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Abstract—The use of handheld devices, such as smart phones
for personal entertainment, has become commonplace in today’s
lifestyle. Virtually all of these devices are equipped with Blue-
tooth technology, which can be used to distribute entertainment
content, such as music and movie clips. Mobile users can down-
load content from opportunistically available infrastructure (e.g.,
digital billboards) and direct peer-to-peer (P2P) collaboration,
which significantly increases content availability/coverage. P2P
content distribution protocol design is heavily influenced by the
characteristics of Bluetooth, which is a main departure from
Internet-based content distribution. However, little has been done
to understand the performance of overall Bluetooth operations,
ranging from peer discovery to data downloading, in dynamic
environments with mobility, interference, and different Bluetooth
versions/chipsets. In this paper, we perform an extensive measure-
ment study and find that Bluetooth-based content distribution suf-
fers from time/energy-consuming resource discovery and limited
bandwidth, even with the enhanced features of the latest Bluetooth
version. Given this, we discuss strategies that can effectively im-
prove the performance of the resource-discovery and downloading
phases.

Index Terms—Bluetooth, content distribution, measurement.

I. INTRODUCTION

SMALL portable devices equipped with one or more
wireless technologies (e.g., WiFi, Bluetooth, and ZigBee),

ranging from smart phones (e.g., iPhone and Blackberry) to
digital music players (e.g., Microsoft Zune and iPod Touch)
are becoming increasingly popular. Beyond the means of
wireless synchronization as cable replacement, such radio
technologies are paving the way for novel applications to
mobile users, thus delivering new opportunities to all facets
of the industry. In particular, this paper deals with one fast-
growing application, i.e., proximity advertising and marketing
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using Bluetooth-enabled digital billboards such as BlueCasting
[1] and BlueBlitz Magic Beamer [2].

So far, mobile users have directly been tapping this abun-
dance of data from the opportunistically available digital bill-
boards. Given the fact that such billboards are located at popular
places (e.g., subway stations, department stores, tour sites, and
stadiums) and more users simultaneously download from the
network while on the move, it is natural to expect that several
of them may be interested in downloading the same content.
Thus, it makes sense to explore the extension of opportunistic
networking to include direct peer-to-peer (P2P) exchanges.
There are obvious advantages to this P2P and infrastructure
downloading synergy. P2P technology enables us to over-
come the short contact duration with a Bluetooth access point
(BT-AP) due to the short communication range (10 m) and
mobility, obviating the need to install BT-APs every 10 m.
Thus, our goal is to devise an efficient P2P content distribution
protocol in a mobile environment with opportunistic infrastruc-
ture supports.

A good model is offered by Internet-based P2P indexing (re-
source discovery) and content distribution protocols. A logical
overlay network (e.g., Gnutella) is built on top of the Internet
to provide efficient ways of resource discovery, even with the
dynamics of user participation (called churning). In addition,
BitTorrent-like P2P file swarming is commonly used for content
distribution, where content is divided into a number of small
pieces, and users cooperatively share whatever pieces they have
[3]. Then, the question is whether we can adapt these techniques
to mobile environments. The overlay approach may not be
feasible in mobile environments, because we cannot assume
Internet-like connectivity [4], [5]. Data-access patterns become
opportunistic since data can be exchanged whenever there is a
user of the same interests or infrastructure in the neighborhood.
BitTorrent-like P2P file swarming should be used to efficiently
exploit the opportunistic connectivity. Thus, our focus is on
opportunistic P2P file swarming in mobile environments.

P2P protocol design in mobile environments is dependent
on the underlying radio technology, which is a main departure
from that in the Internet. P2P file swarming is generally divided
into two phases, i.e., resource discovery (in the immediate
neighborhood) and downloading. The protocol design of each
component must carefully consider the characteristics of Blue-
tooth to obtain better performance. However, little efforts have
been made to understand the performance of overall Bluetooth
operations, ranging from peer discovery to data downloading,
in dynamic environments with mobility and interference (e.g.,
WiFi and obstacles). In addition, the performance variation
among different Bluetooth versions was not examined, although
different Bluetooth versions are currently populated in the
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Fig. 1. Bluetooth version distribution. The statistics were gathered at the
University of California at Los Angeles (UCLA) campus on November 29–30,
2006, and November 29, 2007. Bluetooth version information was collected
from those devices that allowed making connections (75% of 402 devices in
2006 and 60% of 351 devices in 2007).

market due to the slow adaptation of Bluetooth standards, as
shown in Fig. 1. Thus far, measurement studies have reported
only the performance of specific operations in static scenarios
with a certain Bluetooth version [6]–[9]. For instance, Kasten
and Langheinrich [7] reported the issues of power consumption
and peer discovery latency in a customized Bluetooth-based
sensor node, and Leopold showed the peer discovery and
throughput measurement results of a Bluetooth v1.1 device [8].
As a result, the impacts of the Bluetooth characteristics on
protocol design and evaluation were not addressed in recent
content distribution systems [10]–[14].

In this paper, we perform extensive experiments to accurately
characterize the Bluetooth performance in a dynamic mobile
environment. We emulate a mobile user with an Amigobot,
which is a programmable robot that can travel at a speed of
up to 2.2 m/s [15]. Our measurements include peer discov-
ery, connection setup, and download bandwidth under various
conditions, such as mobility, interference, and different Blue-
tooth versions. To the best of our knowledge, this is the first
experiment with Bluetooth in an externally controlled mobile
environment. The following summarizes our main findings.

1) Resource discovery in Bluetooth is time/energy con-
suming, even with the latest Bluetooth version 2.0. In
Bluetooth, one must first discover its neighbors (peer
discovery) and then sequentially create a connection to
each neighbor to resolve one’s query (content discovery).
In Section IV, for efficient resource discovery, we present
a cooperative resource discovery method that reduces
resource discovery latency, and an energy efficient peer
discovery protocol that saves energy with minimal per-
formance penalty.

2) Mobile Bluetooth users experience significant through-
put drop. In particular, the measured throughput widely
varies over distance and is much lower than the sim-
ulation results. We discover that this is mainly due to
the autorate control algorithm in Bluetooth, which is
called the channel-quality-driven data rate (CQDDR)
implementation in Bluetooth devices. Since the autorate
control algorithm does not reveal its current packet type
information to the upper layer (i.e., Bluetooth software

stack such as BlueZ), the incorrect choice of a packet
type at the upper layer results in a significant performance
loss. In Section IV, we remedy this problem using a
receiver feedback scheme that enables dynamic packet
size selection at the Bluetooth software stack level.

3) We find that Bluetooth devices are not optimized for
“mobile” environments. Advanced features such as trans-
mission power control, which adjusts power to save
energy, and adaptive frequency hopping (AFH), which
prevents the use of interfered channels, do not work well,
mainly because of their long response time, as opposed to
a short contact period in mobile scenarios.

4) We report that the type of Bluetooth versions/chipset has
a great impact on peer discovery, connection setup, and
data throughput.

Note that our measurement results can also be applicable to
optimizing networking protocols. For instance, delay-tolerant
network routing [17], [18], which aims at providing reliable
data delivery, even with connectivity disruptions (due to mo-
bility and sparse node density), can maximize data transfer
per contact, thereby increasing the end-to-end throughput. The
rest of this paper is organized as follows: Section II introduces
the basics of Bluetooth. Section III describes the experimental
setup and presents our measurement results. Section IV dis-
cusses various schemes to enhance the performance of a file-
swarming protocol in Bluetooth. Related work is reviewed in
Section V. Finally, Section VI concludes this paper.

