
Faculty of Mathematics & Computer Science
Practical Computer Science
Business Information Systems

Master’s Thesis
A thesis in partial fulfillment of the requirements for the degree Master of Science in Computer Science.

Visualizing & Manipulating RDF Graphs
within the Kanban Paradigm

A Prototypical Implementation of an RDF Kanban Board

Steven Kalinke

First Supervisor Dr. rer. nat. Michael Martin, Leipzig University
Second Supervisor Dr. rer. nat. Sebastian Tramp, eccenca GmbH

December 20, 2019

Abstract

In the field of Semantic Web, much effort is invested in developing possible solutions for exploring
and managing graph data in a visual context. eccenca’s Corporate Memory, an enterprise application
suite, enables users to work with semantic models and allows intuitive data exploration. The current
work uses eccenca’s software infrastructure to develop a novel approach to visualize RDF resources
by mapping graph data in a Kanban board. Based on an RDF configuration graph, users can select
the resources represented as the cards of the Kanban board, as well as the property used to represent
the columns of the board. In addition to this visualization, the developed prototype allows to modify
a resource by the prior selected column property when moving a card between columns on the
board. Dropping a card to a novel column triggers the resource to update its property to the value of
this column. Visualizing and manipulating knowledge data by relocating cards on a Kanban board
represents a innovative approach in the field of semantic data exploration.

Keywords Kanban Board, React, JavaScript, Semantic Web, SPARQL, RDF(S), OWL, SHACL

Contents

Contents I

List of Figures III

List of Tables IV

List of Code V

List of Prefixes & Abbreviations VI

1 Introduction 1

1.1 Motivation & Objective . 1
1.2 Structure of This Work . 2

2 Background 3

2.1 Semantic Web . 3
2.2 Kanban . 5

2.2.1 Board Anatomy . 5
2.2.2 General Board Usage . 6

3 Requirements 7

3.1 Use Cases . 8
3.1.1 Ontology Management . 8

Use Case 1: Update a FOAF Term Status . 9
Use Case 2: Create an UNESCO Term Status 11

3.1.2 General Purpose Scenarios . 13
Use Case 3: Dataset Management . 13
Use Case 4: Issue Tracking . 14

3.2 Functional Requirements . 16
3.3 Non-Functional Requirements . 25
3.4 Overview & Prioritization . 26

4 State of the Art 28

4.1 Graph Visualization . 28
4.2 Kanban Board Solutions . 29

5 Specifications 31

5.1 Board Configuration . 31
5.1.1 Config Definition . 31
5.1.2 Config Properties and Relations . 32
5.1.3 Config Instance & Usage . 33

Contents — Contents II

5.2 Board Specifications . 35
5.2.1 react-trello . 35

Target Data Model . 35
Bypassing Limitations . 36

5.2.2 RMB Specification . 39
Cards . 39
Board Overview . 40

5.3 Query Strategy . 41
5.3.1 A — Fetch All Defined Boards . 42
5.3.2 B — Get Board Properties . 42
5.3.3 C — Get Board’s Data . 44
5.3.4 D — Update Column Property . 47
5.3.5 E — Delete Column Property . 47

6 Implementation 48

6.1 Technology Stack . 48
6.2 Development Process . 49

6.2.1 Towards the Target Data Model . 49
6.2.2 Project and Component Structure . 51

6.3 Workflow . 52

7 Evaluation 58

7.1 Strengths of the Current Prototype . 58
7.2 Limitations of the Current Prototype & Future Work 58

Appendix A

Bibliography E

List of Figures

1.1 Minimal Graph Visualization . 1
1.2 Mockup of the Resource Management Board . 2

2.1 A Labeled Directed RDF Multigraph . 4
2.2 Three Examples of a Kanban Board . 5

3.1 RMB Mockup of Use Case 1 . 10
3.2 RMB Mockup of Use Case 2 . 12
3.3 RMB Mockup of Use Case 3 . 14
3.4 RMB Mockup of Use Case 4 . 15
3.5 Requirements Overview by Category . 27

4.1 Visualization Approaches of VOWL and the RMB . 29

5.1 Board Configuration Graph as UML Class Diagram 33
5.2 Board Configuration Graph in eccenca’s DataManager 34
5.3 Default react-trello Board . 36
5.4 Card Style & Positioning Specification . 39
5.5 Material Design Lite Mockup of the RMB . 40
5.6 Process Flow of the RMB . 41

6.1 RMB — Initial Board State . 52
6.2 RMB — SPARQL View . 53
6.3 RMB of Use Case 1 . 53
6.4 RMB of Use Case 2 . 54
6.5 RMB of Use Case 3 . 55
6.6 RMB of Use Case 4 . 56
6.7 SHACLINE Modal Window . 57

List of Tables

3.1 Requirement Levels . 8
3.2 Overview of Functional Requirements . 16
3.3 Overview of Non-Functional Requirements (NFR) 25
3.4 Requirements Overview by Requirement Level . 27

4.1 Comparison of React Kanban Board Solutions . 30

5.1 Board Configuration Properties . 32

6.1 Mixed Type Processing Lookup Table . 49

List of Code

1.1 A Minimal RDF Graph . 1

2.1 A Minimal Graph in Turtle Notation . 4

5.1 RMB & Board Configuration in Turtle . 31
5.2 Board Component Resources in Turtle . 31
5.3 Example of a SHACL Definition . 32
5.4 Example for an Instance of the Board Configuration 33
5.5 Target Data Model of the react-trello Component 35
5.6 Minimal React Code to Render a Board Using react-trello 36
5.7 Example of a Custom Card Component . 37
5.8 Usage of Custom Cards . 37
5.9 Example of Multiple Swimlanes . 37
5.10 Template Specification for Multiple Swimlanes . 38
5.11 A — SPARQL Request To Fetch All Boards . 42
5.12 A — Response Object . 42
5.13 B — SPARQL Request To Fetch Board Properties . 42
5.14 B — Response Object . 43
5.15 C — SPARQL Template to Request the Board’s Data 44
5.16 C — SPARQL Sample for the First Use Case . 45
5.17 C — Response Object . 45
5.18 SPARQL Template to Update the Modified Property 46
5.19 D — SPARQL Template to Update the Column Property 47
5.20 E — SPARQL Template to Delete the Column Property 47

6.1 Basic React Example . 48

7.1 Board Configuration . A

List of Prefixes & Abbreviations

dbug: http://ontologi.es/doap-bugs#

dct: http://purl.org/dc/terms/

foaf: http://xmlns.com/foaf/spec/#

owl: http://www.w3.org/2002/07/owl#

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs: http://www.w3.org/2000/01/rdf-schema#

rmb: https://vocab.eccenca.com/rmb/

sh: http://www.w3.org/ns/shacl#

skos: http://www.w3.org/2004/02/skos/core#

uneskos: http://purl.org/umu/uneskos#

vs: http://www.w3.org/2003/06/sw-vocab-status/ns#

FOAF Friend Of A Friend

IRI Internationalized Resource Identifier

JSON JavaScript Object Notation

JSX Javascript XML

OWL Web Ontology Language

RDFS Resource Description Framework Schema

RDF Resource Description Framework

RMB Resource Management Board

SHACL Shapes Constraint Language

SKOS Simple Knowledge Organization System

SPARQL SPARQL Protocol and RDF Query Language

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locators

UX User Experience

http://ontologi.es/doap-bugs#
http://purl.org/dc/terms/
http://xmlns.com/foaf/spec/#
http://www.w3.org/2002/07/owl#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
https://vocab.eccenca.com/rmb/
http://www.w3.org/ns/shacl#
http://www.w3.org/2004/02/skos/core#
http://purl.org/umu/uneskos#
http://www.w3.org/2003/06/sw-vocab-status/ns#

