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Abstract— Mobile wireless networks with intermittent connec-
tivity, often called Delay/Disruption Tolerant Networks (DTNs),
have recently received a lot of attention because of their
applicability in various applications. It has been shown that
DTN routing and transport protocols can benefit from node
mobility by letting the nodes carry and forward data to overcome
partial connectivity. The scalability of DTN protocols is very
important for protocol design and evaluation, yet so far little
work has been done to study the scaling properties using a
unified framework that formalizes the primary characteristics
of a DTN, i.e., inter-contact behavior of nodes. In this paper,
we represent DTNs as a class of wireless mobile networks with
intermittent connectivity, where the inter-contact behavior of an
arbitrary pair of nodes follows a homogeneous Poisson process.
Using this DTN model, we make the following contributions.
First, we generalize the throughput and delay scaling results of
Grossglauser and Tse. Second, we introduce an optimal single-
copy/multi-hop relay routing scheme and report its capacity
and delay scaling properties. Third, we analyze the impact of
various network parameters and routing strategies (such as
buffer constraints, data replication, intermittent connectivity, and
node speed) on the capacity/delay scaling properties of DTNs.
Finally, we validate our analytical results with a simulation study.

Categories and Subject Descriptors: C.2.1 [Network Archi-
tecture and Design]: Wireless Communication

General Terms: Design, Analysis

Keywords: Delay Tolerant Networks, Wireless Networks,
Scaling Properties

I. INTRODUCTION

Mobile wireless networks that can withstand intermittent
connectivity, often called Delay/Disruption Tolerant Networks
(DTNs), are becoming increasingly popular because of their
applicability to various scenarios ranging from inter-vehicle
communications [4] to content distribution in challenged net-
works [21]. It has been shown that DTN routing and transport
protocols can benefit from node mobility and overcome the
capacity bound of Θ(1/

√
n log n)1 originally established by

Gupta and Kumar [17] for a fixed wireless network. Noting

1Here, n is the number of nodes. Recall that (i) f(n) = O(g(n))
means that ∃c and ∃N such that f(n) ≤ cg(n) for n > N (i.e.,
asymptotic upper bound); (ii) f(n) = Ω(g(n)) means that ∃c and
∃N such that f(n) ≥ cg(n) for n > N (i.e., asymptotic lower
bound); (iii) f(n) = Θ(g(n)) means that f(n) ∈ O(g(n))∩Ω(g(n))
(i.e., asymptotic tight bound); (iv) f(n) = o(g(n)) means that
limn→∞ f(n)/g(n) = 0 (i.e., asymptotic insignificance); and (v)
f(n) = ω(g(n)) means limn→∞ f(n)/g(n) = ∞ (i.e., asymptotic
dominance).

that the average hop length of a path is the key limiting factor,
Grossglauser and Tse proposed a 2-hop relay routing algorithm
that exploits node mobility to effectively reduce the hop length,
and utilizes relay nodes to deliver data to the destination when
they meet [16].

This result has been followed by a flurry of research activ-
ities that tried to characterize the delay/capacity relationship
with respect to node mobility. Various mobility models have
been considered, from a simple independent and identically
distributed (I.I.D.) mobility model [29], [27], [38], [41], to
more complex random mobility models, such as random
waypoint [34], random direction [33], uniform mobility [2],
[8], Brownian mobility [26], and random walk [11]. Sharma
et al. systematically studied the impact of different mobility
models on delay/capacity trade-offs [33]. Garetto et al. studied
a home-point mobility model where each node moves around
its home-point, and studied its impact on capacity scaling
properties [12], [13]. In addition, the impact of finite buffer
constraints on each node to the capacity of network has also
been studied [18].

Despite the wealth of analytic results about the capacity
scaling properties and related trade-offs of wireless networks
under various constraints, our understanding of the basic
scaling properties of DTNs is still limited and fragmented.
This is in part due to the fact that so far little work has been
done to study the scaling properties of DTNs in a unified
framework, which formalizes the primary characteristics of a
delay tolerant network.

In this paper, we represent DTNs as a class of wireless
mobile networks with intermittent connectivity, where the
inter-contact behavior of an arbitrary pair of nodes follows
a homogeneous Poisson process (i.e., exponential pairwise
inter-contact time). Groenevelt et al. [15] showed that random
mobility models such as random direction and random way-
point can be modeled using a homogeneous Poisson process
where the pairwise inter-contact rate of arbitrary nodes results
to be proportional to radio range and node speed. When the
radio range scales below the critical connectivity threshold
Θ(

√
log n/n), the network becomes disconnected with high

probability [17]. Under such a circumstance, we notice that
the radio range and node speed mainly characterize how
frequently a node meets some other node. Thus, our DTN
model provides us a fundamental insight that we can represent
an arbitrary delay tolerant network with certain mobility and
radio characteristics using a single parameter capturing the
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pairwise inter-contact rate λ.2

Using this DTN model, we make the following contributions
in this paper. First, we report a generalized capacity and
delay scaling laws of the 2-hop routing algorithm based on
the inter-contact rate parameter to provide a new insight
to the fundamental properties of DTNs. Second, we study
an optimal multi-hop relay routing scheme and report its
asymptotic capacity and delay bounds. Third, we analyze the
impact of various network parameters and routing strategies
on the capacity/delay scaling properties of DTNs, namely
buffer constraints, data replication, intermittent connectivity,
and node speed, and discuss capacity/delay/buffer trade-offs.
Finally, we validate our analytical results with a simulation
study.

Summary of Results and Organization

The following is the preview of the key results reported
in this paper. For a DTN with n nodes with pairwise node
inter-contact rate of λ, we report the following:

• The per-node throughput of a 2-hop relay routing protocol
scales with Θ(nλ) and the delay of the same routing
scheme is Θ(1/λ). Grossglauser and Tse’s result is a
special case when the radio range is Θ(1/

√
n), i.e.,

λ = Θ(1/n). We report that for any n, there exists a
delay tolerant network with λ = Θ(1/n) that achieves
the per node throughput of Θ(1).

• The throughput and delay of an optimal single-
copy/multi-hop relay DTN routing protocol are O( nλ

log n )
and Θ( log n

nλ ) respectively. Our results show that the
proposed scheme achieves better throughput-delay trade-
offs than any known schemes based on 2-hop relaying
with replication [29], [38], [27], [41].

• Given a finite buffer size of K per communication pair,
we find that the throughput is Θ(nρλ K

K+nρ ) where ρ is a
constant utilization factor. Our results provides a tighter
bound than the previous results by Herdtner et al. [18].

• Given intermittent connectivity with the radio range be-
tween ω(1/

√
n) and o(

√
log n/n), we show that a hy-

brid DTN multi-hop routing protocol where “electronic”
multi-hopping is used within a connected sub-graph,
and “mechanical” carry-and-forward is used to deal with
network partitioning has the per node throughput bound
of o(1/ log2 n); thus, intermittent connectivity improves
the throughput at the cost of delay increment.

The rest of the paper is organized as follows. In Section
II, we present the network model. In Section III, we show
the analysis of the DTN routing protocols, namely 2-hop and
optimal multi-hop relay DTN routing protocols. In Section
IV, we formally investigate various DTN design parameters
and their impacts on the scaling properties. In Section V, we
validate our results via simulations. Finally, we present the
conclusion in Section VI.

