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Figure 1: Human-Machine Collaboration Overview in a Semi-automated Manufacturing System. A machine operates in an 
automated state in a normal situation (gray-box). The human-machine interface (HMI), which facilitates communication 
between the operator and the machine, allows the operator to know the machine status. When the machine encounters 
problems, it asks a human to take over a task (red-box). After checking the trouble through the HMI, the operators handle the 
situation based on their decision 
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ABSTRACT 
A semi-automated manufacturing system that entails human in-
tervention in the middle of the process is a representative collab-
orative system that requires active interaction between humans 
and machines. User behavior induced by the operator’s decision-
making process greatly impacts system operation and performance 
in such an environment that requires human-machine collaboration. 
There has been room for utilizing machine-generated data for a fne-
grained understanding of the relationship between the behavior and 
performance of operators in the industrial domain, while multiple 
streams of data have been collected from manufacturing machines. 
In this study, we propose a large-scale data-analysis methodology 
that comprises data contextualization and performance modeling 

https://doi.org/10.1145/3544548.3581457
mailto:permissions@acm.org
mailto:uclee@kaist.ac.kr
mailto:yugyeong.jung@kaist.ac.kr
mailto:inyeop@kse.kaist.ac.kr
mailto:eunji.park@kaist.ac.kr
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544548.3581457&domain=pdf&date_stamp=2023-04-19


CHI ’23, April 23–28, 2023, Hamburg, Germany Park et al. 

to understand the relationship between operator behavior and per-
formance. For a case study, we collected machine-generated data 
over 6-months periods from a highly automated machine in a large 
tire manufacturing facility. We devised a set of metrics consisting of 
six human-machine interaction factors and four work environment 
factors as independent variables, and three performance factors 
as dependent variables. Our modeling results reveal that the per-
formance variations can be explained by the interaction and work 
environment factors (�2 = 0.502, 0.356, and 0.500 for the three per-
formance factors, respectively). Finally, we discuss future research 
directions for the realization of context-aware computing in semi-
automated systems by leveraging machine-generated data as a new 
modality in human-machine collaboration. 

CCS CONCEPTS 
• Human-centered computing → Collaborative interaction. 
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1 INTRODUCTION 
Industry 4.0, the fourth stage of industrialization, has been fueled by 
digital transformation, and data-driven intelligence in manufactur-
ing has accelerated the so-called “fourth industrial revolution” [34]. 
Manufacturing processes that were previously performed in an 
analog manner have been digitized and highly automated, making 
the processes more efcient. However, many existing automation 
systems still require intermittent human intervention during the 
manufacturing processes when the system meets complex errors 
or sub-tasks that are difcult to automate [29]. For example, pro-
duction processes such as semiconductor manufacturing or auto-
mobile assembly, require human-machine collaboration. Such semi-
automated systems that require human intervention are examples 
of human-machine collaborative systems. 

In the human-machine collaborative system, the role of a human 
operator in a semi-automated system is crucial for ensuring ma-
chine automation and work productivity [12, 26, 33]. As illustrated 
in Figure 1, a machine operates in an automated state in a normal 
situation (gray-box in Figure 1). The operator can receive informa-
tion regarding the manufacturing progress via the human-machine 
interface (HMI) as a cyber component that interfaces communica-
tion between the operator and the machine. When the machine 
encounters a problematic situation that requires human interven-
tion, it asks a human to take over a task (red-box in Figure 1). 
Subsequently, the operators send the commands back to the HMI 
which represent the actions based on their decision for handling 
situation after checking the machine status or trouble through the 
HMI. The machine then resumes the follow-up tasks after resolving 
the problematic situation with the aid of the HMI input from the 
operator. In human-machine collaboration, the decision-making of 
operators (i.e., how to deal with the current situation by manipu-
lating the HMI) infuences the performance (e.g., the production 

volume and product quality). This is because human behavior in 
the context of human-machine collaboration may be afected by 
their cognitive skills or work knowledge, or by environmental fac-
tors such as the machine’s condition, temperature, and humidity. 
Therefore, researchers have been interested in interactions between 
humans and machines in human-machine collaboration systems 
and how such interactions afect the performance of systems. 

The human-computer interaction (HCI) community has been 
actively exploring data-driven human behavior modeling for op-
timizing user interactions, such as understanding human routine 
behaviors (e.g., driving behaviors) [9, 10], mining click-stream pat-
terns on the web [56] and building the data-driven persona of 
online users [65]. Although understanding human behaviors is 
also crucial in human-machine collaboration, there is a lack of 
data-driven, fne-grained analyses of human behavior and work 
performance modeling using machine-generated data. In the cur-
rent semi-automated manufacturing machines, multiple streams 
of machine data (e.g., the manufacturing execution data, detailed 
steps, material states, and an operator’s troubleshooting sequences) 
are collected via the Internet of Things systems. However, rich 
machine data have been used in limited contexts to date such as 
anomaly and security breach detection [5, 30, 52, 57]. We argue 
that there is room for utilizing machine-generated data to dissect 
the interaction between an operator and a machine. For example, 
mining machine-generated data helps to fnd reference interactions 
of skilled operators and ofer context-aware intervention guidelines 
for novice operators. As the frst step in employing the machine-
generated data as a new modality to understand operator behaviors, 
we analyze the troubleshooting behavior of operators and identify 
the relationship between how operators interact with the machine 
over diverse troubles and manufacturing performance. Our study 
aims to answer the following research questions: 

• RQ1. How can the working behavior and performance of 
operators be modeled using real-world machine-generated 
data? 

• RQ2. Does the work performance vary depending on the 
work behavior tendency of the operator? 

We answer the above research questions through an on-feld 
case study on a tire manufacturing production line. Owing to the 
safety-critical nature of the tire industry, an extremely small margin 
of error is required for many quality criteria, such as the length, bal-
ance, and weight of each tire part. Rubber is the main raw material 
that is used in tire production. Because the properties of rubber are 
highly infuenced by the machine setting and the work environment 
(e.g., temperature, humidity), it is challenging to work uniformly 
and causes a lot of machine pauses. Thus, the tire building machines 
require frequent operator interventions for troubleshooting. Some 
operators may tend to make preemptive parameter adjustments 
(i.e., proactive interventions) according to their interpretation of 
the machine data which is generated during the batch (i.e., one 
cycle) to prevent the stop of a machine. In contrast, other operators 
may respond to the machine pause that calls for reactive parameter 
adjustments (i.e., reactive interventions). Since operators’ diferent 
work behavior tendencies (e.g., proactive vs. reactive trouble han-
dling) can afect manufacturing performance, understanding how 

https://doi.org/10.1145/3544548.3581457


Charlie and the Semi-Automated Factory CHI ’23, April 23–28, 2023, Hamburg, Germany 

operators interact with machines over diverse troubles is critical in 
semi-automated manufacturing systems. 

To introduce the best practice for our methodology, we collected 
machine and manufacturing data over six months, from February 
to July 2021. During this period, a total of 8 operators worked 
for an average of 25.3 shifts and manufactured 57,141 tires and 
HMI parameters were manipulated 44,405 times. This dataset in-
cludes detailed manufacturing processes, alarm histories occurred 
during production, HMI manipulations, and product information. 
Using this dataset, we frst devised a data analysis methodology 
to quantify the behavior patterns of operators in diverse contexts, 
following which domain knowledge from experts was incorporated 
for further analyses. This led us to propose 13 factors belonging 
to the following categories: (1) operator-machine interaction fac-
tors, (2) environmental factors as independent variables, and (3) 
performance factors as dependent variables. 

