Alcatel-Lucent (1)

Scaling Properties of
 Delay Tolerant Networks with Correlated Motion Patterns

Uichin Lee, Bell Labs/Alcatel-Lucent
Soon Y. Oh, Mario Gerla (UCLA)
Kang-Won Lee (IBM T.J. Watson Research)

Key DTN Metric: Pair-wise Inter-contact Time

Key metric for measuring end-to-end delay
Pair-wise inter-contact time: interval between two contact points

Inter-contact distribution:

- Exponential © : bounded delay, but not realistic?
- Power-law $\because:$: may cause infinite delay, but more realistic?

Two-phase Inter-contact Time

Two-phase distribution: power-law head and exponential ta:

 Karagiannis et al., MobiCom'07

 Levy walk based mobility Lee et al. Infocom'08/09
 - Association times w/ AP (UCSD) or cell tower (MIT cell)
 - Direct contact traces: Infocom, cambridge (imotes), MIT-bt

Two-phase Inter-contact Time

Why two-phase distribution? One possible cause:

- Flight distance of each random trip (within a finite area) [Cai08]
- The shorter the flight distance, the higher the motion correlation in local area, resulting heavier power-law head
- Power-law head while in local area vs. exponential tail for future encounters

Goal: unc patterns on
eacn olner, c

- Levy flight o
- Vehicular mo
- High correlat
- After leaving

Frequent encounters in local area

Local
*Cai08: Han Cai and Do Young Eun, Toward Stochastic Anatomy of Inter-meeting Time Distribution under General Mobility Models, MobiHoc'08
*Rhee08: Injong Rhee, Minsu Shin, Seongik Hong, Kyunghan Lee and Song Chong, On the Levy-walk Nature of Human Mobility, INFOCOM'08

DTN Model: Inter-contact rate + flight distance

Inter-contact rate: $\lambda \sim$ speed (v)*radio range (r) [Groenevelt, Perf'05]

- Random waypoint/direction (exp inter-contact time)

Flight distance (motion correlation):

- Ranging from radio radius $\Omega(r)$ to network width $\mathrm{O}(1)$

Invariance property: avg inter-contact time does not depend on the degree of corre 1 ion in the mobility patterns [Cai : 1 IEun,

2-Hop Relay: DTN Routing

Each source has a random destination (n source-destination pairs)
2-hop relay protocol:

1. Source sends a packet to a relay node
2. Relay node delivers a packet to the corresponding receiver

2-hop Relay by
Grossglauser and Tse

2-Hop Relay: Throughput Analysis

Intuition: avg throughput is determined by aggregate meeting rate (src \Leftrightarrow relay and relay \Leftrightarrow dest)

Two-hop relay per node throughput : $\Theta(\mathrm{n} \lambda)$

- Aggregate meeting rate at a destination: $\mathrm{n} \lambda$
- Grossglauser and Tse's results: $\Theta(n \lambda)=\Theta(1)$ when $\lambda=1 / n$ (i.e., speed $1 / \sqrt{n}$, radio range $1 / \sqrt{n}$)

```
Motion correlation (w/ flight len -- - Foöd (=source) s meeting
```

Source to Relay

2-Hop Relay: Delay Analysis

Source to relay node (Dsr), and then relay to dest (Drd)

- $\mathrm{D}_{\mathrm{sr}}=$ avg. inter-any-contact time to a random relay
- $D_{r d}=$ avg. residual inter-contact time (relay \Leftrightarrow dest)
- Mean residual inter-contact time $\left(\mathrm{D}_{\mathrm{rd}}\right)=\mathrm{E}\left[\mathrm{T}^{2}\right] / 2 \mathrm{E}[\mathrm{T}]$
\gg Tis a random variable for inter-contact time
Inspection paradox (length bias): source tends to sample a longer inter-contact interval between relay and dest no source to Relay
- As flight distance increases, $\begin{array}{r}\text { Relay to Dest } \\ \text { avera, }\end{array}$

2-Hop Relay: Buffer Requirement

Little's law: buffer $=($ rate $) \times($ delay $)$
Required buffer space per node: $B=[\Theta(n), \Theta(n l o g n)]$

- Rate*delay $=\Theta(n \lambda)^{*}[1 / \lambda, \operatorname{logn} / \lambda]=[\Theta(n), \Theta(n \operatorname{logn})]$

- Motion correla
- Correlation inc

Impact of limited

- Limited buffer sources
- Relay node carnand
- Throughput per source $=\Theta\left(n \lambda^{*} K / B\right)$

Simulation: Throughput

Degree of correlation via average flight distance L

- $\mathrm{L}=250 \mathrm{~m}$ 口 high correlation \Leftrightarrow power law head + exponential tail
- L=1000m \square low correlation \Leftrightarrow almost exponential

Throughput is independent of the degree of correlations

CCDF of inter-contact time ($20 \mathrm{~m} / \mathrm{s}$)

Average throughput per node as a function of \# nodes

Simulation: Inter-any-contact Time

Inter-any(k)-contact time: inter-contact time to any of k nodes Invariance property: avg inter-contact time is independent of correlation

Residual inter-contact time: source probes a random point of the inter-meeting times between relay and destination

Average Inter-contact time

Average residual inter-contact time

Simulation: Buffer Utilization

Burstiness of relay traffic increases with the degree of correlation
Relay node's contact history

(S) Source
(D) Destination
\# consecutive encounters (N)
Cumulative dist of \# consecutive encounters

Conclusion

Impact of correlated motion patterns on DTN scaling properties
DTN model: inter-contact rate + motion correlation via flight distance

- Flight distance of $\Omega(r)$; i.e., min travel distance ~ one's radio range
- Considered mobility ranges from Random Walk to Random Direction Main results:
- Throughput is independent of motion correlation
- Delay monotonically increases with the degree of correlation
- Buffer requirement also increases with the degree of correlation
- Correlation increases burstiness of relay traffic

Future work:

- Applying results to DTN multicast scenarios
- Scaling properties of inter-domain DTN scenarios

