
1

SOSW: Stress Sensing with Off-the-shelf
Smartwatches in the Wild

Kobiljon Toshnazarov, Uichin Lee, Byung Hyung Kim, Varun Mishra, Lismer Andres Caceres Najarro,
Youngtae Noh

Abstract—Recent advances in wearable technology have led
to the development of various methods for stress sensing in
both controlled laboratory and real-life environments. However,
existing methods often rely on specialized or expensive sensors
that may not be easily accessible to the general population.
In this study, we investigate the feasibility of using off-the-
shelf smartwatches for stress detection in real-life scenarios. To
achieve this, we propose SOSW, a comprehensive methodology
for robust sensor data processing by considering both physio-
logical and contextual data. SOSW employs a two-layer machine
learning (ML) architecture. The first-layer ML model is trained
and validated using carefully collected data under controlled
laboratory conditions. The second-layer ML model is trained
and validated using data collected in real-life settings. We
conducted evaluations with 26 and 18 participants in controlled
laboratory and real-life conditions, respectively. The results
indicate that our methodology can successfully detect stressful
events with an F-1 score of up to 0.84 in laboratory conditions
and 0.71 in real-life scenarios using off-the-shelf smartwatches.
The results are comparable to those achieved by the state of
the art methods that rely on dedicated wearables.

Index Terms—SOSW, stress, smartwatch, commodity, in the
wild, field, context

I. INTRODUCTION

Stress is the response of our body to an internal or
external threat to its homeostasis [1]. It represents a defense
mechanism that the body employs to maintain its internal
stability, commonly referred to as the fight-or-flight response
[2]. During the stress response, the body undergoes internal
changes, including an increase in heart rate (HR), blood
pressure, respiration, as well as improved oxygenation and
nutrition to the brain, heart, and skeletal muscles, among
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Fig. 1: Sensors commonly used for stress detection.

other effects [3]. As a result, the senses become sharper,
and attention increases, enhancing the organism’s ability to
cope more effectively with the stressful situation [4]. Among
various physiological signals, the heart activity, which con-
trols the flow of blood in the veins carrying oxygen and
nutrients to various body parts, is a key indicator of the
body’s physiological stress response [5].

In daily life, our body utilizes the acute stress response,
which involves short-lived changes in our physiology, in
order to adapt to various situations [1], [6]. The acute
stress response is used to tackle everyday challenges, en-
hancing performance, cognition, and memory in response
to challenges and threats [1]. However, prolonged exposure
to stressors and inadequate stress management can lead
to malfunction in the stress response system, resulting in
episodic acute and chronic stress [1]. Such sustained expo-
sure to stressors can have a cumulative toll and has been
associated with various health complications. For instance, it
has been reported that chronic stress can cause cardiovascular
problems [1], compromise the immune system [3], decrease
work performance [7], and overall decrease the quality of
life [3], [8]. Therefore, our work focuses on detecting acute
stress in daily life settings to enable timely interventions,
before developing further health complications.

A recent study revealed that stressful events that occur
in our daily lives may lead to heterogeneous physiological
responses [9] that are different from those observed in lab-
oratory settings. This aligns with the perspective of emotion
studies, which suggests that individuals’ emotions may vary
depending on various contexts (e.g., locations, social settings,
and activities) [10]. Traditional studies leveraged controlled,
laboratory-based settings to build a stress model based on
the physiological responses. However, researchers warned
that the practicability of such a model is limited [9], [11].
While laboratory-based models provide some hints for stress
detection in the wild, it is important to capture physiological
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responses under diverse stress episodes in the wild, and
thus, prior studies used experience sampling methods where
users are asked to self-report their perceived stress levels
throughout the day [9], [11].

One key challenge is reliable data collection of physiolog-
ical data in the wild [9], [11], [12], [13], [14], [15], [16].
Most of the prior studies relied on dedicated wearable HR
sensors (e.g., Polar H7 and Bioharness) as shown in Fig. 1,
which are bulky and inconvenient to wear [9], [17], [18].
These devices offer quality heart activity monitoring, but
discomfort of wearing on a chest limits temporal coverage
as well as adoption of a dedicated wearable hinders a large-
scale data collection. This work aims to leverage general-
purpose wearables like commodity smartwatches which offer
passive, continuous HR and activity tracking as in Samsung
Watch and Apple Watch, which further enable access to
broader contextual information of users, such as activity
detection, device use, social interactions, and health data.
For this reason, we expect that smartwatches can achieve
higher temporal coverage and broader contextual information
in daily life scenarios.

Our objective is to prove that we can build stress model in
real-life settings with commodity smartwatches in a reliable
manner. This will help to realize real-time intervention apps
using commodity smartwatches, helping people to better
manage their stress in everyday contexts. For HR sensing,
a common method is photoplethysmography (PPG) sensing
which uses different wavelength lights and their reflection.
However, PPG is known to be error-prone under motion
(or physical activity) [19], [20] due to sensor displacement
relative to skin and loose wearing conditions [18], [21]. It
is important to understand the PPG sensing accuracy of a
commodity smartwatch and to systematically study how to
deal with PPG errors for model building. Therefore, our first
research question is RQ1: Is it possible for a commodity
smartwatch to accurately identify physiological stress?

Moreover, the population view of emotion argues that
user’s emotion depends on their contexts (e.g., places, social
setting, and activities) [10], and it is very important to con-
sider everyday contexts beyond the laboratory setting [22].
Beyond user’s current physiological responses, we consider
fusing multiple contextual data such as user’s activities, lo-
cation, social settings, device usage, mobility, among others.
These additional data streams act as contextual signatures,
which may help to improve the accuracy of stress model
performance. We employ multi-sensor contextual data fusion
to address our second research question RQ2: What is the
attainable level of accuracy in detecting stress by taking into
account contextual data in the wild?

While addressing these questions, we make the following
four-fold contributions:

• We systematically analyze and demonstrate the lim-
itations of off-the-shelf smartwatches for measuring
individuals’ HR in realistic scenarios.

• We develop a robust data processing pipeline that rigor-

ously addresses limitations of smartwatch PPG sensing
and incorporates diverse contextual data for real-life
stress detection.

• This work combines physiological data collected from
commercially available smartwatches with contextual
information obtained from smartphones to accurately
identify and measure stress levels in the wild.

• The extensive physiological and contextual dataset1,
together with the codebase2 for our whole data process-
ing pipeline, is accessible to the public for the rapid
advancement of the scientific community.

We believe that SOSW makes a significant step towards
stress detection in real-life settings using general-purpose
wearables like smartwatches. Our methods enable smart-
watches to achieve reliable physiological stress detection in
laboratory settings, and their access to contextual data holds
promise in significantly enhancing stress detection in the
wild, surpassing the capabilities of dedicated wearables.

II. BACKGROUND AND RELATED WORKS

With recent advancements in sensor technology and mobile
devices, it has become possible to collect physiological data
and conduct experience sampling in real-life, free-living
conditions using various devices, including smartphones,
smartwatches, and smartbands. Previous efforts have em-
ployed both contact-based and contactless sensing methods,
utilizing dedicated sensing wearables, to monitor physical
and physiological signals of stress [23]. While dedicated
sensing wearables (e.g., high end, custom-made, clinical-
grade devices) offer high-quality sensor data in controlled en-
vironments like laboratory stress studies [24], [25], they also
present practical challenges when used for daily-life stress
tracking. These challenges include high costs, discomfort due
to bulkiness, and limited market accessibility [9], [17], [18].
As a result, the use of such devices in real-life studies may
raise questions about the reproducibility of findings [26].
An attempt to address this issue has been made by using
commodity chest straps for stress tracking [9]. However,
chest straps are invasive wearables that are not designed
for daily use and may be unwelcomed by subjects, limiting
its continuous sensing capability. In contrast, commodity
smartwatches offer a practical solution due to their compact
and non-invasive design, as illustrated in Fig. 1, leading to
higher temporal coverage of physiological sensing in real-
life scenarios. Therefore, we prioritize the use of commodity
smartwatches for stress sensing in real-life settings.

When it comes to sensing physiological signals related to
stress, previous research has demonstrated the feasibility of
accurate stress detection using various physiological sensors,
including PPG [13], [14], [27], [28], electrocardiography
(ECG) [9], [11], [13], [29], galvanic skin response (GSR)
[9], [13], [14], respiratory inductance plethysmogram (RIP)

1SOSW dataset: https://www.kaggle.com/datasets/kobiljon/sosw-ieee-iot
2SOSW codebase: https://github.com/qobiljon/sosw-pipeline

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3375299

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 28,2024 at 06:23:12 UTC from IEEE Xplore.  Restrictions apply. 

https://www.kaggle.com/datasets/kobiljon/sosw-ieee-iot
https://github.com/qobiljon/sosw-pipeline


3

[11], [29], and skin temperature (ST) [14]. However, it
is important to note that physiological sensors (e.g., PPG)
have limitations in detecting perceived stress, as perceived
stress may not always manifest as immediate physiological
responses. Contextual information is known to significantly
influence users’ perceived stress levels, and when combined
with physiological data, it can enhance stress detection ac-
curacies in real-life scenarios [11], [22].

