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Abstract—Besides safe navigation (e.g., warning of approach-
ing vehicles), car to car communications will enable a host
of new applications, ranging from office-on-the-wheel support
to entertainment. One of the most promising applications is
content distribution among drivers such as multi-media files and
software updates. Content distribution in vehicular networks is
a challenge due to network dynamics and high mobility, yet
network coding was shown to efficiently handle such dynamics
and to considerably enhance performance. This paper provides
an in-depth analysis of implementation issues of network coding
in vehicular networks. To this end, we consider general resource
constraints (e.g., CPU, disk, memory) besides bandwidth, that are
likely to impact the encoding and storage management operations
required by network coding. We develop an abstract model of
the network coding procedures and implement it in the wireless
network simulator to evaluate the impact of limited resources.
We then propose schemes that considerably improve the use of
such resources. Our model and extensive simulation results show
that network coding parameters must be carefully configured by
taking resource constraints into account.

I. INTRODUCTION

Propelled by navigation safety concerns, recently vehicle
communications are becoming increasingly popular. Dedicated
Short Range Communication (DSRC) is a key enabling tech-
nology for vehicular communications [14]. While the main
objective has clearly been to improve the overall safety of
vehicles, various industry consortiums and academia have been
actively seeking for a host of new “killer” vehicle applica-
tions, ranging from mobile Internet to entertainment. In fact,
the DSRC standard has allocated several “service” channels
available for non-safety usage. One of the key applications
will be content distribution to vehicles, where the content
ranges from multi-media files to road conditions data and to
updates/patches of software installed in the vehicle. Content
distribution in VANETs is quite close to reality given that
most commercial navigation systems can display multi-media
data, and entertainment devices in vehicles are becoming
popular such as Fiat’s Blue and Me1 and Vizualogic’s mobile
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entertainment integration.2

In VANETs, we envision the following content distribution
scenario. The original content is uploaded to the Internet
server. Vehicles passing by an open AP can opportunistically
download the content whenever the connection is available. By
open APs we refer to the publicly available APs installed by
the service providers, instead of unsecured APs ubiquitously
available in urban environments [2]. For instance, a navigation
system provider can install APs at the local gas stations for
the purpose of map data distribution. P2P technology will help
us to overcome the short contact duration with an AP due to
high mobility, thus obviating the needs of installing APs every
several hundred meters.

Internet-based P2P content distribution where peers with the
same interest perform cooperative file swarming by forming
an overlay network among peers, cannot be directly applied
to wireless mobile ad hoc networks (MANET) since the
network topology constantly changes due to mobility. Most
file swarming protocols for MANETs have been focused on
overcoming the discrepancy between a logical overlay and a
physical topology of mobile nodes [15], [8], [20]. For example,
ORION [15] builds an on-demand content-based overlay,
closely matching the topology of an underlying network. Most
protocols rely on flooding, not only to maintain the topology
information, but also to distribute the content availability [15],
[8], [20]. However, realizing content distribution in VANETs
is particularly challenging due to high mobility. Since it
necessitates more frequent flooding, flooding should be hop-
limited for the sake of scalability. As a result, less information
is collected, and thus, this makes the peer/piece selection
problem, or scheduling problem hard.

Recently, Gkantsidis et al. proposed a content distribution
scheme called Avalanche that uses network coding on top
of BitTorrent like file sharing in the Internet [12]. Unlike
BitTorrent where a file is divided into n pieces and each piece
is distributed independently, in Avalanche the original pieces
are encoded using a random linear network code at each peer,
and coded pieces are exchanged with other peers. The original
file can be recovered from any n linearly independent coded
pieces. Network coding improves the performance of content
distribution by mitigating the scheduling problem given only a
local knowledge of the network. It helps increase the number
of distinct pieces available in the network by generating many
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coded pieces, thus providing a higher chance for peers to pull
useful pieces [12], [5].

Network coding based file swarming has also been consid-
ered in wireless networks. The major departure from P2P file
sharing in the Internet where a true multicast via multicast-
enabled routers is not supported, is that in wireless networks,
nodes naturally communicate using multicast due to the broad-
cast nature of the wireless medium. Thus, network coding
enables peers to fully utilize the broadcasting capacity [1].
It has been recently shown that network coding can also
effectively handle mobility, interference, and unreliable chan-
nel characteristics (e.g., fading), particularly in VANETs [16],
[22].

Although the benefit of network coding has been studied in
theory [1], [17] and at an abstract level of protocol operations
under various circumstances [7], [12], [16], [22], [4], the prac-
tical issues of enabling network coding particularly for content
distribution have not been well investigated in the literature.
In this paper, we consider the resource constraints of nodes,
such as CPU consumption, memory access, and disk I/O3

since network coding induces significant processing overhead
at the intermediate nodes. In our scenario, we assume that there
are multiple applications running on each “embedded” mobile
system (e.g., onboard/safety navigation system), and thus, the
file sharing application is allocated with limited resources. At
the same time, the demand for resources by the file sharing
application may be high because the users may exchange large
files such as high quality videos. In conventional content shar-
ing, the most critical resource is the communication capacity
(i.e., the upload/download bandwidth). When network coding
is used, other resource constraints (i.e., CPU, memory, and
disk) also play an important role since they are used for
encoding new data before sending to others and decoding
the data received from other peers. However, standard discrete
time network simulators such as ns-2 and QualNet generally
allow one to model only network resources and constraints.
Thus, the impact of more general resource constraints on
network coding in VANETs must be investigated with other
means.