2We show the validity of this model using a simulation study in
this paper.

II. NETWORK MODEL

In this section, we review the system model used for
analysis. We present the communication model and traffic
patterns and define the throughput and delay. We then provide
a simple mobility model through which we represent a DTN
in general. Finally, we show the buffer model.

Communication Model and Traffic Patterns: We use the
protocol model to abstract interference between transmissions
[17]. Suppose that node i transmits to node j. Node j
receives the transmission successfully if every other node
that transmits simultaneously is at a distance of at least
(1 + Δ)r(n) from j where Δ is some positive number and
r(n) is the radio range. Each node i ∈ {1, 2, · · · , n} has a
designated destination node di �= i, so there are a total of n
source-destination pairs.

Definition of Throughput and Delay: For a given
scheduling algorithm π, a throughput γ > 0 is said to be
feasible/achievable if every node can send at a rate of γ
bits per seconds to its chosen destination. Let Tπ(n) denote
the maximum feasible per-node throughput under scheduling
algorithm π. The delay of a packet in a network is the time
for a packet to reach the destination after it leaves the source.
Let Dπ(n) denote the average packet delay for a network
with n nodes under scheduling algorithm π. Note that a
scheduling algorithm is stable if the rate Tπ(n) is satisfied
by all users such that one’s queue does not grow infinity, i.e.,
Dπ(n) is bounded.

Modeling Mobility: DTN protocols leverage node mobility as
a means of data delivery (i.e., carry-and-forward) and thus, the
performance mainly depends on the encounter pattern. In this
paper, we describe the mobility model using the pairwise inter-
contact time, which is the time interval between two successive
encounters of a pair of nodes. For analysis, we consider a class
of random mobility models where each node independently
makes its own decision, e.g., each node independently chooses
a random destination (Random Waypoint) or a random di-
rection (Random Direction). Groenevelt et al. showed that
the inter-contact stochastic process of these mobility models
can be captured using an independent homogeneous Poisson
process with meeting rate λ [15], [14]. In other words,
inter-contact time distributions of any pairs are exponentially
distributed with rate λ. This concept can be generalized using
heterogeneous meeting rates with λij for i, j = 1, · · · , n. We
present the Theorem 4.2.1 from [14] to provide a basis for
estimating the λ value for different mobility models.

Theorem 1: Given that two nodes move randomly in an
L×L square (L×Lm2) with the average speed v, if the trans-
mission range r � L and the position of a node at time t+Δ is
independent of its position at time t for small Δ, then the inter-
contact time between two nodes is exponentially distributed
with parameter λ = αrv/L2 where α is a constant and
α = 2ω

∫ 1

0

∫ 1

0
π2(x, y)dxdy. Here, π(x, y) is the steady state

distribution of node position and ω is a constant compensation
factor for the average relative speed. For Random Direction
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and Random Waypoint, we have α = 2ω and α = 2ω×1.3863
respectively.

We note that the inter-contact behavior of an I.I.D. mobility
model, which is much simpler than random mobility models,
can also be approximated using the above model. Given a
network with 1/r × 1/r grids (r < 1) in a unit area (1x1),
every node is completely re-shuffled in each time slot in I.I.D.
mobility. Since a random node encounters a destination node
with probability r2, the number of encounters before meeting
the destination follows a geometric distribution with success
probability r2, and by re-scaling time, it can be approximated
to an exponential distribution with rate λ = r2. The pairwise
inter-contact behavior of I.I.D mobility is a special case of our
model in that the speed of a node is in the same order as the
radio range.

In various empirical studies, the inter-contact time
distribution has been reported to follow an exponential
distribution in real-life mobility patterns. Conan et al. showed
that several mobility traces contain significant fraction of
contact pairs following exponential distributions [7]. For
instance, in the Dartmouth College WiFi trace, out of 13,482
pairs 62.3% pairs have been found to follow an exponential
distribution. Karagiannis et al. found an invariant property that
there is a time granule in the order of half a day, up to which
the distribution of inter-contact time is well approximated by a
power law and beyond it decays exponentially [22]. They also
found that the aggregate inter-contact distribution does not
deviate significantly from the individual pairwise inter-contact
time distribution. In general, when a mobility model is
defined in a finite domain, it has been mathematically proven
that the inter-contact time distribution has an exponential
tail [5].

DTN Model: We model an arbitrary DTN in a unit area of
(1×1) using the pairwise inter-contact rate λ = Θ(rv) where
r is radio range and v is speed. We can map an arbitrary delay
tolerant network to a unit area by relatively scaling the radio
range and average speed. In our study, we consider two cases:
(a) when λ is given and fixed and (b) when λ scales according
to r and v.

Theorem 1 shows that the contact rate is independent of the
number of nodes. However, when λ is given, increasing the
number of nodes over a certain limit will reduce the effective
capacity due to wireless interferences. Also it changes the
operating mode from DTN to mostly/full connected networks.
Thus, in this case, we need to bound the number of nodes. To
identify this threshold, consider the following. Assume that
nodes are uniformly distributed on a unit square. The radio
range determines the number of simultaneous transmissions,
or the network-wide aggregate throughput. Since it is approxi-
mately the same as the total number of non-overlapping circles
with radius r that fills 1×1 area, the network-wide aggregate
throughput T is bounded by Θ(1/r2). Per-node throughput
bound is simply given by dividing the aggregate throughput
by the total number of communication pairs. Therefore, the
aggregate throughput can be expressed in terms of λ: i.e.,
T ≤ Θ(1/r2) = Θ(1/λ). For a DTN with arbitrary λ, per
node throughput is maximized when the number of nodes is

in the same order as the aggregate throughput. Thus, for a DTN
with a given λ, we analyze the scaling property for n ≤ 1/λ.

On the other hand, if λ scales with the node speed and the
radio range (that are the functions of the number of nodes),
we have λ = Θ(rv). Unless otherwise mentioned, we assume
that the speed of a node is in the same order as the radio
range such that the contact duration of two nodes is constant
(and so is the packet size) as in [8], [11], [33].3 For instance,
with radio range r = 1/

√
n, we set the speed v = 1/

√
n and

thus, λ = 1/n. Grossglauser and Tse showed that when we
scale the radio range as r = Θ(1/

√
n) (a class of DTNs with

λ = Θ(1/n)), we can achieve the throughput to Θ(1).
In this paper, we slightly abuse the asymptotic notation

for simplicity as follows. For instance, when we say that the
per-node throughput of the 2-hop relay scheme is Θ(nλ),
this statement is always true only when λ scales with n.
However, when λ is fixed, it is true only when n ≤ 1/λ.
This conditional rule applies to all the asymptotic notations
in this paper. Unless otherwise mentioned, we assume that
the network area is partitioned into C non-overlapping cells
with size sn × sn where we have sn = 1/

√
n to have the

node density per cell O(1).

Shared Buffer Model: In delay tolerant networking, as we
will see, any node can be a potential relay node (i.e., a data
carrier). We assume that each node maintains a queue per each
source and destination pair. Let each node have a finite buffer
space of K packets and then, the total buffer space in the
network is nK. Assuming that the network-wide buffer space
is fairly shared among all communication pairs, we model
the per-pair buffer behavior using a single global queue with
size nK/M where M denotes the number of sources. Since
we have M = n in our traffic scenario, the size of a global
queue is K. A source can send packets to relay nodes as
long as the global queue is not full; and the occupied buffer
space is released whenever relay nodes deliver packets to the
destination.