II. BACKGROUND

Bluetooth is defined as a layered-protocol architecture. Radio
specifies details of the physical layer of Bluetooth. Baseband
concerns peer discovery, connection setup, addressing, packet
format, power control, timing, etc. The Link Manager Protocol
(LMP) is responsible for link setup between Bluetooth devices
and link management. This includes the control and negotiation
of baseband packet size and transmission power. The logical
link control and adaptation protocol (L2CAP) adapts upper
layer protocols (e.g., segmentation and reassembly, protocol
multiplexing, flow control per L2CAP channel, error control,
and retransmissions) to the baseband layer via the host control
interface (HCI). In this section, we review the radio and base-
band of Bluetooth. Details on the Bluetooth radio system can
be found in [19] and [20].

In Bluetooth, the total bandwidth is divided into 79 channels
(with each having 1 MHz). Frequency hopping (FH) occurs by
jumping from one physical channel to another in a pseudoran-
dom sequence. The hop rate is 1600 hop/s, so that each physical
channel is occupied for 625 μs. This interval is referred to as a
slot and is sequentially numbered. The basic unit of networking
in Bluetooth is a piconet, which consists of a master and one to
seven active slave devices. The master determines a hopping se-
quence based on its Bluetooth ID (which is referred to as an FH
channel), which shall be used by all the devices on this piconet.
The FH channel is shared between a master and slaves using
time-division duplex, i.e., data are transmitted one direction at
a time, with transmission alternating both directions. Multiple
slaves share the piconet medium using time-division multiple
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Fig. 2. Bluetooth inquiry procedure example. The size of the inquiry window
is 5.12 s (= 4 × 1.28 s). The master node sends inquiry packets during the
inquiry window. The slave node periodically listens to a specific channel to
wait for an inquiry packet (inquiry scan). After receiving an inquiry packet, the
slave performs a random backoff and then sends an inquiry response.

access. This FH channel is a form of code-division multiple
access; thus, several piconets can coexist with minimal inter-
ference. Two piconets will occasionally use the same physical
channel during the same time slot, causing a collision and data
loss, but this rarely happens, and it is recovered by forward
error correction (FEC) and error detection/automatic repeat
request (ARQ) techniques. Multiple piconets in the same area
are referred to as a scatternet, and different piconets can be in-
terconnected. However, scatternet connection support is defined
as optional in all Bluetooth specifications; thus, many Bluetooth
chips do not support scatternets [13].

Physical Link and Packet Types: The Bluetooth link supports
synchronous services such as voice traffic via the synchronous-
connection-oriented link and asynchronous services such as
bursty data traffic via the asynchronous connectionless (ACL)
link. Since we focus on the data traffic, only the ACL link is il-
lustrated in the following. Baseband defines an ACL link to pro-
vide packet-switched connection between the master and active
slaves (with one ACL link per slave). The master interleaves
traffic between multiple active slaves (up to seven slaves).

Achievable data rates on the ACL link vary, depending on the
number of slots per packet (one, three, and five slots) and on
the FEC strategy. The more the number of slots, the larger the
payload size. The FEC packet formats are DM1 (17 B), DM3
(121 B), and DM5 (224 B), and the nonerror-coded formats are
DH1 (27 B), DH3 (183 B), and DH5 (339 B). For instance,
DH5 can achieve the maximum rate of 732.2 and 433.9 kb/s for
asymmetric and symmetric communications, respectively. The
maximum asymmetric and symmetric data rates are 732.2 and
433.9 kb/s with DH5, respectively. As for the Bluetooth v2.0
enhanced data rate (EDR), phase-shift keying (PSK) mod-
ulation has been added. PSK increases the coding bits
per symbol to 2 and 3 bits, thus introducing EDR packet
types without FEC as 2-DH1/2-DH3/2-DH5 (packet size =
2 × DHx and maximum asymmetric and symmetric rate =
1448.5 and 869.7 kb/s, respectively) and 3-DH1/3-DH3/3-
DH5 (packet size == 3 × DHx and maximum asymmetric and
symmetric rate = 2178.1 and 1306.9 kb/s, respectively).

Peer Discovery: The first step in establishing a piconet is to
identify devices in range that wish to participate in the piconet.
As shown in Fig. 2, the inquiry procedure begins when the
potential master transmits an ID packet with Inquiry Hopping

Sequence (Tx slot) and waits for the response packets from
the slaves with the Inquiry Response Hopping Sequence (Rx
slot). The Inquiry Hopping Sequence consists of 32 unique
wake-up frequencies equally distributed over the 79 frequen-
cies and is divided into two distinct sequences called A and
B trains. Each train contains 16 physical channels and must
be repeated at least 256 times (i.e., 2.56 s = 256 × 10 ms)
before switching to another train. During the inquiry window
(Tw_inq), the master repeats the following: Send two inquiry
packets in each Tx slot, and then, listen to response packets
from other devices in the following Rx slot. The potential slaves
periodically (i.e., Tinq_scan) enter the Inquiry scan state and
listen to a specific channel to search for inquiry packets for the
inquiry scan window (Tw_inq_scan). When a node receives an
inquiry packet, it enters the Inquiry Response state and returns
a frequency hop synchronization (FHS) packet (i.e., inquiry
response) after backing off a random number of slots to avoid
collision. An FHS packet contains the device address, page scan
repetition mode (PSRM), and clock offset, which are required
by the master to initiate a connection. As of Bluetooth v1.2, the
interlaced inquiry scan is introduced. In the original scheme,
because the master repeats a specific packet train many times,
a slave node could miss the whole packet train if it listens to a
channel that belongs to the other packet train (e.g., inquiry A
train/scan B train or inquiry B train/scan A train). To prevent
such pathological situations, the interlaced scan allows a slave
node to scan two trains (i.e., A and B) in a row. Thus, the prob-
ability of missing an inquiry packet becomes negligible [21].

Connection Setup: Once the master has found devices within
its range, it can establish a connection to a device (i.e., paging).
For a device to be paged, the master uses the slave device
address to calculate the page-hopping sequence. To synchronize
the phase in the sequence, the master uses the estimate of
the slave’s clock from the inquiry response, if available. To
synchronize the phase, the master node performs a similar
procedure as the inquiry procedure but uses the page-hopping
sequence. The potential slaves periodically (i.e., Tpage_scan)
enter the page scan state and stay there for the page scan
window (Tw_page_scan) to search for paging packets. The slave
PSRM (i.e., the scan frequency) can be either R1 (Tpage_scan ≤
1.28 s) or R2 (Tpage_scan ≤ 2.56 s). The slave’s setting (i.e.,
R1 or R2) is informed to the master via the PSRM field of
the inquiry response packet. Since the paging interval should
be greater than the page scan interval, the master sets the
number of packet train repetition Npage based on the slave’s
configuration, i.e., Npage ≥ 128 for R1 and Npage ≥ 256 for
R2. The master then starts sending the packet train Npage

times. After receiving the paging packet, the slave immedi-
ately returns the response packet (without backoff). Finally, the
master then responds with its FHS packet (master response),
and the slave sends back an acknowledgement. As a result, a
connection is established, and both master and slave begin to
use the connection-hopping sequence defined in the master’s
FHS packet.

