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Abstract

Face masks are an important way to combat the COVID-19 pandemic. However, the prolonged pandemic has revealed confounding
problems with the current face masks, including not only the spread of the disease but also concurrent psychological, social, and
economic complications. As face masks have been worn for a long time, people have been interested in expanding the purpose
of masks from protection to comfort and health, leading to the release of various “smart” mask products around the world. To
envision how the smart masks will be extended, this paper reviewed 25 smart masks (12 from commercial products and 13 from
academic prototypes) that emerged after the pandemic. While most smart masks presented in the market focus on resolving
problems with user breathing discomfort, which arise from prolonged use, academic prototypes were designed for not only sensing
COVID-19 but also general health monitoring aspects. Further, we investigated several specific sensors that can be incorporated
into the mask for expanding biophysical features. On a larger scale, we discussed the architecture and possible applications with
the help of connected smart masks. Namely, beyond a personal sensing application, a group or community sensing application
may share an aggregate version of information with the broader population. In addition, this kind of collaborative sensing will
also address the challenges of individual sensing, such as reliability and coverage. Lastly, we identified possible service application
fields and further considerations for actual use. Along with daily-life health monitoring, smart masks may function as a general
respiratory health tool for sports training, in an emergency room or ambulatory setting, as protection for industry workers and
firefighters, and for soldier safety and survivability. For further considerations, we investigated design aspects in terms of sensor
reliability and reproducibility, ergonomic design for user acceptance, and privacy-aware data-handling. Overall, we aim to explore
new possibilities by examining the latest research, sensor technologies, and application platform perspectives for smart masks as
one of the promising wearable devices. By integrating biomarkers of respiration symptoms, a smart mask can be a truly cutting-edge
device that expands further knowledge on health monitoring to reach the next level of wearables.
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Introduction

After the World Health Organization declared COVID-19 a
“pandemic” (a global epidemic) attributed to SARS-CoV-2
infection [1], masks have been used by the general population
all over the world for precautionary health reasons [2,3]. As a
result, people wear masks at all times and in all places; however,
the pandemic has revealed the limitations of current mask
deployments regarding not only the spread of the disease but
also concurrent psychological, social, and economic
complications.

To improve these limitations, smart face masks designed with
electronic sensors have been recently proposed. The continuous
use of masks has led to the designs of various face mask
products, which have become available on the market. The term
“smart” has been used to signify possible additional
functionalities of the “smart (face) masks” around the world,
leading to an expansion of the mask’s usage, including masks
for protection, health, and environmental sensing [4-6].

While the COVID-19 pandemic is seemingly under control
owing to vaccination, there is a need for innovative, Internet of
Things (IoT)–based smart-mask solutions to help people
transition to a postpandemic world, where the emergence of
infectious SARS-CoV-2 variants is prevalent along with the
heightened possibility of further, yet unknown, virus pandemics,
and to combat airborne diseases [7,8]. In combination with
data-driven applications, IoT and smart connected technologies
can play a critical role in individual protection and extend to
group sensing for the prevention, mitigation, and continuous
remote monitoring of patients. Such a benefit of group sensing
is shown with a contact-tracing app, where it could instruct a
person in close contact with patients with COVID-19 to quickly
self-isolate to reduce disease transmission [9].

Here we present a viewpoint for smart masks in the form of
emerging IoT-based solutions by examining the current status

of smart masks, potential sensors for their functional expansion,
connected architecture of smart masks for individual and group
health care, and further considerations for actual deployment
of such technology in the field. The details are as follows:

• Current status of existing commercial and academic smart
masks

• Smart mask expansion in terms of personal health care and
disease diagnosis

• Connected architecture and applications of smart masks
• Further real-world considerations

Features and Applications of Current
Smart Masks in the Field

Relevant smart masks available in the market were found
through web searches, including Amazon, using the following
search terms: “Smart Mask,” “Facial,” and “Electronics.” The
search for publications was performed using 5 databases (Google
Scholar, Web of Science, ScienceDirect, PubMed, and EBSCO)
on the basis of the following combinations of search terms:
“Smart mask” OR “Smart face mask,” “sensor,” “IoT,” AND
“Healthcare.”