Our analysis of machine-generated data with data contextualiza-
tion and multilevel linear regression revealed that the performance 
variations could be explained by the interaction and work environ-
ment factors (�2 = 0.502, 0.356, and 0.500 for the three performance 
factors, respectively). Furthermore, the relevance of each behavior 
pattern difered according to the type of performance factor. For 
example, the behavior pattern of responding after trouble occurred 
was highly correlated to throughput and cycle time. In contrast, the 
proactive manipulation behavior was strongly related to the alarm 
recurrence. Furthermore, individual diferences in behavior pat-
terns were observed between operators. Considering the fndings 
from the behavior and performance modeling, we call for further 
research using machine-generated data, such as pattern mining 
of HMI interaction sequences, context-aware HMIs, a data-driven 
personal training, and the development of data-driven persona. 

2 BACKGROUND AND RELATED WORK 

2.1 Human-Machine Collaboration in the Age 
of Industry 4.0 

Human-machine collaboration, which contains interactions be-
tween humans and machines, involves the sharing of mutual goals, 
and the co-management of preemptive tasks [55]. Many recent stud-
ies in the manufacturing domain have highlighted the importance 
of human-machine collaboration because humans and machines 
can complement one another with their strengths [14, 24, 48, 59]. 
Human-machine collaboration is necessary for most production 
processes, such as semiconductor manufacturing lines and automo-
bile assembly processes. Cherubini et al. [14] proposed an approach 
for collaborative manufacturing with physical human-machine in-
teraction. In such collaboration, humans and automated machines 
act like teammates [18]. The role of each component in human-
machine collaboration may vary depending on the type of task. 
Endsley et al. [19] classifed the automation level of a system into 
diferent stages according to the role and degree of human inter-
vention in the machine operation. For example, if humans make 
decisions and only the machine proceeds with the process, the sys-
tem is classifed as being on the decision support level. If the system 
is involved in both the overall process and decision-making, and 
humans intervene only when required, it is classifed as being on 
the supervisory control level. In recent years, supervisory control 

has been applied extensively in domains in which the automatic 
operation is important, such as driving [13, 25], manufacturing [32] 
and home and medical appliances [50]. 

2.2 Theoretical Frameworks for Performance 
Modeling in Industrial Settings 

Human intervention, which is dependent on the background knowl-
edge and experiences of the operators, signifcantly afects the work 
performance in human-machine collaboration. Moreover, the work 
performance may be afected by environmental factors or the work-
place itself. Various theoretical frameworks have been proposed to 
relate the work performance (e.g., productivity, errors, quality, and 
reliability) to various contributing factors such as human factors 
(e.g., skill and experience) and organizational factors (e.g., rewards 
and management), under diverse industrial scenarios (e.g., factory 
assembly lines, nuclear power plant control rooms, and aircraft 
cockpits). 

Researchers have explored the individual status of the opera-
tor, which plays an important role in decision-making. Bainbridge 
claimed that the attributes of the operator’s intervention may vary 
according to their manual control skill, cognitive skills, and long-
term knowledge [6]. Researchers have also investigated external 
factors that could afect the performance of human operators. In an 
early attempt, Miller and Swain [41] defned performance-shaping 
factors, i.e., internal factors such as individuals’ skill, knowledge, 
and motivation, and external factors, such as work environment 
and management, to understand human reliability or the causes 
and consequences of human errors. Baines et al. [7] synthesized 
existing approaches in the literature and proposed an integrated 
human performance modeling theoretical framework in which hu-
man performance is defned as a function of individual factors (e.g., 
personality trait, motivation, skills, and experience), the physical 
environments (e.g., air quality, noise levels), and the organizational 
environment (e.g., shift patterns, work teams, job rotation, and 
communication). 

The manner in which humans and machines interact is another 
important factor since how human operators interact with devices 
for intervention, or troubleshooting can afect manufacturing per-
formance in a human-machine collaborative system. In particu-
lar, in a complex system, human operators may have diferent 
work behavior tendencies or troubleshooting strategies for each 
trouble case according to their knowledge or preference, which 
may afect overall manufacturing performance. Li et al. [37] em-
phasized the signifcance of human-machine interactions that can 
be captured by human factors (e.g., their capabilities, knowledge, 
and mental state) and technical factors (e.g., the HMI and operat-
ing state). Nachreiner et al. [42] noted that competence in inter-
action can afect the work performance and operator work-load. 
These theoretical frameworks for performance modeling compre-
hensively consider various factors that infuence the manufacturing 
performance. Although human-machine interaction contexts have 
been established as an important factor, we found that none of the 
prior studies attempted to tap into continuous streams of machine-
generated data to augment the existing framework and analyze 
the performance-afecting factors at the diverse interaction level 
(e.g., work behavior tendency level or trouble specifc level). This 
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would be of particular interest in semi-automated manufacturing 
machines, in which tasks are highly automated, and human opera-
tors assist in the automation by occasionally handling erroneous 
machine states or feeding raw materials. 

2.3 Data-Driven Analytics in Manufacturing 
Manufacturing systems in Industry 4.0 generate a variety of 
data from interconnected system components. In manufactur-
ing systems, data are continuously generated in the form of sig-
nal/information streams (including machine and material state data) 
of manual interaction data that are entered by operators [35, 43]. 
The representative standard data collected in smart factories are 
obtained from a programmable logic controller (PLC), which is 
frequently used to verify and control parts in networked manu-
facturing systems. Passively collected PLC data can capture the 
states of machines and materials, as well as the events or errors that 
occur during the manufacturing process. Factory workers inter-
vene in manufacturing processes via the HMI in a semi-automated 
machine, which translates the actions and decisions of workers into 
PLC commands. As such, the data that are collected on the overall 
manufacturing situation can be used as a newfound modality for 
interaction modeling. PLC data enable researchers to uncover new 
associations, factors, and patterns by aggregating and analyzing 
the data so that knowledge can be generated for decision support, 
detecting anomalies, and optimizing prediction models to support 
key performance indicators (KPIs) [43]. One important challenge 
for manufacturing systems is the analysis of this massive amount of 
data, which potentially contain valuable information that is useful 
for several purposes, such as knowledge generation, KPI optimiza-
tion, diagnosis, prediction, and feedback for design or decision 
support [43]. According to Yin et al. [62], the primary purpose of 
data analysis is to achieve fault-free and cost-efcient execution of 
a process while realizing the desired level of performance. Nasser 
and Tariq [45] argued that the critical challenges are (1) integrating 
and aggregating data types (e.g., machine state and human-machine 
interaction data) and (2) the extraction and cleaning of information 
through the extraction of correct data, and the assembly thereof 
into a suitable structure for data analysis. 

Prior studies on HCI have mainly focused on monitoring worker 
activity in factory settings using wearable sensors. For example, 
Maekawa et al. [39] proposed an unobtrusive and automatic mea-
surement method for estimating assembly lead time (i.e., the dura-
tion of a worker’s operation) using a wrist-worn accelerometer to 
manage and improve the productivity of a line production system. 
Similarly, Qingxin et al. [47] presented a method for recognizing the 
assembly work of operators (i.e., starting and ending times of each 
operation) using data captured by wrist-worn acceleration sensors. 
To the best of our knowledge, low-level machine state data (e.g., 
from programmable logic controllers) have mainly been used for 
computer security [64] and machine fault detection [38] (e.g., detect-
ing malicious code injection or enabling automatic safety vetting) 
to date. Similar to worker activity monitoring, such machine data 
analysis merely focuses on recognizing the condition of a machine, 
without further exploration of human-machine interaction aspects. 
As stated previously, vast amounts of data can be accumulated from 
semi-automated machines, and it is of utmost importance to ofer 

real-time data analysis and modeling to assist in human-decision 
making or interaction guidance in semi-automated manufacturing 
settings (e.g., what types of user interactions infuence the work 
productivity?) [49, 66]. 

3 OVERVIEW OF AN AUTOMATED ASSEMBLY 
MACHINE AND MODELING 
METHODOLOGY 

3.1 Overview of the Tire Building Machine 
We used the data collected from a tire building machine, which is 
considered as a representative semi-automated system. A tire build-
ing machine is an elaborate assembly machine that consists of eight 
automated sub-parts and requires operator-machine interactions, 
such as material cartridge replacement and error handling. To pro-
vide a deeper understanding of the context of the work process, we 
introduce the basic operations of a tire building machine, including 
its HMI. 