To enhance stress detection accuracy, recent efforts have
explored the effectiveness of stress models initially trained in
controlled laboratory settings when applied to field datasets
containing real-life scenarios. This involves mapping pairs
of physiological and perceived stress inferences from pre-
ceding data windows, typically the previous minute, using
techniques like Bayesian networks or hidden Markov models
[9], [11], [29]. However, it is essential to note that such
approaches heavily rely on physiological stress response data
obtained in controlled environments with limited types of
stressors. These may not always be a perfect match for real-
life scenarios, as different stressors can lead to diverse phys-
iological responses [9]. For example, the mental arithmetic
or socio-evaluative tasks in a laboratory protocol may not be
directly applicable to situations like driving or other high-
stress ‘fight-or-flight’ scenarios encountered in the wild.

Outside laboratory settings, there are few research efforts
that employ commercially available wearables to detect stress
in more naturalistic environments [30], [31]. For instance,
the study [30] effectively applied physiological data of com-
mercially available wrist wearables for stress detection of
students during a 50-70 minute lecture. While the study
offered valuable insights into the physiological stress ex-
perienced by students, it focused solely on a specific real-
life situation, i.e., a short-lived academic setting. Recently,
another study [31] considered stress detection in uncontrolled
daily life settings by leveraging commodity smartwatches
paired with smartphones for the collection of physiological
and contextual data, respectively. Although the study demon-
strates a detection accuracy of 60 %, the authors overlooked
the intrinsic limitations of optical-based PPG sensors found
in smartwatches, which inevitably impact the accuracy of
stress detection. Importantly, their field study sampled users’
perceived stress labels at three specific scheduled times: 9am,
4pm, and 9pm. However, this approach may not fully capture
the dynamics of perceived daily life stress, which can vary
at random times throughout the day in natural conditions.

As opposed to these works, SOSW comprehensively ad-
dresses the limitations of smartwatch-based physiological
signals and incorporates rich situational context data includ-
ing previous contexts to detect perceived stress. Additionally,
SOSW is not limited to a singular real-life scenario; rather,
it encompasses a comprehensive approach to stress detection
within a variety of naturalistic settings, effectively function-
ing in the wild. Furthermore, SOSW utilizes a physiological
stress model trained in a controlled laboratory setting to
estimate stress likelihood in real-life scenarios, a process we
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Fig. 2: Blood volume pulse signal acquisition by PPG sensor
of commodity smartwatch.

refer to as laboratory knowledge transfer to field. SOSW then
incorporates this information, derived from the laboratory
model’s output, as an additional factor when training a model
on the field dataset to provide insights into the user’s physi-
ological stress state, which further enhances the performance
of SOSW.

Let us in passing add that although there exist com-
mercial smartwatches that readily provide stress detection
capabilities, they are limited in several aspects. For instance,
Fitbit’s stress management application presents summary of
physiological readings to the user, and requires them to
manually log their perceived stress levels instead of detect-
ing it passively [32]. Also, Samsung smartwatches provide
proprietary software that estimates physiological stress levels
based on heart rate readings [33]. However, there are lim-
ited documentations on the proprietary software. Similarly,
Garmin smartwatches also report stress levels derived from
heart rate arousals [34]. Common limitation with these soft-
ware is the limited accuracy of physiological stress detection
and lack of perceived stress detection in real-life scenarios.
Moreover, notably, even the widely popular Apple Watch
does not yet offer stress detection features [35], [36]. In
contrast to these limitations, our work aims to develop a
comprehensive methodology for perceived stress detection
in real-life scenarios. Rigorous evaluation of the methods
involved in SOSW prove the efficacy of our methodology.

Since our study employs commodity smartwatches for
acquiring physiological readings (i.e., HR data) in real-life
scenarios, it is highly important to systematically investigate
the reliability of such data in realistic conditions. Like chest-
worn sensors such as ECG and respiratory, it has been
demonstrated that wrist-worn PPG sensors are also vulner-
able to motion artifacts [19], [20], [37], [38], [39]. Prior
works commonly rely on acceleration signals [40], [41], and
various other PPG signal filtering methodologies [42], [43]
to handle such data. Moreover, a recent study [21] argued
that it is not enough to rely solely on motion sensors to
handle PPG inaccuracies, reporting on how external lighting
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TABLE I: Preliminary study settings, averaged across 28
participants. ‘Motion’ refers to the degree of motion dur-
ing three different activities with natural body movements.
‘Looseness’ levels pertain to the tightness of the smartwatch
strap based on the percentage ratio between wrist and strap
circumferences.

Motion Static Walking Running
0 km/h 4 km/h 8 km/h

Looseness
Tight Medium Loose
95.78% (±3.09) 92.12% (±3.19) 88.74% (±3.26)

conditions between skin and sensor can significantly affect
PPG sensor accuracy as well. They quantified various sensor
to wrist distances using artificial rings with different heights
(i.e., 3mm, 5mm, 7mm, and 5mm with holes). However,
our work systematically revisits the importance of addressing
both motion and looseness artifacts in more realistic mobility
and wearing conditions.

III. COMMODITY SMARTWATCH PPG INACCURACIES – A
PRELIMINARY STUDY

A. Background and motivation

Commodity smartwatches utilize a PPG sensor that in-
cludes a light-emitting diode (LED) and photodiodes to
capture physiological signals, such as HR. The LED emits
light onto the skin, and the photodiodes measure the changes
in the amount of reflected light, providing information about
heart activity. In this process, as depicted in Fig. 2, the
changes in the reflected light correspond to blood volume
fluctuations in the wrist caused by the heartbeat. By analyzing
the generated waveform, higher-level information from the
users’ heart activity such as the HR and interbeat interval
(IBI) can be obtained. Such information, in particular the HR,
is commonly used as input parameters for stress detection,
thus accurate measurements of those parameters are of vital
importance [44], [45]. Unfortunately, external light [18] and
sensor displacement over the skin [19] can influence the ac-
curacy of the PPG readings affecting the generated waveform
and ultimately disrupting the accurate measurements of the
users’ heart activity.

Several studies have shown the susceptibility of PPG
sensor measurements to motion and looseness artifacts [18],
[19], [20], [21], [37], [38]. To address these challenges,
existing works commonly rely on acceleration signals and
various other PPG signal filtering methodologies [40], [41],
[42]. The effectiveness of smartwatches in different wrist
movements and when worn with a loose fit has been shown
to have a significant negative impact on the optical measure-
ments collected from these devices. Actions like as gripping,
flexing, and extending fingers and wrist motions have been
found to be particularly damaging in this regard [20], [46].
The impact of different sensor-to-skin distances and external
light reaching the optical sensor between the smartwatch and
the skin has been also analyzed. This analysis revealed that
the PPG sensor light intensity variance increases when the
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Fig. 3: Average mean absolute error (MAE) of IBI estimation
by commodity smartwatch PPG sensor data across partic-
ipants and scenarios. The x-axis represents the 9 different
scenarios, and the y-axis represents the average MAE in IBI
data estimation (ms) for the PPG sensor with reference to
ECG-based data.

smartwatch is worn loosely [18]. However, it is important
to note that these studies did not consider both motion
and looseness simultaneously in their experimental setups.
Furthermore, some experiments involved the use of external
objects, such as 3D-printed rings, to quantify the distance
between the wrist skin and the smartwatch [21]. Although
such a setup facilitated the evaluation of the impact of sensor-
to-skin distance on HR measurements, the experiment does
not resemble real-life scenarios.

B. Preliminary study setup

The aim of our preliminary study is to explore two
major limitations of commodity smartwatch PPG sensing:
the impact of loose wearing conditions, and increased wrist
motion intensities on the precision of HR estimation. This
study involved a systematic analysis that replicated real-world
scenarios by varying smartwatch strap looseness levels and
wrist motion intensities, covering different realistic situations.
The specific methods used for quantifying strap looseness
levels and motion intensities, followed by our preliminary
study scenarios are detailed below.

In our study, we categorized the levels of looseness of
the smartwatch strap into three levels: tight, medium, and
loose, based on the individual fit of the strap on each
participant’s wrist. To ensure accurate categorization, we
initially measured each participant’s wrist circumference,
specifically at the point where the smartwatch is worn. The
default strap that came with the smartwatch was utilized, with
its tightness being adjusted according to each participant’s
wrist circumference. For precise classification, we identified
the nearest strap hole that would bring the strap and wrist
circumferences closest to each other, marking it as ‘tight.’
The subsequent two holes were marked as ‘medium’ and
‘loose,’ respectively. Our criteria for consistent looseness
levels were established based on the ratio between the
participant’s wrist circumference and the smartwatch strap’s
circumference, represented as a percentage, as summarized
in Table I.
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With regards to quantifying motion intensity of wrist, we
observed participants during three natural body movements,
which took place on a standard chair and treadmill: static
(i.e., sitting on a chair), walking at a speed of 4 km/h,
and running at 8 km/h, same as in a prior work [19]. To
reduce potential sources of bias or confounding effects, we
instructed participants to remain stationary while sitting on
a chair, minimizing their wrist motion, and to maintain their
natural wrist and body movements when using the treadmill,
avoiding the use of handrails.

