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Infrastructure-Free Collaborative Indoor Positioning
Scheme for Time-Critical Team Operations
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Abstract—Indoor localization is the key infrastructure for
indoor location-aware applications. In this paper, we consider an
emergency scenario, where a team of soldiers or first respon-
ders perform time-critical missions in a large and complex
building. In particular, we consider the case where infrastructure-
based localization is not feasible for various reasons such as
installation/management costs, a power outage, and terrorist
attacks. We design a novel algorithm called the collaborative
indoor positioning scheme (CLIPS), which does not require any
pre-existing indoor infrastructure. Given that users are equipped
with a signal strength map for the intended area for reference,
CLIPS uses this map to compare and extract a set of feasi-
ble positions from all positions on the map when the device
measures signal strength values at run time. Dead reckoning is
then performed to remove invalid candidate coordinates, eventu-
ally leading to only correct positions. The main departure from
existing peer-assisted localization algorithms is that our approach
does not require any infrastructure or manual configuration. We
perform testbed experiments and extensive simulations, and our
results verify that our proposed scheme converges to an accu-
rate set of positions much faster than existing noncollaborative
solutions.

Index Terms—Distributed indoor positioning systems, indoor
navigation, infrastructure-free indoor localization, time-critical
team operations.

I. INTRODUCTION

LOCATION-based services basically aim to deliver cus-
tomized services based on people’s locations. In the

outdoor environment, location-based services can be relatively
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easily delivered with well-known location services such as
global positioning system (GPS) and cell-tower localiza-
tion. However, such technologies do not work well, and
existing indoor location services usually require dedicated
infrastructure indoors such as acoustic beacons [1]–[3], Wi-Fi
access points (APs) [4]–[10], and radio-frequency identifica-
tion (RFID) tags [9], [11]–[13].

In this paper, we consider a time-critical indoor scenar-
ios with teams of soldiers or first responders performing
emergency missions (e.g., firefighting, urban military, and
search/rescue missions). If accurate and fast location services
are available, the team members can easily access a region of
interest for mission operations. However, in emergency sce-
narios, infrastructure-based location services may face several
problems. Deploying infrastructures such as acoustic, Wi-Fi,
and Bluetooth beacons may not be feasible in time-critical
missions. In practice, it might be neither economically feasi-
ble nor practical to maintain such localization infrastructure
for emergency missions in every building in advance. In some
instances, infrastructure might not even be available because
of a power outage or terrorist attacks.

To summarize, our localization problem for time-critical
mission operations has several unique constraints: no existing
infrastructure can be used for localization (infrastructure-free)
and team members cannot manually configure localization
schemes (configuration-free). The most widely-accepted solu-
tion is inertial navigation (i.e., dead reckoning)—a user’s cur-
rent position is tracked with inertial sensors (e.g., gyroscopes
and accelerometers), by monitoring movement trajectories and
possibly matching a user’s current position in a map.

However, the well-known problems of inertial navigation
include large errors and slow convergence since indoor posi-
tion landmarks are lacking; these problems may cause detri-
mental effect for time-critical indoor scenarios. When a team
explores a large and complex building, this problem becomes
even worse. For example, a team may enter an underground
parking structure and then take an elevator to a locus of
events on the fifth floor. The incremental rate in the position
error could be higher than the rate at which the position can
be fixed using map matching with turn detection [14], [15].
For accurate indoor localization, it has been well-accepted
that we must make use of additional mechanisms such as
manual configuration and infrastructure support. While peer-
assisted localization schemes collaboratively use peer mea-
surements, they generally require infrastructure support to
improve localization accuracy. For example, Liu et al. [16]
used peer-based acoustic ranging to improve the accuracy of
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radio-frequency (RF) fingerprint-based positioning. In addi-
tion, peer nodes can collaboratively perform simultaneous
localization and mapping (SLAM) by combining received
signal strength (RSS) measurements from APs close to the
peers [17]–[21]. Unfortunately, existing solutions are not par-
ticularly suitable for our emergency scenario because of its
configuration-free and infrastructure-free requirements.

In this paper, we propose a localization algorithm called
collaborative indoor positioning scheme (CLIPS). Our algo-
rithm leverages peer-to-peer Wi-Fi beaconing and accu-
rate smartphone dead reckoning. In CLIPS, obtained signal
strength (RSS) values are measured from other mobile peers.
Given that a response team can obtain a floor-plan for safety
operations, we can build a realistic RSS estimation map in
advance. For example, we can use a realistic wireless sig-
nal propagation model like ray-tracing. This estimation map
allows the team members to find a set of feasible coordi-
nates in which the estimated RSS values are matched with
the measured RSS values at run time.

To deal with wireless signal variations due to channel fad-
ing, we ensure that a position match can happen when RSS
value differences are within the threshold value. This pro-
cess can initially produce many false candidates, but false
candidates can be easily removed by leveraging dead reck-
oning. That is, invalid candidates will lead quickly to dead
ends as a user moves along the corridors. This process will
be repeated such that each member’s real position can be esti-
mated rapidly. In general, as the number of members increases,
the convergence time decreases as well. In order to conserve
battery, Wi-Fi beaconing can be stopped when nodes? Position
fixes are entirely acquired; each user’s current position will be
tracked by dead reckoning continues. In the next processes,
the search space (and convergence time) will be drastically
reduced, because it is enough to only consider the loca-
tions closest to a node’s current location (e.g., within a fixed
radius).

Concretely, this paper makes the following contributions.
1) We propose CLIPS, which uses collaborative Wi-Fi bea-

coning and smartphone dead reckoning. The CLIPS
novel positioning algorithm does not require any infras-
tructure support or manual configuration, which are
the main departures from existing peer-assisted-based
localization schemes [5], [16], [19]–[21].

2) We demonstrate the feasibility of CLIPS. The field test
confirms that CLIPS can accurately acquire position
fixes significantly faster than conventional approaches
that are based noncollaborative schemes; e.g., the
required travel distance to obtain an accurate fix took
less than half that of a noncollaborative scheme (a more
than 50% improvement in the considered scenarios).

3) We further perform an extensive simulation study to
investigate the impact of various parameters (e.g., the
slack variable, number of nodes, mobility patterns, and
location sharing) on the system performance under var-
ious scenarios. Overall, we find similar trends to those
in the test-bed experiments. In particular, we confirm
that convergence speed exponentially decreases with the
team size, RSS matching contributes to a more than 50%

accuracy improvement, and sharing location updates
significantly improves convergence speed.

The rest of this paper is structured as follows. We present
related work in Section II. In Section III, we overview CLIPS
and in Section IV, we review the core elements of CLIPS. We
illustrate our evaluation results based on the testbed experi-
ments and simulations in Sections V-A and B, respectively.
We discuss the improvements and limitations of the current
work in Section VI and this paper is concluded in Section VII.

