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ABSTRACT
Mobile wireless networks with intermittent connectivity, of-
ten called Delay/Disruption Tolerant Networks (DTNs), have
recently received a lot of attention because of their utility
in various application scenarios where delay is noncritical.
DTN routing and transport protocols effectively overcome
partial connectivity by letting the nodes carry-and-forward
data. The scalability of DTN protocols is very important
for protocol design and evaluation. In particular, we need
models that allow us to predict the performance of DTNs
as a function of node mobility behavior (e.g., inter-contact
times). Yet so far little work has been done to develop a
unified framework that formalizes DTN performance as a
function of motion behavior. In this paper, we represent
DTNs as a class of wireless mobile networks with intermit-
tent connectivity, where the inter-contact behavior of an ar-
bitrary pair of nodes can be described by a generalized two-
phase distribution consisting of a power-law head with an
exponential tail, which represents correlated node mobility.
Recent experiments have confirmed that such a two-phase
distribution is a more realistic model for real traces collected
from vehicular and pedestrian scenarios than the previous
models based on random mobility and Poisson assumptions.
Using this DTN model, we make the following contributions.
First, we extend the throughput and delay scaling results of
Grossglauser and Tse (originally derived for an exponential
inter-contact time distribution) to a more general mobility
model with a two-phase distribution. Second, we analyze
the impact of finite buffer on the capacity scaling properties
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of DTNs, again for different correlation behaviors. Finally,
we validate our analytical results with a simulation study.
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C.2.1 [Computer-Communication Networks]: Wireless
communication; C.4 [Performance of Systems]: Model-
ing techniques

General Terms
Theory, Performance

Keywords
Delay tolerant networks, capacity and delay analysis, corre-
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1. INTRODUCTION
Mobile wireless networks that can withstand intermittent

connectivity, often called Delay/Disruption Tolerant Net-
works (DTNs), are becoming increasingly popular because
of their applicability to various scenarios ranging from inter-
vehicle communications [1, 19] to content distribution in
challenged networks [20, 14]. DTNs have been also used
to improve throughput at the expense of increased delays.
It has been shown that DTN routing and transport proto-
cols can benefit from node mobility and overcome the capac-
ity bound of Θ(1/

√
n log n)1 originally established by Gupta

and Kumar [12] for a fixed connected wireless network at
the expense of increased delay. Noting that the average hop
length of a path is the key limiting factor, Grossglauser and
Tse [11] proposed a two-hop relay routing algorithm that
exploits node mobility to effectively reduce the hop length,
and utilizes relay nodes to deliver data to the destination
when they meet.

1Here, n is the number of nodes. Recall that (i) f(n) = O(g(n))
means that ∃c and ∃N such that f(n) ≤ cg(n) for n > N (i.e.,
asymptotic upper bound); (ii) f(n) = Ω(g(n)) means that ∃c
and ∃N such that f(n) ≥ cg(n) for n > N (i.e., asymptotic lower
bound); (iii) f(n) = Θ(g(n)) means that f(n) ∈ O(g(n))∩Ω(g(n))
(i.e., asymptotic tight bound); (iv) f(n) = o(g(n)) means that
limn→∞ f(n)/g(n) = 0 (i.e., asymptotic insignificance); and (v)
f(n) = ω(g(n)) means limn→∞ f(n)/g(n) = ∞ (i.e., asymptotic
dominance).

19

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1614222.1614226&domain=pdf&date_stamp=2009-09-25


This result has been followed by a flurry of research activi-
ties that tried to characterize the delay/capacity relationship
with respect to node mobility. Various mobility models have
been considered, from a simple independent and identically
distributed (I.I.D.) mobility model [24, 22, 31], to more com-
plex random mobility models, such as random waypoint [29],
random direction [28], uniform mobility [5], Brownian mo-
bility [21], and random walk [6]. Sharma et al. [28] studied
the impact of different mobility models on delay/capacity
trade-offs. Garetto et al. [8] studied a home-point mobil-
ity model where each node moves around its home-point,
and studied its impact on capacity scaling properties. In
addition, Herdtner et al. [13] studied the impact of finite
buffer on the capacity of a network; and Lee et al. [18] stud-
ied improving the throughput bound of wireless multicast
by extending the two-hop relay algorithm to the multicast
scenario.

Despite the wealth of analytic results about the capac-
ity scaling properties and related trade-offs of wireless net-
works under various constraints, our understanding of the
basic scaling properties of DTNs is still limited and frag-
mented. This is in part due to the fact that so far little work
has been done to study DTNs in a unified framework that
can explain the fundamental characteristics of the through-
put/delay scaling properties of a delay tolerant network.