Power Class: A Bluetooth device is classified into three
power classes: Class 1, Class 2, and Class 3 (100-, 10-, and
1-m radio range, respectively). Portable devices (PDA, smart
phones, etc.) typically use Class-2 interfaces, and commercial
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Bluetooth-based content distribution systems, such as Blue-
Casting [1] and BlueBlitz [2], use Class-1 interfaces. The output
powers of Class 1, Class 2, and Class 3 must be in the range of
[1 mW (0 dBm), 100 mW (20 dBm)], [0.25 mW (−6 dBm),
2.5 mW (4 dBm)], and [1 mW (0 dBm), N/A], respectively.
The nominal output power is only defined in Class 2 as 1
mW (0 dBm). It is mandatory for Class-1 devices but optional
for Class-2 devices to implement power control. Based on the
received signal strength indication (RSSI), devices exchange
messages (via the LMP) to adjust output power.

III. MEASUREMENT STUDY OF BLUETOOTH-BASED

CONTENT DISTRIBUTION

In this section, we evaluate the Bluetooth-based content
sharing system through measurement. We are mainly interested
in measuring peer discovery/connection setup latency and the
data rate of a mobile user. Peer discovery latency denotes the
time to discover a random node. Connection latency is the time
to make a connection to a discovered peer. The efficiency of
the connection is measured through the download throughput.
These performance metrics may depend on various factors, i.e.,
the class of Bluetooth devices (i.e., Class 1 or 2) and versions
(i.e., Bluetooth 1.1, 1.2, or 2.0 EDR), the speed of the users,
the distance between users, and WiFi interference. We measure
the impacts of these variables using the metrics of interests. In
this section, after describing the experimental setup, we first
show the results of peer discovery/connection latency. We then
present the downloading throughput of a mobile user, followed
by the impact of WiFi interference. Finally, the downloading
performance in a real environment is presented.

A. Measurement Setup

Measurement Hardware: Evaluating mobile users is chal-
lenging since it is nontrivial to control the speed of users.
Thus, the key ingredient is the ability to control the speed of
mobile users, so that we can repeat the experiment multiple
times to accurately measure the performance. To this end,
we use Amigobot, which is a programmable robot that can
travel at a speed of up to 2.2 m/s. Amigobot can wirelessly
be controlled in a remote machine using a 900-MHz radio
modem pair called AmigoWireFree. A mobile user is emulated
by an Amigobot carrying a laptop on its top. In the experiment,
the speeds of the Amigobot are set to 0.5, 1.0, and 1.5 m/s
(slow, moderate, and fast walking speeds, respectively), and
our speed-measurement results confirm that it can achieve the
specified settings of interest. Note that Amigobots are used to
measure data rates under various scenarios (see Sections III-C
and D); for peer discovery/connection setup (see Section III-B),
we use static scenarios. The laptop used is Dell Latitude D610
with a Pentium M 770 processor (2.0 GHz) and 512-MB
random access memory.

The following Bluetooth dongles are used for experiments.
In the case of Class-2 devices, we use Belkin F8T003v (CSR
chipset, Bluetooth v1.1), Bluetake BT009Si (Silicon Wave,
Bluetooth v1.2), and Belkin F8T013V (Broadcom chipset,
Bluetooth v2.0 EDR). Since most commercial Bluetooth-based

content distribution systems such as BlueCasting [1] and Blue-
Blitz [2] use Class-1 interfaces, we also experiment with a
Class-1 device, i.e., Belkin F8T012V (Broadcom chipset, Blue-
tooth v2.0 EDR), to see the potential benefits of its high trans-
mission power for data transfer to Class-2 devices. Note that
a long-range transfer is only feasible between Class-1 devices,
because Bluetooth requires a bidirectional link for handshaking.

Measurement Environment: Unless otherwise mentioned,
the experiments were carried out in the second level of an un-
derground parking lot to exclude external factors, such as WiFi
interference and obstacles (i.e., human). There was no physical
interference of human/vehicles, because the experiments were
performed late at night.

Measurement Software: To measure the metrics of interests,
we develop a measurement tool using BlueZ v3.7 [22]. BlueZ
is one of the most popular Bluetooth host protocol stack imple-
mentations and is included in the official Linux kernel. BlueZ
implements core protocols (e.g., L2CAP and RFCOMM) and
provides the BSD socket interfaces. The software is used for
peer discovery, connection, and data transfer. On one side, the
measurement software operates as the master node, and on
the other side, it operates as the slave node. Peer discovery is
carried out using the hci-inquiry function by the master node.
The duration of inquiry (inquiry length) is one of the parameters
of hci-inquiry, and its unit is 1.28 s.1 The actual data transfer
is realized through L2CAP sockets. L2CAP is a connection-
oriented protocol that sends an individual datagram of fixed
maximum length. The default transport policy is to retransmit
until success or total connection failure, thus providing a reli-
able point-to-point connection.

The overall procedure can be summarized as follows: The
master node first calls hci-inquiry to discover peers. The num-
ber of inquiry attempts is logged to measure the discovery
latency. Upon finding a node, it tries to make an L2CAP
socket connection to the peer. The latency of the L2CAP
connect function is logged to measure the connection latency.
As previously described, by setting the connection timeout
as 3 s each, the connection attempt takes less than 3 s. The
number of connection attempts is also logged. Dummy data
with a chunk (packet) of 2300 B are continuously transmitted
until the connection is lost. Hereafter, we refer to a chunk of
2300 B as a packet. For every packet transfer, the master logs
the transmission power level (hci-read-transmit-power-level).
The slave node sets on the inquiry and page scan and listens
to a specific port to accept an L2CAP connection. Once the
connection is created, the slave starts receiving packets and
logs link quality (hci-read-link-quality) and RSSI (hci-read-
rssi) information. For every 500-ms period, it logs the total
amount of received data and the data throughput. In addition,
the slave node logs HCI event messages using hcidump, which
is a packet-snooping program for Bluetooth. As we will see
later, hcidump at the receiver side allows us to infer the current
packet type for data transfer. This information is managed by
the LMP in Bluetooth and is not revealed to the upper layer.

1The inquiry window size is inquiry length × 1.28 s.
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Fig. 3. Peer discovery as a function of inquiry length with various Bluetooth versions. (a) Bluetooth v1.1. (b) Bluetooth v1.2. (c) Bluetooth v2.0.

B. Peer Discovery/Connection Setup Latency

Peer discovery and connection latencies are the key com-
ponents of Bluetooth-based content distribution. Given limited
contact duration, the aforementioned overheads determine the
useful time for the actual data transfer. In this section, we
investigate various parameters impacting the performance of
these metrics, i.e., inquiry length, distance between two peers,
and Bluetooth versions. First, we show the impact of inquiry
length in the range of [1, 6] with different Bluetooth versions.
Recall that the unit of the inquiry window is 1.28 s, e.g., inquiry
length 1 is equal to 1.28 s. If the inquiry fails, then the master
node tries again. We measured the average number of such trials
to discover a peer. Upon discovery, we measured the connection
setup latency. To exactly measure the impact of distance, we use
static scenarios where the distance between two peers was set
from 0 to 20 m with a gap of 5 m. Bluetooth v1.1, v1.2, and v2.0
EDR were used. For each configuration, we ran experiments
50 times to get the average value.

