as of 2018) [34]. This dataset includes 301,270
in-class notifications and 64,324 checking events from KakaoTalk. Our analysis of this dataset helps us answer
the following research questions:

• (RQ1) What are the stochastic properties of notification arrival and checking processes in class settings?
How are notification modality settings (e.g., silent or vibration modes) related to in-class notification
checking behaviors?

• (RQ2) How are notification handling behaviors (e.g., ignoring, locked/unlocked checking) related to in-class
phone usage behaviors?

• (RQ3) How are in-class notification handling and phone usage behaviors related to academic performance?

Our results showed that the number of notifications arriving/checking per class is 58.15 (SD = 59.64) and 13.33
(SD = 17.46) respectively. Of students’ arrival and checking processes, 73.17% and 32.10% follow a log-normal
distribution, respectivelyÐlog-normal distributions are left-skewed and have long-tailed characteristics. The
median of inter-arrival and inter-checking intervals of notifications are given as 10.03 s (SD = 5.96) and 162.73
s (SD =127.53), respectively. Additionally, we found that notification arrival and checking intervals are highly
correlated, and frequent arrivals are positively correlated with frequent checking behaviors. We also found that a
student’s habit of handling notifications is correlated with the overall smartphone usage patterns, showing that
participants who tend to ignore notifications use their smartphone shorter amount of time and launch fewer
apps.

Our hierarchical multiple regression results showed that notification handling preference and usage behaviors
are related to academic performance. There is a tendency that those who prefer to willfully neglect or ignore
incoming messages tended to show higher academic performance (semester GPA). Interestingly, the number
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of notification-triggered sessions was positively correlated with academic performance, but its duration was
negatively correlated. This means that frequent short usage appears to be less harmful than occasional long
usage.
Our major contribution to the field of problematic digital technology use [22, 42] and smartphone usage

behaviors in learning contexts [4, 29] was to quantify notification handling behaviors and identify how they
are correlated with academic performance. Our results can be used to set digital device use policies for the
classroom [75] and to provide novel insights into intervention mechanism design related to instant messaging [26,
58]

2 BACKGROUND AND RELATED WORK

We review prior studies on how instant messaging and its notifications are associated with distraction, phone
usage, and learning performance. In addition, we review prior studies on passive sensing in learning contexts.

2.1 Notifications and Distraction

Notification is one of the main functions of smartphones, and people are exposed to many notifications in daily
life. A prior study showed that college students receive hundreds of notifications per day, and over 90% of them
originate from instant messaging apps [42]. Notifications are the primary sources of perceptual stimulations from
smartphones (i.e., visual, auditory, and haptic feedback) that cause involuntary attentional shifts [10]. Existing
experiment results showed that instant messaging negatively affects the performance of primary attention and
response tasks (e.g., sustained attention to response [79] and Go/No-Go tasks [35]). Incoming phone calls are
often alerted with full-screen notifications, which are known to be more disruptive than regular pop-up messages,
causing a significant negative impact on the performance of ongoing phone tasks [5, 43]. Notification modalities
(i.e., sound, vibration, and silent) greatly influence a user’s decision-making process for notification handling (e.g.,
react, focus, read, act) [85]. The loud ringing sound is known to be very disruptive [14], and silent notifications
appear to be less distracting in that their checking time are usually longer than sound and vibration [55].

Interruptibility studies in Ubicomp clearly showed that notification delivery on inopportune moments incurs
emotional costs (e.g., annoyance, and frustration) [1]. There is a negative relationship between the number
of notifications and negative emotional effects such as overwhelmed, stressed, interrupted, and annoyed [63].
Notifications are also closely related to users’ mental wellbeing, such as inattention and hyperactivity [38].
Furthermore, recent psychology studies [28, 93] experimentally demonstrated that smartphone visibility and
notifications have significant impacts on perceived distractions. Mere visibility of smartphones increased a
user’s vigilance, which is a readiness to respond to notifications [28]. Surprisingly, this kind of vigilance resulted
in a decrease of available cognitive capacity (dubbed łbrain drainž), possibly due to self-controlling usage
temptations [93]. Notifications naturally involve multitasking in learning contexts. This severely impairs attention
and working memory, negatively influencing learning performance (e.g., GPA, recall and test scores, reading,
note-taking) [49]. For this reason, it is likely that users wish to proactively manage messaging applications, as
shown in a recent in-the-wild study of a rule-based usage intervention app [46].
However, existing studies on notifications have shown only simple statistics and temporal patterns of notifi-

cation receipt and checking [55, 63, 85]. Most prior studies have dealt with notification handling in everyday
life, not educational environments, e.g., examining negative emotional affects and disruption [63], response
delays [55], and attending patterns [64]. Likewise, a recent study [31] reported only descriptive statistics and
did not consider stochastic properties such as inter-arrival patterns. Our knowledge about notification handling
behaviors is still lacking, and thus, we focused on learning contexts to answer ł(RQ1) What are the stochastic

properties of notification arrival and checking processes in class settings?ž In particular, we study notification arrival
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and checking processes, the relationship between notification arrival and checking events, and the relationship
between notification modality settings and checking events.

2.2 Notifications and Phone Usage

Prior studies showed that students used smartphones for more than 25% of class duration, and phone distractions
occurred every three to four minutes and lasted for over a minute [31]. Common usage includes texting, social
media, and web surfing [53]. Students used smartphones for various reasons, including boredom or entertain-
ment [52], usage habits [61], or fear of missing out (FOMO) [65]. Students felt that using smartphones in class
disrupted their focus and made them miss instruction time [52]. In particular, checking notifications (short mes-
sage service/SMS or instant messaging) was considered to be a major distractor [80]. Survey results of university
students showed that, on average, 12.21 and 10.75 texts were sent and received per hour during class [62].
Prior literature showed constant connectivity through social media, and instant messaging creates social

pressure for checking notifications [63]. A user’s fear of missing out is positively related to the number of friends
on social media [101] and is also positively related to the frequency of daily activity disruptions [72]. The concept
of nomophobia (no mobile phone and phobia) originates from łthe pathological fear of remaining out of touch
with technology,ž including discomfort, anxiety, nervousness, or anguish [8]. Major constructs include (1) not
being able to communicate, (2) losing connectedness, (3) not being able to access information, and (4) giving
up convenience [99]Ðnotifications from instant messaging and social media play a key role in nomophobia.
The physical presence of smartphones demands attentional resources [28, 93], but ironically, physical removal
also taxes emotional resources (i.e., anxiety) [9]. Social networking features (e.g., status checking and message
notifications) create short, repeated smartphone checking habits [61], which is closely related to nomophobia,
or even pathological behaviors [27]. A user’s nomophobic trait is also associated with compulsive smartphone
usage behaviors (e.g., lack of tolerance and self-control) [100].
Prior studies on technological addiction showed that external cues such as incoming calls and text messages

were regarded as potential triggers to problematic usage behaviors [22]. Notifications lead to frequent checking
on the target apps [33]. The number of notifications is positively related to phone unlocks and overall screen
time [87]. It is important to note that notification handling involves a complex decision-making process. Turner
et al. [85] proposed a simple decision making process model which consists of four steps: react (perception), focus
(summary checking), read (actually reading), and act (responding). A more elaborate model by Pielot et al. [64]
differentiates interaction paths in Android OS: shown (screen-on due to notification), seen (unlocking), checked
(notification drawer interaction), and consumed (clicked), and removed (discarded, expired, or consumed). In
addition, modalities of notifications (i.e., sound, vibration, and silence) were known to be an important factor in
decision-making [85] as they influence the time it takes to check and respond to notifications [55].