To this end, we abstract the overall behavior of the protocol
and develop models for computation and disk I/O operations
for a given network coding configuration. In this way, we can
accurately estimate the latency incurred by network coding
procedures at each node. Our computation model clearly
reflects the relationship between the computation power and
the coding rate. This is a major departure from the previous
researches that focused only on reducing the computation
overheads of network coding [19], [18] or on showing the
feasibility via experiments [11], [25], [18]. Also our disk I/O
model takes the storage access patterns into account. This,
for example, precisely models the case that all the necessary
pieces have to be loaded into the memory before encoding. We
validate our model via experiments. The model enables us to
analyze the goodput of the overall content pulling procedure

3In this paper, a disk represents either a mechanical hard disk or a flash-
memory based solid state drive.
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Fig. 1. An illustration of network coding: A file has six B KB pieces and
has configured for coding with the number of generations N = 2 (i.e., the
generation size G = 3). When GF(256) is used, the size of an encoding
vector is 3 bytes (i.e., G dimension vector). The bottom figure shows how an
encoded piece is created from the first generation.

and to find the key constraints of determining the network
coding configuration in wireless environments.

The system modeling modules have been implemented
in the content distribution application that we developed in
the QualNet simulation environment. Using this “extended”
simulation platforms, we investigate methods of improving
the performance of network coding. More specifically, (1) we
propose a novel “remote buffer aware” data pulling method
that minimizes the disk I/O overhead for local computation;
and (2) we experiment with recently published computation-
ally efficient network coding methods [18], [19]. We perform
extensive simulations to show the impact of overheads and
the effectiveness of these enhancements. Our results show that
network coding configuration has a great impact on the overall
performance, and resource constraints must be carefully con-
sidered to achieve a better performance. For given resource
constraints, we show that our proposed methods significantly
improve the performance. Note that our models are not limited
to content distribution scenarios, but they can also be appli-
cable to other network coding based protocols requiring the
network coding configuration such as an opportunistic routing
protocol with network coding [4] and network coding based
message dissemination in delay tolerant networks [26].

The rest of the paper is organized as follows. In Section
II, we review the network coding based content distribution
in VANETs. In Section III, we formulate the problem of
network coding configuration and discuss the importance of
general resource constraints on the performance of network
coding based protocols. In Section IV, we propose disk I/O and
computation overhead models, and analyze the goodput of the
overall content pulling procedure. In Section V, we investigate
performance enhancement features. In Section VI, we conduct
simulations to show the impact of resource constraints and the
effectiveness of enhancement features. Finally, we conclude
the paper in Section VII.

II. CONTENT DISTRIBUTION USING NETWORK CODING IN

VANETS

In this section, we review CodeTorrent, a content distri-
bution protocol using network coding in VANETs [16]. This
protocol is extended to support content distribution with multi-
generation based network coding.

We assume that a file can be uniquely identified with an ID.
The original file is divided into N generations. Each genera-
tion i has G pieces (which represents the generation size) and
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the piece size is fixed to B KB: i.e., pi,1, pi,2, · · · ,pi,G for
i = 1, · · · , N (see Figure 1). In network coding based content
sharing, intermediate nodes exchange coded pieces instead of
original pieces. For the sake of consistency, we assume that
each original piece � = 1, · · · , G has �th unit vector e� in the
header which is called the encoding vector. The original piece
� of ith generation is then represented as p̃i,� = [e� pi,�]. For
each generation i, the server creates a coded piece via weighted
random linear combination of all the pieces:

∑G
k=1 ckp̃i,k.

Each coefficient ck is randomly drawn over a finite field, e.g.,
Galois Field (GF), where the entire operations take place. We
use a 8-bit field, GF(256). Each piece contains a unit vector at
the source, thus the resulting encoding vector is the same as
[c1 · · · cG]. Each intermediate node similarly generates a coded
piece by combining all the coded pieces collected so far for the
generation and only keeps linearly independent coded pieces.
If a received piece is linearly independent of other pieces, we
call the piece helpful or innovative and similarly, the originator
of the piece is considered helpful as well. The total number
of linearly independent coded pieces is called rank. Note that
each coded piece is marked with the generation number, and
coded pieces belonging to the same generation are used for
encoding. For a given generation, after collecting G coded
pieces that are linearly independent of each other, a node can
recover the original data by simply solving a set of linear
equations. This process repeats until the node collects all N
generations.

