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Abstract: 

Recent advances of information and communication technologies (e.g., smartphones and Web 2.0) have facilitated 
ubiquitous sensing and networked collaboration among people. This trend has significantly lowered the knowledge 
transfer barriers and has broadened the range of knowledge services, thus enabling new types of services called 
“ubiquitous knowledge services.” The goal of ubiquitous knowledge services is to seamlessly integrate content (e.g., 
data, information, knowledge) from various sources (e.g., content providers, sensors, smart devices, humans) at 
large scales and to derive new values for end users in ways that the contributor of the content even did not plan or 
imagine. In this chapter, we review the key enabling technologies of ubiquitous knowledge services and the existing 
integrated platforms on sensor data collection, retrieval, and application services. Also, we propose a set of desirable 
features of the ubiquitous knowledge service platforms based on our vision of the knowledge communications 
service (KCS).   

1 Introduction 

While traditional knowledge services are mainly delivered by the experts with domain specific knowledge, recent 
advances of information and communication technologies (e.g., smartphones and Web 2.0) have dramatically 
changed the nature of knowledge services. These technologies have facilitated ubiquitous sensing and networked 
collaboration among people, thus significantly broadening the range of knowledge services and lowering the 
knowledge transfer barriers. People generate significant amount of content and share it with other users via Web 2.0 
services (e.g., Youtube, Twitter).  Collaboration over the Internet is common as one can easily create an online 
project with tens of thousands of participants (called crowdsourcing), e.g., Wikipedia, online Q&A services, and 
Innocentives. Further, sensing happens everywhere, ranging from surveillance cameras on the streets to smartphone 
sensors (e.g., collecting mobility traces of users) to even human sensors (e.g., sensing social events). This dramatic 
shift of ubiquitous sensing and collaboration has enabled new types of knowledge services called “ubiquitous 
knowledge services.”  The key role of ubiquitous knowledge services is to seamlessly integrate content from various 
sources at large scales and to derive new values for end users in ways that the contributor of the content did not plan 
or imagine. 



 
Figure 1 Mobile sensing, social networking, and ubiquitous crowdsourcing 

To illustrate ubiquitous knowledge services, consider the case of a recent flooding happened in July 2011 in Seoul, 
South Korea, which is reported as the heaviest rain falls ever recorded. Due to heavy rain falls in a relatively short 
period of time, many places were flooded, and the city government was not able to properly track them. Yet people 
took photos/videos of the local areas and shared them with others via social networking services (e.g., Twitter, 
Facebook). Given this, various knowledge services were instantly created to help people to make informed decisions; 
e.g., one service collected all the news feeds from social networking and visualized related photos/videos on the map. 
Another case is delivering traffic information to the drivers. Traditional traffic information systems mostly use 
expensive sensors for traffic condition estimation (e.g., fixed cameras or induction loops on the roads), and yet, the 
coverage of those systems is extremely limited due to high installation and maintenance costs. An alternative is to let 
drivers to use their smartphone apps to gather/share the traffic information (Thiagarajan, et al., 2009).  While 
individual reports may not be as accurate as traditional approaches, this crowdsourced knowledge service can 
collectively deliver accurate information even with extended coverage and minimal infrastructure costs. Other 
knowledge services include cooperatively estimating/sharing the schedule of public transits (Thiagarajan, Biagioni, 
Gerlich, and Eriksson, 2010) or traffic signals (Koukoumidis, Peh, Martonosi, 2011). These use cases (and many to 
come) clearly demonstrate that ubiquitous sensing and collaboration provide unique opportunities for enabling 
various ubiquitous knowledge services.  
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Figure 2 Driving forces of emerging ubiquitous knowledge services 

As illustrated in Figure 2, we claim that the main driving forces of emerging ubiquitous knowledge services are the 
intelligences on device/network (e.g., smart devices, mobile sensing, and in-network processing), application (e.g., 
Web, service mashup and cloud computing), and human (e.g., crowdsoucing, human computation, social sensing).  

 Recent smart devices such as smartphones and vehicles are equipped with various sensors (e.g., GPS, 
cameras, accelerometers) and wireless networking technologies (e.g., Bluetooth, Wi-Fi, and 3G). Sensing 
capabilities with always-on connectivity enabled a variety of new mobile sensing applications such as 



people sensing and vehicular sensing. Further, the network infrastructure is becoming more intelligent as it 
supports various services ranging from simple quality of service control to in-network data processing and 
application services (e.g., machine-to-machine and Internet of Things).  

 Application intelligence has facilitated a rapid innovation of application service developments. For instance, 
service mashup techniques allowed application developers to easily use and combine data, presentation or 
functionality from multiple sources to create new services. Cloud computing enabled ubiquitous, 
convenient, on-demand network access to a shared pool of configurable computing resources (e.g., 
networks, servers, storage, applications, and services) that can be rapidly provisioned and released with 
minimal management effort or service provider interaction.  

 The areas of human intelligence include the capability of collaboration among people to achieve a certain 
goal (e.g., crowdsourcing) and the capability of human computation where humans perform the 
computation tasks that machines cannot do well (e.g., image labeling, natural language processing) or the 
perception tasks by sensing/processing ambient/social environments (e.g., earthquake reports, social 
events).   

In this chapter, we begin by providing a detailed review of these areas to better understand ubiquitous knowledge 
services with emphasis on device, network and human intelligences. In particular, we review various mobile sensing 
and ubiquitous crowdsourcing applications for ubiquitous knowledge services, namely monitoring personal 
environmental impact (e.g., CO2 generation/exposure), analyzing context-awareness with sound sensing, sharing 
personal context over social networking, monitoring road surface (e.g., potholes) and real-time traffic, facilitating 
fuel-saving driving, and social sensing with Twitter (e.g., weather monitoring and earthquake detection).   

Given that the fundamental goal of ubiquitous knowledge services is integrating content (e.g., data, information, 
knowledge) from various sources (e.g., sensors, databases, humans) at large scales and driving new values to end 
users, we review the existing systems on sensor data collection, retrieval, service systems, ranging from research 
prototypes to recent standards such as machine-to-machine communications, EPCglobal Network, and Semantic 
Sensor Web. Since our ultimate goal is to design an open platform for ubiquitous knowledge services, we also 
suggest the desirable features based on our insights from the review, namely semantic query processing, service-
device/network interaction (for cross-layer optimization), human computation/sensing, social networking, and agent 
support. Beyond simple data collection and processing, ubiquitous knowledge services naturally require complex 
semantic query processing at large scale. Service-device/network interactions are necessary as we need to optimize 
query processing over the network of resource constrained smart devices. Social networking and collaboration will 
enable various crowdsourcing and human computation/sensing projects. We also anticipate that future knowledge 
services will be more proactive to achieve better user experiences. For example, user agents perceive the intention of 
a user and provide the customized knowledge services to the user at any place and any time, with any device even 
with physical restrictions. Having said that we finally present our vision platform called the knowledge 
communications service (KCS) towards the goal of realizing these features.  