1 Introduction

1.1 Motivation & Objective

Modifying resources by a specific property within the graph-based Resource Description Framework
(RDF) can be an exhausting and expensive task. This is particularly the case when managing graph
resources in plain text formats (e.g., in Turtle or SPARQL), as it requires trained people to maintain the
data, and, despite their expertise, it would still be prone to human error. To overcome this challenge,
much effort has been previously invested in developing possible solutions for managing graph
data in a visual context. One solution to manage semantic and metadata is the software solution
Corporate Memory developed by eccenca GmbH in Leipzig, Germany. Corporate Memory consists
of three core components, namely (1) DataIntegration, (2) DataPlatform, and (3) DataManager. The
latter component provides a comprehensive visual representation of a knowledge base and allows
intuitive authoring of semantic content.
The aim of the current thesis was to create a prototypical component for the DataManager, that

provides an approach to address the issue of modifying resources by a specific property in an intuitive
way. The prototype (throughout the work also referred to as Resource Management Board (RMB)),
addresses two main goals, that are documented in the current thesis: (1) visualizing a certain section
of a knowledge graph (i.e., a subgraph) within a Kanban board, and (2) the possibility of modifying a
specific property by dragging a resource into another column.

The following example captures the essence of both goals and illustrates the transformation process.
Code 1.1 illustrates a minimal RDF graph. In simple terms, the graph expresses that the material
marble has a color that is set to white.

1 <http://dbpedia.org/page/Marble>
2 <http://dbpedia.org/property/color>
3 <http://dbpedia.org/page/White> .

Code 1.1: A minimal graph in RDF.

Typically, (directed) graphs are visualized by a set of ellipses that are interconnected by arrows.
Ellipses represent the graph’s nodes, while arrows describe the graph’s edges. Figure 1.1 visualizes
Code 1.1 as a directed graph:

:White:Marble
:color

Figure 1.1: A minimal graph visualizing Code 1.1.

In the previous example, the graph’s property is color, and its current value is a resource that refers
to white. In order to change the value of the property from white to red, the graph could be manually
modified, for example, by a SPARQL query. However, as mentioned above, this approach is prone to
error in many ways.

http://dbpedia.org/page/Marble
http://dbpedia.org/property/color
http://dbpedia.org/page/White

1 Introduction — Structure of This Work 2

In basic terms, this work merges the concept of RDF with the concept of a Kanban board. Specifically,
a particular portion of an RDF graph will be selected and mapped into a Kanban board. Furthermore,
from that portion, a particular property will be selected to represent the columns of the board. Finally,
the board will allocate its content (i.e., resources) over these columns.
Figure 1.2 depicts a mockup version of a Resource Management Board. In addition to the data

from the previous example, this illustration contains one more resource (i.e., the material copper)
and embeds both elements in a broader domain (i.e., a material database, which is also used as the
board’s title). Since color was selected as the preferred column property, the contents of the board
have been structured accordingly. This means that all resources are grouped by their inherent color
property. Therefore, the resource marble was initially placed in the column labeled white. In contrast
to Figure 1.1, the visual projection of graph data, as seen in Figure 1.2, is a novel approach for semantic
data exploration.

In addition to visualize graph data, the second goal of this thesis is the modification of a property’s
value by dragging a resource into another column. To illustrate this goal, the resources in Figure 1.2
(i.e., marble and copper) are depicted as draggable cards that can be moved arbitrarily over the
columns of the board. As depicted by the arrow, the card holding the resource for marble is getting
dragged from the first to the second column. Eventually, when dropping the card to its target column,
an update on the underlying graph gets triggered, which will assign the corresponding column value
(i.e., red) to that specific property (i.e., color) on that particular resource (i.e., marble). Using the drag
and drop capabilities of a Kanban board to manage specific properties of a resource is a novel and
user-friendly approach to manage knowledge data. Without requiring profound expertise in the field
of RDF, it enables users to easily and intuitively manage complex graph structures.

Material Database

White Red

Marble

Copper

Figure 1.2: Mockup of the Resource Management Board.

1.2 Structure of This Work

This thesis is structured as follows. First, chapter 2 provides a theoretical background for the two
main concepts involved in this work: (1) Semantic Web with the focus on the RDF and (2) Kanban.
Then, chapter 3 introduces four use cases and derives corresponding functional and non-functional
requirements. Thereupon, chapter 4 presents an overview of existing Kanban board solutions and
evaluates them with regard to the desired requirements. Hereafter, chapter 5 provides specifications
for the prototype, including the target data model and query strategy. In chapter 6, the corresponding
implementation is outlined in detail. Lastly, chapter 7 provides an overall evaluation of this imple-
mentation, based on the outlined requirements. Moreover, the limitations of the current status of the
prototype will be discussed, together with possible future directions.

2 Background

People create all sorts of digital content in a variety of formats and on a massive scale. Regardless
of how information is shaped, we—as humans—are capable of extracting the inherent semantics
by inferring implicit knowledge about a given information. For example, a piece of information
represented in a textual form is: The marble is white. We probably understand the meaning of that
statement, as we know thatmarble refers to amaterial andwhite to a color. Even though this additional
information was not provided explicitly to us, we can infer that knowledge implicitly, to understand
the meaning of the statement. In addition to this one possible meaning, however, this sentence may
also refer to a toy: a marble. Ultimately, the context in which this statement is embedded would
resolve this ambiguity for a human reader. Nevertheless, this example demonstrates the way we link
information. In fact, our brain consists of neurons (analogous to graph nodes) interconnected by
synapses (analogous to graph edges), creating a neural network, which is a complex graph structure
(Stanley et al., 2013, p. 1). Linking, interpreting, and evaluating information may seem trivial to us
since our brain has evolved to perform cognitively demanding tasks on a daily basis. For a computer,
in contrast, understanding semantics is a complex task, as it is not capable of inferring knowledge
by default. Making a computer understand (especially ambiguous) semantics thus represents a
challenging endeavor.

2.1 Semantic Web

The research field Semantic Web (or Linked Data) aims to address the previous matter. The basic
idea is to enrich information with resource identifiers that link to a distinct entry in a catalog (i.e., a
vocabulary/ontology1). This link allows computers (and humans) to understand what a resource is
referring to. There is no need to provide more context, as linked data grants semantic uniqueness by
design. Linked data uses the graph-based Resource Description Framework (RDF) as the underlying
data model, which broadly describes the relationship between resources (E. Miller & Schloss, 1997).

An RDF graph consists of three components, which can be expressed as a semantic triple: subject-
predicate-object. To illustrate the previous statement, the semantic triple for white marble would
translate to marble-hasColor-white. In RDF, the subject designates a specific resource (e.g., marble),
while the predicate denotes a specific property of that subject (e.g., hasColor). Furthermore, a predicate
describes the relation between a subject and an object. However, depending on the domain and the
language being used in this field, there are different ways to express a triple. While some authors
(e.g., Fensel, 2005, p. 115 and Khosrow-Pour, 2006, p. 581) refer to object-property-value triples, the
EAV model expresses RDF as an entity-attribute-value triple. Powers (2003, p. 17) concludes that

“[. . .] simple facts can almost always be defined given three specific pieces of information:
the subject of the fact, the property of the subject that is currently being defined, and
its associated value. This correlates to what we understand to be a complete thought,
regardless of differing syntaxes based on language.”

1 Disambiguation of vocabulary and ontology: “There is no clear division between what is referred to as ‘vocabularies’ and
‘ontologies’. The trend is to use the word ‘ontology’ for more complex, and possibly quite formal collection of terms, whereas
‘vocabulary’ is used when such strict formalism is not necessarily used or only in a very loose sense. Vocabularies are the
basic building blocks for inference techniques on the Semantic Web.” (W3C, n.d.)