Each node periodically broadcasts or gossips its resource
availability to its 1-hop neighbors. One of the simplest ways
of representing the availability is to send an encoding vector of
each generation (i.e., as a result of random linear combination
of all the encoding vectors of the coded pieces in the buffer).
Given this, the receiver can realize whether the originator has
at least one linearly independent coded piece. This method
is, however, impractical since the size of a gossip message
increases with the file size. For instance, with 100 generations
each of which contains 100 pieces, the size of a gossip
message is 10KB. To reduce the overhead, we use a bit
vector to represent the availability of each generation. If a
node requests for a specific generation, the receiver returns
its encoding vector. This allows the requester to tell whether
the receiver is helpful. If so, the requester starts data pulling
without further negotiation. For generation selection, a node
uses a local rarest generation first policy similar to the rarest
piece first download policy in BitTorrent: a node chooses the
least available generation measured in terms of the number of
nodes having the generation (i.e., at least one piece).

We assume that a peer is given a limited buffer (memory)
space and the buffer size is smaller than the file size because
(1) the demands of applications are ever increasing (e.g., high
quality video files) and (2) multiple applications are competing
for the limited resource. The system supports application-
controlled file caching where the kernel allocates physical
pages to an application and it manages the pages using its
own buffer replacement policy [3]. As shown later, the disk
access pattern is per generation basis, and thus, we assume that

the buffer replacement unit is a generation. The application
replaces the generation that is Least Recently Used (LRU). A
small fraction of space is reserved for keeping all the encoding
vectors (to check the linear dependency of a request or coded
piece) and receiving pieces from others (as receive buffer).

We assume that every transmission is MAC/link layer
broadcasting, and a small random amount of wait time before
each transmission called broadcast jitter is enforced to reduce
collisions. Every node promiscuously listens to packets; i.e., a
node receives a specific packet even if it is not the designated
receiver, or the requester. If an overheard coded piece is
linearly independent of the coded pieces in its local memory,
then the node stores it. Our protocol can be configured to pull
content at most k-hop neighbors. The resource advertisement
is extended to k-hop. For data pulling, we can either use
existing routing protocols (e.g., AODV, OLSR, etc.) or im-
plement a customized routing protocol at the application layer
as in ORION [15] where k-hop limited controlled flooding of
resource availability can be used as a route discovery request
(e.g., RREQ in AODV) and a data pull request as a route reply
(e.g., RREP in AODV).

III. PROBLEM DEFINITION AND RELATED WORK

The benefits of network coding based content distribution
in VANETs can be attributed to the following reasons: (1)
network coding exploits the broadcast nature of wireless
medium; (2) network coding mitigates the peer and piece
selection problem [5], which is extremely difficult to address
in dynamic VANETs; and (3) it has been recently shown that
network coding in VANETs can effectively handle the random
losses due to mobility and interference [22], [16]. One of the
most important performance factors in network coding based
content distribution is the “generation size” (i.e., the number
of pieces per generation). Real time applications such as P2P
streaming have a delay constraint because an entire generation
must be received before data can be played out [22], [7]. Thus,
the generation size must be small enough to comply with such
a constraint. In contrast, content distribution does not have
a strict delay constraint. Since its goal is to download the
entire file as early as possible, without specific constraints on
download rate, we can have a large generation size.

Given this, we show that one must reduce the number
of generations (i.e., increase the generation size) to improve
performance. Assuming that the bandwidth is equally shared
by M neighboring nodes, a node can only use the channel
1/M fraction of the overall time by sending a request for a
piece in a generation that has not been completely downloaded.
As the average number of neighboring nodes increases, a node
will spend more time overhearing the channel than requesting
pieces of its own. Given that a piece size is fixed to B
and a file has total N pieces, we can imagine two extreme
scenarios: single generation and N generation (no coding)
scenarios. In the single generation scenario, an overheard piece
is useful if it is linearly independent of other pieces. On
the other hand, in the N generation scenario the probability
that an overheard packet is useful depends on the number
of generations that a node has collected thus far. When a
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node has collected k generations, the probability is given as
1 − k/N . The probability is getting smaller as we collect
more generations; thus, the coupon collection problem will
happen. Given that an overheard piece is useful with high
probability [10], the single generation scenario will take Θ(N)
steps to complete downloading. In contrast, the N generation
scenario will take Θ(N log N) steps due to coupon collection.
For a given configuration with an arbitrary number of gener-
ations, the number of steps to complete ranges from Θ(N)
to Θ(N log N). As the number of generations decreases, the
number of steps is getting closer to Θ(N). Thus, for better
performance, we should decrease the number of generations.
With this in mind, we now investigate practical issues that arise
when distributing a large file using network coding; namely we
consider communication, computation, and disk I/O overheads.

Communication overhead: It is an ideal scenario of network
coding in a wireless network when the size of a piece is
the same as the size of a packet since a packet loss (due
to collision or channel errors) can be effectively masked
via network coding. However, packet-level network coding
becomes less efficient as the file size increases because it
increases communication overhead. Recall that each packet
must contain a global encoding vector. For instance, when
distributing 100KB and 1000KB files, we generate 100 and
1000 1-KB blocks respectively. Assuming that GF (256) is
used (i.e., 8bit), the overhead is 100B (≈10%) and 1000B
(≈100%). Thus, we need to create smaller size generations
to limit the overhead ratio. In this case, however, packet-
level network coding (i.e., recovery from packet loss) will
have many small size generations, thus causing the notorious
coupon collection problem.4 To mitigate this problem, the size
of an individual piece should scale proportionally to the file
size. In particular, the piece size must be carefully chosen
based on the link duration statistics [23].