III. DTN ROUTING ANALYSIS

In this section, we first present the capacity and delay
scaling laws of the 2-hop relay routing model using our DTN
model. This result is a generalized version of previous results
by Grossglauser and Tse [16]. We then present the capacity
and delay scaling laws for an optimal single-copy/multi-hop
relay DTN routing and propose an algorithm to achieve the
optimal bounds.

A. 2-hop Relay DTN Routing

We briefly review the 2-hop relay algorithm proposed by
Grossglauser and Tse [16] for completeness. In each time slot
a cell becomes active if it contains at least a pair of nodes
that are within their radio ranges. In each active cell, if there
is a source-destination pair, such a pair is randomly picked
and the source transmits a packet to the destination (direct

3In Section IV-D, we investigate the case when the node speed is
not in the same order as the radio range.
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Fig. 1. An illustration of the 2-hop relay algorithm.

transmission). Otherwise, we randomly select a pair of nodes,
set one as a sender and the other one as a receiver, and do
the following: either a source node sends a new relay packet
to a relay node (Phase 1: Relay), or a relay node delivers
a packet to the destination (Phase 2: Delivery). The overall
procedure is illustrated in Figure 1. Recall that a relay node
has a separate queue for each source and destination pair and
it may have multiple packets in the queue.

Theorem 2: The capacity of the 2-hop relay scheme is
Θ(nλ).

Proof: Consider a pair of nodes: source i and destina-
tion di. During a small time interval Δt, a random node j
encounters the destination with probability λΔt + o(Δt). In
our network setting, there are a constant number of nodes in
each cell. Since the chance of transmission is equally shared
by k interfering nodes under the protocol model [24], [11],
[8], [18], node j can successfully deliver a packet with the
probability λΔt/k (k = O(1)). Here, we are interested in the
event that the destination di is scheduled to receive node i’s
packet at time t. Let an indicator random variable Mi(Δt, n)
denote this event. Since di can meet any of the relay nodes,
we have:

Pr{Mi(Δt, n) = 1} (1)

=
n∑

j=1,j �=di

Pr{node j delivers a packet during Δt} (2)

≈ (n − 1)λΔt

k
(3)

Thus, the throughput is given as

T (n) =
E[Mi(t, n)]

Δt
=

(n − 1)λΔt

k

1
Δt

(4)

= Θ(nλ) (5)

If λ is fixed, the throughput linearly increases as n in-
creases. When n becomes approximately 1/λ, the throughput
is maximized to Θ(1). This special case matches with the
Grossglauser and Tse’s result with radio range Θ(1/

√
n), i.e.,

λ = Θ(1/n). Thus, there exists a delay tolerant network with
λ = Θ(1/n) that achieves the throughput of Θ(1).

Now we look at the delay of the 2-hop relay scheme. For
now, we assume that a communication pair is given an infinite
size buffer. A source node encounters a destination node with
rate λ and any potential relay nodes with rate (n − 2)λ (i.e.,
minimum of n− 2 random variables). The total output rate of
the source is (n − 1)λ. In the same way, the destination will
encounter a random node carrying the source’s packets with

aggregate rate of (n − 1)λ. Note that if we let the source to
transmit in every chance it meets a relay the system is unstable
because the arrival rate is the same as the service rate. In order
to stabilize the system, we assume that the source sends a
packet with probability ρ < 1 and the utilization is ρ.

Theorem 3: The delay of the 2-hop relay scheme is
Θ(1/λ).

Proof: Consider a pair of nodes: source i and destination
di. The relay delay is the expected time for a packet at the
source to be delivered to the destination di. If the source
encounters the destination first, it can be delivered directly.
This happens with probability 1/n and the average delay is
1

nλ . Otherwise, the packet will be delivered via a relay node
with probability 1−1/n. Recall that a communication pair has
its own queue at each relay node and a packet is served based
on the First In First Out (FIFO) policy. In a nut shell, a queue
will be incremented with rate ρλ (i.e., when it encounters the
source) or decremented with rate λ (i.e., when it encounters the
destination). Therefore, the queueing behavior can be modeled
using the standard M/M/1 queue. The average sojourn time is
simply given as E[W ] = 1

(1−ρ)λ [23]. The expected delay can
be expressed as follows:

D(n) =
1
n

1
nλ

+
n − 1

n

1
(1 − ρ)λ

(6)

≈ 1
(1 − ρ)λ

(7)

Here, D(n) can be approximated to E[W ] as n tends to
infinity. Thus, we have D(n) = Θ(1/λ).

B. Optimal Multi-hop Relay DTN Routing

Most DTN routing protocols use multi-hop relaying in order
to reduce the latency [20], [28], [36], [25]. A packet from
source s is delivered to destination d via a sequence of relay
nodes as s → R1 → R2 → · · · → d; i.e., the packet is to
be moved from a source to destination over a time-varying
connectivity graph [20], [30], [3].

In this section, we first derive the capacity and delay scaling
laws of an optimal multi-hop relay DTN routing algorithm
assuming the existence of an oracle that knows the complete
contact information in the future. In order to derive the capac-
ity/delay bounds of this single-copy/multi-hop scheme, we first
analyze the multi-copy/multi-hop scheme, which is similar to
epidemic data dissemination. We can describe the operation of
a multi-copy/hop scheme as a node coloring process. Initially,
the source’s color is red, and all the other nodes are blue.
Whenever a red node encounters a blue node, the latter is
colored red. The overall process stops when one of the red
nodes encounters the destination. The following theorem from
[15] presents the expected delay and the expected number of
copies (which corresponds to the number of transmissions).

Theorem 4: The expected number of copies in the multi-
copy/hop scheme is n+1

2 . The expected delay is approximately
log n
nλ .
Now we note that the multi-copy/hop scheme in fact embeds

the optimal single-copy/multi-hop DTN routing scheme. We
can visualize the overall replication process of the multi-
copy/hop scheme using a binary replication tree as shown in
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Fig. 2. Binary replication tree: it shows the realization of a replication
process.

Figure 2. For example, when the source s encounters node
R1, it is also colored red. After that moment both s and
R1 start coloring other nodes. In a replication tree, whenever
replication happens (per encounter), the original node is placed
on the left and the newly colored node is placed on the right.
For instance, s is placed on the left and R1 is placed on
the right at the second level. In the figure, the leaf nodes
with bold circles denote the colored nodes and we have total
five nodes colored red. Because the optimal single-copy DTN
routing knows the future contact, it will take a single path in
the replication tree. In Figure 2 this optimal path is given as
s → R2 → d. From this observation, we have the following
lemma.

Lemma 1: The expected number of transmissions in the
optimal DTN routing is log n

2 .
Proof: Since we assume independent and homogeneous

Poisson process, it is expected that the resulting binary replica-
tion tree is well balanced. Let Xi denote an indicator random
variable denoting whether a transmission has happened or not
at level i of the replication tree. If a path traverses level i to
the right, there is a transmission; otherwise, no transmissions
has happened. The optimal path will be a random path in
the replication tree and thus, this happens with probability
Pr{Xi = 1} = 1/2. The depth of the tree is log n on
average. The total number of transmissions is given as X =
X1 + · · ·+Xlog n. Thus, E[X] =

∑log n
i=1 Pr{Xi = 1} = log n

2

We now find the capacity and delay of the optimal multi-hop
relay DTN routing.