In this paper, we start by representing DTNs as a class
of wireless mobile networks with intermittent connectivity,
where the inter-contact times of an arbitrary pair of nodes
correspond to a homogeneous Poisson process (i.e., expo-
nential pairwise inter-contact time). Groenevelt et al. [10]
showed that random mobility models such as random di-
rection can be modeled using an exponential inter-contact
time distribution where the pairwise inter-contact rate of
arbitrary nodes results to be proportional to radio range
and node speed. We then extend the model to accommo-
date two-phase distributions with a power-law head and an
exponential tail.

When the radio range scales below the critical connec-
tivity threshold Θ(

√

log n/n), the network becomes discon-
nected with high probability [12]. Under such circumstances,
we note that radio range and node speed mainly character-
ize how frequently a node meets some other node. Thus,
our DTN model provides us a fundamental insight in that
we can represent an arbitrary delay tolerant network with
node speed and radio characteristics using a single parameter
capturing the pairwise inter-contact rate λ.

We then move on to consider a class of random mobility
patterns, known to cause a two-phase inter-contact distri-
bution [15, 2]. Cai and Eun [2] found that the shorter
the average flight distance, the stronger the correlations in
the mobility pattern, leading to a heavier power-law head
in random mobility (e.g., as in Brownian or random walk
mobility models). For an intuitive appreciation of this be-
havior, consider sightseers around Time Square in Manhat-
tan. A random sightseer tends to encounter other sightseers,
because they have the same interests, and their movements
are correlated. This correlation disappears when they are
no longer in the same “common interest” domain. For ex-
ample, after Time Square sightseeing, they take off to other
attractions. As tourists are taking these long flights, they
may still meet each other like “ships that pass in the night.”
In the Time Square phase, the motions are correlated and
the inter-encounter time distributions tend be heavy tailed
(due to sightseeing locality). The “ship in the night” en-
counters, on the other hand, can be modeled as Poisson,
with exponential inter-encounter distributions.2

Note that in the tourist case, the correlation is caused by a
common interest for a local attraction. In more general cases
(e.g., vehicles) the local correlation may be caused by “in-
terest” in a common resource, e.g., the road. During a rush
hour, vehicles drive in columns on multiple lanes for a while,
passing each other in turns, with a strong motion correlation
imposed by road constraints, until at the next intersection
they depart in different directions, to join other correlation
domains. Karagiannis et al. [15] observed such a correlation
behavior in their vehicular contact traces, leading to power
law distributions. In view of these recent discoveries, one of
the main objectives of this work is to study the impact of
the two-phase distribution on DTN performance.

Using this extended DTN model, we make the following
contributions. First, we report a generalized capacity and
delay scaling law of the two-hop routing algorithm based
on the inter-contact rate parameter, and the degree of mo-
tion correlation to provide a new insight to the fundamental
properties of DTNs. Second, we analyze the impact of finite
buffer on the capacity/delay scaling properties of DTNs.
Finally, we validate our analytic results with a simulation
study.

The following is the preview of the key results under a
DTN scenario that has n nodes in a unit square area with
radio range r = O(1/

√
n), the pairwise inter-contact rate of

λ, and the average flight distance of Ω(r) where nodes travel
in the order of its radio range r = O(1/

√
n), which is a rea-

sonable assumption; e.g., a tourist in Manhattan may travel
several blocks for each movement (comparable to WiFi radio
range).

• The per-node throughput of a two-hop relay routing
protocol can be represented as the product of the ag-
gregate meeting rate (nλ) and the contact duration
(Dc = Θ(r/v)); thus, it scales as Θ(nλDc) = Θ(nr2).
Grossglauser and Tse’s result is a special case when the
radio range is Θ(1/

√
n), thus achieving Θ(1) through-

put. Our results show that the node speed and the
degree of correlation in mobility patterns do not affect
the achievable throughput.

• The average delay of two-hop relay routing is in the
range of [Θ( 1

λ
), Θ( log n

λ
)] depending on the degree of

motion correlation. Here, the lower bound is for the
case when the nodes meet with an exponential inter-
contact time. The upper bound is of the case of a
random walk with flight length of Θ(r). As the degree
of motion correlation decreases (i.e., flight distance in-
creases), the average delay decreases monotonically.
Our results show that the delay increase due to motion
correlations can be bounded by the factor of Θ(log n)
compared to the delay in the exponential case.