In this study, we analyze the passive measurement dataset to examine whether phone notifications and their
modalities were potential triggers for smartphone use in learning contexts. A recent measurement study [31]
reported simple descriptive statistics about in-class phone usage and ringer mode usage, but their relationships
were not explored. We extracted smartphone usage sessions related to notifications and investigated the second
research question: ł(RQ2) What is the relationship between notification handling behaviors and phone usage

behaviors?ž Our work builds upon prior studies [64, 85, 86] in that we consider the system transition in Android
OS [86] and then categorize notification handling behaviors by referring to prior models [64, 85].

2.3 Notifications and Learning Performance

Multitasking while learning interferes with information processing and learning processes due to limited human
cognitive ability. According to the cognitive theory of multimedia learning [51], the human information processing
system consists of two separate channels, such as an auditory/verbal channel and visual/pictorial channel for
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processing input and representation. Each channel has a limited processing capacity [97]. Learning is regarded
as a coordinated set of cognitive processing [50], as it involves selecting relevant words/images, organizing the
selected words/images, and integrating the pictorial and verbal representation and knowledge, which requires
considerable information processing over these channels. Therefore, multitasking while learning may interfere
with information processing and learning processes [96].

In learning contexts, technology can both enhance and detract from classwork and academic performance.
Mobile technology use can be classified as class purpose usage (or on-tasks: checking class materials) and non-
class purpose usage (or off-tasks: social networking and mobile gaming) [52]. Off-task multitasking (including
responding to personal messages) negatively influences various learning tasks [49] and overall academic perfor-
mance [21, 29, 40]. Previous studies showed that not only the use of laptops [102] and smartphones [29] in the
classroom, but also overall daily smartphone use [4, 95] were negatively related to academic performance.
In particular, negative aspects of instant messaging in learning contexts are well reported in the literature.

In-class instant messaging behaviors degrade the quality of note-taking [88], slows reading speed [7, 16, 18],
and lowers recall test scores [13, 20, 57, 98]. Instant messaging behaviors are also negatively related to academic
performance (e.g., term grade or GPA) and other factors (e.g., sleep amount, social bonding, and competence) [23,
45].

However, those studies on text messaging were either limited to experimental settings or were mostly based on
self-reports, which suffer from recall error and social desirability bias; frequently receiving notifications makes it
very difficult for users to accurately recall how they handle notifications. A recent study showed that specific app
usage (e.g., web browsing) was negatively related with academic performance [31], but the effects of notification
handling behaviors were not examined. Our study fills these gaps by examining ł(RQ3) How are notification

handling and phone usage behaviors related to academic performance?ž

2.4 Passive Sensing in Learning Contexts

Prior Ubicomp studies analyzed students’ behaviors (i.e., physical and social activities and phone usage) to study
their wellbeing and academic performance. Tossell et al. [84] ran a small-scale observation study (n=24, for one
year) and reported negative aspects of distraction due to smartphones. The StudentLife project [89] (n=48 for
10 weeks) collected students’ behavior data (activity, location, conversation, sleep) and self-report data with
experience sampling (emotion and stress). Behavioral characteristics (e.g., conversation, mobility) and their trends
(e.g., up/down directions, change in directions) are related to mental health and academic performance [90].
Wang et al. [47] tracked students’ stress levels with a wearable sensor (n=48 for one week) and reported that
multitasking is positively correlated with stress. Daily social media usage tracking showed a negative relationship
with students’ mood [92]. A recent measurement study on Facebook [91] showed that there was no significant
relationship between Facebook usage and GPA. Zhou et al. [103] showed that monitoring campus-wide Wi-Fi
traffic data allows them to infer students’ in-class behaviors (e.g., classroom arrival/departure, minute-level
network usage activity during lectures).
Classroom monitoring with ubiquitous technologies for tracking student engagement or monitoring teacher

behaviors has been of great interest to the Ubicomp community. Raca and Dillenbourg [66] used computer vision
to track students’ body motion and gaze directions for engagement quantification. EduSense [2] further tracks
fine-grained gestures and facial expressions. Wearable sensors were considered to track mobility patterns [48]
and engagement levels [12, 19]. A teacher’s mobility tracking with wearable sensors can capture instructional
proxemics for teachers’ self-reflection and instructional improvement [48]. Physiological signal tracking (e.g.,
brain waves, electrodermal activity, heart rates) has been used for in-class engagement tracking. EngageMeter [25]
tracks EEG signals of the audience for cognitive engagement estimation and real-time visualization. Lascio et
al. [12] used a wearable sensor (Empatica E4) to infer a students’ emotional engagement in a university. Gao et
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Table 1. Dataset description

Category Data type Description

Passive
sensing
data

Activity
Activity class (i.e., Still, Walk, Run, Bike, Vehicle)
collected in every 15s via Google API

Application Apps usage history
GPS GPS location in every 5s if activity is not still
Wi-Fi
fingerprint

Wi-Fi scanning and currently associated AP
if activity is still

Notification
Notification arrival/removal events, title,
alarm type (LED/Vibration/Sound), notification setting

Ringer Mode Current ringer mode (Silence/Vibration/Sound)
Screen On/Off Screen On/Off event
Touch Screen touch (short/long/scroll)
Keyboard Key press event

Self
reported
data

Student Info Gender, age, enrolled classes, their grades, and GPA
Class Info Credits, classroom location, and class time
Smartphone
Addiction Scale

Daily-life disturbance, positive anticipation, withdrawal,
cyberspace-oriented relationship, overuse and tolerance [39]

al. [19] further considered multidimensional engagement metrics (behavioral, emotional, cognitive) and extensive
sensor data, including indoor environment sensing (e.g., CO2 and temperature).

Our work builds upon the previous studies on passive sensing in learning contexts. Passive smartphone usage
tracking provides an alternative means for tracking students’ engagement. Beyond simple app usage tracking [91,
92], our work further tracked fine-grained notification handling patterns as in prior HCI studies [55, 64, 85].
None of the earlier studies performed a large-scale measurement study (n=81 for one semester) on notification
handling behaviors in classroom settings.

3 METHODS

3.1 Dataset Description

Our work is based on a dataset from a previous study [31]. Below is a basic description of the dataset, including
data pre-processing methods (e.g., attendance checking and handling of missing data). Our work was reviewed
and approved by the university’s Institutional Review Board.

3.1.1 Collected Data Types. The dataset consists of passive sensing data and self-reported data. Passive sensing
data collection was implemented based on Andriod’s accessibility service, which includes users’ current activity,
foreground applications, global positioning system (GPS), Wi-Fi fingerprints, notification receipt/removal events,
ringer mode (sound/vibration/silence), screen on/off, and keyboard/touch events. Self-reported data were collected
by a survey that asks about student information, class information, a smartphone addiction scale (SAS) [39],
course grades, and GPA. Both course grades and GPA were collected after the semester ended. Details are shown
in Table 1.