2 Background — Semantic Web 4

Subjects and predicates always use a resource identifier (i.e., a URI/IRI)2 to describe their exact entity
and property. Objects, on the other hand, may either refer to a URI as well or to a (string) literal.3 To
disambiguate the marble example, URIs can be used to express the meaning distinctly, which was
demonstrated in the previous chapter (Introduction) in Code 1.1, where the URI referred to marble as
a material and not the toy.

As stated, RDF intrinsically represents a graph structure. Moreover, it is a “[. . .] good example of a

labeled directed multigraph [. . .]” (Shaposhnik et al., 2015, p. 21). To illustrate this concept, Figure 2.1
depicts a graph expressing the geological classification of the material marble.

:Marble

:Metamorphic_rock"Marmor"@de

:Rock_(geology)

rd
fs

:la
be

l

rdfs:subClassOf
rd

fs
:s

ubClas
sO

f

Figure 2.1: A labeled directed RDF multigraph, expressing the broader classification of the material
marble, and stating marble’s (German) label as an annotated object literal.

In a directed (RDF) graph, arrows are reflecting the graph’s directional nature, and objects, as illustrated,
may refer to other resources, creating new semantic triples. These features do not only allow RDF to
describe logical relations between things but also to create complex frameworks working on top of
it. Relevant for this work are frameworks defining a syntax, structure, or shape (e.g., RDFS,4 OWL,5

SHACL,6 or different vocabularies/ontologies defining specific terms (e.g., FOAF,7 DCT,8 etc.).
A notable application in the field of linked data is DBPedia (Bizer et al., 2009), which extracts

structured information from the Wikipedia project and allows users to query this information.
Similar to the preceding examples of graph data, Code 2.1 is using resources referring to DBPedia.
The following code is representing Figure 2.1 in Turtle notation.9

1 <http://dbpedia.org/resource/Marble>
2 rdfs:subClassOf
3 <http://dbpedia.org/resource/Metamorphic_rock> ;
4 rdfs:label "Marmor"@de .
5 <http://dbpedia.org/resource/Metamorphic_rock>
6 rdfs:subClassOf
7 <http://dbpedia.org/resource/Rock_(geology)> .

Code 2.1: A minimal graph in Turtle notation representing Figure 1.1.

2 Throughout this work, I will interchangeably use both abbreviations URI (Uniform Resource Identifier) and IRI (Inter-
nationalized Resource Identifier). The latter extends the characters in URIs from a subset of the ASCII character set to
almost all characters of the Universal Character Set (Unicode/ISO 10646).

3 In RDF objects (and thus subjects) may also be a blank node; however, this has no further relevance for this work.
4 Resource Description Framework Schema by Brickley & Guha, 1999
5 Web Ontology Language by McGuinness & Harmelen, 2004
6 Shapes Constraint Language by Knublauch & Kontokostas, 2015
7 Friend Of A Friend by L. Miller & Brickley, 2014
8 Dublin Core Metadata Terms by the DCMI Usage Board, 2002
9 Code listings in this work are omitting the prefix notation shared by N3, Turtle, and SPARQL. In the digital version of
this work, clicking a prefixes will link to the corresponding IRI on page VI at the beginning of this work.

http://dbpedia.org/resource/Marble
http://dbpedia.org/resource/Metamorphic_rock
http://dbpedia.org/resource/Metamorphic_rock
http://dbpedia.org/resource/Rock_(geology)

2 Background — Kanban 5

2.2 Kanban

The Kanban system was invented by Taiichi Ohno, an industrial engineer at Toyota in 1947. It
establishes a just-in-time method of inventory control. The word Kanban, in its literal translation (jap.
看板), describes a cardboard, which represents one of the core components of the Kanban system.
In general, a Kanban board visualizes work in progress (WIP) items that are referred to as cards

on the board. In most scenarios, cards are flowing from left to right over the columns of a board,
indicating their current stage of progress. Boards may also be divided into horizontal swimlanes (or
just lanes), which add another container to categorize groups of cards (e.g., different teams performing
the work).

2.2.1 Board Anatomy

Figure 2.2 illustrates the evolving stages of a Kanban board by gradually adding more features to
the first board (A). While all boards share the same three labels for their columns (i.e., ToDo, Doing,
Done), they differ in their card and lane structure. In particular, board (A) consists of five cards, board
(B1) adds three more cards that belong to another domain or class, and lastly, board (B2) extends (B1)
by separating the cards into their classes using swimlanes (i.e., Box X and Box Y).

Done

Get a
White
Board

Get
Post-its

Learn
Agile

Methods

ToDo

Learn
Kanban

Try
Trello

Doing Done

Get a
White
Board

Get
Post-its

Clean Bed
Room

Learn
Agile

Methods

Clean
Bath
Room

Clean
Kitchen

ToDo

Learn
Kanban

Try
Trello

Doing Done

Get a
White
Board

Get
Post-its

Clean Bed
Room

Learn
Agile

Methods

Clean
Bath
Room

Clean
Kitchen

ToDo
Box X

Box Y

Learn
Kanban

Try
Trello

Doing

(A) (B1) (B2)

Figure 2.2: Three examples of a Kanban board, with different board components (i.e., cards, columns,
and lanes). Cards are depicted by post-it notes. Board (B1) contains cards with mixed
classes, board (B2) is separating card classes using swimlanes (i.e., Box X and Box Y).

There are two perspectives on how a Kanban board can be conceptualized, that is (1) by their board
component resources and (2) card component resources. Both perspectives will be repeatedly referenced
throughout this work.
Board component resources refer to the class of each structural component (i.e., cards, columns,

and lanes). In other words, it refers to the origin of each board component. For example, in board
(A) in Figure 2.2, all the post-it notes may be stored in a storage box labeled Box X. This storage box
would represent the class of the cards. Principally, one board can carry cards from multiple classes.
For example, a second storage box labeled Box Y could contain various post-it notes referring to a
different class. Board (B1), as depicted in Figure 2.2, provides an example of a board keeping track

2 Background — Kanban 6

of two classes: a person’s cleaning progress and their Kanban achievements. Both classes fit the
semantics of the board columns (| ToDo |Doing |Done |). However, when using multiple card classes, it
may be helpful to clearly separate cards into their classes by using swimlanes, as depicted by board
(B2).

In contrast to cards, columns and lanes typically have one single class each. The column labels in
Figure 2.2, for example, could belong to a storage box labeled Basic ToDo Progress Labels. Let us assume
that one would like to add another box, labeled Weekplaner containing column labels ranging from
Monday to Friday, containing column labels ranging from Monday to Friday. Merging both classes
Basic ToDo Progress Labels and Weekplanner would require a more complex (three-dimensional or
nested) board solution, lacking in user-friendliness and applicability.
Card component resources refer to the resources that are depicted on a card (i.e., their content).

Compared to the tight boundaries of board component resources, card component resources are
virtually endless regarding the number of displayable elements. The text on the post-it notes in
Figure 2.2, for example, can be considered as the card’s title resource. Principally, cards may further
depict a descriptive text, a due date, a creation date, or the name of an assignee.

2.2.2 General Board Usage

Building upon the idea of the traditional paper-pencil boards (e.g., Figure 2.2), a variety of digital
Kanban solutions have been developed.10 Even though these solutions vary in their scope and price
models, they all share a basic feature set: Most apparent, all solutions allow users to create cards and
columns from scratch. Furthermore, cards contain at least a title and may also have a description
field to provide more context to the user. Lastly, by definition, cards can be moved from one column
to another to indicate their current stage of progress.