2 Fundamentals of Smart Devices     

A smart device is generally referred to an active computer networked device with intelligence (see Figure 3). Mark 
Weiser proposed three basic forms for ubiquitous system devices, namely tabs, pads and boards (Weiser, 1999). 
Tabs are accompanied or wearable centimeter sized devices, e.g., smartphones, pads are hand-held decimeter sized 
devices, e.g., laptops and iPads, and boards are meter sized interactive display devices, e.g., horizontal surface 
computers and vertical smart boards. These smart devices could be embedded into home appliances (e.g., smart TVs 
and refrigerators) and vehicles (e.g., SatNav and vehicular sensors). Also, dedicated sensors for monitoring physical 
environments as in sensor networks can be considered as smart devices.  Note that recent smart devices are equipped 
with various sensors. Typical sensors include motion sensors such as accelerometer, magnetometer (digital compass), 
and gyroscope (rotational motion and changes in orientation), an ambient light sensor (brightness of the light), a 
proximity sensor (presence of nearby objects), a camera/video, a voice sensor, and location sensors. In this section, 
we review the capabilities of smart devices, e.g., processing, wireless networking, localization, multimodal 
interfaces.  



 

 
Figure 3 Examples of smart devices 

2.2 Processing Capabilities of Smart Devices   

We review the system configuration of smart devices, namely memory, CPU, and storage capacity. We show that 
unlike regular computing systems such as PC and laptops, smart devices are resource constrained, and thus, the 
resource constraints must be carefully considered when designing knowledge services.  

Most smart devices such as use flash memory to store operating systems and data (Khatib, van der Zwaag, Hartel 
and Smit, 2007). They typically use the shadowing technique such that during system booting time, the entire code 
image of an OS and applications is copied from flash memory to DRAM for execution. Low-end smart devices such 
as SatNavs are typically equipped with 64-128MB DRAM and 1-2GB of flash memory; high-end smart devices 
such as smartphones and smartpads are equipped with 512-1GB DRAM and 16-32GB of flash memory. For instance, 
Clarion EZD580 SatNav has 64MB DRAM and 2GB NAND flash memory; TomTom GO910 has 64MB DRAM 
and 1GB flash memory.  iPhone 4 and Samsung Galaxy S smartphones are equipped with 512MB DRAM and 16-
32GB flash memory; smartpads such as iPad 2 and Galaxy Tab have higher memory of 1GB.  Smart devices tend to 
keep the DRAM size minimal because DRAM is power hungry; each DRAM refresh cycle dissipates a few mili-
watts per MB (Khatib, van der Zwaag, Hartel, and Smit, 2007). Moreover, it is known that for a given workload, 
there are some threshold values for DRAM and flash memory sizes such that increasing the size beyond those 
threshold values will not bring any further performance gain (Douglis, et al., 1994). For instance, smartphones have 
about 512MB DRAM. The trend is also true in recent multimedia systems. For instance, Apple TV has a 1 GHz 
Pentium M Crofton Processor, 256MB DRAM, and a 40G HDD.  Smart devices typically use low-power and -cost 
CPUs such as ARM and xScale whose clock speed is around 1Ghz, or low-power/cost multimedia processors such 
as Texas Instruments OMAP 2/3 and RMI Alchemy Au series. Although Intel recently released a high performance 
mobile CPU called Atom (Silverthorne 1.6/8Ghz), its performance is about the same as 900Mhz Celeron M.   

In summary, we observe that smart devices are limited in terms of DRAM and CPU power, by a few orders of 
magnitude, compared to standard desktop machines or servers. The recent trend suggests that such a 
computing/memory resource gap will continue to exist between smart devices and regular desktop machines in the 
foreseeable future.   

2.2 Wireless Networking Technologies for Smart Devices  

Popular wireless networking technologies for smart devices include cellular networks (3G/4G), wireless local area 
networks (WLANs), personal/body area networks (PANs and BANs), and vehicular communications 
(DSRC/WAVE). The cellular networks are for long range communications, whereas wireless LANs and vehicular 
communications (DSRC/WAVE) are for medium and short range communications. Personal/body area networks 
such as Bluetooth and ZigBee are used for only short range communications.  In Figure 4, we present the wireless 
networking standards in terms of range and data rate.  
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Figure 4 Wireless networking standards (range vs. rate) 

Cellular Networks: Cellular systems have been evolving rapidly to support the ever increasing demands of mobile 
networking. 2G systems such as IS-95 and GSM support data communications at the maximum rate of 9.6kbps. To 
provide higher rate data communications, GSM-based systems use GPRS (<171kbps) and EDGE (<384kbps), and 
IS-95-based CDMA systems use 1xRTT (<141kbps). Now 3G systems support much higher data rate. 
UMTS/HSDPA provides maximum rates of 144kbps, 384kbps, and 2Mbps under high mobility, low mobility, and 
stationary environments respectively. CDMA2000 1xEvDO (Rev. A) provides 3Mbps and 1.8Mbps for down and up 
links respectively.  4G systems such as 3GPP LTE and IEEE WiMAX provide the data rate (tens of Mbps), mobility 
(<60Km/h), and coverage (<10Km) required to deliver the Internet access to mobile clients, which are in the process 
of deployment.  

WLAN: Wi-Fi supports broadband wireless services. 802.11a/g/n provides up to several hundreds of Mbps and has 
nominal transmission range of 38m (indoor) and 140m (outdoor). Despite its short radio range, its ubiquitous 
deployment makes Wi-Fi an attractive method to support broadband wireless services. Wi-Fi supports direct peer-to-
peer communications called Wi-Fi Direct, a standard that allows Wi-Fi devices to talk to each other without the need 
for wireless access points (hot spots). Wi-Fi Direct enabled devices can signal other devices to make connections 
and can also form a Wi-Fi Direct Group for device to device communications.   

Blueooth and ZigBee: Bluetooth is an always-on, low-power, and short-range hookup for implementing Wireless 
Personal Area Networks (WPANs). It became the most popular PAN communication device. The concept behind 
Bluetooth is to support universal short-range wireless capabilities using the 2.4GHz unlicensed low power band. 
Bluetooth allows users to connect up to eight devices by forming a star-shaped cluster, called piconet. The cluster 
head is called master and the other nodes are called slaves. Two Bluetooth devices within 10m range can exchange 
data up to 2Mbps (Bluetooth v2.0). Readers can find more information about Bluetooth and its applications such as 
content distribution in the work by Lee, et al. (2010). Another WPAN radio is ZigBee, a low-cost, low-power, 
wireless network standard with data transmission rates of 20-250 kbps. The low cost allows the technology to be 
widely deployed in wireless control and monitoring applications. Low power-usage allows longer life with smaller 
batteries. ZigBee supports P2P style mesh networking that is simpler and less expensive than Bluetooth.   

Vehicular Communications: Dedicated Short-Range Communication (DSRC) is a short to medium range 
communication technology operating in the 5.9 GHz range (Jiang, et al., 2006). The Standards Committee E17.51 
endorses a variation of the IEEE 802.11a MAC for the DSRC link. DSRC supports vehicle speed up to 120mph, 
nominal transmission range of 300m (up to 1000m), and default data rate of 6Mbps (up to 27Mbps). This will enable 
operations related to the improvement of traffic flow, highway safety, and other Intelligent Transport System (ITS) 
applications in a variety of application environments called DSRC/WAVE (Wireless Access in a Vehicular 
Environment). DSRC has two modes of operations: (1) Ad hoc mode characterized by distributed multi-hop 
networking (vehicle-vehicle), (2) Infrastructure mode characterized by a centralized mobile single hop network 
(vehicle-gateway). Note that depending on the deployment scenarios, gateways can be connected to one another or 
to the Internet, and they can be equipped with computing and storage devices, e.g., Infostations (Frenkiel, Badrinath, 
Borras, and Yates, 2002).   



