BlueTorrent: P2P content sharing with Bluetooth

Prof. Mario Gerla Network Research Lab. UCLA

1

People-2-People content sharing

- Scenarios of interest
 - Downloading newspaper, news clips, music on the way to the subway
 - 7 degrees of Separation (Columbia Univ.)
 - Proximity Advertisement
 - Listen to music Nokia-EMI
 - Advertisement WideRay
 - "Reading" billboards CBS
 - Exchanging songs, pictures, ads, movie clips
 - Social networking Nokia Sensor

Target scenario

- Airport Corridor, Subway platform
- Multiple Bluetooth Access Points
- Proximity data transfers

P2P Data transfers in Bluetooth

- Piconets
 - 1-to-1 connection for P2P
 - up to 7 slaves
- Scatternet (?)
 - Hardware Limitation
 - Some chips support only limited scatternet
 - Software Limitation
 - No specification
 - Mobility problem
 - Disconnection, Reconfiguration
- Bluetooth Overlays

Piconet (1-to-1, Peer-to-peer)

The overlay concept

- Piconet Members moves together (Group Mobility)
- Each Piconet represents a "nomadic warrior"
- Works also with single node Piconets
- Opportunistic neighbor Piconet merge => Overlay BT
- Result: Virtual Scatternet

Goal of this study

- Problem definition
 - High penetration rate of Bluetooth devices (cell phones and PDA)
 - Mobile user must go/stop/wait for full download when AP-BT transfer
 - The bandwidth of AP is limited
 - The transmission range of AP is short (10 meters)
- Goal:
 - provide an "effective" content sharing mechanism for Bluetooth users

Enter: BlueTorrent

- BlueTorrent
 - Bluetooth P2P Application
 - Sharing small size audio/video ad files (<10MB)
 - Download data from digital billboards on the street with BT-AP transfer
 - Exchange data with BT-BT transfer after receiving from AP

BlueTorrent (cont)

- New contribution:
 - P2P transfer (commercial products support only AP-BT transfer - example Bluecasting)
 - Incentive: to complete download, must help others (same as in Bit Torrent)
- Performance measures:
 - Download percentage
 - Download Finish time

BlueCasting

BlueTorrent

BlueTorrent vs Bluecasting

BlueTorrent Architecture

- BlueTorrent core components
 - Query processor
 - Data collector
 - Peer manager
- BlueTorrent user interface

Query Processor

- Query types (push/pull)
 - Only APs can "push" the index to users passing by
 - Regular users send "pull" type query to find the index info. of the interested file
- Index information
 - Unique file ID (e.g., 32bit hash)
 - Title, producer, media type
- User interface allows to send queries to neighbors
 - E.g., title: "Pirates & Caribbean" media type: avg/mpg

Data Collector/Peer Manager

- Data Collector
 - BitTorrent-style file swarming
 - A file is divided into "k" pieces
 - Procedure
 - A new connection is informed to the data collector
 - Exchange bitmap vector to find missing pieces
 - Download missing pieces
- Peer Manager
 - Run periodic inquiry procedure to find peers
 - Find the best peer to download based on connection history

Peer Discovery Procedure

- Inquiry (master) and scan (slave) pair to make a connection
 - Bluetooth was originally developed for "cable replacement"
- Inquiry discovery procedure
 - 1) A sends inquiry packet trains (window size is multiple of 1.28s)
 - 2) B receives an inquiry packet
 - 3) B backs off a random interval over [0,1023]
 - 4) B sends back an "inquiry response packet"

Peer Discovery Procedure (Cont)

- Periodic inquiry mode for P2P discovery
 - Peers randomly switch their roles to find each other
 - Periodic_Inquiry_Mode HCI function

 - *T_{w_inq}*: fixed length
 Variable length of the scan period
 - Uniform over $[T_{inq_min} T_{w_inq}, T_{inq_max} T_{w_inq}] = [T_{min}, T_{min} T_{diff}]$ The units of all parameters are multiple of 1.28s

Periodic Inquiry Mode Evaluation

- IngSim
 - Slot-level discrete time, event-driven simulation
 - Simulate a random encounter by warming up 100s
 - Simulate two nodes and measure the latency for a peer to find the other
- Parameters of interest
 - Scan period: [T_{min}, T_{min} +T_{diff}]
 Inquiry scan interval: T_{inq_scan}
 - - Default: 1.28s

 - Random back-off interval: [0,T_{max_bo}]
 Default is 1023 (640ms), but the actual value depends on chipset (vary from 0 to the default value)
- Simple relationship •
 - Scan period must be larger than the inquiry scan period: i.e., $T_{min} \ge$
 - I ing_scan Efficiency of scan period depends on how many "scans" happen during that period

Periodic Inquiry Mode Result (1)

Discovery latency with T_{max_bo} = 1023 slots (640ms)
 Efficiency of scan period is important

Periodic Inquiry Mode Result (2)

Discovery latency with T_{max_bo} = 127 slots (80ms)
 – Smaller back-off reduces the latency (5.8s □ 3.8s)

Periodic Inquiry Mode Result (3)

- Discovery latency vs. inquiry scan interval
 - Smaller scan interval greatly reduces the latency (but more energy consumption)
 - Inquiry scan interval is important for determining the latency

Periodic Inquiry Mode Evaluation Summary

- Latency depends
 - Maximum back-off size (chipset dependent)
 - Inquiry scan intervals (energy/delay tradeoff)
- P2P discovery is "expensive"!!