In summary, we combined three strap-looseness levels
and three motion intensities, forming the following 9 sce-
narios: tight-static, tight-walking, tight-running, medium-
static, medium-walking, medium-running, loose-static, loose-
walking, and loose-running. Throughout these nine scenarios,
we collected PPG-based HR data using the Samsung Watch
5 smartwatch [47] to evaluate its accuracy. Simultaneously,
we obtained ECG-based HR data from the reliable Polar
H10 chest strap [48], [49], which served as our reference or
ground truth HR data. Each scenario, a 10-minute session,
aimed to explore the accuracy of HR data of PPG sensor
(with reference to ECG-based data) under a specific wrist
motion intensity and smartwatch fit.

To explore the HR accuracy of commodity smartwatch, we
recruited 28 participants, each of whom participated in the
nine scenarios spanning approximately 90 minutes. To ensure
that the results are not impacted by any external variables
of the surrounding environment, our preliminary study was
conducted indoors with consistent lighting, temperature, and
humidity. We also shuffled the sequence of 9 scenarios and
randomly assigned the smartwatch to the left or right wrist
in order to prevent potential bias or confounding effects
related to a specific scenario order or wrist placement, thus
minimizing the potential for systematic errors.

C. Preliminary study results

The preliminary study results, summarized in Fig. 3,
provide the average mean absolute error (MAE) of the
smartwatch PPG sensor in estimating IBI data in milliseconds
(ms) across the 28 participants.

The accuracy of HR estimation tended to decrease with
higher levels of motion intensity. In contrast, the most precise
IBI estimations were obtained in static conditions, i.e., when
wrist motion was minimal.

Interestingly, the ‘tight’ level of wearing the smartwatch
strap did not mitigate the errors in IBI estimation accuracy
caused by increased wrist motion intensities. This indicates
that motion intensity remains the primary factor influencing
IBI estimation accuracy. Furthermore, the impact of loose-
ness levels on IBI data accuracy is most pronounced when
participants are in a static condition, with no significant
wrist movements. Moreover, a significant increase in IBI
estimation error is observed as motion intensity rises, even
when the smartwatch is securely fastened to the participants’
wrists.
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Fig. 4: Laboratory data processing pipeline involving PPG
signals of commodity smartwatch.

Based on obtained results, relying on the smartwatch’s
PPG-based HR estimation is most suitable when the partic-
ipant remains stationary. Notably, even in a static condition,
there is necessity to further process the PPG readings from
the smartwatch for reliable use, addressing the looseness
levels. As a result, we incorporate combination of motion
and looseness filters in our methodology to significantly
enhance the quality of the PPG readings. In the following
section, we will delve into the specifics of these filters in the
methodology.

IV. METHODOLOGY: SOSW DATA PROCESSING PIPELINE

The ultimate objective of our methodology is to accurately
detect stress in real-world settings using physiological data
from smartwatches and contextual data from smartphones. To
this end, we introduce SOSW, a robust and comprehensive
data processing pipeline for laboratory and in-the-wild stress
detection. This pipeline not only overcomes the limitations
inherent in data from commodity smartwatches in real-life
scenarios, but also enhances accuracy by integrating rich
contextual data from situational environments.

Our methodology includes rigorous methods for handling
commodity smartwatch PPG signals in both laboratory and
real-life settings. This includes addressing challenges like
motion and looseness artifacts in real-life scenarios. We
train and validate a physiological stress detection model
based on laboratory data, selecting the most accurate and
reliable one. We utilize this model to gain insights into users’
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Raw PPG signal Extracted BVP signal

BVP signal with outliers Outlier BVP signal without outliers
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Fig. 5: Four steps of preprocessing of BVP data for physi-
ological stress model development: (a) Band-pass filter, (b)
Outlier removal, (c) Interpolation, and (d) Peak detection for
HR estimation

physiological stress states in real-life situations, drawing
from the knowledge established in the laboratory setting.
Furthermore, unlike existing approaches, SOSW incorporates
handling of rich contextual information derived from real-
life settings in addition to physiological data captured by
smartwatches. This approach aims to further enhance stress
detection accuracy in the wild. In the following sections,
we provide a detailed explanation of the data processing
pipelines used in our laboratory and field studies.

A. Laboratory data processing pipeline

As depicted in Fig. 4, our pipeline for detecting physiolog-
ical stress under laboratory conditions consists of four main
processes: 1) data extraction, 2) data preprocessing, 3) feature
extraction, and 4) ML model generation and validation. In
what follows, we provide details on these processes.

Data extraction: The data encompasses physiological mea-
surements collected through commodity smartwatches during
the laboratory study, as well as information about participants
such as their pseudo-identity and age. Additionally, it con-
tains logs detailing the participation process in the laboratory
study protocol, including the start and end timestamps for
each laboratory scenario. The laboratory study protocol was
designed to induce stress while recording physiological data
from smartwatch PPG and chest strap ECG sensors3. More
details about the data collection and laboratory study protocol
can be found in Sec. V.

Given that SOSW primarily relies on smartwatch measure-
ments, we extract raw PPG signals the smartwatch and their
corresponding stress labels. The physiological readings were
matched with corresponding ground truth labels using their
timestamps and the start and end timestamps of laboratory

3The reliable HR data of chest strap ECG is used as ground truth to
validate the HR data estimated from the smartwatch PPG sensor readings.

BVP signal (after peak detection)

IBI estimation HR estimation

Invalid HR removalInvalid IBI removal

Linear interpolation (IBI) Linear interpolation (HR)

Fig. 6: Invalid IBI and HR removal. Red shaded area depicts
the segment of data with invalid data, and yellow area depicts
the same area without them. The green area shows the final
state of the data.

study scenarios. These raw data are subsequently subjected
to a comprehensive data preprocessing procedures to yield
refined datasets.

Data preprocessing: Rigorous data preprocessing methodol-
ogy is essential to ensure that the PPG data from a com-
mercial smartwatch is reliable. Therefore, we paid special
attention to our preprocessing methods, which comprise the
following five sub-processes: band-pass filtering, outlier re-
moval, interpolation, peak detection, and handling invalid HR
and IBI data. The first four sub-processes are illustrated in
Fig. 5, and the last (fifth) sub-process is illustrated in Fig. 6.
We use these five sub-processes to get the most accurate
HR and IBI measurements from commodity smartwatch PPG
signals. It is worth mentioning that we employ the IBI over
HRV due to its simpler acquisition and a higher granularity of
information. Although the HRV data may also be employed,
it is important to note that the HRV is a derivative metric
that is entirely dependent on the IBI data. Therefore, while
HRV provides a view of autonomic nervous system activity
and its modulation of cardiac function, the IBI data can yield
more immediate and specific insights into cardiac rhythms,
particularly in response to acute stressors.

Band-pass filtering: First, we filter the BVP signals by
employing a third-order Butterworth band-pass filter to ex-
tract the heartbeat information with lower and upper cutoff
frequencies of 0.5 Hz and 3.7 Hz, respectively [9], [50]. By
setting the cutoff frequencies to such values, we guarantee
that undesired components are eliminated, only preserving
the relevant frequencies associated with the heartbeat.

Outlier removal: After the BVP signal is filtered, the signal
passes through the outlier removal process. The outliers in the
BVP signal can arise from abrupt shifts in sensor positioning
on the skin or can be attributed to technical anomalies related
to the sensor or the smartwatch’s operating system. The
outlier removal process employs a robust statistical technique
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known as the 4×MAD (Median Absolute Deviations) method
[51]. The 4×MAD is an efficient method for identifying
and eliminating sharp, sudden spikes within the BVP signal.
By applying this method, the outliers in the BVP signal
are carefully removed, ensuring that the resultant signal
retains more reliable and genuine information related to heart
activity.

Interpolation: Due to the removal of the outliers, the
BVP signal becomes non-continuous. To address this issue,
linear interpolation is employed. Although there exist other
interpolation techniques [52] such as full degree polynomial
interpolation, piecewise cubic Hermite interpolation, we se-
lected the linear interpolation due to its robustness to noise,
straightforwardness, and computational efficiency.

Peak detection: The interpolated signal passes through the
peak detection process in which the signal is normalized in
the range (0,1) first before finding the peaks. To find the
peaks and ultimately estimate the HR and IBI, the heartpy
open-source Python library [53] is employed.

Handling invalid HR and IBI data: Fig. 6 depicts the
final subprocess of our data preprocessing pipeline, handling
of invalid HR and IBI data. There might be unavoidable
cases in which the estimation of the HR and IBI are invalid
due to the noise of the BVP readings in the wild from the
smartwatch. In these cases, to guarantee appropriate values
of HR and IBI, invalid values are discarded. Consequently,
estimated HR values that fall outside the physiologically
plausible range of 30 to 220 beats per minute [9], [50]
are replaced with ‘NaN’ to denote their invalidity. As a
consequence, non-continuous data (with gaps) are created.
To solve this problem, in instances where IBI and HR values
are missing, we apply linear interpolation which offers a
reasonable estimation for continuity.