Fig. 3 shows the average number of trials for various
Bluetooth versions. Bluetooth v2.0 devices can successfully
be discovered with inquiry length 1, and v1.2 devices take
less than 2. This is mainly due to the use of interlaced scan
operations introduced as of Bluetooth v1.2. In the interlaced
inquiry scan, scanning one inquiry packet train is immedi-
ately followed by scanning the other train. The probability of
missing an inquiry packet train is thus negligible [21], but
it is still possible for the following reason: The specifica-
tion recommends random backoff before a node returns an
inquiry response, mainly to reduce the chances of collision
when multiple devices have opened scan windows and an
inquiring device begins transmitting inquiry packets. If the
scanning interval is larger than 1.28 s, the range of [0,1023]
is used for backoff. Otherwise, the range of [0,127] is used.
Since the average backoff interval is one half of the maxi-
mum interval, the probability of failure with inquiry length
1 is given as P [failure|Tw_inq = 1, Tmax_bf = 1024] =
512 × 0.625 ms/1.28 s = 0.249 and P [failure|Tw_inq =
1, Tmax_bf = 128] = 64 × 0.625 ms/1.28 s = 0.03. From the
figures, we see that the implementation may vary by vendors:
Bluetooth v1.2 may use Tmax_bf = 1024 as the maximum
backoff window size, and Bluetooth v2.0 does not implement
any random backoff.

Unlike other Bluetooth versions, Bluetooth v1.1 requires that
the inquiry length be at least 3. In our experiments, we tried

smaller inquiry lengths (i.e., 1 and 2), but discovery was not
successful in most of the trials. Theoretically speaking, since
inquiry lengths 1 and 2 show about 0.36 and 0.48 of discovery
probabilities according to [21], the discovery process could be
modeled using geometric distribution, assuming that each trial
is independent. On average, by repeating a trial three times
with inquiry length 1, we should be able to discover a peer.
However, according to our finding, this is not true with a small
inquiry length. In practice, we found that, for Bluetooth v1.1,
we need at least inquiry length 3. Bluetooth v1.1 scans only
a single train, and missing a train incurs 2.56 s (i.e., inquiry
length 2) of penalty. We suspect that our tested Bluetooth device
may always start with the same train, thus requiring at least
inquiry length 3. The question is then whether we should repeat
an inquiry procedure with a small inquiry length, e.g., 3, or
try with a bigger inquiry length. For the sake of analysis, we
assume that each trial is independent of one another if the
inquiry length is greater than or equal to 3. Then, from Fig. 3,
we can calculate the average latency for each Bluetooth version,
i.e., the average number of trials is multiplied by the inquiry
length. Let us find the optimal inquiry length to discover each
Bluetooth version, i.e., by comparing the average latency of the
plots with “1.1/1.2/2.0 to v1.1” in Fig. 3. For instance, for “v1.1
to v1.1,” the latency with inquiry lengths 3 and 4 is 4.83 and
5.47 s, respectively.2 Thus, we conclude that the optimal inquiry
length to discover Bluetooth v1.1 and v1.2 or higher is given as
3 and 1, respectively.

We then measure the impact of distance on discovery latency.
Fig. 4 shows the average number of trials as a function of
distance. To discover Bluetooth v1.1 and v2.0 devices, we use
inquiry lengths of 3 and 1, respectively. The distance is not
a critical factor for device discovery. It confirms the fact that
the inquiry procedure is robust, because an inquiry packet is
repeatedly sent, and a small size inquiry packet has low packet
error rate (PER).

Finally, we present the results of connection latency. Again,
connection latency is the time for a node to connect to a dis-
covered peer. Fig. 5 shows the results as a function of distance
and Bluetooth versions. Surprisingly, the latency between Blue-
tooth v2.0 devices is twice larger than that between Bluetooth

2The average number of trials for inquiry lengths 3 and 4 is 1.07 and 1.25,
respectively. Since the unit inquiry length takes 1.28 s, the average latency with
inquiry lengths 3 and 4 is 1.07 × 1.28 × 4 = 4.83 s and 1.26 × 1.28 × 3 =
5.47 s, respectively.
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Fig. 4. Average number of trials as a function of distance.

Fig. 5. Average connection latency as a function of distance.

Fig. 6. Total latency. Discovery latency + connection setup latency.

v1.1. The latency for a Bluetooth v2.0 device to connect to a
Bluetooth v1.1 device takes five times longer than that for the
other direction. Similar to inquiry, the connection latency is not
sensitive to distance. Fig. 6 shows the total latency for discovery
and connection. In our scenarios under consideration, it takes

Fig. 7. Downloaded data size.

Fig. 8. Data rate of a 2.0 user (C2).

much longer to discover and make a connection to a Bluetooth
v1.1 device.

C. Download Throughput of Mobile Users

We measured the downloading throughput of a mobile user
as follows: A static node as a master transferred data to a mobile
user that is initially located at the same place. As described
before, the mobile user was emulated using an Amigobot. We
programmed the robot to travel up to 25 m at the speed of 0.5,
1.0, and 1.5 m/s to mimic slow, moderate, and fast walking
speeds, respectively. The impact of various Bluetooth versions
was explored by testing different Bluetooth versions at the
mobile user side. We used a Class-1 Bluetooth v2.0 device
to investigate the benefits of high transmission power at the
sender side. We ran each configuration five times to calculate
the average.

Fig. 7 shows the average of the total amount of data received
while the Amigobot travels 25 m. It shows that a user moving at
a moderate speed (i.e., 1 m/s) can download several megabytes.
As the speed increases, the download data size decreases. The
decrement is nonlinear since, for a given fixed distance, the
traveling time is inversely proportional to speed (i.e., 0.5 m/s:
50 s, 1 m/s:25 s, 1.5 m/s:16.6 s); the contact duration is critical
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Fig. 9. RSSI of a 2.0 user (C2).

in the mobile environment. Fig. 8 shows the data rate as a
function of distance with different speeds, respectively. The
results show that the overall trend of the data rate is independent
of the speed and is a function of distance. Due to the lack
of space, we will not present the results of Bluetooth v2.0
Class-1 results, because the overall results are quite similar to
Class-1 results, except that it shows higher RSSI on average.
High transmission power (100 mW versus 1 mW) improves the
performance by less than 5%, which validates the importance
of a symmetric link in Bluetooth; Bluetooth protocol opera-
tions are bidirectional (e.g., peer discovery, data transfer, etc.).
However, later, we will show that a Class-1 device may bring
improvement in the presence of WiFi interference, at the cost
of increased interference to WiFi.

Fig. 9 shows that the RSSI value gradually decreases with
distance. On the other hand, the data rate sharply drops after
passing by around the 5-m mark. This sharp drop is coun-
terintuitive, because the bit error rate (BER) rather gradually
decreases with distance [23]. We find that this is mainly due
to CQDDR, which is the autorate control protocol in Bluetooth.
The specification states that the quality measurement of a link at
the receiver side can be used to dynamically control the packet
type transmitted from the remote device to improve throughput
(which is closely related to FEC and ARQ). However, the
incorrect choice of a packet type may result in a significant
performance loss, as noted by Chen et al. [16]. Therefore, the
CQDDR policy plays a key role in determining the throughput,
particularly in mobile environments. The results of Bluetooth
v1.1 and v1.2 in Fig. 7 show that different policies may bring
considerable throughput difference.