2.3 Localization  

We review localization techniques that are commonly used by the smart devices, namely GPS, A-GPS, network 
positioning systems (or cell-tower localization), and Wi-Fi Positioning Systems (WPSs).   

The Global Positioning System (GPS) is a space-based global navigation satellite system that provides location and 
time information. There are 27 satellites in the orbit each of which carries highly accurate atomic clocks and is 
controlled by the ground control station. The orbits are arranged so that at anytime, anywhere on Earth such that 
there are at least four satellites "visible" in the sky. A GPS receiver's job is to locate three or more of these satellites, 
figure out the distance to each, and use this information to deduce its own location. This operation is based on a 
mathematical principle called trilateration, a process of determining absolute locations of points by measurement of 
distances, using the geometry of circles or spheres. Imagine you are somewhere in Korea and you are totally lost—
for some reason, you have absolutely no clue where you are.  You find a friendly local and ask, "Where am I?" He 
says, "You are 70 km from Daejeon.”  You ask somebody else where you are, and she says, "You are 60 km from 
Daegoo." Now you have two circles that intersect. You now know that you must be at one of these two intersection 
points. If a third person tells you that you are 100 km from Gwangjoo, you can eliminate one of the possibilities. 
You now know exactly where you are.  

Smart devices that use cellular networks mostly have an Assisted-GPS (A-GPS) that significantly reduces satellite 
search space by focusing on where the signal is expected to be. A cellular network service provider has an assist 
server and position server with GPS that collects satellite information (e.g., time sync, frequency, visible satellites, 
etc.), which is transmitted over cellular network to speed up location fixing.  In practice, however, even with such 
enhancement, the performance of A-GPS in smart devices is less satisfactory. Due to small form factors, smart 
devices mostly use micro-strip or wire based antenna whose performance is inferior to that of spiral helix antenna 
that is commonly used in SatNavs.    

Another commonly used localization method is cell-tower localization. The overall localization method is very 
similar to GPS in that a mobile node measures the distances from nearby cell towers (whose positions are known) 
and trilateration is performed to determine its location. Distance measurement can be done with time-of-arrival of 
signals or signal-strength measurement. Unlike GPS, such measurements in urban environments are error-prone and 
thus, the error range is much greater than GPS (hundreds of meters on average).  

A Wi-Fi positioning system (WPS) is based on fingerprinting (e.g., RADAR and Skyhook).  WPS uses a 
fingerprinting technique and is generally composed of two steps: training and positioning phases. In the training 
phase, the system builds a fingerprint table: for each location, the system collects signal strength samples from 
towers, and keeps the average for each location. In the positioning phase, the system calculates the distance in signal 
strength space between the measured signal strength and the fingerprint DB; e.g., by selecting k fingers with the 
smallest distance, and using arithmetic average as an estimated position. One of the major shortcomings is that 
building the fingerprint table (e.g., wardriving) is costly and the table must be periodically updated as Wi-Fi 
hotspots tend to change over time.   

2.4 Multimodal Interfaces   

Basic user interfaces in smart devices are the standard graphic based WIMP (window, icon, menu, and pointing 
device). Smart devices also have multiple modalities and are able to interpret information from various sensory and 
communication channels. For instance, smartphones uses touch based interactions; LG Optimus smartphones allow 
users to use personalized gestures as shortcuts to commands. Oviatt (2003) defined that multimodal interfaces 
process two or more combined user input modes (such as speech, pen, touch, manual gesture, gaze, and head and 
body movements) in a coordinated manner with multimedia system output. They are a new class of interfaces that 
aim to recognize naturally occurring in the forms of human language and behavior, and which incorporate one or 
more recognition-based technologies, e.g., speech, pen, vision.  Thus, they can provide richer and more natural 
methods of interactions, e.g., gesture, speech, and even all the five senses.   

Multimodal interfaces were initially considered as more efficient than existing unimodal interfaces, but experimental 
results showed that the speed up of task completion is mere 10%, suggesting that speed-up should not be considered 
as a primarily measure (Oviatt, 1997). Instead, multimodal interfaces have been shown to significantly reduce the 



error rate and improve the reliability; for instance, Oviatt (1997) showed that users made 36% fewer errors with a 
multimodal interface than with a unimodal interface. People generally prefer to use multimodal interaction due to its 
expressive power.   

3 Application Intelligence    

Application intelligence facilitated a rapid innovation of these application services. Key enabling technologies of the 
application intelligence include service mashup, cloud computing and knowledge visualization. There are several 
other techniques that contribute to the application intelligence such as context awareness, augmented reality, and 
privacy/security. The application intelligence permits rapid, efficient software development for the developers, and 
rich user experience (UX) for the users.  In this section, we review the key enabling technologies, namely service 
mesh-up, cloud computing and knowledge visualization.  

In general, service mashup means a web page or application that combines data, service, presentation or 
functionality from multiple sources to create new services. To make existing data more valuable for personal and 
professional purposes is very important to provide a better user experience, and this is one of the key success factors 
in the application and content business. In other words, the mashup is a way to create new web applications by 
combining existing web resources utilizing data and web APIs. Web services are emerging as a major technology 
for deploying automated interactions between distributed and heterogeneous applications. Even though many service 
providers recognized its value and have already adopted the service mashup concept, fully realizing the service 
mashup concept is still challenging, and much work remains to be done. Since services generally face with a broader 
range of heterogeneity compared to data, and thus, resolving heterogeneity is the key challenge in the area of service 
mashup. 

Cloud computing delivers hosted services over the Internet. It has enabled ubiquitous, convenient, on-demand 
network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, 
and services) that can be rapidly provisioned and released with minimal management effort or service provider 
interaction (Mell and Grance, 2011). Cloud computing describes a new eco-system model for IT services based on 
Internet protocols, and it typically involves provisioning of scalable and virtualized resources, such as storages and 
applications. 

Knowledge visualization aims to improve the creation and transfer of knowledge among people via various 
computer or non-computer based visualization methods. While information visualization focuses on the use of 
computer-supported tools to derive new insights, knowledge visualization concentrates on transferring insights, 
experiences, attitudes, values, expectations, perspectives, opinions, and predictions with various complementary 
visualization methods (Burkhard, 2004) (Burkhard and Meier, 2004) (Eppler and Burkhard, 2005). For an effective 
transfer and the creation of knowledge via visualizations, following four perspectives should be taken into account, 
such as function type, knowledge type, recipient type, and visualization type. A function type perspective and 
knowledge type perspective answer why visualization should be used (aim) and what type of knowledge needs to be 
visualized (content), respectively. A recipient type perspective points to the different backgrounds of the audience, 
and the visualization type perspective organizes the main visualization types in accordance with their individual 
properties. 