• We show that the two-hop relay routing requires the
buffer space ranging in [Θ(nr

v
), Θ(n log n

rv
)]; the stronger

the correlations of the mobility patterns, the higher the
amount of buffer space. Also, we show that such corre-
lations cause the burstiness in the inbound/outbound

2Rhee et al. [25] showed that the human walks resemble a “trun-
cated” form of Levy walks (or a truncated power-law). Through
their Levy walk mobility model with properly chosen parame-
ters, they could observe the two-phase inter-contact distribution.
Chaintreau et al. [3] also showed the two-phase distribution from
their human mobility traces. Besides, Conan et al. [4] showed
that several mobility traces contain significant fraction of contact
pairs following exponential distributions.
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relay traffic. Under a simple policy of admitting a
packet whenever there is available space, we show that
the per-node throughput with constrained buffer size
of K in the network is in the range of [Θ( rvK

log n
), Θ(rvK)]

depending on the degree of motion correlation. This is
a tighter bound than the previous results by Herdtner
et al. [13].

The rest of the paper is organized as follows. In Section
2, we present the network model. In Section 3, we show the
analysis of the DTN routing protocols. We also investigate
various DTN design parameters and their impacts on the
scaling properties. In Section 4, we validate our results via
simulations. Finally, we present the conclusion in Section 5.

2. NETWORK MODEL
In this section, we review the system model used for analy-

sis. We first present the communication model; then provide
a simple mobility model with which we represent a DTN in
general; and finally we describe our DTN model.

2.1 Communication Model
We use the protocol model to abstract the interference be-

tween transmissions [12]. Suppose that node i transmits to
node j. Node j receives the transmission successfully if every
other node that transmits simultaneously is at a distance at
least (1 + ∆)r(n) from j where ∆ is some positive number
and r(n) is the radio range. Each node i ∈ {1, 2, · · · , n} is
randomly assigned a destination node di 6= i, so there are a
total of n source-destination pairs.

For a given scheduling algorithm π, a throughput γ > 0
is said to be feasible (or achievable) if every node can send
at a rate of γ bits per second to its chosen destination. Let
T π(n) denote the maximum feasible per-node throughput
under scheduling algorithm π. The delay of a packet in a
network is the time for a packet to reach the destination
after it leaves the source. Let Dπ(n) denote the average
packet delay for a network with n nodes under scheduling
algorithm π. Note that a scheduling algorithm is stable if
the rate T π(n) is satisfied by all users such that one’s queue
does not grow infinity, i.e., Dπ(n) is bounded.

2.2 Mobility Model
We consider two mobile nodes A and B, each of which

moves according to some mobility model in a unit square
area of size 1 × 1 denoted as Ω. Let A(t), B(t) ∈ Ω be
the position of the node A and B at time t, respectively.
The pairwise inter-contact time, which is the time interval
between two successive encounters of a pair of nodes, can be
formally described as follows [3, 2].

Definition 1. The inter-contact time TI of a node A
with a node B is defined by

TI = inf
t>0

{t : ‖A(t) − B(t)‖ ≤ r}, (1)

given that

‖A(0) − B(0)‖ = r and ‖A(0+) − B(0+)‖ > r (2)

where ‖ · ‖ is the Euclidian norm in R2.

If we remove the given condition (2), we measure the time
until next encounter to node B from a randomly chosen
position at t = 0. We define this as the first passage time
TR of node A to node B; to be precise, it is the residual life

time of the inter-meeting time [3, 2]. We recognize that the
larger the inter-contact interval, the higher the probability
that a random sample observes that interval, which is also
known as an inspection paradox or a length bias. Recall
that the inter-contact time has a finite mean because of our
exponential “tail” assumption. In [16], the distribution of
the residual life time is given as

Pr(TR > t) =
1

E[TI ]

∫ ∞

t

P [TI > s]ds (3)

and the mean residual life time is given as

E[TR] =
E[T 2

I ]

2E[TI ]
(4)

Thus, the mean first passage time is mainly a function of
the first and second moments of the inter-contact time dis-
tribution.

In our analysis, we consider a class of random mobility
models where each node independently makes its own deci-
sion; e.g., random direction mobility where a mobile node
selects a uniform random direction from [0, 2π] and a speed
v and moves until it hits the boundary of a domain. Groen-
evelt et al. [10, 9] showed that the inter-contact stochastic
process of these mobility models can be captured using an in-
dependent homogeneous Poisson process with meeting rate
λ. We present the Theorem 4.2.1 from [9] to provide a basis
for estimating the λ value for different mobility models.

Theorem 1. Given that two nodes move randomly in a
1×1 unit square with the average speed v, if the transmis-
sion range r ≪ 1 and the position of a node at time t + ∆
is independent of its position at time t for small ∆, then the
inter-contact time between two nodes is exponentially dis-
tributed with parameter λ = αrv where α is a constant.

