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Abstract—Mobile health has emerged as a practical al-
ternative in treating and managing one’s health problems.
However, most of the mobile health data are observational
data collected through sensors, which makes it difficult to
analyze the causality of the delivered interventions through
standard regression methods. In this work, we review deep
learning models that can be used to estimate the causal effect in
raw mobile health data. These models are capable of handling
multivariate time series data in estimating the unbiased causal
effect given a sequence of treatments.
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I. INTRODUCTION

The widespread use of mobile devices such as smart-

phones has led to the emergence of actionable healthcare

through such digital platforms. For example, digital ther-

apeutics (DTx), which seek to treat diseases and improve

the patient’s conditions through actions delivered through

smartphones and other digital devices, has recently been

actively used to treat and manage chronic diseases such as

diabetes [1]. Similar to any other types of disease treatments

such as pills, mobile healthcare methods must be thoroughly

analyzed via a formal causal framework to acknowledge

their effectiveness as a cure.

Together with the development of mobile healthcare meth-

ods, various experimental designs and their complementary

analysis techniques suited for their causal analyses have

been extensively proposed [2], [3]. Although experimental

methods such as randomized control trials are the gold

standard for causal inference, conducting experiments is

often too costly and sometimes even infeasible. Hence, most

of the collected mobile healthcare data are observational,

in which the data are collected without controlling for any

factors. However, estimating causal (treatment) effects on

observational data through standard regression methods may

lead to incorrect causal conclusions because of potential

sources of bias including confounders (variables that are

common causes of both treatment and outcome).

A typical characteristic of mobile healthcare data is that

the data are collected by various sensors and logs in smart-

phones. Thus, mobile healthcare data naturally consist of

multiple time series. Although it is possible to remove the

Figure 1. Pipeline of mobile health data causal analysis using sequential
deep learning models

temporality of the data by using various summary statistics

instead of the raw data and analyze causality correspond-

ingly [4], [5], a great amount of information is lost in doing

so. For example, one of the primary interests in mobile

healthcare causal inference is the collective effect of the

multiple interventions given as treatment [6]. In mobile

health, because individual interventions can be relatively

cheaply delivered, multiple actions can be taken to treat the

patient [7]. Because each intervention is given with respect

to time and thus has a time-varying effect as a treatment,

performing causal inference after removing the temporality

of the data may result in a limited or distorted view of the

causality of the intended action. In addition, mobile data

generated by smartphones are often high-dimensional and

complex, which may be difficult to handle using simple

models.

In this work, we briefly review two deep learning-based

methods, namely the recurrent marginal structural network

(R-MSN) [8] and the counterfactual recurrent network

(CRN) [9], and outline how these methods can be used to

estimate causal effect in temporal mobile healthcare data

(Fig. 1). Both methods build on recurrent neural networks

(RNN) and introduce modifications to remove bias to accu-

rately estimate the causal effect size.
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II. DEEP LEARNING-BASED TIME-VARYING TREATMENT

EFFECT ESTIMATION MODELS

We describe two RNN-based treatment effect models

that can be used for causal analysis in mobile healthcare.

Both models are sequence-to-sequence architectures capable

of handling multivariate temporal data which utilize the

high-performance computation of neural networks to model

complex causal relationships that comprise the input data.

A. Recurrent Marginal Structural Network

The recurrent marginal structural network (R-MSN) [8]

builds on the marginal structural model (MSM) for time-

dependent effect estimation [10] to estimate a sequence of

responses given a sequence of treatments. In order to remove

bias in estimating the causal effect, MSMs create a pseudo-

population by weighting samples using the inverse of the

propensity score. The effect size is estimated via taking

the difference between the outcomes of the treated samples

and that of the untreated samples in the pseudo-population.

The MSM can be applied to temporal data as well by

constructing weights for the joint treatment that incorporate

time.

The R-MSN is comprised of three RNNs: the propensity

network, encoder, and decoder. The propensity network is

first trained with binary cross entropy loss to estimate the

propensity score at each time step, which is used to generate

a sequence of stabilizing weights. The encoder is then

trained to estimate the outcome at time t + 1 given the

treatment and covariate values at time t, which produces

a representation of the history of the subject. The encoder

is trained using a mean-squared error weighted by the

stabilizing weights obtained using the propensity network.

Finally, the decoder takes the representation created by the

encoder as input to generate a sequence of outcomes given

a treatment sequence. The decoder is also trained with a

similar weighted loss using the obtained stabilizing weights.

B. Counterfactual Recurrent Network

The counterfactual recurrent network (CRN) is also an

RNN-based model designed to generate a causally unbiased

outcome sequence given a treatment sequence. Contrary to

the R-MSN which aims at removing bias through propen-

sity score-based weighting, the CRN achieves the goal by

creating a treatment-balanced representation. Using such

representation to estimate the outcome removes the effect

of time-dependent confounders and effectively allows the

model to capture the direct causal effect of the treatment on

the outcome.

The CRN follows a sequence-to-sequence architecture,

in which the encoder RNN is used to build a treatment-

balanced representation and the decoder RNN uses the

encoder representation to estimate the outcome. First, the

encoder is trained to be predictive of the outcome but not

predictive of the treatment assignment, which is imple-

mented by placing a gradient reversal layer in the treatment

prediction module. This encourages the representation to

predict the outcome regardless of what the assigned treat-

ment was, resulting in a treatment-balanced representation.

Once the encoder is fully trained, the resulting representation

given by the final hidden state of the encoder RNN is given

as the input to the decoder RNN, which is trained to predict

the observed outcome given treatment at each time step.

III. APPLICATION TO MOBILE HEALTH DATA

A unique characteristic about mobile health compared

to traditional medicine is that interventions are relatively

cheap and thus frequent. In addition, the effect of individual

interventions is weaker than that of physical treatments. For

example, the effect of a mental health tips delivered by

one’s mobile phone would have a much weaker effect on

relieving depressive symptoms than directly administered

medications. Therefore, it is important in mobile health to

simulate the effect of multiple possible treatment schemes

and to assess not only the effect of individual interventions

but also the joint effect of the entire treatment sequence.

The deep learning-based models reviewed in this work

meet this purpose, in which the models are able to estimate

the causal effect of treatment schemes by training on ob-

served data. As the models are sequential models, they are

naturally able to handle raw mobile sensor data. In addition,

once a model is trained, it can be used to easily simulate

the effect of dozens of treatment schemes which allows

us to effectively narrow down the options to be physically

experimented on. For example, we could use the models to

compare the outcome of the case when treatment is given at

all time points versus the case when treatment is not given at

all to highlight the effect of the intervention. In other cases,

we could simulate A/B tests to identify the more effective

treatment schemes by generating the respective outcome

sequences using the models.
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