4 Ubiquitous Sensing for Knowledge Services 

We present ubiquitous sensing applications for smart devices; for people sensing, we review knowledge services on 
personal environmental impact monitoring, sound sensing, state sharing over social networking, and for vehicular 
sensing, we review knowledge services on road surface monitoring, real-time traffic monitoring, and fuel-efficient 
driving.  

4.1 People Sensing based Knowledge Services 

4.1.1 Personal Environmental Impact Report (PEIR) 

Participatory sensing is to realize distributed data collection and analysis at personal, urban, and global scale. Mobile 
phones are used to gather data, and web services are used to aggregate and interpret the collected data. Personal 



Environmental Impact Report (PEIR) is a mobile personal sensing platform that uses mobile handsets to 
collect/upload data, and generates web-based reports about personal environment impacts (Mun, et al., 2009).  The 
PEIR system estimates the metrics related to health and wellness: (1) carbon impact: a measure of transportation-
related carbon footprint, (2) sensitive site impact: a user’s transportation related airborne particulate matter 
emissions near sites with populations sensitive to emissions, (3) smog exposure: a user’s transportation-related 
exposure to particulate matter emissions, and (4) fast food exposure: the time integral of proximity to fast-food 
restaurants. The ultimate goal of PEIR is for people to take notice of the impact and exposure and to raise 
individual/community awareness on the potential risks.  

 
Figure 5 PEIR system architecture  

Figure 5 shows how the PEIR system works. PEIR basically collects the location traces from individuals using the 
onboard GPS in mobile phones. Once the data are uploaded, raw GPS readings are matched with the map to reduce 
the GPS errors. Then, a user’s activity is classified by processing the GPS readings (e.g., walking and driving). PEIR 
uses external data sources. For each site visited, it annotates the data with weather and traffic information by 
utilizing external information sources (e.g., government organizations for weather and transportation). The system 
utilizes the user profile (e.g., vehicle type) and existing location information of schools, hospitals, and fast food 
restaurants.  For a given trace, the carbon and sensitive site impacts are estimated using the automobile emission 
factor model (EMFAC) customized with a user’s vehicle type and weather condition. Similarly, the smog exposure 
can be estimated by incorporating the traffic information. The fast food exposure can be simply calculated based on 
the location traces and fast-food locations.  

4.1.2 Sound Sensing for People-Centric Applications 

Sound captured by the microphone of a mobile phone is a rich source of information that help make inference about 
the person carrying the phone, the ambient environments, and even the social events. SoundSense is a sound 
processing application that automatically classifies the sound into several categories of interest (e.g., voice and 
music) (Lu, et al., 2009). SoundSense is also capable of learning ambient sounds considered significant (e.g., vehicle 
starting sound, vacuum cleaner sound, etc.). To this end, it incrementally builds probabilistic models of encountered 
sounds. The detected sounds are then ranked based on importance and are given to the user to perform human-in-
the-loop labeling.  This ambient sound logs can be used as a diary or can be used to collect/share the sound 
information across the city to understand the noise level of an urban environment.   

4.1.3 Sensing and Social Networking   

Given that mobile phones are equipped with sensors such as GPS and accelerometer, they can be used to create 
mobile sensor networks to sense information important to people. One example would be using mobile phones to 
automatically detect/publish the current locations or activities of users. CenceMe is a mobile platform that tracks 
users (e.g., location and activity) and shares the user information over social networks (Miluzzo, et al., 2008). 
CenceMe’s ClickStatus application displays the status of CenceMe buddies from Facebook (see Figure 6). For 



privacy management, CenceMe provides a privacy setting GUI through which users can enable/disable sensors used 
for tracking.  

 
Figure 6 CenceMe overview  

CenceMe uses various smartphone sensors to extract user information. Simple detections are performed in the 
phones; e.g., classifying whether the incoming sound is human voice or environmental noise, and classifying 
acceleration data to activities (e.g., sitting, standing, walking, and running). For sophisticated analysis (e.g., 
conversation, social context, and mobility mode), the relevant sensor data are transmitted to the backend servers in 
which the classification operations are performed.    

4.2 Vehicular Sensing based Knowledge Services  

4.2.1 Road Surface Monitoring 

Municipalities around the world spend millions of dollars to keep roads in good ride quality. Ride quality is mainly 
measured by the pavement roughness of a road surface that is an expression of the surface irregularity. The 
roughness causes vertical vibration of vehicles and thus reducing ride quality. There are several main sources of 
roughness: steps, dips, humps, bumps, and defects (crack, potholes). It also causes the stresses and fatigue damages 
of both vehicle and road structures. Municipalities have been profiling roads using non-contact profiling devices 
mounted on the vehicles that use GPS, accelerometer/laser sensors. This approach is quite expensive due to the 
operation costs and limited availability of specialized profiling devices.  

 
Figure 7  Pothole patrol system overview 

Researchers have recently considered using less expensive commodity sensors; e.g., smartphones are good sensing 
platforms as demonstrated in by Mohan, Padmanabhan, and Ramjee (2008). Eriksson, et al. (2008) developed a 
pothole detection algorithm that uses off-the-shelf GPS and 3-axis accelerometer sensors. For pothole detection, the 
acceleration data needs to be carefully examined because potholes must be differentiated from other road anomalies 
(e.g., railroad crossings and expansion joints). The detection algorithm mainly uses the X-Z ratio since potholes 
influence the acceleration values only one side of the vehicles (as opposed to both sides in railroad crossings and 



expansion joints). It also removes anomalies caused by turning, veering, braking, and also samples collected at high 
speed. As shown in Figure 7, a mobile node runs the detection algorithm and returns results to the central server. For 
robust detection, the server clusters at least k events in the same location. The robustness can be further improved 
when multiple vehicles participate in the monitoring project.   

4.2.2 Traffic Monitoring Systems 

Most traffic information systems currently analyze data from closed-circuit cameras and sensors installed on the 
roads to estimate traffic conditions. This information is then shared via radio broadcasts, traffic report on the Internet 
(e.g., Google Traffic), and en route traffic displays and signals. The coverage of those systems, however, is 
extremely limited (e.g., mainly highways) due to high installation and maintenance costs. To overcome such 
limitations, researchers have proposed to use vehicle as sensors to collect GPS measurements. This mobile sensor 
approach greatly extends coverage, thus enabling street-level traffic flow estimation.  Yoon, Noble, and Liu (2007) 
systematically showed that various features can be used for accurate traffic flow estimation, e.g., average speed, 
speed distribution, speed changes, and time duration/distribution.  

For data collection and sharing, we can consider various wireless connectivity such as roadside WiFi Access Points 
(APs), vehicle-to-vehicle communications, and cellular communications (2/3G). CarTel (Hull, et al., 2006) uses 
roadside WiFi APs, and TrafficView (Dikaiakos, Iqbal, Nadeem, and Iftode, 2005) and MobEyes (Lee, et al., 2006) 
use car-to-car communications. Also, cellular communications have been recently considered: TruTraffic by Dash 
Express’s SatNav system and smartphone-based system like VTrack. In particular, TruTraffic collects GPS 
measurement data from SatNav users using 2/3G and provide a real-time traffic information service such as dynamic 
route guidance and congestion notification. If smartphones are used, energy consumption and GPS errors must be 
considered as in VTrack (Thiagarajan, et al., 2009). Adaptive sampling is preferable as GPS is energy hungry. Due 
to inferior antenna and urban canyon, GPS is not always accurate and even may be unavailable. In this case, 
alternative location services must be employed (e.g., Wi-Fi and cellular localization). VTrack solves these 
challenges by employing a novel map matching algorithm that greatly reduces the required number of samples and 
yet significantly lowers location tracking errors.  