II. RELATED WORK

We first provide a general overview of indoor position-
ing. CLIPS leverages multiple techniques, i.e., RF modeling,
P2P communication (peer assisted), and dead reckoning, for
infrastructure-free instant localization. Thus, we detail each
of these key components and illustrate how CLIPS combines
them.

A. Indoor Positioning Overview

Indoor positioning has been intensively investigated recently
to provide accurate position information in indoor envi-
ronments, where GPS is not accessible. Existing indoor
localization schemes can be classified into two categories,
namely, infrastructure-based and infrastructure-free systems.
Previous indoor positioning schemes used specialized dis-
tance sensing devices, such as RFID tags [13], ultra-sound
transmitters/receivers [1], [22], [23], and infrared IR bea-
cons/receivers [3]. For example, Want et al. [3] proposed
Active Badge, where users wear a small badge that peri-
odically transmits a unique infrared signal, and each room
has networked sensors on the ceiling for accurate positioning.
Similarly, ultrasound-based ranging is used in existing sys-
tems, e.g., Cricket [22], Active Bat [23], and WALRUS [1].
LANDMARC [13] uses RFIDs, where active tags periodically
transmit signals, and readers measure the signal strength for
localization. Recently, researchers also showed that frequency-
agile wireless networks (i.e., in-band frequency hopping) can
be used for distance estimation. ToneTrack estimates the time-
of-arrival (ToA) of a mobile node’s transmission at pairs of
APs in the network by analyzing the correlation between
incoming signals on different subcarriers [24]. It then com-
pares the time differences of the ToA readings across pairs of
APs to estimate and refine the mobile node’s location.

In contrast to these systems, which require additional infras-
tructure installation, researchers have also proposed to leverage
existing RF infrastructure, such as Wi-Fi and cellular commu-
nications. In RADAR [9], an RSS map is built a priori (using
Wi-Fi signal strength vectors in the map). For a given signal
strength vector, the location of a node is then estimated using
a nearest neighborhood matching algorithm in the map. In
Horus [25], a stochastic description of the RSS map is used
for maximum likelihood-based location estimation. Cellular
signals also have been used for localization [26], e.g., signal-
strength fingerprints from multiple cell towers. However, if
RF infrastructure is uniformly deployed, it would be difficult
to build a dense fingerprint map across an entire building.
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To solve this nonuniform map problem, Modellet [27] uni-
fied a model-based and fingerprint-based approach such that
a set of high-quality fingerprints are used to populate virtual
fingerprints at positions without samples via a model-based
approach.

Recent commercial solutions tend to use multiple location
sources, such as GPS, cell towers, and Wi-Fi hotspots; e.g.,
SkyHook [6], Google Latitude [8], and PlaceEngine [28].
Recent studies have attempted to use other types of finger-
prints. In SurroundSense [29], environment sensing data (e.g.,
ambient sound and light conditions) were used for indoor
place detection. Likewise, given that an acoustic background
spectrum is fairly unique in each place, BatPhone [2] uses
this fingerprint for place recognition. Sextant [30] leverages
environmental landmarks such as store logos. It uses image
processing and databases to identify the landmarks and lets
smartphones obtain relative position measurements. However,
all these schemes require building fingerprint databases and
mostly rely on infrastructure (e.g., Wi-Fi hotspots); thus, they
are not suitable for infrastructure-free instant localization.
A more complete survey of existing localization schemes can
be found in recent surveys [31], [32].

B. Model-Based Localization

Log-distance path loss (LDPL) as an RF propagation
model, can be used to forecast RSS at various indoor loca-
tions [5], [33]. A clear benefit from this model is that it
obviates the need for an RSS map building process at the
expense of decreased localization accuracy. Due to large diver-
sities of RF propagation characteristics, the model parameters
would have to be estimated particularly for each indoor space
of interest. In TIX [34], knowing the transmit power and loca-
tions of all Wi-Fi APs, the APs are modeled to measure the
RSS of the beacons from nearby APs, and linear interpola-
tion finally estimates the RSS at every location in the indoor
space. ARIADNE [35] also deploys sniffers at known loca-
tions, but employs a more sophisticated ray-tracing model
based on detailed indoor maps and uses simulated annealing
to estimate radio model parameters. Lim et al. [36] employed
Wi-Fi sniffers at known locations, and the LDPL model was
used to construct an RSS map. When there are peer mobile
devices nearby, EZ can collect RSS measurements of APs at
the peer devices to find LDPL radio model parameters—each
node’s position and radio parameters are treated as unknown
variables that can be uniquely identified by using the RSS
measurements of APs at multiple nodes [5].

CUPID is based on the angle and distance estimation
between an AP and a mobile node [37]. To accurately esti-
mate distance with the path loss model in an environment
with multipath fading, CUPID differentiates direct path (line-
of-sight) signals from reflected path signals via the power
delay profile of the channel state information. Direct path sig-
nal strength information is then used to empirically find path
loss exponents. An angle-of-arrival (AoA) calculation that is
based on the phase difference between the signals that arrive
at two antennas is also affected by multipath fading, because
direct and reflected paths result in different angles. CUPID

mitigates this problem by leveraging a user’s mobility; i.e.,
it computes distance traveled via dead reckoning, and then
a cosine rule is used to estimate the change in the AoAs of
direct path signals. Conventional localization requires multiple
APs for multilateration, but as shown earlier, RF infrastructure
may not be uniformly distributed. To mitigate this problem,
Mariakakis et al. [38] proposed a solution called SAIL that
only uses a single AP. When a user is mobile, it continuously
measures the distance between the client and AP. At the same
time, it estimates a user’s distance traveled via dead reckon-
ing and the overall compass heading during that travel (this
obviates the need for AoA estimation). Thus, a user’s location
can be geometrically determined using a single AP.

More recently, to cope with random signal fluctuations,
He et al. [39] proposed a novel indoor localization approach,
named as Wi-Dist, which fuses noisy wireless fingerprints with
uncertain mutual distances given by their bounds. Another
method along similar lines, Wu et al. [40] proposed the
automatic and continuous radio map updating service, which
takes advantage of the static behavior of mobile devices. This
system uses off-the-shelf mobile devices as movable reference
points. These devices collect the up-to-date fingerprints when
they are static at certain locations in real-time and are accu-
rately pinpointed by a novel trajectory-matching algorithm.
The underlying RSS relationship among neighboring locations
is stable over time with the help of newly collected data from
the reference points.

Considering time-critical scenarios as discussed earlier, the
main departure of CLIPS from previous solutions is that it
leverages mobile Wi-Fi beacons (i.e., those of emergency team
members) to determine a set of feasible coordinates from all
coordinates on an intended map, and then employs dead reck-
oning over the map to eliminate invalid candidate locations
and finally pinpoint the correct/real positions.

