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ABSTRACT
Significant investment of time and effort for language learning has
prompted a growing interest in microlearning. While microlearn-
ing requires frequent participation in 3-to-10-minute learning ses-
sions, the recent widespread of smart speakers in homes presents
an opportunity to expand learning opportunities by proactively
providing microlearning in daily life. However, such proactive pro-
vision can distract users. Despite the extensive research on proac-
tive smart speakers and their opportune moments for proactive
interactions, our understanding of opportune moments for more-
than-one-minute interactions remains limited. This study aims to
understand user perceptions and opportune moments for more-
than-one-minute microlearning using proactive smart speakers at
home. We first developed a proactive microlearning service through
six pilot studies (n=29), and then conducted a three-week field study
(n=28). We identified the key contextual factors relevant to oppor-
tunemoments for microlearning of various durations, and discussed
the design implications for proactive conversational microlearning
services at home.
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1 INTRODUCTION
Language learning requires substantial investment in time and ef-
fort [54]. Such demand poses challenges for individuals who strug-
gle to spend extra time on learning, often leading to difficulties
in maintaining consistent and sustainable learning progress [18].
Thereby, microlearning is a promising solution [9, 19, 52]. While for
successful microlearning, learners need to participate frequently
and repetitively [18, 59], the popularity of smart speakers in homes
provides a new opportunity to seamlessly integrate bite-sized learn-
ing tasks into daily routines by proactively providing them with
smart speakers in daily life.

Smart speakers are typically installed in locations where users
can interact easily, and they can interact with their users through
verbal conversations [6, 60]. People can simultaneously perform two
tasks when they involve different modalities (e.g., visual–manual
tasks vs. auditory–verbal tasks) [62]. Because daily domestic tasks
primarily require visual–manual operations, auditory-verbal (or
conversational) microlearning can be integrated into daily domestic
routines. However, proactive microlearning tasks at inappropriate
times can distract users and negatively impact their experiences,
leading to unfavorable outcomes (e.g., inducing stress and annoy-
ance [25]).

Researchers in human–computer interaction are actively investi-
gating opportune moments in which negative interruptions can be
minimized [5, 25, 66]. Knowing the opportune moments at which
learners are most likely to engage in microlearning tasks could
minimize problems with delivery timing. To identify opportune
moments, researchers have measured interruptibility or quanti-
fied the quality of being interruptible (e.g., being able to engage
in microlearning) in a given context [5, 25, 66]. Prior studies have
mainly considered visual–manual interactions with smartphones
(e.g., notifications) [38, 46, 47, 64]. Recently, numerous studies have
considered proactive conversational interactions with smart speak-
ers in domestic settings [10, 51, 60, 61, 65].
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Main study (n = 28)Pilot studies (n = 29)

Exit InterviewThree-week field studyOrientation

- Researchers conducted 

online one -on-one exit 

interviews to understand

the learners’ perception 

and experiences.

- Microlearning tasks were offered every hour on average, during a 

learner’s predefined working period.

- The service asked for (1) the activity context at the beginning of the

tasks and (2) disengagement reasons when the learner stopped the 

tasks.

- Researcher periodically examined the learner responses and 

insufficient responses were clarified via messaging.

- Researchers explained 

how to install/use the 

SpeechMaster and how

to respond to contextual 

inquiries .

- Iteratively designed and developed 

SpeechMaster , which proactively 

provides microlearning tasks through a

smart speaker, via six pilot studies

(Details of the six pilot studies can be 

found in the appendix.)

Repeat after me. “…”

“…”

95 points! Great! Your 
speech sounds like “…”

<Request detailed response 
for insufficient response>

<Detailed response>

SpeechMaster

Figure 1: Study procedure.

Although prior studies provide important insights, the percep-
tions and opportune moments of more-than-one-minute interac-
tions with smart speakers remain underexplored. Prior studies have
considered short interactions (typically less than a minute) with
a smart speaker [10, 60, 61]. Further, only a hypothetical scenario
of probing interruptibility by conducting an experience-sampling
method survey (e.g., asking participants to respond to question-
naires) was considered, lacking useful and practical application
contexts [10, 60]. Because microlearning tasks require 3–10 min of
interaction with learners[2, 45], their findings are not directly appli-
cable to proactive conversational microlearning tasks in domestic
settings.

In this study, we explored user perceptions and opportune mo-
ments for a more-than-one-minute microlearning interaction with
a smart speaker in domestic settings and considered three research
questions: (RQ1) how learners perceive and experience proactive
conversational microlearning services, (RQ2) when and for how
long learners are likely to have opportune moments to engage in
proactive conversational microlearning services, and (RQ3) what
contextual factors are relevant to opportune moments for proactive
conversational microlearning services. A single microlearning ses-
sion is generally 3–10 min long for optimized learning outcomes.
To identify opportune moments for microlearning, we considered
its duration. We conceptualize interruptibility as the possibility of
learners engaging in microlearning for a given duration.

As shown in Figure 1, through six pilot studies (n = 29), we iter-
atively designed and developed SpeechMaster, which proactively
provides conversational microlearning tasks at random times using
a smart speaker. We considered a speech-shadowing task as the
learning material. To investigate when and for how long learn-
ers can engage in such microlearning tasks, we designed it to be
feasible for them to dynamically control the duration of their learn-
ing sessions (e.g., stop their ongoing microlearning session at any
point).

To answer the three research questions, we conducted a three-
week field study with 28 learners interested in improving their
English pronunciation, followed by one-on-one exit interviews. We

deployed SpeechMaster in their homes for interaction log data.
Our qualitative results show that while proactive microlearning
tasks increase learning opportunities, learners may perceive them
as less distracting when their content is relevant to them. Using the
collected data, we quantitatively analyzed when and for how long
learners could engage with SpeechMaster across activity, spatial,
and temporal contexts prior to their engagement. Although the
proactive provision of microlearning tasks at random times was
non-distracting half of the time (49%), our learners did not take
the learning sessions. This highlights the significance of delivering
microlearning at opportune moments, as this timing can maximize
the number of daily learning tasks in which learners participate.
Our quantitative results show that contextual factors (i.e., activity
and spatial contexts) relevant to opportune moments vary by task
duration. Based on our findings, we propose design implications
for proactive conversational microlearning services and enhancing
learning experiences with such services.

2 RELATEDWORK
2.1 Microlearning Services
Microlearning delivers several bite-sized learning tasks by break-
ing learning content into shorter, more manageable chunks [18].
The typical duration of a microlearning session is 3–10 min [2, 45],
but it can vary from one second to exceed an hour [24]. For suc-
cessful microlearning, learners must participate frequently and
repetitively [18, 59]. Prior studies on microlearning have offered
various domains of second language learning, such as learning vo-
cabulary [12], expressions [16], grammar [14], listening skills [15]
and pronunciation [39, 43].

Integrating bite-size learning practices into activities in mobile
or computer environments can increase learning moments. For
example, Trusty and Truong [58] developed ALOE, a browser ex-
tension that integrates microlearning into learners’ everyday web
browsing experiences by replacing English words with second lan-
guage words on web pages. Dingler et al. [12] created Quicklearn, a
mobile application offering microlearning through interactive push
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notifications. These studies considered microlearning in mobile
or computer environments. However, outside mobile or computer
environments, there could be more learning moments to discover.

In studies exploring interactions outside mobile or computer
environments, smart speakers are commonly used [10, 51, 60, 61, 65].
They are typically positioned in fixed locations and can interact
with the user through verbal conversations. Studies have shown
that smart speakers are ideal platforms for educational purposes [13,
53]. Dizon et al. investigated the experiences and perceptions of
interacting with a smart speaker in a second language to learn the
language and found that the speaker can facilitate out-of-class self-
directed language learning. Various auditory learningmaterials (e.g.,
10 min in the English Podcast series [37]) are deliverable through
smart speakers. Several edTech companies offer conversational
microlearning content for commercial smart speakers (e.g., Amazon
Alexa). For instance, ‘Daily Dose by Innovative Language’ from
Amazon Alexa offers eight-minute audio lessons for learning 34
languages [33].

2.2 Opportune Moments and Contextual Factors
Delivering microlearning tasks at inappropriate moments can nega-
tively impact user experiences. They can disrupt ongoing tasks [5],
induce stress and annoyance [25], and increase human error and
task-completion time [4]. Fortunately, problems with delivery tim-
ing can be minimized if we know the opportune moments at which
learners are most likely to engage in microlearning tasks. To iden-
tify opportune moments, studies have measured and predicted
interruptibility (the extent of being interruptible) and showed that
opportune moments are closely associated with users’ contextual
factors, such as activity, temporal, and spatial contexts [46, 47, 64].

Activity context is a critical determining factor for opportunemo-
ments. For example, interruptions are inappropriate when users are
engaged in high mental-workload (or concentration) activities, such
as studying or working [10], driving [29, 30], and biking [38]. Con-
versely, lower mental-workload activities, such as gaming, internet
surfing, or smartphone usage for leisure purposes, are considered
opportune moments [10, 41]. Temporal context is another popular
context associated with opportune moments. Pielot et al. [47] found
that temporal context was the most important contextual factor
in identifying opportune moments. Studies have also explored op-
portune moments in spatial contexts. Studies have considered how
locations outside the home (e.g., office, restaurant, and vehicle) or
indoor locations within the home impact opportune moments. For
example, Nagel et al. [41] explored how contextual factors, includ-
ing locations within the home (e.g., kitchen or family room), are
associated with opportune moments for interactions with mobile
phones, and found that location can be useful in determining such
opportune moments.

2.3 Proactive Smart Speaker
To minimize the unfavorable outcomes of proactive delivery of mi-
crolearning (e.g., resumption lag [3]), it is important to understand
the opportune moments for proactive conversational microlearning
tasks in home environments.