Researchers have recently found that there is the critical
timescale in the inter-contact distribution at which the tran-
sition from power-law to exponential takes place (or power-
law distribution with exponential cut-off) [15, 2]. Cai and
Eun [2] used Isotropic Random Walk (IRW), a variant of
random direction mobility where a node chooses a random
step-length L, a random angle, and random speed. By taking
an appropriate step-length distribution, IRW can approxi-
mate different mobility patterns: random direction mobility
with large L and Brownian motion mobility with small L
(over small time intervals). Given the fact that the smaller
the random step-length, the stronger the correlations in mo-
bility patterns, they proved that stronger correlations lead to
a heavier power-law head in the inter-contact time distribu-
tion. Also, they found that there exists an invariance prop-
erty of several contact-based metrics such as inter-contact
and inter-any-contact time in that the averages of those met-
rics do not depend on the degree of correlation in the mobility
patterns [2]. Thus, our model of using the average meeting
rate λ is still valid. They also showed that the stronger the
correlation, the higher the value of n-th order moment for
n > 1 (see Theorem 2), and we discuss the implication of
power-law heads in the later sections.

Theorem 2. Let X and Y be random variables represent-
ing mobility statistics. If Y has stronger correlation than X,
and E[X] = E[Y ], then E[ϕ(X)] ≤ E[ϕ(Y )] for all convex
function ϕ.

Remark 1. It is known that the stationary distribution
of node positions for all the above mobility models is a uni-
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form distribution [23]. This allows us to model a snap-
shot of a mobile network (or a spatial configuration of nodes
in the network) using a homogeneous Poisson point process
with intensity n where n is the number of nodes in the net-
work. We denote the process as {N(A)}A∈1×1 and it sat-
isfies the following conditions: (1) for every A ∈ 1 × 1,
N(A) ∼ Poisson(n|A|) such that we have:

Pr(N(A) = k) =
e−n|A|(n|A|)k

k!
(5)

and (2) for every finite collection {A1, A2, · · · , An} of dis-
joint subsets of a unit square area, N(A1), N(A2), · · · , N(A3)
are independent of one another.

2.3 DTN Model
We model an arbitrary DTN in a unit area of (1×1) using

the pairwise inter-contact rate λ = Θ(rv) where r is radio
range and v is speed. We can map an arbitrary delay tol-
erant network to a unit area by relatively scaling the radio
range and speed. Also, we note that Theorem 1 shows that
the pair-wise inter-contact rate is independent of the number
of nodes.

The relationship between radio range and speed is impor-
tant, as it determines the contact duration. The asymptotic
contact duration Dc(n) can be easily derived from the re-
sults in [27, 30] as Dc(n) = Θ(r(n)/v(n)). We note that the
contact duration determines the amount of data two nodes
can exchange. Thus, it places an upper bound on the size of
a packet. In the literature [5, 6, 28], it is typically assumed
that the speed of a node is in the same order as the radio
range such that the contact duration of two nodes is constant
(and so is the packet size).3 For instance, with radio range
r = 1/

√
n, we set the speed v = 1/

√
n (i.e., λ = 1/n). In

fact, other cases are still possible. When the speed is asymp-
totically smaller than the radio range, we can still maintain
the constant packet size, yet the number of packets that one
can transmit for a given contact scales as ω(1). When the
speed is asymptotically greater than the radio range, the
packet size must be scaled down such that a packet can be
transferred for a given contact duration.4

The radio range determines the number of simultaneous
transmissions, or the network-wide aggregate throughput.
Since it is approximately the same as the total number of
non-overlapping circles with radius r that fills 1×1 area,
the network-wide aggregate throughput T is bounded by
Θ(1/r2). The per-node throughput bound is simply given
by dividing the aggregate throughput by the total number of
communication pairs. Therefore, the aggregate throughput
can be expressed as T ≤ Θ(1/r2). For a DTN with the
radio range r, the upper bound of the per-node throughput
can be maximized, when the number of nodes is in the same
order as the aggregate throughput, i.e., Θ(1/r2) = Θ(n) and
thus, r = Θ(1/

√
n). In this paper, we analyze more general

scaling behavior with the radio range of O(1/
√

n).

3Note that Ying et al. [31] showed that there are different time-
scale of mobility, namely fast and slow mobility. For slow mobiles,
node mobility is assumed to be much slower than data transmis-
sions and thus, multi-hop transmissions are feasible in single time
slot (the packet size can be scaled down as n increases). In con-
trast, we use the contact duration to measure how fast the speed
is. Since we do not use multi-hop routing, our scenario belongs
to fast mobility in their framework.
4However, this may not be feasible due to Doppler shifts; i.e.,
channel coherence time may be shorter than the packet transmis-
sion time, and thus, a node may suffer from fast fading.
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Figure 1: An illustration of the two-hop relay algo-
rithm.

