
422 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 10, NO. 4, DECEMBER 2008

Efficient Peer-to-Peer File Sharing Using Network Coding
in MANET

Uichin Lee, Joon-Sang Park, Seung-Hoon Lee, Won W. Ro, Giovanni Pau, and Mario Gerla

Abstract: Mobile peer-to-peer (P2P) systems have recently got in
the limelight of the research community that is striving to build ef-
ficient and effective mobile content addressable networks. Along
this line of research, we propose a new peer-to-peer file sharing
protocol suited to mobile ad hoc networks (MANET). The main
ingredients of our protocol are network coding and mobility as-
sisted data propagation, i.e., single-hop communication. We argue
that network coding in combination with single-hop communica-
tion allows P2P file sharing systems in MANET to operate in a
more efficient manner and helps the systems to deal with typical
MANET issues such as dynamic topology and intermittent connec-
tivity as well as various other issues that have been disregarded
in previous MANET P2P researches such as addressing, node/user
density, non-cooperativeness, and unreliable channel. Via simula-
tion, we show that our P2P protocol based on network coding and
single-hop communication allows shorter file downloading delays
compared to an existing MANET P2P protocol.

Index Terms: File swarming, mobile ad hoc networks (MANET),
mobility-assisted, network coding, peer-to-peer (P2P), random lin-
ear code.

I. INTRODUCTION

Peer-to-peer (P2P) file sharing in mobile ad hoc networks has
continuously gained popularity due to its strong adaptability in
many practical applications. However, using existing P2P file
sharing systems (such as Gnutella and BitTorrent) on mobile ad
hoc networks (MANET) inherently contains some limitations
since they are mainly developed for the wired networks. Re-
cently, several P2P schemes targeting MANET have been pro-
posed as in MANET-optimized versions of existing P2P as well
as clean-slate designs. Most of the recently proposed MANET
P2P protocols attempt to address the problems caused by dy-
namic topology through cross-layer optimization since MANET
is characterized by highly dynamic topology; however, P2P
protocols are encumbered with various other characteristics of
MANET.

Manuscript received July 31, 2008.
This work was supported in part by the National Science Foundation under

Grant No. 0520332, the US Army under MURI award W911NF-05-1-0246,
and the Korea Science and Engineering Foundation (KOSEF) grant (No. R11-
2000-074-02006-0 and No. R01-2008-000-12477-0) and the Korea Research
Foundation grant (KRF-2007-331-D00384) funded by the Korea Government
(MEST). This work was in part presented at the 1st International Workshop on
Decentralized Resource Sharing in Mobile Networks, 2006.

U. Lee, S.-H. Lee, G. Pau, and M. Gerla are with the Computer Science De-
partment, University of California, Los Angeles, email: {uclee, shlee, gpau,
gerla}@cs.ucla.edu.

J.-S. Park is with the Department of Computer Engineering, Hongik Univer-
sity, email: jsp@hongik.ac.kr.

W. W. Ro is with the School of Electrical and Electronic Engineering, Yonsei
University, email: wro@yonsei.ac.kr.

Corresponding author: J.-S. Park.

First problem is caused by the fact that the wireless channel is
error prone. If a protocol is designed without considering poten-
tial errors, the performance of the protocol in real deployment
will be seriously degraded. For example, TCP connections usu-
ally die out in multihop networks with lossy channel but most
P2P protocols simply assume that TCP offers reasonable band-
width. Secondly, number of users and user density should also
be considered. In a file sharing scenario, the total number of
users can scale up to tens of thousands of nodes, and theoreti-
cally, all of the nodes can be users running P2P protocols. Even
with any cross-layer optimization, no conventional MANET
routing protocols is expected to support such big networks. Pos-
sible non-cooperative nodes are another concern. Most MANET
protocols are designed based on the assumption of node coop-
erativeness. Multihop routes can only be established when there
are nodes willing to serve as relays for the sake of data sender.
In a MANET built/maintained/owned by a single entity, such as
a military tactical network or wireless mesh network, nodes can
easily be forced to cooperate to achieve a common goal (e.g.,
providing a communication infrastructure). But in other types
of MANET such as vehicular ad hoc networks (VANET) con-
sisting of cars, trucks, or any other types of vehicles on the road,
it is very likely that nodes are operated by different entities for
their own good and thus it may not possible to force every node
to cooperate each other. Lastly, IP addressing is non-trivial in
large scale MANET. It is not clear how each node will be as-
signed an IP address in a large scale MANET such as VANET.

In this paper, we investigate the problem of running BitTor-
rent type P2P file sharing systems, i.e., file swarming protocols,
in MANET. To remedy the issues identified above, we take a
holistic approach. Put another way, instead of solving each issue
separately as an independent problem, we design an entirely new
protocol to address all these problems at once. As we can see,
the use of existing MANET routing protocols in P2P file swarm-
ing give rise to most of the issues. In our design, we resort to
single-hop communication. Multihop routes are never used and
thus are not required to be maintained explicitly by any layer in
the protocol stack. Rather, multihop communication is implicit.
We restrict logical peers, i.e., nodes exchanging file pieces, to
physical neighbors, yet data is propagated through the (overlay)
network of peers of common interest, which is the basic concept
of operation of P2P file sharing systems. The main problem of
restricting logical peers to physical neighbors in MANET, how-
ever, is connectivity amongst peers. It might be difficult for a
node to find peers of common interest. Even though some peers
are found, there is no guarantee that those peers possess useful
data. The main ingredients of our design are network coding
and mobility assisted data propagation (e.g., [1]). The two tech-
niques allow our design to maintain enough connectivity among

1229-2370/08/$10.00 c© 2008 KICS

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:32:08 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: EFFICIENT PEER-TO-PEER FILE SHARING USING NETWORK CODING... 423

peers with low overhead such that users can download files in
less time than existing protocols.