C. Peer-Assisted Localization

The high density of smartphones/hand-held devices in
public spaces enables the peer-assisted localization of
nearby peer devices. Proximity sensing schemes, such as
Hummingbird [41] and NearMe [42], provide relative localiza-
tion of nodes with an accuracy of 30–100 m. Hummingbird
uses dedicated RF ranging methods, whereas NearMe uses
Wi-Fi fingerprints to detect whether two nodes are within short
range (if there is at least one AP in common) or long range
(if they can reached by hopping through APs with overlap-
ping coverage) of each other. Bluetooth (e.g., BlueHoo [43])
and cellular signals (e.g., People-Tones [44]) can be used for
proximity sensing nearby devices, but its positioning accuracy
is largely dependent on radio characteristics. Apple’s iBeacon
uses Bluetooth low energy, in which beacon nodes period-
ically send unique IDs (say every 100 ms), for proximity
sensing. Upon receiving an ID beacon, nearby devices can
look up the ID to determine the device’s physical location
or to trigger associated services. Similar to NearMe, iBea-
con categorizes proximity into three classes: 1) immediate
(located within a few centimeters); 2) near (located within a
couple of meters); and 3) far (located further than 10 m away).
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In contrast to Wi-Fi and Bluetooth, acoustic ranging meth-
ods (e.g., Beep Beep [45]) can provide much higher accuracy
than other radio-based methods. Recently, Banerjee et al. [46]
proposed the Virtual Compass, where multiple radios are used
to improve the ranging accuracy (i.e., Wi-Fi and Bluetooth),
and Vivaldi-based distributed localization is used to produce
the relative positions of nodes. Higuchi et al. [47] proposed
“stop-and-go” collaborative localization that leverages accu-
rate ranging methods among mobile peers to estimate their
moving states. As a result, more stationary nodes can be cho-
sen as relative anchors to improve accuracy. Liu et al. [16]
used both Wi-Fi-based positioning and acoustic ranging among
peers such that acoustic-based relative positions are mapped
into the absolute positions by carefully referencing Wi-Fi-
based localization results. EZ can be considered a peer-assisted
localization because the RSS measurements of APs at the
peer devices are used for localization [5]. Furthermore, as
shown later, multiple nodes can collaboratively perform SLAM
methods [17]–[21], which can be also considered as peer-
assisted localization. This paper can also be considered as
peer-assisted localization in that RSS measurement among
peers are used for identifying feasible coordinates in the RF
map, but the key difference from earlier work is that our
approach supports absolute localization and uses collaborative
dead reckoning, in which each node performs map matching
to eliminate infeasible coordinates and shares this information
for fast convergence.

D. Robot Localization and Dead Reckoning

For the robot indoor navigation, a robot basically requires
an ability to determine its real location. Simple approaches
provision the robot with an indoor map that allows the robot
to determine its real location by comparing its observed envi-
ronment to the map (using, e.g., ultrasound or LADAR sen-
sors). Significant advances in robot mobility research include
SLAM [14], which allows a robot to build a map of the
indoor environment (in terms of walls and other obstruc-
tions), and, at the same time, determine its position based
on the constructed map. In order to determine the distance
having moved between measurement points, a robot typi-
cally uses an onboard odometer. For pedestrian navigation,
Woodman and Harle [48] showed that the use of a foot-
mounted inertial unit and particle filter can provide accurate
position estimation. Lan and Shih [49] improved the accu-
racy of pedestrian dead reckoning by proposing an elaborate
gait analysis technique for accurate step recognition and step
length estimation as well as a turn detection method for
map matching based on gyroscope data. MapGENIE [50] is
recent work on building indoor maps using pedestrian dead
reckoning. It relies on crowdsourcing to collect the traces
of residents. In addition, Sorour et al. [51] proposed joint
indoor localization and radio map construction. The aim of
this paper is to reduce extensive deployment efforts for Wi-Fi
radio map construction. This paper differs from these earlier
studies in that we use P2P Wi-Fi fingerprinting and dead reck-
oning for fast location convergence in time-critical mission
operations.

Recent studies have also explored the use of wireless
infrastructure to better sense the environment [15]. Similarly,
Martin et al. [52] proposed a smartphone indoor localiza-
tion that uses only the smartphone sensors and integrates both
online and offline RSS fingerprinting phases in a local smart-
phone. Kim et al. [17] proposed a method for improving the
localization accuracy of dead reckoning, where multiple nodes
collaboratively build the global RSS map, and drift errors
are corrected by referring to this map. SmartSLAM imple-
ments SLAM to automatically construct an indoor floor-plan
and radio fingerprint map using off-the-shelf smartphones [18].
The cost of RSS map building can be significantly reduced by
leveraging the fact that RSS fingerprints are geographically
connected as a user is moving, and thus, a high-dimensional
fingerprint space can be formed. LiFS [21] uses multidimen-
sional scaling to map fingerprint space into 2-D space, which
can be easily mapped onto a given map. UnLoc [19] lever-
ages the fact that motion sensor and Wi-Fi readings collected
by multiple users can be clustered to generate landmarks
through which the drift errors of dead reckoning can be cor-
rected. PiLoc [20] uses trajectory based clustering to improve
performance, i.e., trajectories are first clustered based on AP
similarity, path segments (turn and line vectors) are then clus-
tered based on trajectories and RSS signal similarity, and path
segments are finally merged to build floor-plans. These RSS
map-based methods cannot be used in our scenarios because of
their dependence on Wi-Fi infrastructure. Furthermore, land-
mark generation and trajectory clustering basically assume that
there is sufficient sensor data collected from mobile users,
but this assumption does not hold in time-critical mission
operations.

III. CLIPS OVERVIEW

We would like to emphasize that this paper considers
emergency indoor scenarios with first responders performing
emergent missions (e.g., firefighting, urban military, or res-
cue operations) or teams of soldiers. In this scenario, accurate
and fast localization would facilitate team members to easily
navigate a region of interest, and sharing situational-awareness
would finally lead to successful mission completion. However,
we recognize there are limits to the accuracy of RSS-based
map mapping—it does not deterministically identify exact
locations, although we have introduced a slack variable to
accommodate RSS variance and estimation errors and pro-
duce an acceptable number of feasible coordinates/positions.
Because of this design choice, we need an additional compo-
nent that can uniquely lead to a user’s real location/position
from the feasible coordinates. The most common solution is
inertial navigation (i.e., dead reckoning), which tracks a user’s
current position by continuously monitoring heading changes
and distance traveled with inertial sensors (e.g., gyroscopes
and accelerometers), and finally leads to current position of
the user in the map.