Theorem 5: The capacity of the optimal multi-hop relay
DTN routing is O( nλ

log n ).
Proof: Our goal is to find an upper bound on the

throughput capacity of the optimal DTN routing. The deriva-
tion is similar to that in [17]. Consider a bit b originating at
source i. Lemma 1 shows that the number of hops required
by b to reach its destination is H(b) = log n/2. Node i
can encounter another node and transmit data at a rate of
nλ. We define this using an indicator random variable Si.
The total number of simultaneous transmissions per unit time
is given as S =

∑n
j=1 Sj . The expected value of random

variable S is given as E[S] = nE[Si] ≈ n2λ. For the sake of
simplicity, we ignore the “constant” interference factor under
the protocol model. Each source generates bits with rate T (n).
For a given period τ , the total number of bits generated in

the network is nT (n)τ . The total number of hops required to
support these bits during time interval τ is nT (n)τH(b). This
is bounded by the total number of feasible transmissions in
the network during time interval τ that is τS. Hence, we have
nT (n)τH(b) ≤ τS. By substituting H(b) and S, we have
T (n) ≤ 2nλ

log n and thus, T (n) = O( nλ
log n ).

To achieve the throughput bound, we design an algorithm
that is similar to the random network scheduling algorithm
in [17]. The key distinction is that in our case the packets
now routed over a time-varying connectivity graph instead
of a spatial graph. Since there are a constant number of
interfering nodes for a given contact opportunity [24], time-
division multiple-access (TDMA) is used among these nodes;
i.e., a node transmits at regularly scheduled contact time slots.
The optimal multi-hop routing scheme with the contact oracle
allows us to find n source-destination spatial/temporal paths.
For a given contact and its allocated contact time slot, a
node again divides a contact time slot into packet time slots
and performs another TDMA.4 This routing over time-divided
spatial/temporal paths enables us to show the achievability of
the optimal throughput bound using the same techniques used
by El Gamal et al. [11].5

Theorem 6: The delay of the optimal multi-hop relay DTN
routing is Θ( log n

nλ ).
Proof: The multi-copy/hop scheme embeds the optimal

multi-hop relay DTN routing. Since the optimal DTN routing
takes the optimal path out of the replication tree, the expected
latency should be the same as the multi-copy/hop scheme.
From Theorem 4, we have D(n) = Θ( log n

nλ ). Now we consider
the queueing delay. Each node generates traffic with a rate
less than ρ nλ

log n where ρ is a utilization factor (ρ < 1). The
aggregate rate is given as ρn2λ/ log n. Since the average path
length is Θ(log n), a random node is in a multi-hop path with
probability log n/n. The aggregate incoming rate to a node
is given as ρ n2λ

log n
log n

n = ρnλ. Given the knowledge of an
oracle, we assume that each relay node can fully utilize every
encounter for the purpose of data forwarding. Thus, the service
rate is nλ as well. As in Theorem 3, the average sojourn time
at an intermediate node is E[W ] = 1

(1−ρ)nλ . Since the average

path length is Θ(log n), the average delay is given as log n
(1−ρ)nλ .

Thus the order of delay does not change even after considering
the queueing delay.

The above results show that single-copy/multi-hop relay
DTN routing reduces the capacity to O( nλ

log n ), yet it im-

proves the latency to Θ( log n
nλ ) compared to the 2-hop relaying

scheme. This new type of single-copy/multi-hop relaying
scheme has a different characteristics compared to the tra-
ditional multi-copy/multi-hop routing scheme [29]. In DTNs

4To be precise, a contact time slot is divided into log n packet time
slots.

5 In fact, the Oracle algorithm can be realistic in some cases;
e.g., a packet is routed bus to bus assuming that the bus schedule
is known [1]. If we do not have the contact oracle, DTN proto-
cols should make a forwarding decision using a utility function.
For instance, the age of last encounter containing relative location
information of nodes can be used [28], [36], or a packet can be
forwarded to a relay, which has a similar mobility pattern as the
destination [25].
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there are two main resource constraints, per-node bandwidth
and finite buffer. The single-copy schemes only use only band-
width whereas the multi-copy schemes use both bandwidth and
buffer. We study the impact of various replication schemes on
the capacity/delay scaling in Section IV-B and the relationship
among capacity, delay, and buffer in Section IV-E.

IV. DTN DESIGN PARAMETER ANALYSIS

We analyze DTN design parameters and their impacts on the
scaling properties of DTN routing. First, we study the impact
of finite buffer on the capacity of 2-hop relay DTN routing.
Second, we analyze the capacity/delay scaling properties of
multi-copy DTN routing with replication. Third, we study
the impact of intermittent connectivity on the capacity/delay.
Fourth, we show the impact of node speed on the capac-
ity/delay. Finally, we discuss the relationship between buffer,
delay, throughput and the delay-throughput trade-offs in DTN
routing.

A. Finite Buffer Constraint

A source node encounters a potential relay node with rate
mλ where m = n − 2. We assume that a single packet is
sent per contact with probability ρ and thus, the packet arrival
rate is mλρ. If k relay nodes are delivering packets to the
destination, the destination encounters a relay node with rate
kλ where k = 1, 2, · · · ,m: i.e., the delivery rate is mainly
dependent on the number of relay nodes that carry the packets
from the source. Note that the number of distinct relay nodes
does not grow linearly with the number of outstanding packets
in the network, because the source node can meet the same
node multiple times.

Given that there are 	 outstanding packets (or 	 encounters
with actual packet transfers), we want to find the expected
number of relay nodes. In fact, the problem is the same
as the coupon collection problem; i.e., given m coupons,
find out how many trials one has to make to collect all m
coupons. Each trial is a random encounter in our scenario and
is independent of one another. Let X�

i for i = 1, 2, · · · ,m
denote an indicator random variable that shows the existence
of an encounter after 	 trials: X�

i = 1 if the source encountered
node i; otherwise, X�

i = 0. Since a node encounters a random
node i with probability 1/m in each trial, the probability that
the node fails to meet the node i after 	 trials is P (X�

i =
0) = (1− 1/m)�. The encounter probability is P (X�

i = 1) =
1 − P (X�

i = 0) and let g� denote this probability:

g� = P (X�
i = 1) = 1 − (1 − 1

m
)� (8)

We can represent the number of distinct nodes after 	 trials as
X� = X�

1 +X�
2 + · · ·+X�

m where X�
i for all i are IID. By the

linearity of expectation, we have E[X�] = mE[X�
1] = mg�.

After 	 trials E[X�] nodes relay 	 packets to the destination.
Thus, the delivery rate is E[X�]λ = mg�λ.