By network coding, we refer to the notion of performing cod-
ing operations on the contents of packets throughout a network.
This notion is generally attributed to Ahlswede et al. [2], who
showed the utility of the network coding for multicast. The work
of Ahlswede et al. was followed by other work by Koetter and
Médard [3] that showed that codes with a simple, linear struc-
ture were sufficient to achieve the capacity of multicast connec-
tions in lossless, wireline networks. This result was augmented
by Ho et al. [4], who showed that a random construction of the
linear codes was sufficient. The utility of such random linear
code for wired P2P file sharing systems was soon realized in [5].
Network coding improves the performance of P2P file swarm-
ing systems since it mitigates the block transfer scheduling or
piece selection problem especially when only local information
is given and nodes dynamically join/depart. It helps increase the
number of distinct pieces available in the network via coding,
thus providing a higher chance for peers to pull useful pieces [5],
[6]. Recently, implementation and performance issues in net-
work coding based P2P have been investigated in [7]–[9]. Our
contribution in this lineage is that we show the utility of ran-
dom linear code for P2P file swarming protocols “in MANET.”
Our work is inspired by [5] in which the performance advan-
tage of using random linear code in “wired” P2P systems is
investigated. Different from [5], we show that network coding
helps exploit unique opportunities offered in the MANET P2P
environment, the broadcast nature of wireless medium and node
mobility. Our file swarming protocol based on network coding
and mobility assisted data propagation, i.e., single-hop commu-
nication, shows less download delay than an existing MANET
file swarming protocol.

The rest of this paper is organized as follows. Section II il-
lustrates our network coding based file swarming protocol and
we evaluate the protocol through simulation in Section III. Sec-
tion IV presents the related work and, finally, Section V con-
cludes this paper.

II. NETWORK CODING BASED FILE SWARMING
PROTOCOL

In this section, we describe our file swarming protocol for
MANET named CodeTorrent. To start, we define a seed node to
be a node which possesses a complete file and has intension to
share the file. The seed node announces the availability of the
file via one-hop broadcast of the description of the file. Similar
to the torrent file in BitTorrent protocol, a description contains,
for example, identification number, file name, file size, number
of pieces, etc. We simply assume that each file can be uniquely
identified with an identification number (fileid) during the time
period in which every node interested in the file completes its
downloading.

At the seed node, a file F is divided into n pieces
p1, p2, · · ·, pn. In our protocol, nodes exchange coded frames
instead of file pieces. We define a coded frame c to be a linear
combination of file piece pk’s. That is, c =

∑n
k=1 ekpk where

ek is a certain element in a certain finite field F over which every
arithmetic operation is. File piece p’s and coded frame c’s are

also regarded as vectors over F. Whenever the seed node is re-
quested to exchange a coded frame, the node transmits a newly
generated a coded frame c and when generating c, each ek is
drawn randomly from F, hence the name of random linear cod-
ing (RLC). In the header of a coded frame, the encoding vector
e = [e1 · · · en] is stored for the purpose of later decoding [10].
Throughout this paper, we use lowercase boldface letters to de-
note vectors, frames, or packets, uppercase letters to denote ma-
trices, italics to denote variables.

A node learns of a file from receiving the file’s description
transmitted from neighbors. If the node finds the file interesting,
it broadcasts a request containing fileid of the file and the trans-
action ID. Upon receiving such a request, the node responds
with a newly generated coded frame. A node may receive a re-
quest even though it does not possess the complete file, i.e., it
is not a seed node. If it possesses any coded frame of the re-
quested file, it should respond to the request. The reply, i.e., a
coded frame, is accompanied by the corresponding transaction
ID. A node keeps requesting neighbors to send coded frames un-
til it collects n coded frames carrying encoding vectors that are
linearly independent of each other. Simultaneous requests and
replies can be distinguished and matched by their transaction
IDs. Every node announces the availability of any coded frame
it possesses. Not only the seed node of a file but also every node
which possesses any coded frame of the file and willing to share
them periodically broadcasts to its 1-hop neighbors the descrip-
tion of the file. If a node has multiple files to share, multiple
descriptions are packed into the least number of packets that can
carry all of them and then transmitted.

Whenever requested, every node, not just the seed node, cre-
ates on-the-fly and transmits a new coded frame. To create a
“new” code frame on a non-seed node which is defined to be a
node possessing a number of coded frame less than n, the coded
frames stored in local memory are used. A non-seed node gen-
erates a random linear combination of coded frames available in
local memory and transmits it. Since the frames in local mem-
ory are already coded ones, the “re-encoded” frame to be trans-
mitted ć =

∑rnk
k=1 ékck is tagged with the encoding vector é =

∑rnk
k=1 ékek where ck and ek is a coded frame in local memory

and the encoding vector prefixed to ck, respectively. rnk is the
number of ck’s found in local memory. When encoding, each
ék is drawn uniformly from F.