We defined 3 major inclusion criteria of reports on smart masks
in this review.. Specifically, these criteria involve the following:
(1) sensing: sensors attached to the mask; (2) actuation:
functional manipulation of the mask; and (3) connectivity:
communicating sensor data using mobile, cloud storage, or
IoT-based networks. Only articles published between January
2020 and May 2022 were included to examine smart masks
developed after the COVID-19 outbreak. Finally, the study
selection procedure resulted in 12 smart mask products and 13
smart mask research prototypes reported in this study. Tables
1 and 2 list their functions and features, respectively. Detailed
selection criteria are provided in Multimedia Appendix 1.
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Table 1. Commercially available smart masks with their key features.

FeatureFunctionName and purpose

Air control with respiration rate–sensing

Automatic fan control with respiration
rate–sensing and filter status check

AO AIR Atmos mask [10] • Sa: Filter status and respiration
• Ab: Fan on/off control
• Cc: Bluetooth

Automatic fan control with respiration
rate–sensing

LG PuriCare (2nd Gen) [11] • S: Respiration rate
• A: Fan on/off control
• C: Bluetooth

Ventilation

Three fan speed modes and air quality checkATMOBLUE Face Mask [12] • S: Air quality
• A: Fan speed control
• C: Bluetooth

Two fan speed modesBelovedone Air Purifier [13] • A: Control fan speed

Three fan speed modesPhilips Fresh Air Mask [14] • A: Control fan speed

Three fan speed modesXiaomi Purely [15] • A: Control fan speed

Three fan speed modesCSE&L AIRVISOR [16] • A: Control fan speed

Sterilization and LED skin careCELLRETURN CX9 [17] • A: LEDd sterilization and skin care

Two fan speed modes and lightingRazer Zephyr [18] • A: Control fan speed and customizable lighting
zones

• C: Bluetooth

Communication aid

Air quality check and built-in microphoneCLIU Pro [19] • S: Air quality, mask wear time, and head mo-
tion

• C: Bluetooth

Speech to text and voice translationDonut Robotics C-FACE [20] • A: speech-to-text message, voice call, and
translation

• C: Bluetooth

Text display on mask surfaceTrendyNow365 LED Mask [21] • A: Display custom LED letters
• C: Bluetooth

aS: sensing.
bA: actuation.
cC: connectivity.
dLED: light-emitting diode.
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Table 2. Smart mask research prototypes from academic journals.

FeatureFunctionName and purpose

External pathogen detection and elimination

Pathogen sensing and mist spray activationADAPT [22] • Sa: Airborne particle sensing
• Ab: Mitigation module on/off
• Cc: Bluetooth

COVID-19 detection

Detects COVID-19 infectionSARS-CoV-2-sensing face mask [23] • S: Paper-based nucleic acid diagnostics

Monitor cough and check mask-wearingLightweight and zero-power smart face
mask [24]

• S: Mask deformation
• C: RFd transponder

Monitor cardio-respiratory variables and to detect
cough

AG47-SmartMask [25] • S: Breathe pattern, skin/DSVe temperature,

humidity, air pressure, HRf, and SpO2g

• C: Bluetooth

Respiratory disease–monitoring

Noninvasive body temperature and breathing
rate–monitoring

Smart face mask with Heat flux sensor
[26]

• S: Facial skin temperature and breathing rate
• C: LoRah and Wi-Fi

Monitor CO2 in DSVSmart facemask for wireless CO2

monitoring [27]
• S: CO2 concentration
• C: NFCi

Breath monitoringSmart face mask with ultrathin pressure
sensor [28]

• S: DSV pressure change
• C: Wi-Fi connection

Breath monitoringSmart face mask with wearable pres-
sure sensor [29]

• S: DSV pressure change
• C: Bluetooth connection

Detect respiratory breathing, fever, and alert possi-
ble face irritation

Smart medical mask for health care
personnel [30]