Tire building machines assemble various materials made of rub-
ber and textiles to produce complete tire products. The machines 
run two tasks in parallel in two separate parts; The frst is the inner 
drum that assembles the inner parts of the tire, and the second is 
the outer drum that assembles the outer parts of tire. In addition, the 
machine consists of hundreds of mechanical parts for winding and 
assembling the materials, and the material for the next tire is fed 
right after the previous tire fnishes the frst step process. Thus, the 
machine-generated data from the tire building machine includes a 
complicated history of multiple processes and multiple tires. 

The tire building machine contains an HMI that visualizes the 
process conditions and data to support the real-time monitoring of 
the machine states. An HMI screen includes touchable elements that 
enable operators to manipulate the parameters for error prevention 
and resolution as illustrated in Figure 1. For example, operators can 
adjust the values of the parameters, such as the pressure or speed 
that is applied in a particular process. Moreover, the HMI visualizes 
the trends of the material data, such as the length or weight of the 
product in progress, so that operators can monitor the data and 
have a reference for making appropriate troubleshooting decisions. 

Tire building machine requires an extremely small margin of 
error because of safety concerns. So, the machine stops frequently 
and demands human intervention to maintain performance such as 
throughput and the quality of products. However, there are multiple 
ways to resolve troubles due to the complexity of the machine’s 
operation. In other words, there is a lack of standardized methods 
for troubleshooting. They rely on their background knowledge and 
work experience to solve problems, so the work performance varies 
signifcantly depending on their decisions. Therefore, identifying 
operators’ behaviors (e.g., operator intervention in the machine) 
is a prerequisite for improving individual operators’ performance 
and further improving the productivity of an assembly line. 

3.2 Data-Driven Performance Model 
Methodology Overview 

Figure 2 presents the data analysis methodology for the perfor-
mance modeling in our study. Each step indicates the fve stages of 
the methodology. For the sake of illustration, we used an enterprise 
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Figure 2: Data analysis methodology. (a) The data acquisition system of the tire building machine follows the ISA-95 standard 
that comprises sensors and signals, programmable logic controller (PLC), human-machine interface (HMI), and manufacturing 
execution system (MES) (b) We extracted four kinds of machine-generated data and integrated it. Then we fltered the missing 
data period (c) We defned contexts that help us understand the situation of operator-HMI interaction (d) We devised 14 
factors that can quantify operator-machine interaction, environment, and working performance (e) We used multilevel linear 
regression model to determine the efect of operator-machine interaction and environment on performance 

hierarchy from ISA-95 [4], which is an international standard for 
developing automated systems. As in Figure 2.a, the sensors in the 
building machine at level 0 sends signals to the programmable logic 
controller (PLC) interface at level 1. The data acquisition system at 
level 2 collects the data from the PLC operations and enables data 
visualization via the HMI. Thereafter, the collected data are for-
warded to the designated manufacturing execution system (MES) 
servers at level 3. 

Then, we extracted four types of data from the MES server (Fig-
ure 2.b): (1) the operator-HMI interaction data, which are collected 
whenever operators manipulate the parameters for error preven-
tion or troubleshooting; (2) the product information data, which 
are collected when a tire is completed; (3) the production manage-
ment system (PMS) data, which are collected when each step of tire 
production is performed; and (4) the trouble alarm data, which are 
collected every time the machine encounters trouble. 

Subsequently, based on the extracted data, the four data types are 
integrated based on the timestamp. After preprocessing, we defned 
contexts that helped us to understand the situation of production 
based on relevant domain knowledge in the data contextualization 
stage (Figure 2.c). For gathering and organizing the domain knowl-
edge, we cooperated with four experts who have worked for the 
tire manufacturing company for 15 years in average. As a result, 
we extracted the temporal, machine state, trouble, and environmen-
tal contexts from the data which will be explained in section 4.2. 
Using the contextualized data, we devised 13 factors to quantify the 
operator-HMI interaction (six factors), environment (four factors), 
and working performance (three factors) as indicated in Figure 2.d. 
We performed multilevel linear regression to determine the efect 
of operator-machine interaction and environment on performance 
in the modeling stage (Figure 2.e). 

4 DATA ACQUISITION AND 
CONTEXTUALIZATION 

We present the data acquisition system for the tire building machine 
and the types of data that were collected. Furthermore, we introduce 
the fve types of contexts that were extracted from the dataset. 

4.1 Data Acquisition and Integration 
Figure 2.a and Figure 2.b depict the process by which the data ac-
quisition system acquires the machine state and human-machine 
interaction data. Four types of data are stored and extracted from 
the servers: (1) operator-HMI interaction data, (2) product informa-
tion data, (3) process step information data, and (4) trouble alarm 
data. The tire company had been collecting and using data gener-
ated by the machine for evaluating and improving the productivity 
of tire manufacturing, as well as optimizing their semi-automated 
manufacturing machines. As part of the funded research project 
from the tire company, we received a pseudonymized dataset for 
privacy and security reasons, and Section 3 Special Cases Concern-
ing Pseudonymous Data of Personal Information Protection Act in 
Korea obviates the need of receiving informed consent regarding 
sharing a pseudonymized dataset. The company’s manufacturing 
department explained to the operators the purpose of data collec-
tion and research goals. Since the dataset did not include personally 
identifable information, this research was exempted from the IRB 
review. 

4.1.1 Operator-HMI Interaction Data. When a problem occurs in a 
machine, the machine sends a trouble alarm to the operator through 
the HMI. This process resembles the situation where an automated 
driving system asks the driver to take over when the system en-
counters a tricky situation. Then, the operator check the trouble 
alarm message through the HMI. The operators can subsequently 
change the production settings by manipulating specifc manufac-
turing parameters within the allowable ranges. The HMI data that 
we collected includes the timestamp, parameter names, upper and 
lower bounds of each parameter, and modifcation history of the 
manufacturing parameter values (e.g., values before and after the 
change). 

4.1.2 Product Information Data. Various products can be produced 
in a factory using the same machine. The types of problems and 
methods for dealing with the problems may vary depending on the 
product types being manufactured. Therefore, product information 
is required to contextualize the situation or background in which 
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the operator intervenes. For example, in this study, the tire-building 
machines produced tires of various sizes and thicknesses. The prod-
uct information data contains information on each tire, such as 
the unique bar code, tire specifcations, standard weight, measured 
weight, working group, and tire production start and end times. 

4.1.3 Production Management System (PMS) Data. The PMS is a 
very basic data in process management that includes the temporal 
context. Typically, each production step follows a predetermined 
process sequence consecutively. The tire assembly process consists 
of 27 steps that involve the assembly of the inner and outer drums. 
The PMS data records the timestamp for each step along with the 
process name. Every time a particular step starts and ends, the 
name of the step along with the start and end times are recorded. 
Furthermore, the operator name, working group, and specifcation 
of the tire are attached to the step information. Pseudonymized 
data from the company were used for analysis in order to protect 
the privacy of the operators and the security of the company. 

4.1.4 Trouble Alarm Data. When a critical problem occurs, the 
machine stops and requests the operator to take over the task. In 
certain cases, the machine notifes the operator that intervention 
is required by sending a trouble alarm message. Then, the oper-
ator solves the problem based on the trouble alarm message by 
manipulating the parameter of the HMI. As such, a trouble alarm 
history aids in classifying the circumstances in which intervention 
is required. The trouble alarm data that we collected includes the 
timestamp, types, alarm duration, and priority of the alarms. 

4.1.5 Data Integration. We integrated the four data (operator-HMI 
interaction, product information, PMS, and trouble alarm data) 
based on the timestamps. We unifed all time units into millisecond 
units. Unifed timestamps enable the integrated analysis of relevant 
events by simultaneously referring to diferent data sources. For 
example, it is possible to determine which operator worked during 
which work shift, which production steps were afected, and which 
HMI parameters were manipulated for a given problem or alarm. 