4.2.3 Fuel Efficient Driving  

Fuel efficient driving can be realized using participatory sensing. We introduce two participatory sensing systems, 
namely GreenGPS (Ganti, et al., 2010) and SignalGuru (Koukoumidis, Peh, Martonosi, 2011). GreenGPS 
recommends the most fuel-efficient route to the drivers. SignalGuru predicts the traffic signal schedule as in a Green 
Light Optimal Speed Advisory (GLOSA) system; when heading towards a signalized intersection, drivers can find 
the optimal speed that minimizes the waiting time at the intersection (thus, saving fuel).    

GreenGPS uses grassroots collaboration among users who have onboard OBD-II sensors that are capable of 
retrieving detailed vehicle statistics in real-time (e.g., RPM, fuel consumption, speed, etc.).  The fuel consumption 
depends on multiple parameters such as year, model, and make of a vehicle. However, when the number of 
participants is small, it is challenging to accurately model fuel consumption particularly (requiring a large number of 
samples). Instead, GreenGPS builds a generalized prediction model with model clustering, i.e., grouping similar 
items, say the same make and model. The resulting model takes the input parameters such as stop sign count, traffic 
light count, distance travelled, average speed, and vehicle weight. The experimental results show that an average 10% 
fuel saving can be achieved with GreenGPS.  

SignalGru also relies on information sharing among drivers. Unlike traditional GLOSA systems where dedicated 
devices are installed at the intersection (e.g., counting down unit or digital sand watch), SignalGru is infrastructure-
less as it uses commodity cameras in smartphones to detect signal changes. The detection module periodically 
processes the video frames to detect signal changes (e.g., Green to Yellow to Red). The detected information is then 
disseminated via vehicle-to-vehicle communications. Once enough information is collected, the schedule prediction 
can be performed. Predicting the schedule of pre-timed traffic signals (with fixed schedules) is straight-forward. 
SignalGru also supports the schedule prediction of traffic-adaptive signals where the schedule dynamically changes 
on the basic on the current vehicle density (sensed via loop detectors on the roads). The experimental results show 
that SignalGru can accurately predict the schedule (less than several seconds of an error), and an average of 20.3% 
fuel saving can be achieved.  



4.2.4 Urban Surveillance 

 Vehicular sensing can be used for proactive urban monitoring services (Lee, et al., 2006) where vehicles 
continuously sense events from urban streets, maintain sensed data in their local storage, autonomously process 
them, e.g., recognizing license plates, and possibly route messages to vehicles in their vicinity to achieve a common 
goal, e.g., to permit police agents to track the movements of specified cars.  Vehicular sensing could be an excellent 
complement to the deployment of fixed cameras/sensors. This completely distributed and opportunistic cooperation 
among sensor-equipped vehicles has the “deterrent” effect of making it harder for potential attackers to disable 
surveillance. Another less sensational but relevant example is the need to track the movements of a car, used for a 
bank robbery, in order to identify thieves, say. It is highly probable that some vehicles have spotted the unusual 
behavior of thieves' car in the hours before the robbery, and might be able to identify the threat by “opportunistic” 
correlation of their data with other vehicles in the neighborhood. It would be much more difficult for the police to 
extract that information from the massive number of multimedia streams recorded by fixed cameras.   

5 Ubiquitous Crowdsourcing for Knowledge Services 

The term crowdsourcing was first coined by Jeff Howe in a Wired Magazine article (derived from outsourcing). 
Crowdsourcing is the act of taking a job traditionally performed by an employee and outsourcing it to the public, 
hoping to exploit the spare processing power of millions of human brains in the distributed labor network over the 
Internet (i.e., any people behind their computers who are willing to contribute to the project).  Example 
crowdsourcing projects include Wikipedia, social Q&A (e.g., Yahoo! Answer), and Innocentives.1 The required 
human skills of crowdsourcing range from simple (e.g., image labeling and transcribing) to complex (e.g., research 
and development). Note that simple tasks that human perform better than machines (e.g., image labeling and 
transcribing) are often called “human computation tasks.” The motivation behind crowdsourcing participation 
largely depends on the types of systems; e.g., monetary rewards in Amazon’s M-Turk2, a mechanized labor 
marketplace, altruism in Wikipedia, and fun in human computation games. Readers can find more detailed 
information about human computation in the work by Quinn and Bederson (2011).  

In recent years, the availability of networked labor forces has significantly improved with smart devices due to 
always-on wireless connectivity. Further, a variety of sensors in smart devices (e.g., cameras, accelerometers) enable 
a new type of crowdsourcing, namely sensing tasks (e.g., taking photos from streets) which we call ubiquitous 
crowdsourcing. Sensing activities can be largely classified into two categories: (1) passive sensing task: data are 
automatically collected on the background without any user intervention, and (2) active sensing task: a user needs to 
perform physical activity for sensing (e.g., taking photos). Participatory sensing that we reviewed in Section 3 
belongs to this category. An alternative to using sensors is to use a human’s five senses and cognitive ability 
(inference); e.g., a flooding/earthquake can be easily detected. Soliciting participation in ubiquitous crowdsourcing 
can be done in a number of ways; e.g., people with the same interest or from the same community as in participatory 
sensing, mechanized labor forces as in Amazon’s M-Turk, and people from the social networks as in Twitter.  In this 
section, we illustrate several ubiquitous crowdsourcing applications by reviewing existing systems that utilize 
mechanized labor forces and social networks.  

 

5.1 Location-based Ubiquitous Crowdsourcing 

Location-based tasks (e.g., taking photos, price/inventory checks, and verifying map information) are one of the key 
services of ubiquitous crowdsourcing, and several on-line services include mCrowd3, Field Agent4, and Gigwalk5. 
Microsoft Bing has been collecting photos using Gigwalk for panoramic 3-D photosynthesis of businesses and 
restaurants in Bing Map. mCrowd developed by University of Massachusetts Amherst supports a feature of 

                                                            
1 http://www.innocentive.com/  
2 https://www.mturk.com/mturk/welcome  
3 http://crowd.cs.umass.edu/  
4 http://www.fieldagent.net/  
5 http://gigwalk.com/  



interfacing with existing labor marketplaces such as Amazon’s M-Turk and ChaCha in which location agnostic tasks 
can be effectively handled.    

 Given that location-based ubiquitous crowdsourcing is still in its early stage, understanding the user experiences is 
very important. A recent study on the user experiences reports the following observations (Alt, et al., 2010). People 
prefer address-based task selection (or map-based visualization). Among all the tasks, photo taking tasks were most 
popular mainly due to lower cognitive overhead. People are not willing to make significant efforts on performing 
tasks as most completed tasks are close to their usual places (e.g., home and work). When searching for tasks, 
people wish to view the tasks close to their current location. Tasks are usually done after work or during breaks, and 
the response time varies widely (several minutes to one day or longer). Voluntary tasks (with no monetary rewards) 
have much lower chances of completion rate as opposed to tasks with monetary rewards.  