Due to the vast array of application fields (e.g., personal task management, marketing teams, human
resources, etc.), there are countless ways to design a Kanban board. Notably, in the field of agile
software development, Kanban had a particularly strong impact over the last two decades (Stoica
et al., 2016, p. 11).
Over the course of a project, a Kanban board has the potential to grow in complexity (i.e., more

cards, columns, and lanes). There are established principles to maintain a lean state to tackle this case.
Two of the most prominent are: (1) define a maximum card limit for a board to prevent your team
from exceeding their capacity, and (2) walk the board from right to left. That means although cards
usually flow from left to right, “[. . .] you iterate over the tickets from right to left: Closest to completion

to most recently started.” (Anderson, 2016).
Nevertheless, in this work, the Kanban board is used to visualize a section of an existing RDF

graph and to mutate a specific value by relocating cards on the board. In other words, and in contrast
to most Kanban applications, the focus is not on creating RDF resources within the board, but on
visualizing and managing existing ones. Note that throughout this thesis, I will use the terms resource
and card interchangeably, since—in this shared context—a card always refers to an RDF resource. For
example, the DBpedia entry for marble is a resource and thus a card in the board, as illustrated in
Figure 1.2.

10 Wikipedia lists some examples: https://en.wikipedia.org/wiki/Kanban_board#Notable_tools.

https://en.wikipedia.org/wiki/Kanban_board#Notable_tools

3 Requirements

This chapter provides an overview of use cases, user stories, and requirements for the current project.
In general terms, a use case describes a specific usage scenario for a software product and carries
a variety of software requirements, which, in turn, describe a specific functionality demanded by a
stakeholder (e.g., a user). A user story is similar to a requirement. It also describes the request by a
certain persona; however, in contrast to a requirement, it is composed of natural language. Jacobson
et al. (2011, p. 5) describes the relation between the three terms as follows:

“To understand a use case we tell stories [. . .] Use cases provide a way to identify and
capture all the different but related stories in a simple but comprehensive way. This
enables the system’s requirements to be easily captured, shared and understood.”

Jacobson et al., 2011, p. 5

The field of requirements engineering differentiates between many different types (or categories) of
requirements. The current work focuses on two main types, namely functional and non-functional
requirements. As defined by the ISO/IEC/IEEE’s Systems and Software Engineering Vocabulary, a
functional requirement is: (1) “a statement that identifies what a product or process must accomplish to

produce required behavior and/or results” and (2) “a requirement that specifies a function that a system

or system component must be able to perform” (see ISO/IEC/IEEE, 2010, p. 301). A non-functional
requirement, on the other hand, is “a software requirement that describes not what the software will

do but how the software will do it.” (see ISO/IEC/IEEE, 2010, p. 231). To give an example: An crucial
functional requirement of an elevator is to transport things from one floor to another. A non-functional
requirement, in contrast, might be at what speed the elevator should perform this task. In the domain
of software development, typical examples for non-functional requirements include the performance
of an application, its response times, reliability, aspects around documentation, and in-house coding
style guides.11

Generally, user stories describe requirements. In contrast to requirements, however, they are
composed of natural language and use a predefined template (see Ambler, 2014). There is a variety
of templates that can be used to create a user story. The pattern used by eccenca and throughout
this work is constructed as follows: “In order to <benefit/outcome>, as a <persona/role>, I want to
<description>.” Additionally, user stories can be marked with story points, which aim to predict
the level of complexity (Ambler, 2014). However, according to various online sources, vain efforts
have been previously made regarding the use of story points (see, e.g., Jailall, 2018, Kerievsky, 2012,
Krimmer, 2017). As major challenges, most articles report the frustrating attempt to estimate the time
and complexity of story points. As a consequence, story points needed to be repeatedly re-evaluated
during the development phase.
To avoid these challenges, this chapter focuses on the use of Requirement Levels (see Bradner,

1997), which—in contrast to story points—aims for the actual importance of a specific requirement
rather than measuring time/complexity. Table 3.1 provides an overview of Bradner’s five requirement
levels.
11 An extensive list of categorized examples can be found here: https://dalbanger.wordpress.com/2014/01/08/a-
basic-non-functional-requirements-checklist/.

https://dalbanger.wordpress.com/2014/01/08/a-basic-non-functional-requirements-checklist/
https://dalbanger.wordpress.com/2014/01/08/a-basic-non-functional-requirements-checklist/

3 Requirements — Use Cases 8

Key Word
Synonyms

Meaning

MUST
REQUIRED, SHALL

“[. . .] absolute requirement of the specification.”

SHOULD
RECOMMENDED

“[. . .] the particular behavior is acceptable or even useful [. . .]”

MAY
OPTIONAL

“[. . .] an item is truly optional. [. . .]”

SHOULD NOT
NOT RECOMMENDED

“[. . .] ignore a particular item [. . .]”

MUST NOT
SHALL NOT

“[. . .] absolute prohibition of the specification.”

Table 3.1: Requirement Levels (Bradner, 1997, p. 1)

Finally, a use case contains a variety of requirements and user stories, equally. Use cases explore
different fields of application and describe a broader goal. According to Burris (n.d.), a use case is
“. . . a narrative description of a goal-oriented interaction between the system under development and

an external agent.” Another purpose of a use case is to demonstrate the benefits of the software
product.

The following section 3.1 describes four use cases demonstrating application fields of the prototype.
In the two succeeding sections, functional (section 3.2) and non-functional requirements (section 3.3)
will be derived from the presented use cases. Eventually, the last section in this chapter, section 3.4,
provides a summary of the described requirements.

3.1 Use Cases

All use cases utilize either constructed or existing RDF data to demonstrate their intentions, and each
use case contains the following four subdivisions: (1) an outline describing the purpose of the current
use case, (2) the board component resources (i.e., the resources for cards, column, and, if applicable,
lanes) providing information about the used classes and domains for each structural component,
(3) the card component resources describing what elements will be depicted on the cards, and (4) a
mockup of the RMB depicting the current use case.
At this stage, it is worth mentioning that there are three independent features shared by all use

cases: (1) All cards should display their resource identifier (i.e., their URI), to provide an easy look-up
reference to the user, (2) when clicking a card, more information about that specific resource should
be revealed, and (3) a timestamp property (i.e., the last modification date) should be stored within a
resource whenever a card gets dropped to a new column. Furthermore, all cards containing such a
timestamp property should also display it by default.

3.1.1 Ontology Management

Each of the following two use cases apply a different ontology (i.e., FOAF and UNESCO) to demonstrate
two ways a user can approach this scenario. To manage the ontologies by a particular status, both
scenarios use the property vs:term_status, which values indicate “the status of a vocabulary term,

one of ‘stable’, ‘unstable’, ‘testing’ or ‘archaic’” (L. Miller & Brickley, 2014).

3 Requirements — Use Cases 9

Use Case 1: Update a FOAF Term Status

In this use case, the Friend Of A Friend (FOAF) ontology acts as the underlying graph.12 Throughout
this scenario, the current specification will be used for reference: http://xmlns.com/foaf/spec/.

Outline
FOAF terms can describe individuals in variousways. For example, terms like foaf:name,foaf:depiction,
and foaf:knows, are typically used to describe individuals by their name, photo, and relations to
other individuals. Each term contains several properties, and one property shared by all terms is
vs:term_status. For example, the term foaf:mbox (describing a personal mailbox) has a status
value of stable,13 while the status value of foaf:depiction is testing.14

Regarding the current use case, the first goal is to visualize all FOAF terms distributed over the
board’s columns, depending on their inherent status value. The second goal is to change a term’s
status value by dragging a card (i.e., a FOAF term) to another column. The user can easily change the
status of the depiction resource from testing to stable by dragging the corresponding card. This will
trigger a graph update, that makes changes persistent.