Because the data in this study were collected in the wild, there 
were missing data collection periods; there were 30 days of missing 
for trouble alarm data, 54 days of missing for product information 
data, 47 days of missing for operator-HMI interaction data, and 65 
days of missing for product management system data. When some 
or all four types of data were not collected during the working 
shift of one operator, possibly owing to a long-term breakdown of 
a manufacturing machine, or database problems or server outages. 
Unfortunately, if one data contains a missing value at a certain pe-
riod, we cannot fully understand the circumstances at that period, 
even if other data were collected. For this reason, we discarded 
the periods with missing data. As a result, 68 out of 180 days were 
used for further data analysis. Additionally, among 12 operators, 
we exclude 4 operators who temporarily worked only once or twice 
over the six months. As shown later, the remaining data are still 
sufcient to identify an operator’s behavior and working context. 
During the remaining periods, operators manipulated 252 parame-
ters 44,405 times, 596 trouble alarms occurred 1,274,034 times, and 
57,141 tires were produced. 

4.2 Data Contextualization 
Subsequently, the raw data were processed for contextualization 
(i.e., labeling or categorizing raw data for semantic fltering) by 
incorporating relevant domain knowledge. Contextualization can 
be used to model the user behavior in an interaction situation [22] 
by linking the output from users to their surrounding circum-
stances [58]. The context describes the features of the environment 
within which a human performs a task [17]. Moreover, the con-
textualization of data is essential in terms of semantic analysis to 
provide valuable inputs for analyzing manufacturing data [21]. 

We built metadata for data contextualization by collaborating 
with four domain experts from the tire manufacturing company. 
The raw data obtained from the MES server contains a large amount 
of data, but the raw data itself does not provide useful information. 
To extract valid knowledge from the raw data, it is necessary to 
know which event (e.g., HMI manipulations and alarm events) oc-
curred in which contexts (i.e., machine parts, process steps). There-
fore, we created metadata that enables semantically stitching various 
data beyond simply stitching based on timestamps. We considered 
the machine parts (as a spatial connection) and the manufactur-
ing process (as a temporal connection) for semantic stitching. We 
labeled each event, such as HMI manipulations and alarm events, 
with the relevant machine parts and the manufacturing processes. 
In addition, we organized the key elements of the production, in-
cluding shift, cycle, and machine state. The metadata helped us to 
contextualize the operator-machine interaction data in terms of the 
temporal domain, machine state, trouble events, and environmental 
contexts. 

4.2.1 Classifying of Temporal Context. Shift-working systems are 
common in the manufacturing industry; the operators repeat mul-
tiple production cycles during each shift. More specifcally, various 
events such as alarms or HMI parameter manipulations occur dur-
ing one assembly cycle. The events are combined to form a cycle 
and the cycles are combined to form a shift. As such, the temporal 
context can be divided into several levels according to the length 
of time, thus the extracted contexts may difer depending on the 
temporal context. In this study, we classifed the temporal contexts 
into three levels: shift, cycle, and event. 

The data that we collected for this study included work his-
tory from February to July 2021. During this period, the operators 
worked for 8 h per shift in a three-shift working system. We defned 
the cycle as the time interval for assembling a tire. We defned the 
initial step in which the materials are fed into the tire building 
machine as the start of the cycle, and the fnal step in which the tire 
is discharged from the machine as the end of the cycle. According 
to our data analysis, the average time for one cycle was 79.15 s. 
Finally, as shown in Figure 3, the smallest unit of the temporal 
context is the event-level context. We considered the specifc time 
of HMI manipulation or alarm occurrence as discrete events. 

4.2.2 Defining Machine State and Condition. Automated machines 
assemble products automatically without requiring human interven-
tion unless problems arise. However, the machine will be stopped if 
a problem occurs, possibly owing to machine faults (e.g., sensing or 
mechanical errors) or material issues (e.g., unqualifed sizes). The 
machine can resume automation after the operator implements 
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Figure 3: Context extraction: Classifying temporal context and defning machine state. The temporal context is divided into 
shift (the period an operator works once), cycle (the period for assembling a tire), and event (such as an HMI manipulation 
or trouble alarm). The machine state is classifed into the normal state (the machine is running automatically), trouble state 
(the machine is stopped owing to problems), and paused state (the machine is paused for reasons such as material cartridge 
replacement) 

an appropriate action for the problem that corresponds to human 
intervention. Based on the collected data, we divided the state of 
the tire building machine into three categories: 1) the normal state 
(in which the process is running automatically); 2) the trouble state 
(in which the machine is stopped owing to problems); and 3) the 
paused state (in which the machine is temporarily paused for rea-
sons such as material cartridge replacement, which are unrelated 
to the problems) as in Figure 3. Therefore, we used the alarm data 
to classify the machine state. The trouble state time was defned as 
the time from the alarm start until the alarm was removed from the 
HMI screen. The paused state was defned according to the PMS 
data that contains equipment repair and pause history. 

4.2.3 Matching of Alarm Events to HMI Parameter Manipulation 
Events. The operator performs troubleshooting when an alarm oc-
curs. For example, as illustrated in Figure 4, the operator manip-
ulates the HMI parameters to solve the problem. However, it is 
difcult to infer which alarm the operator is targeting. This is par-
ticularly challenging when alarms and parameter manipulations 
occur continuously over a short period. So, we matched the alarm 
records and HMI manipulation records based on the metadata. 

For matching, we labeled the related machine parts (e.g., inner 
drum or outer drum) to the HMI parameter manipulation log based 
on the metadata. Furthermore, we assumed that the operator will 
act within the same cycle if an alarm occurs. Therefore, we matched 
the alarm event to the HMI parameter manipulation event in the 
case of that: 1) the alarm event and the HMI manipulation event 
take place within the same cycle; 2) the HMI manipulation event 
happens after the alarm event; 3) and the relevant machine parts of 
each event are identical. 

4.2.4 Categorizing Properties of Each Event. Operators intervene 
in automated manufacturing processes for various purposes. For 
example, operators may intervene to solve problems that occurred, 
or prevent them prior to occurrence. We classifed the purpose 
of each HMI manipulation event based on the matching result to 
understand the purpose of the operator intervention. As in the 

Figure 4, we classifed each HMI manipulation action as either reac-
tive manipulation (e.g., operators manipulate HMI parameters after 
trouble alarms occur) or proactive manipulation (e.g., operators 
manipulate HMI parameters in advance to prevent the occurrence 
of problems). Moreover, actions that did not match any alarm with 
unknown purposes were classifed as unidentifed actions. 

4.2.5 Categorizing Working Environment. We also categorized the 
working environment context not related to the machine state (e.g., 
seasons and shifts). We identifed the seasons and working hours 
from the data timestamps. We classifed the six-month data into 
two seasons, namely spring and summer. Given that the duration 
of a shift was 8 hours, the working hours were divided into three 
shifts: morning (6 AM to 2 PM), afternoon (2 PM to 10 PM), and 
night (10 PM to 6 PM). 

5 FACTOR EXTRACTION FOR MODEL 
BUILDING 

We considered the operator-machine interaction factors based on Li 
et al.’s work which emphasizes the importance of operator-machine 
interaction contexts for worker performance modeling [37]. We 
also considered environmental factors, which may be associated 
with the conditions of operators, manufacturing line states, or ma-
terials. We devised these factors by combining the contexts (e.g., 
the temporal context and machine state) that were introduced in 
Section 4.2. Table 1 presents the contexts that were used to produce 
each factor. Finally, we considered three performance factors to 
measure diferent performance aspects. 

