Content Distribution in VANETs using Network Coding: The Effect of Disk I/O and Processing O/H

Seung-Hoon Lee, Uichin Lee, Kang-won Lee*, Mario Gerla University of California, Los Angeles IBM T. J. Watson Research Center*

Content Distribution in Vehicular Ad-Hoc Networks (VANETs)

Applications

- Software updates and patches (e.g., navigation map, games)
- Multimedia data downloads (e.g., videos, news, etc.)

Content Distribution Challenges

- High mobility (i.e., highly dynamic networks)
- Error-prone channel (due to obstacles, multi-path fading, etc.)

CarTorrent: BitTorrent-like Cooperative Content Distribution in VANETs

Exchange pieces via Vehicle-to-Vehicle Communications

Download a file (piece by piece)

Problem: Peer & Piece selection
 coupon collection problem

Cannot complete download!

Any linearly independent coded packet is helpful

Network coding "effectively" mitigates the peer/piece selection problem and "improves" the performance!

Network coding must be carefully configured!

Should investigate "origin" of network coding O/H!!

Closer Look at Network Coding O/H

Request

Closer Look at Network Coding O/H

Network Coding O/H Model

- Overall process: **Reading** (cache miss)
 Encoding
 Sending
- Parallelization is feasible: Send an encoded "packet" ASAP
- Disk access O/H:
 - Must read all the necessary data before encoding
 - Disk input rate is determined by the characteristics of a disk
 - O/H is proportional to the number of pieces to be encoded
- Encoding O/H
 - Per symbol encoding ($\Sigma e_i X_i$) O/H: Linearly proportional to the cost of a pair of Galois Field (GF) operations (multiplication & addition)
 - Encoding rate = (# pieces * GF <+,*> time)⁻¹
 - O/H is proportional to the number of pieces to be encoded

Mitigating Coding Overheads

- Solutiion#1: divide a file into small generations
 - Problem: too many generation causes a coupon collection problem
 - Conflicting goals: maximizing benefits of NC vs. minimizing coding O/H

10**5/03**/085

Mitigating Coding Overheads

- Sol#2: encode only a fraction of pieces (i.e., sparse coding)
 - Problem: how to find the right value?

Ex. Sparse Coding Rate: 50%

Sol#3: pull a generation that is in the buffer of a remote node (remote buffer aware pulling)

Evaluating Impacts of Coding O/H

- Difficult to evaluate the overall impacts of coding O/H in VANETs
 - Dynamic nature of VANETs (high mobility)
 - Large scale scenarios

- Network Simulator (e.g., NS2, QualNet) only models communication O/H
- Implement our measurement based models into a network simulator (QualNet)

Simulation Setup

- Communications
 - 802.11b; 11Mbps + Two-ray ground propagation
- Mobility
 - Real-track model w/ speed range of [0,20] m/s
 - UCLA area map: 2400m*2400m
- Nodes
 - 3 APs: file sources
 - 200 nodes/40% interest level:
 - 80 nodes are downloading a file
- O/H model
 - Coding rate: 7.6 Mbps
 - Disk I/O rate: 38 MB/sec

Simulation Results (1)

Delay without O/H

- Delay without O/H
 - Small # of generations is a better choice
 - Larger # of generations

 more severe coupon collection problem

Simulation Results (2)

Delay with O/H (Buffer 50%)

- Delay with O/H (Buffer 50%: CPU O/H + Disk I/O)
 - Small # of generations is not a better choice any longer!!
 - Single generation scenario is even worse than "No coding" case.
 - Must carefully choose the number of generations!

Simulation Results (2)

Delay with O/H (Buffer 50%)

- Delay with O/H (Buffer 50%: CPU O/H + Disk I/O)
 - Small # of generations is not a better choice any longer!!
 - Single generation scenario is even worse than "No coding" case.
 - Must carefully choose the number of generations!

Simulation Results (3)

Delay with Sparse Coding (50MB)

Sparse coding rate must be carefully chosen.

Simulation Results (4)

Delay with RBAP (50MB)

Remote Buffer Aware Pulling (RBAP)
 Successfully reduces disk I/O O/H

Conclusion

- Investigated the impacts of network coding O/H
 - Disk I/O + Processing O/H
- Designed "measurement" based models
- Evaluated various strategies to mitigate O/H
 - Multiple generations, sparse coding, buffer aware pulling
- Lessons learned: network coding must be carefully configured to maximize its benefits
- Future work
 - Good configuration? must tune various factors, i.e., piece size, disk access/coding rate, and shared bandwidth
 - Understand the impacts of O/H and study enhancement techniques (e.g., H/W acceleration) in various environments (e.g., embedded systems, Smart Phones)