We assume that a team has obtained a floor-plan in advance
[an example is shown in Fig. 1(a)]. It is preprocessed to build
an overlay of an M×N grid, as shown in Fig. 1(b). The grid
dimensions are determined by the granularity of the location
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(a)

(d)

(b)

(e)

(c)

(f)

Fig. 1. CLIPS overview [53]. (a) Acquiring the floor-plan. (b) Generating an RSS map using a ray-tracing-based RF simulation. (c) Measuring the RSS
values to all reachable members via Wi-Fi beaconing (e.g., top-right node). (d) Identifying the feasible coordinates of each node (e.g., one valid and five invalid
coordinates indicated by the white and black phones, respectively). (e) Eliminating invalid candidates via dead reckoning (e.g., all five invalid coordinates).
(f) Sharing the discovered position with other team members (via a cellular network or Wi-Fi) such that others can further remove invalid coordinates.

information required for mission operations; we use a 2 × 2
m grid in our field test. In addition, for all coordinates on
the floor, we calculate the path loss values from every other
coordinate on that floor, using an RF ray-tracing model, and
generate an RSS map of M × (N − 1) dimensions.

Fig. 1(c) shows what would happen once a team of four
members step on the floor in the intended building. Each
mobile node performs periodic Wi-Fi beaconing through
which the RSS values of the reachable team members can be
observed. As shown in Fig. 1(d), these RSS values are then
matched against the RSS map downloaded in advance, and
this generates a list of all feasible coordinates on the floor. We
present the detailed matching algorithm in Algorithm 1 (see
Section IV-B). After obtaining these feasible coordinates, team
members employ smartphone dead reckoning to eliminate all
false positives from the list. According to heading changes
and distance traveled on the map, each member applies the
displacement on the list of all feasible coordinates. In the
meantime, if the coordinates lead to a dead end, those invalid
coordinates are eliminated from the list. An example is shown
in Fig. 1(e). This process is repeated until each member gets
an unique coordinate from the list. As shown in Fig. 1(f), once
each member localizes herself correctly, she can broadcast her
position on the map to the remaining nodes such that she can
help others to remove invalid coordinates on their lists quickly.
This also allows each team member to know the position of
all other members, and helps to facilitate the team mission.

IV. CLIPS SYSTEM DETAILS

In this section, the main components of CLIPS will be pro-
vided: 1) floor-plan preprocessing and RSS map generation;
2) feasible coordinate estimation; and 3) map matching via
indoor path tracking.

A. RSS Map Generation

CLIPS requires a floor-map for each site, which can be
obtained from geographic information system (GIS) data. We
assume that a team under time-critical indoor operation can
access a digital map from a service provider that recognizes
a given floor-plan image and builds a digital floor map—
architectural floor-plan image recognition has been studied in
the field of GIS [54]. Similar services have recently been
launched, such as “Google Maps Floor Plans,” for indoor
wireless LAN positioning, which obtain floor-plan images
uploaded by users [55], and floor level information can
be accurately identified by using existing algorithms (e.g.,
FTtrack [56]).

Next, the LDPL model as an RF propagation model is
employed to forecast RSS values for all coordinates on the
intended floor-plan, and to obtain path loss data after simula-
tion. Using this model reduces the number of RSS measure-
ments significantly compared to RF fingerprinting schemes,
albeit at the expense of degraded localization accuracy. Given
that RF propagation characteristics vary widely (especially
indoors), the model parameters would have to be estimated
specifically for each indoor space of interest. For example,
Anderson and Rappaport [57] presented measured data for a
2.5 GHz in-building partition loss.

Ray-tracing has widely been used because ray-tracing mod-
els consider the details of a place, such as thickness of walls,
doors, and windows as well as desks and chairs to achieve high
fidelity. In general, ray-tracing approximates radio propagation
using a finite number of isotropic rays emitted from a trans-
mitting antenna by a ray imaging technique and can deliver
high fidelity. In this technique, the transmitter is assumed
to be reflected at each surface around it to produce image
transmitters; the rays reflected to the receiver from the real
transmitter are considered to be direct paths from the mirror
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images of the true transmitter. Based on geometrical optics,
each ray from the transmitter to the receiver can be exactly
determined. However, the major drawback of such techniques
is their expensive computational complexity. Readers can refer
to the detailed ray-tracing techniques in [35] and [58]–[63]

All models can be used in our extensive simulation.
However, in order to pursue a reasonable balance amongst
the effort of floor map modeling, and accuracy, and simula-
tion duration, we use the following modeling and simulation:
we consider all the solid lines in a floor-plan as walls, all the
spaces surrounded by the solid lines as accessible spaces, and
all windows are regarded as walls. With this indoor modeling,
we use a simplified (reduced) 3-ray tracing in the experiments
(provided by Wireless InSite software [64]), where diffrac-
tion along obstacles is considered. In practice, however, the
measured signal strengths tend to fluctuate because of small-
scale fading. This phenomenon can be mitigated by conducting
multiple measurements to determine the average RSS val-
ues, but a node might still suffer from short-term fluctuations
(thereby removing the true position). Moreover, floor-plans
that are partially outdated because of recent remodeling, miss-
ing obstacles (e.g., furniture or refrigerators), human move-
ments, and different Wi-Fi chipsets can also affect the RSS
values. To address these problems, we introduce a slack param-
eter α (usually ±13 dB in our settings) to reduce the sensitivity
to RSS measurements on the overall system performance. We
also believe that the calibration process of Wi-Fi chipsets will
further opt-out false-positive positions by decreasing the α

value; however, this will be a part of our future work. We
justify this approach with test bed and simulation results in
Section V-A.

B. Feasible Coordinate Estimation

Node j estimates the path loss value in this communica-
tion [denoted as m(i, j)] from each beacon log (i, j, ss)t of
node j, where ss is the RSS from node i at time t. To this
end, we assume that transmission power and other factors,
such as sender antenna gain/loss and environmental noise, are
common and almost constant on all mobile nodes. We note
that these values might be hardware-dependent,1 but premea-
surement before localization (before a mission starts) is an
effective way to determine such values.

1) Positioning Problem Formulation: In this section, we
focus on the positioning activity of node j. Given a floor-plan
of fp with N grid points, let L : N2 → R+ denotes a path
loss matrix among the N points, where element (u, v) ∈ N2 is
the simulated path loss from points u to v. In addition, let Mj

denotes the set of node j and the nodes from which it received
beacons at time t. Let m : Mj × {j} → R+ denotes the set of
path loss measurements of node j at time t, where m(i, j) is
the measured path loss value from nodes i to j.

The node j’s positioning problem is to select the grid point
that has the minimum distance from the true position of node j.

1We introduce a slack parameter α and perform experiments to find emphat-
ically correct value (shown in Section V-A2, ±13 dB in our settings) to reduce
the dependency as we cannot completely consider potential changes of floor-
plans, missing obstacles (e.g., furniture, refrigerator, etc.), human movements,
and different Wi-Fi chipsets to obtain RSS values.

Fig. 2. Example of pass loss measurements.