5.1 Operator-Machine Interaction Factor 
HMI manipulation is a representative behavior in operator-machine 
interaction, and existing diferences between operators in handling 
troubles may afect their performance. In a semi-automated man-
ufacturing system, when a specifc problem occurs, an operator 
makes decisions and troubleshoots based on the information in 
the HMI. In a complex system, such as a tire-building machine, 
operators may have multiple solutions for troubleshooting, and 
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Figure 4: Context extraction: Matching alarm events to HMI parameter manipulation events. The gray box with bold lines 
indicates one cycle. If an HMI manipulation event occurs within the same cycle after an alarm event, and both are related to 
the same machine parts, we matched the alarm event to the HMI manipulation event. We classifed each HMI manipulation 
as reactive manipulation (manipulating an HMI after trouble alarms) or proactive manipulation (manipulating an HMI in 
advance to prevent problems) 

Table 1: Combined contexts for factor extraction. We extracted interaction, environmental, and performance factors by 
combining the contextualized information in Section 4.2 such as temporal context, machine state, matching events, event 
properties, and working environment. 

Temporal 
Context 

Machine 
State 

Matching 
Events 

Event 
Properties 

Working 
Environment 

Operator-Machine Interaction Factors 
Reactiveness to Troubleshooting • • • • 
Proactiveness to Troubleshooting • • • • 
Utilization of HMI for Troubleshooting • • 
Responsiveness to Troubleshooting • • • 
Amount of Parameter Modifcations • 
Average Number of Modifed Parameters • 
Environmental Factors 
Number of Spec Changes • • 
Number of Alarm Types • 
Working Time • • 
Working Season • • 
Performance Factors 
Trouble Alarm Reoccurring Time • • 
Cycle Time • 
Throughput • 

they may take actions based on their experience and preference, 
which could afect the manufacturing performance. In general, the 
operator-machine interaction can be modeled at diverse levels of 
detail, ranging from (1) high-level work behavior tendencies to (2) 
low-level trouble-specifc behaviors. Here, work behavior tendency 
factors describe an operator’s general tendency about how the op-
erator interacts with machines over diverse troubles (e.g., proactive 
vs. reactive trouble handling). In contrast, trouble-specifc factors 
indicate how the operator manipulates the HMI parameters for 
each specifc trouble. Since there is a trade-of between general-
izability and specialization, we mainly focused on generalizable 

factors, which are applicable to other semi-automated manufactur-
ing domains. In addition, modeling trouble-specifc factors requires 
sufcient troubleshooting cases for each alarm, but in reality, there 
are too many trouble instances in a complex system. In our case, we 
identifed 596 trouble alarm types and 252 unique modifed parame-
ters. The distribution of troubles and modifed HMI parameters are 
highly skewed and have long tails. Since there are limited samples, 
it is challenging to consider trouble-specifc factors, which may 
cause an overftting problem for the performance model. For this 
reason, this work mainly focuses on work behavior tendency as 
operator-machine interaction factors. In our work, each factor is 
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calculated by averaging the results of one shift (i.e., 8 hours) for 
one operator. 

5.1.1 Reactiveness to Troubleshooting. In Section 4.2.4 and Figure 
4, we defned an event as a reactive manipulation if operators ma-
nipulate HMI parameters after trouble alarms occur. Reactiveness 
to troubleshooting indicates the reactive tendency of an operator 
in HMI manipulation for trouble handling (i.e., troubleshooting). 
We calculated the Reactiveness to troubleshooting by dividing the 
number of reactive HMI manipulations by the total number of HMI 
manipulations for each working shift. 

5.1.2 Proactiveness to Troubleshooting. In contrast to Reactiveness 
to troubleshooting, an operator can manipulate HMI parameters in 
advance to prevent the occurrence of problems. In this case, if the 
operator appropriately manipulates the HMI in advance, the au-
tomation will be better maintained. Proactiveness to troubleshooting 
indicates the proactive tendency of an operator in HMI manipula-
tion to maintain the automation of the machine (i.e., troubleshoot-
ing before trouble). We calculated the Proactiveness to troubleshoot-
ing by dividing the number of proactive HMI manipulations by the 
total number of HMI manipulations for each working shift. 

5.1.3 Utilization of HMI for Troubleshooting. There is another op-
tion when a operator encounters the trouble alarm. It is directly 
manipulating the machine and material manually. For example, 
to solve problems related to material alignment, an operator can 
manually handle the material instead of manipulating the HMI 
parameters that control the pressure level of the machine toward 
the material. We calculated the HMI-mediated troubleshooting by di-
viding the number of HMI manipulations by the number of trouble 
alarm occurrences. 

5.1.4 Responsiveness to Troubleshooting. After the operators check 
which trouble alarms have occurred, they decide how to handle 
these problems and take appropriate action. The duration from 
trouble occurrence to troubleshooting (i.e., response time) may vary 
depending on the work experience or characteristics of the operator. 
A prompt response to trouble is closely related to the performance, 
because a typical assembly cycle requires a short response time (e.g., 
approximately 1 min). Therefore, we calculated the responsiveness 
to troubleshooting indicating how quickly operators respond to 
trouble, by calculating the time interval from the trouble alarm 
occurrence to the adjacent HMI manipulation matching the trouble 
alarm. 

5.1.5 Amount of Parameter Modifications. Operators should mod-
ify HMI parameters to proper values to handle troubles because, 
otherwise, trouble alarms occur again, stopping the machine. The 
tire building machine has many inter-connected components, and 
the tire assembly process is highly complicated. In addition, rubber, 
the primary material of tires, can shrink or stretch depending on 
the environment. Thus, it is challenging for experienced operators 
to modify parameters to appropriate values at once. Amount of 
parameter modifcations may be related to the recurrence of trou-
bles and consequently afect the work performance. We quantify 
amount of parameter modifcations by dividing amount of parameter 
modifcation by the range of upper and lower threshold for eachÍ� �� parameter: (�� = amount of parameter modifcation for �=1 �� −�� 

�th manipulation, �� , �� = upper and lower threshold of the manipu-
lated parameter in �th manipulation). After calculating the sum, we 
averaged the values during one working shift. 

5.1.6 Average Number of Modified Parameters per Action. Depend-
ing on the circumstance, operators should consider a set of HMI 
parameters rather than a single parameter for trouble handling 
due to the complexity of the tire-building process. Based on work 
experience, some operators may comprehensively modify param-
eters to solve troubles, while others may consider small sets of 
parameters or only one parameter. We investigated this aspect by 
devising the average number of modifed parameters per action factor 
that indicates how many parameters operators consider simultane-
ously for handling troubles. In order to quantify this, we defned a 
set of matched HMI manipulations (Figure 4) based on the alarm-
HMI matching method mentioned in Section 4.2.3 and counted the 
number of HMI manipulations. 

5.2 Environment Factors 
Existing studies on work performance have addressed that the work 
environment afects the operator’s performance [7, 11, 12]. By con-
sidering available data from our machine database, we considered 
the following environmental factors: (1) occurrence of resetting 
manufacturing line, (2) diversity of trouble types, (3) working time, 
and (4) working season. 

5.2.1 Number of Spec Changes. A machine may stop without trou-
ble due to resetting issue in the manufacturing line. In our study, 
changing the tire specifcation to be produced is the representative 
case of resetting the manufacturing line. Stopping a machine to 
change tire specifcations is a typical event in the manufacturing 
plan. Since stopping a machine does not mean stopping the tire 
assembly process, it does not afect the tire production cycle time. 
However, performance factors such as throughput can be afected 
because the machine can not produce tires while resetting the 
manufacturing line. We investigate the infuence of changing the 
specifcations on performance by counting the number of changes 
during working hours. 

5.2.2 Number of Alarm Types. If the types of trouble alarms are 
varied, the operator must come up with numerous solutions to 
address the alarms. Therefore, troubleshooting may be more chal-
lenging when various alarms occur sporadically than when the 
same alarm occurs repeatedly. Based on the expert’s opinion, the 
types of trouble alarms that mainly occur may vary depending 
on environmental conditions such as temperature and humidity 
because tires are made of rubber with uneven physical properties. 
We considered diversity of trouble types as an environmental factor. 