Computation overhead: Random linear network coding
heavily relies on finite field operations. The computation
overhead is roughly proportional to the number of pieces per
generation, or generation size. Thus, using a small number of
large generations to avoid the coupon collection problem may
result in severe computational overhead such that encoding
takes more time than transmission, and one’s communication
bandwidth is underutilized.

Disk I/O overhead: Since the main memory will be shared
by a number of vehicular applications, the memory space ded-
icated to P2P applications may typically be limited compared
to the size of a large multimedia file. For network coding,
it may be necessary to read all the pieces belonging to the
same generation from the storage device to generate a coded
piece. If the memory is full, some pieces may have to be
evicted to make room for the requested generation. The delay
incurred for disk I/O is huge compared to memory access, and
is especially significant in VANETs because vehicles have only
short contact duration in general. For example, given a 250m
wireless communication range, vehicles driving in opposite

4Note that random errors can also be effectively handled using a hybrid
scheme using ARQ and erasure coding [6]

lanes with 50mph have only 11 seconds to communicate with
each other. Let us assume that the size of a generation is
40MB. The nominal data transfer rate of hard disks or flash
memory based solid state disks is about 40MB/s. If a miss
happens (i.e., the requested generation is not in the memory),
it will take one second to make the application ready for
encoding, thus resulting in almost 10% performance loss.
Therefore, it is important to design the file swarming algorithm
so that disk access is minimized whenever possible.

Recent feasibility studies on network coding in real
testbeds [11], [18], [25] show that the measured performance
varies widely depending on the system characteristics, but
the fundamental reason of performance variation is not well
understood. For instance, Gkantsidis et al. [11] show that
Avalanche, an Internet-based P2P file sharing with network
coding, incurs little overhead in terms of CPU and I/O activity
using their large scale testbed, whereas it is empirically
observed that that computation overhead degrades the per-
formance, especially when the generation size is large [25],
[18]. Various performance enhancement techniques have been
proposed [9], [18], [19], [24]. Cooper et al. propose the sparse
network coding where each piece is selected for coding with
a certain probability, thus reducing the number of pieces
involved in coding [9], [18]. Maymounkov et al. show that one
can decrease the generation size, yet can still effectively handle
the coupon collection problem by using erasure coding at the
generation level [19]. Shojania et al. [24] use CPU acceleration
techniques to improve the performance of Galois field opera-
tions. However, it is still not clear how to find a proper network
coding configuration, and how such improvement techniques
influence the performance of network coding based content
distribution in VANETs.

In this paper, we propose simple models for CPU and disk
I/O overheads of network coding. The models enable us to
analyze the goodput of the content pulling procedure and to
find the key constraints of determining the network coding
configuration for content distribution. Also, we propose novel
algorithms to improve the performance of network coding for
distribution of large contents in wireless environments. We
implement the models and algorithms in a wireless network
simulator and extensively evaluate the impact of network
coding configuration.

IV. DISK I/O AND COMPUTATION O/H MODELS

In this section, we present the request processing procedure
of a serving peer. We then model both disk I/O and com-
putation O/H and analyze the goodput of the procedure. We
perform experiments to measure the model parameters.

A. Request service procedure
If a node can serve a request, it first checks its buffer.

If the node has the data of the requested generation in the
buffer, it can start an encoding process. Otherwise, the node
must first read the generation from the disk before encoding.
After the data has been properly encoded, the node sends the
resulting coded piece to the requester. The overall procedure is
composed of reading a generation (R), encoding the data (E),
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and sending the coded piece (S). Note that access to memory
by disks and network interface cards are typically done via
Direct Memory Access (DMA); therefore, in practice, we can
ignore the interference between them. Thus we can exploit
thread-level parallelism to speed up the overall process. Figure
2 shows possible scenarios of parallelism.

In Figure 3, we consider an example with R/E/S pipeline
when the generation size G = 3 and the piece size B = 2KB.
To generate a coded symbol, only 3 symbols (one from each
piece) are involved; and rest of the symbols are independent
of each other. Assuming that the unit of data transfer is 1KB,
the communication thread sends the newly encoded packet
as soon as it is ready. The server first checks its buffer to see
whether a requested generation is present in the working set. If
so, the encoding thread starts an encoding process (ENCODE);
otherwise, the disk I/O thread reads the necessary parts of the
generation from the disk (READ), then signals the encoding
thread. After the encoding is finished, a communication thread
sends the newly generated encoded packet out to the requesting
peer (SEND). In E/S pipeline, i.e., Figure 2(b), all the pieces
for a given generation are read at once and then only E/S
are pipelined. In the case of no pipeline, i.e., Figure 2(c),
all operations take place sequentially. Note that although we
assume that a unit of data transfer is 1KB, but to minimize
the overhead of system calls (or context switching time) we
can have a larger transfer unit.

