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Abstract 

As smart devices produce mobile sensor data every day, there have been attempts to discover causality 

among variables in observational studies. However, it requires proper methods since we cannot control the 

treatment in the observational study, and confounders make the causal inference more difficult. In this study, 

we use two well-known causal inference techniques, “matching” and “convergent cross mapping” on the 

mobile sensor data to show how to implement them and what are the challenges to be considered carefully. 

1. Introduction 

Over the past decades, smartphones and wearables have 

produced tons of live data every day which are collected via 

built-in sensors. These data are useful in monitoring the user's 

daily life and help better understand one's behavior. Analysis of 

the data could lead to designing an intervention system that 

suggests activities at opportune moments. Thus, previous 

studies have tried to explore the relationship between the 

variables from sensor data, especially about the "causality." 

Randomized Controlled Trial (RCT), one of the experimental 

studies, is a useful tool for examining the causal relationship. It 

compares the outcome from two or more different groups, which 

are called “control” and “treatment”, and confirms the causality 

when there is a statistically significant difference in the outcome. 

It also randomly assigns the subjects to minimize the effect of 

confounders, variables that might affect both the treatment and 

outcome. However, RCT may not be available due to ethical 

issues (e.g., harmful treatment), difficulties in recruiting subjects, 

etc. Sometimes, when we need to run the experiment in the real 

world and examine the efficacy of a certain intervention, we may 

choose an alternative option, “observational study” [1]. 

In observational studies, researchers could observe the effect 

of treatment, but it is not well determined who will be treated or 

not treated. In addition, confounders among the users are not 

controlled so that it may be difficult to conclude whether the 

treatment has efficacy in changing the outcome. For instance, 

suppose we examine the efficacy of an intervention app for 

promoting physical activity. In this case, the users may be 

affected by other variables such as weather, emotions, or 

schedule, and the complex relationship among variables would 

make it difficult to prove that the app is effective. As there have 
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been diverse health-related interventions such as “Digital 

Therapeutics”, the causal inference is getting critical to examine 

the therapeutic efficacy with observational data. 

The purpose of this paper is to provide an overview to 

computer science researchers about how to analyze the 

causality from mobile sensor data in observational studies. Here, 

we focus on two well-known causal inference techniques; (1) 

Matching, which gives optimal pairs of subjects having similar 

confounders and different treatment levels, (2) Convergent 

Cross Mapping (CCM), which models a dynamic system without 

predefined treatment and outcome and determines the causality 

based on its prediction skill. We show a case study of conducting 

these techniques. We use smartphone and wearable data from 

one subject as it is in the N-of-1 trial, which is an important 

method in personal informatics and self-experimentation [8]. Also, 

challenges in implementing these techniques are discussed. 

 

2. Causal Inference Techniques 

There have been prior studies that apply causal inference to 

sensor data. Mehrotra et al. [2] developed an application that 

investigates the causality between emotional states and mobile 

phone interaction. Berkel et al. [3] suggested that the causality 

could be found from mobile data via CCM since human mobile 

interaction might be interpreted as a dynamic system. 

Matching makes pairs of comparisons that are similar in 

confounders but different in treatment levels. Generally, the 

treatment is considered binary, but the matching could be 

extended to "non-bipartite matching" and support continuous 

values [6]. Matching applies distance techniques on minimizes 

distance measure of confounders (e.g., Mahalanobis distance, 

Propensity score, etc.) between pairs to minimize their influence 

when setting up the pairs of control/treatment groups. Causality 

then is estimated using the Average Treatment Effect (ATE). 

CCM is a different approach that assumes data from our daily 

lives could be described as state variables in a dynamic system 

[4]. Since these variables are deterministic (i.e., future states are 



not randomly decided), we may reconstruct the original system 

(denoted as M) using the sequence of observations of those 

variables. The core principle is that if X causes Y, X’s information 

should be contained in the previous values of Y. Thus, we 

reconstruct the dynamic system M using each variable (MX and 

MY) with time-series data; MX and MY are 1:1 mapped to each 

other since they are both 1:1 mapped to M. Then we reconstruct 

MX using its information in MY and vice versa (i.e., “cross-

mapping”). The causality could be detected by the cross-map 

performance, say, if we can cross-map MX using previous values 

of MY well, we can conclude that X causes Y. CCM works when 

both causer and causee are nonlinear time series. In dynamical 

systems, linear autocorrelation usually arises from repeated 

measurement errors and makes it not clear whether the 

reconstruction performance results from the measurement errors 

or its deterministic property. Since CCM is based on dynamic 

systems and tailored for time series data, the result would be 

less vulnerable to the temporal correlation between variables [5]. 

There are several other ways to infer causality with observational 

data, and they could be diverse by conditions such as pre-

intervention covariates, repetitive observations, etc. 

 

3. Case Study: Step Count vs. Calorie Consumption 

We present a simple case study on how to apply matching and 

CCM to sensor data. Here, we use a dataset "K-EmoPhone", 

which is composed of objective sensor data including motion, 

physiology, environment, and phone usage via an Android 

smartphone, Polar H10, and Microsoft Band 2 in a 1-week 

session per subject (n=81). Among the data, we make a 

common-sense scenario using steps and calorie consumption as 

treatment and outcome, respectively. This dataset is used to 

conduct a causal analysis of the following ground truth 

statement: “more steps will consume more calories.” 