Feature extraction: The estimated HR and IBI are now
utilized to generate a pool of time-domain physiological
stress features. These features, which have demonstrated
efficacy in detecting physiological stress [9], [11], encompass
various statistical metrics derived from the HR and IBI
data. These features include the minimum, maximum, mean,
median, standard deviation, kurtosis, skewness, 20-th and 80-
th percentiles of the HR and IBI data, alongside the standard
deviation of successive differences (SDSD) and root mean
square of SD (RMSSD) between consecutive IBIs. To create
these features a sliding window of 1-minute is applied to
both the HR and IBI time series data. It is worth mentioning
that the 1-minute window size is considered a standard for
laboratory and ambulatory physiological monitoring [9], [29],
[54], [55], [56].

ML model generation and validation: Several ML learning
models such as the adaptive boosting (AdaBoost), gradient
boosting (GB), logistic regression (LR), multilayer percep-
tion (MLP), random forest (RF), support vector machine
(SVM), and extreme gradient boosting (XGB) are evaluated
in order to select a model with the best performance. To

train and evaluate the ML models, we have employed the
leave-one-subject-out cross-validation (LOSO CV) which is
a robust evaluation technique commonly used for testing the
generalizability of an ML model in human studies [26], [57].
We evaluate our models with LOSO CV technique on the
entire dataset (features, labels) obtained from 26 participants.
We complete our laboratory data processing pipeline by
developing a precise physiological stress model from the
entire laboratory dataset. This model is subsequently applied
in the “lab knowledge transfer” step of field data processing
pipeline, which we elaborate in the following subsection.

B. Field data processing pipeline

The objective of the field data processing pipeline is to
detect perceived stress under real-life conditions. To achieve
this, our pipeline utilizes physiological data from smart-
watches and contextual information from smartphones. We
meticulously preprocess this data in a systematic and com-
prehensive manner, applying laboratory-based knowledge to
real-world scenarios. The pipeline, illustrated in Fig. 7,
addresses the motion and looseness artifacts associated with
commodity smartwatches in realistic conditions. This ensures
the reliability of HR and IBI data. Additionally, the pipeline
integrates diverse situational context data from passive sens-
ing and EMA. Similar to the laboratory data processing
pipeline, our field data processing pipeline consists of four
key steps: 1) data extraction, 2) data preprocessing, 3) feature
extraction, and 4) ML model generation and validation. The
following paragraphs elaborate on each of these steps.

Data extraction: We extract the physiological and wrist-
motion data gathered through commodity smartwatches,
along with passive sensing-based contextual data and EMA-
based contextual data collected using participants’ smart-
phones. The data also encompasses participants’ pseudo-
identities and perceived stress data collected via EMA, which
is utilized to create binary stress labels in real-world scenar-
ios.

From the smartwatch, we extract raw PPG and tri-axial
acceleration signals. Simultaneously, from the smartphone,
we extract users’ perceived stress using EMA, as well as
their contextual information through both EMA and passive-
sensing data. The EMA-based contextual data, as illustrated
in Table III, includes such information as users’ perceived
stress, ongoing activities, location, and social settings. Ad-
ditionally, the timestamps of EMA are leveraged to de-
rive further contextual information, such as the day of the
week and the hour of the day. Regarding passive-sensing-
based contextual data, as presented in Table II, we extract
information related to activity recognition, transitions, call
logs, device screen state, and location. Finally, the extracted
physiological and wrist-motion data from the smartwatch,
along with the contextual data from the smartphone, are
matched with corresponding ground truth labels.

The self-reported PSS-4 data [58] from EMA were utilized
to infer binary stress labels (i.e., ground truth) during the
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Fig. 7: Field data processing pipeline involving PPG signals of commodity smartwatch and contextual data of smartphone.

training and validation steps. The two positive items, specif-
ically questions 2 and 3 in Table III, are reverse coded,
and the average of all stress-related questions is calculated
for each participant. This averaged stress score serves as
the threshold for subjective stress classification, with scores
above and below or equal to the mean labeled as ‘stressed’
and ‘not stressed,’ respectively.

Data preprocessing: The preprocessing steps for the smart-
watch PPG data largely follow those used in the laboratory
stress model pipeline. However, a comprehensive quality
control process called “Wrist-worn PPG Quality Control” is
included for discarding unreliable PPG data and consequently
improving the overall data quality. This process consists of

three sub-processes: a) motion artifact removal, b) looseness
artifact removal, and c) HR and IBI estimation.

Motion artifact removal: It has been argued that physiolog-
ical arousal, that should be indicative of a stress response, can
be easily obfuscated by activity confounds such as changes
in posture, movement of hands, and physical activities (e.g.,
walking and running) [11]. Screening out such physical
activity confounds can be a plausible method to reduce
confusion on stress-sensing. Therefore, the motion artifact
removal process identifies and removes specific segments of
the BVP signals aroused by the activity confounds.

Fig. 8 visually illustrates the sequential procedures em-
ployed to eliminate the corrupted BVP signal caused by
activity confounds. The tri-axial accelerometer values are
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Fig. 8: Physical activity confound detection based on standard
deviations of acceleration signals from commodity smart-
watch.

utilized by analyzing the acceleration signal during a 1-
minute time frame. To initiate the process, the timestamps of
the BVP and acceleration signals are meticulously synchro-
nized. Then, the one-minute interval of acceleration signal
is partitioned into six smaller sub-intervals, each spanning a
duration of 10 seconds. The standard deviation (denoted with
σ) of the acceleration magnitude is computed from each of
the six sub-windows. If the standard deviation of at least
three sub-windows exceeds a threshold value, the associated
1-minute window in the BVP signal is considered to be
compromised and thus excluded from further processing.
Here, the threshold value of 0.21384 was chosen based on
empirical evidence, which demonstrated that this particular
threshold allows for the accurate detection of both static and
non-stationary states [59].

Looseness artifact removal: We have shown in our prelimi-
nary study that BVP signal readings are considerably affected
by the degrees of loose wearing conditions of smartwatch,
see Sec. III. Therefore, to filter out the loose wearing
conditions and consequently obtain cleaner BVP signals, the
variance of light intensity readings from the smartwatch can
be utilized [18]. Particularly, we employ the hidden Markov
model (HMM) based on the Viterbi algorithm [18]. The
HMM comprises two hidden states (accurate and inaccurate)
and learns the transitions and emission probabilities based on
observations. The HMM is trained on the variance of the PPG
light intensity. To optimize the training process and enhance
its efficiency, the Baum-Welch expectation-maximization al-
gorithm is employed. Employing these methods not only
ensures that the measurements are free from the interference
of looseness artifacts but also guarantees a higher degree of
accuracy and precision in the results derived from the PPG

TABLE II: Summary of passive sensing-based contextual
data collected in the wild using Android smartphones.

Data Values
Activity recognition activity_type, confidence
Activity transition activity_type, transition
Call log timestamp, call_type, duration
Device screen state screen_state, key_restriction
GPS location latitude, longitude, accuracy

light intensity data [21].
Following the processes for motion artifact removal and

looseness artifact removal, additional preprocessing steps are
applied to the BVP signal. These steps include band-pass
filtering, outlier removal, interpolation, peak detection, and
handling of invalid data. These preprocessing steps are same
as those described in Sec. IV-A. These additional prepro-
cessing steps assist in obtaining more accurate HR and IBI
values, thereby help in deriving more reliable physiological
stress features.

Feature extraction: Since the SOSW field pipeline follows a
two-layer learning architecture, we first extract features for
the ML model in the first layer. Similar to the case of the
feature extraction of the laboratory stress data processing
pipeline described in Sec. IV-A, we derive 1 minute-level
time-domain features from the estimated HR and IBI data,
such as minimum, maximum, standard deviation, kurtosis,
among other features.

Then, we feed these features to our ML model in the first
layer, the laboratory-based physiological model created in
Sec. IV-A, to obtain a refined feature, i.e., the likelihood
of a person being stressed. It is worth mentioning that to
create this refined feature obtained from the smartwatch,
a knowledge transfer type was devised, which is a well-
trained and validated ML model with ideal stress and non-
stress dataset was exploited. Provided these 20 time-domain
features, this ML model learned to distinguish between
stress and non-stress of a person providing a probabilistic
distinction, which is used as a part of our pool of features
for our ML model in the second layer.

As a part of the pool of features for our ML model
in the second layer, we incorporate features extracted from
the smartphone passive sensing data related to participants’
physical activities, device use patterns, and mobility behavior.
These passive sensing-based features include time and fre-
quency domain information derived from the activity recogni-
tion, transition, call log, screen state, and GPS location data.
Furthermore, we generate additional features from the user-
reported contextual data (i.e., EMA), including information
about participants’ ongoing activities, their locations, and
social settings. To create these features, we perform one-hot
encoding on the responses, converting the categorical data
of raw EMA responses into sets of binary encoded values.
These features are then employed to generate our field stress
model.
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TABLE III: Summary of EMA-based contextual and perceived stress data collected in the wild using smartphones.