Board Component Resources
Cards. The FOAF terms are representing the cards of the board. Since the vocabulary definitions

are written in RDF/OWL (L. Miller & Brickley, 2014), one could retrieve all FOAF terms
(n = 75) when using the following card classes: owl:Class, owl:ObjectProperty, and
owl:DatatypeProperty.

Columns. To manage the status of a FOAF term, the property vs:term_status will be used.
Lanes. To provide a clearer structure, rdf:type will be used to distribute all FOAF terms over the

lanes of the board. Introducing lanes in this scenario affects the board’s structure, similar
to the transition from board (B) to (B*) in Figure 2.2 on page 5.

Card Component Resources
The FOAF terms should represent the titles of the cards. For example, the label of the term foaf:mbox

is personal mailbox, and should be used as the card’s title. Moreover, all FOAF terms carry an
rdfs:comment property along with a descriptive value. These values should be displayed below the
card’s title to provide more context to the user. For example, the descriptive text for term foaf:mbox

is: “A personal mailbox, ie. an Internet mailbox associated with exactly one owner, the first owner of

this mailbox.” (see the FOAF specification).

Mockup
Figure 3.1 provides a mockup of the RMB with the contents requested by the board component and
card component resources above. For demonstration purposes, the mockup showcases only four FOAF
terms (i.e., Document, personal mailbox, knows, depiction), including their corresponding description
(see current specification for reference). Due to this limited sample size, the prototype will only
reflect the content it is aware of. In other words, there are no columns values depicted for the statuses

12 FOAF describes “[. . .] persons, their activities and their relations to other people and objects [. . .]” (Gargouri, 2010, p. 9). The
ontology was created in mid-2000 by L. Miller & Brickley (2014). FOAF Homepage: http://www.foaf-project.org/.

13 Compare http://xmlns.com/foaf/spec/#term_mbox.
14 Compare with http://xmlns.com/foaf/spec/#term_depiction.

http://xmlns.com/foaf/spec/
http://www.foaf-project.org/
http://xmlns.com/foaf/spec/#term_mbox
http://xmlns.com/foaf/spec/#term_depiction

3 Requirements — Use Cases 10

unstable and archaic, since no resources are containing these values within this small sample. To
give users the possibility to create new columns from scratch, it would require a solution allowing to
enter an arbitrary string literal. The text boxes in Figure 3.1 depict an exemplary solution of such a
feature (i.e., the new column value field).

Nevertheless, as stated in the outline, all resources have been allocated according to their inherent
status value, resulting in a prototype consisting of two columns. Furthermore, the content is distributed
over three lanes by their broader domain (i.e., rdf:type, as requested by the board component
resources). Moreover, the user is be able to intuitively change a resource’s status value by placing a
card into another column, as exemplarily demonstrated in Figure 3.1 for the term depiction.

FOAF Term Status

stabletesting new column value

new column value

new column value

stabletesting

stabletesting

Document
A document.

Modified: 3 days ago
http://xmlns.com/foaf/spec/#term_Document

personal mailbox
A personal mailbox, ie. an Internet
mailbox associated with exactly one
owner, […]

http://xmlns.com/foaf/spec/#term_mbox

Class

ObjectProperty

Property

depiction

A depiction of some thing.

http://xmlns.com/foaf/spec/#term_depiction

Modified: some minutes ago

knows
A person known by this person
(indicating some level of reciprocat-
ed interaction between the parties).

http://xmlns.com/foaf/spec/#term_knows
Modified: 6 months ago

Figure 3.1: RMBMockup of Use Case 1, showing a board that consists of two columns and three lanes
grouping four RDF resources (i.e., FOAF terms). The resource depiction is getting dragged
into another column in order to update its current term status to the value stable.

Note that a timestamp does not only provide information about the last point of time a user moved a
card. It also provides a visual cue to tell apart cards, that have been previously ‘touched’, from their

3 Requirements — Use Cases 11

untouched counterparts, as the latter ones lack a timestamp. For example, in Figure 3.1, the resource
depiction has never been moved; thus, it does not contain a timestamp property. Eventually, when
dropping the card, a timestamp gets generated, stored in the corresponding resource, and depicted
on the card.

Use Case 2: Create an UNESCO Term Status

This use case is part of the scenario of managing an ontology, and it captures the special behavior
of retrieving resources that lack the requested column property. This condition may either be a
deliberate choice by users—as they aim to create the desired property values from scratch—or an
accident due to a false configuration. In either way, the prototype should react appropriately to
handle this case.
In this use case, the UNESKOS ontology (Pastor-Sanchez, 2015) acts as the underlying graph.

UNESKOS is the SKOS15 version of the UNESCO thesaurus.16 The content of this vocabulary is built
hierarchically, and its first level consists of seven major subject domains17 containing over 4,000
terms (or concepts). For example, the concept Deforestation can be retrieved when traversing the
graph by:

UNESCO Thesaurus → Politics, law and economics → Agriculture → Deforestation

Outline
Unlike the previous use case, UNESKOS terms do not contain a status property. However, it may be
the user’s desire to define status values for resources from scratch. Since all UNESKOS resources lack
the demanded vs:term_status property, all resources should be placed in a fallback column labeled
no property. From there, a user can create new column values and start to assign the resources to the
desired column position. Moreover, due to the vast number of UNESKOS terms, an implicit card limit
should be set to prevent a stalling behavior of the user’s browser.

Board Component Resources
Cards. Each term defined within the UNESCO vocabulary refers to a skos:Concept. Thus, each

card represents a skos:Concept.
Columns. As stated above, the UNESKOS graph does not contain a status property; however, this

scenario utilizes the status vocabulary vs:term_status, similar to the first use case
Lanes. Every UNESKOS term has a broader umbrella term (i.e., a hyponym) within the hierarchical

structure of the thesaurus (i.e., uneskos:memberOf). For example, the semantic triple for
the concept Deforestation is:

Deforestation → uneskos:memberOf → Agriculture

Thus, Agriculture as a single swimlane groups a variety of related UNESKOS terms.

15 Simple Knowledge Organization System (SKOS) is a W3C recommendation “[. . .] designed for representation of the-
sauri, classification schemes, taxonomies, subject-heading systems, or any other type of structured controlled vocabulary”
(Garoufallou et al., 2015, p. 455).

16 The “UNESCO Thesaurus is a controlled and structured list of terms used in subject analysis and retrieval of documents and
publications in the fields of education, culture, natural sciences, [. . .]” (UNESCO, 1977).

17 These are education, science, culture, social and human sciences, information and communication, politics, law and
economics, and countries and country groupings. See http://skos.um.es/unescothes/CS000/html.

http://skos.um.es/unescothes/CS000/html

3 Requirements — Use Cases 12

Card Component Resources
The card titles correspond to the UNESKOS term labels. However, unlike within the FOAF vocabulary,
UNESKOS terms do not contain any descriptive property. This means that all cards initially contain
only their title and their corresponding URI since both items are mandatory for every card. Neverthe-
less, moving a card into a new column generates a timestamp property, which is also depicted on the
corresponding card.