3.1.2 Participants and Period. First-year college students were recruited for Kim et al.’s study [31]. This selection
ensured the homogeneity of participants: first-year students are required to take common courses, which makes
it easy to control class environment variations [31]. Participants used devices with Android OS version 5.0 or
higher for data collection. There were 84 participants, with 56 (67%) males and 28 (33%) females. The average age
of participants was 19.61 (SD = 0.6).
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The number of courses taken by the participants was distributed as follows: 4 (n = 11), 5 (n = 24), 6 (n = 34),
7 (n = 13), and 8 (n=2). Students took 445 courses, lasting 75 min (n = 353), 105 min (n = 30), 165 min (n = 59),
180 min (n = 1), and 195 min (n = 2). Since 75-min courses take up almost 80% of the class in that semester, our
analysis focused on 75-min courses. Overall, 196,704 hours of smartphone usage, and 14,111,453 notification
receipt/removal events were collected. Given that over 90% of notifications were from instant messaging [42],
our work focused on analyzing instant messaging, namely KakaoTalk. In our analyses, we only considered
participants who used KakaoTalk (n=81); i.e., three participants who did not use KakaoTalk were excluded.

3.1.3 Data Pre-processing. We extracted in-class usage data as reported in the prior work [31]. Wi-Fi MAC
addresses and GPS coordinates were used to check students’ class attendance. Wi-Fi hotspots have a unique MAC
address. If the MAC address of Wi-Fi near a classroom and scanned Wi-Fi MAC address matched, the student
was assumed to have attended the class. However, sometimes the student turned off Wi-Fi; in that case, GPS
coordinate data was alternatively used to check attendance. If the student’s current GPS location was within the
defined radius of the building, students were assumed to have attended the class. The reliability of the attendance
checking was verified using 628 actual attendance records of 13 participants, recorded by the lecturers from the
Learning Management System were collected [31]. Among the 628 records, 89 records without corresponding
sensor data (Wi-Fi, GPS) were excluded; for the remaining 539 cases, the actual attendance records and the
estimated attendance results matched 100%.
Once attendance was identified, when students entered and left the classroom was determined by using

Google’s Activity Recognition API. For example, if students entered the classroom, their activity changed from
the walking/running to the stationary state; when students left the classroom, their activity state changed from
stationary to walking/running. If the changed state lasted for more than 90 seconds, it was determined that
students entered or left the classroom. Observation of activity log data from 15 minutes before and after the lecture
time and found that such activity transition methods could successfully detect the time students actually attended
the class, and therefore, actual smartphone usage in classrooms was extracted (2,303 hours of smartphone usage
in classroom).
Smartphone-based continuous sensing and data recording may suffer from missing data due to resource

limitation and optimization policies in mobile devices [6]. In this study, the screen on/off events were paired
in order to define smartphone usage sessions. We found that approximately 8% of screen-on events and 11% of
screen-off events were missing. To impute missing values, we simultaneously considered multiple data streams,
i.e., screen-on/off, application, and touch/keyboard events. We used a simple heuristic by associating on and off
events with touch interaction events (e.g., first touch or last touch). We provided an example of imputation of
missing values in the Appendix.

3.2 Data Analysis Model

We first defined a usage session (or session in short) as a unit for analysis so that we could investigate the relation
between notifications and smartphone usage. A session could be divided into internally or externally triggered
sessions depending on the existence of external cues (e.g., incoming notifications) [3]. It could be further divided
according to the user’s actions (e.g., unlocked, touch, keyboard, and app execution) within the session. We then
compare detailed usage metrics per session (e.g., usage duration, the number of apps used, and the number of
interactions) depending on whether the session was triggered by notification (i.e., an externally cued session).

3.2.1 Session Definition and Types. We used the state transition diagram of smartphone usage for a consistent
definition of the session. Figure 1 shows a state transition diagram that demonstrates how the smartphone state
can be altered by different actors (i.e., user, OS, and application). Using this transition state, a session can be
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User

OS

Locked,

Display Off

Locked,

Display On

Unlocked, 

Display On

Application

Screen On

Notification

Screen Off

Screen Off

Unlock1 2 3

Fig. 1. Smartphone state transition diagram: 1○→ 2○: A user can turn on the screen (Screen On), and an incoming notification

does similarly (Notification). 2○→ 3○: A user unlocks the phone to check the notification or to launch other apps. 3○→ 1○: A

user or OS can turn off the screen (Screen Off). Users can interact with notifications in both Locked, Display On ( 2○) and

Unlocked State ( 3○)

defined as follows. A session is a series of processes starting with Locked, Display-Off state ( 1○), and ending with
the same initial state, i.e., Locked, Display-Off state ( 1○).
Sessions can be classified into two types depending on whether they are unlocked or not. The first type is a

locked session, which means that the session is used in Locked, Display-On state ( 2○) without unlocking. Its
sequence is given as follows:

• A transition happens from Locked, Display-Off state ( 1○) to Locked, Display-On state ( 2○), which is either
initiated by a user or a notification.

• Users can use their phone in the Lock, Display-On state ( 2○). For example, the users can simply check the
time, read the arrival notifications, or remove them.

• After use, a transition from Locked, Display-On state ( 2○) to Locked, Display-Off state ( 1○) by the user or
OS (after preset time)

The second type is an unlocked session, which is a session unlocked by the user and used in Unlock state ( 3○) .
Its sequence is given as follows:

• A transition from Locked, Display-Off state ( 1○) to Locked, Display-On state ( 2○) by a user or an incoming
notification.

• A transition from Locked, Display-On state ( 2○) to Unlock state ( 3○) by a user.
• Users can use their phones in the Unlocked state ( 3○). For example, the users can use apps (e.g., message,
web browser, YouTube) to send messages, search the web, or watch YouTube.

• A transition from the Unlocked state ( 3○) to Locked, Display-Off state ( 1○) by the user or OS (after preset
time)

Based on this session model, we define two different usage sessions, given that usage sessions can be triggered
by external cues (e.g., incoming calls and notifications from messages or social media), or internal cues (e.g., users’
information needs such as web searches) [3, 22]. If a usage session was triggered by a notification, we called
it an external session (or an externally triggered session). In other words, a user simply clicked an incoming
notification to open the app for checking. Alternatively, the user could unlock the phone and then open the app
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Table 2. Definition of Different Session Types (𝐸: External Session, 𝐼 : Internal Session)

Session Type Description

𝐸1
A session is started by a notification, and it is ended
without any interactions (e.g., screen touches)

𝐸2
A session is started by clicking a notification,
and the user responds to it in the lock screen

𝐸3
A session is started by clicking a notification,
and then unlocking the phone for checking

𝐸4
A session is started by a user (via the launcher),
and the app in that session is used for checking notifications

𝐼

A session is started by a user (via the launcher),
and app usage in that session is not used for checking
notifications (i.e., using apps other than checking notifications)

to check notifications, which was also regarded as an external session. If an unlocked usage session did not begin
with notification checking, we can simply refer to this session as an łinternalž session (or an internally triggered
session).