• S: DSV temperature, mask strain
• C: Wi-Fi

Monitor cardio-respiratory variablesLab-on-Mask [31] • S: HR, BPj, SpO2, and skin temperature
• C: Bluetooth connection

General health monitoring

Monitor cardio-respiratory variables and mask-
wearing

FaceMask [32] • S: Humidity, DSV or external temperature,
volatile organic compounds. And head motion

• C: Bluetooth connection

Monitor HR, respiration rate, mask fit, and wear
time

Facebit [33] • S: HR, respiration rate, mask fit, and wear time
• C: Bluetooth

Monitor cardio-respiratory variablesMasquare [34] • S: Respiratory pressure, HR, SpO2, and head
motion

• C: Bluetooth

aS: sensing.
bA: actuation.
cC: connectivity.
dRF: radiofrequency.
eDSV: dead space volume.
fHR: heart rate.
gSpO2: blood oxygen saturation.
hLoRa: long range.
iNFC: near-field connection.
jBP: blood pressure.
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Most commercial masks used in daily life provide actuations
based on use, such as exchangeable filters, self-sterilizers,
embodied microphones, and integrated fans. In total, 4 smart
masks had sensing capabilities such as air pathogen check, filter
status, and breath monitoring. In total, 11 smart masks included
actuation with mostly inner fan speed control and LED lighting
control. A total of 7 smart masks supported a connectivity
feature through a Bluetooth connection with the smartphone.
The masks that supported all 3 features (ie, sensing, actuation,
and connectivity) were those of Atmos AO AIR [10], LG
PuriCare (2nd Gen) [11], and ATMOBLUE [12]. These smart
masks offer inner fan control actuation and Bluetooth
connectivity while using different sensing (filter, respiration
rate, and air-quality checks). Commercial masks have focused
on mitigating discomfort such as breathing difficulty, excessive
moisture inside the mask, fogging of glasses, and hygiene
problems caused by long-term use [35-37]. Besides protection,
the masks of CLIU [19], Donut Robotics [20], and
TrendyNow365 [21] aimed to overcome speech problems with
mask-wearing. Additional investigations, such as mask material,
weight, and battery usage time, are presented in Multimedia
Appendix 1.

While commercial smart masks were focused on user comfort,
academic prototypes were designed for sensing capabilities such
as health monitoring and disease detection. For example, in
terms of COVID-19 detection, Nguyen et al [23] integrated a
cell-free sensor to detect SARS-CoV-2, and Ye et al [24] and
Fois et al [25] focused on detecting abnormalities such as
coughing behavior. Not specific to COVID-19 but to cope with
general respiratory disease, Lazaro et al [26], Escobedo et al
[27], Zhong et al [28], Yang et al [29], Kim et al [30], and Pan
et al [31] monitored breathing patterns. From a general health
monitoring perspective, Gravina et al [32], Curtiss et al [33],
and Fischer et al [34] monitored biosignals such as heart rate,
respiration rate, and body temperature. Acquired sensor readings
were then analyzed through smartphone apps for display.

All prototype masks were considered with regard to their
physiological sensing capabilities. A total of 12 smart masks
were considered with connectivity features using Bluetooth
connectivity, near-field communication (NFC), a long range,
and Wi-Fi connectivity with the smartphone. Ye et al [24]
further demonstrated a radiofrequency (RF) feature using silver
nanowires attached to the inner layer for monitoring cough and
mask usage. Overall, the current features of smart masks
available in the market offer environmental (air quality)
monitoring, mask quality–monitoring, and functions for user
comfort. On the other hand, research prototypes can be
summarized as health monitoring and respiratory disease
detection.