Our approach is to locate such a position by finding the posi-
tioning function p : Mj → N with the least “path loss matching
error” between m and L. The objective function is minimizing
such path loss matching error as follows:

min
∑

i∈Mj

|m(i, j)− L(p(i), p(j))|. (1)

We note that we may use different objective functions depend-
ing on signal attenuation at the target site. For example, if the
path loss increases as the power of the distance, we may use
the following function instead of (1):

min
∑

i∈Mj

(m(i, j)− L(p(i), p(j)))γ (2)

where γ is the pass loss exponent (e.g., γ = 2 in the free
space attenuation model). More general propagation mod-
els exist. For indoor space, there is a well-known model in
ITU-R P.1238-8 [65]. Assuming 2.4 GHz propagation on the
same floor with the reference distance 1 m, the P.1238-8
model has the form “30 log10 d − 39.60.” By transforming
this log-based model into the exponent-based model, the coef-
ficient “30” corresponds to the pass loss exponent γ = 3
in the propagation model. We note that shadowing loss and
multipath fading are not usually considered in the general (i.e.,
site-independent) propagation models because of their time-
varying and situation-dependent features and we therefore
ignore them in the objective function. Nevertheless, the path
loss characteristics are highly situation-dependent, and it is not
straightforward to choose the best-fit exponent. Consequently,
we adopt the simplest form for (1) considering the simplicity
of its calculation.

As addressed above, we need to accommodate measurement
errors caused by the fluctuation of RSS values. We should
allow some deviation parameter α such that a measured path
loss l′ and a simulated path loss l are regarded as identical if
l′ ∈ [l − α, l + α]. The choice of an appropriate α is further
investigated in Section V-A. Using function z, where z(l′, l) =
1 if l′ ∈ [l − α, l + α] and 0 otherwise, we can then use the
following objective function instead of (1):

max
∑

i∈Mj

z(m(i, j), L(p(i), p(j))). (3)

This leads us to find the p that maximizes the num-
ber of path loss-matched edges in m and L. A simple
example is given in Figs. 2 and 3. Fig. 2 shows the
path loss measurements of the users, and Fig. 3 shows
an RSS map generated from a floor-plan by a simplified
3-ray trace model. Using (1) as an objective function, p =
{userA : point3, userB : point2, userC : point1} minimizes the
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Fig. 3. Example of an RSS map generated from a floor-plan.

Algorithm 1 Positioning Algorithm for Node j
1: procedure find_possible_positioning_functions (Mj, m, N, L)
2: k← 0; F = ∅
3: for each v ∈ N do
4: E← (j, v)
5: for each pair of edges (i, j) ∈ m and (u, v) ∈ N2 do
6: E← E ∪ (i, u) if z(m(i, j), L(u, v)) = 1
7: end for
8: E′ ← bipartite graph matching result for ((Mj, N), E)

9: if |E′| > k then
10: F← E′; k← |E′|
11: else if |E′| == k then
12: F← F ∪ E′
13: end if
14: end for
15: return F as a set of positioning functions
16: end procedure

path loss matching error (i.e., |55−60|+ |90−85|). However,
to relax sensitivity and find a larger set of feasible points, we
can use (3). Using this objective function with the slack value
α = 10, the path loss matching error obtained by position-
ing function {userA : point2, userB : point3, userC : point1}
becomes equivalent to that obtained by another positioning
function {userA : point3, userB : point2, userC : point1}. Thus,
the results will contain a larger set of feasible points.

2) Algorithm and Complexity: Assume a graph G =
(Mj, m) and a complete graph H = (N, N2). The above
optimization problem is the maximum common subgraph iso-
morphism (MCSI) problem in graph theory, which finds an
induced graph G′ of G in H with the objective function in (3).
Although the general MCSI problem is known to be NP-hard,
our problem is a special class of MCSI in that we have a
graph G with a star topology centered at node j. Therefore, if
j is allocated to point v ∈ N, the calculation of the objective
function in (3) can be reduced in this case to the following
problem: 1) for each edge (i, j) ∈ m find all possible edges
(u, v) ∈ N2 that satisfy z(m(i, j), L(u, v)) = 1 and 2) find the
positioning function p : Mj → N from 1) with the objective
function in (3). Part 1) needs to exhaustively test all edge
pairs in G and H, respectively, and part 2) can be reduced
to the maximum bipartite matching problem on the graph,
where Mj and N are bipartite vertices, (j, v) are edges, and
all possible allocations of the nodes in Mj to points in N
found in part 1) are also edges. The computation complexity
of part 1) is O(|Mj||N|), and that of part 2) is also O(|Mj||N|)
by the path matching algorithm [66]. Thus, to apply parts
1) and 2) to all points in N, the complexity of our opti-
mization algorithm is O(|Mj||N|2). The pseudocode is given
below.

The algorithm works as follows. In the loop between lines 3
and 14, first, it is examined whether a pair of an edge from

node j on the path loss measurement graph and an edge from
point v on the simulated path loss graph satisfies function z
or not in the loop between lines 5 and 7. Then the bipartite
matching algorithm is applied to set E of feasible edges in
line 8. Finally, the optimality of this result is examined com-
pared with the best record in terms of the number of matched
edges between lines 9 and 13.

C. Location Convergence via Indoor Path Tracking

The mechanism for our indoor path tracking (i.e., dead
reckoning) over a floor-plan uses commercial off-the-shelf
(COTS) smartphone sensors to obtain movement distance and
heading changes. The major challenge here is to use the unre-
liable inertial sensors in smartphones (e.g., magnetometers and
accelerometers) to accurately track a user’s path.

We use Android’s magnetic field sensors and heading to
identify the direction of movement. During our initial imple-
mentation, we observed that the readings from a compass
have an internal bias in addition to the fluctuations caused
by even a slight sway, irregular motion, or by magnetic fields
in the surroundings. We use a method recently proposed by
Constandache et al. [67] to overcome above errors and detect
significant heading changes accurately at a corner while tak-
ing a turn and further use the following condition for more
accurate turn detection:

Avg
(
t(i+1)

)− Avg(ti) �
StdDev(ti)+ StdDev(ti+1)

2
(4)

where Avg(ti) denotes the average compass readings over a
ti time period, StdDev(ti) denotes the standard deviation of
compass reading during ti, and G denotes a guard factor.

Next, we compute the distance traveled by a user as a prod-
uct of the number of steps taken and step stride length. This is
because, according to [67], the technique of double-integrating
acceleration readings could induce a large error even over a
small distance. Our algorithm continuously reads accelerom-
eter data to calculate user step count while it filters out the
noise. Then, it infers an increment in step count based on
changes in the observed readings.

We converted a sample floor-plan into an N ×N matrix, as
shown in Fig. 4. Here, each coordinate point is 2 m away from
its neighbors. This map comprises just the symbols {1, 0, W},
where “1” indicates accessible points, “0” indicates inacces-
sible points, and “W” represents walls. After the initial Wi-Fi
scan, all possible 1 s on this grid are listed. Every time a dis-
tance equal to the distance between two coordinates on the
grid (2 m) is traveled by the user, the path tracking mod-
ule records the user’s direction of movement. Based on the
observed movements, each coordinate in the list is updated,
and coordinates that fall on a 0 or W are eliminated. This
process of elimination continues iteratively as the user moves
while changing direction, and eventually concretizes to a sin-
gle point on the grid that represents the user’s true position.
Once one user locates himself/herself correctly, he/she can
broadcast his/her position to other team members so that they
may eliminate their invalid coordinates faster.