Let us further investigate the behavior of CQDDR in our
tested Bluetooth devices. CQDDR is implemented in the LMP.
The receiver side LMP can ask the sender side LMP to transmit
packets using a preferred packet type. Although there is no
HCI function that can access the current packet type being
used, the current packet type can be inferred at the receiver
side as follows: The L2CAP layer segments an L2CAP packet
by ACL_MTU size, which can be read from the Bluetooth
device. For example, given 1017 B of ACL_MTU (the default
value of the Broadcom chipset), 2300 B of an L2CAP packet
(+4 bytes for L2CAP header) is segmented into two 1017-B

Fig. 10. WiFi interference test setup.

packets and one 270-B packet. Each segmented packet is at-
tached with a 4-B ACL header (i.e., 1021-B and 274-B packets).
A series of L2CAP segment packets are then sent to the lower
layer. Bluetooth baseband processes those packets: If the size
of an incoming packet is larger than that of the current packet
type, a node fragments the incoming packet. For instance, in
the preceding example, if the current baseband packet type is
3-DH5, which can load up to 1021 B, the segmented packet
with size 1021 B is directly sent using a 3-DH5 packet. If
the current packet type is 2-DH5 (maximum of 367 B), the
baseband layer segments the payload, i.e., by generating two
367-B packets and one 283-B packet. The L2CAP layer of
the receiver will reassemble the payload. Thus, by reading
HCI event messages at the L2CAP layer, we can determine
the current packet type. In our experiment, we use hcidump
to log events. Due to the lack of space, we only present our
main findings. First, the tested Bluetooth v2.0 devices start with
3-DH5 and then change to 2-DH5 and 2-DH3 as the link quality
degrades. Second, the tested Bluetooth v1.1 devices use DH5
by default, and as the distance increases (i.e., after passing, on
average, 10 m), it changes the packet type to DM5. Third, the
tested Bluetooth v1.2 devices continue to use DH5, regardless
of the distance.

D. Impact of WiFi Interference

Both Bluetooth and IEEE 802.11 WiFi (i.e., 802.11 b/g)
operate in the same frequency spectrum, i.e., the 2.4-GHz in-
dustrial, scientific and medical (ISM) band. Thus, it is expected
that the performance of these devices is adversely affected by
the presence of one another. In view of this, the Coexistence
Task Group 2 (TG2) of IEEE 802.15 has included an AFH
mechanism. AFH considers the channel condition and dynami-
cally changes the hopping frequency, thus enabling coexistence
with other devices in the 2.4-GHz ISM band. AFH consists
of two steps: 1) channel classification and 2) adaptive control
protocol. Channel classification keeps the list of “good” and
“bad” channels based on the channel quality. This information
is then exchanged through an adaptive control protocol. Given
this, the AFH kernel chooses a set of hop frequencies to use
by avoiding as many bad channels as possible. Note that, if the
number of “good” channels is less than 15 (i.e., the minimum
number of channels that the Federal Communications Commis-
sion requires Bluetooth to hop over), some bad channels would
still be used.

We evaluate the throughput of mobile Bluetooth users in
the presence of WiFi interference. The system configuration is
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Fig. 11. Downloaded data size with interference.

shown in Fig. 10. Note that there was no other WiFi interference
in our experiments. Recall that we performed the experiments
on the second level of an underground parking lot to exclude
external factors. We use a Linksys Wireless-G router, which
is tuned to channel 8. Node NWC with an Orinoco Gold
802.11b PCMCIA card is configured as a WiFi client located
30 m from the router. Both the wireless router and NWS are
directly attached to the hub. WiFi interference is induced using
iperf, which is a bandwidth-measuring tool [24], by generating
4 Mb/s of User Datagram Protocol traffic from NWC to NWS.
For each experiment, the bandwidth of NWS is logged to show
the impact of Bluetooth on WiFi. Node NBS is located 7 m from
NWC and sends dummy data using a Bluetooth connection to
the mobile node NBC.

Fig. 11 shows the results of the total amount of downloaded
data. Compared with that in Fig. 7, WiFi interference incurs
throughput loss up to 30% in the scenarios under consideration.
AFH is supposed to effectively circumvent this situation in both
Bluetooth v1.2 and v2.0, but the loss is prevalent in both cases.
To see this, we checked the AFH channel map via hci-read-afh-
map. It returns 79 1-bit fields that represent the state of the hop
sequence specified by the most recent AFH message exchange
by the LMP. If channel n is used, the corresponding bit is 1;
otherwise, it is 0. Our tested devices used all the available
channels, even with WiFi interference. Interestingly, when we
tested them in a static environment, it took about 30–60 s
to detect interference. Although the choice of the channel
estimation method is vendor specific, it is generally believed
that some common methods such as PER or BER are used.
However, these methods generally are on a channel-by-channel
basis and thus require a longer response time. Moreover, the
interference learning is on a per-session basis in our tested
devices. A session must last at least that period of time to
detect it, and the learned information is purged after a session is
closed. Thus, AFH is not effective in mobile environments due
to its long response time, as opposed to short contact duration.

From the figure, we also see that, unlike that in Fig. 7,
a Class-1 device brings more than 20% of throughput gain
for Bluetooth v2.0, but the performance of other versions is
merely improved. When we plot the rate over distance for

Bluetooth v2.0 Class 1 and Class 2 with WiFi, we observe
that the impact of WiFi on a Class 2 device results in a drastic
throughput decrement as it approaches to NWC . On the other
hand, Class 1 is fairly resilient to WiFi interference due to
its high transmission power, which can adversely affect the
performance of WiFi devices.

Note that the LMP also uses a power control scheme: If the
received signal strength differs too much from the preferred
value, then it may request an increase or a decrease in the TX
power. Most products implement power control to save energy
although it is not mandatory to implement the function. The
current transmission power can be read by hci-read-transmit-
power-level. Interestingly, we were not able to observe any
power control working during the experiments. We examined
tested devices to see whether power control is working or not:
We located two laptops close by and initiated data transfer.
After passing more than 30 s, the transmission power level grad-
ually decreased. Note that the RSSI values were quite stable.

IV. DISCUSSION

Our experimental results confirm that resource discovery is
time/energy consuming, and a mobile user may experience
a considerable throughput drop. In this section, we discuss
strategies that can improve the performance of file swarming
operations (i.e., resource discovery/downloading). In the ex-
tended version of this paper [25], we validate the proposed
strategies via extensive experiments.

A. Cooperative Resource Discovery

The standard Bluetooth stack includes a service discovery
protocol (SDP) that was proposed by the Bluetooth Special
Interest Group (SIG). SDP provides a simple discovery mecha-
nism based on successively requesting service classes or service
attributes (i.e., file ID) from all devices in range. Since Blue-
tooth supports broadcast within a piconet, a node must form a
piconet, i.e., the node as master should sequentially connect to
each node as slave. It is, in fact, equivalent for a node to connect
to each node and send a message one by one. As a result,
the number of connection attempts per node will increase, and
the chance of a useful contact will decrease, because each
connection attempt will take at least several seconds, as shown
in the previous section.

Peer discovery in Bluetooth can be used for broadcasting
without connection setup. Recall that a master node broadcasts
an inquiry packet and waits for inquiry response packets from
the slave nodes. Sedov et al. showed that the 24-bit class of
device (CoD) field of an inquiry response (FHS packet) can
be used to expedite service discovery [26]. The CoD field has
a variable format indicated using the format type field within
the CoD. Bluetooth SIG assigned format type “00” to define
the service category/device class (e.g., computer/laptop). In our
protocol, we use format type “11,” which is reserved for future
use. A node can recognize that other nodes are running our
application by checking this format type.

In our scenario, content has a uniquely identifiable ID that
is generated by applying a collision-resistant one-way hash
function, e.g., SHA1. Since the length of the ID is longer than
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22 bits (after excluding the 2-bit format type), we take the lower
22 bits of the ID. Each node sets the CoD field with the file
that it is interested in downloading. Note that the CoD field
can be set by an application using the hci-write-class-of-device
command. After an inquiry, a master node can find neighbor
nodes that are currently downloading files of interest. It then
connects to one of those nodes to exchange pieces. Before the
file exchange, these nodes can exchange a list of peers that
they have collected so far to expedite file ID dissemination.
Each entry includes a timestamp to denote when a node was
discovered. We can set a time threshold to flush obsolete peers
in the list, thus saving bandwidth.