Possible Directions for Feature Extension

Our investigation of research prototypes showed that existing
masks support health monitoring and disease diagnosis on the

basis of vital signs such as respiration, blood oxygen saturation,
and body temperature. In this section, we further explore what
other biosignals can be measured and what applications can be
used through a smart mask as a wearable device for health care
and safety. In addition, we argue that it is critical to reduce the
posterior auricular (back of the ear) discomfort and pain caused
by long-term wearing of the mask, as witnessed by a mask frame
extension that supports an ear strap introduced recently [38]. In
consideration of the ear strap frame, we would like to present
a viewpoint on the extension of the application of the smart
mask and its potential as a biosignal measuring device. To
systematically search for feasible sensors, the expressions
“smart” and “intelligent” textiles or “wearable electronic” are
keywords used for selection. Sensors that sense and react to
biosignals, environmental conditions, or stimuli, such as those
from breath, skin, head motion, air, or other sources, were
investigated. Multiple biosignal sources can be recorded around
the face with sensors incorporated into the smart masks to
measure biosignals and interior or exterior environmental factors
[22,39].

For the facial part of the mask, pressure sensors can be used to
obtain the respiration rate and inhalation volume to monitor
breathing patterns [28,29]. These are piezoelectric-like sensors
that are sensitive enough to respond to exhale volume pressure
and flexible, lightweight, and energy-efficient circuits that can
fit into the mask. With continuous monitoring of breathing
patterns, we expect to observe users’ lung health or screen
patients with chronic lung disease [40]. In addition to analyzing
breath, chemical sensors can be used as markers for personal
health problems and respiratory diseases by targeting specific
molecules [41-48]. These sensors are based on metal oxides
whose target compounds can be easily switched with specific
reagents. Several applications include acetone for diabetes
[41-43], hydrogen sulfide for small intestinal bacterial
overgrowth [44,45], and toluene for lung cancer diagnosis
[46-48].

As the mask directly contacts the facial skin, a
photoplethysmographic (PPG) sensor can be adopted to conduct
pulse oximetry and measure heart rate variability, oxygen
saturation, and blood pressure. These metrics are widely
researched for indirect measures of physical and mental health
[49-51], physical stress [31,49], and hypertension or hypotension
[51-53], respectively. Electrooculography (EOG) [54,55],
electrodermal activity (EDA) [56,57], and electromyography
(EMG) [50,52,53] can also be adopted to measure various
biophysical signals that arise from facial skin. For example,
eye-blinking EOG measures have been linked to attention [58]
and may infer the user’s mental state. The electrodermal
response from EDA and facial muscle activation from EMG
can be used as a measure of emotion such as anxiety or
depression [55-57,59]. In addition, facial surface EMG was
adopted for monitoring pain through facial expressions [60]
(Table 3).
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Table 3. Possible sensor integration on the masks.

ApplicationsSensors and features

Location: mask main body

Type: biosignal information

Source: breath (respiration)

Pressure sensor

Personal health or sport [27,28]Respiration rate or volume

Chemical sensor

Personal health or disease (diabetes) [41-43]Ketone: acetone

Personal health [44,45]Hydrogen sulfide

Personal health or disease (lung cancer) [46-48]Toluene

Source: facial blood vessels

Photoplethysmography sensor

Physical health or mental health [49-51]Heart rate variability

Physical stress [31,49]Oxygen saturation

Hypertension or hypotension [51-53]Blood pressure

Source: skin

Electrooculography sensor

Concentration [54,55]Eye blink

Electrodermal activity sensor

Emotion [56,57]Electrodermal response

Temperature sensor

Communicable diseases [25,26,31,32]Temperature change

Electromyography sensor

Emotion [55,59]Facial muscle

Pain [60]Facial muscle

Source: head

Inertial measurement unit

Posture [61]Motion

Type: environmental information

Source: air

Chemical sensor

Local air quality [22,39]Environment air quality

Source: external temperature

Thermometer

Local temperature [62]Temperature

Source: external humidity

Humidity sensor

Local humidity [63-65]Humidity

Location: mask support frame

Type: biosignal information

Source: ear

Electroencephalography sensor

Drowsiness or fatigue [66]Brain activity

JMIR Mhealth Uhealth 2022 | vol. 10 | iss. 6 | e38614 | p. 6https://mhealth.jmir.org/2022/6/e38614
(page number not for citation purposes)