Although studies have focused on visual–manual interactions
with smartphones [38, 46, 47, 64], an increasing number of recent

studies have investigated opportune moments for auditory–verbal
(or speech) interactions in home environments [10, 51, 60, 61, 65].
For instance, Cha et al. [10] explored opportune moments for proac-
tive smart speakers, which proactively and verbally request their
users to answer a single question (“Is now a good time to talk?”)
for yes or no, including descriptions of their current activities. Sim-
ilarly, Wei et al. [60] considered multiturn-taking conversations
with proactive smart speakers. For the conversations, they provided
a 4-item survey, which took 45 seconds to complete. The survey
comprised three five-scale questions about availability, boredom,
and mood, in addition to one question about the current activity
(“What are you currently doing?”).

These studies provide valuable insights into the opportune mo-
ments and user perceptions of proactive smart speakers. However,
their findings are not directly applicable to opportune moments
in proactive conversational microlearning tasks at home. While
such microlearning tasks require 3–10 min interaction [2, 45], prior
studies have considered opportune moments for short interactions
(≤ 1 min). They only considered a hypothetical scenario of prob-
ing interruptibility by conducting an experience-sampling method
(ESM) survey, which lacked utility contexts [10, 60]. ESM is a data-
collection method in which participants are prompted to complete a
survey at various intervals throughout the day [11]. The provision
of a realistic service is explorable because it can affect user en-
gagement and perception. Fischer et al. [17] examined content and
delivery time on interruptibility using mobile SMS and found that
interest, entertainment, relevance, and actionability of the content
affect interruptibility.

3 ITERATIVE DEVELOPMENT OF
SPEECHMASTER

We iteratively designed and developed SpeechMaster, a proactive
conversational microlearning service, based on six pilot studies
(n = 29). We implemented SpeechMaster in a commercial smart
speaker (Google Nest Mini) and developed a speaker add-on device
and related applications (triggering app, sensing app, and image
deleter app) that enable the speaker to operate proactively. The
procedure for each pilot study was similar to that of the main study.
We conducted an online orientation and then a field study in the
learners’ homes. After the field study, semi-structured interviews
were conducted with learners to gather in-depth feedback. The
details of the six pilot studies (e.g., the procedure and important
findings) can be found in Appendix A. Herein, we describe the final
design of our service.

3.1 Conversational Microlearning Service
Our service provides a microlearning task consisting of five steps
(see Figure 2): (1) activity inquiry, (2) availability inquiry, (3) speech
shadowing, (4) continue-to-next inquiry, and (5) reason-for-stop in-
quiry. For the learning material, we considered English speech
shadowing. To investigate how long learners can engage in mi-
crolearning, they must dynamically control the learning session du-
ration (e.g., immediately stop their ongoing microlearning session).
There exist diverse auditory microlearning materials for learning
secondary languages. Because of the short single microlearning ses-
sion (i.e., 3–10 min), microlearning materials convey a single piece
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Figure 2: The procedure of SpeechMaster (proactive conversational microlearning service).

of information, knowledge, or concept per session (e.g., learning
switch statements in Java for a single session). This limits learners
from dynamically controlling the session duration. Therefore, we
used a speech-shadowing task where learners performed speech
shadowing on English sentences successively. This enables learn-
ers to stop their ongoing microlearning sessions immediately after
completing the shadowing of a given English sentence.

To prevent a singlemicrolearning task becoming excessively long
for optimized learning [2, 45], our service limits the duration of the
microlearning task to 10 min. Further, learners can end their current
task by saying the “Stop” command. After being stopped, the service
asks for the reason (i.e., reason-for-stop inquiry step; for details, see
Section 3.1). SpeechMaster logs conversations with learners (e.g.,
activity inquiry responses). Each step is further explained below.

Activity Inquiry: Proactive speakers require a starter (or au-
ditory cue) to indicate the start of their conversation with learn-
ers [10, 60]. The starter can take the form of a simple earcon (e.g.,
soft alarm sound [10]) or an utterance (e.g., greeting [20]). We con-
sidered the starter as a greeting with an activity inquiry, with the
intention of collecting learners’ contextual information before the
conversation.

Availability Inquiry: The service then asks whether the learner
wants to engage in speech shadowing. If the learner responds “No,”
it moves to the reason-for-stop inquiry step. Otherwise, it proceeds
to the speech shadowing step.

Speech Shadowing: Here, learners perform speech shadow-
ing. SpeechMaster reads an English sentence and waits for the
learner’s response (or repetition of the sentence). Subsequently,
it analyzes the pronunciation accuracy and offers the following
sentence after providing the following feedback: (1) score (0–100),
(2) compliment/encouragement, and (3) recognized pronunciation.
The difficulty level of the sentences increases when the average
score of the most recent 20 sentences reaches 90 points or higher.
Difficulty levels are categorized based on the number of syllables

and spaces within a sentence [31, 44]. At higher difficulty levels,
the sentences comprise more words with longer syllables.

Continue-to-next Inquiry: Before reaching the maximum 10
min, SpeechMaster provides a continue-to-next inquiry every 2
min after learners engage in microlearning for a minimum of 3 min
(i.e., providing the inquiry after 3, 5, 7, and 9 min from the start).
The inquiry is given so that the learner knows how long they had
been engaging in a microlearning task and to choose whether to
continue learning. When the learner responds “Yes,” it continues to
the speech shadowing step. Otherwise, it proceeds to the reason-
for-stop inquiry inquiry step. On reaching the maximum duration,
the service concludes.

Instead of the continue-to-next inquiry, we could also provide
an auditory cue (e.g., soft alarm sound) at a certain time interval
(e.g., every two minutes) to help learners be aware of their learning
time, and let the learners stop the current task by saying a “stop”
command. However, in this approach, it was difficult to distinguish
whether the learners intended to terminate the task. This was be-
cause sometimes the speaker misinterpreted a learner’s repeated
speech shadowing sentence as a command and terminated it regard-
less of the learner’s intention. We further reviewed this termination
issue and discussed its implications in Section 8.5.2.

Reason-for-stop Inquiry: SpeechMaster asks for the reason to
stop. Reason-for-stop inquiry is provided when learners say “No”
to continue-to-next inquiry, or whenever learners say “Stop.”

No InputHandling: When learners do not respond within eight
seconds, SpeechMaster repeats the original prompt. For example,
the continue-to-next inquiry step asks again whether to continue
learning. Similarly, in the speech shadowing step, if learners do not
repeat a given English sentence, the sentence is read out again. If
learners do not respond three consecutive times, approximately 35
s, SpeechMaster self-terminates without proceeding to the reason-
for-stop inquiry step.
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3.2 Speaker Add-on Device
Currently, commercial smart speakers are still reactive. To make
existing smart speakers to be proactive, we developed a speaker
add-on device that can be attached directly on the smart speaker. It
comprises a 3D-printed circular frame, an amplifier, and an external
3 W speaker, and is connected to a smartphone (see Figure 3). It
secretly delivers prerecorded voice commands from the smartphone
to the speaker, and the speaker is activated by listening to the voice
commands.

3.3 Proactive Microlearning Triggering
We developed an application that triggers SpeechMaster by deliver-
ing prerecorded commands to a smart speaker via an add-on device.
SpeechMaster is triggered randomly between 30 and 90 min (aver-
age of 60 min) within the operating hours set by the learner at home.
Operating hours are set separately for weekdays and weekends.

Home Presence Detection: The triggering app periodically
detects the home presence of the learners via a sensing app installed
on the learners’ smartphone. The sensing app analyze the MAC
address of WiFi signals around the smartphone and checks whether
a home WiFi signal is detected.

Voice-command Volume Adjustment and Retriggering:
The app dynamically adjusts the volume level of voice commands
based on the ambient noise level measured two minutes prior to
providing the microlearning task. For example, when the noise level
is high, the volume level is increased to ensure reliable triggering.
While there was an option to start with a high volume, we were
concerned that this might diminish the experience of proactive
microlearning. If not triggered, the application attempts to retrig-
ger it three times. We introduced this retriggering feature because
even with the automatic volume-adjustment feature, triggering
sometimes fails owing to a sudden increase in ambient noise.

Recovery Mode: When conversation with the service is ter-
minated unintentionally, learners can resume the conversation by

pressing the restart button on the smartphone screen. In our pi-
lot studies, the unintentional terminations happened when the
learners’ repeated speech shadowing sentences include words (e.g.,
“stop,” “out,” “bye” ) or expressions (e.g., “forget about it” ) that can be
recognized as generic termination commands (See Appendix A.3.1).

Contextual Data Collection: The app collects surrounding
visual contextual information by capturing images at one-second
intervals for two minutes before triggering a task. If the service
was retriggered, it captured images from the last two minutes prior
to retriggering. To protect learners’ privacy, we provided an image
deleter application, allowing quick review and deletion of images
that learners did not want to share with the researchers. In our
pilot study, learners had low privacy concerns because they had full
control over the collected images. The app also collected the sur-
rounding auditory contextual information (e.g., background sounds
and conversations with the service) from two minutes before trig-
gering until one minute after the microlearning task was completed.

4 FIELD STUDY METHODOLOGY
After iteratively developing SpeechMaster, we conducted the main
study with 28 learners to answer two research questions. In this
section, we describe the details of the main study. The study pro-
cedures (including the procedures of the six pilot studies) were
reviewed and approved by our institution’s internal ethical review
board.

4.1 Participants
We recruited 28 learners from local communities. Our recruitment
criteria included (1) people who were interested in improving their
English pronunciation and (2) staying at home for at least four
hours (excluding sleeping hours) a day and five days a week. We
compensated the learners with approximately 80 USD. For our
analysis, we excluded one learner’s data because she withdrew
during the first week due to health concerns (COVID-19). Therefore,
we used the data from 27 learners in our analyses.

Figure 3: Experimental kit for proactive smart speaker.
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Figure 4: Configurations of living spaces with experimental kit installation.