EMA Prompt Answer options
Perceived stress

1. How often have you felt that you were unable to control the important things?

5-point Likert scale (Never - Very often)2. How often have you felt confident about your ability to handle problems?
3. How often did you feel that things were going your way?
4. How often did you feel that difficulties were piling up so high that you could not overcome

them?

Context
5. Please report your current activity. Working or studying, sleeping, resting or relaxing,

video watching, class or meeting, eating or drinking,
gaming, conversing, getting ready for bed, calling or
texting, right after waking up, driving, other activity

6. Please report your current location. Home, work, restaurant, vehicle, other

7. Please report your current social settings. Social, asocial

ML model generation and validation: Similar to the model
generation and validation in the laboratory stress process
pipeline in Sec. IV-A, our second (final) layer ML model is
generated and rigorously validated using the LOSO CV. Each
participant is iteratively left out as an ‘unseen’ participant for
testing purposes, while the model is trained on the rest of the
participants. This process is repeated for each participant in
the dataset, allowing for a comprehensive assessment of the
model’s performance across different users.

V. DATA COLLECTION

In this section, we provide a comprehensive overview of
our data collection methodology, detailing the types of data
collected, devices and applications used for data acquisition,
as well as the participant recruitment and demographic infor-
mation. We also outline the study procedures that governed
data collection, ensuring transparency in our approach of
acquiring the necessary information for our stress detection
model.

A. Data types

Physiological data: We recorded raw PPG signals to monitor
user’s heart activity, and tri-axial accelerometer readings to
track user’s wrist motion, for which we utilized off-the-
shelf smartwatch, i.e., Galaxy Watch 5. The data from the
smartwatch were captured at a sampling rate of 12 Hz
for both PPG and accelerometer signals during laboratory
and field studies. Additionally, during the laboratory study
exclusively, we collected HR and IBI data at 1Hz sampling
rate using a Polar H10 chest strap [48], which is noted for
its accuracy in previous studies [49].

Contextual data: Alongside physiological and wrist motion
data of smartwatch, we also collected rich contextual data
through EMA and passive sensing techniques using smart-
phone. The rich contextual data provides insights that com-
plement the physiological data captured by the smartwatch,
allowing for a greater representation of the experiences of
the participants in real-life scenarios.

The EMA data comprises participants’ perceived stress
state and their situational contexts. Table III shows the
EMA questions with their possible answers prompted to the
participants. User’s perceived stress state was self-evaluated
by participants with PSS-4 questionnaire [58], which is
widely used in prior works [11], [60]. Concurrently, we adopt
the method proposed in [61] to capture user’s situational
context information through EMA. The method includes 13
categories for user’s activity, 5 categories for location, and
a binary social settings, all of which represent the user’s in-
situ context at the time of filling out the EMA. Moreover, we
devise an additional contextual data from the time of filling
out the EMA, namely the time of day and day of week.

In addition to the EMA data, we expanded our set of con-
textual data by incorporating passive sensing data of smart-
phone. The summary of the incorporated passive sensing data
types are provided in Table II. The data included user’s
activity information recognized by smartphones provided by
activity recognition API of the Android operating system
(OS). This API provides updates when a user transitions
between activities, for example, from walking to being still.
Furthermore, it periodically reports detected activities, ac-
companied by a confidence rating that indicates, for example,
if the device is with a user who is walking and the probability
that this activity has been correctly identified.

Alongside activity data, we also collected device use
information, such as phone calls and device screen state.
Phone call data includes such information as the time each
call occurred, whether it was an incoming, outgoing, or
missed call, and how long the call lasted in seconds. On the
other hand, the device screen state information includes the
state of the smartphone’s screen (‘on’ or ‘off’) and keyguard
(virtual ‘lock’) state, which collected whenever user interacts
with the smartphone screen, i.e., on-change. For example,
data is recorded each time the user unlocks the screen or
turns it off.

We also collected GPS location data, including latitude and
longitude expressed in degrees, accompanied by information
about the location’s accuracy measured in meters. The accu-
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Fig. 9: Three-stage laboratory stress study protocol, including socio-evaluative stress by public speech, cognitive stress by
time-constrained mental arithmetic, and physical challenge by cold-pressor test.

racy value signifies the radius of the possible area where the
user could be located, with smaller values indicating more
precise and accurate location information.

B. Data collection devices

We utilized a strategic combination of devices to capture
physiological and contextual data during both laboratory and
field stress studies. For both lab and field evaluation, we used
the Samsung Watch 5 smartwatch [47], aiming to determine
the viability of using commodity smartwatches for stress
detection. The choice of this particular device was driven
by two main factors: 1) unlike most of the commercially
available smartwatches such as Fitbit by Google and Apple
Watch, the Galaxy Watch allows access to the raw sensing
data [62], and 2) its widespread popularity that makes it
suitable for practical applications [36], [63].

During the laboratory phase, HR data using the Polar H10
chest strap were additionally gathered. In the field study,
while still leveraging the Samsung Watch 5 for physiolog-
ical readings and wrist-motion data, we employed Android
smartphones to gather EMA and passive sensing data. The
utilization of these devices allowed for a comprehensive
exploration of stress behaviors in real-life scenarios.

C. Data collection applications

EMA and passive sensing data collection app: We developed
a custom Android application to acquire EMA and passive
sensing data from users’ smartphones. With regards to EMA
data collection, we integrated firebase cloud messaging [64]
to trigger push notifications on user smartphones whenever
they are required to submit EMA self-reports. And for passive
sensing data collection, we deployed an always-running fore-
ground service in the smartphone, guaranteeing uninterrupted
acquisition of smartphone passive sensing data. Lastly, we
carefully refined the application’s user interface (UI) to
enhance the user experience, with the goal of achieving high
user compliance.

Physiological and wrist-motion data collection app: We also
developed a custom application for WearOS smartwatch
OS, and similar to the smartphone application, it was also

deployed as an always-running foreground service. The ap-
plication also provided a watchface UI, in order to pro-
vide essential information at a glance (e.g., current date
and time), and to consistently keep the application in the
foreground mode. Additionally, we adjusted specific system
configurations of smartwatches to facilitate uninterrupted,
continuous data collection by our application. These adjust-
ments included disabling the battery-saving ‘doze’ mode and
minimizing interruptions from the watch’s native functions,
such as its activity and sleep detection features.

Data collection server: On the data collection server side,
we integrated our mobile data collector with the Easytrack
data collection platform [65], ensuring efficient data trans-
missions between participants’ devices and the server through
the gRPC framework [66]. The Easytrack platform features
general-purpose functionalities that enabled easy adaptation
to our stress detection use-case. Easytrack’s server regularly
computes various data quality metrics and reports them
to the researchers, simplifying the monitoring process and
ensuring data integrity. A dashboard by EashTrack provides
an overview of data quality, enabling quick identification of
any potential issues or discrepancies about each participant
and each source of data (e.g., sensor or EMA).

D. Participant recruitment and demography

For our study, we recruited participants using email broad-
casts, flyers at a local university, and announcements on local
social media platforms, specifically targeting Android device
users. We successfully recruited 28 healthy participants,
comprising 16 university students and 12 from the general
population. Of these participants, 15 were female and 13
were male. The average age of the participants was 22.8
years, with a standard deviation of 2.7 years.

E. Data collection procedure

Laboratory data collection procedure: Participants in the
laboratory data collection study underwent three distinct,
validated stress-inducing scenarios, in line with earlier stud-
ies [9], [29]. These stressors encompassed socio-evaluative,
cognitive, and physical challenges. The sequence and du-
ration of these stressors, as well as the initial 30-minute

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3375299

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 28,2024 at 06:23:12 UTC from IEEE Xplore.  Restrictions apply. 



12

baseline resting period, are illustrated in Fig. 9. During
the baseline rest period, participants were instructed to sit
comfortably in an empty room and relax as much as possible,
with controlled room temperature and lighting to prevent
external factors cause any unintended physiological arousal.
Additionally, participants were asked to refrain from using
their smartphones throughout the laboratory study.

After the initial 30-minute baseline rest period, participants
engaged in three stress-inducing scenarios.

• Socio-evaluative stressor: Participants were given 4 min-
utes to prepare before delivering public speech in front
of five researchers, including a professor. To intensify
the social stress associated with the task, their speeches
were video recorded, ensuring anonymity. After the
speech, participants had 5 minutes of rest to recover.

• Cognitive stressor: Participants underwent two sessions
of 4-minute cognitive stressors: one while sitting on a
chair and the other in a standing position. The stressor
included a mental arithmetic task, specifically counting
backwards in steps of 7, similar to the method used in
[9]. To increase arousal, participants were shown their
progress in real-time, and rewards were promised for
top performers. Five minutes of rest followed this task.

• Physical challenge: Last stressor was the cold pressor
test, where participants were instructed to immerse their
hands in ice-cold water for up to 4 minutes. Most
participants lasted around two minutes. Following this,
participants had a 30-minute resting period to conclude
the experiment.