Lee et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


ApplicationsSensors and features

Source: neck

Inertial measurement unit sensor

Posture [61]Motion

Electrocardiographic sensor

Heart disease [67,68]Heart

A smart mask can also measure air pollution and several other
environmental variables such as air quality [22,39], temperature
[62], and humidity [63-65]. The inclusion of sensing
air-tightness and the quality of filters can help ensure the
additional benefits of smart masks by improving safety by
providing an air-tight fit around the face. If the mask uses a
support frame, such as a head or neck strap,
electroencephalography (EEG) and electrocardiography (ECG)
sensors can be applied to measure the electrical activity of the

brain and heart. EEG signals have been used to detect a user's
fatigue or drowsiness like fatigue in driving [66]. Integrating
ECG can be an advantage over PPG readings as it records the
heart’s electrical activity at its source [67,68]. Lastly, inertial
measurement unit sensors can be attached to the ear strap for
activity sensing that can discern fall or head collision [61]. The
possible sensor attachments on a facial mask and ear strap are
depicted in Figure 1.

Figure 1. The possible sensor attachments on (A) a facial mask and (B) the ear strap. ECG: electrocardiography; EEG: electroencephalography; EMG:
electromyography; EOG: electrooculography; GSR: Galvanic skin response; PPG: photoplethysmography.

Toward Connected Smart Masks

In this section, we attempt to seek opportunities beyond personal
protective equipment to group management, so-called
group-sensing, through connected smart masks as wearable
devices for health care and safety. The advantages of
group-sensing include continuously measuring and managing
a population's physical and mental health through the sensors
inside the smart mask or via connected smart mask platforms.
Such advantages are particularly useful in dealing with
infectious diseases that spread through contact and saliva, such
as COVID-19 [69]. The smart masks of those at risk can be
managed, and remote caregiving can be supported via connected
devices. As in a prior study on smartwatches [70], their everyday
health conditions (eg, breathing and heart rates) can be tracked
and analyzed to detect early signs of respiratory behavior
changes, which could be related to COVID-19 infection.

Namely, beyond a personal sensing application, a group or
community sensing application may share an aggregate version
of information with the broader population. The architecture of
connected masks is shown in Figure 2 by extending prior mobile
sensing architecture [71,72].

For group sensing, the smart mask should be able to transmit
the collected data to the server by using wireless communication
protocols such as Wi-Fi, long-term evolution, 4G and 5G
networks, Zigbee, and narrowband IoT without manual operation
[73]. Besides, the analysis results should allow the user to take
action or receive an alarm related to a particular hazard. Most
smart masks integrate communication modules to use
smartphones for displaying sensing results and as a gateway
terminal to interact on the web [27,33,74,75]. In addition,
smartphones allow short-distance connections such as Bluetooth,
NFC, and radiofrequency identification, where acquired data
can be transferred to local IoT gateways [73]. Furthermore,
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server clouds and relevant analytics technology are required to
store smart mask data and process large sets of data to develop
applications such as health care, safety monitoring, and
intervention for the users. This kind of collaborative sensing
will also address the challenges of individual sensing, such as
reliability and coverage [76].

The information gathered in cloud servers can be used with
machine learning (ML) and data mining applications [75,77].
The advantages of utilizing ML for group sensing results are
system optimization and acquired data processing [77]. For
instance, collecting data on device failures, usage time, filter,

and battery can be analyzed for design considerations and
maintaining the optimal operation of a smart mask. Furthermore,
Gravina et al [32] reported the application of ML in smart
masks, where they tested mask wear classification from sensor
signals. In terms of data mining, a more detailed air quality map
can be created as the user wears a smart mask with
environmental sensors and moves around places collecting data.
Moreover, GPS for community sensing can facilitate real-time
sensing and location-based monitoring of masks and actions of
multiple users in some local environments, such as COVID-19
contact-tracing, local airborne pathogen detection, or emergency
services.

Figure 2. Connected smart mask architecture.