The system can be modeled using a standard Markovian
queueing model (M/M/1). We first investigate the case where
the queue capacity is infinite. The state transition diagram
is shown in Figure 3. By writing down the global balance

m

m-1 m

mgm

m-2

mm

mgm-2

0 1

mg2 mgm-1

m

mg1 mgm+1

m m

Fig. 3. State transition diagram. Each state denotes the number of outstanding
packets in the networks. The service capacity at state k is mλgk . We can
model the finite buffer system by simply limiting the number of outstanding
packets.

equations of the steady-state probability pk for all k ≥ 0, we
obtain

mρλpk−1 = mgkλpk (9)

By solving the global balance equations we obtain the follow-
ing steady state probability pk.

pk = p0
ρk∏k
i=1 gi

where p0 =
[
1 +

∞∑
j=1

ρj∏j
i=1 gi

]−1

(10)

We consider the case where the buffer size is limited to K;
i.e., there are at most K outstanding packets in the system.
Recall that we assume a shared buffer model such that there
are at most K packets per communication pair. The transition
diagram in Figure 3 has now only K + 1 states, and the
resulting equations are the same as in Equation (10) except
that the summation to the infinity is bounded to K. In the
system, an incoming packet is dropped when the buffer is full,
i.e., the number of outstanding packets is K. This happens
with probability pK and dropping probability monotonically
decreases as the buffer size K increases.

Given this, we consider the effective arrival rate. In a stable
system, the effective arrival rate is the same as the effective
service rate. In other words, this allows us to calculate the
relay capacity; i.e., how many relay nodes are available in the
network. The effective arrival rate is simply given as E[SK ] =
mρλ(1 − pK).

Theorem 7: The average service rate E[SK ] of a 2-hop
relay system with finite buffer size of K is determined as

E[SK ] = mρλ
K

K + ρm
Proof: See the Appendix.

We then find the relationship between the service rate and
the actual throughput. The following theorem shows that the
“service rate” is proportional to the “actual throughput.”

Theorem 8: The capacity of 2-hop relay with buffer space
K is given as Θ(E[SK ]λ).

Proof: The derivation is quite similar to Theorem 2.
The only difference is that the number of relay nodes is now
restricted to E[SK ]. Given E[SK ] relay nodes, the throughput
is given as:

T (n) =
E[Mi(t, n)]

Δt
=

E[SK ]λΔt

k

1
Δt

(11)

= Θ(E[SK ]λ) (12)
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Compared to [18] where a loose upper bound under r(n) =
Θ(1/

√
n) is presented, we provide a tight bound under general

DTN scenarios by showing the relationship between service
capacity and buffer size. For instance, if the buffer size is in
the order of Θ(n) we see that the capacity is also Θ(nλ).
Given that the buffer size is in the order of Θ(

√
n), the

capacity is also Θ(
√

nλ). In the connectivity regime with
r(n) = Θ(1/

√
n) (i.e., λ = 1/n), our results show that the

buffer size should scale as Θ(n) to achieve Θ(1) per node
throughput.

B. Replication

We show that the delay of 2-hop relay DTN routing is
Θ(1/λ). Considering a DTN with λ = 1/n, the delay linearly
scales with the number of nodes, i.e., Θ(n). Neely et al.
showed the Θ(n) delay can be improved using replication [29].
They showed that the 2-hop relay with

√
n and unrestricted

replication can reduce the delay to O(
√

n) and O(log n) re-
spectively. In this section, we generalize capacity/delay trade-
offs of different replication methods used in DTN routing. In
particular, we consider the “probabilistic” replication where a
packet is replicated to a relay node with probability p, and the
“k-copy” replication where a packet is replicated exactly k
times. Instead of a single source making k copies, we assume
that each replica holder can replicate the packet as long as the
total number of replicas is less than k [37], [35]. For instance,
Spyropoulos et al. proposed a binary spraying method [37];
i.e., a counter value that is initially set to k to generate k
replicas is halved for each encounter and is distributed to
nodes; a node finishes replication if its counter value reaches to
zero. Capacity/delay tradeoffs can be summarized as follows.

Theorem 9: The capacity of probabilistic and limited repli-
cation are given as O(λ(1+p)

p ) and O(nλ
k ) respectively. The

delay of probabilistic and k-copy replication are given as
O( log n

pnλ ) and O
(

k log k+n−k
nkλ

)
respectively.

Proof: See the Appendix.
As shown earlier, the number of transmissions to deliver

a packet (i.e., the number of replicas) is the critical factor of
determining the capacity. For instance, probabilistic replication
generates on average pn/(1+p) replicas and thus, the per node
throughput is given as O(λ(1+p)

p ). Theorem 9 clearly shows
that as the degree of replication increases, the delay decreases.
Note that the results that Neely et al. reported are the special
case with λ = Θ(1/n) [29]. Given k =

√
n and k = n, the

delay is given as O(
√

n) and O(log n) respectively, and the
capacity is given O(1/

√
n) and O(1/n) respectively.

In reality, it is non-trivial to determine the degree of repli-
cation. Spyropoulos et al. proposed a method of choosing the
number of replicas for a given delay constraint [37]. Similarly,
Small et al. showed the relationship between the number of
replicas and the delivery probability. This probability is then
used to set the expiration time of a replica [35]. Unlike these
methods, the number of replicas is not strictly enforced in a
marginal utility-based strategy [1], because a packet with the
highest marginal utility is always replicated first. Walker et al.
proposed a simple counting algorithm that limits the fraction of
nodes carrying replicas using a simple counting protocol [39].

Not only does the number of transmissions reduce the
capacity, but the finite buffer size also decreases the capacity
as discussed above. If the buffer space is limited, excessive
replication may cause severe contention, thus diminishing the
effectiveness of replication. Therefore, cleaning up replicas
is also important since unnecessary replicas take up valuable
buffer space. Small et al. showed that replicas can be discarded
after a certain time threshold (or TTL), or via an anti-packet
generated/disseminated by the destination [35]. Neely et al.
proposed to use a sequence number such that a destination
node sends its current sequence number to clean all the packets
whose sequence numbers are less than the destination’s current
sequence number [29].

C. Multi-hop Routing with Intermittent Connectivity

A wireless network is connected with high probability when
the radio range scales with Θ(

√
log n/n) [17]. We first study

the throughput bounds of such a wireless network, using a
similar argument as in Theorem 5. Consider a bit b originating
at source i. Given that we have a unit network, the average
hop length is given as H(b) = Θ(1/r). The total number of
simultaneous transmissions in the network is S = Θ(1/r2).
Each source generates bits with rate T (n). The total number
of hops required to support these bits during time interval τ
is bounded by the total number of feasible transmissions in
the network during time interval τ ; i.e., nT (n)τH(b) < τS.
Hence, we have T (n) < S

nH(b) . By substituting S and H(b),
we have the capacity bound of O( 1

nr ) = O(1/
√

n log n).
If the radio range scales below this critical connectivity

threshold, the network is disconnected with high probability.
In Section III, we mainly study the scaling properties under
the radio range of O(1/

√
n). We now want to find the capacity

bounds of DTN multi-hop routing with intermittent connectiv-
ity under the radio range, from w(1/

√
n) to o(

√
log n/n). We

assume that the routing goal is to minimize the average delay.
Given that a network is composed of a set of connected sub-
graphs depending on the radio range, we use a hybrid DTN
multi-hop routing protocol where “electronic” multi-hopping is
used within a connected sub-graph, and “mechanical” carry-
and-forward is used to deal with network partitioning. Note
that we assume that the radio range is asymptotically greater
than the speed: r(n) = ω(v(n)) in order to guarantee a
progress in multi-hopping [11].