Field data collection procedure: The two-week field data col-
lection was performed in unconstrained natural environments
where participants were not subjected to any predetermined
protocol. Only minimal guidelines to ensure the uninterrupted
collection of data, and to maintain the study’s integrity, were
instructed to the participants. They were instructed to wear
the smartwatch continuously, except during bedtime or if
it caused skin irritations. Participants were also reminded
to keep data collection applications on their smartphones
and smartwatches operational, with a particular emphasis
on keeping the smartwatch application in the foreground to
avoid data collection stoppage. Participants were encouraged
to keep sensor permissions active, including GPS, to collect
location data.

To effectively capture the perceived stress dynamics
throughout the day, participants received 12 push notifica-
tions daily, prompting them to complete the EMA ques-
tionnaire at randomized intervals between 40 to 80 minutes,
allowing for a comprehensive understanding of stress experi-
ences in various situations. The questionnaire was designed
with precision to minimize ambiguities, with a prompt asking
participants to reflect exclusively on the preceding hour to
enhance accuracy of the response and reduce memory biases,
effectively capturing the real-time stress experiences.

VI. EVALUATION

This section presents a thorough evaluation of our pro-
posed methodology, SOSW, with its performance in detecting
stress under laboratory and real-life conditions. We start with
an overview of our dataset and then move to a detailed expla-
nation of our evaluation methods. Following this, we present
the results from evaluations conducted on both laboratory and
field study datasets.

A. Dataset summary

We present a detailed dataset summary, providing insights
into our data collection and cleansing processes. For clarity,
we have chosen to report the amounts of data in minutes for
our laboratory study dataset and in hours for our field study
dataset.

In the laboratory study dataset, we initially recruited 28
participants, but two participants withdrew from the lab-
oratory study, leaving us with a total of 26 participants.
Each participant contributed 2 hours of data during the
data collection phase. The dataset comprises 864 minutes of
baseline-rest data and 323 minutes of stressor-related data,
offering valuable insights into physiological responses to
various stressors.

In our field study dataset, we collected data from 28
participants over a period of 2 weeks. This included a total
of 1928 hours of physiological and wrist-motion data, 4930
hours of passive sensing contextual data, and 2867 hours of
EMA contextual data with a total of 3732 EMA responses. To
ensure the high quality of the data, we meticulously cleansed
the dataset by removing participants and segments with
invalid or missing data. Specifically, two individuals who had
limited participation in our laboratory study were excluded
from the field study dataset. Their inclusion could have
introduced unwanted noise or biases, hence their exclusion.

In our field study, EMA data provided essential informa-
tion about participants’ perceived stress in uncontrolled, real-
life settings. The EMA data was a crucial part of the field
dataset, hence, participant compliance was highly important.
However, two participants demonstrated significantly lower
EMA compliance rate, submitting significantly less EMA
data over two weeks compared to the rest of the group,
leading to their exclusion from the field dataset. Furthermore,
six participants exhibited a pattern of inputting similar EMA
responses throughout the entire 2-week data collection pe-
riod. A lack of variations in self-report data raised concerns
about reliability and bias, and we decided to exclude these
six participants from the field study dataset.

Further data cleansing steps involved excluding segments
with missing or invalid data, considering the continuous
sensors and their expected sampling rates. After this step,
we were left with 651 hours of complete and usable data.
Additionally, we applied our motion and looseness artifact
removal filters, which resulted in the exclusion of 26 and
24 hours of data, respectively. The final dataset, therefore,
contains 601 hours of high-quality data (with 727 remaining
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TABLE IV: Statistical significance analysis of physiological stress features in laboratory study dataset using Welch’s t-test.
Table reports the significance of physiological features derived from commodity smartwatch data in distinguishing between
baseline rest and three stressors.

Feature Socio-Eval. Stressor Cognitive Stressor Physical Challenge
t-Stat p-Value t-Stat p-Value t-Stat p-Value

Min HR -3.690 <0.001 -10.365 <0.001 -6.425 <0.001
Max HR -10.752 <0.001 -10.332 <0.001 -0.449 0.654
Mean HR -14.406 <0.001 -14.728 <0.001 -3.912 <0.001
Median HR -14.301 <0.001 -14.632 <0.001 -4.493 <0.001
Std of HR -7.520 <0.001 -5.504 <0.001 2.276 0.024
Kurtosis of HR -1.561 0.120 -1.844 0.068 0.214 0.830
Skewness of HR -0.628 0.531 -0.859 0.392 0.543 0.588
20th Percentile HR -14.618 <0.001 -14.968 <0.001 -5.998 <0.001
80th Percentile HR -11.923 <0.001 -11.716 <0.001 -1.604 0.110
Min IBI 13.815 <0.001 13.104 <0.001 1.974 0.050
Max IBI 3.093 0.002 10.065 <0.001 6.860 <0.001
Mean IBI 17.957 <0.001 17.344 <0.001 5.600 <0.001
Median IBI 17.514 <0.001 17.020 <0.001 5.700 <0.001
Std of IBI -6.444 <0.001 -2.775 0.006 2.562 0.011
SDSD -8.425 <0.001 -5.169 <0.001 1.947 0.053
Kurtosis of IBI -2.023 0.045 -1.052 0.294 0.583 0.561
Skewness of IBI -2.904 0.004 -1.359 0.176 -0.386 0.700
20th Percentile IBI 15.216 <0.001 14.450 <0.001 3.442 <0.001
80th Percentile IBI 17.552 <0.001 16.870 <0.001 6.613 <0.001
RMSSD -8.469 <0.001 -5.129 <0.001 1.965 0.051

EMA responses), after the exclusion of participants and
segments with invalid or unreliable data, ensuring that our
dataset is of the highest quality for analysis and research.

B. Evaluation methods

In this section, we describe the evaluation methods and
performance metrics used for assessing our laboratory and
field study datasets. Through this, our objective is to examine
the generalizability of our work.

We start by assessing if features extracted from commodity
smartwatch PPG signals can distinguish between resting and
stress-induced periods in the laboratory study. For this, we
use Welch’s t-test of unequal variances to identify statistically
significant differences between two binary stress groups:
stress and non-stress. Similarly, we apply the same statistical
test to evaluate the significance of features from passive
sensing-based contextual data in the field study. For EMA-
based contextual features, we utilize one-way ANOVA tests.
These tests help us investigate if categorical group differences
can statistically explain the variance in the overall dataset
regarding perceived stress levels. By employing these meth-
ods, we gain preliminary insights into the reliability of these
features, which aids in the development of machine learning
models.

To evaluate the generalizability of our laboratory and field
models, we apply LOSO CV technique. It is an effective
technique for testing the robustness of our methods by sys-
tematically leaving out one subject’s data at a time, helping
us ensure that our models can be applied to the data of
unseen users. In LOSO CV, each participant’s data is treated
as a single isolated fold, ensuring the model is tested against
each individual-specific variations in the data. We employ
widely used performance metrics, such as precision, recall,

F-1 score, specificity, accuracy, and AUROC (Area Under the
Receiver Operating Characteristic Curve). In summary, we
aggregate these metrics from LOSO CV, combining results
obtained after testing against each participant to provide a
comprehensive assessment.

C. Predicting stress based on the laboratory dataset

This section focuses on stress detection model performance
analysis in ideal, controlled laboratory settings. Evaluation
in these settings can provide insights into the reliability of
physiological data from commodity smartwatch in detecting
stress under ideal circumstances. First, we investigate the
distinctive physiological stress features, and then we leverage
such features to explore the performance of various ML mod-
els in classifying stress in laboratory settings. To evaluate the
effectiveness of our methodology, we also conduct a bench-
mark comparison against recent stress detection methods.
In addition to smartwatch-based stress model performance,
we also report our ECG-based laboratory stress classification
performance as well.

Significant physiological features: We begin by determining
whether the extracted features from the BVP signals are able
to capture a significance difference between the resting and
stress-induced periods of the laboratory study. To this end, we
employ the Welch’s t-test of unequal variances to determine
which features showed any statistically significant differences
between the resting baseline period and each of the stress-
induction periods.

Table IV presents the results of the Welch’s t-test, ex-
amining the significance of various physiological features
extracted from PPG sensor data for distinguishing between
resting and stress-induced periods for three different stres-
sors: socio-evaluative stressor, cognitive stressor, and physi-
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TABLE V: Comparison of performances of several ML methods on the task of binary stress classification using physiological
data from laboratory study using commodity smartwatch data.

ML Methods Precision Recall F-1 score Specificity Accuracy AUROC
AdaBoost 0.812 0.777 0.794 0.746 0.764 0.761
GB 0.824 0.773 0.798 0.776 0.775 0.775
LR 0.848 0.822 0.835 0.808 0.816 0.815
MLP 0.826 0.815 0.820 0.772 0.796 0.794
RF 0.830 0.776 0.802 0.786 0.780 0.781
SVM 0.831 0.779 0.804 0.781 0.780 0.780
XGBoost 0.839 0.789 0.813 0.794 0.792 0.792

cal challenge. Several features exhibit statistical significance
across all stressors, indicating their effectiveness in capturing
physiological changes associated with stress. However, the
physical challenge shows fewer significant features compared
to the other two stressors. This suggests that the physical
challenge may be less effective in inducing stress across all
participants. In contrast, the socio-evaluative stressor emerges
as the most effective stressor for inducing stress response.
These results emphasize the potential of using these features
to detect stress-related physiological changes using PPG
measurements. This suggests that PPG-based stress detection
approaches may yield comparable results to stress detection
approaches employing ECG measurements.