The average age was 23.5 (SD = 9.28, range = 18–59) years, and
ten learners were female (37%). As we recruited learners motivated
to improve their English pronunciation, most (n = 25, 93%) were
students. Others included an office worker and a homemaker. Prior
studies on language learning have also considered young adults [63]
because they are more interested in language learning than other
age groups as part of college education and job seeking [32].

4.2 Procedure
The study began with an online orientation. On the day after the
orientation, we conducted a three-week in-the-wild field study and
online one-on-one exit interviews. The details of our procedure are
as follows.

Learners first visited our laboratory to sign informed consent
forms and received experimental kits (SpeechMaster). Before sign-
ing the form, we explained the study to them. In this orientation,
we provided an overview of the study, instructions on how to in-
stall the kits and interact with the smart speaker, and guidelines
on how to respond to contextual inquiries (activity inquiry and
reason-for-stop inquiry). For the contextual inquiry, we asked the
learners to respond in their native language. Similar to previous
studies [10, 60], we asked learners to provide detailed contextual in-
formation. For the activity inquiry, they were asked to describe their
current activities (e.g., what they were doing), specifying where
(e.g., space within a room or house), how (if there were any tools
involved), whom (if they were with someone else), and why (if
there was a reason) (e.g., “I was watching a movie on a laptop at my
desk” ). For the reason-for-stop inquiry, they were asked to provide
reasons to stop interacting with the service (e.g., “I want to take a
nap because I am tired.” ).

On the day after the orientation, they participated in a three-
week field study. Throughout the study, six researchers periodically
reviewed learners’ response data. For contextual inquiries, learn-
ers may not respond (i.e., no response) or respond insufficiently
(i.e., incomplete response). Learners may also omit one of the ac-
tivities they were simultaneously performing (e.g., not reporting
listening to music while taking a rest with music on). To assess the
completeness of the responses, in addition to the response data, the
researchers also reviewed notable human-generated background
sounds (e.g., music, in-game audio, human-to-human conversation,
the hum of a vacuum cleaner, the noise of a hair dryer) by listen-
ing to the surrounding sound of corresponding audio data. This
approach helped assess the potential incompleteness of detailed

contextual responses. For no responses, we requested the learners
to provide the reason. For incomplete responses, we requested that
they supplement the responses regarding their activities at that
time. The requests were sent via instant messages once daily. Simi-
lar to a previous study [10], as cues for recall, our request included
response data in both the voice recordings of audio data and text
format, along with the response timestamp.

After the field study, we analyzed the usage logs and conducted
online one-on-one semi-structured interviews to qualitatively an-
swer RQ1 and RQ3. The interviews lasted 90 min, on average. In the
interviews, we asked the learners about (1) their perceptions and
experiences with proactive conversational microlearning services
(e.g., their advantages and disadvantages, and their impact on their
learning and daily life) and (2) their interruptible and uninterrupt-
ible situations for engaging with the services (e.g., why and which
activities, locations, and times of the day or week they found to
be interruptible or uninterruptible). For qualitative analysis, we
conducted thematic analysis of the transcribed interview data [8].
Four researchers carefully reviewed the transcribed texts to iden-
tify recurring codes on (RQ1) user perceptions and experiences
of proactive provision of learning content and overall language
learning with smart speakers and (RQ3) important contextual fac-
tors when learners perceived themselves to be interruptible (i.e.,
participating in microlearning tasks). Similar codes were grouped
into themes. Coding and regrouping were conducted iteratively
until a consensus was reached.

4.3 Speech Shadowing Contents
For the speech shadowing contents, we initially selected 12,000
English sentences, with 20 levels (e.g, Level 1: “We came last.”, Level
10: “I slept for another three hours.” ). English sentences were selected
from Tatoeba, which is a large database of English sentences and
translations [57]. The levels were categorized based on a combi-
nation of syllables and space counts within a sentence [31, 44].
However, after pilot studies, we excluded 250 sentences containing
words or expressions that can cause potential unintentional termi-
nations (see Appendix A.3.1). After excluding such sentences, for
the main study, we used 11,750 English sentences with 20 levels.
The average number of sentences per level was 587.5 (SD = 5.58).
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5 RQ1: LEARNER PERCEPTIONS AND
EXPERIENCES FOR PROACTIVE
CONVERSATIONAL MICROLEARNING
SERVICES

Based on our interviews, we qualitatively analyzed how learners
perceived and experienced proactive conversational microlearning
services.

5.1 Experience of ‘Proactive’ Microlearning
Services

Our learners mentioned that proactive microlearning services in-
duced regular learning practices andwere perceived as non-distracting.

5.1.1 Inducing Regular Learning Practices. Proactive provision was
perceived as a learning reminder, thus helping learners frequently
participate in microlearning sessions (or tasks). For example, P1
noted, “If I had to manually start (SpeechMaster) before anything else,
would I have used it as much? I think (that SpeechMaster) talking
to me first was the best part.” It also enabled them to use their
spare time to learn better, especially when their ongoing task was
perceived to be less productive than microlearning. For instance,
P27 commented, “When I heard the sound (of SpeechMaster), I was
usually reading webtoons with my smartphone or playing games with
my laptop, [...] so I think I could make use of my spare time good
enough.”

5.1.2 Non-distracting Interruption. Surprisingly, the learners per-
ceived the provision of microlearning tasks at random times (or
without considering their interruptibility) as non-distracting. A
common reason for the sense of non-distraction was learners’ high
motivation for learning, as we recruited learners interested in im-
proving their English pronunciation. Learners viewed the interrup-
tions from microlearning as valuable and beneficial opportunities
to improve their English. For example, P1 said, “I don’t have many
opportunities to use or speak English, so it was helpful because I could
have this experience of listening and speaking English.” P9 stated, “I
think it’s much better (than manually starting SpeechMaster). Be-
cause I think some force is needed to keep on with the progress and
study. So I think I wouldn’t have done it if I did it when I wanted to
do.”

Another common reason is immediate termination capability
at the onset of the microlearning task. When learners were not
interruptible, they had the option to promptly stop microlearning
tasks at the beginning by saying the “Stop” command. For example,
as P19 expressed, “I never really felt distracted. [...] I could just say
‘I can’t do it right now’ to stop the speaker at the start when I’m not
available.” In addition, the response waiting time contributes to a
sense of non-distraction. Our service waited for approximately 35
s to respond to the activity inquiry (see Section 3.1). Our learners
reported that this short waiting time helped them prepare (e.g.,
completing their ongoing tasks, moving to the speaker if they were
in another room) and engage in microlearning tasks. For example,
P22 said, “It asks three times, so during that time, I had a moment to
pause what I was doing.”

5.2 ‘Post’-Experience of Microlearning
Our microlearning service was provided proactively and repeatedly
during learners’ daily lives. Our learners commonly reported that as
the service was naturally integrated into their daily lives, it helped
them manage their daily lives more constructively.

5.2.1 Helping to Establish a Productive Daily Routine. Microlearn-
ing tasks were conducted at an average interval of 60 min. The
learners reported that this regularity helped them manage their
daily schedules more effectively, leading to more regular and struc-
tured lifestyles. For instance, P25 noted, “Timing is a little [random]
but there is regularity. [...] So I could realize that time passed by so
quickly when I was just lying on the bed.” The activity inquiry (i.e.,
“Hi, what are you doing now?” ), which was provided at the start of
the microlearning tasks, also contributed the learners to establish a
productive daily routine by helping them become aware of their
current activity, for example, as P27 stated, “It was good to look
back on what I was doing again by saying it.” Similarly, P23 said,
“Mostly, my response was lying on the bed, watching webtoons on the
phone. Since I felt that this response was quite frequent, I had a bit
of a feeling like, ‘Ah, I should stop watching.’ ‘I should get up.’.” In
general, the learners’ awareness of their engagement in less produc-
tive activities motivated them to start or switch to more productive
activities.

5.2.2 Role of Refreshing Moment during On-going Work. When mi-
crolearning tasks were provided in the middle of ‘non-productive’
activities, our learners performed the learning tasks as a turning
point to start productive activities. For example, P20 noted, “When I
am lying down and this rang, I think it was like a catalyst that makes
me do something from then on.” Similarly, P15 reported, “After [the
service] calls me out and I accomplish it when I am having a rest
without any plans, I get to resume to my work and continue to focus on
what I had to do by this chance. I think it was an advantage.” When
microlearning tasks were provided in the middle of ‘productive’
activities, they performed the tasks as an opportunity for refresh-
ment (or short break). For example, P26 stated, “During talking with
[SpeechMaster] for 10 minutes, I felt like I was having a rest, [...] and
after 10 minutes, I focused on my main work again.”

6 RQ2: OPPORTUNE MOMENTS FOR
PROACTIVE CONVERSATIONAL
MICROLEARNING SERVICES

We quantitatively analyzed when and for how long learners were
likely to engage in proactive conversational microlearning. Namely,
we analyzed (1) overall usage patterns and interruptibility, and (2)
interruptibility across learners’ contexts (i.e., activity, spatial, and
temporal contexts) prior to the provision of microlearning tasks.
In Section 7, we supplement the quantitative analysis qualitatively
with interviews. In Section 5, the qualitative findings suggest that
offering proactive conversational microlearning services at random
times (or without considering interruptibility) can be perceived as
non-distracting. However, this does not negate the significance of
delivering microlearning at opportune moments, as such timing
can maximize learners’ engagement in learning (e.g., an increase in
the number of daily learning sessions engaged in by the learners).
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Table 1: The number of cases across different types of termination points.