3.2.2 Notification Handling Behaviors and Preference. We further divided the session in more detail based on how
a user reacted to notifications, so that we could analyze how different reaction types were related to academic
performance. As shown in Table 2, the session could be broadly classified into five reaction types. When a
notification arrived, a user could simply ignore it or check it. The ignored case was denoted as an 𝐸1 session,
meaning that an externally triggered session remained intact without further interactions (e.g., screen touch
or keyboard typing). This could have been because the user failed to recognize notification arrivals. If the user
decided to check, there are two possible situations: if the user read or removed the notification without unlocking
(i.e., lock-screen interactions), we denoted this event as an 𝐸2 session (i.e., a łnotificationž triggered external
session with łlock-screenž checking). When the user clicked the notification and opened the app to respond, we
denoted this event as an 𝐸3 session (i.e., a łnotificationž triggered external session with łunlockedž checking).
Unlike these sessions that started from directly interacting with arrived notifications, users could launch an app
(i.e., KakaoTalk) to check notifications (instead of clicking on received notifications). As shown earlier, this session
was also treated as an externally triggered session, and we denoted it as an 𝐸4 session (i.e., a łuserž triggered
external session for łunlockedž checking). The rest of the sessions were denoted as 𝐼 sessions, or a łuserž initiated
(internally triggered) łunlockedž session without immediate notification checking.

We assumed that users might have different preferences in handling notifications. We defined łhandling
preferencež to quantify how users generally responded to notifications. This was defined as the percentage of
𝐸𝑥 sessions to external sessions in a given class where 𝑥 is one of the external session types (i.e., 1, 2, 3, 4). For
example, in an extreme case, if one student ignored all incoming notifications that occurred during the class, the
𝐸1 preference would be given as 1, and the 𝐸2, 𝐸3, and 𝐸4 preference values as 0. This measure is calculated per
class and we calculate the average 𝐸𝑥 preference values for all students.

Using this measure, we could see how notification handling preference, as well as overall usage behaviors, are
related to academic performance.

3.2.3 Notification Process Models. Figure 2 represents the notification process. It shows how notifications arrived
and were checked during a class. Notification arrivals are represented by downward-pointing arrows above the
timeline. We observed a total of 301,270 in-class notification arrivals. Notification modalities were classified
into sound, vibration, or silent mode. The overall distribution of in-class notification modality was 9,603 (3.19%)
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Inter-checking Interval

Inter-arrival interval

Window =10 sec

Bulk arrival

Posted

Checked

Fig. 2. Notification receipt/checking example; the number of arrivals is nine and the number of checking is three.

Table 3. Description of notification and checking metrics

Category Metrics Description

Notification
receipt
(or arrival)

Inter-arrival interval Time between two consecutive arrivals
Number of arrivals Number of notifications arrived per class

Bulk arrival
A set of notifications arrived
within a 10-second window treated

Alarm modality
Current modality state
(i.e., sound, vibration, muted)

Notification
checking

Inter-checking interval Time between consecutive checking events
Number of checkings Number of checking events per class

for sound, 119,497 (39.66%) for vibration, and 172,170 (57.15%) for silent. Notification checking events were
represented by downward-pointing arrows beneath the timeline, and we observed a total of 64,324 in-class
notification checking events. Notification receipt/checking metrics are defined in this process (see Table 3 for
details).

4 RESULTS

4.1 RQ1: Stochastic Properties of IM Notification Arrival and Checking Processes

4.1.1 Distributions of IM Notification Arrival and Checking Processes. Before we analyze user preferences, it
is important to analyze the stochastic properties of the in-class notification receipt/checking processes; e.g.,
examining whether these processes follow certain probability distributions with different parameters. Identifying
stochastic properties of user interactions helps us to better generalize user behaviors as reported in prior
studies [15, 42, 73]. We analyzed not only simple statistics but also the statistical properties of notification
inter-arrival and checking distributions by fitting the interval values to a specific distribution. We applied kernel
density estimation to visualize probability density functions; for this, we used a Gaussian kernel and 1-second
sized bins to fit all density functions (inter-arrival/checking interval and bulk arrival interval). In addition, we
used a goodness-of-fit test to examine whether a given dataset has been generated by a certain distribution (or
follows that distribution) [69].

Our results revealed that there were a significant fraction of participants whose notification arrival processes
and checking processes followed log-normal distribution. A log-normal distribution represents a normally
distributed distribution when the X-axis is in the logarithmic scale. This distribution well models a phenomenon
where there is rapid increase and then a rapid decrease in events with left-skewed and heavy tailed properties.

Figure 3 shows the average of notification inter-arrival/checking intervals and the number of events for 81
students (See Table 3 for a description of the metrics). Students received on average 58.15 (SD = 59.64) notifications
per class with an interval of 107.88 (SD = 80.11), and checked 13.33 (SD = 17.46) notifications per class with a
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Fig. 3. Average notification receipt/checking frequency (left) and interval (right) for 81 students

Fig. 4. Density function of inter-arrival intervals for 81 students, with a 10-second window covering nearly 80% of arrivals

461.67 (SD = 236.27) interval. We also confirmed that the frequency and interval of notification receipt/checking
differed from person to person with a large variance, because the arrival/checking processes tended to follow
log-normal distributions.

We then analyzed bulk arrival patterns as Figure 4 shows that 79.37% of inter-arrival intervals were concentrated
within 10 seconds. This bulk arrival pattern was partly due to the MIM’s characteristic of exchanging short text
messages. For this reason, we treated the set of arrivals from the same sender within a 10-second window as
one bulk arrival. We then analyzed the łbulkž arrival process instead. We observed that some of the extremely
left-skewed data were now removed, and the density function had a heavy tail. The results of goodness of fit
tests showed that 59 students (72.83%) followed log-normal distributions.
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We also analyzed the notification checking intervals. A single checking event clears a bulk of notifications
arrived, and thus, checking intervals would be quite similar to bulk arrival patterns. There were significant indi-
vidual variations: frequent checkers’ distributions were left-skewed, whereas less frequent checkers’ distributions
were not skewed but had fat tails (see Appendix for the detailed examples). The results of goodness of fit tests
showed that checking processes of 26 students (32.10%) followed log-normal distribution.

4.1.2 Correlation between IM Notification Arrival and Checking Events. After looking at the statistical charac-
teristics of notification arrival/checking processes, we checked whether the notification arrival and checking
were correlated. For example, we examined whether students who were exposed to more frequent notifications
checked their phones more. We also examined whether the modality (sound, vibration, silence) of the notification
affected the checking process. For that, we first defined arrival and checking metrics as shown in Table 3. We
calculated the metrics by averaging the mean values of each student. For analysis, correlation analyses were
performed when arrival metrics were continuous variables such as inter-arrival intervals and the number of
arrivals. We conducted a 2x2 correlation analysis. As shown in Table 4, we found that all arrival and checking
metrics were statistically significantly correlated, which means that the frequent notifications were related to
frequent notification checking events.
The arrival factor is also dependent on modality (sound, silence, or vibration), and thus, its relationship

with the checking factor (inter-checking interval) was statistically tested through hypothesis testing. Previous
studies [55, 85] hinted that modality was one of the metrics that affected notification checking in daily life. In our
study, we examined whether the modality of notifications in class is related to the checking process. We decided
to perform per-subject analysis because not every student used both modalities, and the usage behavior of each
student would be different from one another. Therefore, we regarded that per-subject analysis can better deal
with such individual usage variations.