In the remainder of this paper, we slightly abuse the asymp-
totic notation as follows to represent the scaling properties
in the DTN region. For instance, when we say that the per-
node throughput of the two-hop relay scheme is Θ(nr2), this
statement is true when r scales with n. However, when λ is
fixed (i.e., both radio range and node speed are fixed), it is
true when n ≤ 1/r2. This conditional rule applies to all the
asymptotic notations in this paper.

3. DTN ROUTING ANALYSIS
We first present the capacity and delay scaling laws of the

two-hop relay routing model using our DTN model. This re-
sult is generalization of the previous results by Grossglauser
and Tse [11]. We then discuss the impact of finite buffer.

3.1 Capacity Analysis
We briefly present the two-hop relay algorithm proposed

by Grossglauser and Tse [11] for completeness. Whenever
two nodes encounter one another (i.e., within the radio range),
we do the following. If they are a source-destination pair, the
source transmits a packet to the destination (direct transmis-
sion). Otherwise, either a source node sends a new packet
to a relay node (Phase 1: Relay), or a relay node delivers a
packet to the destination (Phase 2: Delivery). The overall
procedure is illustrated in Figure 1. In this scheme, a relay
node has a separate queue for each source and destination
pair, and it may store multiple packets in the queue.

Lemma 1. For a DTN with the exponential inter-contact
rate λ = O(1/n), the per-node capacity of the two-hop relay
scheme is Θ(nλDc) = Θ(nr2).

Proof. Consider a pair of nodes: source i and destina-
tion di. During a small time interval ∆t, a random node j
encounters the destination with the probability λ∆t+o(∆t).
In the network setting that we consider, there could be at
most a constant number of nodes (denoted as ξ = O(1))
within one’s wireless contention domain with high proba-
bility. Assuming that the chance of transmission is equally
shared by ξ interfering nodes under the protocol model [17,
6, 5, 13], node j can successfully deliver a packet with the
probability λ∆t/ξ. Here, we are interested in the event that
the destination di is scheduled to receive node i’s packet at
time t. Let an indicator random variable Mi(∆t, n) denote
this event. Since di can meet any of the relay nodes, we
have:

Pr{Mi(∆t, n) = 1} (6)

=
n

∑

j=1,j 6=di

Pr{node j delivers a packet during ∆t} (7)

≈ (n − 1)λ∆t

ξ
(8)
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For each contact, a node can transfer packets for the contact
duration of Dc = Θ(r/v), and thus, the per-node throughput
is given as

T (n) =
E[Mi(∆t, n)]

∆t
Dc =

(n − 1)λ∆t

ξ

1

∆t
Dc (9)

= Θ(nλDc) = Θ(nrv
r

v
) = Θ(nr2) (10)

The result shows that the throughput is simply the prod-
uct of the aggregate meeting rate (nλ) and the contact du-
ration (Dc); i.e., it is determined by how often a destination
node encounters a random relay node, and how long it can
transfer packets to the node. Grossglauser and Tse’s results
of Θ(1) can be achieved when the radio range is Θ(1/

√
n).

Hereafter, we use this aggregate meeting rate to find the
throughput bounds. Note that this simple relationship en-
ables us to understand the maximum throughput of an arbi-
trary DTN; for a given radio range, the throughput linearly
increases with the number of nodes. For instance, Zhao et
al. [32] introduced additional relay nodes called throwboxes
to increase the throughput of a DTN.

Theorem 3. The two-phase mobility pattern (consisting
of an exponential head and a power-law tail) does not change
the capacity of the two-hop relay scheme.

Proof. Since there is a motion correlation, a destina-
tion node will meet a certain relay node more often for a
given period of time, and then lose sight of it for a long-
time interval. Nevertheless, each source’s traffic is spread
uniformly among all other nodes, because nodes have uni-
formly distributed motion patterns over the area. In fact,
the degree of motion correlation determines the burstiness
of inbound/outbound traffic into the destination and out
of the source. The stronger the correlations, the higher the
chances for a source to meet candidate relay nodes in a short
period, thus increasing the burstiness of the outbound traf-
fic. The same applies to destinations meeting relay nodes
carrying packets for them. Although the destination en-
counter frequency with relay nodes follows a bimodal dis-
tribution, the asymptotic capacity results do not change;
namely, as long as the long term average meeting rate (of
meeting any relay nodes) is the same. To see this, con-
sider a spatial Poisson point process where Poisson intensity
is given as nA = nπr2. For a given network snapshot, a
destination node encounters a relay node with probability
Pr(N(A) ≥ 1) = n|A| + o(|A|) = nπr2 = Θ(nr2). Since
every time slot can be utilized with this probability, the
per-node throughput is simply Θ(nr2). Thus, we conclude
that this encounter process with uniform spread of traffic
warrants that a node can achieve the per-node throughput
of Θ(nr2).