Total number of provided microlearning tasks (n = 2,937, 100%)

Cases where learner engage in speech shadowing (n = 1,509, 51%)
No responses Only responding to

activity / availability inquiry Stop by saying “stop”
at any time

Stop by saying “no” at continue-to-next inquiry steps
(n = 640, 22%)

End by reaching
the maximum duration

(Moment; ≤ 1 minute)
First

(3 minutes)
Second

(5 minutes)
Third

(7 minutes)
Fourth

(9 minutes) (10 minutes)

645 (22%) 783 (27%) 107 (4%) 507 (17%) 81 (3%) 31 (1%) 21 (1%) 762 (26%)

6.1 Interruptibility Definition
To identify opportune moments, we measured how much learners
invested in microlearning over a given period. We conceptualized
this as interruptibility. When learners engage in a given period,
we expect that they will be available for shorter microlearning
sessions. Indeed, in our interview, our learners also mentioned
similar opinions that, for example, “When I used it for 10 minutes,
that means I had at least 10 minutes spare time then. So, I reckon I
also could’ve done something else that takes less than 10 minutes.”
[P4].

6.2 Statistical Analyses
We conducted a series of linear mixed-model analyses to statistically
compare interruptibility across various contextual conditions (e.g.,
interruptibility across different activity types) prior to providing the
microlearning tasks. For the dependent variables, we consistently
considered interruptibility except in the first analysis. In the first
analysis (Table 2), we considered the percentage of cases as the
dependent variable. While the independent variables varied across
the analyses, details about the dependent and independent variables
are available in the tables that present the statistical results in
each subsection. For post-hoc comparisons, we adjusted the 𝑝-
values using the Bonferroni correction. To account for the non-
independence of the data, we include the learners as a random
effect.

6.3 Overall Usage Patterns and Interruptibility
Overall Usage Patterns:While the learners were at home, SpeechMas-
ter proactively provided 2,937 microlearning tasks and the learners
responded to 2,292 tasks (78%). Among these tasks, learners engaged
in 1,509 (51%) speech shadowing. Details of the microlearning tasks
are presented in Section 3.1. As shown in Table 1, our learners
participated in microlearning tasks primarily for three duration
types: (1) moment (i.e., ≤ 1 min), (2) 3 minutes, and (3) 10 min-
utes. As shown in Table 2, our statistical analysis also confirmed
that our learners participated more frequently in these specific
duration types compared to others (at least 𝑝 < 0.01). Moment

Table 2: Statistical result for the number of cases across dif-
ferent types of termination points.

Effects F-value df1 df2 p-value

Duration of interactions 97.332 6 141 < 0.001

interactions were 783 cases (27%) where they only responded to
activity/availability inquiry, and did not perform speech shadowing.
Whereas, interactions exceeding one minute (e.g., 3-minute and
10-minute interactions) were cases where the learners engaged in
speech shadowing (n = 1,509, 51%).

The learners were able to end their current interactions (or mi-
crolearning tasks) by saying “Stop” comment at any time (stop cases
= 107, 4%) or by responding “No” at one of the four continue-to-
next inquiry steps (no cases = 640, 22%). 3-minute interactions were
cases in which the learners stopped at the first continue-to-next in-
quiry step (n = 507, 17%). 10-minute interactions were cases where
microlearning continued until the maximum duration was reached
(n = 762, 26%).

When not engaging for the maximum duration, learners mainly
stopped learning at one of the continue-to-next inquiry steps (22%).
According to the interviews, our learners pre-established an in
situ microlearning goal – whether and for how long they would
engage in microlearning, and considered one of continue-to-next
inquiry steps as an anchor point to stop, because these points were
convenient and helped them become aware of their elapsed learning
time. For instance, P27 explained “It’s good that I can know how
many minutes it’s been going, so I can use it for just that long.”

Overall Interruptibility: Table 3 shows the percentage of inter-
ruptible cases, which indicates how much learners are likely to
engage in microlearning for a moment, 3 min, or 10 min, if the
learning is provided at a random time. As shown in Table 4, our
statistical analysis showed that interruptibility was highest for mo-
ment interactions (𝑝 < 0.001), whereas it was lowest for 10-minute
interactions (𝑝 < 0.001). These findings indicate that in general,

Table 3: Overall interruptibility for moment (≤ 1 min), 3-
minute, 10-minute interactions.

Interruptibility for duration typesNumber of
triggerings moment 3 minutes 10 minutes

2,937 78% 49% 25%

Table 4: Statistical result for the interruptibility across dura-
tion types (moment vs. 3 min vs. 10 min).

Effects F-value df1 df2 p-value

Duration types 61.065 2 78 < 0.001
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learners are more likely to be interruptible as microlearning be-
comes shorter when microlearning is provided without considering
interruptibility (i.e., providing at random times).

6.4 Interruptibility across Activity Contexts
To understand the relationship between activity contexts and in-
terruptibility, we first categorized learners’ activities prior to the
provision of the microlearning task, and then analyzed interrupt-
ibility across the categories.

6.4.1 Activity Categorization. Five researchers categorized the ac-
tivities according to the procedures of prior studies [10]. To enhance
the precision of the activities, in addition to user response data,
we utilized the surrounding sounds of audio and image data (see
Section 4.2). The cases involving multiple activities (n = 116) were
classified into multiple categories. For instance, the case where
a learner “was eating dinner while watching YouTube on [his] lap-
top at [his] desk” was classified into both eating and using media
categories.

Twelve activity categories were identified (Table 5). When mi-
crolearning tasks were provided, popular activities included using
media (30%), napping/sleeping (19%), studying/working (12%), and
resting (12%). These activities are primarily what learners perform
at home.

6.4.2 Interruptibility across Activity Contexts. Table 6 shows inter-
ruptibility across activity types and duration types. As indicated
in Table 7, both the main effects and the interaction effect were
significant. The post-hoc analysis suggests that regardless of du-
ration types, interruptibility was consistently higher when the
learners were engaging in using media, resting, studying/working,
self caring or returning from outside/other room. In contrast, in-
terruptibility was consistently lower when they were performing
hygiene or napping/sleeping. While the detailed distribution of in-
teractions across activities can be found in Appendix (see Figure 5),
we further discussed interruptible activities across duration types,
as follows:

For moment interactions, this was discovered to be an opportune
moment when learners were engaged in most activities, except for
hygiene (34%) and napping/sleeping (49%). For these two activities,
interruptibility was significantly lower than other activities (con-
sistently 𝑝 < 0.01). Interestingly, when the learners were engaged
in visiting outside/other room, their interruptibility was high for
moment interactions (78%), but showed a notable decrease for both
3-minute (19%) and 10-minute (10%) interactions. Our statistical
analysis also confirmed that interruptibility was significantly lower
for 3-minute and 10-minute interactions than moment interactions
(consistently 𝑝 < 0.001).

Table 5: Definitions and examples of activity categories.

Activity categories Example Number of
triggerings

Using media (e.g., video gaming, internet surfing,
and watching videos)

“I’m sitting at my desk and playing games on my computer.”
“I’m lying on my bed and surfing the web on my phone.”
“I was watching TV in the family room.”

924 (30%)

Napping / sleeping “I was taking a nap in bed because I was tired.” 573 (19%)

Studying / working “I’m sitting at my desk studying my major.”
“I’m working sitting in the chair.” 375 (12%)

Resting “I’m just lying on bed.”
“I’m resting at my desk.” 374 (12%)

Eating “I’m having breakfast at the table.” 223 (7%)
Hygiene (e.g., nature’s call, shower, and washing hands) “I was washing my face in the bathroom.” 133 (4%)
Social interaction (e.g., talking with others, chatting,
and phone call)

“I was talking with my family in the family room.”
“I’m talking to my mom on my phone in the bed.” 131 (4%)

House chores (e.g., preparing and cleaning up after a meal,
cleaning, and doing laundry)

“I was cooking my lunch in the kitchen within the family
room.” 113 (4%)

Visiting outside / other room “I have to go out for a part-time job.” 72 (2%)
Self caring (e.g., face or body caring, changing clothes,
exercise, and stretching)

“I’m just sitting on the floor to dry my hair with a hair dryer.”
“I’m changing my clothes.” 56 (2%)

Returning from outside / other room “Now I came back home.”
“I was just coming into this room.” 53 (2%)

Others (e.g., pet caring and other activities not mentioned
above)

“I was caring my puppy in the family room.”
“I’m doing rap.” 26 (1%)
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Table 6: Interruptibility across activity types and duration
types. ≤ 1 min = Moment.

Activity types InterruptibilityNumber of
triggerings ≤ 1 min 3 min 10 min

Overall 2,937 78% 49% 25%
Using media 924 91% 64% 32%
Napping/sleeping 573 49% 21% 14%
Studying/working 375 95% 60% 32%
Resting 374 99% 61% 27%
Eating 223 87% 46% 25%
Hygiene 133 34% 14% 9%
Social interaction 131 81% 38% 17%
House chores 113 84% 39% 21%
Visiting outside/
other room 72 78% 19% 10%

Self caring 56 88% 55% 28%
Returning from
outside/other room 53 88% 53% 33%

Others 26 70% 53% 29%

Table 7: Statistical results for the interruptibility across ac-
tivity types and duration types.

Effects F-value df1 df2 p-value

Activity types 17.376 11 732 < 0.001
Duration types 51.822 2 732 < 0.001
Activity × Duration 14.153 22 732 < 0.001

For the 3-minute interactions, it was the most opportune mo-
ment when learners were engaged in using media (64%), resting
(61%), studying/working (60%), self caring (55%), returning from
outside/other room (53%), or others (53%). For these activities, in-
terruptibility was significantly higher than other activities (at least
𝑝 < 0.05). Whereas, interruptibility was significantly lower for nap-
ping/sleeping (21%), visiting outside/other room (19%), or hygiene
(14%) than other activities (at least 𝑝 < 0.05). For 10-minute inter-
actions, it was an inopportune moment when our learners were
engaged in hygiene (9%), visiting outside/other room (10%), or
napping/sleeping (14%). For these activities, interruptibility was
significantly lower than other activities (at least 𝑝 < 0.05). Based
on interview results, in Section 7, we discussed four contextual
factors associated to learners’ activities that were closely related to
opportune moments for microlearning.