Theorem 10: Given intermittent connectivity under the ra-
dio range, from w(1/

√
n) to o(

√
log n/n), throughput upper

bound of hybrid DTN multi-hop routing is o( 1
log2 n

).
Proof: The key factor of determining the throughput is

the average hop length. Since we use mobility to route packets,
the average hop length is upper bounded by that of “elec-
tronic” multi-hopping. For instance, given that the distance
between two connected sub-graphs is w(r(n)), electronic
multi-hopping requires w(1) transmissions, whereas mechani-
cal carry-and-forward reduces it to Θ(1) transmissions. Also,
the average hop length cannot be lower than the optimal hop
length of log n as shown in Section III-B. Thus, the hop
length ranges from Θ(log n) to Θ(1/r) = o(

√
n/ log n).

From the above argument, per node throughput is bounded
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by T (n) < 1
r2nH(b) , ranging from o(

√
log n/n) to o( 1

log2 n
).

The above results show that the intermittent connectivity
provides a better throughput from O(1/

√
n log n) to o( 1

log2 n
),

mainly because the average hop length can be shorted by
exploiting mobility. However, the throughput improvement
comes at the cost of an increased delay, because the delay
caused by the mobility dominates the delay caused by the
electronic multi-hopping.

D. Node Speed

So far we assume that the node speed is in the same order as
the radio range. We now want to show the impact of the node
speed on the throughput and delay. For a fixed radio range,
the speed determines the contact duration denoted as Dc(n) =
r(n)/v(n) as follows: v(n) = Θ(r(n)) ⇔ Dc(n) = Θ(1),
v(n) = o(r(n)) ⇔ Dc(n) = w(1), and v(n) = w(r(n)) ⇔
Dc(n) = o(1).6

In our 2-hop relay analysis, we show that a source node
encounters a relay node with rate nλ. The actual data rate per
contact is proportional to the contact duration, i.e., nλDc(n).
As a special case, when the contact duration is constant, i.e.,
Dc(n) = Θ(1), the actual rate is the same as the meeting
rate, nλ. By substituting λ and Dc(n), the actual rate is
given as nr(n)2 in general. This shows that the node speed is
independent of the throughput. For example, consider the case
where node speed is asymptotically greater than radio range,
v(n) = w(r(n)) (i.e., Dc(n) = o(1)). Here, the increased
meeting rate compensates for a short contact duration of o(1);
i.e., the achievable throughput is invariant with the node speed.
Note that the contact duration is closely related to the packet
size. In 2-hop relaying, we simply assume that the packet size
scales as the contact duration, particularly when node speed is
asymptotically greater than radio range, v(n) = w(r(n)). The
packet size must be scaled down to Dc(n) = o(1) accordingly,
so that for a given contact duration, a node can have enough
time to pick up a packet.

Since the average delay is a function of the meeting rate
λ = r(n)v(n), we notice that the average delay is directly
related to the node speed. For instance, the average delay of
2-hop relaying is Θ(1/λ). In general, as node speed increases,
the delay decreases. In the following section, we show that
throughput-delay product determines the buffer requirement
for a given communication pair. When the delay changes, the
buffer requirement also changes; i.e., the slower the mobility,
the greater the buffer requirement.

E. Discussion

We discuss the relationship among buffer, delay, throughput
and the delay-throughput trade-offs in DTN routing.

1) Throughput-Delay Product, Buffer Requirements, and
Congestion Control in DTNs: In this section, we use the
previous results to investigate the relationship between delay,
capacity, and buffer requirements. First, for a given node pair,

6Note that readers can find the distribution of contact duration (or
link duration) in [31], [40].

we find the average packet queue in the network using Little’s
law: the product of per node throughput and average packet
life time. Since the packet life time is equal to the average
delay, the average number of packets for a given pair (i.e.,
the number of buffers required to support a given pair flow)
is determined by the throughput-delay product in a DTN.
From this observation, the average buffer requirements for 2-
hop relay and optimal multi-hop relay DTN routing can be
computed as O(nλ) × O(1/λ) = O(n) and O(nλ/ log n) ×
O(log n/nλ) = O(1) respectively (See Section III). Using
a similar technique, we can find the average buffer size of
replication schemes. At first glance, excessive replication will
tend to waste buffer space. However, the results presented in
Section IV-B show that replication reduces both throughput
and delay because we trade throughput for delay improvement.
As a result, the throughput-delay product decreases as well.
More precisely, the average buffer requirements for replication
scheme with k =

√
n and k = n are O(1) and O(log n/n),

respectively.
Theorem 8 in Section IV-A shows that the achievable

throughput decreases when the available buffer size is smaller
than the average buffer requirements. Assuming that buffer
space is a critical resource in DTNs, Jain et al. claimed
that minimizing the delay of a message in routing is a good
approximation for maximizing message throughput because
it reduces contention for resources [20]. Our study reveals
that we can minimize delay by replication and multi-hop
relaying (i.e., by trading capacity for delay improvement). As
a result, the network-wide buffer occupancy will decrease and
subsequently, the packet drop rate will decrease as well.

This anecdotal evidence elicits the need for “congestion
control” of buffer space in DTNs. Fall [9] proposed proactive
methods that involve admission control and expiration timers,
and reactive methods that reserve buffer space based on the
class of a service. Seligman et al. [32] proposed a custodian
migration method where packets (bundles) are migrated to
nodes with available space (or custody transfer) to prevent
packet drops. However, these approaches do not consider
the bandwidth-delay product that measures the capacity of a
network pipe. The bandwidth-delay product has been used for
setting up the TCP congestion window such that the number
of outstanding (or unacknowledged) packets does not exceed
the TCP flow’s share of the product. In the same way, in DTNs
bandwidth-delay product (or throughput-delay product) gives
the required buffer space to accommodate “in-flight” packets.
Thus, the congestion control algorithm should be able to adjust
source’s rate based on the buffer space. Naturally, the assump-
tion of uniform traffic and uniform random mobility are good
to the analysis, but are not very realistic. If traffic and motion
are not uniform, the optimal operating conditions vary from
flow to flow. One needs end-to-end feedbacks to implement
mechanisms such as equation-based flow control [10].7

2) Delay-Throughput Trade-offs: Given the fact that the
delay improvement comes at the cost of throughput reduction,

7In DTNs the end-to-end argument is mitigated such that hop-
by-hop reliability via custody transfer is used to provide end-to-end
reliability [9], [32]
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understanding fundamental delay-throughput trade-offs has
been an active area of research [29], [38], [27], [41]. One
can represent the trade-offs using either the ratio of delay to
throughput (or D/T ratio), or the throughput bound for a given
delay constraint D.

Neely et al. showed that the ratio of delay to throughput is
bounded by Θ(n) (i.e., D/T ≥ Θ(n)) using 2-hop relay-based
routing protocols, namely without redundancy, Θ(

√
n) repli-

cas, with unrestricted replication [29]. However, we showed
that optimal multi-hop DTN routing can achieve a better lower
bound: D/T ≥ Θ( log2 n

n2λ2 ). Recall that the key limiting factor
of determining the capacity is the number of transmissions to
deliver a packet to a destination node. The number of replicas
generated by the unrestricted replication is Θ(n), requiring at
least Θ(n) transmissions. For r(n) = Θ(1/

√
n), we show that

there can be Θ(n) simultaneous transmissions in the network.
Thus, in any period of τ , there are total τΘ(n) transmission
opportunities in the network. Unrestricted replication can
deliver at most τ packets whereas the optimal DTN multi-hop
routing can deliver up to τn/ log n. By effectively reducing
the number of transmissions, we can improve the capacity by
a factor of n/ log n.