5.2.3 Working Time. Four teams of operators work in three shifts 
(i.e., morning, afternoon, and evening) for 8 h. Depending on the 
operator, there may be preferred working hours. Additionally, de-
pending on the working hours, the number of employees and the 
efectiveness of communication may difer. We check whether work 
shift time impacts the operator’s performance. 

5.2.4 Working Season. Rubber is the primary raw material for tires 
and is greatly afected by season (e.g., humidity and temperature). 
Since the state of materials causes troubles in a machine, we check 
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whether the season afects the operator’s performance. We note 
that most of the data in this study was collected during spring and 
summer. 

5.3 Performance Factors 
We aim to understand how operator-machine interaction and envi-
ronmental factors afect the operator’s performance. We considered 
three performance factors mainly used to quantify the operator’s 
performance in the previous studies [54]. Three levels of temporal 
context are considered for quantifying performance factors (i.e., 
event-level, cycle-level, and shift-level) as follows: (1) Interval be-
tween trouble recurrence for event-level, (2) production cycle time 
for cycle-level, and (3) production throughput for shift-level. 

5.3.1 Trouble Alarm Reoccurring Time. It is essential for operators 
to properly manipulate the HMI parameters so that the same trouble 
alarm does not occur again. We calculated the average time interval 
between trouble recurrence, which indicates how long the same 
trouble did not occur after an operator solved the trouble. A longer 
time means that the same trouble did not occur for a long time. 
We assumed it is related to the fact that an operator appropriately 
modifed the HMI parameters, and the automation of the machine 
was maintained well. We calculated this factor as follows: 1 ×� Í� 

�=1 �� where �=the number of alarm events that the same alarm 
has recurred during the work shift, �� =the time interval until the 
same type of alarm as the �th alarm occurs again. 

5.3.2 Cycle Time. The time it takes to assemble a tire is the cycle 
time. If a machine stops due to trouble, the length of the cycle time 
is afected. As a performance metric, we defned the production 
cycle time by averaging cycle time during one work shift (8 h). The 
metric is devised from average fow time [3] which is mainly used 
in manufacturing studies, which means the average time a unit 
product is produced. 

5.3.3 Throughput. When the machine is stopped due to trouble, 
the number of tires produced during a given time (i.e., throughput) 
is reduced. We considered the throughput as a performance factor 
of how many tires an operator produced during a work shift (8 h). 

6 DATA ANALYSIS 
First, we determined whether there was a variance in the perfor-
mance, such as the throughput, production cycle time, and time 
interval between trouble recurrences. The operators produced an 
average of 312.33 tires over 8 h (SD = 53.83), and the average cycle 
time taken for producing one tire was 79.15 s (SD = 12.47). Fur-
thermore, the average trouble alarm recurrence time was 611.29 s 
(SD = 128.31). We confrmed that the throughput was not constant 
despite the use of an automated machine. 

6.1 Multilevel Regression Analysis 
We collected data containing the work histories during a shift of 8 
operators. Thus, the data can be clustered into individual operators, 
and there may be individual diferences between the operators. 
Multilevel models are mainly used when data can be aggregated 
into higher-level groups (i.e., operators), and there is heterogeneity 
between groups. In general, the multilevel models allow us to ana-
lyze the relationship between dependent and independent variables 

without the efects caused by the diferences between groups, also 
known as random efects. In this study, we set the performance fac-
tors as dependent variables. Interaction and environmental factors 
(i.e., fxed efects) and operators (i.e., random efects) were set as 
independent variables. For the mixed-efects models, marginal �2 

indicates variance explained by fxed factors, and conditional �2 

indicates variance explained by both fxed and random factors [44]. 

6.2 Production Performance Model 
The results demonstrate that interaction factors have considerable 
efects on performance factors, and the performance can be pre-
dicted more efectively when considering both the interaction and 
environmental factors. Interestingly, in light of the fact that the 
conditional �2 was higher than the marginal �2 for all dependent 
variables, there were signifcant individual diferences in the work-
related behavior among the operators (Table 2). 

6.2.1 Trouble Alarm Reoccurring Time. The time interval between 
trouble recurrence measures the interval until the same alarm oc-
curs. We expected that the recurrence time would be longer if the 
problem was properly addressed appropriately by an operator. The 
marginal �2 was 0.376, and the conditional �2 was 0.502, which 
means that a higher �2 value was obtained when considering the in-
dividual diferences among the operators. Moreover, we confrmed 
that proactiveness is a signifcant interaction factor for the alarm 
recurrence time. As the proactiveness increased by 1%, the alarm re-
currence time increased by 1.5 s. No signifcant factors were related 
to the HMI manipulation. However, environmental factors such as 
the number of alarm types, season, and working time afected the 
alarm recurrence time. The alarm recurrence time was longer when 
more alarm types occurred. Moreover, the alarm recurrence time 
was longer during the day than at night, and shorter in summer 
than in spring. 

6.2.2 Cycle Time. The average production cycle time is the aver-
age time that is required to assemble a tire. As efcient production 
is important in manufacturing, the completion of the same process 
within a short cycle is considered as good performance. Therefore, 
we assumed that a shorter average production cycle time indicated 
better performance. The marginal �2 was 0.253, the conditional 
�2 was 0.356, and three factors exhibited a signifcant correlation 
with average cycle time. Among the interaction factors, reactive-
ness to troubleshooting was signifcant. When the reactiveness to 
troubleshooting was high, the cycle time was negatively afected. 
The number of alarm types and working season were signifcant 
among the environmental factors. The cycle time was longer when 
various alarm types occurred and shorter in spring than in summer. 

6.2.3 Throughput. The throughput refers to the number of tires 
that is produced in one shift, which is a measure of production 
efciency. According to the throughput results, the marginal �2 

was 0.314 and the conditional �2 was 0.500. Among the interaction 
factors, the reactiveness to troubleshooting and amount of param-
eter manipulation were signifcant. When both factors increased, 
the throughput was negatively efected. The number of alarm types 
and specifcation change factors were signifcant among the en-
vironmental factors. The throughput was poor if the alarm types 
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Table 2: Results of multilevel regression on the operator-related behavior. Operator-machine interaction factors and environ-
mental factors are set as independent variables (fxed efects), and operators are set as dependent variables (random efects) 
(*p<0.05, **p<0.01, ***p<0.001) 

Trouble Alarm 
Reoccurring Time 

Cycle Time Throughput 

� p-value � p-value � p-value 
Modeling with Interaction Factors and Environmental Factors 
Operator-Machine Interaction Factor 

Reactiveness -55.43 0.507 25.26 
Proactiveness 150.12 0.026 * 12.07 
Utilization of HMI 8.13 0.812 3.99 
Responsiveness -1.01 0.531 0.20 
Amount of parameter modifcations 156.29 0.434 30.28 
Avg num of modifed parameters -8.60 0.427 -2.20 

0.008 
0.115 
0.293 
0.278 
0.179 
0.075 

** 

. 

-82.97 
-51.97 
-7.30 
-0.78 

-283.28 
6.13 

0.035 
0.099 
0.654 
0.305 
0.003 
0.227 

* 
. 

** 

Environmental Factor 
Machine-related 
Number of spec changes 13.23 0.181 1.30 
Number of alarm types 7.88 0.000 *** 0.45 
Working environment 
Job rotations (afternoon) 41.40 0.014 * 3.70 
Job rotations (morning) 29.90 0.074 0.83 
Job rotations (evening) - - -
Working seasons (spring) -78.34 0.000 *** -8.25 
Working seasons (summer) - - -

0.245 
0.000 

0.052 
0.660 
-
0.000 
-

*** 

*** 

-10.10 
-2.87 

-10.16 
-3.57 
-
26.02 
-

0.030 
0.000 

0.192 
0.648 
-
0.000 
-

* 
*** 

*** 

Marginal �2 0.376 0.253 
Conditional �2 0.502 0.356 

0.314 
0.500 

varied and the specifcation change was frequent. Furthermore, the 
throughput was better in spring than in summer. 