6.5 Interruptibility across Spatial Contexts
Within-home locations are often linked to particular activities (e.g.,
studying or working at a desk). To further understand the relation-
ship between spatial context and interruptibility, we statistically
analyzed interruptibility across learners’ spatial contexts before the
microlearning tasks.

Specifically, we statistically compared (1) interruptibilty for spaces
where the speaker was installed versus non-installed (installed
space vs. non-installed space), (2) interruptibilty across specific
locations within the installed space and (3) interruptibilty across
non-installed space. To enhance the precision of our location anal-
ysis, in addition to the user responses to the activity inquiry, we
determined the learners’ positions using image data. The detailed
distribution of the interactions across these spatial contexts can be
found in the Appendix (see Figures 6 and 7).

6.5.1 Speaker Placement and Living Conditions. Most learners in-
stalled the speaker in their bedrooms (n = 24), whereas the rest
installed it in their study/working rooms (n = 3). In these spaces,
the learners mostly installed speakers on their desks (n = 24). Con-
versely, two were installed at the top of the drawer. One was in-
stalled in media furniture. Non-installed space varied depending
on living conditions. For instance, 15 participants living in a one-
bedroom house (i.e., one bedroom with a separate living room) or
studio (i.e., everything in a single room) had no other room ex-
cept for a restroom. In addition to the restroom, 12 participants
living in a more-than-one-bedroom house had additional rooms
(e.g., bedrooms and study/working rooms).

6.5.2 Installed Space vs. Non-installed Space. Table 8 shows inter-
ruptibility when learners were at installed space and non-installed
space. As shown in Table 9, both the main effects and the inter-
action effect were significant. The post-hoc analysis showed that
regardless of duration types, our learners were more interruptible in
installed space than in non-installed space (consistently 𝑝 < 0.01). In
addition, in installed space, interruptibility was higher for shorter
interactions (consistently 𝑝 < 0.001). Whereas, in non-installed
space, learners were more interruptible for moment interactions
than 3-minute or 10-minute interactions (𝑝 < 0.001).

Interestingly, even in non-installed space, almost half of the time
(47%), they were interruptible – moved to the installed space to

Table 8: Interruptibility across location types (installed space
vs. non-installed space) and duration types. ≤ 1 min = Mo-
ment.

Location types InterruptibilityNumber of
triggerings ≤ 1 min 3 min 10 min

Overall 2,937 78% 49% 25%
Installed space 2,433 85% 54% 28%
Non-installed space 504 47% 23% 13%

Table 9: Statistical result for the interruptibility across loca-
tion types (installed space vs. non-installed space) and dura-
tion types.

Effects F-value df1 df2 p-value

Location types 56.788 1 153 < 0.001
Duration types 44.528 2 153 < 0.001
Location × Duration 12.947 2 153 < 0.001
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Table 10: Interruptibility across specific locations within the
installed space and duration types. ≤ 1 min = Moment.

InterruptibilityLocations within
the installed space

Number of
triggerings ≤ 1 min 3 min 10 min

Overall 2,433 85% 54% 28%
Bed 1,243 76% 46% 24%
Desk 1,013 98% 66% 33%
Other locations 177 91% 42% 21%

Table 11: Statistical result for the interruptibility across spe-
cific locations within the installed space and duration types.

Effects F-value df1 df2 p-value

Locations within
the installed space 36.042 2 213 < 0.001

Duration types 91.98 2 213 < 0.001
Location × Duration 7.159 4 213 < 0.001

engage in moment interactions. In our interviews, the learners
commonly mentioned that when they heard the speaker sound in
non-installed space, they moved to engage in microlearning tasks.
In Section 7.5, based on the interview results, we discuss how the
audible range (i.e., where learners can hear the speaker’s sound)
affects interruptibility.

6.5.3 Locations Within the Installed Space. Table 10 shows inter-
ruptibility across duration types and locations within the installed
space (bed vs. desk vs. other locations). As shown in Table 11, both
the main effects and the interaction effect were significant. The
post-hoc analysis suggested that learners were most interruptible
at the desk. Specifically, for moment interactions, our learners were
more interruptible at desk or other locations (e.g., being on the floor,
standing in the middle of the room, etc.) than on the bed (at least 𝑝
< 0.05). For both 3-minute and 10-minute interactions, our learners
were more interruptible at the desk than at the other locations or on
the bed (at least 𝑝 < 0.05). Given that our learners mostly installed
the speaker primarily at their desk, our results suggest that learners
are more likely to be interruptible when they are positioned close
to the smart speaker.

During the interviews, learners commonly mentioned challenges
engaging in microlearning when at a certain distance away (e.g.,
on a bed) from the speaker (e.g., a desk) because of the limitations
in the speaker’s speech recognition. In Section 7.6, based on the
interview results, we discuss how the voice recognition range affects
interruptibility.

6.5.4 Locations in Non-installed Space. Table 12 shows interrupt-
ibility across duration types and locations within non-installed
space (living room vs. rest room vs. other rooms). As shown in
Table 13, both the main effects and the interaction effect were sig-
nificant. The post-hoc analysis suggested that regardless of duration
types, learners were most interruptible in the living room (at least
𝑝 < 0.01). Specifically, for moment interactions, our learners were

Table 12: Interruptibility across specific locations within the
non-installed space and duration types. ≤ 1 min = Moment.

InterruptibilityLocations within the
non-installed spaces

Number of
triggerings ≤ 1 min 3 min 10 min

Overall 504 47% 23% 13%
Living room 318 68% 44% 28%
Rest room 127 30% 10% 6%
Other rooms 59 26% 26% 25%

Table 13: Statistical result for the interruptibility across spe-
cific locations within the non-installed space and duration
types.

Effects F-value df1 df2 p-value

Locations within the
non-installed space 15.411 2 144 < 0.001

Duration types 17.529 2 144 < 0.001
Location × Duration 8.172 4 144 < 0.001

more interruptible in the living room than the rest room or other
rooms (consistently 𝑝 < 0.01). For 3-minute and 10-minute inter-
actions, our learners were more interruptible in the living room
than the rest room (consistently 𝑝 < 0.001). The living room was
generally close to the installed space, allowing more chances to
hear the speaker sound (or to be within an audible range) and move
to the installed space for interactions compared to other rooms (see
Section 7.5).

6.5.5 Additional Analyses. While 24 learners installed speakers in
their bedrooms, the other three installed speakers in their study-
ing/working rooms. In addition, among 24 learners, one learner did
not install the speaker on his desk. We conducted additional analy-
ses after excluding four learners with different speaker placement
contexts. However, the results are similar to the original results.

6.6 Interruptibility across Temporal Contexts
Home routines tend to be repeated periodically across the days
of the week or hours of the day [48]. To further understand the
relationship between temporal context and interruptibility, we ana-
lyzed interruptibility across days of the week and parts of the day.
Similar to a previous study [10], we considered the period between
9:00 and 24:00 for parts of the day.

Table 14 shows the interruptibility across days of the week and
parts of the day for the three duration types. As shown in Table 15,
only the main effects were significant. The post-hoc analysis sug-
gested that in the morning (9:00–12:00), our learners were less inter-
ruptible than during other parts of the day (𝑝 < 0.001), which could
be due to sleeping (36%). Regarding days of the week, there were
minimal differences between Saturday and Wednesday. Namely,
our learners were more interruptible for Wednesday than Saturday
(𝑝 < 0.001). For the interaction duration types, shorter interactions
were associated with higher interruptibility (𝑝 < 0.001).
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Table 14: Heatmap for the interruptibility across parts of the day, days of the week, and duration types.

Interruptibility for moment interactions (%) Interruptibility for 3-min interactions (%) Interruptibility for 10-min interactions (%)

Parts of the days Days of the week Overall Days of the week Overall Days of the week Overall

Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

Morning
(9:00 ∼12:00) 69.1 65.2 77.7 76.3 74.0 68.2 62.7 70.4 36.5 40.4 54.4 39.9 37.8 30.9 37.7 39.6 18.8 17.2 30.0 21.6 19.9 14.8 20.4 20.4

Afternoon
(12:00 ∼16:00) 78.4 83.2 80.9 87.5 89.1 78.7 78.4 82.3 56.7 55.9 50.2 51.2 65.4 48.7 52.8 54.4 30.5 23.9 26.2 24.5 33.9 22.0 35.1 28.0

Evening
(16:00 ∼20:00) 91.9 79.7 93.6 87.3 78.2 74.8 78.3 83.4 50.8 42.3 57.0 52.3 53.6 44.3 55.0 50.8 27.2 11.6 27.8 27.2 32.2 22.4 27.7 25.1

Night
(20:00 ∼24:00) 81.7 80.4 88.7 91.8 79.8 80.4 77.0 82.8 52.9 54.9 55.7 58.8 49.1 47.4 50.8 52.8 26.7 29.7 28.4 25.9 18.9 27.7 32.2 27.1

Overall 80.3 77.1 85.2 85.7 80.3 75.5 74.1 79.8 49.2 48.4 54.3 50.6 51.5 42.8 49.1 49.4 25.8 20.6 28.1 24.8 26.2 21.7 28.9 25.2

Table 15: Statistical result for the interruptibility across parts
of the day (morning vs. afternoon vs. evening vs. night), days
of the week, and duration types. PoD = Parts of the day, DoW
= Days of the week, and DT = Duration types.

Effects F-value df1 df2 p-value

Parts of the day (PoD) 16.227 3 1755 < 0.001
Days of the week (DoW) 3.153 6 1755 < 0.01
Duration types (DT) 582.606 2 1755 < 0.001
PoD × DoW 1.274 18 1755 0.195
PoD × DT 0.875 6 1755 0.513
DoW × DT 0.754 12 1755 0.698
PoD × DoW × DT 0.34 36 1755 1

7 RQ3: CONTEXTUAL FACTORS
ASSOCIATING INTERRUPTIBILITY

Similar to RQ1 (Section 5), we conducted a qualitative analysis
and identified six contextual factors that influenced interruptibil-
ity: (1) productivity, (2) concentration, (3) pausable duration, (4) au-
ditory/verbal channel availability, (5) audible range, and (6) voice
recognition range. In this section, each factor is discussed in detail.