3.2 Delay Analysis
We now look at the delay of the two-hop relay scheme.

For now, we assume that a communication pair is given an
infinite size buffer. Consider a pair of nodes: source i and
destination di. The relay delay is the expected time for a
packet at the source to be delivered to the destination di. If
the source encounters the destination first, it can be deliv-
ered directly. In our model, this happens with probability
1/n, and the average delay is denoted as Dd. Otherwise,
the packet will be delivered via a relay node with proba-
bility 1 − 1/n. In this case, the average delay is composed

of the average source-to-relay delay (Dsr) and the average
relay-to-destination delay (Drd). Thus, the expected delay
can be expressed as follows:

D(n) =
1

n
Dsd +

n − 1

n
(Dsr + Drd) (11)

We consider two extreme cases to better understand the
average delay of the two-hop relay scheme: as the best case
of two-phase mobility, we look at a random direction model
that shows exponential inter-contact time (i.e., flight length
of O(1)); and as the worst case of two-phase mobility, we
look at a random walk on 1/r × 1/r torus where the step
length is r < 1. Note that for a node speed of v, each step
takes r/v.

Since the average inter-contact time is the same regard-
less of motion correlation by the invariance property, Dsd

and Dsr in Equation 11 can be easily found using an ex-
ponential inter-contact model. A source node encounters a
destination node with rate λ, and any potential relay nodes
with rate (n − 2)λ (i.e., minimum of n − 2 exponential ran-
dom variables). Thus, the average source-to-destination de-
lay and the average source-to-any-relay-node delay are given
as Dsd = Θ( 1

λ
) and Dsr = Θ( 1

nλ
), respectively.

However, we notice that the delay from a relay node to the
destination (Drd) is a function of motion correlation. When
a source node delivers a packet to the relay node, it samples a
random point of the inter-contact instances between a relay
node and a destination node. As shown in Equation 4, the
time for a relay node to deliver a packet to a destination
node is defined as the residual inter-contact time, or a first
passage time; i.e., due to the length bias, when a source
node sends a packet to a relay, it is more likely to sample
a longer inter-contact interval between a relay node and a
destination node.

Having said that the following theorem summarizes the
average delay scaling with correlated motion patterns.

Theorem 4. The average delay with an arbitrary flight
distance of Ω(r) is in [Θ( 1

λ
), Θ( log n

λ
)]. Here, the lower bound

is for the case when the nodes meet with an exponential
inter-contact time; and the upper bound is of the case of
a random walk with flight length of Θ(r). As the degree of
motion correlation decreases (i.e., flight distance increases),
the average delay decreases monotonically.

Proof. As shown in Equation 4, for an arbitrary inter-
contact distribution with finite mean, the mean residual

inter-contact time is given as
E[T2

I
]

2E[TI ]
. The second moment

of the inter-contact time for exponential cases is simply
Θ(1/λ2). The mean residual inter-contact time is Drd =
E[T2

I
]

2E[TI ]
= 1/λ2

2/λ
= Θ(1/λ). For a random walk, El Gamal et

al. [7] showed that the second moment of the inter-contact

time takes Θ(− log r
r4 ) steps. By the invariance property, the

average inter-contact time is E[TI ] = Θ(1/λ) = Θ( 1
rv

) =

Θ(1/r2) steps. Recall that each step takes Θ(r/v). The

mean residual inter-contact time of a random walk is
E[T2

I
]

2E[TI ]
=

− log r
2r4 r2 = − log r

2r2 steps. As each step takes Θ( r
v
), the mean

residual inter-contact time is given as Drd = Θ(− log r
r2

r
v
) =

Θ(− log r
λ

). Compared to the exponential case, a random
walk results in the mean residual inter-contact time that
is greater by the factor of Θ(− log r). As we have r =
O(1/

√
n), the lower/upper bound can be represented as

Drd = Θ( 1
λ
) and Drd = Θ( log n

λ
), respectively. By plug-
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ging Drd into Equation 11, we find that the average delay
D(n) scales as Drd.