Ying et al. recently showed that message splitting/coding
can achieve the per node throughput of O(

√
D/n); i.e.,

D/T ≥
√

Dn [41]. The following is the description of their
model. A packet expiration timer is set based on a delay
constraint of Θ(D): when a packet fails to meet the deadline,
it will be automatically removed from the relay node’s buffer.
They showed that this communication system can be modeled
using an abstract channel with erasure probability e−λD, the
probability that a relay node fails to encounter a destination
node in time D. To achieve optimal capacity/delay tradeoffs,
they used erasure coding and showed that the per node
throughput scales with O(

√
D/n). Given the radio range

r(n) = Θ(1/ 4
√

nD), a node first generates D/M coded
packets using 6D

25M original data packets where M is the
number of neighboring nodes, i.e., Θ(nr(n)2). A node then
broadcasts D/M coded packets to relay nodes during D time
slots of broadcasting period. This is followed by 5D time slots
of message delivery period.

The throughput bound of this procedure can be found using
our framework as follows. Each broadcasting generates O(M)
relay nodes. M neighboring nodes equally share D steps of
the broadcasting period. After this, there will be at most O(D)
relay nodes and they will deliver packets to a destination node
during the message delivery period. Since the number of relay
nodes determines the capacity, it is simply given as O(Dλ).
By substituting λ = r(n)2, the per node throughput is given
as O(

√
D/n). We now compare the delay/throughput ratio

bound. By plugging the delay of the optimal multi-hop routing
from Theorem 6, the ratio is given as D/T ≥ Θ(

√
log n/λ).

For a DTN with λ = 1/n, the ratio becomes D/T ≥
Θ(

√
n log n). The reason why it has a loose lower bound is

that the communication system did not use multi-hop routing.
Recall that the erasure probability is mainly determined by the
delay of 2-hop relaying. Although multi-user packet reception
via wireless broadcasting may help, its improvement is limited.

Given a wireless mobile network with intermittent connectivity
where the radio range scales as o(

√
log n/n), the average

number of neighboring nodes is given as M = o(log n). From
M =

√
n/D = o(log n), the delay bound in this case is given

as D = w(n/ log2 n) which is much greater than Θ( log n
nλ ).

V. SIMULATIONS

In this section, we validate our framework using QualNet
v3.9.5, a packet level network simulator. We measure the inter-
contact time and average contact duration through which we
analyze the throughput of 2-hop relay routing. We then study
the impact of finite buffer and validate our model.

A. Simulation Setup

We use the random waypoint mobility model with 0 pause
time and two sets of speed ranges ([min speed, max speed]):
[1,20]m/s and [1,30]m/s. Nodes are moving in an area of
size 3000m × 3000m. We use 802.11b with two-ray ground
path-loss propagation model, 250m transmission range, and
2Mbps transmission rate. We vary the number of nodes from
10 to 50 by 10 node increments. We implemented the 2-hop
relay routing protocol, in which a node maintains a separate
queue for each destination. When a node encounters another
node, if the encountered node is a destination, the node will
keep sending packets until the link breaks; otherwise, the node
makes a packet by packet forwarding decision; i.e., with the
same probability, the node either relays its own packet to a
relay node or it delivers a relay packet to the encountered
destination. When a link becomes available, scheduling too
many packets at the same time causes MAC layer buffer
overflow. Thus we implemented a flow control mechanism
such that a new packet is scheduled only after an earlier
packet is successfully delivered or dropped. To support this
operation, the MAC layer interacts with the network layer, and
notifies packet delivery and packet drop events. To measure
the maximum throughput, we randomly choose a single pair of
nodes and generate packets using the Constant Bit Rate (CBR)
traffic in QualNet. We warm up simulations for 10,000s to
remove the initial startup phase. Unless otherwise mentioned,
reported results are the averages of 50 runs with different
random seeds and are presented with the 95% confidence
interval. The duration of a simulation is 40,000 seconds.

B. Simulation Results

We measure the pairwise inter-contact time and show the
Complementary Cumulative Distribution Functions (CCDF)
in Figure 4. The figure confirms that the inter-contact time
follows an exponential distribution and is independent of the
number of nodes. The mean inter-contact time is given as
1282s and 990s for the maximum speed of 20m/s and 30m/s
respectively. Figure 5 shows the average contact duration
between nodes. A node with the maximum speed of 20m/s
and 30m/s has the average contact duration of about 32s and
25s respectively.

We measure the per node throughput by increasing CBR
traffic rate (i.e., packets/sec). The size of a packet is 1500B.
Heusse et al. showed that the channel utilization of 802.11b
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Fig. 7. Packet drop probability with finite buffer

with a packet of size 1500B is 70% (denoted as u) [19].
For a given bandwidth B, the effective bandwidth is given
as Be = Bu. We measure the channel utilization in our
setting by placing two nodes at the same location. The
measured utilization is about 80% (1.6Mbps). Given n nodes
and contact rate of λ, a node encounters another node with rate
nλ, which is a renewal process with the mean inter-renewal
interval of 1/nλ. For a given contact duration Dc, a node can
transfer on average DcBe. The average throughput is given
as nλDcBe. Assuming the interfering nodes to either source
or destination equally share the bandwidth, the throughput
becomes nλDcBePi where Pi denotes the interference factor
(Pi ≤ 1). We use the approximated density distribution
proposed by Chu et al. to find Pi [6]. Figure 6 shows the
measured throughput of the 20m/s case. When the number of
nodes is small, the analytic throughput model matches well
with the simulated estimate. However, the analytic throughput
model deviates from the simulated estimate as the number of
nodes increases, mainly because our interference model does
not consider the MAC layer operations (e.g., random back-
offs). Relay nodes competes with each other to deliver its relay
packets as much as possible, and these nodes also interferes
with the source. Recall that the interference range is about
twice larger than the radio range. The simulation log shows
that as the number of contending nodes increases, the number
of packet drops (RTS/CTS and data packets) increases and

this collision resolution process causes throughput loss. We
only present the results for 20m/s. The 30m/s case exhibits
almost identical behavior because the ratio of contact duration
to inter-contact time is about the same.

We then simulate the finite buffer scenario. Since we
measure the throughput by increasing the CBR rate, it is non-
trivial to determine the buffer size. To accurately characterize
the overall behavior, we modified the 2-hop relay protocol
such that a node can only send a single packet for a given
contact. We implement an ideal global buffer where for a
given communication pair, the total number of packets in the
network is limited by a pre-defined threshold. We measure
the fraction of packets dropped. Figure 7 shows the drop
probability with the following configuration: 40 nodes, 20
m/s maximum speed, and variable buffer size ranging from
1 to 100. We also plot the analytic results in Theorem 7. The
figure shows that our model estimates the dropping probability
accurately. It is interesting to note that the dropping probability
is independent of the meeting rate. This is because the buffer
space will be consumed faster when the rate is high, but the
packet delivery is also faster, thus releasing buffer at a higher
rate. Our simulation results with 30m/s maximum speed are
similar to those with 20m/s.