7.1 Productivity
The productivity level of learners’ ongoing work was strongly
linked to their interruptibility (i.e., whether they will engage in
microlearning or not). Our learners reported that they were more
likely to participate in microlearning tasks during less productive
activities such as using media and resting. For instance, P23 re-
marked, “I was just listening to music or sitting at my desk, fully
awake but not really involved in any significant activity. [...] so I
thought it was a good time to do something productive.” Similarly,
our quantitative results indicated high interruptibility of these ac-
tivities. When referring these activities, learners often described
themselves as “messing around” or “wasting time.” P22 commented,
“When I was wasting my time alone with Instagram or YouTube and
this (SpeechMaster) rang, then I stopped for a while to participate in
microlearning.” Therefore, they felt more inclined to participate in
longer microlearning sessions to use their time more productively,
as, for example, P21 shared “I did it when I was really just playing

around. Thinking, ‘What’s the point of just playing around?’ then I
went for a maximum of 10 minutes.”

7.2 Concentration
Concentration is also a crucial factor. The learners reported that it
was easy and most comfortable to engage in microlearning tasks
when they were involved in activities that required low concentra-
tion, such as house chores and resting. However, they experienced
difficulties when their ongoing activities required high concen-
trations. For instance, P22 mentioned that “Folding laundry was
good for microlearning. If I’m too intensely focused on something
else, I may struggle to concentrate on learning English.” In addition,
learners reported that it was not easy to notice the start of the
microlearning tasks while concentrating on their ongoing tasks.
These activities include playing games and doing assignments. For
example, as P27 noted, “When I was playing games for a long time,
I think I might have missed a few times because I was just caught
to the game.” However, according to our quantitative analysis re-
sults, the study and work exhibited high interruptibility, despite
typically requiring high concentrations. This paradox is explained
by learners’ frequent use of microlearning as an opportunity for
refreshment or a short break, as discussed in Section 5.2.2.

7.3 Pausable Duration of Ongoing Work
Pausable duration – the duration for which learners can pause their
ongoing tasks significantly influences their interruptibility (i.e., how
long they will engage in microlearning). During the interviews, the
learners reported that the longer they could pause their current
activities, the longer they could engage in microlearning, indicating
higher interruptibility. Our quantitative results revealed that inter-
ruptibility was consistently low for hygiene across all durations.
Learners commonly identified ‘taking showers’ and ‘bathroom func-
tions’ under hygiene as non-pausable activities. For instance, P15
illustrated the difficulty of pausing hygiene by comparing it to more
pausable activities: “When reading a book or listening to music, I
could stop and engage in microlearning. But when I’m taking shower,
I have to dry quickly. It’s just quite difficult to leave immediately.”

Learners typically identified visiting outside/other room as ex-
amples of activities that they could pause for a moment (e.g., ≤
1 minute), but not for extended periods. Our quantitative results
showed a notable decrease in interruptibility from the moment in-
teractions to 3-minute interactions. Learners commonly expressed
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concerns about the potential disruption caused by engaging in mi-
crolearning tasks during their preparation to leave or upcoming
schedules. For instance, P15 said “Engaging in microlearning might
lead me to forget things or delay my departure, so I often choose to
stop microlearning in the middle. It’s like I have the opportunity to do
it, but being unable to because of time constraints.”

Social interaction is a typical example of pausability for 1–3
min. They mentioned that, in the middle of social interaction, they
considered it socially inappropriate to engage in another activity
for a relatively long time. For example, P4 stated, “When talking to
friends or doing something with someone, I can’t just detach myself
for long.” In contrast, using media, resting and returning from out-
side/other room were identified as pausable for longer duration, as
these activities often did not involve immediate follow-up tasks. For
example, P4 reflected, “Once I got back home, my schedule was more
likely open. So, I think that allowed me to use it for a longer duration.”
Similarly, in our quantitative results, these activities consistently
had high interruptibility across duration types.

7.4 Auditory/verbal Channel Availability
The availability of the auditory and verbal channels plays a sig-
nificant role in interruptibility. In the case of auditory channel
availability, during house chores such as using a vacuum cleaner,
learners were not able to hear the speaker’s sound due to noise.
For example, P21 mentioned, “It’s hard to recognize, because the
vacuum cleaner is noisy [...]” Regarding verbal channel availability,
while learners were eating, their pronunciation accuracy lowered,
making interactions more difficult than usual. For example, P25
stated, “I tend to chew food for a long time. [...] I found it difficult to
continue while doing it, so I just did a few [sentences] (and stopped.)”

7.5 Audible Range
Interruptibility across locations in non-installed space was closely
related to the audible range, which is the range within which learn-
ers can hear or notice the speaker’s sound. Our quantitative results
showed higher interruptibility in the living room, which is usu-
ally proximate to the installed space, thereby allowing learners
to be within the audible range. Consequently, they can hear the
speaker’s sounds and move to the installed space to engage in the
microlearning task. For example, P26 stated, “When I was in the
living room, I could hear. I immediately went there.” Conversely,
in the rest room and other rooms, the learners were less likely
to hear the speaker’s sound. For example, P21, living in a studio,
said “The kitchen side was not that audible, and when the restroom
door was closed, I couldn’t hear the speaker. This made the restroom
inconvenient either for engaging with the speaker.”

7.6 Voice Recognition Range
Interruptibility in locations within installed space was closely tied
to the ‘voice recognition range’ – the distance within which smart
speakers can effectively recognize and process spoken commands.
Learners commonly mentioned that when they were within range,
they could comfortably talk to the speaker, as it ensured accurate
voice recognition. For instance, P21 mentioned, “I could hear the
speaker’s sound from 1 to 2 meters away, but beyond that, like when
on the bed, it couldn’t recognize my voice. This made conversations

difficult from farther distances.” Our qualitative analysis revealed
that learners were more likely to be interrupted on their desks, the
most common installation site for speakers, and less so on their
beds, which often fell outside the voice recognition range. When in
bed, they often choose not to engage in microlearning. P27 stated,
“It felt like the speaker wasn’t good at picking up my voice from the
bed, so I rarely used it there. I mainly use it near the desk area.”

8 DISCUSSION
8.1 Summary of Major Findings
We observed that proactive microlearning tasks increased the learn-
ing opportunities. While prior studies have shown that randomly as-
signed proactive tasks have been reported to cause disruptions [23],
it is interesting to note that our learners generally perceived proac-
tive microlearning at random intervals positively, namely, as non-
distracting most times. This perception was attributed to the learn-
ers’ strong motivation to achieve their learning goals, which led
them to consider random provisions as additional learning opportu-
nities. Fischer et al. also found similar findings in their study on the
interruptibility (or receptivity) of mobile interruptions (i.e., receiv-
ing text messages at random times), that interruptibility can vary
based on the usefulness and interest of the provided content [17].

In half of the instances (49%), the learners did not participate
in the learning sessions (i.e., the speech shadowing step in the mi-
crolearning tasks). This highlights the importance of delivering
microlearning at opportune moments to maximize learner partici-
pation in daily learning tasks (or sessions). While prior studies have
considered interrupting tasks involving a short duration (typically
≤ 1 min) [10, 60], we explored opportune moments for interrupting
tasks (i.e., microlearning) in various durations (i.e., 1, 3, and 10
minutes), and found that contextual factors (e.g., activity, location)
relevant to opportune moments can be varied depending on task
duration. Therefore, important contextual factors relevant to oppor-
tune moments in prior studies may not be applicable to interrupting
tasks involving longer-than-one-minute interactions.

In our study, interruptibility varied significantly across the ac-
tivity contexts. Using media, resting, studying/working, and re-
turning from outside/other room were opportune moments (or
highly interruptible) for microlearning. Prior studies have typically
identified studying/working as highly uninterruptible owing to
the high concentration required and potential disruption from in-
terruptions [10, 60]. However, our study found studying/working
to be highly interruptible in microlearning, possibly because of
learners’ high motivation and perception of microlearning as a
productive short break. Indeed, while in our study, learners con-
sidered microlearning more entertaining than studying/working,
interruptions could be viewed as opportunities that deviate from
learning for a short time [27, 28].

Spatial context (or indoor location) also influences interruptibil-
ity. In the installed space, learners showed higher interruptibility
when close to the smart speaker (e.g., at a desk) because of the
speaker’s better speech recognition. By contrast, in non-installed
space, interruptibility was higher in areas close to the installed
space (e.g., the living room), where learners could hear the speaker’s
sounds more clearly. This aligns with prior studies emphasizing
the importance of speakers’ communication range in determining
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interruptibility for proactively smart speakers [10, 60]. Our findings
extend this by highlighting that the voice recognition range (or
inbound communication range to the speaker) is crucial in installed
space, whereas the audible range (or outbound communication
range from the speaker) is crucial in non-installed space.

8.2 Privacy Concerns in Vision-based Activity
Recognition

We collected visual contextual information (i.e., images) around
the speakers to identify learners’ activities and indoor locations.
In the orientation, we informed the learners about our approach.
Both our main and pilot studies generally expressed low privacy
concerns, aligning with recent studies that reported a similar lack
of concern regarding data collection using smart home devices (e.g.,
Nest cam indoors) [35, 55]. Indeed, our approach empowered learn-
ers with full control over the images, allowing them to review and
delete any images that they preferred not to share with researchers.
In our main study, 21 learners performed 727 deletions (34.6 dele-
tion per learner). Literature indicates that maintaining ownership
and control over data can alleviate privacy concerns during data
collection [36]. However, in real-world applications, continuous
management of contextual information can be challenging, lead-
ing to significant data accumulation for reviews. This suggests
the importance of understanding privacy-control preferences and
perspectives.

