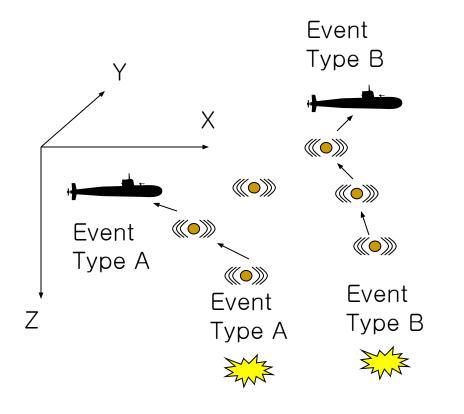

Phero-Trail: A Bio-inspired Location Service for Mobile Underwater Sensor Networks

> Luiz F. Vieira, Uichin Lee, Mario Gerla UCLA




### **Application Scenario**

- Protecting critical installation such as harbor, underwater mining facility, and oil rigs.
  - Mobile floating sensor nodes
  - Autonomous Underwater Vehicles (AUV) or Submarines

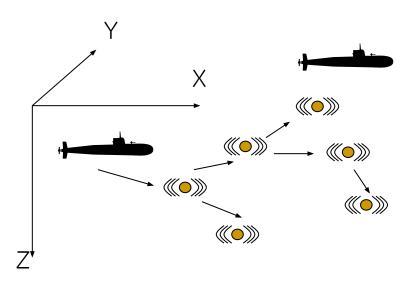


#### **SEA Swarm Architecture**



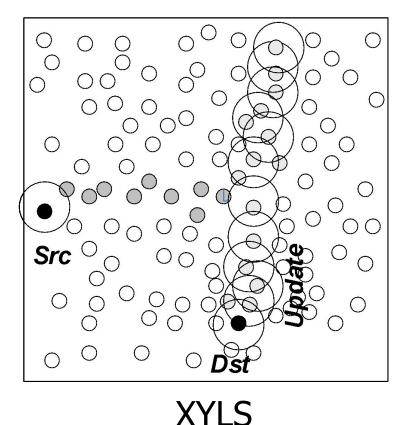
- Sensor Equipped Aquatic (SEA) swarm of mobile sensors:
  - Enable 4D (space and time) monitoring
  - Dynamic monitoring coverage
- Sensor nodes notify events to corresponding submarines




### **Problem Statements**

- Mobile sensors report events to submarines
- Proactive (OLSR), Reactive Routing (AODV), or Sensor data collection (Directed Diffusion)
  - □ All require route discovery (**flooding**) and/or maintenance
  - Not suitable for bandwidth constrained underwater mobile sensor networks (collision + energy consumption)
- Geographical routing is preferable, but requires geo-location service to know the destination's location
- Goal: design an efficient location service protocol for a SEA swarm

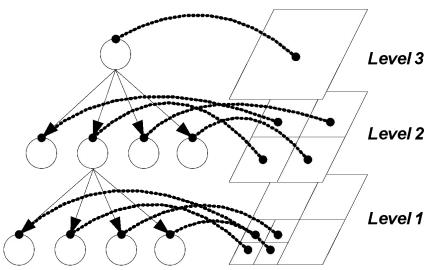



# Related Work – Naïve Flooding

 Node periodically floods its current position to the entire network

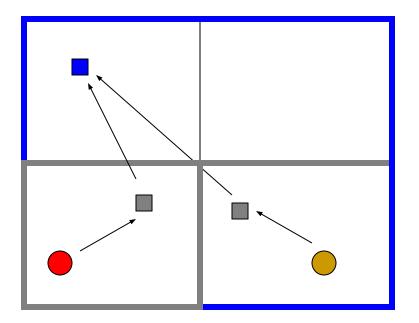





#### Related Work – Quorum Based



- Each location update is sent to a subset of nodes (update quorum)
- Location query is sent to a subset of nodes (or query quorum)
- The query will be resolved when their intersection is non-empty




# Related Work – Hierarchical



- Location servers are chosen via a set of hash functions
- Area recursively divided
  into a hierarchy of
  smaller grids.
  - For each node, one or more nodes in each grid at each level of the hierarchy are chosen as its location servers.

#### Hierarchical - Example



Node updating location
 Server at level 2



Node requesting location

Server at level 3



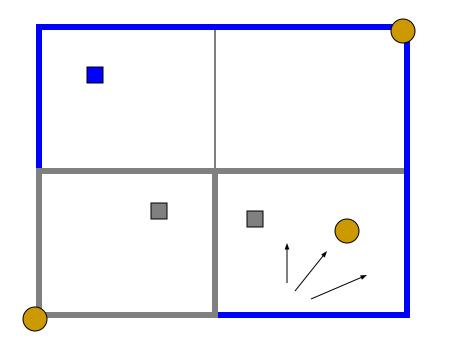
### **Protocol Analysis**

|                   | Update             | Query              |
|-------------------|--------------------|--------------------|
| Naïve<br>flooding | O(M <sup>3</sup> ) | O(1)               |
| Quorum-bas<br>ed  | O(M <sup>2</sup> ) | O(M <sup>2</sup> ) |

- M: number of hops to travel a width of a network (L); i.e., L / R (com. range)
- Quorum-based must store information in a 2D plane; i.e., O(M<sup>2</sup>)



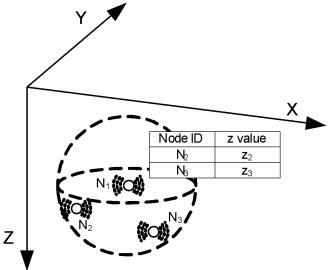
### **Protocol Analysis**


#### Hierarchical

- Must first find a reference point for geographic hashing and propagate this information to every node.
- Overhead of "periodical" reference point updates dominates the update/query overhead.