To recover n file pieces p1, p2, · · ·, pn, a node must collect
more than n coded frames carrying encoding vectors that are
linearly independent of each other. Let ck be a coded frame,
ek be the encoding vector prefixed to ck, and pk be a file piece
to be decoded and recovered where k = 1, · · ·, n. Further, let
ET = [eT1 · · · eTn], CT = [cT1 · · · cTn], and PT = [pT1 · · · pTn] where
superscript T denotes the transpose operation. The original file
pieces are obtained from P = E−1C. Note that all ek’s must be
linearly independent to be able to invert E.

A request of coded frames may be accompanied by the
nullspace vector which is a vector in the nullspace spanned by
all encoding vectors of the frames stored in the local memory
of the requesting node. On reception of such a request, a node
transmits a coded frame only if there is in its local memory
a frame with the encoding vector that is not orthogonal to the
nullspace vector received with the request.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:32:08 UTC from IEEE Xplore. Restrictions apply.

424 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 10, NO. 4, DECEMBER 2008

Every node promiscuously listens to packets, i.e., a node re-
ceives a specific packet even the node is not the designated re-
ceiver, so that it can use them if possible. A node always over-
hears the packets carrying coded frames and treats the overhead
ones as the coded frames transmitted specifically to the node and
if an overheard coded frame is linearly independent of the coded
frames in local memory, the node stores it.

Since every transmission is MAC/link layer broadcasting, a
small random amount of wait time before each transmission
called broadcast jitter is applied to reduce collisions. Without
broadcast jitter, MAC/link layer broadcasting suffers severely
from the hidden terminal problem.

If shared files are large ones, there are additional issues. One
of them is the size of encoding vector. The size of encoding vec-
tor is proportional to the file size divided by coded packet size.
Assuming GF(28), if the file size is 1 GB and the packet size
is 1 KB, then the size of encoding vector is 1 MB which is to
large to fit in the header of coded frames. One solution to this
issue is to use the concept of “generation” [10] as follows. The
original file is divided into m generations. Each generation i
has g pieces (we call g the generation size) and the piece size
is fixed to b KB: i.e., pi,1, pi,2, · · ·, pi,g for i = 1, · · ·,m. For
each generation i, the seed node creates a coded piece via ran-
dom linear coding over all the pieces in the same generation:∑g

k=1 ckpi,k where ck is randomly drawn over F. Each inter-
mediate node similarly generates a coded piece by combining
all the coded pieces collected so far for that generation and only
keeps linearly independent coded pieces. Each coded piece is
marked with the generation number, and coded pieces belong-
ing to the same generation are used for encoding. For a given
generation, after collecting g coded pieces that are linearly in-
dependent of each other, a node can recover the original data
by simply solving a set of linear equations. This process repeats
until the node collects all m generations.

III. EVALUATION

In this section, we evaluate and compare the performance of
CodeTorrent to CarTorrent [11], an earliest file swarming pro-
tocol for MANET, through simulations using Qualnet [12]. In
the simulations, we use IEEE 802.11b PHY/MAC with 2 Mbps
bandwidth and random waypoint mobility model. A fraction of
nodes (denoted as popularity) in the network is interested in
downloading the same file. There is a special type of node
called AP which possesses the complete file at the beginning
of each simulation. Three static APs are randomly positioned
on the 2400 m × 2400 m field. In CarTorrent, we use UDP
to transfer data packets. As the underlying routing protocol,
we use AODV [13]. We limit the scope of the gossip packets
(which tell who possesses what) to 3 hops as proposed in the
original design [11]. We also limit the TTL value of RREQ in
AODV to 3 hops (same as gossip packets.) Each node initiates
a piece downloading either periodically (i.e., every 0.5 second)
or upon receiving a new gossip packet. Successful downloading
of a piece will also initiate downloading of another piece. Piece
availability gossiping is carried out for every 5 seconds. We use
a probabilistic gossiping: Uninterested and interested nodes for-
warded the gossiping packets with probability 0.1 and 0.8, re-

Fig. 1. Aggregated downloading progress (200 nodes moving at maxi-
mum speed of 20 m/s with 40% popularity).

spectively. Similarly, CodeTorrent uses UDP to transfer pack-
ets to its neighbors. CodeTorrent does not use any underlying
routing protocol, because it only relies on the single hop uni-
cast. Overhearing is allowed in CodeTorrent (i.e., every node
promiscuously listen to the wireless channel and receive packets
regardless of their destinations.) and GF(28) is used for coding.

Unless otherwise specified, the sharing file is 1 MB sized and
a single generation constitutes the file. The block or piece size is
4 KB and thus there are 250 pieces total in the generation. In the
CodeTorrent case, a peer must acquire 250 linearly independent
coded pieces to decode the file. A coded piece with encoding
vector prefixed is transferred using multiple 1 KB packets. Since
the size of the encoding vector is 250 B, about 6% of each packet
is the overhead paid for the encoding vector.

We define the download “delay” to be the elapsed time for a
node to collect all the pieces constituting the file for CarTorrent
or a enough number (same as the generation size) of linearly
independent coded pieces from which the original file can be
recovered for CodeTorrent. The given metric is evaluated with
various configurations, i.e., as a function of node density, maxi-
mum node speed, and fraction of interested nodes.