In February 2007, the Bluetooth v2.1 standard draft was
released. The major enhancement is the extended inquiry re-
sponse (EIR) mode. The potential slave node can immediately
send an EIR packet (maximum of 240 B) after returning the
inquiry response. Thus, the EIR packet can contain more infor-
mation, e.g., a file bitmap (of pieces that a node has).

B. Energy-Efficient Peer Discovery

Power consumption in a mobile device is a critical issue, and
it is preferable to design an energy-efficient protocol that can
preserve performance. Meier et al. [27] showed the statistics of
power consumption per unit time in each Bluetooth operation,
i.e., CIdle = 20 mA, CInquiry = 38 mA, CScan = 49 mA, and
CData = 35 mA. Although the scan operation is more expen-
sive than an inquiry operation, the inquiry has to be repeated for
a longer period of time. The total amount of consumed energy
by inquiry is much higher than that by inquiry scan.

Bluetooth-based content sharing requires nodes to period-
ically alternate their role as master and slave, so that they
can discover each other (i.e., P2P mode). Let us see how
much energy a node spends in an hour to perform the P2P
mode. Assume that the time spent for inquiry is the same as
that for inquiry scan (i.e., 30 min). Thus, it spends 38 mA ×
30 m × (1 h/60 m) = 19 mAh for the inquiry and �30 m ×
(60 s/1 m) × (1/1.28 s)� × 49 mA × 11.25 ms × 10−3 s +
[30 m − �30 m × (60 s/1 m)(1/1.28 s)� × 11.25 ms ×
10−3 s] × 20 mA = 36458.7 mA ≈ 10.13 mAh for the inquiry
scan. During the idle period of inquiry scan (99.2%), most
devices can change their state to the “standby” state (which
consumes 2 mA), instead of the “idle” state [28]. Therefore, the
actual energy consumption of the inquiry scan is approximately
1.21 mAh; this is why most devices (e.g., cellphones) typically
stay in the inquiry scan mode. The cost of inquiry is significant,
considering the fact that recent cellphones, such as the LG
chocolate and Motorola MOTOKRZR K1m, are equipped with
batteries that have less than 900 mAh.

We propose a simple solution to reduce the frequency of
inquiry by using the concept of sociological orbits [29]. Soci-
ological orbits are probabilistic mobility models where nodes
move between a set of hubs, e.g., subway stations or bus
stops. In Bluetooth-based content distribution, such hubs be-
come information exchange bazaars [30] such that people with
shared interests can cooperatively share content. Since it is less
likely that information exchange happens in transit to hubs,
we propose the adaptive inquiry mode, i.e., a node continues

to stay in the inquiry scan state unless some other nodes in
the inquiry mode wake it up by creating an actual connection.
To be precise, in the very beginning, nobody is in the inquiry
mode. Upon passing by an access point (AP), the node will
be activated. Any node in the inquiry mode can then wake up
others. If a node fails to create a connection or to find any
nodes over a certain threshold, it then goes into the inquiry
scan state to save energy. Instead of abruptly switching back to
the scan state, the inquiry interval can dynamically be adjusted
using the contact frequency (or recent activity), as proposed by
Drula et al. [31].

C. Adaptive ACL MTU Size Selection

Let us illustrate the journey of application data in Bluetooth.
Application data sent to the L2CAP layer are loaded into an
L2CAP packet. The packet contains an L2CAP packet header
with length and CID.3 The L2CAP packet is then loaded into
an HCI ACL packet. If it is larger than ACL_MTU , it is
fragmented into multiple HCI ACL packets of size maximum
transmission unit (MTU). Note that the ACL_MTU value is
a fixed value read from the chipset when the BlueZ kernel
module is loaded. An HCI ACL packet is then sent to the
LMP in the Bluetooth chipset. If the current ACL packet type
cannot accommodate an incoming HCI ACL packet, it will
further be fragmented into multiple packets having the size of
the current ACL packet type. The overall procedure is shown
in Fig. 12. The problem happens when ACL_MTU is not
a multiple of the current ACL packet size. We cannot fully
utilize the channel, e.g., in the figure, and the shaded part of an
ACL packet is wasted. Thus, we have to set the ACL_MTU
value based on the current packet type of the LMP. However,
Bluetooth reveals no information of the current ACL packet
type (i.e., any information of CQDDR in the LMP), as shown in
Section III-C. To illustrate this, consider the following example.
An application sends a series of 1013-B packets. The L2CAP
packet size is 1017 B (1013 B + 4 B L2CAP header). Assuming
that ACL_MTU is 1017 B (which is a default value of the
Broadcom chipset), there is no L2CAP level fragmentation.
Given that the LMP starts with the packet type of 3-DH5
(maximum of 1021 B), an L2CAP packet is fully loaded into
a 3-DH5 packet (1017 B + 4 B ACL header). Now assume that
the packet type has changed to 2-DH5 (maximum of 679 B). A
1017-B L2CAP packet cannot be fitted into a 2-DH5 packet. At
the baseband layer, the packet is fragmented and loaded into
two 2-DH5 packets, i.e., 679 B + 338 B. Since the second
packet cannot fully be utilized, this results in 24% throughput
loss, i.e., 341 B out of 1358 B (= 2 × 679 B).

Although there is no HCI function available to read the
current ACL packet type, in Section III, we show that the
“receiver” can know the sender’s packet type by reading HCI
event messages at the L2CAP layer just as hcidump. As distance
increases, the packet type gradually changes to a smaller size
due to CQDDR (e.g., 3-DH5 to 2-DH5). Thus, we propose that
the receiver notifies the sender of the packet-type change so that
it can adjust the L2CAP payload size. The feedback overhead
is minimal, because the response packet is small. Note that the

3CID is used to identify a logical channel endpoint of a device.
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Fig. 12. Bluetooth stack overview. An L2CAP packet is fragmented into multiple HCI ACL packets of size ACL MTU. These packets are then transferred to the
LMP, which is implemented in the Bluetooth chipset via HCI. The packet is sent without further fragmentation if the packet size is less than or equal to the size of
the current HCI ACL packet; otherwise, it is fragmented into multiple packets. The shaded part of an ACL packet is wasted due to incorrect ACL MTU size.

proposed approach can be implemented in the BlueZ stack of
Linux Kernel v2.6.15.1. During the L2CAP connection setup
(l2cap-do-connect), mtu field of the L2CAP connection data
structure (l2cap-conn) is initialized with ACL_MTU . This
value is used to fragment the L2CAP packet in l2cap-do-send()
(defined in l2cap.c). Thus, whenever receiving a feedback, a
node updates mtu field (via a newly defined socket option).