We first preprocess this dataset. After iterative testing on 

various time windows (e.g., minutes, hours, etc.), we set them as 

1 hour for matching and CCM. Moreover, we standardize the 

data and exclude null values by concatenating non-null 

consecutive time series. After the preprocessing, we implement 

both matching and CCM on one user's data (id: 705). 

 

3.1. Matching 

We begin the matching by identifying potential confounders. 

The variables in K-EmoPhone (e.g., biosignal, environment, 

device usage patterns, etc.) are considered as candidates, and 

we conduct a correlation analysis to find which of them are 

significantly correlated with both treatment and outcome [2]. In 

our case study, four variables are shown to be confounders (e.g., 

location, battery usage, skin temperature, and heart rate). 

Next, the subjects are distributed into five ordinal groups so 

the first one includes subjects with the smallest steps while the 

last one has the largest steps. Note that we conduct a non-

bipartite matching [6] since the treatment has continuous values. 

We then calculate Mahalanobis distance to take multiple 

confounders into account and pair the subjects in a way that 

minimizes the overall distance. In our case, we were able to 

reach the optimal matching (mean distance = 0.4306) with 

subjects having relatively high and low step counts in each pair. 

Finally, we classify all the subjects into high and low treatment 

groups and used independent-samples t-test to check whether 

the confounders are well balanced for these two groups. We 

then calculate the ATE on the outcome (i.e., calories) for each 

group and conduct a Wilcoxon-signed rank test to see whether 

the difference is statistically significant. Our results show a 

significant difference between the groups (p < .01) with an effect 

size of 0.53. Therefore, by using matching methods, we could 

conclude steps cause calorie consumption. 

 

3.2. Convergent Cross Mapping 

In CCM, we first find the optimal number of time lags to 

reconstruct the original dynamic system for each variable. By 

doing so, we could decide how many data points in each 

sequence of observations are required for this method. The 

result in our case study shows the numbers are 4 and 3 for step 

counts and calorie consumption, respectively. 

Next, we check the non-linearity of each variable by 

reconstructing a dynamic system with both linear and nonlinear 

models. If the reconstructed system based on the nonlinear is 

closer to the original one, then we conclude that the variable is 

nonlinear. This process is necessary for CCM, and steps and 

calories are tested to be nonlinear. 

As we have two reconstructed dynamic systems MSteps and 

MCalories solely based on each variable, now we conduct a 

reconstruction of MSteps using the information in MCalories and vice 

versa, which is called “cross-mapping.” In Fig.1, the result of the 

cross-mapping is shown, cross-map from steps to calories (blue 

line) and calories to steps (red line). Note that both lines are 

“converging” into certain positive values as the library size (i.e., 

the length of the time series) increases, which means that there 

exists a bidirectional causal link between steps and calories. 

Also, the red line converges at a higher value indicating that the 

steps cause calories more than calories cause steps. 



 

Fig 1. The result of CCM using steps and calories 

 

Finally, we validate if the causal relationship is significant by 

comparing the result with that from the seasonal surrogate data 

[7]. The data is generated by randomly shuffling the original time 

series while preserving the periodicity. We create the shuffled 

data 100 times. Fig. 2(a) and 2(b) show the result of comparing 

cross-map skill of real data with that of the shuffled data (the 

95% confidence level interval is shaded in light blue). If the cross 

map skill of original data given largest library size is within the 95 

confidence level interval of cross map skills given largest library 

size of shuffled data, we may conclude that the causal link is not 

significant; otherwise, it is significant. As in Fig. 2(a) and 2(b), 

“steps cause calories” is significant and “calories cause steps” is 

not significant. 

 

Fig 2. The causality validation using surrogate data for each 

direction; (a) calories cause steps and (b) steps cause calories 

 

3.3. Challenges in causal inference techniques 

There are several challenges in implementing causal inference 

techniques. In the data preprocessing, we find that how to set 

the time window may affect the result of causal inference. Thus, 

we should choose the time window size carefully, considering 

the property of data, prior domain knowledge about them, or with 

iterative trials. Though there may not be a gold standard for the 

time window, we could set it which is (1) not too large to dilute 

small and temporary changes of data and (2) not too small to be 

failed in representing the data (Note: CCM may lose nonlinearity 

and deterministic assumption if the time window is too small). 

Next, when implementing the matching, covariate balance 

might not be perfectly done between the high and low treatment 

groups. For instance, if there is a high correlation between 

treatment and confounders, subjects within the same treatment 

group may show a similar level of confounders (e.g., subjects in 

the higher treatment also show high levels of covariates). 

Therefore, we may fail to match subjects with similar 

confounders coming from the different groups. Researchers 

should examine bias in the dataset and carefully perform 

confounder selection for balancing. 

Lastly, causal analysis results may show the bi-directional 

causal links (i.e., A → B and B → A). This may happen if the 

treatment and outcome are interdependent on each other. In a 

dynamic system, CCM describes strong interdependency 

phenomenon as “synchrony.” This issue could be addressed 

partly by comparing the effect sizes of two directions in matching 

and comparing the original data with shuffled data in CCM. 

 

4. Conclusion 

We reviewed how to perform causal analyses on observational 

smartphone sensor data, by using commonly used techniques 

called matching and CCM. We used the K-EmoPhone dataset 

and showed that these techniques could be used to causality 

using observational data. With careful considerations of the 

challenges, we envision that the techniques could be leveraged 

to optimizing user interface design, measuring the efficacy of 

digital health interventions, and so on. 
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