A. Comparison of Download Delay

First, we contrast the download delay of CodeTorrent to that
of CarTorrent in a specific setting to show the performance ben-
efit of CodeTorrent over CarTorrent.

The aggregated downloading progress (cumulative histogram
with slot size of 20 seconds) is shown in Fig. 1. For each time
slot (x-axis), the figure plots the average fraction of pieces col-
lected by 80 nodes for CarTorrent and the averaged fraction
of linearly independent coded pieces collected by 80 nodes for
CodeTorrent. The figure clearly shows that CodeTorrent signif-
icantly expedites the overall progress compared to CarTorrent.

Fig. 2 shows the histogram of download delays for both proto-
cols with a slot size of 20 seconds. In CodeTorrent, nodes collec-
tively help each other to distribute coded pieces using network
coding (i.e., algebraic mixing) and overhearing. At the second
time slot, i.e., [20, 40), we see that around 5 nodes become seeds
(a node becomes a seed when it completes downloading of the
shared file), which is followed by a burst of about 15 new seeds
in a few next slots. As the number of seeds increases in the net-
work, the usefulness of random coded packet increases and thus,

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:32:08 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: EFFICIENT PEER-TO-PEER FILE SHARING USING NETWORK CODING... 425

Fig. 2. Histogram of download delays.

Fig. 3. Average hop count histogram for multi-hop pulling in CarTorrent.

this further shortens downloading time.
On the other hand, CarTorrent does not show such burst births

of seeds, but seeds are born rather gradually. This is mainly due
to the competition among nodes to secure downloading band-
width. For example, after receiving a gossip packet from nodes
or APs, in the worst case, 80 interested nodes start request-
ing pieces all at the same time. Since overhearing is not as-
sumed, a number of nodes inevitably contend for the limited
bandwidth. This crowd effect causes severe channel contention,
thus resulting in performance degradation as shown in Fig. 2.
Moreover, some peers that are not one-hop physical neighbors
to each other necessitate multi-hop communication which ag-
gravates the channel contention. In Fig. 2, it shows that the first
download completion happened at the second slot and the max-
imum birth rate of seeds1 was always less than 5. To show the
behavior of multi-hop pulling, in Fig. 3 we plot the histogram
of average hop count exceeding 1 hop with a slot size of 20 sec-
onds. The figure clearly states that since the availability of a ran-
dom piece increases as time passes, the average hop count grad-
ually decreases. Multi-hop pulling continues until 500 seconds
by which about 95% of interested nodes became seeds. As of the
700 second mark, nodes stop fetching pieces using multi-hop
communications. Note that CarTorrent uses the closest-rarest
first strategy for piece selection; that is, a piece located in the
closest peer is selected for downloading and ties are broken on

1Number of newly born seeds for a given slot.

Fig. 4. Impact of mobility on average download delay.

Fig. 5. Overhead in CarTorrent.

rarity.

B. Impact of Mobility

Next, we investigate the impact of mobility on the down-
load delay. The average download delay as a function of node
speed with various node densities is illustrated in Fig. 4. We
only present the results for the popularity 40% case since the re-
sults for other popularity indices show similar trends (we inves-
tigate the impact of popularity in the next subsection). The figure
shows that in CarTorrent as the number of nodes increases, the
performance gradually degrades. Given a popularity index, an
increased total number of nodes (N) means an increased num-
ber of interested nodes, e.g., N = 100 and 200 cases have 40
and 80 interested nodes, respectively. As the number of inter-
ested nodes increases, the overhead of the underlying routing
protocol and gossiping becomes problematic. Fast mobility will
induce more route errors especially when the number of inter-
ested nodes is large. For instance, when N = 200, the aver-
age number of AODV route error messages (RERRs) increases
from 61 to 149 when the maximum speed increases from 10 to
30 m/s. Such routes errors will re-initiate route discovery (i.e.,
RREQ) and will consequently worsen the network congestion.
Another important factor attributing to such congestion is the
periodical gossiping. Our simulations constrain that a gossip-
ing packet can travel up to 3 hops, and the gossiping period is
fixed to 5 seconds. The network congestion is inevitable as the
number of nodes participating gossiping increases. Moreover,
gossiping period must be adjusted according to mobility in or-

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:32:08 UTC from IEEE Xplore. Restrictions apply.

426 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 10, NO. 4, DECEMBER 2008

Fig. 6. Helpfulness as function of node speed.

der to accurately choose the closest node (i.e., closest-rarest first
selection). That is, the higher the mobility, the more the fre-
quent the advertisements. However, this will further exacerbate
the network congestion, thus resulting performance degradation.
Fig. 5 plots the average number of broadcast packets received
per node as a function of node speed and network size in Car-
Torrent. Broadcast packets composed of routing control pack-
ets and gossip messages contribute to overhead (recall that data
packets are delivered via unicast). As depicted in the figure, as
the network size and mobility increase, the number of broadcast
packets sharply increases.