B. Overhead models
We present disk I/O and computation O/H models. We find

the goodput of the request handling procedure.
1) Disk I/O overhead model: Disk access involves mechan-

ical motions and is inherently slow by an order of magnitude
compared to reading data from memory. Disk access delay
consists of three factors: seek time, rotational latency, and
transfer time. Seek time is the time to move disk heads to the
disk cylinder to be accessed. Rotational latency is the time to
get to a specific disk block in a cylinder. Transfer time is the

time to actually read disk blocks. The total average latency
for modern hard disks is in the range of 10-15msec and it
varies from vendor to vendor. Disks are typically optimized
for sequential access, and they can transfer large data files at
an aggregate of 40MB/s (for desktop-grade disks) or 80MB/s
(for enterprise server level disks). Recently, flash-based solid
state disks (SSDs) are becoming popular. The main difference
is that SSDs have much lower seek time and no rotational
latency compared to the conventional disks. The transfer rate
is still about the same as conventional disks. For instance,
Transcend TS32GSSD25-M has 0.1ms of seek time and the
read/write rates are 40MB/s and 32MB/s respectively.

Assuming that each generation is stored sequentially, we can
safely ignore the rotation latency of disks. Thus, the analysis
of mechanical disks and SSDs are the same. To generate a
1-KB coded packet, we need to read all the corresponding 1-
KB data per piece as in Figure 3. The access pattern will be a
sequence of seek/read pairs. Let θ denote the average latency
to perform a pair of seek/read operation. The overall time to
read all the relevant parts takes Td = θ ·G. Note that the seek
latency is quite prohibitive in the case of mechanical disks
compared to SSDs such that the overall latency is quite large,
as the number of generations increases. As an alternative, a
node can sequentially read the entire pieces at once (as in E/S
pipeline). The disk I/O latency is given as GB

Rd
where B is the

piece size and Rd is the data transfer rate.
We investigate the impact of the pair-wise access patterns

(seek/read pairs) by measuring θ in real systems. We use
two sets of scenarios: (1) Maxtor MaxLine Pro SATA-II
HDD (500GB, 7200rpm, 8MB cache) with PERC 5i RAID
(level 0); and (2) Transcend TS32GSSD25-M solid state drive
(32GB). The measured maximum sequential data access rate
of a disk and a SSD is given as 110MB/s and 38MB/s
respectively. We first measure the pair-wise access latency
(θ). The measured latency is given as θ=0.495ms (std. dev.
1.462ms) and θ=0.012ms (std. dev. 0.05ms) for a disk and a
SSD respectively. Given generation size of G, the total latency
is θ · G. For instance, given the generation size of 100, the
overall latency of a disk and a SSD is given as 49.5ms and
1.2ms respectively.

2) Computation overhead model: Let b′k denote the kth
code symbol in a coded piece, and bi,k denote the kth symbol
of the ith piece in the buffer. Let ci for i = 1, · · · , G denote
the ith encoding coefficient, which is randomly chosen over
a Galois Field of size 256 once at the beginning of the entire
procedure (i.e., symbol size is 8bit). Each code symbol b′k is
generated as follows:

b′k = c1 · b1,k + c2 · b2,k + · · · + cG · bG,k

For each symbol (bi,k) it requires a pair of multiplication (i.e.,
ci ·bi,k) and addition (b′k += ci ·bi,k). The per-symbol encoding
time is proportional to the generation size G, i.e., Te = G · δ
where δ is the time of executing the pair of operations. Let
Re denote the per-symbol encoding rate (byte/sec). Then, the
rate is given as follows:

Re =
1

Te
=

1

δ
· 1

G
(1)

121Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:31:50 UTC from IEEE Xplore.  Restrictions apply. 



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10  20  30  40  50P
e
r
 
s
y
m
b
o
l
 
e
n
c
o
d
i
n
g
 
t
i
m
e
,
 
T
e
 
(
u
s
)

Generation size (G)

Pentium 4 M 1.73Ghz
slope = 0.01042

Xeon 5000 3.2Ghz
slope = 0.00597

Fig. 4. Per symbol coding latency as a function of generation size G

Equation 1 shows that the encoding rate is the function of
δ and G. The value δ is purely dependent on the Galois field
operation implementation and the processing power.