With modern technological advances, it has become possible
to collect big data and create new knowledge that we have not
been able to analyze before. Unlike conventional wearable
devices, smart masks can collect biomarkers of respiration or
the respiratory system and expand further knowledge on
wearables. Previous work by Curtiss et al [33] and Hyysalo et
al [75] shows detailed aspects of the connected smart mask
platform and deployment considerations. Curtiss et al’s [33]

Facebit smart mask accompanies a mobile app that displays
sensing results such as heart rate, respiration rate, mask fit, and
wear time. This app communicates with Facebit through
Bluetooth and stores data in a local database. For now, stored
data are used to track a user’s mask-wearing time and send a
notification to replace the mask. As an open-source smart mask
research platform, this work demonstrates proof-of-concept
connected smart masks and presents further research on
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personalizing algorithms and applications for respiratory health
tools. Hyysalo [75] illustrated the software architecture of the
smart mask platform, including the mask, mobile app, and
backend health artificial intelligence. In addition, this study
envisioned a smart mask ecosystem [78,79]—a collection of
infrastructure, analytics, and applications, to draw personal
health trajectories.

Further Considerations for Real-World
Use

Lastly, we present and discuss viewpoints on the application
fields of the connected mask and further considerations for
practical use. As the smart face mask is a promising respiratory
monitoring tool, we explored relevant fields where it can benefit
direct needs. Aside from the primary field of daily-life
health-monitoring, we envision several real-world uses such as
sports training, ambulatory setting, industry and firefighter
safety masks, and military applications. In the following
sections, several directions for real-world deployment scenarios
of smart masks are first discussed. Thereafter, we discuss sensor
accuracy and reproducibility issues, most critical ones in
measuring biosignals through all wearable devices. Ergonomic
design for the general population needs to be considered for
public acceptance of smart masks. Finally, privacy-aware
data-handling is necessary for security to collect and manage
personal biosignals.

Service Application for Real-World Use

Daily Life Health Monitoring
The smart mask presents an opportunity to apply advanced
analytics to health care. The analysis of physiological changes,
such as breathing pattern, pulse rate, and tidal volume, enables
us to monitor respiratory health, diagnose relevant diseases, and
point of care through continuous monitoring. In addition, other
various features can be obtained, as we discussed in the possible
sensor extension scenarios, for instance, stress and fatigue [80].

Sports Training
In particular, smart masks can be adopted for measuring the
cardiopulmonary exercise load, which is an important index in
evaluating exercise capacity. Previously, this was done by
wearing additional equipment in wired or wireless form with
controlled settings [81]. This test can be easily accessible to the
general population; for example, in a gymnasium or through
home-based training through smart mask application.
Furthermore, owing to the recent COVID-19 pandemic, there
is increasing demand for indoor exercise platforms such as Zwift
[82], where individuals can virtually compete with users on the
internet and measure exercise ability and improvements. The
smart mask can contribute as a wearable device for additional
exercise measures in such settings.

Emergency Room or Ambulatory Settings
In the emergency room or ambulatory settings, masks have been
used to deliver air and monitor respiration. We expect smart
masks to be adopted to track health status without any additional
device. Additionally, nosocomial infections, such as

ventilator-associated pneumonia, can be detected with the use
of the smart mask [83].

Industry Workers and Firefighters
Many workers at coal mines, construction sites, and chemical
plants and firefighters at fire scenes are prone to hazardous gas;
thus, wearing a mask is mandatory for safety issues. Smart
masks can be used to track the health status of people who have
been poisoned by gas or toxic substances or have been exposed
by measuring the surrounding situation. Besides, real-time
environmental monitoring can ensure user safety and prompt
responses to fast-changing hazardous events through the
detection of gas leakage or toxic events [84].

Soldier Safety and Survivability
Recently, there has been ongoing research on wearable devices
such as vests and helmets to collect biosignals for the safety
and survival of soldiers [85]. The smart mask can also be a
promising wearable device in respiratory monitoring. It is
expected that safety and survival can be further improved by
collecting the soldier’s biosignals, location information, or
information about the surrounding environment. These measures
help monitor the soldier's physical and mental health status and
decision-making. Moreover, breath analysis can predict and
monitor the onset of pulmonary injury due to various
environmental and infectious exposures [86].