1) Accurate Estimation of Distance Walked: Experimentally,
we observed that walking speed also plays a crucial role
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Fig. 4. Computer science department building map: 1 (accessible),
0 (inaccessible), and W (wall) [53].

Fig. 5. Step profiling App: generating a user’s stride length at 3 mph.

in the calculation of stride length. Therefore, we incorpo-
rated walking speed and the corresponding stride length into
our system. Our profiling approach consists of two modes:
1) profile creation and 2) profile usage.

Each user trains the system for his specific stride lengths
based on his/her different walking speeds in the profile creation
mode. The graphical user interface for this is shown in Fig. 5.
It shows different speed options of 1 mph, 2 mph, and so on
up to 7 mph. It also shows the corresponding lap time. For our
tests, we generated four separate profiles for users of different
genders and heights. The test participants walked a test area
of length 100 m to train the system for different speeds, i.e.,
step frequencies (by time-limiting the distance to be covered)
and corresponding stride lengths.

Fig. 6 depicts our experiments results. A user’s stride length
increases, independently of height and gender, as the walking
speed increases. The stride length is also closely related to the
user’s walking style. For instance, a female of height 5.83 ft
walking at a speed of 5 mph has a similar stride length as that
of a male of height 5.90 ft. This example emphasizes why it is
required to use step profiling for each user in order to obtain
a more accurate traveled distance. We note that, according to
the human kinematics literature [68], [69], it has been shown
that human walking patterns are unique to individuals and do
not vary significantly over time. Further, walking patterns can
be well modeled based on walking speed and stride length,
which provides a theoretical basis for this paper.

Fig. 6. Stride length as a function of walking speed (for different genders
and heights) [53].

TABLE I
AVERAGE STRIDE LENGTH AND STEP-PROFILING RESULTS FOR

A MALE (5.83 ft) AT THREE DIFFERENT STEP SPEEDS

TABLE II
AVERAGE STRIDE LENGTH AND STEP-PROFILING RESULTS

FOR FEMALE (5.5 ft) AT THREE DIFFERENT STEP SPEEDS

In the profile usage mode, the system uses the existing pro-
file reference data to dynamically obtain a user’s stride length
from his/her current walking speed. Tables I and II compare
the error percentage (relative deviation from the ground truth)
in distance traveled by a male user and female user, respec-
tively, for average (statistical) stride length and profiling stride
length. According to [70] based on the average stride length,
the stride for a male of height 5.83 ft is a single fixed value
(0.737 m) for all walking speeds. Similarly, for a female of
height 5.5 ft, it is 0.637 m. Because stride length naturally
becomes larger with walking speed, stride analysis becomes
more inaccurate at higher speeds, causing the error percentage
increase. However, profiling the stride length is sufficient here.
For example, for the stride length of a male of height 5.83 ft
was observed at moderate, fast, and running speeds to be 0.79,
1.39, and 1.67 m, respectively. With profiling information, the
difference between the ground truth and calculated distance (as
stridelength× stepcount) dropped significantly. This improved
the system performance tremendously. A dynamic system is
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more suitable for our target scenario, where a firefighter could
be running and walking intermittently.

To summarize, our profiling method consists of two modes,
namely, profile creation mode and usage mode. In the profile
creation mode, a user walks a test road for a given walking
speed (i.e., step frequency), and the average stride length is
then estimated by dividing the road length by the step count.
A user’s reference database is built by collecting stride length
data for different speeds. In the profile usage mode, the system
dynamically obtains a user’s stride length from the reference
database by simply determining the user’s current walking
speed. Because walking patterns are unique to individuals and
do not vary significantly over time [68], [69], this manual cal-
ibration can be performed once when a user initializes the
system’s mobile client. Note that it is possible to automate
this calibration process, and thus, the mobile system can peri-
odically trigger calibration. For example, when a user walks
outside, it can record GPS tracks along with the walking data.
We then can find a set of straight line segments from the GPS
traces. The walking data collected while a user is traveling
along the straight line segments can then be used to estimate
stride length as we did in manual profiling.

V. EVALUATION

We evaluated CLIPS from an Android-based test bed to
experiment our system’s overall performance in real-world
scenarios, which is presented in Section V-A. To verify the
general system performance of CLIPS in diverse locations
(with floor-plans obtained from UCLA, Osaka University,
and KAIST), we further performed extensive simulations and
present the results in Section V-B. Both experimental and
simulation results demonstrate that CLIPS lead to an accu-
rate position significantly faster than existing noncollaborative
schemes.

A. Test Bed Experiments

1) Experiment Setup: We conducted our field tests in the
computer science department building at UCLA. As shown in
Fig. 7, we first generated a preprocessed floor-plan with a grid
overlay. We used stride length profiles for accurate dead reck-
oning with varying numbers of team members, ranging from
two to nine. For path tracking (Fig. 4), the same floor-plan
was used. We deliberately chose three representative routes to
further evaluate how the nature of a route traveled by a user
(i.e., the number of corner turns and the length of a straight
line taken by a user) can influence the system performance;
the performance results with random paths are reported in the
simulation section. As shown in Fig. 7. Route 1–3 start from
the same starting point, but while Route 1 contains a long
straight path with just a single turn, Route 2 comprises of
more turns with long enough straight paths between two con-
secutive turns. Route 3 includes many turns with very short
straight paths after each turn.

2) Experimental Results: We evaluate CLIPS’s
performance with the followings: 1) the impact of the
team size and the slack value; 2) convergence speed variation
when taking different routes; 3) convergence accuracy with

Fig. 7. Preprocessed floorplan and routes 1–3 [53].

Fig. 8. Matching outcome ratio for different numbers of team members [53].

and without stride length profiles; and 4) overall convergence
delay between CLIPS and smartphone dead reckoning.

a) Impact of team size and slack value: Fig. 8 shows the
feasible coordinate ratio (FCR) for different numbers of peers.
We also varied the slack value α to determine its optimum
value. Note that we introduced α to cope with the difference
between the floor-plan and reality, radio signal fluctuation over
time, and Wi-Fi chipset disparity. Its value should be small
enough to eliminate most infeasible points, but large enough to
not miss the true location. The FCRs are calculated by dividing
the number of outcomes by all the coordinates in the floor-plan
(48 × 48 coordinates). While the α values showed a positive
relationship with the FCR, we observed that the number of
false positives decreases as we increase the number of peers.
Fig. 9 illustrates the hit ratio, which is the probability that the
matching outcomes contain the true positive position. As Fig. 8
shows, we varied the number of team members as well as α

to observe the changing system behavior in different cases.
The probability that a current point is scanned becomes 100%
as the α has been increased. Another interesting observation
is that a smaller team (with few members) requires a smaller
α value to contain current position with the initial scan. For
instance, a one-member team with an α value of 9 dB was
observed to scan the current position with 100% probability,
whereas an 8-member team requires an α value of 15 dB to
obtain the same probability.
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Fig. 9. Probability of obtaining the current point for different team sizes as
a function of slack variable α [53].