6.2.4 Relationship between Performance and Interaction Factors. 
In addition to the multilevel regression analysis, we further inves-
tigated the interaction factors that signifcantly afect the work 
performance factors (e.g., proactiveness afects trouble reoccurring 
time, reactiveness afects cycle time, amount of parameter mod-
ifcations, and reactiveness afect throughput). Through this, we 
attempted to determine whether the performance of the operator 
afects the relationship between the independent variable and the 
dependent variable. Of the eight participants, we selected the top 
four operators as the high-performance group, and another four 
operators as the low-performance group. 

In the two of four cases (Figure 5.a, Figure 5.b), high- and low-
performance groups showed similar relationships between operator 
interaction factors and work performance factors. As the number 
of proactive manipulations increased, the alarm reoccurring time 
increased in both groups (Figure 5.a), and as amount of parameter 
modifcation increased, the throughput decreased (Figure 5.b). How-
ever, there was a case that shows the opposite tendency between 
high- and low-performance groups (Figure 5.d). In the case of the 
high-performance group, the throughput increased as the ratio of 

reactive manipulation increased, but the low-performance group 
showed reversed results. 

6.2.5 Correlation between Performance Factors. We selected three 
representative performance factors for diferent granularity (mi-
croscopic to macroscopic) of temporal levels; event-level for trou-
ble reoccurring time, cycle-level for cycle time, and shift-level for 
throughput. These performance factors were correlated as follows: 
The Pearson correlation coefcient was 0.45 between cycle time 
and trouble recurrence time, -0.57 between throughput and trouble 
alarm recurrence time, and -0.83 between throughput and cycle 
time. We found that the independent variables afecting each factor 
difered. For example, although there was a high correlation be-
tween cycle time and throughput, the spec change factor afected 
only the throughput (Table 2). The spec changes events occurred 
between consequent cycles (e.g., from the end of the previous cycle 
to the start of the next cycle). Therefore, if spec changes occurred 
during a shift, the throughput was decreased, but the cycle time 
was not afected. Furthermore, the operator-HMI interaction factors 
afecting each level of performance were diferent. This indicates 
that some interaction factors are important to observe the micro-
scopic productivity like trouble alarm reoccurring time, however, 
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Figure 5: Relationships between three performance factors and signifcant interaction factors for each. High- and low-
performance groups showed similar (a, b) or opposite (d) relationships between operator interaction factors and work perfor-
mance factors. The light-colored area around line graphs indicates 95% confdence bands 

some other factors were important in macroscopic productivity like 
throughput. 

7 DISCUSSION 
This study proposed a general data-analysis methodology of data 
contextualization for behavior modeling by extracting diverse 
performance-contributing factors from real-world machine data. 
By integrating data from multiple sources, we could contextualize 
the machine-generated data and fgure out that the work perfor-
mance varies depending on the operators’ behavior patterns. Below, 
we frst discuss the potential of fne-grained, data-driven operator 
behavior modeling methodology and its generalizability with exten-
sibility. Then we discuss the operator performance variation from 
modeling results and its utilization as valuable assets to understand 
their behaviors. Lastly, we discuss potential ethical concerns with 
machine data-driven operator modeling. Based on our fndings, 
we explore the design implications of context-aware HMI with 
machine-generated data analytics. The following discussion of our 
work can contribute to the growing HCI works of human behavior 
modeling, especially in industrial domains. 

7.1 Performance Modeling with Multiple 
Streams of Machine-Generated Data 

7.1.1 Data Contextualization for Fine-Grained Qantitative Anal-
ysis. We answered the two research questions by analyzing the 
operator’s behavior and performance based on our methodology. 
To answer the frst research question, we modeled operators’ work-
ing behavior and performance using real-world machine-generated 
data by data contextualization. Previous studies have proposed 
theoretical models that conceptually introduce factors that afect 
performance such as the operator’s individual background [6], ex-
ternal environment [41], and interaction related factors [37, 42]. 
However, there has been a lack of real-world case studies despite the 
maturity of the concept of Industry 4.0. Furthermore, existing stud-
ies have not attempted fne-grained analysis on machine-generated 
data at the event, batch, and shift-level that can ofer supporting 
evidence for optimizing human-machine interaction. In this study, 
we bridged the gap by employing real-world machine-generated 
data as a new modality and proposing an analysis methodology that 
enables quantitative measurement of the working behavior, work-
ing environment, and performance. Moreover, this approach has 
the advantage of not burdening factory operators, and researchers 

can collect data in a non-intrusive manner. As Nasser and Tariz em-
phasized [45], the critical challenge in the process was integrating 
and aggregating various data and extracting valid information from 
relevant data. We collaborated with experts who have worked for a 
tire company to overcome the challenges and understand the mean-
ing of data from HMI. Refecting on their domain knowledge, we 
built metadata to understand how manufacturing contexts are re-
fected in machine-generated data, which is critical to the proposed 
data analysis methodology. Based on the metadata, we aggregated 
the multiple streams of machine-generated data and performed 
data contextualization by combining the raw data for devising valid 
factors. Through this study, we demonstrated the potential for data-
driven, quantitative operator behavior and performance modeling 
in the industrial domain. 

This research can be applied to other situations that employ the 
semi-automated manufacturing system and can be extended with 
applicable contextual factors. For generalizability, we utilized the 
dataset that follows ISA-95 standards [4], which is a commonly-
used international standard to develop automated systems between 
enterprise and control systems that contain PLC, MES, and HMI 
data. Similarly, this methodology can be generalized to other semi-
automated manufacturing systems that follow ISA-95 standards. 
For example, it can be applied to manufacturing processes such as 
semiconductor or automobile assembly, where systems automati-
cally execute processes and require human operators intermittently 
for troubleshooting. The extracted contexts comprising temporal 
context, machine state, related events matching, event properties, 
and working environment are terms that can be derived from a 
troubleshooting situation in the general manufacturing process. 
Moreover, we suggest the extensibility of operator behavior and 
performance modeling by introducing a fundamental methodology 
that can explain the human-machine collaborative work process. 
This methodology can be extended to consider other contextual 
factors such as individual and organizational factors as in existing 
theoretical frameworks [7, 37, 66]. The extension allows a fne-
grained understanding of human-machine interactions. 

7.1.2 Performance Variation Depending on Behavior and Environ-
mental Context. Based on our analysis method, we revealed that 
the performance variation can be explained by the human-machine 
interaction and work environment factors. The existing theoreti-
cal and conceptual models could not explain how each factor (e.g., 
environments and interaction factors) infuences performance in 



Charlie and the Semi-Automated Factory CHI ’23, April 23–28, 2023, Hamburg, Germany 

a quantifable manner. We utilized numerical and categorical real-
world data to quantitatively analyze the relationship between per-
formance and its related factors. The results clarifed which behav-
ioral patterns are important to improve each performance factor. 
For example, the operator’s proactiveness in the human-machine 
interaction context is important to prevent reoccurring of alarms, 
while reactiveness is crucial to shortening the production time. The 
extracted contexts and factors can help to discover phenomena 
that are difcult to notice without data-driven analysis. In addition, 
we confrmed that there is a between-person variation as well as a 
within-person variation in performance by comparing marginal �2 

and conditional �2. The fact that the conditional �2 was higher than 
the marginal �2 in all cases showed individual performance difer-
ences among operators. In the interview, the experts who have been 
working for the tire company mentioned that the between-person 
variation could be caused by considerable individual diferences in 
decision-making between experts with rich experience and novices 
with less experience. 