~6s on avg. (based on spec.)

- ~4s on avg. (by halving the inquiry scan period)

- Coarse granular *Periodic_Inquiry_Mode* HCI function parameters (multiple of 1.28s) lead to sub-optimal avg. delay
 - Application layer function with fine granular parameters can minimize the avg. delay

Simulation Setup

- NS-2 + UCBT extension
- Corridor mobility model:
 - Rectangle Area (length >> width)
 - Two directions (West -> East, East -> West)
 - Constant speed randomly selected over $[0, V_{max}]$
- When reaching to bound
 - North or South: nodes are mirrored back to the area
 - West or East bound: nodes are restarted
 - Reset mode: user data is cleared (acting as a new node)
 - No-reset mode: user data is remained (re-enter the area)
- Mobility Setting:
 - # of nodes: 25, 50, 75, 100 (Default: 50 nodes)

 - V_{max} =0.0 (static), 0.4, 0.8, 1.2, 1.6 m/s
 Area: [25, 50, 100] x [3,5] m² (Default: 100x5 m²)

Simulation Setup (Cont)

- Test scenarios: AP mode vs. P2P mode
 AP mode: data is only transferred from AP to nodes
- Periodic inquiry mode with inquiry scan interval (0.64s) and scan period [0.64s, 4s]
- Distribute 1.2MB files
 - Divided by 50, 100, 200 blocks (# of blocks)
- Metrics
 - Download percentage of all the nodes that have passed the simulated area (time avg.)
 - No-reset: the number of nodes is the same as the number of nodes in the network
 - Reset: the number of nodes is increasing as time passes

Simulation Result (1) Download Percentage vs. Time (reset)

- Reset a new node enters after a node get out of area
 - Time avg. of download percentage shows the effectiveness of the area
- Speed is critical: as speed increases, download %age decreases

Simulation Result (2) Finish Time vs. Speed (no-reset)

- AP performs best at 0.8m/s
 - Idle period of AP decreases (0.4m/s => 0.8m/s)
 - If one moves too fast, usefulness (trans/(discover+trans)) of a connection decreases
- P2P increases connectivity (esp. w/ low density)
 - After a certain threshold, density is not critical impact (only speed)

Simulation Result (3) Number of Blocks (reset)

- Download percentage is not sensitive to # of blocks
 - Overhead of L2CAP layer is not significant
- Mobility has a greater impact
 - Too large block causes performance loss since non-complete blocks are flushed (esp, more frequent in the P2P mode)

Simulation Result (4) Corridor Length (reset)

- Length of corridor affects the node density
- Longer corridor is more resilient to speed

Experiment Setup

- BlueZ Bluetooth protocol stack for Linux
- Bluetake BT009Si (Silicon Wave, Bluetooth v1.2)
- 3 desktops and 5 laptops (Pentium IV/512MB RAM)
- Mobility emulation:
 - AP is up for a certain period of time; to simulate a node moves out of the AP's range (1 AP vs 7 users)
 - Move 20m (max AP's range) at a speed 0.8m/s (=25s)
 - Only P2P mode can transfer data in AP down period
 - Speed: 0.8m/s, 1.6m/s, corridor length: 100m
 - Reset period (i.e., lifetime) is determined by the speed and corridor length
 - e.g. for 0.8m/s a node is reset after 100m/0.8m/s=125s

Experiment Result (1) Download Percentage vs. Speed (reset)

- Flat line: AP down period (in the case of AP only mode)
- Time avg. drops due to Node Reset (Number of node++)
- Overall, P2P mode outperforms AP only mode

Experiment Result (2) Download Percentage vs. Speed (no-reset)

• P2P mode is faster than AP only mode

Real Environment Experiment Setup

- 2 Laptops (Master, Slave)
- Ackerman Union (w/ Interference, Obstacle)
- Speed 1 m/s (5 meter marks)
- BT 1.1 ⇔ 1.1
- BT 2.0 ⇔ 2.0

master

Real Environment Experiment Result

BT 1.1 ⇔ 1.1 Connection Can be made in 30m distance

BT 2.0 ⇔ 2.0

Encoding Method (Data Transfer Options)

- Normal (Non-coding) Data Transfer
 - Exchange segment map (shows list of current segments)
 - Prepare missing segment list
 - Randomly choose one segment from missing list
- Network Coding Data Transfer
 - Encode Code Block
 - Transfer Code Block
 - If received Code Block is helpful, decode received Code Block
- Rateless (Erasure) Coding Data Transfer
 - Encode Code Block beforehand
 - Maintain missing data list
 - Randomly choose one segment from missing list

Encoding Method (Data Transfer Options) (Cont)

Normal (Non-coding) Data Transfer

Encoding Method Result Download vs encoding scheme

Network Coding > Rateless Coding > Non-coding

Encoding Method Result Download vs speed

- Network Coding > Rateless Coding > Non-coding
- Speed affects all methods

Conclusion

- Designed and implemented BlueTorrent
 - Peer manager, Query processor, Data collector
- Found the optimal parameter setting for periodic inquiry mode
- Showed that P2P networking outperforms the conventional client-server mode (i.e., AP mode)
- Feasible in the walking speed range
- Performance enhancements using:
 - Network Coding
 - Rateless (Erasure) Coding

Future work

- Multiple simultaneous downloads (service discovery, scheduling)
- Incentives/security
- Advertising (e.g., embedding ads in files, like Google)
- Urban sensing; data collection
- BT vs ZigBee vs WiFI in smart phones