In contrast, the average download delay of CodeTorrent de-
creases as mobility increases. Since CodeTorrent is based on
single hop data pulling and overhearing, mobility plays an im-
portant role such that data dissemination latency could be re-
duced with increased mobility. For ease of an explanation, let
us imagine two nodes traveling along the same path without
any other contacts until they reach the end of the path. After
exchanging useful information at the beginning, the remaining
contact period will be useless to each other. We realize that the
useless period can only be shortened when we increase their mo-
bility. As shown in Fig. 4, this “mobility”-based mixing on top
of algebraic mixing through network coding can further reduces
the delay. To support this observation, we plot the average frac-
tion of helpful coded pieces (i.e., having a linearly independent
code vector) that are pulled or overheard from one’s neighbors
in Fig. 6. As the average number of neighbors increases, it is
more probable that a node overhears unhelpful coded pieces
from its neighbors. For example, in a static scenario a set of
nodes located in between two groups as forwarders, will receive
more linearly dependent coded pieces when the size of the tar-
get group increases. If nodes are mobile, this can be alleviated,
and thus, the helpfulness improves with increased mobility. One
caveat is that if the mobility is too high, the contact period will
be too short to exchange a piece and this will adversely affect
the performance.

The performance advantage of CodeTorrent compared to Car-
Torrent comes from several aspects. First, CodeTorrent does
not incur any routing overhead and the saved bandwidth ad-
mits additional data transfer. In CarTorrent, routing and gos-
sip overhead consumes large portion of bandwidth limiting its
performance especially when the network size is large and node

Fig. 7. Comparison of CodeTorrent and its variants (N = 200, 40%
popularity).

mobility is high as depicted in Fig. 5. Second, the use of net-
work coding helps exploit node mobility and the broadcast na-
ture of wireless medium in full. To identify the source of bene-
fit, we compare CodeTorrent and CarTorrent to its three vari-
ants: CodeTorrent without network coding (CodeTorrent-w/o
NC), CodeTorrent without overhearing (CodeTorrrent-w/o OH),
and CodeTorrent with both network coding and overhearing dis-
abled (CodTorrent-w/o NC & OH) in Fig. 7.2 By comparing
CodeTorrent with both network coding and overhearing dis-
abled and CarTorrent, we can see that a major part of delay
benefit comes from suppressing routing and gossiping overhead.
CodeTorrent with both network coding and overhearing disabled
is basically the same as CarTorrent with single-hop communi-
cation restriction. Enabling network coding and/or overhearing
on top of CarTorrent with single-hop communication restriction
further reduces download delay. Enabling both network coding
and overhearing at the same time gives 55% to 70% reduction
in average download delay whereas enabling just network cod-
ing when overhearing is not presented allows only 25% reduc-
tion in average download delay. Having said that, we make the
following observations from Fig. 5 First is that the exploitation
of mobility is maximized (compared to other cases) when both
network coding and overhearing is enabled. In CodeTorrent, the
average download delay is decreased by 30% when the node
speed is increased from 10 m/s to 30 m/s whereas the average
download delay is either increased or decreased marginally in
CarTorrent and CodeTorrent variants. Second is that the ben-
efit of overhearing is maximized with network coding. When
the maximum node speed is 30 m/s, the performance improve-
ment from enabling overhearing is 57% when network coding
is used (i.e, the performance improvement of “CodeTorrent”
from “CodeTorrent-w/o OH” is 57%) whereas enabling over-
hearing provides only 40% performance improvement when net-
work coding is not used (i.e., the performance improvement of
“CodeTorrent-w/o NC” from “CodeTorrent-w/o NC & OH” is
40%). Interestingly, when network coding is enabled, the per-
formance gain of overhearing increases, as the node speed in-

2As in CarTorrent, the closest-rarest first strategy is used for piece selection
in the CodeTorrent-w/o NC. All peers are with the same one-hop distance, and
thus, a node chooses the least available piece measured in terms of the number
of nodes having the piece.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:32:08 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: EFFICIENT PEER-TO-PEER FILE SHARING USING NETWORK CODING... 427

Fig. 8. Impact of popularity on average download delay.

creases. This is due to the fact that the usefulness of overheard
or pulled coded pieces increases with node speed as shown in
Fig. 6.

CodeTorrent relies on single-hop communication and thus
node mobility is essential to the protocol. CodeTorrent may fail
to operate in a static network with a limited number of users
with common interest. Dynamically changing topology and/or
enough density of users with common interest offers chances for
users to communication with each other, i.e., maintains a logical
P2P network, only with single-hop communications. CodeTor-
rent is designed for MANET in which nodes are moving. We
expect that CodeTorrent will show limited performance in the
extreme cases with very low node mobility and very few users
with common interest.

C. Impact of Popularity

To show the impact of the popularity of a file, i.e., the frac-
tion of users who are interested in a specific file, we vary the
popularity from 20% to 60% of the population. Fig. 8 shows
the results with the maximum node speed of 10 m/s. In gen-
eral, as popularity increases, the average download delay also
decreases. In particular, the relative decrement of download de-
lay of CodeTorrent is larger than that of CarTorrent. For exam-
ple, in CodeTorrent with N = 100, we observe 36% and 23%
relative decrements when we increase 0.2 to 0.4 and 0.4 to 0.6,
respectively, but in CarTorrent with N = 100, we see 22% and
12%, respectively.