As such, machine-generated data contains detailed work histo-
ries of how operators interacted with machines and which interac-
tion led to better performance. Thus, we claim that the machine-
generated data can be employed as a valuable asset that enables us 
to understand the operator’s behavior. The results of this study can 
be utilized as an objective reference to build an efcient manufac-
turing process in the industry domain. For example, know-how that 
had to be grasped subjectively and empirically based on the experi-
ence of experts can be objectively acquired and verifed through a 
data-driven approach. Also, in terms of manpower management, 
managers can use our methodology to schedule working shifts, 
decide roles, or fgure out the working characteristics of each op-
erator. Furthermore, our study showed that the human role is still 
crucial even in semi-automated systems, where many processes are 
automated. Although the machine used in our study is a supervisory 
control [19] in which the system is involved in overall processes 
and humans intervene only when necessary, human behavior was 
still signifcant in the performance of the collaboration. Many auto-
mated systems, such as driving, manufacturing, home and medical 
appliances, have supervisory controls that require user intervention 
in the middle of the automated state. As semi-automated systems 
are common around us, it is essential to understand fne-grained hu-
man behavior in order to optimize the interaction between humans 
and machines and increase the efciency of collaboration. When 
the system frequently requires human intervention, guidelines or 
standard operating practices for human intervention are necessary 
to maintain performance such as productivity, quality, and safety 
at a stable level. 

7.2 Implications on the Design of 
Context-Aware HMI with Machine Data 
Analytics 

Context-specifc guidelines are necessary to deal with performance 
(within- and between-person) variations, so that an appropriate 
solution can be provided for each type of situation. Guidelines that 
ofer suitable actions can be learned from the accumulated data and 
automatically delivered to the operators via context-aware feed-
back through HMI interfaces. As mentioned previously, there is 

a frequent working sequence when an operator interacts with a 
machine in a given situation. The mining of interaction sequences 
can aid in determining the best-performing representative inter-
action patterns [16]. Furthermore, the operator’s behavior can be 
monitored and tracked in real-time to support the decision-making 
process. A context-aware HMI will be able to recommend the most 
appropriate action for troubleshooting. Rich machine data enables 
the current contexts (machine, material, and human) to be tracked 
accurately and users to be guided appropriately. 

The machine data can enable data-driven personal refection on 
behaviors, making it possible to analyze the behavior pattern of 
an operator and compare it with that of other operators. These 
data help operators to self-refect on their performance (e.g., by 
reviewing poorly performing work sequences). Furthermore, ma-
chine data analyses can be used for data-driven personas [40] in 
manufacturing settings. The concept of the persona, which was 
presented by Cooper [15] explains the behaviors, goals, and needs 
of the user [65]. A data-driven persona is an advanced form of per-
sona that incorporates large-scale user data using computational 
methods [28]. McGinn et al. [40] stated that data-driven personas 
require contextualized behavioral variables to be used for intelligent 
interface design. 

7.3 Potential Ethical Concerns with Machine 
Data Driven Productivity Monitoring 

Monitoring user behavior in a workspace has been tradition-
ally carried out to improve productivity in manufacturing. In the 
early 20th century, Taylor attempted to optimize an overall man-
ufacturing process by observing operator behavior in detail and 
shortening sub-task process times [53]. Toward this goal, Gilbreth 
pioneered a motion analysis method that aims to reduce unneces-
sary motion for work efciency [20]. Recent technological advances 
in mobile, wearable, and Internet of Things enabled fne-grained 
behavior monitoring of operators by observing various types of 
sensor and machine data, which brought forth the concept of digital 
Taylorism [2, 27, 46], a labor management practice involving “new 
modes of the measurement, standardization, and quantifcation, 
decomposition, and surveillance of labor” as in algorithmic and 
data-driven management [23, 36]. Despite the potential for produc-
tivity enhancement, data-driven operator modeling and its use for 
management may raise potential ethical issues. 

First of all, being under surveillance can be stressful for an oper-
ator just by its own nature. Surveillance leads to operators’ psycho-
social risks such as reduced job satisfaction and increased stress and 
counterproductive work behavior [8]. Furthermore, surveillance 
will reduce operators’ trust in supervisors and management particu-
larly when the purpose, data items, and period of data collection are 
not transparently shared with operators [51]. In this work, we high-
lighted that analyzing machine-generated data enables fne-grained 
user behavior and performance modeling, as well as data-driven 
behavior optimization (or behavior intervention). Machine data 
stores all interactions and work histories between operators and 
machines that could not be observed using conventional wearables 
or cameras. The data facilitates a detailed understanding of perfor-
mance, human errors, and work-related behavioral characteristics. 
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Further, data-driven behavior optimization is feasible by system-
atically intervening user behavior for performance improvement 
(e.g., by preempting behavioral violations [61]). This kind of digital 
Taylorism will pervade semi-autonomous system design, and it 
may negatively infuence how operators perceive their role in the 
manufacturing process. Behavior quantifcation and intervention 
by the intelligent system will cause operators to view themselves 
as mechanical components of a large, complex, intelligent machine. 
When working within such intelligent machines, operators may 
experience losing a sense of control in this dehumanized workplace, 
negatively afecting employees’ feelings of autonomy on the job, 
self-management, and motivation in the long term. 

In the new era of digital Taylorism where machine data, as well 
as other types of monitoring technologies (including surveillance 
cameras and wearable trackers), are used for behavior quantif-
cation and intervention, employers should be aware of trade-ofs 
between productivity monitoring and psychological well-being by 
carefully investigating ethical and privacy concerns [1]. It is of the 
utmost importance to ensure that employers must establish the 
legality of any data to be collected on monitoring targets such as 
data necessity and proportionality aligned with legitimate business 
interest [8]. Regarding data privacy, when conducting in-house data 
analyses, it is recommended to properly pseudonymize machine 
data. Additionally, there should be safeguards such as individual 
review of data use and organizational measures for data protec-
tion [63]. Redesigning collaborative work between humans and 
automated systems can possibly mitigate the negative side efect 
of dehumanizing algorithmic management. We can consider how 
human intelligence can assist, train, and supervise automation as a 
joint cognitive system [60] where operators use the data to resolve 
complex errors and engage in jointly devising strategies for perfor-
mance improvement. This requires a set of empowering tools that 
transparently explain decision-making processes, facilitate operator 
training, and allow customizable machine control [2, 31, 36, 60]. 

7.4 Limitations 
Analyzing machine-generated data with data contextualization 
provides an opportunity for a fne-grained understanding of the 
relationship between operators’ behavior and work performance. 
However, it is difcult to capture all manufacturing contexts with 
machine-generated data. For example, we could not observe opera-
tor behaviors when manipulating the machine or materials without 
HMI usage. Therefore, our methodology is limited in that we cannot 
capture such operator behaviors that afect manufacturing perfor-
mance but are unmediated by HMI. Using other data sources may 
allow researchers to understand operators’ behaviors more com-
prehensively. For example, wearable devices or video-recording 
using cameras can be used to monitor operators’ working behav-
iors [39, 47]. In our work, we did not consider individual operators’ 
characteristics, such as work experience, age, and level of compe-
tence, which can afect work performance. Instead, we focused on 
analyzing general interaction tendencies from machine-generated 
data, because we were more interested in how operators’ work 
behaviors are associated with their work performance than the 
individual operator’s characteristics. 

8 CONCLUSIONS 
We proposed a methodology for modeling human-machine interac-
tion and work performance using semi-automated machine data in 
manufacturing contexts. We used machine data collected from a 
tire building machine in a large tire manufacturing company as a 
case study. We demonstrated that various factors that contribute 
to work performance can be quantifed by integrating and con-
textualizing machine data from various sources. We defned and 
extracted the operator-machine interaction, environmental, and 
performance factors from the data. Our multilevel linear regression 
modeling revealed that both the interaction and environmental 
factors infuenced the performance signifcantly. Our methodology 
and modeling results highlight the possibility of using machine-
generated data as sensor data, which enables operator behaviors 
and their working environments to be understood. These fndings 
suggest new research directions for exploring machine data, such as 
mining representative interaction sequences, context-aware HMI, 
data-driven personal training, and developing data-driven personas. 
We expect that our methodology can be extended to other similar 
semi-automated manufacturing processes; thus, it serves as a new 
foundation for the construction of context-aware manufacturing 
systems using machine data. 
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