5.2 Human Intelligence and Social Networking   

We review ubiquitous knowledge services that exploit crowdsourced sensing and collaboration over social 
networking tools such as Twitter and Foursquare. Several application services have proposed by the researchers at 
University of Buffalo, e.g., weather information collection and noise mapping (Dermirbas, et al., 2010) and location-
based query resolution (Fatih, Yilmaz, and Dermirbas, 2011).  

Given that the current mobile platforms lack an infrastructure that assists mobile users to perform collaboration and 
coordination ubiquitously and permits searching/aggregating the data published by mobile users, Dermirbas, et al. 
(2010) proposed a crowdsourcing architecture based on Twitter, an open social networking system that allows users 
to share short messages (140 character limit). The key components include Sensweet and Askweet. Sensweet is a 
smatphone application that uses the smartphone’s ability to work in the background for sensing ambient 
environments without distracting a mobile user. Sensweet also defines a markup language called TweetML to 
standardize the sensor data format in Twitter. Askweet is a server program that monitors a Twitter account 
(dedicated for a specific service) for questions, processes the questions, and aggregates the replies to answer the 
questions.  It first attempts to answer the queries using the data available on Twitter (including the data published by 
Sensweets). If that fails, Askweet finds experts on Twitter to which the queries are forwarded.  Dermirbas, et al. 
(2010) demonstrated two application services: crowdsourced weather radar and noise mapping. In the crowdsourced 
weather radar service, random Twitter users are probed with a question about the current weather; in the noise 
mapping service, a Sensweets mobile application measures the noise level using the microphone and reports the 
results via Twitter. In their experiment of collecting responses of NYC weather, they found that weather probing 
takes reasonable delay (e.g., more than 50% of answers have less than 30 minutes), and Twitter users are more 
responsive during afternoon and evening.  

This work was extended to location-based queries by incorporating the location based social networking services, 
e.g., Foursquare (Fatih, Yilmaz, and Dermirbas, 2011).  Search queries typically fall into two categories: factual, e.g., 
“hotels in Miami” and non-factual, e.g., “cheap, good hotel in Miami.” In the case of non-factual queries, it is well 
known that traditional search engines perform poorly. Noting that significant fraction of location-based queries is 
non-factual, Fatih, Yilmaz, and Dermirbas extended the aforementioned system by considering the location 
information of users (from location-based social networking services such as Foursquare) when selecting people to 
ask questions.  Their experimental results showed that the user participation significantly improved when location 
information was used; e.g., the median response delay was 13 minutes.   

Instead of asking Twitter users to perform human computation tasks, Sakaki, Okazaki, and Matsuo (2010) showed 
that Twitter messages posted by users can be automatically analyzed to detect natural events such as earthquakes 
and typhoons.  They proposed a machine learning based approach using support vector machines for event detection. 
For earthquake detection, features of interest include statistics (e.g., tweet message length), key words (e.g., shaking, 
earthquake), and word context (e.g., location, time). Like real sensors, semantic analysis may result in errors. For 
accurate detection, time-series data are further analyzed to build spatial/temporal models; e.g., the frequency of 
earthquake related messages exponentially decreases. In the experiments, they analyzed total 49,314 tweets over the 
one year period from August 2009 to September 2009 (Sakaki, Okazaki, and Matsuo, 2010).  When compared the 
results with Japan Meteorological Agency (JMA) data, they were able to detect 96% of earthquakes that were 
stronger than scale 3 or more during the period.   



6 Building Ubiquitous Knowledge Service Platforms 

Accessing remote sensor networks (e.g., sensor data retrieval) is one of the critical requirements of ubiquitous 
knowledge services. If there is only a single sensor network, we can assign a single node as a sink (or a base station 
or gateway) for data collection. When there are multiple wireless sensor networks that are geographically distributed, 
diverse system architectures for data collection are feasible. A simple approach would be using a centralized server 
over the Internet. An alternative is to maintain a hierarchical structure; e.g., local servers maintain all the data 
generated in the local area, and a central server keeps the index for global data retrieval, or to use peer-to-peer 
storage; e.g., distributed hash tables maintain all the sensor data.    

So far various Internet-based systems were proposed for these purposes; e.g., a simple two-tier structure (local vs. 
backend servers) such as ArchRock (Woo 2007), SensorBase (Reddy, et al., 2007), and SensorMap (Nath, Liu, and 
Zhao, 2007), a semi-hierarchical structure such as IrisNet (Gibbons, et al., 2003), and Global Sensor Networks 
(GSN) (Aberer, Hauswirth and Salehi, 2006), and a fully distributed peer-to-peer structure such as GeoServ (Ahn, 
Lee, Moon, 2011).  In ArchRock and SensorBase, sensor data from a sensor network is aggregated at the local 
gateway and is published to the front-end server through which users can share the data. In SensorBase, back-end 
servers (called re-publishers) further process sensor data to enable sensor data searching. SensorMap is a web portal 
service that provides mechanisms to archive and index data, process queries, and aggregate and present results on 
geocentric Web interfaces such as Microsoft Virtual Earth. In IrisNet, each organization maintains database servers 
for its own sensors, and a global naming service is provided for information access; a similar approach is used in 
GSN to allow users to query local and remote sensor data sources.  GeoServ, a fully-distributed peer-to-peer sensor 
networking platform based on a distributed hash table, provides a location-aware sensor data retrieval scheme for 
geographic range queries, and a location-aware publish-subscribe scheme for multicast routing to a group of 
subscribed users (Ahn, Lee, Moon, 2011).   

Along with these research prototypes, there have been continued efforts on standardization of technologies such as 
Semantic Web Enablement (SWE), Semantic Sensor Web (SSW), machine-to-machine (M2M) communications, 
and EPCglobal Network. Also, several related research projects were recently conducted in Europe such as BRIDGE 
(BRIDGE, 2009) and SENSEI (SENSEI, 2010). These standards and research systems feature various functions 
ranging from simple sensor data collection to inter-networking across multiple domains to semantic sensor data 
analysis. In this section, we review these activities and provide a detailed comparison of key features. Further, we 
present our research proposal called the knowledge communications service (KCS).   

6.1 M2M  

In the past, the communication system mostly considered the scenarios with human interactions, namely human-to-
human (H2H) such as voice communications and human-to-machine (H2M) such as remote service access including 
web browsing.  Recently, the industry has been also looking at alternative communication scenario where human 
interactions are absent, which is called machine-to-machine (M2M) communication or machine type communication 
(MTC). A service optimized for M2M differs from a service optimized for H2H communications in that it has 
different market scenarios with a potentially very large number of low-cost sensor nodes with little data traffic per 
node (3GPP, 2010a) (3GPP, 2010b). Service areas of M2M include security, tracking/tracing, payment, health, 
remote maintenance control, metering, and consumer devices. For example, in the smart grid area, autonomous and 
smart monitoring with M2M communications enables utility providers to remotely sense and control their utility 
equipment, thus obviating the need of laborious manual intervention. Many analysts expect that the M2M market 
will increase drastically in the near future.  