V. RELATED WORK

Bluetooth-based content distribution uses BT-AP to distrib-
ute content to the mobile users. It can be classified based on the
cooperativeness of users. Noncooperative content distribution
is based on a client–server model; BT-APs are the servers,
and clients download files only from the APs. BlueCasting [1]
and BlueBlitz Magic Beamer [2] are widely accepted proxim-
ity marketing systems such that they can identify Bluetooth
users and deliver tailored messages. LeBrun and Chuah [10]
proposed BlueSpot, which is a public-transit-based content
distribution system that is accessible such that riders can oppor-
tunistically access data during their travel time via Bluetooth.
In contrast, cooperative content distribution is based on a P2P
model such that users can share the downloaded files from APs.
Farkas and Bokos [11] proposed a push-based P2P content dis-
tribution model: A file was divided into blocks, and blocks were
multicast through Bluetooth piconets. Given that nodes were
synchronized and static, a ring overlay was formed to schedule
parallel piconets to efficiently distribute blocks. Unfortunately,
the scheme did not consider network dynamics such as mobil-
ity, churning, lack of synchrony, and intermittent connectivity.
Jung et al. [13] implemented cooperative file swarming by
optimizing peer discovery in Bluetooth to better utilize the short
contact duration among mobile users. In the Haggle Project
[33], Leguay et al. [12] proposed various content-distribution
strategies to distribute a small-size file to a group of users in a
large-scale urban network. Users can cooperatively relay a file
to other interested users, and a set of mobile bridges (regardless
of interests) can be used to further expedite delivery. How-
ever, none of the aforementioned works attempt to consider

the actual characteristics of P2P Bluetooth communications in
realistic environments (with mobility, heterogeneous Bluetooth
versions, WiFi interference, etc.), even though that has a sig-
nificant impact on the protocol design and evaluation. In this
paper, we first evaluate Bluetooth communications in such an
environment. The evaluation results are then used to examine
various aspects of a system, e.g., resource discovery, limited
bandwidth, resource availability, and heterogeneous Bluetooth
versions/chipsets. Based on this, we propose techniques for
efficient file swarming.

In spite of its popularity, the performance measurements of
Bluetooth devices have not been thoroughly explored. Kasten
and Langheinrich [7] evaluated their customized Bluetooth-
based sensor device as a part of the Smart-its project and
reported the issues of the power consumption and the in-
quiry latency. Similarly, Siegemund and Rohs [9] measured
the performance of the inquiry procedure and then proposed
a cooperative peer discover protocol. The measurement study
by Leopold [8] is close to our work. The inquiry procedure and
the throughput were evaluated using Bluetooth v1.1 devices.
The author found that the inquiry was not sensitive to distance,
and the latency distribution was centered on the train length.
The measured throughput widely varied over distance and was
much lower than their simulation results, which the author
was not able to explain. Our work differs in the following
aspects: 1) We explore the interoperability issues of various
Bluetooth versions (v1.1, v1.2, and v2.0 EDR); 2) we measure
the throughput of a “mobile” user; 3) we find the reason behind
the throughput variation over distance; and 4) we explore the
impact of interferences (e.g., WiFi/obstacles). Note that our
inquiry results are consistent with those in [8] over all Bluetooth
versions. Beaufour et al. [6] showed that the connection latency
follows a long-tail distribution, i.e., quite a few take longer than
3 s. In contrast, we find that the connection setup rarely takes
more than 3 s.

WiFi and Bluetooth coexistence issues are well docu-
mented in the literature [32], [34]. Shoemake [32] performed
coexistence testing and showed that interference results in
considerable throughput loss. Punnoose et al. [34] identified
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that effective bandwidth more rapidly degrades than the packet
loss rate, owing to deferred transmissions caused by carrier
sensing in WiFi. In contrast, the Bluetooth performance starts
to rapidly degrade when the interfering WiFi signal is compa-
rable to the desired signal level since Bluetooth does not use
“carrier sensing.” Shuaib et al. [35] evaluated the coexistence
of 802.11g with Bluetooth. They showed that the shorter the
distance between the Bluetooth and WiFi nodes, the lesser the
impact on the throughput, mainly due to the power control
in Bluetooth. Mander et al. [36] evaluated the AFH. They
showed that the AFH improves the throughput by more than
30%. Unlike [8], they claimed that the average throughput
does not significantly vary with distance. In this paper, we
evaluate the impact of WiFi interference on “mobile” Bluetooth
users. Contrary to the previous results [36], we find that, in the
mobile environment, power control/AFH may not well poten-
tially work due to the dynamics of RSSI and that the average
throughput is dependent on the distance due to CQDDR.

VI. CONCLUSION

We have studied the practical implementation of P2P content
distribution to Bluetooth users. We have measured the perfor-
mance of Bluetooth operations, such as peer discovery, connec-
tion setup, and data throughput in dynamic environments with
mobility, interference, and different Bluetooth versions. We
have shown that resource discovery is time/energy consuming,
even with the latest Bluetooth version, that mobile Bluetooth
users experience considerable throughput drop not only from
the imperfect autorate selection implementation in Bluetooth
but from external interferences as well (obstacles and WiFi),
and that the advanced features (power control and AFH) did not
work well. We then discussed strategies that can improve the
performance of resource discovery and downloading phases.

REFERENCES

[1] BlueCasting. [Online]. Available: http://www.bluecasting.com
[2] BlueBlitz. [Online]. Available: http://www.blueblitz.com
[3] B. Cohen, “Incentives build robustness in BitTorrent,” in Proc.

P2PECON, Berkeley, CA, Jun. 2003.
[4] M. Conti, E. Gregori, and G. Turi, “A cross-layer optimization of Gnutella

for mobile ad hoc networks,” in Proc. MobiHoc, Urbana–Champaign, IL,
Sep. 2005, pp. 343–354.

[5] U. Lee, J.-S. Park, J. Yeh, G. Pau, and M. Gerla, “CodeTorrent: Con-
tent distribution using network coding in VANETs,” in Proc. MobiShare,
Los Angeles, CA, Sep. 2006, pp. 1–5.

[6] A. Beaufour, M. Leopold, and P. Bonne, “The Bluetooth radio system,” in
Proc. WSNA, Atlanta, GA, Sep. 2002.

[7] O. Kasten and M. Langheinrich, “First experiences with Bluetooth in the
smart-its distributed sensor network,” in Proc. PACT , Barcelona, Spain,
Oct. 2001.

[8] M. Leopold, “Evaluation of Bluetooth communication: Simulation and
experiments,” Dept. Comput. Sci., Univ. Copenhagen, Copenhagen,
Denmark, Spring 2002.

[9] F. Siegemund and M. Rohs, “Rendezvous layer protocols for Bluetooth-
enabled smart devices,” Pers. Ubiquitous Comput. J., vol. 7, no. 2, pp. 91–
101, Jul. 2003.

[10] J. LeBrun and C.-N. Chuah, “Feasibility study of Bluetooth-based content
distribution stations on public transit systems,” in Proc. ACM MobiShare,
Los Angeles, CA, Sep. 2006.

[11] P. S. Lóránt Farkas and B. Bakos, “A practical approach to multicasting in
Bluetooth piconets,” in Proc. WCNC, Las Vegas, NV, Apr. 2006.

[12] J. Leguay, A. Lindgren, J. Scott, T. Friedman, and J. Crowcroft, “Oppor-
tunistic content distribution in an urban setting,” in Proc. CHANTS, Pisa,
Italy, Sep. 2006, pp. 205–212.

[13] S. Jung, U. Lee, A. Chang, D. Cho, and M. Gerla, “BlueTorrent: Coopera-
tive content sharing for Bluetooth users,” in Proc. PerCom, White Plains,
NY, Mar. 2007.

[14] L. McNamara, C. Mascolo, and L. Capra, “Media sharing based on colo-
cation prediction in urban transport,” in Proc. MobiCom, San Francisco,
CA, Sep. 2008, pp. 58–69.

[15] AmigoBot. [Online]. Available: http://www.activrobots.com
[16] L.-J. Chen, R. Kapoor, M. Y. Sanadidi, and M. Gerla, “Enhancing Blue-

tooth TCP throughput via link layer packet adaptation,” in Proc. ICC,
Anchorage, AK, May 2002, pp. 4012–4016.

[17] K. Fall, “A delay tolerant networking architecture for challenged Inter-
nets,” in Proc. SIGCOMM, Karlsruhe, Germany, Aug. 2003.