In our pilot studies, we analyzed the learners’ reasons for image
deletion (detailed in Section A.3.3) to understand their privacy con-
cerns. The most common reason (31% of deletions) was discomfort
with sharing images due to awkward faces or postures (e.g., “The
face turned out way too big in the picture, so I don’t want to show
it to anyone.” ) This suggests privacy concerns regarding images
being shown to others (e.g., researchers). Automatic user context
recognition without human intervention may help reduce these
concerns. In addition, 13% of the deletions were images showing
personal items without people, underscoring privacy concerns even
when individuals were not directly captured. As an alternative to
vision-based context recognition, employing different technologies,
such as internal microphone sensors or existing IoT home devices
and sensors, can mitigate these privacy concerns. We discussed the
technical mitigation strategies in the following section.

8.3 Utilizing Opportune Moments at Home
Our results showed that learners were highly interrupted when they
engaged in using media, studying/working, resting or returning
from outside/other room. In our study, cameras were used to collect
activity and spatial context data, which may raise privacy concerns
for real-world applications. Alternatively, smart speakers can utilize
an internal microphone sensor and analyze surrounding sounds
(e.g., door opening or media sound) to detect specific activities (e.g.,
returning from outside/other room, using media) [26, 34]. Speakers
can also leverage external devices and sensors to infer activities. For
instance, the activation of electronic devices associated with using
media and studying/working could indicate relevant activities.

Interruptibility also varied across indoor locations, being higher
near speakers in installed space, or closer to installed space in non-
installed space. Speakers can use Bluetooth connections with their

smartphones to determine their proximity to the speaker. Indoor
localization techniques using smartphones or multiple WiFi de-
vices can infer indoor locations and activities [49, 56]. Furthermore,
entrance detection sensors (e.g., motion sensors) can be used to
detect movements in specific rooms (e.g., entering or exiting the
restroom or living room). Instead of conventional cameras, ther-
mal cameras can be used to detect the learners’ presence. Given
that activities (e.g., using media and resting) requiring low con-
centration generally correspond to higher interruptibility, thermal
images from a thermal camera can be used to detect low cognitive
(or concentration) activities (e.g., cognitive heat [1]).

8.4 Design Implications to Facilitate Proactive
Conversational Microlearning Services

In our study, the provision of microlearning was positively per-
ceived, and it mostly did not distract learners. However, our partic-
ipants engaged in such microlearning tasks in 51% of the instances.
In addition to strategically delivering microlearning tasks at op-
portune moments, we propose that refining the design of these
microlearning tasks can further enhance learning opportunities,
and suggest three design implications for proactive conversational
microlearning services.

8.4.1 Starter with a Content. Our results suggest that incorporating
a starter into content can increase user interruptibility. In this study,
the starter was a greeting with an activity inquiry (“Hi, what are
you doing now?” ). After presenting the inquiry, our service waited
approximately 35 seconds for a response. The waiting period helps
learners prepare for the learning task by completing their ongoing
tasks. Other content can be provided alternatively as a starter to
enhance experience. For example, in real-world classrooms, teach-
ers often use formative assessments to monitor learners’ learning
progress [7]. Similarly, the starter contents could be formative as-
sessment questions (e.g., “How was the difficulty of the last learning
material?” ) to gather information about the users’ learning experi-
ences. The responses to these questions could be further utilized by
learning services to optimize learning outcomes (e.g., adjusting the
difficulty level). The starter content can also serve as a motivational
tool. For instance, we can provide recent learning summaries and
encouragement to improve learning progress (e.g., “The average
score for last week was 90 points. You’re doing great!” ). By leveraging
these starter options, agents can collect and/or provide additional
valuable information while users prepare for the learning task and
take advantage of the provided valuable information.

8.4.2 Service-activation Reminder. Our results suggest that in ad-
dition to the starter with content, interruptibility could be further
increased by a service-activation reminder – executing or prompt-
ing users to engage in a certain service at a user-specific time
(e.g., 10 minutes later, a speaker proactively ask for engaging a
microlearning task: “Reminding from Speech Shadow. Would you
like to practice your pronunciation?” ). However, existing models
can deliver only user-defined information (e.g., 10 minutes later, a
speaker prompts “Remind you to practice your pronunciation” ) [22].
Although a starter provided a short preparation time, participants
often required additional time to complete ongoing tasks such as
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finishing their meals or using the restroom. For example, P15 men-
tioned that “There were some situations when the timing didn’t match,
like when I was dealing with an urgent or important task. I was certain
that I would have done it if the timing was a few seconds or minutes
later.” In this context, it could be beneficial to provide a command
to terminate the interaction immediately and automatically create
a service-activation reminder. With the aid of reminders, users are
less likely to forget and more likely to engage in learning tasks after
completing their current ongoing task.

8.4.3 Fine-grained Content Scheduling with Interruption Manage-
ment. Our findings indicate that by incorporating support for ad-
justable operating times and learning intervals, learning oppor-
tunities can be expanded and the overall learning experience can
be enhanced for learning services. Although users generally fol-
low daily routines, they occasionally encounter variations in their
routines. For example, as expressed by P21: “When I stay up late
the previous night, the next day, it’s tough to stick to my usual sleep
and wake-up routine.” In such cases, it can be helpful to empower
users to customize their own operating times and learning intervals
verbally via a human-in-the-loop approach. For example, we can
support specific adjustments by providing commands like “Give
me more service for an hour from now on.” and “Don’t disturb me
for the next 30 minutes.” This approach enables users to efficiently
manage their learning opportunities. In existing models, virtual as-
sistant settings for smart speakers are automatically synchronized
with those of smartphones (e.g., Google Assistant) [21]. Given the
widespread use of smartphone alarms, to eliminate the need for
manual adjustment, it could also be possible to automate the adjust-
ment of working time by importing alarm settings from a user’s
smartphone.

8.5 Design Implications for Voice-based
Conversational Microlearning Services

Based on the findings of our pilot and main studies, we propose
three design implications for voice-based conversationalmicrolearn-
ing services.

8.5.1 Supporting Learning Time Awareness. Our results indicate
that such services need to support learners in maintaining their
ongoing awareness of learning time. To enable learners to end their
learning according to their decision for in situ learning time allo-
cation (See Section 3.1), we provided a continue-to-next inquiry
step every two minutes to help the learners’ time estimation. Alter-
natively, learners can be nudged with a simple earcon at regular
intervals (e.g., one minute), similar to a metronome, a device that
produces audible sound at regular intervals. Different earcon pat-
terns could be provided to further enhance time awareness. For
example, we can increase the number of earcons provided at each
interval as the learning time increases. We can also enable learners
to explicitly control the length of upcoming learning tasks by sup-
porting duration-setting commands (e.g., “I want to use 10 minutes
from now on.” ). Note that this approach was feasible for Speech-
Master; however, we did not implement it because of unintentional
termination. We discussed details of unintentional termination in
the following section.

8.5.2 Error Handling. Our results indicate that such services re-
quire support options to handle misunderstandings or transcription
errors in responses. In our pilot studies, unintentional terminations
occurred because of a misunderstanding of the learner’s speech-
shadowing sentences as generic termination commands (n = 73;
see Appendix A.3.1). In our main study, unexpected terminations
also occurred because of misrecognition caused by pronunciation,
similar to termination commands (n = 226). This is the same as a
transcription error, in that AI misinterprets and provides incorrect
results. For example, in a single instance, “skirt” was recognized as
“stop” and caused termination. This may be because speech recogni-
tion engines are more likely to be trained using datasets that are
mostly based on native language speakers [50]. Thus, the pronun-
ciation of non-native speakers may have a higher probability of
being misrecognized [40]. However, it is necessary not only to im-
prove the speech recognition engines of the speaker to enhance AI
fairness, but also to handle transcription errors. Although existing
smart speaker models recognize all user responses as commands,
one potential approach is to empower developers to implement an
option that skips the recognition of commands in response to a
certain speaker question. Alternatively, smart speakers could pro-
vide a command (“go-back” or “back to the previous conversation” )
that allows users to return to the previous conversation, which is
similar to the previous page function in a web browser.

8.5.3 Supporting Multi-modality. In our interview, for enhanced
speech shadowing experiences, several participants shared their
insights about providing the following additional information: trans-
lations and spellings of sentences and history of past sentences and
scores. In particular, they commonly expressed an interest in hav-
ing access to the spelling of sentences when they could not repeat
pronunciations. Although it is feasible to deliver this additional
information via voice, it could be more effective to deliver it via
visual modality (e.g., display). Recently, some smart speakers have
built-in displays (e.g., Google Nest Hub and Amazon Echo Shows).
This information can be visually displayed to such speakers. For
traditional speakers (no display), multidevice interactions can be
coordinated. Given that virtual assistants are systematically shared
between smartphones and speakers (e.g., Google Assistant) [21],
information can be visually displayed on the smartphone screen
via shared assistants between smart speakers and smartphones.

8.6 Limitations and Future Research Directions
Although our study demonstrates that the interruptibility of proac-
tive microlearning services can vary across learner contexts prior
to engaging in the service, our results should be carefully inter-
preted and generalized for practical applications. First, we assumed
that when learners engage in microlearning for a certain duration
in a certain context, they would also be able to engage in learn-
ing for shorter durations in the same context. However, further
studies are needed to confirm this hypothesis. Recently, some com-
mercial smart speakers have a built-in display that also supports
visual-manual modalities. Given that the visual-manual modality
requires shorter distances to interact (e.g., touch input) than the
auditory-verbal modality, our findings may not be generalizable to
such multimodal smart speakers. Finally, although in our study we
exclusively provided a smart speaker for a microlearning service
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(i.e., speech shadowing), a speaker is a multifunctional platform
capable of providing a wide range of services beyond microlearning.
However, smart speakers do not support concurrent execution of
multiple services. For example, when using the same smart speaker,
learners cannot access music and microlearning services simulta-
neously. In such scenarios, a microlearning service may compete
with other smart speaker services. Consequently, further studies
are required to explore the interruptibility of microlearning tasks
under such competitive scenarios.