Comparison of ML methods: Having determined that the
features extracted from HR data (obtained from commercially
available, off-the-shelf smartwatches) showed significant dif-
ferences between rest and stress-induced periods, we then
used these features to build ML models designed to infer
whether the person is stressed or not stressed. The ML mod-
els considered here are the adaptive boosting (AdaBoost),
gradient boosting (GB), logistic regression (LR), multilayer
perception (MLP), random forest (RF), support vector ma-
chine (SVM), and extreme gradient boosting (XGBoost).

Table V shows the performance comparison of these ML
models, where several metrics including F-1 score, preci-
sion, recall, specificity, and so on, are presented. Among
these metrics, F-1 score is a critical metric that balances
precision and recall, offering a comprehensive view of the
performance of the respective models. The LR stands out
as the top-performing model with an F-1 score of 0.835,
indicating its strong ability to accurately identify individuals
experiencing stress while maintaining a low rate of false
positives. Although other models like XGBoost and MLP
also perform well, the LR model demonstrates its proficiency
in the binary stress classification, making it a compelling
choice. Additionally, it’s worth noting that the LR model
consistently exhibits superior performance across all the other
performance metrics compared to other models.

Benchmark comparison: To assess the stress detection perfor-
mance of SOSW in laboratory settings, we conduct a com-
parative analysis that includes a recent approach developed
by Dai et al. [28] utilizing PPG-equipped wristband, and
the work by Mishra et al. [9] that utilizes ECG sensor. In
this performance evaluation, we consider the best-performing

models from each of these studies. The comparison is based
on three commonly used performance metrics: precision,
recall, and F-1 score.

Fig. 10 shows the performance of several works for detect-
ing stress under laboratory conditions. This figure shows that
the proposed SOSW provides the best performance among
the works using physiological measurements obtained from
the commodity smartwatch PPG sensor. The SOSW provides
an F-1 score metric value of approximately 0.84 while the
approach proposed by Dai et al. 0.62 [28]. Additionally, when
compared to the approach by Mishra et al. [9], SOSW shows
notable proximity in the precision metric with a value of
0.85 as opposed to the prior work’s reported 0.86 precision.
Interestingly, it is also observed that when SOSW employs
the ECG measurements, it provides higher F-1 score than
when it uses PPG measurements. This improved performance
can likely be attributed to the generally higher accuracy
of electrical-based ECG sensors, as opposed to the optical-
based PPG sensors. Moreover, although the SOSW yields
a marginally diminished recall, it exhibits superior preci-
sion and near similar recall in comparison to the approach
proposed by Mishra et al. [9]. These results demonstrate
the robustness of our methodology in detecting stress in
laboratory settings and affirm the potential of commodity
smartwatches in physiological stress detection.

D. Predicting stress based on the field dataset

This section evaluates the performance of the SOSW stress
detection methodology in the wild. We begin by examining
the impact of contextual factors on perceived stress levels.
Then, we comprehensively evaluate diverse ML models on
the challenging task of detecting stress in the wild. To
determine the effectiveness of our approach, we also perform
a benchmark comparison with previous research that uses
dedicated sensors to obtain precise physiological readings in
real-world settings.

Significant contextual features: We start our evaluations by
assessing the significance of contextual features derived from
EMA on the perceived stress levels. To this end, we conduct
five separate one-way ANOVA tests with the perceived stress
score as the dependent variable and the EMA reported
activity, location, social setting, time of day, and day of week
as independent categorical values, respectively. The results of
these ANOVA tests are summarized in Table VII. This table
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TABLE VI: Statistical significance analysis of passive-sensing-based contextual features in field study dataset using Welch’s
t-test. Table reports the significance of various contextual features in identifying users’ (binary) perceived stress state.

Category Subcategory Feature t-Stat p-Value

Activity

Physical Activity

unique_activities duration 3.560 <0.001
on_foot duration 2.937 0.003
on_foot frequency 2.641 0.008
unknown frequency 2.494 0.013
in_vehicle number 2.086 0.037
unknown duration 1.644 0.100
still frequency 1.442 0.150
in_vehicle frequency 1.233 0.218
on_bicycle frequency 1.210 0.226
on_bicycle duration 1.057 0.291
still duration 0.278 0.781

Mobility

mean_distance 2.902 0.004
std_distance 1.880 0.060
mean_speed 1.874 0.061
total_distance 1.577 0.115
max_distance 1.362 0.173
std_speed 1.065 0.287
min_speed 0.802 0.422
min_distance 0.507 0.613
max_speed 0.309 0.757

Device usage

Call log

avg_outgoing_calls duration -2.093 0.037
max_outgoing_calls duration -2.029 0.043
min_outgoing_calls duration -1.948 0.052
total_outgoing_calls duration -1.824 0.068
std_incoming_calls duration 1.493 0.136
total_incoming_calls duration 0.799 0.424
unique_incoming_calls number 0.779 0.436
max_incoming_calls duration 0.721 0.471
avg_incoming_calls duration 0.657 0.511
incoming_calls frequency 0.652 0.514
min_incoming_calls duration 0.505 0.614
outgoing_calls number -0.406 0.685
std_outgoing_calls duration -0.404 0.687
outgoing_calls frequency -0.289 0.773
unique_missed_calls number -0.206 0.837
missed_calls frequency 0.202 0.840

Screen state

screen_on duration 1.855 0.064
screen_off frequency 1.426 0.154
screen_on frequency 1.325 0.185
user_present frequency 1.127 0.260
screen_off duration 0.487 0.626
user_present duration 0.345 0.730

TABLE VII: Statistical significance analysis of EMA-based
contextual features from field study dataset using One-Way
ANOVA test.

Feature category F-statistic p-Value
Reported activity 5.573 <0.001
Reported location 13.816 <0.001
Reported social settings 3.592 0.058
Hour of day 0.755 0.519
Day of week 18.293 <0.001

reveals that the categories related to reported activity, loca-
tion, and day of week are statistically significant (p < 0.001).
This indicates that there are significant changes in perceived
stress levels linked with various activities, places, and days
of the week (i.e., weekday or weekend).

We also analyze the effect of time-domain and frequency-
domain features extracted from passive sensing on the
perceived stress levels, as shown in Table VI. Employ-

ing Welch’s t-test, similar to our analysis of physiological
features in Sec. VI-C, we find that several time-domain
and frequency-domain features related to physical activity
(passive sensing) data are statistically significant. However,
device usage information, such as call logs, shows limited
statistical significance. These findings suggest that our time-
domain and frequency-domain contextual features, particu-
larly those related to activity-based passive sensing data, have
a correlation with perceived stress levels.

Comparison of ML methods: With these promising results,
we further evaluate the performance of SOSW in the task
detecting stress in the wild. The SOSW field data process-
ing pipeline leverages a two-layer detection architecture, in
which the first layer employs an accurate physiological stress
model devised from the laboratory pipeline, specifically the
LR model. This best-performing physiological stress model
devised from the laboratory dataset is employed in the first

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3375299

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 28,2024 at 06:23:12 UTC from IEEE Xplore.  Restrictions apply. 



16

Mishra et al.(ECG) SOSW (ECG) Dai et al.(PPG) SOSW (PPG)
0.5

0.6

0.7

0.8

0.9

1
P

e
rf

o
rm

a
n

c
e

 m
e

tr
ic

Precision Recall F1-score

Fig. 10: Benchmarking of SOSW methodology against SOTA
in detecting physiological stress in laboratory settings.

layer of the field data processing pipeline. The second layer
model is the contextual stress model, the final decision-maker
in detecting perceived stress in the wild. We evaluate the
efficacy of various machine learning (ML) models for this
layer, including adaptive boosting, gradient boosting, logistic
regression, multilayer perception, random forest, support
vector machine, and extreme gradient boosting. Additionally,
the effectiveness of these models is assessed across diverse
combinations of data, including physiological, EMA, and
passive sensing data.

Table VIII presents the performance analysis of the SOSW
pipeline for stress detection with the field dataset using
various ML models and different combinations of features,
i.e., variants. Several important insights can be drawn from
this table. Firstly, the addition of contextual information to
physiological data marginally enhances the model’s accuracy.
Second, fusing all features devised from field dataset results
in an F-1 score of 0.681 with an increase of 2.3 percentage
points compared to using only physiological data. Thirdly,
the highest F-1 score in real-world conditions, at 0.712, is
recorded when the previous stress state is considered. This
aligns with finding from Mishra et al.[9], where authors
report that accounting for previous stress state significantly
enhances the final classification accuracy. Be that as it may,
our findings suggest that a more extensive dataset might
not always translate to better performance; in fact, it can
potentially mislead the models in the classification task.
Finally, among the various ML models, linear regression,
gradient boosting, and support vector machine showed higher
accuracies, while the multilayer perceptron achieved the
maximum performance.