We measure the δ value in two different systems: a fast
machine (Intel Xeon Dual Core 5000 3.2GHz), representing
a high speed server and a slow machine (Intel Pentium 4 M
1.73GHz), representing a relatively powerful mobile device.
We implement the Galois field operations based on a table
lookup with the optimization techniques proposed in [13].5 We
ignore the cache miss since the lookup table fits in the internal
cache and the memory access pattern of coding is sequential.
We use a Galois field of size 256. We have compiled this
code so that it is optimized for execution. We use a 12MB
file to measure the value. We increase the generation size G
from 10 to 50 with a gap of 10 blocks. We report the average
of 1000 runs for each configuration. Per symbol encoding
latency is reported in Figure 4. The figure shows that the
encoding latency increases linearly as shown in Equation 1.
In fact, the plots fit well with lines with slope δ = 5.97ns
and δ = 10.42ns for Xeon and P4 respectively. Thus, the
encoding rate equations are given as 166.9

G MB/s and 95.9
G MB/s

for fast and slow where G denotes the generation size. For
a small generation size, e.g. G = 10, the fast machine could
generate code packets at the rate of 16.7MB/s whereas the slow
machine generates them at the rate of 9.6MB/s respectively.
For a relatively large generation size, e.g. n = 100, these
rates drop to 1.67MB/s and 960KB/s for the fast and the
slow machines respectively. In the latter case, the computation
overhead becomes the bottleneck compared to the network
bandwidth (e.g., 11Mbps 802.11b vs. 7.68Mbps encoding
rate).

C. Goodput analysis

In wireless networks, the bandwidth is shared by multiple
nodes. Given M nodes are sharing the bandwidth, we assume
that the bandwidth is fairly shared by M nodes. Let Rb

denote the bandwidth share. In the following, we show that
the goodput is mainly determined by the bandwidth share
Rb and the encoding rate Re. From the analysis, we show
that for given resource constraints, we can find the maximum
allowable generation size.

5Shojania et al. showed that the Galois field operations can be further
improved by using hardware acceleration techniques such as SSE2 and AltiVec
SIMD vector instructions on x86 and PowerPC processors respectively [24].
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Fig. 5. Goodput with different generation sizes and interfering nodes. The
baseline goodput without network coding is denoted as “N/A”

Let us find the goodput of E/S pipeline. Assume that there
are total Nr requests of a specific generation. Recall that G is
the generation size, B is the piece size, Re is encoding rate,
and Rd is data transfer rate. When we have Re ≥ Rb, the total
amount of time to transfer Nr pieces is GB/Rd + B/Re +
NrB/Rb. The goodput is given as

Nr

G/Rd + 1/Re + Nr/Rb

For large Nr, the goodput can be approximated to the effective
bandwidth Rb. When we have Re < Rb, the total amount of
time is GB/Rd +NrB/Re +B/Rb. The goodput is given as

Nr

G/Rd + Nr/Re + 1/Rb

For large Nr, the goodput is approximated to the encoding
rate Re. The key constraint is that the encoding rate Re

should be greater than the bandwidth share Rb, i.e., Re ≥ Rb.
By replacing Re with 1

δG , we have G ≤ 1
δRb

. Thus, this
inequality enables us to find the maximum generation size
that satisfies the condition (Re ≥ Rb). The equations also
show that the effect of disk I/O disappears, as the number of
requests per generation increases. In the following section, we
propose a simple technique to increase the number of requests
per generation. Note that the goodput of R/E/S pipeline is
approximately the same as E/S pipeline when the number of
requests per generation is large.

We now show the impact of the bandwidth share on the per-
formance of a network coding configuration via experiments.
Since the bandwidth share is mainly determined by the total
number of nodes sharing the bandwidth (within their radio
range), we vary the number of nodes (NS=1-3) and measure
the goodput of network coding with different generation sizes
(G=10, 50, 100). We setup a server that receives all the blocks
generated by other nodes. For each experiment, a client node
continues to generate/send coded blocks to the server until it
transfers 60MB of data. We run each configuration 30 times
and report the average with the 95% confidence interval. Data
transfers of clients are initiated by the server via parallel SSH.
We perform the experiment in the early morning (2-6AM) to
exclude other WiFi interferences (e.g., wireless LAN). We use
IBM Thinkpad R52 (Intel Pentium 4 M 1.73GHz, 512MB).
All laptops have Fedora Core 5 with Linux Kernel v2.6.19. We
use ORiNOCO 11b/g PC Cards (8471-WD) and the MadWifi
v0.9.3.3 Linux Kernel device driver for the Atheros chipset to
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support wireless networking in Linux. We configure 802.11g
as follows: ad hoc mode, no RTS threshold, and 54Mbps
(fixed).

The measured goodput is reported in Figure 5. The figure
clearly shows that if the generation size is too large (NS=1,
G=50/100), a node cannot fully utilize its bandwidth. The
figure also shows that as the number of nodes increases, per
node bandwidth share decreases accordingly. Interestingly, this
allows a node to sustain a larger generation size; e.g., a node
can support G=50 in the two node scenario and G=100 in the
three node scenario. The measured goodput is quite close to
the estimated coding rate based on our model. For instance, the
measured goodput of G=100 is 7.2Mbps that is comparable
to our model estimate of 7.68Mbps (960KB/s).

V. PERFORMANCE ENHANCEMENT FEATURES

In this section, we propose novel mechanisms to mitigate
disk I/O and computation overhead for network coding for
content distribution. We first present a remote buffer genera-
tion aware pulling technique to reduce disk access frequency.
We then review the techniques that to reduce computation
overheads.