Accurate and Reliable Sensors

One major requirement for such predictive diagnostics is that
sensor information must be accurate and reliable. The type of
sensor and its placement affect the measurements. For instance,
potential inaccuracies rise with excessive motion artifacts
involving many physical activities, such as sports, firefighting,
or military action. Although the reviewed articles described
potential applications and demands for health intervention, they
provided little evidence related to the usability and practicality
of the proposed device. As the temperature and humidity rise
owing to mask-wearing, the adhesion between the sensor and
the skin may decrease, and sweat generated by humidity may
negatively affect accurate sensor signal measurement. Beyond
sensing accuracy and reliability, it is important to consider
additional metrics, such as smart mask interoperability,
versatility, power consumption, and durability, to examine the
usefulness of the system as well as comfort and ease of use for
different population characteristics [87,88].

Ergonomic Design for Usability

If users wear heavy equipment such as a helmet for a long time,
it can strain their head and neck [89-91]. Masks with smart
functions also increase in weight, unlike existing masks, owing
to the addition of batteries, sensors, and fans. Therefore, it places
a burden on the head and neck and may cause deformation in
posture. If the systems within smart masks became more
complicated, these could become more uncomfortable and make
users reluctant to wear them. Detailed surveys on usability and
performance evaluation from daily life trials need to be
conducted to ascertain the usability of smart masks [92-94].
Maximizing and optimizing the battery lifetime of the smart
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mask ensures user satisfaction and comfort [95,96]. If the device
supports recharging, the rechargeable battery of the mask is a
major contributor to the mask’s weight. If the communication
between the smart mask and the smartphone requires much
energy and acquiring data from sensors may rapidly drain the
battery, a larger battery capacity is then required. Thus, the
overall weight of the mask increases. Therefore, in developing
a smart mask, it is necessary to consider the battery size and
material related to weight. In addition, since the material of
their mask is in contact with the skin surface, it is necessary to
use an approved suitable material [97]. Overall, the potential
reluctance of users can be reduced by incorporating simple
protocols for the number of sensors and user specificity, comfort,
including weight, and fashion considerations for the general
population [98,99].

Privacy-Aware Data-Handling

One challenge in developing connected smart mask architecture
systems is the collection of personal information and privacy
infringement. With the advancement of the IoT, real-time
monitoring data are shared and analyzed to identify factors
related to events. Although this monitoring is intended to assist
users, some aspects of personal privacy are violated [100-104].
Prior studies have shown that privacy concerns related to
wearable cameras are often influenced by users’ social,
behavioral, and environmental contexts [105]. For example,
wearable camera users are often conscious of bystander privacy,
and likewise, bystanders are concerned about potential privacy
violations (eg, subtleness and ease of recording) [106]. In
addition, advanced data processing methods may have privacy
implications. For instance, personal physiological data or

location information can be misused because of poor data
management policies. In these scenarios, health monitoring
results may encourage the tracking of work performance (ie,
using the data for secondary purposes without explicit consent).
This practice may influence the review of workers’
performances and may cause monitoring to become a
surveillance practice beyond health monitoring. Beyond
secondary use, the security of the devices themselves can also
be problematic, as the low computing power within smart mask
systems may make them vulnerable to unauthenticated access
[107,108]. As smart mask technology is still in its infancy, these
implications are not yet fully understood and should be
considered in future implementation strategies.

Conclusions

This study examined recent smart masks in conjunction with
accompanying systems that could be used to prevent COVID-19
and other respiratory diseases. We then offered our viewpoints
on smart masks in the form of emerging IoT solutions.
Reviewing commercially available smart masks revealed the
trend that smart masks were mainly designed to address user
discomfort. However, recent research prototypes were taking
further steps, not only dealing with COVID-19 but toward
general health monitoring by supporting breathing and
physiological signal sensing. Thus, we sought further functional
expansion on smart masks by investigating previous mobile
sensing studies. In addition, we extensively discussed novel
opportunities for group health management through a connected
smart masks platform. We believe that smart masks can serve
as a truly cutting-edge device that expands the coverage of
health monitoring and helps reach the next level of wearables.
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