[18] U. Lee, S. Y. Oh, K.-W. Lee, and M. Gerla, “RelayCast: Scalable
multicast routing in delay tolerant networks,” in Proc. ICNP, Orlando, FL,
Oct. 2008, pp. 218–227.

[19] J. C. Haartsen, “The Bluetooth radio system,” IEEE Pers. Commun.,
vol. 7, no. 1, pp. 28–36, Feb. 2000.

[20] Bluetooth SIG, Bluetooth Spec. v2.0, 2004.
[21] B. S. Peterson, R. O. Baldwin, and J. P. Kharoufeh, “Bluetooth inquiry

time characterization and selection,” IEEE Trans. Mobile Comput., vol. 5,
no. 9, pp. 1173–1187, Sep. 2006.

[22] BlueZ Bluetooth Protocol Stack for Linux. [Online]. Available:
http://www.bluez.org

[23] A. Madhavapeddy and A. Tse, “A study of Bluetooth propagation using
accurate indoor location mapping,” in Proc. UbiComp, Tokyo, Japan,
Sep. 2005, pp. 105–122.

[24] Iperf. [Online]. Available: http://dast.nlanr.net/Projects/Iperf
[25] U. Lee, S. Jung, A. Chang, D.-K. Cho, and M. Gerla, “Bluetooth-based

P2P content distribution to mobile users,” UCLA CSD, Los Angeles, CA,
Oct. 2009. Tech. Rep.

[26] I. Sedov, S. Preuss, C. Cap, M. Haase, and D. Timmermann, “Time
and energy efficient service discovery in Bluetooth,” in Proc. VTC, Jeju,
Korea, Apr. 2003, pp. 418–422.

[27] L. Meier, P. Ferrari, and L. Thiele, “Energy-efficient Bluetooth networks,”
Comput. Eng. Netw. Lab. (TIK), Swiss Fed. Inst. Technol. (ETH) Zurich,
Zurich, Switzerland, Jan. 2005.

[28] J.-C. Cano, J.-M. Cano, E. Gonzalez, C. Calafate, and P. Manzoni, “Power
characterization of a Bluetooth-based wireless node for ubiquitous com-
puting,” in Proc. ICWMC, Bucharest, Romania, Jul. 2006, p. 13.

[29] J. Ghosh, S. Yoon, H. Q. Ngo, and C. Qiao, “Sociological orbit for effi-
cient routing in intermittently connected mobile ad hoc networks,” Univ.
Buffalo, Buffalo, NY, Tech. Rep. TR-2005-19, Apr. 2005.

[30] M. Motani, V. Srinvasan, and P. S. Nuggehalli, “PeopleNet: Engineering a
wireless virtual social network,” in Proc. MobiCom, Cologne, Germany,
Sep. 2005, pp. 243–257.

[31] C. Drulã, C. Amza, F. Rousseau, and A. Duda, “Adaptive energy con-
serving algorithms for neighbor discovery in opportunistic Bluetooth
networks,” IEEE J. Sel. Areas Commun., vol. 25, no. 1, pp. 96–107,
Jan. 2007.

[32] M. B. Shoemake, “Wi-Fi (IEEE 802.11b) and Bluetooth coexistence is-
sues and solutions for the 2.4 GHz ISM Band,” Texas Instruments, Dallas,
TX, Feb. 2001.

[33] Haggle Project. [Online]. Available: http://www.haggleproject.org
[34] R. J. Punnoose, R. S. Tseng, and D. D. Stancil, “Experimental results

for interference between Bluetooth and IEEE 802.11b DSSS systems,” in
Proc. VTC, Rhodes, Greece, May 2001, pp. 67–71.

[35] K. Shuaib, M. Boulmalf, F. Sallabi, and A. Lakas, “Performance analysis:
Co-existence of IEEE 802.11g with Bluetooth,” in Proc. WOCN, Dubai,
UAE, Mar. 2005, pp. 40–44.

[36] S. Mander, D. Reading-Picopoulos, and C. Todd, “Evaluating the adaptive
frequency hopping mechanism to enable Bluetooth–WLAN coexistence,”
in Proc. LCS, London, U.K., Sep. 2003.

Uichin Lee (M’09) received the B.S. degree in
computer engineering from Chonbuk National Uni-
versity, Jeonju, Korea, in 2001, the M.S. degree in
computer science from the Korea Advanced Institute
of Science and Technology, Daejeon, Korea, in 2003,
and the Ph.D. degree in computer science from the
University of California, Los Angeles, in 2008.

He is currently a Member of Technical Staff with
Bell Laboratories, Alcatel-Lucent, Holmdel, NJ. His
research interests include distributed systems, mo-
bile wireless networking systems, and performance

modeling/evaluation.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:26:36 UTC from IEEE Xplore.  Restrictions apply. 



LEE et al.: P2P CONTENT DISTRIBUTION TO MOBILE BLUETOOTH USERS 367

Sewook Jung received the B.S. degree in physics
and the M.S. degree in computer engineering from
Seoul National University, Seoul, Korea, in 1996 and
1998, respectively, and the Ph.D. degree in computer
science from the University of California, Los Ange-
les, in 2007.

From 1998 to 2003, he was with Samsung Elec-
tronics. Since 2007, he has been a Staff Scientist
with Broadcom Corporation, San Diego, CA. His
research interests include wireless personal area net-
works (Bluetooth, ZigBee, ultra-wideband), Health-

Net, ubiquitous computing, and network protocols.

Dae-Ki Cho received the B.S. and M.S. degrees in
computer science from the University of California,
Los Angeles (UCLA), in 2006 and 2008, respec-
tively. He is currently working toward the Ph.D.
degree in computer science with the Department of
Computer Science, UCLA.

His research interests include wireless medical
sensor networking, activity recognition, and cloud
computing.

Alexander Chang received the B.S. degree in com-
puter science and applied mathematics from the
University of Washington, Seattle, in 2003 and the
M.S. and Ph.D. degrees in computer science from
the University of California, Los Angeles, in 2006
and 2008, respectively.

He is currently with Yahoo!, Inc., Burbank, CA.
His research interests are wireless sensor personal
networks and wireless network security.

Junho Choi received the B.S. degree in computer
science and engineering and the M.S. degree in
computer science from University of California,
Los Angeles, in 2005 and 2007, respectively.

He is currently a Video Game Programmer with
Heavy Iron Studios, Los Angeles.

Mario Gerla (F’02) received the Engineering degree
from Politecnico di Milano, Milan, Italy, and the
Ph.D. degree from the University of California, Los
Angeles (UCLA).

He is currently a Professor of computer science
with the Department of Computer Science, UCLA.
At UCLA, he was part of the team that developed the
early Advanced Research Projects Agency Network
(ARPANET) protocols under the guidance of Prof.
L. Kleinrock. From 1973 to 1976, he was with Net-
work Analysis Corporation, Glen Cove, NY, where

he helped transfer ARPANET technology to government and commercial
networks. In 1976, he joined the UCLA Faculty, where he designed and
implemented network protocols including ad hoc wireless clustering, multicast
(on-demand multicast routing protocol and CodeCast), and Internet transport
(TCP Westwood). He has lead the $12 M, 6-year Office of Naval Research
MINUTEMAN project, designing the next-generation scalable airborne In-
ternet for tactical and homeland defense scenarios. He is now leading two
advanced wireless network projects under Army and IBM funding. His team
is developing a vehicular testbed for safe navigation, urban sensing, and intel-
ligent transport. A parallel research activity explores personal communications
for cooperative networked medical monitoring (see www.cs.ucla.edu/NRL for
recent publications).

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 27,2023 at 04:26:36 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