We excluded the sound mode from the analysis due to the lack of the number of samples (less than 3.5%
of the total notification arrivals). We compared notification inter-checking intervals from those who use both
vibration and silent modes (per subject comparisons). Among the 81 students, 49 students were selected who
used both vibration and silent modes and among the remaining 32 students, one student used the sound mode, 10
students used the vibration mode, and 21 students used the silent mode primarily. We examined the differences
in inter-checking intervals (how frequently did they check notifications?). The hypothesis we wanted to test
was whether the inter-checking interval is modality independent or not at a 0.05 significance level. We averaged
the mean values of inter-checking intervals during two different modalities for each student. We found that 37
students (75.51%) had no statistical difference between modality and inter-checking intervals, 10 students (20.41%)
checked notifications more frequently in the vibration mode, and only two (4.08%) students checked notifications
more frequently in the silent mode.

4.2 RQ2: IM Notification Handling Preference and Phone Usage Behaviors

4.2.1 Session-level Usage Comparisons among Different Session Types. We examined whether there were any
usage differences depending on whether a session was affected by notifications. We wanted to test the existing

Table 4. Correlation analysis between arrival and checking metrics. See Table 3 for detailed definitions of each metric.

Inter-checking interval Number of ckeckings
Coefficient 𝑝-value Coefficient 𝑝-value

Inter-arrival intervals 0.48 <0.001 −0.36 <0.001
Number of arrivals −0.34 0.002 0.42 <0.001
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Fig. 5. Number of sessions per session type. 𝐸 is external session (1: ignored, 2: notification/locked checking, 3: notifica-

tion/unlocked checking, 4: user/unlocked checking) and 𝐼 is internal session

Table 5. Definition of per-session usage metrics

Metrics Description

Usage duration
The time from when the user starts
interacting with the phone to the screen off

Number of apps used Total number of apps used per session

Number of interactions
Total number of interactions (touch/typing)
with the smartphone per session

research that external cues are a potential trigger of problematic usage behavior [22]. In order to verify if
notifications during class time were also related to smartphone use, we classified sessions as external or internal
depending on whether they were triggered by notifications, and we further divided sessions based on how
students responded to notifications. As shown in Table 2, we classified the sessions into four external sessions
(ignore (𝐸1), simple check without unlocking (𝐸2), unlocked use via notification (𝐸3), unlocked use via launcher
(𝐸4)) and one internal session (user initiated unlocked use not relating to notifications (𝐼 )). Figure 5 represents the
average number of external and internal sessions for 81 students per class. All sessions, including external and
internal sessions, occurred on average 17.45 (SD = 6.01) times per class, of which unlocked usage sessions (𝐸3, 𝐸4,
and 𝐼 ) occurred 13.33 (SD = 3.87) times per class.
We compared session-level usage metrics in three unlocked usage sessions (𝐸3, 𝐸4, and 𝐼 ) to find the impact

of notifications on the use of smartphones. Here, the session-level usage metrics include usage duration, the
number of apps used, and the number of interactions within a session (see Table 5 for details). We calculated these
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Table 6. Usage differences across different session types: ANOVA and pairwise comparison results. 𝐸 is external session (3:

notification/unlocked checking, 4: user/unlocked checking) and 𝐼 is internal session

𝐸3 𝐸4 𝐼
ANOVA
𝑝-value

𝜂2
Multiple
comparison

Usage duration
177.24
(SD=82.46)

133.23
(SD=91.31)

124.78
(SD=65.82)

<0.001 0.085 𝐸3>𝐸4=𝐼

Number of apps used
2.53
(SD=0.81)

2.26
(SD=1.18)

1.43
(SD=1.12)

<0.001 0.273 𝐸3=𝐸4>𝐼

Number of interactions
107.84
(SD=68.18)

144.03
(SD=101.11)

75.50
(SD=44.27)

<0.001 0.071 𝐸3=𝐸4>𝐼

Table 7. Descriptive statistics of notification handling preferences. 𝐸 is external session (1: ignored, 2: notification/locked

checking, 3: notification/unlocked checking, 4: user/unlocked checking)

𝐸1
Preference

𝐸2
Preference

𝐸3
Preference

𝐸4
Preference

Mean (SD) 0.56 (0.15) 0.30 (0.13) 0.46 (0.14) 0.21 (0.12)

metrics by averaging values of each student for all classes. To compare these metrics in each session, we first
tested a homogeneity of variance test to confirm that there is the same variance among three sessions and found
that each session has different variance. Therefore, we performed the KruskalśWallis test (non-parametric test).
If there was a statistically significant difference, we then performed pairwise comparison with the Bonferroni
correction to review the difference in metrics between sessions. As shown in Table 6, all smartphone usage
metrics had significant differences in each session, and the effect size (or partial eta squared) of them were quite
large. Students used their smartphones longer when the session was initiated by a notification (𝐸3) than when
the session was initiated by the user (𝐸4, 𝐼 ). Students used apps more and interacted more with their smartphone
in external sessions (𝐸3, 𝐸4) than internal sessions (𝐼 ).

4.2.2 Relationship between IM Notification Handling Preference and Phone Usage Behaviors. Smartphone checking
habits could increase overall smartphone usage [33, 61, 87]. Prior work defined a checking habit as a brief and
repetitive use [61]. Our work defined a checking habit based on notification handling preference, that is, the
ratio of each external session type to all of the external sessions, which are defined in Table 2. Table 7 shows the
descriptive statistics for 81 students’ notification handling preferences.
We performed a correlation analysis to understand how notification handling preferences are related to

smartphone usage metrics. As usage metrics, we used average duration per session, the number of apps used per
session, and the number of interactions per session (i.e., touch and keyboard typing). In addition, we calculated
aggregate amounts (by summing up all the sessions), that is, total duration per class, total number of apps used
per class, and total number of interactions per class. As checking metrics, the inter-checking interval and number
of checkings per class were used.

Table 8 shows the correlation analysis results. We applied the Bonferroni correction to results. We found that
the participants who tended to ignore notifications, generally used their smartphone for shorter amounts of time,
and launched fewer apps.
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Table 8. Correlation results: notification handling preferences vs. smartphone usage/checking metrics. 𝐸 is external session

(1: ignored, 2: notification/locked checking, 3: notification/unlocked checking, 4: user/unlocked checking)

𝐸1
Preference

𝐸2
Preference

𝐸3
Preference

𝐸4
Preference

Duration per session −0.11 0.03 0.20 0.10
Number of apps used per session −0.47∗∗∗ −0.01 0.22 −0.08
Number of interactions per session −0.04 −0.10 −0.06 −0.09
Total duration per class −0.38∗ −0.10 −0.10 −0.12
Total number of apps used per class −0.58∗∗∗ −0.25 0.00 −0.20
Total number of interactions per class −0.24 −0.32 −0.16 −0.20
Inter-checking interval per class 0.25 0.41∗∗ 0.18 0.23
Number of checkings per class −0.26 −0.05 −0.18 −0.07

*𝑝 < 0.05, **𝑝 < 0.01, ***𝑝 < 0.001.