A. Remote Buffer Generation Aware Pulling

A node uses a rarest generation first strategy where it
chooses the least available generation measured in terms of
the number of nodes having each generation. If the requested
generation is in the buffer, it can start generating a coded piece;
otherwise, the node has to read it from the disk. Many different
nodes could send requests, each of which is likely to ask for
a different generation because the topology keeps changing
due to high mobility. The problem is that these requests are
competing for the limited buffer space which may result in
severe disk I/O. Given the fact that the overhead is proportional
to the generation size, to circumvent this situation the serving
peer should have enough buffer space to handle all requests
(i.e., the buffer size should be larger than the working set
size): i.e., NR ×G < Sb where NR is the expected number of
distinct generations requested, G is the generation size, and Sb

is the buffer size. The relationship shows that the generation
size should be limited to a certain threshold to avoid disk I/O.

We propose a Remote Buffer Generation Aware Pulling
method where a requester considers the buffer status of a
remote node (i.e., which generations are present in the buffer).
The scheme mitigates the disk I/O by reducing the expected
number of independent requests (a set of different genera-
tions). To realize this, given N generations we represent the
buffer status of a node using an N -bit vector. The buffer status
of a node can be included in a periodic “gossip” message so
that other peers can learn about it. Using this buffer status
information of a remote node, a node can search for the
generation with the lowest rank among the generations that
are in the remote nodes’ buffers. If none of the generations
that the node interested in pulling is in presence, the node
simply sends a request of the rarest generation, thus causing
a disk access.

B. Fast Network Coding
Since the computation overhead is proportional to the

generation size one can reduce the overhead by decreasing
the number of pieces used for coding. Sparse random linear
coding [9] has been proposed to achieve this: each piece
is selected with probability p ≥ (log G + d)/G where G
is the generation size and d is a non-negative constant [9],
[18]. This probabilistic approach, however, does not consider
computation capacity of a node, which can be measured by
the maximum number of pieces that can be encoded without
degrading the performance (denoted by γ). Since the number
of pieces used for coding follows a binomial distribution, the
average number of pieces used for coding is Gp, which is
proportional to the generation size. Even with this, if the
generation size is too large, there is a chance that the number
of pieces may be greater than γ. To deal with this problem,
we approximate the behavior of this probabilistic scheme by
equating γ with the mean of the distribution. As a result, we
have the following condition: γ ≥ log2 G+d. This means that
one has to control the generation size based on this condition,
i.e., if G is too large, we need to create more generations.
One caveat is that data dissemination occurs in a distributed
fashion and the high mobility in VANETs creates cycles of
dissemination, and thus it is hard to guarantee that encoded
pieces from different peers are linearly independent [16], [18].

Note that on the one hand, the computation overhead can be
reduced by decreasing the generation size. On the other hand,
this will result in a large number of generations, leading to
the coupon collection problem. Maymounkov et al. propose
Chunked Codes where they keep the generation size small to
make the network coding computationally efficient, and yet
use erasure coding at the generation level to circumvent the
coupon collection problem. However, this will not fully utilize
the benefit of broadcasting in wireless networks, because the
effectiveness of broadcasting decreases, as the number of
generation increases. In the following section, we show this
via extensive simulations.

VI. EVALUATION

In this section, we first describe the implementation details
of the protocols that we consider for evaluation, and simulation
setup in QualNet.6 The impact of disk I/O and computation
overhead is presented and then performance enhancement
features are evaluated.

A. Simulation setup
We use IEEE 802.11b PHY/MAC with 11Mbps data rate

and Real-Track (RT) mobility model [21]. RT permits to model
vehicle mobility in an urban environment more realistically
than other simpler and more widely used mobility models such
as Random Waypoint (RWP), by restricting the movement of
the nodes. The road map input to the RT model is shown in
Figure 6, a street map of 2,400m× 2,400m Westwood area in
the vicinity of the UCLA campus. A fraction of nodes (denoted
as popularity) in the network are interested in downloading the

6Scalable Networks, http://www.scalable-networks.com
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Fig. 6. Westwood area
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Fig. 7. Download delay without O/H
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Fig. 8. Download delay with O/H: Buffer 100%
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Fig. 9. Download delay with O/H: Buffer 50%
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Fig. 10. Download delay with RBGAP (50MB)
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Fig. 11. Impact of sparse coding

same file. In the simulations, 200 nodes are populated, and
40% of the nodes are interested in downloading the file (i.e.,
total 80 nodes). The speeds of nodes are randomly selected
from [0,20]m/sec. There is a special type of node called an
Access Point (AP) which possesses the complete file at the
beginning of the simulation. Three static APs are randomly
positioned on the roadside in the area. To evaluate the impact
of file size, we use four different sizes of files, namely 5MB,
10MB, 25MB and 50MB. Although the file size is relatively
small compared to multimedia files, which are in the order
of 100MBs, we believe that it is large enough to evaluate
the performance of various schemes. The piece size is set
to 20KB. For the buffer replacement scheme, Least Recently
Used (LRU) is used to evict an entire generation when the
buffer is full. Buffer space size is represented using the ratio
of the memory buffer size to the file size. A gossip message
is sent to 1-hop neighbors in every 2 seconds. The single hop
pulling strategy is used to measure the performance of content
distribution by excluding routing overheads.