We can also consider the queueing delay using the tech-
niques used in [7]. The overall system can be modeled us-
ing a GI/GI/1-FCFS queue. Both arrival and departure
processes can be modeled using the inter-contact time dis-
tribution. Let X and Y denote the arrival and departure
processes respectively. By Kingman’s upper bound [26] on
the average delay for a GI/GI/1-FCFS queue, the average

delay is upper bounded as O(E[X2]+E[Y 2]
E[X]

). From this, we

find that for the exponential case, the average delay is upper
bounded by O(1/λ) and for the random walk case, it is upper

bounded by O(− log r
r4 r2) = O(− log r

r2 ) steps = O( log n
λ

). In
the above, we show that the average delay for the exponen-
tial case and the random walk case respectively is given as
Θ( 1

λ
) and Θ( log n

λ
) even without considering queueing delay.

Hence, we conclude that the average delay for the exponen-
tial case and the random walk case is tightly bounded as
Θ( 1

λ
) and Θ( log n

λ
) respectively.

We now show that the average delay monotonically de-
creases as the degree of motion correlations decreases. Let
X and Y denote random variables representing inter-contact
time of mobility patterns with the average step length LX

and LY , respectively and LX ≥ LY . This means that the
mobility pattern represented by Y has stronger correlation
than that represented X. For an arbitrary convex function
ϕ, Theorem 2 shows E[ϕ(X)] ≤ E[ϕ(Y )]. The mean residual
time in Equation 4 is a convex function of the inter-contact
time (i.e., the second moment), thus satisfying the inequal-
ity. This proves the monotonicity of the average delay with
the degree of motion correlation.

3.3 Buffer Requirements
For a given node pair, we can easily find the average

packet queue in the network using the Little’s law: the
product of the per-node throughput and the average packet
life time. Since the packet life time is equal to the aver-
age delay, the average number of packets for a given pair
(i.e., the number of buffers required to support a given pair
flow) is determined by the throughput-delay product in a
DTN. From this observation, the average buffer space re-
quired for two-hop relay with an arbitrary degree of motion
correlation ranges in between Θ(nr2)×Θ(1/λ) = Θ(nr

v
) and

Θ(nr2) × Θ(log n/λ) = Θ(nr log n
v

).
Given finite buffer space of size K per source in the net-

work, we now want to find the throughput bound. We as-
sume that a buffer replacement algorithm is not used. In-
stead, we use a simply packet admission policy in which a
relay node accepts a relay packet from a source node if there
is an available space in the relay node. Since the stationary
distribution of nodes is uniform, and by the invariance prop-
erty, the inter-contact time does not change with the degree
of motion correlation, each node has equal opportunities of
encountering other nodes on average. Thus, for a given set of
free buffer space, source nodes will equally share the space.
Given this, the following theorem shows the throughput per
source with finite buffer.

Theorem 5. Given finite buffer space of size K per source
in the network, the throughput per source is in range of
[Θ( rvK

log n
), Θ(rvK)].

Proof. The size of buffer space per source, NB to sustain
the maximum throughput is given as [Θ(nr

v
), Θ(nr log n

v
)].

For a given relay node, the limited buffer space of K is

equally shared by n sources. Since we assume that each
source has an equal opportunity of utilizing the buffer space,
a relay node can receive a packet to a random destination
with the expected probability of K/NB . Using the same
proof technique as in Theorem 1, we find that the through-
put per source ranges in [Θ( rvK

log n
), Θ(rvK)]. Given finite

buffer space, the results show that the mobility with stronger
correlations will result in lower throughput.

4. SIMULATIONS
We validate our analytic results by packet-based simula-

tions using QualNet v3.9.5. We measure the inter-contact
time, the average contact duration, and the throughput of
two-hop relay routing. We show the impact of motion cor-
relation using the inter-any-contact time and the buffer uti-
lization.

4.1 Simulation Setup
We use the Isotropic Random Walk (IRW) where each

node chooses a random step-length and a random angle, and
moves to a chosen direction at the constant speeds of 20m/s
or 30m/s. Random step-length follows an exponential dis-
tribution with the mean of Lm. Nodes are moving in an
area of size 5000m × 5000m. We use 802.11b with the two-
ray ground path-loss propagation model, 250m transmission
range, and 2Mbps transmission rate. We vary the number
of nodes from 10 to 100 by 10 node increments. We imple-
ment the two-hop relay routing protocol, in which a node
maintains a separate queue for each destination. When a
node encounters another node, if the encountered node is a
destination, the node will keep sending packets until the link
breaks; otherwise, the node makes a packet by packet for-
warding decision; i.e., with the same probability, the node
either relays its own packet to a relay node or it delivers
a relay packet to the encountered destination. To measure
the maximum throughput, we randomly choose a single pair
of nodes and generate packets using the Constant Bit Rate
(CBR) traffic in QualNet. We warm up each simulation
run for 10,000s to remove the effect of the initial startup
phase. Unless otherwise mentioned, reported results are the
averages of 50 runs with different random seeds and are pre-
sented with the 95% confidence interval. The duration of
each run is 100,000s.