Fig. 10. Convergence speed of different routes [53].

b) Convergence speed for different routes: Of all the
system performance metrics, accurate convergence speed to
a unique point is one of the most important for the proposed
scheme. We investigated how this factor is affected by differ-
ent routes and by the utilization of peer-to-peer RSS exchanges
and matched it with simulation data. To verify this, we care-
fully chose three representative routes: Route 1 (long straight
paths and a turn); Route 2 (moderately long straight paths and
a few turns); and Route 3 (short straight paths and many turns)
to see which of the two factors, long straight paths or the num-
ber of turns, affects the convergence speed more. We measured
20 trials on each route and evaluated the success ratio of two
different stride approaches. Fig. 10 shows the convergence to
the unique point as a function of the distance traveled. Route 1
shows a rapid drop in FCR in the beginning because of its dis-
tinct route feature, but after traveling 20 m, the route showed
relatively slow convergence. This was because multiple points
on the straight path still remain as candidates. However, when
a turn is taken after 60 m, it converges to a unique point.
Route 2 shows the slowest convergence speed. This is because
this route contains relatively moderate events, such as moder-
ately long straight paths and turns. Route 3 shows the fastest
convergence speed to a unique point. This is because this route
contains many turns. Thus, based on our observation, a com-
plicated route tends to expedite the process of convergence to
a unique point.

Fig. 11. Convergence success ratio of two stride length estimation methods
for three different routes [53].

c) Convergence accuracy with stride length profiling:
Accurate dead reckoning with stride length profiling is
CLIPS’s one of import features. In order to evaluate this
feature, two different stride length approaches, namely, aver-
age stride length (fixed) and stride length profiling (variable),
have been tested 20 times per route. Given that the users
are navigating indoors, it is highly necessary to have accu-
rate displacement logging, as in the map shown in Fig. 4.
Our step profiling uses dynamic stride length to calculate the
traveled distance unlike the average stride length approach.
Eliminating false positives on the floor-plan using this scheme
is more accurate. For instance, at the end of a corridor, changes
in direction that are both earlier and later than required will
cause the convergence to a unique position to fail. Fig. 11
shows the convergence ratio of the two different mechanisms
(fixed versus variable), which are well matched with dis-
tance deviations for both the male and female users shown
in Tables I and II, respectively. Step profiling provides 100%
accuracy for Route 1 while slightly degraded performance
for Route 3 is observed. This can be attributed to the error
in compass readings caused by the magnetic fields in the
surroundings. Even when profiling correctly calculates the
distance traveled, the error in orientation can cause inaccu-
rate results. To eliminate these errors, a gyroscope and an
accelerometer can be used in addition to the orientation sensor,
as explained in [48]. We will incorporate this feature in the
future. In our experiments, the average stride length approach
significantly underestimated the actual distance traveled in a
long, straight corridor, resulting in poor performance (32%).
However, for a path such as that of Route 3, the average stride
length showed relatively reliable performance. This could be
because the overall distance error is refreshed after each turn
on this route.

d) Overall convergence delay of CLIPS: The aggregated
time taken to lead to a unique point with step profiling for
each of the three routes is shown in Fig. 12. The delay
difference mainly occurs because users are traveling differ-
ent routes while the initial Wi-Fi scanning and matching
took almost constant time for all three scenarios. Overall
delay is dominated by the traveling time while the Wi-
Fi scanning and matching delay are considerably smaller
comparatively.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 26,2023 at 10:29:07 UTC from IEEE Xplore.  Restrictions apply. 



428 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 48, NO. 3, MARCH 2018

Fig. 12. Cumulative latencies of three modules for different routes [53].

Fig. 13. Distance that must be traveled to converge to a unique point on
three different routes. CLIPS versus smartphone dead reckoning [53].

Fig. 14. Convergence speed. CLIPS versus smartphone dead reckoning.

e) Smartphone dead reckoning versus CLIPS: To eval-
uate how RSS matching can affect the overall system
performance, we compared dead reckoning using COTS smart-
phone sensors with CLIPS. Fig. 13 shows the exact distances
that had to be traveled by each system to converge to a unique
location on each of the three routes. We observed that for all
three routes, smartphone dead reckoning required the user to
travel a longer distance in order to converge to a unique point.
Fig. 14 shows that more detailed, feasible coordinates are lost
as a function of the distance traveled. We note that smart-
phone dead reckoning shows that Route 2 requires a longer

Fig. 15. Effect of slack variable α on feasible coordinates.

distance to converge to a unique point, which consequently
takes the longest time compared to the other two routes. This is
because smartphone dead reckoning shows more dependency
on routes, as one route contains more turns to expedite conver-
gence process to the unique point. However, CLIPS starts from
a different set of feasible points; therefore, it is less dependent
on turns. Considering the results of Figs. 12 and 13, we con-
clude that Wi-Fi scanning and matching improve the system
performance with relatively little cost.

B. Simulations

1) Simulation Setup: To test the general system
performance at different locations, we further evaluated
the two major components of CLIPS, namely, matching RSS
with path loss estimation and dead reckoning via network
simulations using Qualnet. For the simulations, floor-plans
were obtained from UCLA, Osaka University, and KAIST.
To generate path loss estimation on a floor-plan, the wireless
signal propagation was computed by Wireless Insight with
a 3-D model of the floor-plan (by CoCreate modeling
Software [71]). We used N × M grid topologies, in which
the side length of each grid is 2 m. The measured RSS was
randomly generated from the simulated RSS with Gaussian
error N(0 dB, 5 dB) (mean 0 and variance = 5 dB). To
verify the sensitivity of the matching between simulated and
measured RSS, we set the default value of α to 10 dB; we
also assumed that dead reckoning is accurate. In our simu-
lations, we adopted random room search mobility (RRSM)
to emulate a team member’s mobility. Initially, each node is
located at a randomly chosen position. Each node chooses
a destination room randomly and moves to the destination
through a passage. When it reaches the destined room, it
again randomly picks and moves to the next destination
room. The nodal speed was set to 2.5 m/s. Unless otherwise
specified, we report an average value of 50 runs with RRSM
to mitigate any dependence on specific route paths and to
understand general system behavior.

C. Simulation Results

1) Effect of Slack Variable α on Feasible Coordinate and
Hit Ratios: Figs. 15 and 16 examine the effects of the slack
variable α on the FCR and the hit ratio, respectively. To verify
these, we varied the number of deployed nodes from 1 to 30,
and changed the slack variable from 2 to 10. Fig. 15 shows
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Fig. 16. Effect of slack variable α on hit ratio.