VI. CONCLUSION

We studied the capacity/delay scaling properties of DTN
routing protocols in mobile ad hoc networks with intermittent
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connectivity. We considered a class of random mobility models
where a pairwise inter-contact time can be modeled using
an independent homogeneous Poisson process, e.g., Random
Waypoint, Random Direction, etc. Using this unified frame-
work, we generalized the scaling behavior of 2-hop relay
routing and optimal single-copy/multi-hop routing. Our results
showed that optimal single-copy/multi-hop routing provides a
better delay-capacity trade-off than any known schemes based
on 2-hop relay routing with replication. We studied various
DTN design parameters such as finite buffer, replication,
intermittent connectivity, and node speed, and reported their
impacts on capacity/delay scaling behavior. In particular, we
found that (1) analytic results of finite buffer and replication
provide a better insight into the trade-offs between delay,
capacity, and buffer; (2) intermittent connectivity improves the
throughput at the cost of delay increment; and (3) node speed
does not affect the achievable throughput, yet it is directly
related to the delay.

APPENDIX

This section provides the proofs of the theorems.
Proof: (Theorem 7) We know that E[S] = mpλ(1 −

pK). By Binomial expansion, we can rearrange Equation (8)
as follows:

gn = 1 − (1 − 1

m
)n =

nX
i=1

 
n

i

!
(−1)n−1 1

mn
≈ n

m
(13)

As m goes to the infinity, 1/m is order of magnitude greater
than 1/mk for k > 1; thus, gn can be approximated to n/m.
With the similar argument, we can rewrite pK as follows:

pK =

ρK

»QK
i=1 gi

–−1

1 +
PK

n=1 ρn

»Qn
i=1 gi

–−1 (14)

=

»
1

ρK

KY
i=1

gi +
1

ρK−1

KY
i=2

gi + · · · + 1

ρ
gK + 1

–−1

(15)

≈
»
1

ρ
gK + 1

–−1

=
ρm

K + ρm
(16)

gK is replaced in the last statement. Therefore, we can rewrite
E[S] as follows

E[S] = mρλ(1 − pK) = mρλ
K

K + ρm
(17)

Proof: (Theorem 9) As shown in Theorem 5, the critical
factor determining capacity is the average number of transmis-
sions to deliver a packet (i.e., the average number of replicas).
Zhang et al. showed that the average number of replicas in
probabilistic replication is np

1+p [42] and thus, the capacity is

O( (λ(1+p)
p ). Given k replicas, the capacity is simply O(nλ

k ).
Zhang et al. also showed that the average delay of prob-

abilistic replication is upper bounded by Θ( log n
pnλ ) [42]. The

average delay bound of k replica scheme can be calculated
as follows. The proof is quite similar to Theorem 4, but
we now have a Markov chain with k + 1 states instead of
n + 1 states. Recall that each state denotes the number of
replicas. The state change from i to i + 1 happens with rate

i(n − i)λ whereas i to the absorbing state A happens with
rate iλ. The event 0 → i → A happens with probability

1
n−1 and the average delay is

∑i
k=1

1
λk(n−k) . Note that one

special event is 0 → k → A which happens with probability
1 −

∑k−1
i=0

1
n−1 = 1 − k

n−1 .

D(n) =
1

n − 1

k−1X
i=0

iX
k=1

1

λk(n − k)
+ (1 − k

n − 1
)

1

λk
(18)

=
1

λ(n − 1)

k−1X
i=1

k − i

i(n − i)
+ (1 − k

n − 1
)

1

λk
(19)

<
1

λ(n − 1)
log k + (1 − k

n − 1
)

1

λk
(20)

= O

„
k log k + n − k

nλk

«
(21)
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MobiCom’07, Montréal, QC, Canada, Sept. 2007.

[23] L. Kleinrock. Queueing Systems: Theory, Volume 1. Wiley-Interscience,
1975.

[24] S. R. Kulkarni and P. Viswanath. A Deterministic Approach to Through-
put Scaling in Wireless Networks. IEEE Transactions on Information
Theory, 50(6):1041–1049, 2004.

[25] J. Leguay, T. Friedman, and V. Conan. Evaluating Mobility Pattern Space
Routing for DTNs. In INFOCOM’06, Barcelona, Spain, Apr. 2006.

[26] X. Lin, G. Sharma, R. R. Mazumdar, and N. B. Shroff. Degenerate
Delay-Capacity Trade-offs in Ad Hoc Networks with Brownian Mobil-
ity. IEEE/ACM Transactions on Networking (TON), 14(SI):2777–2784,
2006.

[27] X. Lin and N. B. Shroff. The Fundamental Capacity-Delay Tradeoff in
Large Mobile Wireless Networks. In MedHocNet’04, Bodrum, Turkey,
Jun. 2004.

[28] A. Lindgren, A. Doria, and O. Schelén. PROPHET: Probabilistic
Routing in Intermittently Connected Networks. In SAPIR’04, Fortaleza,
Brazil, Aug. 2004.

[29] M. J. Neely and E. Modiano. Capacity and Delay Tradeoffs for Ad-Hoc
Mobile Networks. IEEE Transactions on Information Theory, 46(2),
June 2005.

[30] R. Ramanathan, P. Basu, and R. Krishnan. Towards a Formalism for
Routing in Challenged Networks. In CHANTS’07, Montreal, Canada,
Sept. 2007.

[31] P. Samar and S. B. Wicker. On the Behavior of Communication Links
of a Node in a Multi-Hop Mobile Environment. In MobiHoc’04, Tokyo,
Japan, May 2004.

[32] M. Seligman, K. Fall, and P. Mundur. Alternative Custodians for
Congestion Control in Delay Tolerant. In CHANTS’06, Pisa, Italy, Sep.
2006.

[33] G. Sharma, R. Mazumdar, and N. Shroff. Delay and Capacity Trade-offs
in Mobile Ad Hoc Networks: A Global Perspective. In INFOCOM’06,
Barcelona, Spain, Apr. 2006.

[34] G. Sharma and R. R. Mazumdar. Delay and Capacity Trade-off in
Wireless Ad Hoc Networks with Random Way-point Mobility. Technical
report, Purdue University, 2005.

[35] T. Small and Z. J. Haas. Resource and Performance Tradeoffs in Delay-
Tolerant Wireless Networks. In CHANTS’05, Philadelphia, PA, Aug.
2005.

[36] T. Spyropoulos, K. Psounis, and C. Raghavendra. Single-Copy Routing
in Intermittently Connected Mobile Networks. In SECON’04, Santa
Clara, CA, Oct. 2004.

[37] T. Spyropoulos, K. Psounis, and C. Raghavendra. Spray and Wait:
An Efficient Routing Scheme for Intermittently Connected Mobile
Networks. In CHANTS’05, Philadelphia, PA, Aug. 2005.

[38] S. Toumpis and A. J. Goldsmith. Large Wireless Networks Under
Fading, Mobility, and Delay Constraints. In INFOCOM’04, Hong-Kong,
Mar. 2004.

[39] B. Walker, J. Glenn, and T. Clancy. Analysis of Simple Counting
Protocols for Delay-Tolerant Networks. In CHANTS’07, Montréal, QC,
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