

TrailSense: A Crowdsensing System for Detecting Risky Mountain Trail Segments with Walking Pattern Analysis

Keunseo Kim, Hengameh Zabihi, Heeyoung Kim, Uichin Lee KAIST

Mountain climbing is popular

[Outdoor Recreation Participation Topline Report 2016]

Sometimes a mountaineering accident occurs in climbing

[American Alpine Club]

Main cause of mountain accidents is 'fall or slips on rock'

[US Mountaineering Accidents By Immediate Cause 1951~2006]

Data source: Accidents in American Mountaineering Statistical Table, 2007. Pie chart by Steph Abegg, www.stephabegg.com

Definition of Risky Trail

'Risky Trail'

[Rocky Trail]

[More Fall and Slip]

• Information on risky trails is needed for beginners

Risky Mountain Trail Information on Google Map

[Google maps on mountain]

- Most used : Google Map
- Trail maps and trail length
- No trail surface information

Collecting the Risky Trail Information

- Manual inspection method (send investigators to trail)
 - Cost limitation, Coverage limitation ...
 - Not practical in real world

Concept of TrailSense

New automatic system for collecting trail surface information

Crowdsensing

- Motion Sensing From climbers' smartphones
- Detect the risky trail segments by individual walking pattern
- Aggregate monitoring results to locate the risky trail segment

How TrailSense Classify Risky Trail Segments?

Inferring trail surface via climbers' motion data

" Climbers show normal walking patterns in this trail..." Then non-risky trail segment

" Climbers show abnormal behaviors..." Then risky trail segment

 Algorithm 'learns' normal stride patterns of a climber and 'tells' whether current walking patterns are 'normal' or not

TrailSense Overview

[Individual Sensing]		Data aggregation]					
'To learn the walking pattern and infer the riskiness'							
Step 1	Step 2	Step 3	Step 4				
Stride segmentation	Feature Extraction	Stride Classification	Windowing (Multiple strides)				

Stride Segmentation Feature Extraction Stride Classification Windowing

- Stride Segmentation (Step 1)
 - Walking pattern analysis for learning normal stride pattern
 - Peak detection is used for Stride Segmentation
- [Accelerometer Y axis]

- Feature Extraction (Step 2)
- Time domain features : absolute means, std, maximum
- Time-frequency features : Discrete Wavelet analysis

$$x(n) = \sum_{j=1}^{J} \sum_{k \in \mathbb{Z}} d_j(k) \psi\left(n - 2^j k\right) + \sum_{k \in \mathbb{Z}} a_J \phi(n - 2^j k)$$

• Wavelet can be applied in non-stationary signal (Time-Frequency)

- Stride Classification (Step 3)
- One-Class SVM : Learns boundary of normal stride in feature space
- One-class classification does not require data from risky segments

Stride Segmentation Feature Extraction Stride Classification Windowing

Windowing for robust classification (Step 4)

" Climbers show normal walking patterns in this trail..." Then non-risky trail segment

" Climbers show abnormal behaviors..."

Then risky trail segment

- Check window of multiple strides
- Check the relative ratio of abnormal strides

[Window 1] : Non-risky trail segment

	Normal	Normal	Normal	Abnormal	Normal		
[Window 2] : Risky trail segment							
	Abnormal	Normal	Abnormal	Abnormal	Abnormal		

Data Aggregation (After Individual Sensing)

- Aggregating results from the crowd
 - GPS data collected by a smartphone have a 10 meter margin of errors
 - False alarms can be generated
- Density based spatial clustering of applications with noise (DBSCAN)

GPS coordinates

Data Aggregation (After Individual Sensing)

- Aggregating results from the crowd
 - GPS data collected by a smartphone have a 10 meter margin of errors
 - False alarm can be generated
- Density based spatial clustering of applications with noise (DBSCAN)

GPS coordinates

Data Aggregation (After Individual Sensing)

- Aggregating results from the crowd
 - GPS data collected by a smartphone have a 10 meter margin of errors
 - False alarm can be generated
- Density based spatial clustering of applications with noise (DBSCAN)

DBSCAN algorithm results

Evaluations

- Evaluation of one-class classification
 - Comparison of one-class classification vs two-class classification
- System performance in different trail data
 - If the system accurately detects risky trails while maintaining generality

Data Collection

Locations

- Gyeryongsan National Prak, Deajeon, South Korea
- Trail A (inter trail experiment) 5 zones (149m, 109m, 125m, 47m, 27m)
- Trail B and Trail C (intra trail experiment) 900m, 400m

Participants

• 14 participants (7males and 7 females) whose ages ranged from 22 to 32 years (Mean: 27.4, Std: 2.17)

Devices

- Smartphones with accelerometer sensor
- Cameras (for ground truth labeling)

Evaluation Result

Evaluation of one-class classification

One-Class SVM shows higher test accuracy (F_1 -Score) One-Class SVM achieves higher precision, which is critical for aggregation Two-Class SVM is less practical (require training data in risky segments)

Evaluation Result

System performance in different trail data

Red : Ground truth

Blue – Detected by individual

After data aggregation, our algorithm can detect all 10 risky segments (red-points) with the trained model from the other trail

Summary

TrailSense can accurately identify risky trail segments by using crowdsensing

1. Sensor Data Collection

2. Walking Pattern Analysis

3. Stride Classification

4. Crowd Data Aggregation

'Risky Trail'