9 CONCLUSION
Advances in intelligent agents and the widespread adoption of
smart speakers in domestic settings present new opportunities to
expand opportune moments from mobile and computer environ-
ments to daily life by proactively providing conversational interac-
tions. Our study provides initial insights into how the duration of
conversational services and the user context prior to engaging in
the services influence opportune moments when such services are
proactively delivered in domestic settings. We hope that our find-
ings will provide a primary step toward enabling various proactive
conversational services, particularly those requiring interactions
exceeding one minute, within domestic settings.
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A ITERATIVE DEVELOPMENT OF
SPEECHMASTER

As shown in Table 16, we iteratively designed and developed Speech-
Master via six pilot studies with 29 learners. The procedures used in
each study were consistent with those used in the main study. We
first conducted an online orientation and then a field study in the
learners’ homes. After the field study, semi-structured interviews
were conducted to gather in-depth feedback. In this section, we
describe the key findings and relevant changes made during the
pilot studies that were not covered in the main paper.

A.1 Conversational Microlearning Service
During the design process of the conversational microlearning
service, the initial designs for the activity inquiry and learning
availability inquiry remained the same. The reason-for-stop inquiry
was provided in Study 3 to collect the learners’ context for stopping
microlearning. In this section, we explain the findings and related
changes not covered in section 3.1.

A.1.1 Continue-to-next Inquiry. In the initial design, the service
provided continue-to-next inquiry after every speech shadowing
sentence, with no limit on the maximum number of sentences
(or maximum duration of the interaction). This approach received
feedback that repeated inquiries after every sentence made the
learners feel fatigued. As a response, in pilot studies 3 and 4, we
provided only 12 sentences without a continue-to-next inquiry.
However, this approach led to feedback from learners desiring a
longer learning duration, as the 12 sentences amounted to only
approximately three minutes.

Consequently, for pilot study 5, we provided a microlearning
task continuously up to 10 minutes without providing the continue-
to-next inquiry step and allowed learners to stop their learning by
saying “Stop.” However, learners faced challenges when estimating
their elapsed learning time. In the interviews, we found that prior to
engaging in amicrolearning task (e.g., at the moment of noticing the
start of the task), learners pre-established an in-situ microlearning
goal–whether and how long they would allocate their time for
the current upcoming microlearning task–by considering their
contextual factors. In addition, while engaging in a microlearning
task, they preferred to be aware of their learning time to engage in
microlearning for a specific duration. Therefore, for pilot study 6
and main study, we designed our service to provide a continue-to-
next inquiry 3, 5, 7, and 9 min after the start.

A.1.2 Speech Shadowing Feedback. Once the learners repeated a
given speech-shadowing sentence, feedback was provided in the
following order:

• Score: Scores (0–100) were provided to allow learners to un-
derstand the similarity between their pronunciation and the
original pronunciation. As in a previous study [44], the score
was derived using an edit distance algorithm [42]. The algo-
rithm counts the minimal number of transformations (e.g.,
inserting, removing, or substituting a letter) to eliminate
discrepancies between the recognized and original pronun-
ciations.

• Compliment/encouragement:After providing the score, Speech-
Master compliments (or encourages) the learners’ effort. We

designed our service to randomly select comments from a
pool within a given score range. 43 comments were avail-
able for the final design. In pilot study 3, we provided com-
pliments/encouragement in response to the opinion that
learners want achievement. In pilot studies 3 to 6, a single
comment was provided for each score range (e.g., 100s, 90s,
80s, etc.), but learners reported that they felt robotic rather
than natural conversations with humans. For example, P4
from pilot study 6 stated, “I remember the comment changed
depending on the score, like ‘Perfect!!’. But the same comments
kept coming out (when I got similar scores) so I didn’t feel like
I’m having a conversation, and felt like talking to a machine. I
wish there were various comments.” To enhance conversation
experiences, we designed our service to randomly provide
comments for a given score range. For instance, there are
two pools of tokens for 90s, and the service selects a token
from each pool and combines the two tokens to make a
complementary comment.

• Recognized pronunciation: When the score is not perfect (or
100), our service provides recognized pronunciation as fol-
lows: “Your speech sounds like <recognized pronunciation>.”
This was because in our pilots, we found that learners are
interested in how their pronunciation is heard.

A.2 Speaker Add-on Device
To enable existing smart speakers to operate proactively, we de-
signed and developed a speaker add-on device (See Section 3.2 for
its final design). The device was applied in pilot study 3, and its
performance was confirmed in pilot studies 4–6. The performance
results can be obtained later by reviewing the voice-command
volume-adjustment features.

In pilot studies 1 and 2, similar to a previous study [60], we
initially attempted to proactively operate a smart speaker using
two earbuds. However, this attempt often fails when the ambient
noise is loud (e.g., high volume music). In such noisy environments,
the volume of voice commands must be higher than that of earbuds.
Therefore, we have developed an add-on device to increase the
volume of voice commands in noisy environments. In addition, we
developed voice-command volume adjustments and retriggering
features.

A.3 Applications for Proactive Microlearning
Triggering

We also iteratively developed three apps (triggering, sensing, and
image deleter apps) that operate with a speaker add-on device.
In this section, we describe the findings and related changes in
triggering and sensing apps that were not discussed in the main
paper.

A.3.1 Triggering App.

• Operating Hours: In initial design of the app, learners could
set only a single operating time. However, learners expressed
a preference for setting distinct operating times on weekdays
and weekends owing to different daily patterns. Therefore, in
pilot study 3, the app incorporated such a setting. In the final
design, learners could also select specific operating days of
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Table 16: Iterative development of SpeechMaster and Proactive Smart Speaker.
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the week by considering individual preferences (e.g., taking
rest on Saturdays).

• Triggering Interval: Up to pilot study 3, the average trigger-
ing interval was initially set to 45 min (range = 30–60 min).
However, learners expressed that the microlearning tasks
were provided more frequently than expected. Consequently,
we adjusted the interval to an average of 120 min (range,
60–180 min) from the pilot study 4. In the final design, we
set a triggering interval as a random interval with an aver-
age of 60 minutes (range = 30–90 minutes) by considering
learners’ feedback that they desire more frequent learning
opportunities.

• Voice-command Volume Adjustment and Retriggering: To mit-
igate triggering failures, we added volume adjustment and
retriggering features from the pilot study 4. Our results from
pilot studies 4 to 6 show that these additions significantly
reduced recognition failures; overall, microlearning tasks
were successfully triggered in 98.5% of cases (n = 664 / 674).
In the final design, to prevent further failures, the maximum
number of retriggering attempts was increased to three.

• Recovery Mode: We incorporated a restart button on the
smartphone screen to enable learners to resume conversa-
tions when conversations with the service were unintention-
ally terminated. In our pilot study, such unintentional ter-
mination occurred under the following three circumstances:
(1) sentences containing termination words or expressions
(e.g., “Stop whispering.”, “I want to forget it” ), (2) sentences
not containing explicit termination words or expressions
but were misinterpreted (e.g., due to learner pronunciation
– ‘stuck’ in “We got stuck.” or ‘I-sTom’ in “Is Tom black?”
recognized as ‘stop’), and (3) sentences including words or
expressions that call other services. For example, when the
learner repeated after the sentence “Thank you both,” the
service responded with “I’m honor to serve.” and terminated.

A.3.2 Sensing App. To provide tasks when learners are at home,
we developed and provided a sensing app from pilot study 3 that
detects WiFi signals. The app initially compared the SSID of the
surrounding WiFi signals with those of the home WiFi signals.
However, SSID are often duplicated (i.e., duplicated network names).
Therefore, our final app compared theWiFi MAC address (or BSSID)
from the pilot study 4.

A.3.3 Image Deleter App. In pilot study 4, to protect learners’
privacy, we introduced an image deleter that allowed learners to
quickly review and delete collected images that they did not want
to share with the researchers. In pilot study 6, considering learners’
need to review images in more detail, we introduced an image zoom
function, allowing learners to enlarge images. In the app, learners
could swipe left or right to see a previous or subsequent set of
images captured within the same two-minute period. Similar to a
gallery app, learners can scroll through images, zoom in and out,
and select or delete multiple images. In our pilot study, learners
had low privacy concerns because they had full control over the
collected images. For example, in study 6, P3 stated, “I wasn’t both-
ered because I knew I could delete images, like those where I took off
my clothes.”

In pilot study 4–6, upon deleting images, learners were asked to
provide deletion reasons (e.g., “In these photos, I was undressed.” ).
During these studies, nine learners executed 90 deletions, while
seven chose not to delete the images. For these reasons, we identi-
fied four types of privacy concerns that led to deletions: awkward
face or posture (31%, n = 28), changing clothes or undressing (29%,
n = 26), showing other people (27%, n = 24), and private items in
sight (e.g., underclothes, monitor screens) (13%, n = 12). Specifi-
cally, the learners deleted images in which their faces or postures
appeared awkward (31%, n = 28). These images included close-up
facial shots (n = 11), awkward postures (n = 11), images captured
during meals or makeup application (n = 4), and yawning or nose-
blowing moments (n = 2). They also deleted images in which they
were changing clothes or undressing (29%, n = 26) or featuring other
people, such as friends or family, due to a lack of consent (27%, n
= 24). Even when no individuals were visible, they deleted images
showing private items (e.g., underclothes and electronic devices)
because of concerns about personal information (13%, n = 12).

A.4 Additional Figures
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No response Only responding to activity/availability inquiry Speech shadowing Mean duration

Figure 5: Distribution of microlearning tasks across activity categories.

Figure 6: Distribution of microlearning tasks across location types (installed space vs. non-installed space).

No response Only responding to activity/availability inquiry Speech shadowing Mean duration

Figure 7: Distribution of microlearning tasks across specific locations within the installed and non-installed spaces.
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