Mockup
Figure 3.2 provides a mockup of the RMB with the content requested by the board component and
card component resources above. For demonstration purposes, the mockup shows only four UNESKOS
concepts (i.e., Deforestation, Fisheries, Argentina, Bolivia). Although a column property is defined (i.e.,
vs:term_status), it is not existent in the UNESKOS terms. Therefore, as requested in this use case,
all terms are grouped in a fallback column labeled no property located at the board’s first column
position. Two lanes are depicted by the resources’ broader uneskos:memberOf references.

no property new column value

Agriculture

Americas and the Caribbean

UNESKOS Management

Deforestation
http://skos.um.es/unescothes/C00991/html

Fisheries

Fisheries

http://skos.um.es/unescothes/C01545/html

no property new column value

Deforestation
http://skos.um.es/unescothes/C00991/html

http://skos.um.es/unescothes/C01545/html

Figure 3.2: RMB Mockup of Use Case 2, showing a board that consists of two lanes, and, due to the
lack of the requested column property, a fallback column. The cards only contain their
mandatory title and resource identifier. Since the cards have not been moved yet, there is
no timestamp depicted.

In this scenario, users can create new column values from scratch and assign resources accordingly.
Eventually, when all resources have been allocated, the fallback column would vanish, as it would
not hold any resource.

3 Requirements — Use Cases 13

3.1.2 General Purpose Scenarios

Unlike the previous use cases, the following two use cases operate on a test graph to demonstrate
their purpose. Moreover, they allow to depict an arbitrary amount of information on their cards.

Use Case 3: Dataset Management

This use case is applicable if a user wants to manage the state of existing datasets. The underlying
graph is eccenca’s CMEM Dataset catalog, which provides a system to manage and govern datasets
and resources in eccenca’s Corporate Memory.

Outline
In contrast to the previous use cases, these scenarios demand to display arbitrary resources on a card.
For example, the CMEM Dataset catalog contains two resources which should be depicted on a card,
if existing. That is (1) the property version that refers to a literal value indicating a dataset’s version
number or label, and (2) the property update frequency, which refers to a resource indicating a time
interval. Ultimately, the scenario’s goal is to visualize datasets and manage their predefined statuses
within the RMB.

Board Component Resources
Cards. Cards represent datasets that are of type dataset. For this example, the card’s class is

https://vocab.eccenca.com/dsm/Dataset.
Columns. The board’s column property is https://vocab.eccenca.com/dsm/hasStatus (i.e., the

assigned status). The values of this property are representing the columns of the board
(e.g., needs approval, published, etc.).

Lanes. Datasets are part of a broader domain; for example, a dataset containing personal data
may belong to the field of human resources. A property that expresses its affiliation in the
context of dataset management is http://www.w3.org/ns/dcat#theme from the Data
Catalog Vocabulary (DCAT) (Erickson et al., 2014), which will be used for this purpose.

Card Component Resources
A card’s title corresponds to a dataset’s rdfs:label. Moreover, as stated above, the cards should
depict a list of property-value pairs. In this use case, version and update frequency are demanded.

Mockup
Figure 3.3 provides a mockup of the RMB with the content requested by the board component and
card component resources above. For demonstration purposes, the mockup showcases only three
datasets (i.e., Personal Data, Sales Data, and RND Spendings separated by two columns (i.e., the status
of the dataset), and two lanes (i.e., the dataset’s domain). In deviation from the previous use cases,
the dataset management scenario stresses the application of additional properties, which are also
depicted on the cards, if they are defined on a resource (i.e., version and update frequency).

https://vocab.eccenca.com/dsm/Dataset
https://vocab.eccenca.com/dsm/hasStatus
http://www.w3.org/ns/dcat#theme

3 Requirements — Use Cases 14

Regarding the goals of this work, this scenario allows to display RDF datasets, and to update their
status by dragging cards into different columns. For example, a user may intuitively withdraw the
dataset RND Spendings by dragging the corresponding card from the column published to the column
needs approval, as depicted below.

Dataset Management

publishedneeds approval

publishedneeds approval

Personal Data Sales Data
Personal Details (address, tax id,
date of birth, etc.)

Version: 1.5
Update frequency: Biennial

Modified: yesterday
http://example.com/id/...personal-data

http://example.com/id/...salesData

Human Resources

Research & Development

RND Spendings

Research & Development Expense

Update frequency: Annual

Version: 2
Update frequency: Monthly

http://example.com/id/.../rnd-spendings

Figure 3.3: RMB Mockup of Use Case 3, including mandatory card elements (i.e., title and resource
identifier) and optional elements (i.e., description, additional properties, modified times-
tamp).

Use Case 4: Issue Tracking

The last use case illustrates the common Kanban usage scenario of managing issues within the field
of software development. For this purpose, the DOAP ontology will be used. DOAP (Description of a
Project) aims to describe software projects and offers a variety of properties to describe different
aspects of this domain (Wilder-James, 2004).

Outline
For the subject of issue tracking, DOAP provides a dedicated subset vocabulary (i.e., DOAP bugs or
dbug), which will be used in the current use case.18 The dbug vocabulary defines various properties
and value ranges to describe different aspects around the topic of issue management. For example, an
issue can be described by its dbug:status (e.g., new, in progress, fixed, etc.), its dbug:severity (e.g.,
trivial, major, critical, etc.), its initial dbug:reporter, and by other properties (see specification for
references). Nevertheless, this use case aims to visualize resources (i.e., issues) by their inherent issue
status value (i.e., the board’s columns), and grouped by their inherent severity value (i.e., lanes).

18 Its specification can be found here: http://ontologi.es/doap-bugs.

http://ontologi.es/doap-bugs

3 Requirements — Use Cases 15

Board Component Resources
Cards. The cards’ classes refer to RDF resources having their rdfs:type set to dbug:issue.
Columns. Column values are derived from a resource’s dbug:status value.
Lanes. Lanes gather resources that share the same severity value (i.e., dbug:severity).

Card Component Resources
Besides depicting the title and description of the issue, the DOAP vocabulary also contains an
dbug:assignee property, which shows the person assigned for an issue.

Mockup
Figure 3.4 provides a mockup of the RMB with the content requested by the board component and
card component resources above. For demonstration purposes, the mockup showcases only five issues
depicted by the cards of the board. The issues are separated by three columns (i.e., the dbug:status
value), and two lanes (i.e., the dbug:severity value). Regarding the current use case, the prototype
visualizes any set of RDF issues and can update an issue’s status by dragging the corresponding card
into another column.

Issue Management

in progressnew

in progress fixednew

Exit Value
Define a exit value within the
board config

Assignee: Steven Kalinke

Modified: yesterday
http://example.com/id/...terminator-value

critical

trivial

fixed

Create Mockups

Mockups that depict the RMB

Assignee: Steven Kalinke

http://example.com/id/.../mockups

Board Config
Define what resources should be
used for cards, columns, and lanes

Assignee: Steven Kalinke

Modified: a week ago
http://example.com/id/...board-config

Proofreading
Proof read this work

Assignee: Michael Martin

http://example.com/id/...proofreading

Additional Properties
Define an arbitrary amount of add.
properties within the board config

Assignee: Steven Kalinke

Modified: a day ago
http://example.com/id/...additional-properties

Figure 3.4: RMB Mockup of Use Case 4 depicting a mandatory title and resource identifier, and
optionally a description, additional properties (i.e., assignee), and modification timestamp

.

3 Requirements — Functional Requirements 16

3.2 Functional Requirements

This section derives functional requirements (FRn) from the use cases presented at the beginning
of this chapter. Each requirement will be described in terms of its specific requirement level (as
described in the beginning of this chapter) and main category. In addition, each requirement will
contain a brief description and a dedicated user story. Note that requirements are not derived for an
individual use case but for the sum of all use cases. Table 3.2 provides an overview of the functional
requirements, described in detail in the following.

