

Pressure Routing for Underwater Sensor Networks

Uichin Lee (Bell Labs, Alcatel-Lucent)

Paul Wang, Youngtae Noh, Mario Gerla (UCLA)Luiz F.M Vieira (UFMG)Jun-Hong Cui (University of Connecticut)

SEA-Swarm (Sensor Equipped Aquatic Swarm)

- Monitoring center deploys a large # of mobile u/w sensors (and sonobuoys)
- Mobile sensors collect/report sensor data to a monitoring center
- Monitoring center performs data analysis including off-line localization
- Short-term "ad hoc" real-time aquatic exploration: oil/chemical spill monitoring, anti-submarine missions, surveillance etc.

.....

SEA-Swarm challenges:

- Acoustic comms: energy hungry (~W), low bandwidth (<100kbps), long propagation delay (3x10³ m/s)
- Node mobility due to water current (<1m/s)

Ground sensor routing protocols do not work well in underwater

- High protocol overheads, e.g., route discovery (flooding) and/or maintenance
- Not suitable for bandwidth constrained underwater mobile sensor networks (collision + energy consumption)

3D geographical routing (stateless, local) has the following limitations:

- Requires distributed underwater localization (+location service)
- Efficient recovery from a local maximum (like face routing) is not feasible

3 (Durocher et al., ICDCN'08) Copyright © 2010 Alcatel-Lucent. All rights reserved.

HydroCast: Underwater Pressure Routing

HydroCast: 1D geographic anycast routing (to any one of the sonobuoys)

- Using measured pressure level (or depth) from on-board pressure sensor
- A packet is forwarded to a node that is closest to the water surface (or the lowest depth node in one's neighbors)

Opportunistic Routing

Handle channel errors by opportunistic routing:

- Opportunistic packet receptions thanks to broadcast nature of wireless medium
- Any node that has received the packet correctly (called forwarding set) can forward the packet to next hop

Existing opportunistic routing protocols:

- Anypath Routing based on extended link-state algorithms
 - ExOR, Least Cost Opportunistic Routing (LCOR)
 - Not suitable for SEA-Swarm due to overhead (network-wide link state flooding)
- Geo-Opportunistic Routing (GOR) based on stateless position-based algorithms
- Geographic Random Forwarding (GeRaF), Contention Based Forwarding (CBF),
 Focused Beam Routing (FBR) Copyright © 2010 Alcatel-Lucent. All rights reserved.

Geo-Opportunistic Routing (GOR)

GOR: (1) A packet is broadcast; (2) each node determines its own priority based on its distance to the surface (priority is scheduled using distance based timer);(3) high priority node's transmission suppresses low priority nodes' transmissions

Geo-Opportunistic Routing (GOR)

Finding hidden terminal free forwarding set is the max clique problem (hard!)

Forwarding set selection heuristic: geometric shape facing toward the destination

HydroCast: Forwarding Set Selection (Clustering)

- I. find node i that has the greatest normalized progress: d(i)*p(i)
- 2. include all nodes whose distance from node i is in BR (R tx range, B=0.5)
- 3. if other neighbors are left, clustering proceeds starting from the remaining node with the highest normalized progress (i.e., repeat step 1 and 2).
- 4. each cluster is then expanded by including nodes whose distance to any node in the cluster is smaller than R (node can hear one another)

= 5. sele stiface cluster with the greatest expected progress as a forwarding set

Copyright © 2010 Alcatel-Lucent. All rights reserved.

8

HydroCast: Recovery Mode

- No efficient recovery method in 3D geographic routing (Durocher et al., ICDCN'08)
- State-of-the-art "stateless" recovery method: random walk (Flury et al., INFOCOM'08)
- Limitation of random walks in SEA-Swarm
- Due to vertical routing, any nodes below the local max need to repeatedly perform random walks
- HydroCast: local lower-depth-first recovery (stateful approach)
- Each local max builds an escape path to a node whose depth is lower; after one or several path segments that go**q**through local max**q**ma, we can switch **ba**ck to greedy mode

Path discovery is still expensive: hop-limited 3D flooding

2D floor surface flooding for recovery path discovery

- Only nodes on the envelope (surface) participate in path discovery

Surface node detection

- Non-surface node: if a node is completely surrounded by its neighboring nodes
 - Every direction has a dominating triangle
- Detection: tetrahedralization with length constraint (tx range) intractable

Simulation Setup

- QualNet 3.9.5 enhanced with an acoustic channel model
 - Urick's u/w path loss model: $A(d, f) = d^k a(f)^d$ where distance d, freq f, absorption a(f)
 - Rayleigh fading to model small scale fading
- Acoustic modem:
 - Modulation method: BPSK (Binary Phase Shift Keying)
 - Tx power: 105 dB u Pa, data rate: 50Kbps, tx range: ~250m
- Nodes are randomly deployed in an area of "1000m*1000m*1000m"
 - Mobility model: <u>3D version of Meande</u>? Deregenered and the second state of the second seco

Results: Forwarding Set Selection

HydroCast's clustering is very close to the optimal solution

Vertical cone based approach (CBR, FBR) performs poorly

When density is low, its performance is even lower than NADV

Results: HydroCast Performance

HydroCast w/ SD-R performs the best

SD (surface detection): SD-R (our heuristic), SD-A (angle-based, 60°)

DBR performs better than HydroCast w/o recovery (due to multi-path delivery)

Conclusion

Hydraulic pressure-based anycast routing allows report time-critical sensor data to the sonobuoys on the sea level using acoustic multi-hopping

HydroCast:

- Novel opportunistic routing mechanism to select the subset of forwarders that maximizes greedy progress yet limits co-channel interference
- *Efficient dead-end recovery mechanism* that outperforms recently proposed approaches (e.g., random walk, 3D flooding)

Research directions:

- Mobility prediction (using low power sensors)
- Dynamic topology control/maintenance
 - Mechanical (depth control/replenishing) + electronic (transmission power)