4.3 RQ3: IM Notification Handling Preference and Academic Performance

We identified which of the metrics of notification handling and smartphone use influenced academic performance.

We extracted smartphone usage metrics as the number of each session and its usage duration. In addition, we

defined handling behavior metrics as inter-arrival/checking interval, number of arrivals/checking, bulk arrival,

and reaction preferences. We calculated metrics by averaging values of each student for all classes. These metrics

helped capture the relationship between notification handling behaviors, habits, and academic performance.

Additionally, we used students’ smartphone addiction scale scores [39] because prior studies showed that there is

a negative relationship between smartphone addiction and academic performance [74].

Using these metrics, we performed a hierarchical multiple regression on the student’s end-of-semester GPAs

(i.e., grade point average of courses taken on the monitored semester). We used the GPA, not the courses’ grade,

because the number of classes per student is small, and it is difficult to find classes that every student takes.

Therefore, focusing on specific sets of classes may provide limited results, and prior studies also used students’

GPA for overall analysis [59, 90, 91]. The first block included a students’ gender and addiction score as a baseline,

the second block additionally includes session-level smartphone usage metrics. The remaining metrics were

included in the third block, i.e., in-class notification arrival/checking metrics and reaction preference. To avoid

multicollinearity, we removed items whose variance inflation factor values are greater than 10. The number of

independent variables was reduced with the backward elimination method to avoid model over-fitting; other

variable selection methods showed similar results with slightly lower explanability. The regression results are

shown in Table 9. Empty beta values in each block are due to variable removals.

Our first baseline model with gender and smartphone addiction score was not significant (𝑝 = 0.185, adjusted

𝑅2 = 0.018). Our second model with session level usage metrics was significant (𝑝 = 0.0378, adjusted 𝑅2 = 0.086).

Here, 𝐸3 (immediately check notification and actual app use) duration was the only significant predictor with a

negative coefficient, which indicates the importance of using the smartphone briefly when using it once. Finally,

our third model with in-class notification handling metrics and reaction preference was significant with the

adjusted 𝑅2 value of 0.227 (𝑝 < 0.001). The change of 𝑅2 value was 0.141. We found that the 𝐸1 preference was

positively related with GPA, which means that users who responded less to notifications exhibited good academic

performance. Interestingly, we found that the number of 𝐸3 sessions was positively correlated but its duration

was negatively correlated. Short frequent usage appears to not to negatively influence academic performance, as

long as usage is not too distracting in class.
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Table 9. Hierarchical regression results with three blocks (i.e., baseline, phone usage, and notification handling behaviors). 𝐸

is external session (1: ignored, 2: notification/locked checking, 3: notification/unlocked checking, 4: user/unlocked checking)

and 𝐼 is internal session

Independent
variables

Block 1 Block 2 Block 3
𝛽 𝛽 𝛽

Baseline
Gender 0.2014 0.1980 0.1544
Addiction score −0.0055
# Classes 0.0061

Smartphone
usage metrics

#𝐸1 Sessions 0.0140 −0.0424

#𝐸2 Sessions −0.0892

#𝐸3 Sessions 0.0345 0.2014∗∗∗

#𝐸4 Sessions
#𝐼 Sessions 0.0172
𝐸3 Usage duration −0.0013∗ −0.0028∗∗

𝐸4 Usage duration
𝐼 Usage duration

Notification
handling
behaviors

Inter-arrival interval −0.0017
Number of arrivals
Inter-checking interval
Number of checkings 0.0053
𝐸1 Preference 2.0317∗∗∗

𝐸2 Preference 1.0411
𝐸3 Preference −1.0374
𝐸4 Preference 0.7351

Adjusted 𝑅2 0.005 0.086∗∗ 0.227∗∗∗

𝑅2 Change 0.081 0.141

*𝑝 < 0.05, **𝑝 < 0.01, ***𝑝 < 0.001.

5 DISCUSSION

5.1 Prevalence of In-class Instant Messaging Usage

Prior studies showed that users received many notifications. For example, Pielot et al. [63] showed that a user

received on average 63.4 notifications per day, and Lee et al. [42] showed that college students in Korea received

more than 400 notifications per day, over 90% of them from instant messaging. However, these studies did not

examine in-depth notification interaction patterns in the classroom and only reported simple statistics (e.g.,

checking frequency). Furthermore, none of the prior studies systematically examined naturalistic, in-depth

user interaction behaviors on notifications in learning contexts.. We analyzed 301,270 in-class notifications and

64,324 checkings collected over 14 weeks from 81 students. Our results showed that the number of received

notifications and the number of notifications checking events per class were 58.5 (SD = 59.64) and 13.33 (SD =

17.46), respectively. Given that most lectures last 75 minutes, it is likely that students received a large number of

notifications per day.

We further analyzed the characteristics of notification arrival/checking processes by fitting their intervals to

specific distributions to better model notification handling behaviors. Prior work only studied session level usage

patterns [15, 42, 73]. Inter-arrival intervals (i.e., the time interval between consecutive notifications) showed

skewed distributions; a large fraction of intervals were short (79.37% arrived in 10 seconds). When arrivals

are clustered (e.g., messages that arrived in 10 seconds were treated as one bulk arrival), we found that the
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inter-arrival intervals of 59 students (72.83%) followed the log normal distributions with their pooled mean and
median values of 107.88 (SD = 80.11) and 10.03 (SD = 5.96), respectively. In addition, we analyzed inter-checking
intervals (i.e., time interval between consecutive notification checking events) and found that the inter-checking
intervals of 26 students (32.10%) followed log-normal distributions with their mean and median values given as
461.17 (SD = 236.27) and 162.73 (SD = 127.53), respectively. A prior study also reported a notification checking
metric called łclick timež (i.e., time interval between a notification arrival and a user’s click event) and showed
that 50% and 83% of notifications were checked within 5 seconds and 5 minutes, respectively [73]. Although we
were not able to measure the click times of individual notifications (or to track pulling down behaviors of the
notification drawer) due to limitations of the dataset, our results highlighted that inter-checking intervals were
also quite short, with a median value of 162.73 s (SD =127.53), which means that notification checking happened
in every two or three minutes throughout a class.

5.2 Notification Handling Preference and Academic Performance

Our results showed that instant message notifications acted as a potential trigger for smartphone use, which
coincided with a prior study [33, 42, 87]. We further found that students use diverse apps for a longer time
during sessions triggered by notifications than other sessions. We also presented findings, which have not been
confirmed in previous studies, that notification checking habits were related not only to checking frequency
but also to general smartphone usage patterns such as total usage and variety of apps used. Our results showed
that users’ notification handling preferences were closely related to overall smartphone usage. In particular,
participants who tended to ignore notifications took a shorter amount of time to check and launched fewer
numbers of apps. Existing studies have addressed relationships between the students’ checking behavior (e.g.,
frequency) and academic performances. However, many studies were based on self-report surveys or controlled
experiments [29, 40, 52, 98]. Existing in-the-wild studies did not investigate how students’ notification handling
behaviors are related to their GPA [21, 31, 90, 91]. Our study showed that notification handling preference was
closely related to students’ academic performance; i.e., those who tended to ignore notifications (or willfully
neglected incoming messages) had a higher academic performance. In addition, notification checking frequency
was positively related, but prolonged phone usage was negatively related to academic performance. Self-regulated
notification handling (short usage) may have positive effects on learning performance (for instance, offering
micro-breaks and reducing social tension).