Fig. 17. Effect of team size on convergence speed.

that all coordinates are considered as feasible in the single
node case. This is because the node can be deployed in any
place on the passage and cannot verify feasibility with itself.
As we increased the number of deployed nodes, the FCR
decreased; the greater number of nodes deployed, the smaller
the set of feasible matches on the map. Note that the number
of coordinates increases as we increase α. Fig. 16 also exam-
ines the effect of α on the hit ratio. This figure represents the
performance accuracy of CLIPS based on the slack variable,
coupled with Fig. 15. The greater the number of coordinates
considered feasible thanks to the larger α value, the higher the
hit ratio. By performing this simulation, we confirmed that the
relationship between the number of deployed nodes and FCR
as well as between the slack variable and hit ratio are well
matched with the test bed results.

2) Effect of Team Size on Convergence Speed: Fig. 17
reports how different numbers of team members can affect
the convergence speed. All eight cases, from 1- to 15-node
teams, show correlated behavior: FCR decreases as the trav-
eled distance increases. We also note that teams with a large
number of members start with a smaller FCR, which means
that a large team will require less traveled distance (and time)
to converge to unique coordinates.

3) Positioning Errors: Table III shows the average posi-
tioning errors and their standard deviations. Positioning errors
are calculated as the average distance error from the feasible
coordinates to true coordinates. CLIPS (with RSS) has a clear
advantage over the scheme without RSS in terms of the aver-
age errors, but it has larger standard deviations. However, these
deviations converge and become smaller after at least 50 m

TABLE III
POSITIONING ERRORS (m)

Fig. 18. Effect of known coordinate landmarks on convergence speed and
accuracy.

has been traveled. The positioning error of CLIPS is finally
reduced to 2.2 m with σ = 1.4 m, which is reasonably small.

4) Sharing Location Updates: After a user has determined
the current location, periodically sharing this information with
fellow team members (via ad hoc communications or a central-
ized server) helps the team to eliminate false coordinates. To
verify the improvement in performance caused by this location
sharing, we evaluated the FCR based on the number of deter-
mined locations. In Fig. 18, we present the feasible coordinates
of users as a function of the number of users with known
coordinates (acting as mobile anchors). The graph shows that
the feasible coordinates exponentially decrease with the num-
ber of users with known coordinates. Even for a single node,
the FCR is reduced from 51% to 13%, and with an addi-
tional node, it is further reduced to 2.3%. This result shows
how much the overall system performance can be improved
by sharing determined locations.

VI. DISCUSSION AND FUTURE WORK

A. Aggressive Information Sharing

In our simulation results, we show that when nodes share
discovered location information (act as mobile anchors), this
can significantly reduce the size of feasible coordinates.
Another way of reducing the size of feasible coordinates is
to share the current progress of localization with other mem-
bers (i.e., sharing the feasible coordinates of a node with the
rest of the nodes). If node A receives the feasible coordinate
of another node B, node A can further eliminate the infeasible
coordinates of node B in its feasible coordinates. We leave this
simple improvement as part of our future work.
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B. Robust Dissemination

For beaconing and location sharing, we use best effort deliv-
ery with user datagram protocol broadcasting. Wireless errors
can be effectively handled with periodic packet broadcasting.
In some cases, location updates might need to be delivered
over multiple hop. By piggybacking discovered location infor-
mation in a packet, the location information of group members
can be eventually disseminated to the entire group.

C. Exploiting Environmental Signatures

Mobile devices with their sensor measurements are dead
reckoned while, in order to detect unique environmental signa-
tures within the building (e.g., Wi-Fi RSS drops and magnetic
fields), the same measurements are leveraged. Similarly to the
recent work by Wang et al. [19], these unique signatures can
be used to fix errors caused by the dead reckoning, which
in turn improves the location accuracy of these signatures.
However, surveying such environmental signatures takes con-
siderable time. One possible solution is to use an ad hoc
deployment of mobile beacons during the emergency oper-
ations to create “ad hoc environmental signatures,” which is
an idea inspired by iBeacon scenarios. When a team of first
responders arrives at the floor of interest, they could scatter
mobile beacons throughout the site. Then, CLIPS can leverage
both mobile and stationary beacons. As shown in our simula-
tion results, we can clearly see that as the number of beacons
increases, we can significantly reduce the feasible coordinates,
and sharing update information will further improve the con-
vergence speed. We leave the examination this hybrid scenario
as a part of our future work.

D. Path-Loss Simulation of Random Coordinates

A random instead of uniform distribution of coordinates
could be beneficial to remove flip and rotation issues in
matching. The density of such points is also an important
parameter for understanding the tradeoff between accuracy and
computation complexity. It might be possible to aggregate two
points that have similar propagation characteristics (i.e., points
in the same small room) to reduce complexity and expedite
convergence to the unique point. To do this automatically, we
need to verify whether two nearby points match after mapping.

E. Simultaneous Multifloor Operations

If there are other responders located on different floors, their
Wi-Fi signals may interfere with those located on the current
floor. In this scenario, we can use the following strategies. One
approach is to remove nodes whose RSS values are lower
than some threshold value. This is based on the fact that if
mobile users are located on different floors, their RSS val-
ues could be significantly lower than those of the others. In
addition, the mobility of users can be considered: i.e., it is
highly unlikely that a user’s RSS trace measured on a given
floor matches with that on a different floor. Note that we can
further extend our algorithm by simultaneously considering
multiple floors and quickly determining which floor map is
the best candidate. Another approach is to use an extra sensor,

namely, a barometer (or altimeter), which is widely available
in recent smartphones (e.g., Google Nexus 5). According to
Muralidharan et al. [72], we can accurately detect whether
users are located on the same floor by whether their atmo-
spheric pressure values are within some threshold range (e.g.,
for every 10 m in height, there is a pressure difference of
1.2 hPa). Furthermore, when a user moves across floors, the
change of pressure value is significant enough to detect this
event.

VII. CONCLUSION

In this paper, we consider time-critical indoor scenarios
such as search and rescue missions in a large building, where
traditional infrastructure-based localization schemes are not
feasible. For this scenario, we developed CLIPS, a novel
infrastructure-free, collaborative localization system. Unlike
infrastructure-based approaches, CLIPS leverages peer-to-peer
beaconing and floor maps, which are readily available for
time-critical team operations. In CLIPS, mobile nodes initially
estimate candidate coordinates in the floor maps by exchang-
ing beacon signals and signal space maps. Mobility of users
is then tracked with dead reckoning, and this information is
used to validate whether a movement on the map is feasible
when those candidate coordinates were considered as start-
ing positions. This approach can easily remove all the invalid
coordinates, thereby quickly leading to position fixes. We
evaluated the proposed system in both Android-based testbed
experiments and extensive simulations. Our results confirmed
that CLIPS can provide accurate localization performance and
achieve much lower delay for position fixes.
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