№ Functional Requirement Req. Level Category

FR1 Board Configuration MUST Feature
FR2 Defaults Values MUST Feature
FR3 Board Selection MUST Feature
FR4 Drag & Drop Cards MUST Feature
FR5 Swimlanes MUST Feature
FR6 Disallow Card Drop On Adjacent Lanes MUST NOT Feature
FR7 Disallow Column/Lane Repositioning SHOULD NOT Feature
FR8 No Property Column MUST Feature
FR9 Delete Property SHOULD Feature
FR10 Everything Else Swimlane MUST Feature
FR11 Create New Columns MUST Feature
FR12 SPARQL Viewer SHOULD Feature
FR13 SPARQL Editor MAY Feature
FR14 Show Resources as Cards MUST Feature
FR15 Board & Component Titles MUST UX
FR16 Card Resource Identifier MUST UX
FR17 Card Description MUST UX
FR18 Card Additional Properties MUST UX
FR19 Card Modified Timestamp MUST UX
FR20 Card Click Dialog MUST UX
FR21 Refresh Board SHOULD UX
FR22 Loading Spinner MUST UX
FR23 Resource Count Infobox MUST UX
FR24 Show Warnings MUST UX
FR25 Highlight No Property Column SHOULD UX
FR26 Real-Time Timestamp Update MUST UX
FR27 Real-Time Colored Cards SHOULD UX
FR28 Trim Long Text MUST UX
FR29 Relative Time SHOULD UX
FR30 Tooltips MUST UX

Table 3.2: Overview of Functional Requirements (FR).

3 Requirements — Functional Requirements 17

FR1 — Board Configuration
Requirement Level: MUST Category: Feature

Initially, a user—or a resource manager—can define the components being displayed on a board (i.e.,
board and card component resources). This board configuration (or board config) is controlled from
the ‘outside’ of the actual board implementation. In the context of this work, eccenca’s DataManager

is used to create or edit a board configuration (as introduced in chapter 1).
Note that the list of properties below is part of a prototypical application state. This means, that

these properties represent the set of features which should be initially supported by the board
configuration of the RMB.

User Story
In order to create a new board OR edit an existing one,
as a resource manager,
I want to define/select the resources for every component of the board.

Property Description (* denotes required fields)
■ Name* the name of the board
■ Description a descriptive text on the intention of the board
■ Board Limit integer value used to set the limit of shown cards on a board
■ Graph* the knowledge graph which is used to get the cards from
Board Component Resources

■ Cards* which card class(es) (i.e., resources) should be shown in the board
■ Columns* the mutation property and the initial card-to-column allocation
■ Lanes the property for the initial card-to-lane allocation

Card Component Resources
■ Description the property which is used to fill the card body
■ Additional P. relation pointing to properties, used to show additional fields on the cards
■ Modified the property which is used to show a timestamp

FR2 — Default Values
Requirement Level: MUST Category: Feature

In some situations, default values can serve the user’s interest. This is, for example, the case when a
user forgets to define a description property, although the requested cards contain one. Moreover, a
default value for the board limit will prevent loading all cards from a giant graph.

User Story
In order to catch a faulty board configuration,
as a user,
I want to see a card’s description in any way, and an implicit card limit to prevent a stalling

browser.

FR3 — Board Selection
Requirement Level: MUST Category: Feature

The UI for the RMB should allow users to display all available boards by their name property defined
in the board configuration (see FR1). Selecting a board will trigger the render process and eventually
let the board appear below the selection element.

3 Requirements — Functional Requirements 18

User Story
In order to select my desired board,
as a user,
I want to see a list of available boards within the board’s UI.

FR4 — Drag & Drop Cards
Requirement Level: MUST Category: Feature

A Kanban board—at the most basic level—allows a user to drag cards from one column to another.
This action indicates a visual progress or update, and, regarding one goal of this work, relocating
cards will modify the underlying knowledge graph by a specific property.

User Story
In order to indicate card’s progress AND to update a card’s column property,
as a user,
I want to drag cards into other columns.

FR5 — Swimlanes
Requirement Level: MUST Category: Feature

As illustrated by the previous use cases, a user can define the desired swimlane resource within the
board configuration (see FR1). This makes it necessary to display swimlanes within the board of
the current work. Note that, swimlanes are not used in all cases, as some Kanban solutions do not
support them (e.g., Trello19).

User Story
In order to further group the data being displayed,
as a developer,
I want to support swimlanes within the prototype.

FR6 — Disallow Card Drop On Adjacent Lanes
Requirement Level: MUST NOT Category: Feature

One could argue about whether or not it should be possible to move cards from their ‘parental’
swimlane to an adjacent lane. In this work, however, lanes are grouping cards that share the same
context (as illustrated in Figure 1.2). It would therefore not be desirable to move cards to a misleading
domain context. For example, the resource Deforestation in Figure 3.2 belongs to the domain of
Agriculture (i.e., its lane). It should only be allowed to move this resource between columns within its
parental container, as moving it to Americas and the Caribbean would lead to a misleading context.

User Story
In order to protect a card’s broader context,
as a user,
I want to move cards only within the parent lane container.

19 https://trello.com/

https://trello.com/

3 Requirements — Functional Requirements 19

FR7 — Disallow Column/Lane Repositioning
Requirement Level: SHOULD NOT Category: Feature

The subject of column and lane order is discussed in chapter 7 of this work as various aspects
require further research, such as the lack of any sequencing information within RDF resources (and
correspondingly the lack of information about the exact board position of a resource). Thus, as a
rudimentary sorting strategy, the prototype will sort column and lane titles alphabetically.

User Story
In order to prevent a column and lane re-ordering,
as a developer,
I want to prohibit the drag capabilities for columns and lanes.

FR8 — No Property Column
Requirement Level: MUST Category: Feature

As shown in the second use case (UNESCO Term Status), a column property is defined. However, it
is not defined for a single resource. Nevertheless, the board should render the data in any way to
further work with the data. This means, that a fallback column labeled with no property should be
provided, if resources lack the requested column property. This condition is, for example, illustrated
in the RMB mockup of the second use case (see Figure 3.2.

User Story
In order to assign resources, that lack the requested column property, to a valid value,
as a user,
I want to move them away from the no property column.

FR9 — Delete Property
Requirement Level: SHOULD Category: Feature

If a user drops a card into the no property column the corresponding column property should be
removed.

User Story
In order to remove the column property from a resource,
as a user,
I want to drop the corresponding card to the no property column.

FR10 — Everything Else Swimlane
Requirement Level: MUST Category: Feature

Similar to the previous condition, resources may lack the requested swimlane property. Therefore, a
fallback swimlane should be provided at the very bottom of the board labeled with Everything Else.

User Story
In order to display resources that lack the requested lane property,
as a user,
I want to manage them away in a dedicated lane.

3 Requirements — Functional Requirements 20

FR11 — Create New Columns
Requirement Level: MUST Category: Feature

In some scenarios, a desired column value is not present on the board. This is the case when (a) the
value is not defined in all of the resources being displayed, or (b) the implicit board limit prevents
the resource to display the desired column value. Moreover, as outlined in the second use case, a
user may intend to assign the desired property from scratch by creating an arbitrary amount of new
column values.

User Story
In order to assign cards to not existing values,
as a user,
I want to create new columns.

FR12 — SPARQL Viewer
Requirement Level: SHOULD Category: Feature

For some advanced users, it can be helpful to review the SPARQL request, which is responsible
for displaying the board. Therefore, the corresponding query should displayable to the user in an
unobtrusive manner.

User Story
In order to review what resources got rendered to the board,
as a resource manager,
I want to inspect the responsible SPARQL request.

FR13 — SPARQL Editor
Requirement Level: MAY Category: Feature

Moreover, it can be helpful to modify the SPARQL query to test/debug different aspects without
touching the actual board configuration (FR1). For example, users can manipulate the board’s limit
by directly editing the SPARQL’s LIMIT within the SPARQL Viewer.

