RelayCast: Scalable Multicast Routing in Delay Tolerant Networks

Uichin Lee, Soon Young Oh, Kang-Won Lee*, Mario Gerla

DTN Multicast Routing

- Delay tolerant networking:
 - Suitable for non-interactive, delay tolerant apps
 - Ranging from connected wireless nets to wireless mobile nets with disruptions (delay tolerant networks)
- Provides reliable data multicast even with disruptions
- DTN multicast routing methods:
 - Tree/mesh (+ mobility), ferry/mule, epidemic dissemination
- DTN multicast questions: <u>Throughput/delay/buffer bounds</u>?
- Focus: dissemination; upper bound of all cases

DTN Model

Pair-wise inter-contact time: interval between two contact points

- Common assumption: exponential inter-contact time
 Random direction, random waypoint, etc.
 - Real world traces also have "exponential" tails [Karagiannis07]
- Exponential inter-contact time
 Inter-contact rate: λ

 <u>~ speed x radio range</u> [Groenevelt05]
- Assumption: *n* nodes in 1x1 unit area; radio range: O(1/ \sqrt{n}) and speed: O(1/ \sqrt{n}) \iff meeting rate: λ=O(1/n)

2-Hop Relay: DTN Unicast Routing

- Each source has a random destination (*n* source-destination pairs)
- 2-hop relay protocol:
 - 1. Source sends a packet to a relay node
 - 2. Relay node delivers a packet to the corresponding receiver

2-Hop Relay: Throughput/Delay

- Throughput is determined by <u>aggregate meeting rate</u>
 [Src \Rightarrow relay nodes], [Dest \Rightarrow relay nodes]
- 2-hop relay throughput: $\Theta(n\lambda)$
 - G&T's results: $\Theta(n\lambda)=\Theta(1)$ for $\lambda=1/n$ (i.e., speed=radio= $1/\sqrt{n}$)
- 2-hop relay delay: Θ(1/λ)
 - Avg. time for a relay to meet a dest (~exp dist!): $1/\lambda$
 - Ex) For $\lambda = 1/n$, avg. delay is $\Theta(n)$ (Neely&Modiano)

RelayCast: DTN Multicast Routing

- 2-hop relay based multicast:
 - 1. Source sends a packet to a relay node
 - 2. Relay node delivers the packet to **ALL** multicast receivers

RelayCast: Throughput Analysis

RelayCast throughput: Θ(nλ/n_x)

- n_s srcs, each of which associated with n_d random dests
- Multiple srcs may choose the same node as a dest
- Avg. # of competing sources per receiver: n_x

RelayCast: Delay Analysis

- Relay node delivers a packet to ALL destinations
- n_x competing srcs per dest: individual rate is split to λ/n_x
- RelayCast avg. delay: $Θ(n_x/λ(\log n_d + \gamma))$

• where γ = Euler constant

RelayCast: Buffer Requirement

- Little's law: buffer = (rate) x (delay)
- Buffer per source = $\Theta(nn_d)$
 - Avg. sub-queue length: $\lambda/n_x^*n_x/\lambda = \Theta(1)$ by Little's law Each src has n_d dest: packet is replicated to n_d copies

 - Per src buffer at a relay = $\Theta(n_d) \square n$ relays: buffer = $\Theta(n_d)$
- Buffer upper bound per source = $\Theta(n^2)$

Comparison with Previous Results

S

- Assumptions; *n* fixed, and $r = \sqrt{\log n/n}$ for G&K; $r=1/\sqrt{n}$ for 2.4 by
- Throughput scaling with $n_s = \Theta(n)$; $n_x = n_s n_d / n = n_d \iff \text{Relay} \hat{C} \hat{a} \text{st} = \Theta(1/n_d)$ Better throughput than conventional multi-hop multicast $(w/r = \sqrt{\log n/n})$

Simulation Results

RelayCast throughput with varying # of relay nodes

- DTN with fixed λ: throughput linearly increases
 - □ RelayCast throughput = Θ(nλ) for $n_s n_d \le n$
- As # node increases, interference comes in; throughput is tapered off

QualNet v3.9.5 Network: 5000mx5000m Random waypoint 802.11b: 2Mbps 250m radio range Traffic : n_s=1, n_d=# of relay nodes

Simulation Results

Comparison with conventional multicast protocol

- RelayCast is scalable; ODMRP's throughput decreases significantly, as # sources increases
- But delay has significantly increased; RelayCast ~ 2000s vs. ODMRP < 1s

Simulation Results

Average delay with varying # of receivers

- RelayCast delay = $\Theta(n_x/\lambda(\log n_d + \gamma))$
- Delay increases as # of receivers increases

Conclusion

RelayCast:

- Provides reliable multicast even with disruption
- Achieves the maximum throughput bound of DTN multicast routing
- DTN routing protocol design and comparison must consider throughput/delay/buffer trade-offs

Future work

- Analysis of other DTN routing strategies
- Impact of correlated motion patterns: i.e., power-law head and exponential tail inter-contact time distribution