Chun et al. [10] showed that external events and visual stimulation could result in involuntary shifts of attention.
Smartphone notifications provide users with visual and auditory/haptic stimulation. Thus, notifications may shift
people’s attention from the current learning tasks, tempting users to respond, which further distracts them from
learning. Students need to switch from the learning task to a notification handling task and then later resume the
learning task, or even juggle both tasks concurrently. If such disruption happens at inopportune moments or the
duration of distraction is prolonged, it is likely that students will have difficulty in keeping up with the learning
materials. As shown in the existing interaction models [64, 85, 86], notification handling involves a series of
decision making with multiple steps, which results in different user reaction types as presented in our work
(e.g., ignoring, locked interaction, and unlocked interaction). Prior psychological experiments [13, 20, 57, 98]
did not systematically explore the influence of different user reactions, including distraction coping strategies
(i.e., silencing or ignoring). We call for further experimental studies on understanding the impacts of different
notification handling behaviors on diverse cognitive tasks.

5.3 Influence of Modality Selection on Notification Handling Behaviors

Previous studies investigated the factors related to smartphone notification checking in daily life and found that
the output modality of notification arrivals (e.g., sound, vibration, silent) is a major factor [55, 85]. As one of the

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 1, Article 18. Publication date: March 2021.



18:18 • Kim et al.

checking metrics, seen timeÐthe time from a notification arrival to a user’s phone unlockingÐwas statistically
different for each modality: i.e., the shortest was in vibration mode (3.35 min), and the longest in silent mode
(7.33 min) [55]. Another study reported that notification handling processes could be decomposed into multiple
steps, and modality selection was a significant factor in deciding whether to move on to the next steps [85].
In-class modality selection patterns (e.g., silent or ringer mode frequency) were explored in prior work [31].

We extended this work by examining how output modality selection (i.e., vibration and silence) was related to
inter-checking intervals and asking if those who use vibration mode checked notification more frequently than
those who use silent mode.1

To our surprise, 75.5% students did not show statistically significant relationships between output modality
and inter-checking intervals. This means that students checked notifications in silent mode as frequently as in
vibration mode. Frequent checking in silent mode may stem from students’ usage habits in everyday life: even
though they turned their phones to silent during class, frequent phone checking is likely to continue as it does in
non-class settings. Another explanation is that students typically place their phone in accessible locations during
class, such as on the desk, hoping to use their phone for learning purposes (checking homework, looking up
terms). Indeed, previous research found that smartphone visibility increases a user’s vigilance, which may lead to
frequent interactions [28]. Given that łnotification interactionsž involve a series of decision making tasks [85],
students need to continually allocate a certain amount of cognitive resources for multitasking [93]. Thus, students
are easily exposed to their smartphones in class due to other distractors (e.g., boredom, fatigue, and content
difficulty) [80]. Due to a lack of self-regulation under such circumstances, it is likely that notification checking
may frequently happen regardless of output modality selection.

5.4 Smartphone Usage Intervention Guidelines

While using mobile devices can potentially support teaching and learning [83], it can also disrupt learning [68].
Therefore, it is important to suggest appropriate regulations on checking behaviors to minimize distractions in
learning contexts. One possible approach is to specify an appropriate smartphone usage policy in the course
syllabus. Prior studies have suggested a use policy based on student survey [82] or instructors’ opinions; instructors
recommended some usage policies such as allowing devices only for content, permitting devices for emergencies,
and setting devices to silent mode [75]. Interestingly, our results highlighted that silent mode does not necessarily
lower notification checking frequency, possibly due to checking habits or fear of missing out. A recent study
showed that mobile mindfulness programs (e.g., focusing on present moments by eliminating distraction) can
help users to train self-regulation of smartphone use [81].

Previous studies also explored other technical intervention methods using behavioral change mechanisms such
as self-limiting through goal setting [26], leveraging social support [37], and problematic usage monitoring [24].
‘Do Not Disturb’ mode can be proactively triggered based on the user’s context, similar to the automatic context-
aware ringer-mode re-configuration or message responding [77]. We can also consider letting users specify
which notifications to receive or not (i.e., filtering conditions). For example, a system can filter out notifications
based on keywords, senders, and arrival patterns (e.g., three times within a minute). This will allow users to
ignore irrelevant notifications and receive necessary notifications, thereby effectively handling fear of missing
out while attending classes. Likewise, a user’s phone usage context can be adapted to control the salience of
incoming notifications, similar to how incoming calls can be displayed as a pop-up window instead of a full-screen
notification when using a navigation app, for example [5]. Offering a location-based reminder for blocking phone
usage [30] showed positive effects on lowering smartphone usage in class. Notification handling preferences
can be automatically learned based on association rule mining as in interruptibility management systems [54].

1Due to limitations of the dataset, unlike prior studies [55, 64], we were not able to measure fine-grained interaction timing of each instant
message (e.g., single checking removes all related pending notifications in KakaoTalk).
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It is even possible to set advanced context-aware rules to prioritize message delivery [36], although there are
concerns of context recognition errors or a lack of explainability [71]. Delivery schedule of notifications could
be simply alerted (e.g., periodic batching [17, 41], or user-defined snoozing [94]). These features will facilitate
willful neglect of notifications and short use, but there are also concerns about increased anxiety levels due to
fear of missing out, possibly among less self-regulated users [8, 100]. In this case, we can use proactive solutions
to nudge users to better self-regulate smartphone usage. For example, we can ensure short usage by setting time
limit [32], offering disturbing vibration feedback [60], or batching and snoozing notifications [17, 94].
When implementing these technical solutions, designers should carefully consider user privacy and ethical

issues, because systems collect fine-grained user interaction and context data. In particular when user data are
shared with other people (e.g., instructors), there should be clear consideration of user consent and privacy
protection mechanisms. For example, a prior study [30] showed that voluntary participation is required for
in-class adoption of technical solutions due to surveillance concerns.