Benchmark comparison: To assess the stress detection perfor-
mance of SOSW using the field study dataset, we conduct a
comparative analysis with a previous work’s findings reported
in [9]. It is crucial to emphasize that the previous study
operates with the advantage of high-precision ECG and GSR
measurements acquired through dedicated hardware. In this
performance evaluation, we consider the best-performing
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Fig. 11: Benchmarking of SOSW methodology against SOTA
in detecting perceived stress in the wild.

models from each of these studies. To be specific, for the
SOSW the MLP model, which employs physiological data
of general-purpose, commodity smartwatch and previous
stress state is considered. The comparison is based on three
commonly used performance metrics: precision, recall, and
F-1 score.

Fig. 11 shows the performances of SOSW and the recent
prior work by Mishra et al. [9] in the task of stress detection
in the wild. Mishra et al. [9] reported achieving up to
0.70 F-1 score in their field study using ECG and GSR
data. This figure shows that the contextual stress model
by SOSW outperforms the counterpart by 1.2 percentage
points in terms of F-1 score, utilizing commodity smartwatch
and smartphone data. While SOSW records marginally lower
recall of 0.88 compared to 0.91 by Mishra et al. [9], it gains
the upper hand by outperforming in terms of precision with
a value of 0.60, exceeding the 0.57 precision score of the
prior work. And our methodology, SOSW, could achieve an
F-1 score of 0.71 using commodity smartwatch physiological
data and contextual information of smartphone. These find-
ings highlight the potential of PPG data from commodity
smartwatches, complemented by contextual information, as
a viable alternative to traditional dedicated ECG and GSR
sensors for stress detection in the wild.

VII. DISCUSSION

A. Detecting stress in the lab and in the wild

Under laboratory conditions, it was found that physiolog-
ical features extracted from off-the-shelf smartwatches are
highly correlated with stress instances. By employing such
features, several ML models were tested, and among them,
the LR showed the best performance with an F-1 score of
0.835. We believe that such considerable improvement is
achieved due to the fact that SOSW consists of a robust data
processing pipeline and employs relevant features that are
highly correlated with stress instances.

As stress detection research transitions from laboratory set-
tings to real-life scenarios, researchers consistently report that
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TABLE VIII: Comparison of several ML methods based on the F-1 score metric on the task of binary field stress classification
using physiological and contextual features.

Variants AdaBoost GB LR MLP RF SVM XGBoost
Physiological only 0.648 0.655 0.658 0.656 0.635 0.657 0.649
Physiological + Previous stress state 0.701 0.707 0.710 0.712 0.660 0.709 0.679
Physiological + EMA activity 0.647 0.656 0.652 0.648 0.642 0.647 0.642
Physiological + EMA location 0.647 0.655 0.658 0.654 0.632 0.648 0.643
Physiological + EMA social settings 0.647 0.656 0.652 0.654 0.636 0.655 0.650
Physiological + EMA hour of day 0.647 0.659 0.658 0.653 0.630 0.653 0.641
Physiological + EMA day of week 0.647 0.656 0.660 0.655 0.646 0.652 0.646
Physiological + Passive sensing activity 0.649 0.654 0.649 0.639 0.652 0.650 0.633
Physiological + Passive sensing call log 0.650 0.651 0.650 0.647 0.646 0.651 0.634
Physiological + Passive sensing screen state 0.647 0.653 0.655 0.649 0.649 0.647 0.634
Physiological + Passive sensing mobility 0.647 0.653 0.653 0.648 0.654 0.661 0.643
Physiological + All contextual features 0.666 0.675 0.681 0.618 0.665 0.674 0.652

contextual data improves the performance of stress detection
[14], [22], contrary to solely relying on physiological signals.
While dependence on an external data to the smartwatch
could put limitations on the accuracy of the methodology,
luckily, the modern smartwatches also have access to contex-
tual data directly from the smartwatch itself. Such contextual
data includes user’s activities, step counts, sleep duration,
and so on [67]. However, we leave the nuanced smartwatch-
based contextual data, which has evolved fairly recently,
for future studies. Instead, our work uses contextual data
from smartphones, and smartphones have proven to be highly
suitable for a variety of real-life scenarios and heterogeneous
audiences [68].

In real-life conditions, SOSW not only exploits phys-
iological features but features extracted from contextual
information obtained through EMA and passive sensing.
Additionally, SOSW exploits a type of knowledge transfer in
which the well-trained and validated LR model is employed
as a fixed model on its first layer. The second ML model was
trained and validated employing contextual features alongside
to the output of the LR model which was employed in the
first layer.

We computed the statistical significance of the features ex-
tracted from the EMA questionnaires and passive sensing by
employing the ANOVA test and Welch’s t-test, respectively.
The results of ANOVA test highlight the significant impact
of activities, locations, and days of the week on perceived
stress levels. In contrast, the results of the Welch’s t-test
showed that less than 20% of the features extracted from
passive sensing are correlated to perceived stress level. Most
of significant features are those related to activity features.
However, intriguingly, features related to device usage specif-
ically those related to screen state are not significant at all.

Although the Welch’s t-tests and one-way ANOVA tests
show some degree of contextual feature significance, aligning
with the previous work [22], the results of LOSO CV tech-
nique showed only marginal improvement in accuracy upon
the addition of EMA and passive sensing-based contextual
features to physiological features. For future research, this
may suggest that some degree of personalization is needed
when using rich contextual information to further enhance

accuracy.

B. Limitations and future directions

The findings from both laboratory and real-life assessments
suggest that SOSW is a robust and practical methodology for
stress detection. Its effectiveness in capturing stress-related
changes, coupled with its integration with everyday smart-
watches and contextual information, positions it as a valuable
tool for monitoring and managing stress in various settings,
from controlled environments to real-life situations. However,
we would like to acknowledge that there exist certain factors
that may impose limitations on its performance.

A factor that may impose limitation on the daily-life stress
detection performance is the wide range of possible daily
life scenarios that can potentially impact the user’s per-
ceived stress. While our methodology can accurately detect
physiological stress arousals, there can be such instances
where perceived stress exhibits less pronounced physiological
arousal in real-life conditions, which may compromise the
performance of our methodology. To mitigate such undesir-
able outcome, SOSW leverages rich contextual data encom-
passing behavioral biomarkers of perceived stress alonside
the physiological arousal information.

Another factor that can limit the performance of stress
detection methodology is the scale of a data collection
study. With the number of participants involved our study,
unfortunately, we may not be able to claim generalizability. A
larger-scale and more longitudinal data collection conducted
across diverse participant groups may be necessary to assert
the generalizability of the stress detection methodology. This
can cover a broader demographic spectrum, such as age,
gender, and health backgrounds, and longer study durations
(e.g., months or years) taking into account that individuals
can adapt to certain scenarios and perception of stress can
possibly vary over long periods of time. Last, but not least,
a larger dataset would also enable effective utilization of
advanced deep learning techniques such as deep neural net-
works for potentially improving stress detection accuracies.

The daily-life stress detection performance can also be
limited by the battery life of the commercial smartwatches.
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Although the battery life of the smartwatch Galaxy 5 guar-
antees more than 60 hours under typical use [69], continuous
sensing may deteriorate the life span, which may limit the
temporal coverage for physiological data acquisition. Another
potential problem that may arise is the loss of data collection
due to the interruption of data transmission via Bluetooth
from the smartwatch to the smartphone. To ameliorate such
a situation, the smartwatch can locally store the data and later,
when the connection is reestablished, upload the sensing data.

It is also important to note that while the specific findings,
presented in Section VI, are based on data collected from
the smartwatch Galaxy 5, the underlying principles and
methodologies can be applied to other devices with similar
capabilities. Nevertheless, we acknowledge that variations
in sensor accuracy and data processing algorithms across
different devices may impact the exactness of the results.
Therefore, as a future direction, we aim to expand the scope
of our study to include a variety of devices, which will
enhance the generalizability of our findings and provide a
more comprehensive understanding of the capabilities and
limitations of current smartwatch technology for stress de-
tection.

VIII. CONCLUSION

In this study, we investigated the feasibility of using
commercially available smartwatches combined with contex-
tual data for detecting stress in both laboratory and real-
life settings. To do so, we first conducted a preliminary
study in which we analyzed the quality of physiological
measurements obtained through the smartwatches. This early
study revealed that physiological data collected through
smartwatches are easily distorted by motion and loose
wearing conditions. To cope with this, we proposed robust
data processing pipelines. The SOSW methodology carefully
combines motion artifact and looseness artifact removal
techniques for improving measurements obtained through
the smartwatches. Additionally, it considers a two-layer
modeling architecture leveraging our best machine learning
model obtained in our laboratory dataset for improving stress
detection. To evaluate our methodology, we collected two
datasets under laboratory and real-life conditions. For the
laboratory dataset, using just physiological data obtained
from off-the-shelf smartwatches, our proposed methodology
can accurately detect stress instances with an F-1 score of
0.84. For the field dataset, our methodology can detect stress
periods with an F-1 score of 0.66 using physiological data
alone and an F-1 score of 0.71 by combining physiological
and contextual data.
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