The figure also shows that as node density increases, the av-
erage download delay decreases. For a given popularity, we ob-
viously have more interested nodes, as node density increases.
More interested nodes in turn mean the increment of availabil-
ity. As a result, the average download delay can be shortened.
In the figure, there is one exceptional case in CarTorrent with
N = 200 and 60% popularity: Unlike all the other cases, as
popularity increases, the delay also increases. Again, 60% pop-
ularity with N = 200 means that there are 120 interested nodes.
This implies that there are already too many nodes who want to
download the file. These nodes will compete with each other to
secure the downloading bandwidth. As a result, there will be
severe congestion, and thus, packet drops will increases accord-
ingly. The overall packet loss at the MAC layer can be used to
confirm this. The average drops for 20% were 31.4 whereas that

Fig. 9. Download delay as function of number of generations with two
different block sizes (4/8 KB).

for 60% were 168.8 (6 times larger).

D. Impact of Generation Size

One of the important performance parameters in network cod-
ing based content distribution is the number of generations in the
shared file. The use of network coding mitigates the peer and
piece selection problem in P2P file swarming. However, once
the concept of generation is introduced, the piece (or genera-
tion) selection problem reoccurs, i.e., one may find rare pieces
or generations, and thus as the number of generations increases
the benefit of network coding gets vanished. Another very im-
portant benefit of network coding exclusively to the wireless
environment comes from the broadcast nature of the wireless
medium. When two nodes are exchanging the file pieces the
other nodes that can hear their transmission can download the
pieces for free. Nodes can exploit overhearing in wireless net-
works and network coding maximizes the benefit of overhear-
ing. We illustrate the impact of the number of generations using
two extreme cases with a file comprised of m pieces: One with
a single generation and the other with m generations. In the sin-
gle generation scenario, any overheard piece is very likely to
be useful. Of course, it has to be linearly independent of other
downloaded pieces to be helpful. On the other hand, in the m
generation scenario the probability that an overheard packet is
useful depends on the number of generations that a node has
collected so far. When a node has collected k generations, the
probability is given as 1 − k/m. The probability decreases as
a node collects more generations, that is, the coupon collection
problem will happen.

Fig. 9 illustrates download delays with different numbers of
generations. The results are for the case with 80 interested node
out of 200 nodes moving in 30 m/s speed and with the 5 MB
sharing file. For generation selection, a node uses the rarest gen-
eration first policy: A node chooses the least available genera-
tion measured in terms of the number of nodes having the gener-
ation (i.e., at least one piece). We use two different piece sizes,
either 4 KB or 8 KB. The large piece size (8 KB) cases show
larger download delays since, in case of high mobility, file piece
transfers fail more frequently. In other words, a large piece takes
more time to be transferred but two fast moving nodes cross-
ing each other may not be able to secure contact duration long
enough for a successful piece transfer.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:32:08 UTC from IEEE Xplore. Restrictions apply.

428 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 10, NO. 4, DECEMBER 2008

Fig. 9 clearly shows that as the number of generations in-
creases, the download delay also increases. The single gener-
ation case shows 10% to 20% less download delay compared to
the case with 50 generations. From the results we can learn that
one should decrease the number of generations to achieve better
performance. However, there are other issues to be considered.
One is the encoding vector size. As we decrease the number of
generations, the generation size (the number of pieces belongs
to the same generation) and the encoding vector size gets larger
and beyond certain point the overhead may become unmanage-
able. For example, if we have a 10 M file divided into 4 KB
blocks and there is only one generation in the file, the number
of blocks in a generation is 2500 and with GF(28) the encoding
vector size is already over half the block size. Given the file size,
to have shorter encoding vectors, one may increase the block
size. In our simulations setting however, increasing the block
size has a negative effect on the download delay as mentioned
above.

The computational overhead of network coding is another is-
sue to be considered. If the decoding process is the bottleneck,
the total download delay must include the delay caused by the
decoding process. A naive implementation of the decoding pro-
cess may cost as high as O(m3) where m is the generation size.
However, by employing the progressive/incremental decoding
technique proposed in [10], the complexity of decoding can be
reduced to O(m2) [24]. In fact, it is shown in [8] that by using
hardware acceleration techniques suited to modern general pur-
pose processors one can decode data at a rate (e.g., 16.38 Mbps
when m = 128) far exceeding the wireless transmission rate of
2 Mbps. Thus, we do not consider the computational overhead
in our simulations. If the channel bandwidth is very high and
the size of the shared file is also very large, the decoding delay
may not be negligible.

IV. RELATED WORK

A major portion of MANET P2P works can be categorized as
mobility-assisted content distribution techniques. A mobility-
assisted protocol basically utilizes node mobility to dissemi-
nate/retrieve content or index. 7DS [14] aims at sharing web
content among nodes based on a high locality of information
access within a geographic area, even without Internet connec-
tivity. A node can pull and carry content of interest from its
neighbors, thus diffusing content into the network. In passive
distributed index (PDI) [15], mobility is exploited for dissem-
inating and maintaining a distributed index of shared content.
CodeTorrent is different from these work in that it provides a
BitTorrent style content sharing mechanism based on network
coding similar to [5]. We show in this paper that there are ben-
efits of using network coding typical to the MANET content
sharing scenario, which differentiates our work from [5].