5.5 Limitations

There are several limitations about the current usage dataset and our analysis methods. It did not include
detailed interaction information such as personalized IM notification settings for privacy preserving and DND
configuration for muting and filtering due to limitations of logging software. However, our empirical investigation
showed that changing ringer mode was more frequently used among students for notification handling than DND
mode changes (both requiring manual settings). IM notifications were only considered for analysis due to their
dominance and generalizability of findings. Usage may be driven by other apps’ notifications (e.g., Facebook),
but their effects may be low due to small volume (less than 2%). It would be interesting to consider the grade
distribution within those classes in the model. However, our dataset is limited in that it only includes each
student’s grade per class and their GPA. Thus, we could not consider grade distribution within those classes. Our
analysis focused on GPA to lower the effects of inter-class variations. In addition, other digital devices such as
tablets and laptops were not considered. The overall influence of digital distractions from notifications could be
even more significant if we also considered tablets and laptops. Because the original dataset was collected from
the first-year college students to ensure the homogeneity, our results have limited generalizability. A previous
study showed that undergraduates were more likely to use digital devices than graduate students during classes
for off-task or non-class activities during classes [53]. Thus, further studies should examine differences based on
students’ year of study. In our analysis, we could not differentiate on-task and off-task usage because we simply
used notification arrival and checking information. Prior studies reported that MIMs are used for interpersonal
relationship maintenance, and it is less clear how MIM can be used to stay on task in classrooms. Further studies
are required to analyze the types of on- and off-task usage related to MIM. Smartphone-based continuous sensing
and data logging may have problems if it depends on external APIs. For example, Google Activity Recognition
may return ambiguous results that a user is stationary and in a vehicle at the same time. In our dataset, these
cases were found to be very limited. However, it may be problematic in other studies that collect data using
external APIs. To handle such issues, it would be possible to consider utilizing different types of sensing data. For
example, in the above case, GPS location data (e.g., in/outside of buildings) and/or Wi-Fi data (e.g., connection
status) can be used to find a more probable user’s state.
Our work showed how notification handling behaviors were correlated with phone usage and academic

performance. Our findings cannot assure that notifications are the direct causes. As in prior studies [56, 76], there
should be further studies on analyzing causal relationships based on the observational data with propensity score
matching and cross-convergent mapping techniques. Furthermore, we note that there could be other confounding
factors related to phone usage and academic performance. For example, Noftle and Robins [59] showed that college
GPA is related personality traits (e.g., openness to experience, conscientiousness, extraversion, agreeableness,
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and neuroticism), gender, and high school GPA. In particular, conscientiousness (i.e., a tendency of showing
efficient, organized, and planned behaviors with self-discipline) is the most significant predictor for college GPA.
Gender difference (female students having higher GPAs) has been less consistent across different studies possibly
due to contextual dependency (verbal vs. math tests) and sample diversity. A previous study that analyzed the
same dataset as ours showed that gender difference was not a significant factor [31]. Instant messaging usage
is highly related to interpersonal relationships [67], and prior studies also showed that personality traits such
as extraversion are important predictors for social media usage behaviors and their outcomes (e.g., disruption,
GPA) [11, 55]. A holistic examination of these factors along with phone usage factors would be an interesting
direction for future work.

6 CONCLUSION

Concerns about digital distraction continue to grow as the use of laptops and smartphones in classrooms becomes
more pervasive these days. We analyzed a large-scale in-class notification dataset. Our key finding is that
notification handling, and usage behaviors were closely related to students’ academic performance. Those who
tended to ignore incoming messages had higher academic achievement, and less self-regulated notification
checking behaviors (i.e., long usage sessions) were considered harmful in learning contexts. We all agree that
smartphones serve as useful tools for learning (e.g., information search and collaboration). Our results showed
evidence that notifications might act as a trigger of prolonged usage of smartphones. Our results have significant
policy implications for setting up rules for notification handling and provide novel insights into designing
intelligent, context-aware distraction management systems in learning contexts. Furthermore, our detailed
notification handling models offer unique insights into future psychological experimentation on evaluating the
effects of notifications on cognitive and learning tasks.
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7 APPENDIX

7.1 Notification Arrival and Checking Examples

We selected three students, whose notification interval was on the 25th percentile (M = 60.42s, SD = 184.42),
median (M = 81.63s, SD = 326.67), and at the 75th percentile (M = 121.79s, SD = 389.31), respectively, to visualize the
distributions of inter-arrival and checking intervals. As shown in Figure 6, we found the common characteristics
among the three students: (1) Notification arrival processes were left-skewed with a longer tail and most
notification arrivals were concentrated within 20 seconds. (2) Density functions looked similar to exponential
distribution, but inter-arrivals rarely occurred at the same time (i.e., peaks in between 0 to 20 seconds), and thus,
they did not fit well with an exponential distribution. (3) Goodness-of-fit test results for exponential distribution
families such as gamma, log-normal, and chi distribution showed a lack of statistically significant distributions
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due to the non-zero head and a longer tail. These arrival patterns are unique characteristics of mobile instant
messaging (MIM); i.e., text typing in MIM requires some time although inter-arrivals can be short. MIM users
tend to exchange messages in units of sentences rather than long sentences at once.

Fig. 6. Density functions of original inter-arrival intervals (left) and inter-arrival intervals with bulk arrival treatment (right)

for 3 students (25%tile, median, 75%tile)

In the same way, we selected three students, whose notification checking intervals were 25th percentile (M =
208.60s, SD = 455.69), median (M = 421.98s, SD = 690.82) and 75th percentile (M = 594.76, SD = 932.01) repectively,
to consider overall students’ checking process. As shown in Figure 7, we clearly observed the difference between
those who frequently check notifications and those who do not. The distribution of the frequent checker was
left-skewed (in fact, P33 checked most notifications within 200 seconds). In contrast, the other two students’
distributions were not skewed but had a heavy tail. We found that 26 students (32.10%) followed log-normal
distributions.

Fig. 7. Density functions of inter-checking intervals (left) and inter-checking intervals after log transform (right) for 3

students (25%tile, median, 75%tile)
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7.2 Correlation Analysis between Number of Apps Installed and Used in a Class and Session-level

Metrics

We analyzed how the number of apps installed was related to session-level usage metrics. However, we could not
find any significant relationships. One possible explanation is that despite the number of apps installed, students’
app usage is skewed toward a specific set of apps, as reported in prior studies [31, 42]. For this reason, we also
analyzed how the number of apps used in class is correlated with various usage metrics. Again, we could not find
any significant relationships.

Table 10. Correlation analysis between the number of used apps in a class, the number of installed apps and session-level

metrics. 𝐸 is external session (3: notification/unlocked checking, 4: user/unlocked checking) and 𝐼 is internal session

# Apps used in a class # Installed apps
Coefficient 𝑝-value Coefficient 𝑝-value

𝐸3 Usage duration −0.10 0.36 −0.14 0.23
𝐸4 Usage duration 0.00 0.98 −0.19 0.10
𝐼 Usage duration 0.05 0.63 −0.07 0.51
𝐸3 Apps 0.08 0.49 0.13 0.25
𝐸4 Apps 0.07 0.56 −0.01 0.92
𝐼 Apps 0.07 0.54 0.18 0.11
𝐸3 Interactions 0.07 0.56 0.13 0.27
𝐸4 Interactions 0.01 0.90 −0.05 0.66
𝐼 Interactions 0.33 0.70 0.10 0.36

7.3 Example Methods for Imputation of Missing Events

Smartphone usage sessions can be defined with a pair of screen on/off events. However, our data is missing some
events. If we found sessions without a screen on event (Case 1), we assumed that the screen on event happened
when the interaction (i.e., touch event) appeared after the last screen off event. If there is a session without a
screen off event (Case 2), we assumed that this session ended when the last interaction before a new screen on
event occurred.

Fig. 8. Cases of imputation of missing values
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