Many groups have actively involved in M2M standardization, e.g., IEEE 802.16p (WiMAX), IEEE802.11 (Wi-Fi), 
802.15.4 (ZigBee), GSMA, WiMax Forum, WFA, OMA, TIA, CCSA NITS, etc. Here, we overview the proposals 
of leading standardization groups, namely 3GPP and ETSI. 3GPP has considered M2M as one of the most promising 
applications to support in the LTE-Advanced standards (3GPP, 2010b). For successful adoption, 3GPP proposed to 
improve their cellular network systems as follows (3GPP, 2011): (1) architectural enhancements to support a large 
number of machine type communications (MTC) devices in the networks; (2) architectural enhancements to fulfill 
MTC service requirements; and (3) support combinations of architectural enhancements for MTC. While 3GPP 
focused on communications networks, ETSI aims at standardizing more generic service architecture and 



requirements of M2M (ETSI, 2010)[4]. It claimed the following clauses: (1) general requirements describing 
communications features necessary for the correct establishment of M2M communications; (2) management related 
to malfunction detection, configuration, and accounting; (3) functional requirements for M2M services such as data 
collection/reporting and remote control operations; (4) security for M2M device such as authentication, data 
integrity, and privacy; and (5) naming, numbering, and addressing intended to M2M devices. ETSI also provided the 
overall end-to-end M2M functional architecture, including the identification of the service entities, the related 
interfaces, and the relations with the underlying existing networks (ETSI, 2011).  

The following are the core system components of ETSI proposals (see Figure 8): (1) M2M devices and local area 
networks, (2) M2M gateway, (3) M2M network core, and (4) M2M applications. M2M applications interact with the 
service capabilities in the M2M network core to acquire the sensor data of interest. Actual sensor data will be 
collected via the M2M area network through M2M gateways (or sink nodes). Any local service capabilities in the 
M2M gateways are registered at the network core for centralized access and control of service capabilities in the 
M2M network. 

 
Figure 8 M2M architecture overview 

6.2 Sensor Web Enablement (SWE) and Semantic Sensor Web (SSW) 

Sensor Web Enablement (SWE) is an initiative of the Open Geospatial Consortium (OGC) to add real-time sensing 
to the Internet and the Web, by building an open standard framework for exploiting Web-connected sensors and 
sensor systems, e.g., flood gauges, Webcams, etc.  (Botts, Percivall, Reed, and Davidson, 2008). SWE has been 
focused on developing Web standards (based on XML) to enable (1) discovery, (2) access, and (3) tasking, and (4) 
alert notification. SWE’s standards can be classified into two categories: (1) encoding standards: how to describe 
sensors and sensor data (i.e., SensorML and O&M), and (2) Web services standards: how to provide sensor Web 
services (i.e., SOS, SPS, and SAS). Sensor Model Language (SensorML) describes the standard models and XML 
schema for describing the detailed information about sensors and their processes (e.g., functional models and 
process chains), including the information needed for sensor discovery. Observations and Measurement Schema 
(O&M) defines the standard models and XML schema for encoding sensor data (e.g., units, features). Sensor 
Observations Service (SOS) provides a standard web service interface for querying and retrieving sensor data and 
sensor system information. Sensor Planning Service (SPS) is a standard web service interface for configuring the 
sensors (and testing sensing feasibility), and Sensor Alert Service (SAS) is a standard web service interface for 
publishing and subscribing to alerts from sensors.  As shown in Figure 9, for a given set of sensors the service 
catalogs (i.e., the registries of the sensor system) are built based on SensorML and O&M, and the resulting catalogs 
are used in SPS and SOS (e.g., discovering services, sensors, providers, and sensor data). Once the sensing system 
has initialized, a user can make a collection request to SPS or directly to the sensors (via SOS).  



 
Figure 9 SWE overview 

The Semantic Sensor Web (SSW) is a framework for providing “enhanced meaning to sensor data” to improve 
situation awareness by augmenting standard sensor languages of the SWE with semantic annotations through which 
applications can understand and reason over sensor data consistently, coherently, and accurately (Sheth, Henson, 
and Sahoo, 2008). SSW is based on the semantic Web, an evolving extension of the Web where semantics (meaning) 
of information is captured using ontologies, enabling machines to interpret and relate data. As shown in Figure 10, 
the key components of the semantic Web include the Resource Description Framework (RDF) data representation 
model, and the ontology representation languages, namely RDF schema, and Web Ontology Language (OWL). For 
semantic annotation, SSW uses spatial, temporal, and thematic ontoloiges along with domain-specific ontologies for 
representing sensors (e.g., biomedical ontology). Here, annotation spans from raw sensor data to extracted features 
and detected entities from sensor data. By using Semantic Web tools, semantic reasoning and computation over 
semantically annotated data can be performed, including semantic enabled search, integration, answering complex 
queries, pattern finding, discovery, visualization, etc. For instance, if a group of sensors provides information about 
temperature and precipitation, possible road condition can be specified using simple rules (say, an icy road if 
temperature is below 0 degree Celsius and it is raining).  

 
Figure 10 SSW overview 

  

6.3 Internet of Things 

The phrase Internet of Things (IoT) was coined by the Auto-ID Center with the vision of building a global network 
called the EPC network that enables tracking items (e.g., using RFID tags and readers) and sharing information over 
the Internet.  Due to recent advances of RFIDs, sensor networks, near field communications (NFC), and smart 
devices, the Internet of Things has been widely accepted as an enabler of ubiquitous sensor networking over the 
Internet; i.e., remotely monitoring the physical world using sensors (or associated services) and acting upon changes 
in the real world (Santucci, 2010). In fact, such real-time sensing and actuation call for open, scalable, secure 
infrastructure standards. Some of the recent efforts include Auto-ID’s EPC Network (and EPC sensor networks), 
OCG’s Sensor Web Enablement (SWE), ISO/IEC standards, and IEEE 1451 standards (Song, and Lee, 2008).   



 
Figure 11 EPC Network overview 

The EPC network basically considers small, inexpensive, high performance RFID tags and readers. Its goal is to 
provide the ability to provide item tracking and information sharing to the current supply chain architecture. In the 
EPC network, all items are uniquely identified using Electronic Product Code (EPC). Information related to each 
item is stored within a network of databases with each touch point within the supply chain collating information 
specific to that product. The EPC network also defines a common communication language and standard interfaces, 
thus guaranteeing interoperability between vendors. As shown in Figure 11, the EPC network is composed of the 
following components: Electronic Product Code (EPC), ID System (RFID tags and readers), EPC Application Level 
Event (ALE), EPC Information Services, and Discovery Services. EPC is an identification scheme for uniquely 
identifying physical objects. The current coding schemes are based on the GS1 family of codes, but it is possible to 
use any existing coding schemes. An RFID tag with the EPC code will be attached to an object, and RFID readers 
can read out information. EPC Application Level Event (ALE) specifies how the captured RFID data are filtered and 
grouped to some events.  After passing through the EPCALE, the captured RFID data will be stored into the 
EPCIS’s repository. The querying interface of EPCIS allows external applications to access the RFID data. 
Discovery services enable global access to data associated with a specific EPC (e.g., between different enterprises).  