4.2 Simulation Results
We measure the pairwise inter-contact time and plot the

Complementary Cumulative Distribution Functions (CCDF)
in Figure 2 and Figure 3. Note that the results are pre-
sented in the log-log scale, and small figures are presented
in the log-linear scale. The figures show that there is a
power-law head when we have short step length of L =
250m. As the degree of correlation in mobility patterns dis-
appears (i.e., as the average step length L increases), the
inter-contact time distribution becomes an exponential dis-
tribution (e.g., L = 1000m). We also report the average and
standard deviation of inter-contact time. When the speed
is 20m/s, the mean inter-contact time is given as 1950.18s
(dev 3294.63s) for L = 250m and 1953.77s (dev 2277.63s) for
L = 1000m. When the speed is 30m/s, it is given as 1365.66s
(dev 2257.82s) for L = 250m and 1339.39s (dev 1546.508s)
for L = 1000m. Our results show that the average value is
about the same, but as shown earlier, the variance of inter-
contact time increases, as the degree of motion correlation
increases. Also, we report that a node with the maximum
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Figure 2: Inter-contact time CCDF
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Figure 4: Average per-node
throughput
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Figure 5: Average inter-any-contact
time
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Figure 6: Average residual inter-
any-contact time

speed of 20m/s and 30m/s has the average contact duration
of about 14.70s and 10.01s, respectively.

We measure the per-node throughput by increasing the
CBR traffic rate (i.e., packets/sec) of a single source-destination
pair. In Figure 4, we present the measured throughput as a
function of the number of relay nodes. Our results validate
the analytic results in Theorem 1: (1) when the network
parameters are given (i.e., λ is fixed), the per-node through-
put linearly increases as the number of relay nodes increases
(nλDc); and (2) the throughput is not affected by the node
speed or the motion correlation.

To show the impact of motion correlation, we present the
average inter-any-contact time (Figure 5) and the average
residual inter-any-contact time (Figure 6). For a given node,
the inter-any-contact time measures the time intervals for
a node to encounter any of the k nodes. Given this, the
first and second moments of the measured inter-any-contact
time are then used to calculate the average residual inter-
any-contact time using Equation 4. Figure 5 shows that
the average inter-any-contact time decreases as the num-
ber of node increases, and it is not influenced by the de-
gree of motion correlation. In Figure 6, however, we no-
tice that the stronger the correlations in mobility patterns
(e.g., L=250m), the longer the delay “tail” and the larger
the residual inter-any contact time.

Finally, we analyze the impact of motion correlation on
the buffer utilization. We can check the buffer utilization
by measuring the number of packets in a relay node’s buffer
during a simulation. We present the buffer utilization of
a randomly selected node in Figure 7. We notice that the
case with L = 250m has larger variance in buffer utilization.
Given a small flight average distance, nodes are “trapped”
in a random region, and thus, nodes in that region will meet
more often before they depart. In that time interval, pack-
ets remain in the neighborhood set, and buffer occupancy
increases. For the case with L = 1000m, there is less cor-

relation, and buffer occupancy is practically uniform over
the entire simulation time. To validate this observation, we
measure the number of consecutive encounters to a source
node by a relay node before it encounters a destination node,
or vice versa. Figure 8 shows the cumulative distribution of
the number of consecutive encounters. The figures show
that the larger the average flight distance, the smaller the
number of consecutive encounters. For instance, the aver-
age number of consecutive encounters for 30m/s is 3.2 and
2.3 for L = 250m and L = 1000m respectively. Our results
confirm that such correlations in mobility patterns indeed
cause the burstiness in inbound/outbound traffic at a relay
node.

5. CONCLUSION
We studied the capacity/delay scaling properties of DTN

routing protocols in mobile ad hoc networks with intermit-
tent connectivity. We represent a DTN under a class of
random mobility models such as random direction, using a
pairwise inter-contact time and the degree of motion cor-
relation. Using this unified framework, we generalized the
scaling behavior of two-hop relay routing and studied the
impact of finite buffer on the scaling behavior. Our re-
sults show that in the scenarios under consideration: (1)
the per-node throughput is not affected by the node speed
and the degree of motion correlation; (2) the motion correla-
tion increases variance in the inter-contact time, and conse-
quently, it increases the average delay, buffer requirements,
and the burstiness of inbound/outbound traffic at the relay
nodes; and (3) buffer requirements can be represented as
the throughput-delay product, which allows us to analyze
the trade-offs between buffer and throughput.
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