# Reference Point Updates in Hierarchical Schemes


Periodic reference update O/H: O(M<sup>3</sup>)

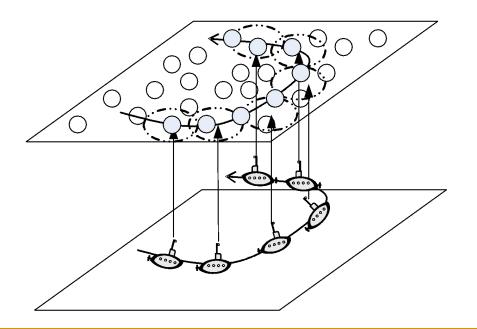




#### Location Service in 2D?

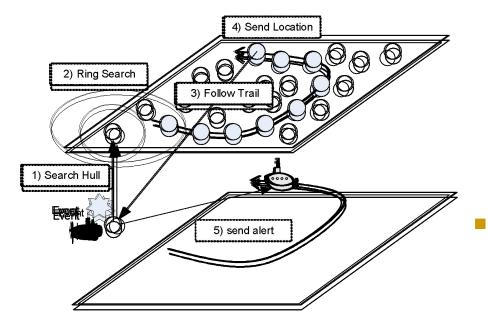
- Store location information in 2D; search and update in 2D
- But at the cost of vertical routing O(M) to given a location service plane
- Where to put a 2D plane?
  - Ex: Upper hull (easy to detect)
    - Simply check local max




## Location Service in 2D: Analysis

- Naïve flooding
  - update and query costs are  $O(M^2)$
- Quorum-based
  - store information in a 1D line
  - Update and query costs scale as O(M)
- Hierarchical
  - Reference update, location update and query operations take O(M<sup>2</sup>), O(H), and O(M) respectively.
  - Reference point update is still expensive!!!




#### Phero-Trail – Location Update

- AUV stores the location updates (pheromone) along its projected trajectory on the upper hull
  - Periodic updates create a pheromone trail



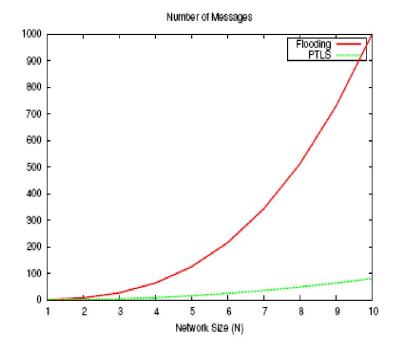


## Phero-Trail – Location Query



A mobile node first routes a query packet vertically upwards to the node on the projected position of the convex hull plane Node performs an expanding spiral curve search to find a pheromone trail.




#### Location Service Cost Analysis

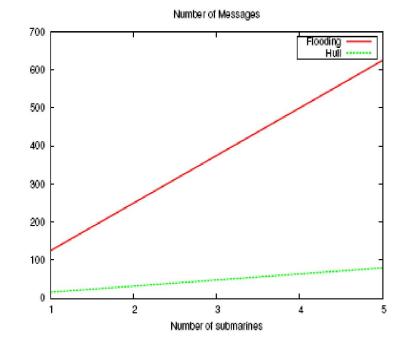
#### Update

- Length of a pheromone trail is fixed 2<sup>(H-1)</sup>
- We mimic the behavior of a hierarchical scheme by setting the probability that the update propagation distance is 2<sup>k</sup>R is to be given by 1=2<sup>k</sup>
- Vertical routing O(M)
- Search: expanding spiral curve search
  - Worst case: in k-th step, a curve search of 2<sup>k</sup>  $\sum_{k=1}^{s \to \tilde{H}} 2^k R = \frac{2^{H+1}-1}{2} R = \Theta(2^H) = \Theta(M)$



### Simulation Results




- 1 Km x 1 Km x 1 Km
- Submarine 5 m/s
- Vary the network size
- Compared with flooding (based for comparison)
- Number of transmitted messages during update.

ETWORK

FARCH Computer Science Dept

### Simulation Results

 Figure shows the number of transmitted messages with the number of submarines.





### Conclusion

- Presented a novel bio-inspired location service (PTLS)
  - efficient location service protocol for a SEA swarm
  - comparable with the hierarchical schemes
    - Search O(M)
    - Update O(M)
  - maintaining location information in a 2D plane is optimal

#### Future Work

#### Future work

- Compare performance PTLS with High-Grade, XYLS
- Evaluate the performance of Phero-Trail with various system configurations such as the number of sensors/sinks, the speed of sensors/sinks, the deployment area size (including various depths), and the search pattern of mobile sinks.



#### **Encounter Based Location Service**

#### LER/FRESH:

- Node publishes its current location to those who encounter a target node.
- Node searches for any intermediate node that encountered the target node more recently through expanding ring (disk) search
- Not suited for Sea-Swarm
  - Works only in mobility models where encounter history are well diffused around the network.
  - Mobility of water current is directional, and its speed is much slower than the mobile sinks, making encounter history dissemination hard

#### BreadCrumb:

- Assume <u>static</u> wireless sensor networks
- Use encounter history to build a trail
- Not suited for Sea-Swarm
  - Static trail vs. mobile trail in Phero-Trail
  - Does not have any search mechanism