We use the following H/W parameters to model disk I/O and
computation overheads: a nominal hard disk of Rd=40MB/s,
and a mobile device CPU of Re=48/nMB/s (50% computing
power of Intel Pentium 4 M 1.7Ghz). We implement the
E/S pipeline scheme for multi-threading (see Figure 2(b)): a
missing generation is fully loaded into the buffer and then
encoding (E) and sending (S) processes are pipelined. The disk
and coding delays are scheduled based on the disk I/O and
computation models respectively. We define the “download
delay” as the elapsed time for a node to finish downloading
a file. For each configuration, we report the average value of
30 runs with 95% confidence interval.

B. Simulation Results

Effects of Disk I/O and Computation O/H: We consider
scenarios with various numbers of generations: N=1, 5, 10,
50 and No Coding. Here, No Coding denotes the case where
network coding is not used (i.e., the generation size is 1).
To show the impact of overheads, we present the ideal case
where none of the overheads is not considered. We also vary
the availability of buffer space: 50% and 100%. Note that we
can see the impact of “computational overhead” in the case of
100% buffer space, because a node can keep the entire file in
the memory.

Figure 7 shows the results of the ideal case. The figure
shows that as the number of generations increases, the down-
load delay also increases. This confirms that the number of
generations must be kept as small as possible to achieve a
good performance. In Figure 8, we show the case of buffer size
= 100% to show the impact of computation overhead. Unlike
previous results, we notice that the single generation scenarios
perform worse than other scenarios, especially when the file
size is large (i.e., 50M and 25M). Yet it is still better than the
No Coding scenario where the generation size is 2500 for a
50MB file and 1250 for a 25MB file, and the corresponding
encoding rates are 19.2KB/s and 38.4KB/s respectively. This
clearly shows that the encoding rate is a bottleneck. As the
number of generations increases, the effect of computation
overhead reduces. However, if the number of generations is
above a certain threshold, the download latency begins to
increase. The figure shows a “U” shape delay curve for both
25MB and 50MB files. For example, consider the plots of a
25MB file case; the delay decreases until N = 10, and it
increases thereafter.
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Now consider the cases where the buffer size is smaller
than the file size (see Figure 9). The impacts of disk I/O
can be clearly seen by juxtaposing Fig. 9 with Figure 8.
Contrary to our common belief that network coding improves
the file swarming performance [16], the download delay is
even worse than the conventional file swarming (i.e., the No
Coding scenario). The larger the generation size, the higher the
cost of loading a generation into the buffer; thus, the impact of
overheads decreases as the number of generations increases.

Remote Buffer Generation-Aware Pulling (RBGAP): Fig-
ure 10 shows the download delay with different buffer sizes,
namely 100%, 75% and 50%. The download delay, as the num-
ber of generations increases. Note that the disk I/O overhead
is proportional to the number of pieces per generation, and the
probability that the requested generation is not in the buffer
is mainly determined by the buffer size. Thus, the impact of
finite buffer decreases with the number of generations. The
figure shows that RBGAP can effectively reduce unnecessary
disk I/O overheads, thus reducing the downloading delay.

Sparse Coding: To show the effectiveness of a sparse
random network coding, we vary the coding density (i.e., the
fraction of the number of pieces used for encoding) with 25%
increments. For instance, 25% and 50% coding density on
a 50MB file with N=1 show that the maximum number of
pieces used for encoding is 625 and 1250 out of total 2500
pieces respectively. We simulate the following cases: a 50MB
file with N = 1 (G=2500) and a 25MB file with N = 1
(G=1250). We use the buffer size of 100% (i.e., no buffer
replacement overhead) to clearly see the benefits of sparse
coding. Figure 11 shows the results. As the coding density
decreases, the download delay decreases. For instance, when
we lower the coding density to 75%, we observe a considerable
delay reduction: from 2814s to 2599s for a 50MB file and from
1349s to 1153s for a 25MB file. However, if the coding density
is too low, it is likely that a linearly dependent coded piece is
generated. As a result, a node may not be able to fully utilize
its bandwidth and thus, the download delay increases.

VII. CONCLUSION

In this paper, we investigated the impact of resource con-
straints (i.e., disk I/O, computation, memory) on the per-
formance of network coding based content distribution. We
modeled the disk I/O and computation operations in network
coding to consider the resource constraints. We analyzed the
goodput of the content pulling procedure and found that one
of the key constraints for network coding configuration is the
available communication bandwidth for a node. We imple-
mented the model in a wireless network simulator and exten-
sively evaluated the impact of network coding configuration.
To improve performance, we proposed a remote buffer aware
pulling method that minimizes the disk I/O overhead and
investigated computationally efficient network coding meth-
ods. We found that (1) resource constraints have a significant
impact on the performance; (2) the proposed remote buffer
aware pulling effectively reduced the disk I/O overheads; (3)
the coding rate of sparse random network coding has to be

carefully chosen based on the given bandwidth; (4) generation
level pre-coding does not work well in VANETs.
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