A group of MANET P2P works is classified as cross-layer
techniques. Cross-layer techniques incorporate content index-
ing and routing as a single layer. Most protocols have been fo-
cused on overcoming the discrepancy between a logical overlay
and a physical topology of mobile nodes. For example, XL-
Gnutella [16] maps the logical overlay neighbors to physical
neighbors. CarTorrent [11], a BitTorrent style content sharing

protocol in wireless networks, uses the proximity-driven piece
selection which is known to perform better than the rarest first
piece selection. Similarly, ORION [17] builds an on-demand
content-based overlay, closely matching the topology of an un-
derlying network. Unlike these approaches, CodeTorrent at-
tempts to tackle dynamically changing topology and intermit-
tent connectivity in MANET as well as various other issues that
have been disregarded in previous mobile P2P researches such
as addressing, node/user density, non-cooperativeness, and un-
reliable channel all together with the help of network coding and
mobility assisted dissemination techniques.

Also cross-layer approaches can be found in in distributed
hash table (DHT) inspired protocols. The VRR protocol is a
clean slate approach for content based routing in MANET. VRR
is implemented on the top of the link layer and provides a
reliable routing as well as a native content addressable net-
work [18]. Another DHT inspired approach is represented by
the geographic hash tables [19] where the contents hare hashed
into a geographic location and the retrieval is driven by the a
geographic routing performed over the MANET.

Using network coding in P2P was first proposed in [5] and re-
cent feasibility studies on network coding in real testbeds have
been done in [7], [9], and [20]. Various performance enhance-
ment techniques have been proposed [8], [9], and [21]. In [9],
authors propose the sparse network coding where each piece is
selected for coding with a certain probability, thus reducing the
number of pieces involved in coding. Maymounkov et al. show
that one can decrease the generation size, yet can still effec-
tively handle the coupon collection problem by using erasure
codes at the generation level [21]. The coding technique pro-
posed in [21] may alleviate the generation selection problem in
our protocol. The technique allows the nodes to collect any m
generations out of total k (bigger than m) generations instead of
collecting each of m distinct generations. However, even with
the technique in place, different node pairs still need to exchange
coded frames belonging to different generations, reducing their
chances to be helpful to each other. Shojania et al. in [8] intro-
duced CPU acceleration techniques to improve the performance
of network coding. Some other network coding researches rele-
vant to our scenario are the opportunistic routing with network
coding [22] and multicasting [23] in the wireless environment
and network coding based message dissemination in delay tol-
erant networks [25].

V. CONCLUSION

In this paper, we proposed a network coding based file swarm-
ing protocol named CodeTorrent offering less download de-
lay than an existing file swarming protocol. We showed that
network coding helped exploit unique opportunities offered in
the MANET P2P environment, the broadcast nature of wire-
less medium and node mobility and by exploiting them in full
we could have a very simple solution to the issues arising in
MANET file swarming systems. We kept the system in the sim-
plest form in this paper for clearer presentation of the main idea.
Immediate future work includes exploring optimization oppor-
tunities that the proposed protocol allows.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:32:08 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: EFFICIENT PEER-TO-PEER FILE SHARING USING NETWORK CODING... 429

REFERENCES
[1] F. Bai and A. Helmy, “Impact of mobility on mobility-assisted information

diffusion (MAID) protocols,” Tech. Rep., USC, July 2005.
[2] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network information

flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, July 2000.
[3] R. Koetter and M. Médard, “An algebraic approach to network coding,”

IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782–795, Oct. 2003.
[4] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and

B. Leong, “A random linear network coding approach to multicast,” IEEE
Trans. Inf. Theory, vol. 52, no. 10, pp. 4413–4430, Oct. 2006.

[5] C. Gkantsidis and P. Rodriguez, “Network coding for large scale content
distribution,” in Proc. IEEE INFOCOM, 2005.

[6] D. M. Chiu, R. W. Yeung, J. Huang, and B. Fan, “Can network coding help
in p2p networks?,” in Proc. NetCod, 2006.

[7] M. Wang and B. Li, “How practical is network coding,” in Proc. IWQoS,
2006.

[8] H. Shojania and B. Li, “Parallelized progressive network coding with hard-
ware acceleration,” in Proc. IWQoS, 2007.

[9] G. Ma, Y. Xu, M. Lin, and Y. Xuan, “A content distribution system based
on sparse linear network coding,” in Proc. NetCod, 2007.

[10] P. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Proc. Allerton,
2003.

[11] A. Nandan, S. Das, G. Pau, M. Sanadidi, and M. Gerla, “Cooperative
downloading in vehicular ad hoc wireless networks,” in Proc. WONS,
2005.

[12] Scalable Networks. [Online]. Available: http://www.scalable-networks.
com

[13] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector rout-
ing,” in Proc. IEEE WMCSA, 1999.

[14] M. Papadopouli and H. Schulzrinne, “Effects of power conservation, wire-
less coverage and cooperation on data dissemination among mobile de-
vices,” in Proc. ACM MobiHoc, 2001.

[15] C. Lindemann and O. Waldhors, “A distributed search service for peer-to-
peer file sharing in mobile applications,” in Proc. IEEE P2P, 2002.

[16] M. Conti, E. Gregori, and G. Turi, “A cross-layer optimization of gnutella
for mobile ad hoc networks,” in Proc. ACM MobiHoc, 2005.