EPC Readers

EPC Application 
Level Event (ALE)

EPC Information 
Services (IS)

Local Sensor Network

EPC Applications

 
Figure 12 EPC Sensor Network 



While the EPC network considers passive RFID tags, it can be also extended to include smart tags with 
communication and processing capabilities (forming an EPC sensor network) (Sung, Sánchez, and Kim, 2007).  As 
shown in Figure 12, a group of smart tags (or a local sensor network) is connected to the backend system via a 
reader (called a base station). It uses IEEE 1451 TEDS (Transducer Electronic Data Sheet) standards for sensor and 
sensor data description. Various air interfaces are used for communications among smart tags (e.g., Bluetooth, 
ZigBee, and NFC), but it does not specify sensor networking protocols in a local sensor network. Unlike the original 
EPC network, the functions of EPCALE are extended to support more complex operations on sensor data (e.g., data 
processing such as averaging).  

Like the EPC Sensor Network proposal, the BRIDGE (Building Radio Frequency IDentification for the Global 
Environment) project aimed at supporting ambient sensors and sensor-enabled active RFID tags in the EPCglobal 
network for supply chain monitoring (BRIDGE, 2009). Given that existing RFID related standards and proposals 
cannot efficiently support sensor data, BRIDGE incorporates OGC’s Sensor Web Enablement (SWE) into the EPC 
Network. These standards share the same functionalities; e.g., EPC Network’s EPCIS/ALE corresponds to SWE’s 
SOS and Discovery Service (ONS) to Catalog. Yet SWE lacks the concept of base station (BS), reader management, 
and globally unique address, while EPC Network does not provide sensing task planning. In BRIDGE, SWE is 
extended to include the base station and to inter-work with the EPC Network, which causes minimal modification to 
the EPC Network standards.   

The SENSEI project models wireless sensor and actuator networks into resources and proposes to network 
“resources” over the Internet (SENSEI, 2010).  For instance, a sensor node in the vehicle can provide one or more 
resources (e.g., engine and speed sensors). SENSEI offers a rendezvous service to allow locating resources of 
interest (called a resource directory). Moreover, it supports components that enable contextualized information 
retrieval and interaction, which requires an entity directory. Sensor data are represented based on the O&M 
standards and can be processed to derive entity-based contextual information. SENSEI is composed of the following 
components: Resource Directory, Entity Directory, Execution Manager, and Semantic Query Resolver. A user’s 
query is routed to the semantic query resolver, which then access the entity/resource directories to make execution 
plans. The resulting plans are then submitted to the execution manager, and the final results will be delivered to the 
user.  

 6.4 Feature Comparison  

The key features of knowledge integration and retrieval systems can be summarized as follows: sensor model and 
encoding, local area sensor networking, application service support, dynamic multi-domain service networking, 
semantic query processing, service-device/network interaction, human computation/sensing, social networking, and 
agent support. The feature comparison results can be found in Table 1. In SWE, sensor model and encoding is 
supported via O&M and SensorML, and application services are supported via SOS and SPS. The EPC Network 
was designed to support RFID tags and related services, including multi-domain service networking (e.g., different 
enterprises). The EPC Sensor Network and BRIDGE extend the EPC Network to support active sensors. SENSEI 
provides “resource” (or service) based networking and semantic query processing. ESTI’s M2M standards basically 
provide similar features as the EPC Sensor Network and BRIDGE, but the current M2M standards focused on single 
domain scenarios. .  

From our review on smart devices and related mobile/people sensing applications, including ubiquitous 
crowdsourcing, we find the following observations: (1) humans are part of the systems (human computation), (2) 
existing mobile sensing services are usually optimized due to resource constraints (requiring service-device/network 
interactions), and (3) when human resources are utilized for knowledge services, exploiting social networks is 
crucial. Another relevant technique is agent technologies that can automatically collect user information and infer a 
user’s wants and needs to provide personalized services. In the following, we briefly introduce our proposal called 
the Knowledge Communications Service (KCS) that provides these features by interworking with sensors, smart 
devices, and people.  

  



 SWE SSW 
EPC- 
NET 

EPC- 
SN 

BRIDGE SENSEI 
M2M 
ESTI 

KCS 

RFID support 
  ○ ○ ○ ○ ○ ○ 

Sensor model and encoding ○ ○ 
 ○ ○ ○ ○ ○ 

Local area sensor networks 
   ○ ○ ○ ○ ○ 

Service support ○ ○ ○ ○ ○ ○ ○ ○ 

Dynamic multi-domain service 
networking 

  ○ ○ ○ ○ 
 ○ 

Semantic query processing 
 ○ 

   ○ 
 ○ 

Service-device/network 
interaction 

       ○ 

Human computation  
(and sensing) 

       ○ 

Social networking 
       ○ 

Agent support 
       ○ 

Table 1 Feature comparison 

6.5 Towards Knowledge Communications Services  

The goal of knowledge communications service (KCS) is to perceive the intention of a user and provide the 
customized knowledge services to the user at any place and any time, with any device even with physical restrictions. 
To attain high quality user experiences, exploiting device/network, application, and human intelligence is necessary. 
We envision new system architecture for such ubiquitous knowledge services with the following components (see 
Figure 13): Knowledge Server (KS), Knowledge Gateway (KG), and Smart Device (SD). The desired features of the 
KS include knowledge brokering, virtual user knowledge agents, semantic query processing, and knowledge 
repository. Knowledge brokering enables content exchanges (e.g., data, information, and knowledge) across KSs in 
different network/domains (e.g., Verizon, AT&T, and KT) and across various content providers (e.g., Google, 
Yahoo!, Naver). The collected data will be stored in a KS’s knowledge repository for later access. Virtual user 
knowledge agents and semantic query processors will permit personalized knowledge services; i.e., the user agent 
will proactively search for content with help of the semantic query processors that gather and analyze all the 
available data distributed over the network. A KS interacts with knowledge gateways (KGs) in the same domain. A 
KG has a light-weight KS (e.g., with knowledge brokering, agents, and caching) and supports inter-networking with 
legacy wireless sensor networks including M2M and RFID tags. Smart devices (SDs) are equipped with a user 
knowledge agent, data/information gathering units, and adaptive/flexible user interfaces for efficient human-
computer interactions. User knowledge agents basically use the services in a local KG and central KSs for 
knowledge acquisition and processing. Further, they can use direct device-to-device communications among SDs 
(including with KGs) to acquire resources from nearby nodes (e.g., data, information, knowledge, and computing 
power).  In this way, the agent can collect and process a user’s context information to accurately predict the 
intension and to provide personalized knowledge services.   
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Figure 13 Knowledge communications service overview 

7 Conclusion 

We introduced the concept of ubiquitous knowledge services that seamlessly integrate content (e.g., data, 
information, knowledge) from various sources (e.g., content providers, sensors, smart devices, humans) at large 
scales and derive new values for end users. In this chapter, we began with reviewing the key enabling technologies 
of ubiquitous knowledge services in the areas of device, network, application, human intelligences. We then 
reviewed and compared the existing platforms for sensor data collection, retrieval, and application services. Finally, 
we proposed a set of desirable features of the ubiquitous knowledge service platforms based on our vision of the 
knowledge communications service (KCS).   
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