[17] A. Klemm, C. Lindemann, and O. Waldhors, “A special-purpose peer-
to-peer file sharing system for mobile ad hoc networks,” in Proc. IEEE
VTC-fall, 2003.

[18] M. Caesar, M. Castro, E. Nightingale, G. O’Shea, and A. Rowstron, “Vir-
tual ring routing: Network routing inspired by dhts,” in Proc. ACM SIG-
COMM 2006.

[19] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and
S. Shenker, “Ght: A geographic hash table for data-centric storage in sen-
sornets,” in Proc. WSNA, 2002.

[20] C. Gkantsidis, J. Miller, and P. Rodriguez, “Comprehensive view of a live
network coding p2p system,” in Proc. IMC, 2006.

[21] P. Maymounkov, N. J. A. Harvey, and D. S. Lun, “Methods for efficient
network coding,” in Proc. Allerton, 2006.

[22] S. Katti, D. Katabi, W. Hu, H. Rahul, and M. Médard, “The importance of
being opportunistic: Practical network coding for wireless environments,”
in Proc. Allerton, 2005.

[23] J.-S. Park, D. S. Lun, Y. Yi, M. Gerla, and M. Medard, “Codecast: A
network-coding-based ad hoc multicast protocol,” IEEE Wireless Com-
mun., vol. 13, no. 5, 2006.

[24] M. Wang and B. Li, “Lava: A reality check of network coding in peer-to-
peer live streaming,” in Proc. IEEE INFOCOM, 2007.

[25] J. Widmer and J.-Y. L. Boudec, “Network coding for efficient communi-
cation in extreme networks,” in Proc. CHANTS, 2005.

Uichin Lee received the B.S. in computer engineering
from Chonbuk National University in 2001, the M.S.
degree in computer science from Korea Advanced In-
stitute of Science and Technology (KAIST) in 2003,
and the Ph.D. degree in computer science from UCLA
in 2008. He is currently a postdoctoral researcher in
the Computer Science Departiment at UCLA. His re-
search interests include wireless networking systems,
mobile sensor networks, and delay tolerant networks.

Joon-Sang Park received his Ph.D. in Computer Sci-
ence from University of California, Los Angeles in
2006, M.S. in Computer Science from the University
of Southern California in 2001. He was a postdoctoral
researcher at UCLA from 2006 to 2007 and now is
on the faculty of the Computer Engineering Depart-
ment at Hongik University, Seoul, Korea. His research
interests include mobile ad hoc and sensor networks,
MIMO, and network coding.

Seung-Hoon Lee received the B.S. in computer sci-
ence from Illinois Institute of Technology in 2006, the
M.S. in computer science from UCLA in 2007. He is
currently a Ph.D. student in the Department of Com-
puter Science at UCLA. His research interests include
network coding, mobile ad-hoc networks (MANETs),
vehicular ad-hoc networks, and inter-domain routing
for heterogeneous MANETs.

Won W. Ro received the B.S. degree in Electrical
Engineering from Yonsei University, Seoul, Korea,
in 1996. He received the M.S. and Ph.D. degrees in
Electrical Engineering from the University of South-
ern California in 1999 and 2004, respectively. He
also worked as a research scientist in Electrical En-
gineering and Computer Science Department in Uni-
versity of California, Irvine. He has worked as an As-
sistant Professor in the Department of Electrical and
Computer Engineering of the California State Univer-
sity, Northridge. His current research interest includes

high-performance microprocessor design, compiler optimization, and embedded
system designs.

Giovanni Pau is a research scientist with the Uni-
versity of California, Los Angeles, Computer Science
Department. He received a Laurea Doctorate in Com-
puter Science and a Ph.D. in Computer Engineering
by the University of Bologna in 1998 and 2003, re-
spectively. He research interests include network sys-
tems with focus on vehicular ad hoc networks, routing
algorithms, and content dissemination. He is a Mem-
ber of IEEE and ACM and serves as Associated Editor
for the Elsevier International Journal on Ad Hoc Net-
works and the Springer International Journal on P2P

Systems.

Mario Gerla received his Engineering degree from
the Politecnico di Milano, Italy, in 1966 and the
M.S. and Ph.D. degrees from UCLA in 1970 and
1973. He became IEEE Fellow in 2002. At UCLA,
he was part of a small team that developed the early
ARPANET protocols under the guidance of Prof.
Leonard Kleinrock. He worked at Network Analysis
Corporation, New York, from 1973 to 1976, transfer-
ring the ARPANET technology to several Government
and Commercial Networks. He joined the faculty of
the Computer Science Department at UCLA in 1976,

where he is now Professor. At UCLA, he has designed and implemented some
of the most popular and cited network protocols for ad hoc wireless networks
including distributed clustering, multicast and transport (TCP Westwood) under
DARPA and NSF grants. He has lead the $12 M, 6 year ONR MINUTEMAN
project, designing the next generation scalable airborne Internet for tactical and
homeland defense scenarios. He is now leading two advanced wireless network
projects under ARMY and IBM funding. In the commercial network scenario,
with NSF and Industry sponsorship, he has led the development of vehicular
communications for safe navigation, urban sensing and location awareness. A
parallel research activity covers personal P2P communications including coop-
erative, networked medical monitoring.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:32:08 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