User Story
In order to provide a SPARQL interface,
as a resource manager,
I want to modify the query within the SPARQL Viewer.

FR14 — Show Resources as Cards
Requirement Level: MUST Category: Feature

RDF resources should be represented by cards of the board. In this context, resources refer to the
selected card class(es) in the board configuration (FR1).

User Story
In order to overview all the selected resources for my card class(es),
as a user,
I want to see cards on the board that represent RDF resources.

3 Requirements — Functional Requirements 21

FR15 — Board & Component Titles
Requirement Level: MUST Category: UX

Each board should depict their title at the top of the board, whereas the board’s description should
be placed below. To identify the board’s structure and semantics, column and lane titles should be
placed accordingly. Likewise, cards should depict their title in a salient manner (similar as depicted
by the mockups). If the title of an element is not of type literal, it should match the corresponding
value of the RDF label property.

User Story
In order to identify the board’s structure and semantics,
as a user,
I want to see all the corresponding titles.

FR16 — Card Resource Identifier
Requirement Level: MUST Category: UX

Since all resources have an identifier (i.e., their IRI), it should be depicted on a card. The IRI should
render as a clickable link in case it is an actual URL.

User Story
In order to know AND possible access the resource identifier,
as a user,
I want to see the resource’s URI in the card.

FR17 — Card Description
Requirement Level: MUST Category: UX

Resources can consist of a description property that describes their purpose (e.g., the terms in the
FOAF vocabulary from the first use case). If a description property is defined on a resource, it should
be shown below the card’s title (e.g., Figure 3.1).

User Story
In order to better understand a card’s purpose,
as a user,
I want to see the card’s description.

FR18 — Card Additional Properties
Requirement Level: MUST Category: UX

Different use cases have different requirements regarding the properties displayed on the card. As
illustrated by the mockups for use case 3 and 4 (see Figure 3.3 and Figure 3.4, resp.), additional
properties can be used to flexibly display an arbitrary amount to resources.

User Story
In order to display an arbitrary amount of properties and their values on a card,
as a user,
I want to define additional properties.

3 Requirements — Functional Requirements 22

FR19 — Card Modified Timestamp
Requirement Level: MUST Category: UX

A modified timestamp can be used to indicate whether a card has been moved or not, since it displays
the exact time point when a card has been dropped the last time.

User Story
In order to know if a card was moved and when,
as a user,
I want to see the last modification timestamp for these cards.

FR20 — Card Click Dialog
Requirement Level: MUST Category: UX

User Story
In order to provide detailed information for a particular resource,
as a user,
I want to click on cards to see a dialog.

FR21 — Refresh Board
Requirement Level: SHOULD Category: UX

When users change certain properties within the card click dialog (e.g., the title of the card), the
board should reflect these changes immediately.

User Story
In order to view my recent updates,
as a user,
I want to refresh the board within the card dialog.

FR22 — Loading Spinner
Requirement Level: MUST Category: UX

When interacting with the prototype, there are many situations in which data gets updated or
requested. Without any visualization indicating a running process, a usermay perceive the application
as being in an idle in such situations. Thus, to reflect the application’s loading state, a spinner element
should be displayed during that period.

User Story
In order to recognize a loading state,
as a user,
I want to see a loading indicator.

3 Requirements — Functional Requirements 23

FR23 — Resource Count Infobox
Requirement Level: MUST Category: UX

Unless there is an explicit large limit defined within the board configuration, it is likely the case
the board shows only a subset from the entirety of all defined card classes. In this case, an infobox
should inform users about the fact that not all resources are currently displayed. Otherwise, that is if
the number of cards is less than the board limit, the infobox should inform about the current card
count.

User Story
In order to know how many cards are displayed on the board and whether they are limited,
as a user,
I want to be notified about the amount of cards, and—if a subset is presented—the fact that

there are more cards available.

FR24 — ShowWarnings
Requirement Level: MUST Category: UX

Users should receive warnings. For example, if a required component (e.g., the graph) is missing. If
this is the case, an infobox should be provided to the user explaining the circumstances and providing
guidance if possible.

User Story
In order to get informed about errors,
as a user,
I want to see an infobox providing details on the subject.

FR25 — Highlight No Property Column
Requirement Level: SHOULD Category: UX

In the case that a resource does not contain the requested column property, it is grouped into the no
property column (see FR8). To highlight the unique role of this additional column, it should be more
salient compared to the other regular columns.

User Story
In order to tell regular columns apart from the no property column,
as a user,
I want to perceive a visual cue for these columns.

FR26 — Real-Time Timestamp Update
Requirement Level: MUST Category: UX

After a user drops a card to another column, the card should present a real-time indication of the
modified timestamp. For example, the card should show: Modified: just now.

User Story
In order to perceive a card’s timestamp update status,
as a user,
I want to get a visual feedback from the modified field after dropping the card.

3 Requirements — Functional Requirements 24

FR27 — Real-Time Colored Cards
Requirement Level: SHOULD Category: UX

When users work with many cards in a board, it is helpful to color-code cards that are moved
throughout an active session (i.e., the time when a user works with the board without refreshing
or closing the page). The color-coding should vanish after redrawing the board or refreshing the
page.

User Story
In order to know what cards I just moved,
as a user,
I want to see the cards appear in a different color.

FR28 — Trim Long Text
Requirement Level: MUST Category: UX

Text elements can reach a length where they break the UI. For example, depicting a very long URI
would create unnecessary visual noise on a card. Therefore, all text elements should have reasonable
boundaries and should be trimmed off if they exceed that limit.

User Story
In order to avoid visual noise by long text elements,
as a user,
I want to see text being truncated.

FR29 — Relative Time
Requirement Level: SHOULD Category: UX

Humans are faster in perceiving a relative time designation (e.g., 2h ago) compared to an absolute
one (e.g., at 14:03), especially when dealing with different time zones. Therefore, cards should depict
relative times for the modification timestamp, as illustrated by the mockups in use case 1, 3, and 4.

User Story
In order to quickly perceive modification dates,
as a user,
I want to see a relative time depicted for the modification timestamps.

FR30 — Tooltips
Requirement Level: MUST Category: UX

When hovering over truncated text elements, a tooltip should reveal the full information for that
particular object. Similar, when hovering over a relative time, a detailed absolute timestamp should
appear.

User Story
In order to get the full information about an element,
as a user,
I want to see a tooltip when hover over truncated elements.

3 Requirements — Non-Functional Requirements 25

3.3 Non-Functional Requirements

This section derives non-functional requirements (NFRn) from the use cases presented at the beginning
of this chapter. Table 3.3 provides an overview of the non-functional requirements defined throughout
this section.

№ Non-Functional Requirement Req. Level Category

NFR1 Dynamic Lane Height MUST UI
NFR2 eccenca UI Styling MUST UI
NFR3 Test Data SHOULD Testing
NFR4 Directory & Component Structure SHOULD Conventional
NFR5 Linter Conformity SHOULD Conventional
NFR6 eccenca Infrastructure Integration MUST Backend

Table 3.3: Overview of Non-Functional Requirements (NFR).

NFR1 — Dynamic Lane Height
Requirement Level: MUST Category: UI

In the second use case (see mockup on page 12), it is likely the case that a single column, within
a lane, holds a vast amount of cards. Thus, reaching the lanes below becomes a scrolling intense
endeavor. To avoid this issue, lanes should have a maximum height of the browser’s current viewport.
If a column reaches this limit, the column itself should become a scrollable container.

User Story
In order to avoid an ‘endless’ board,
as a developer,
I want to limit the lane’s height AND make columns scrollable if they exceed that limit.

NFR2 — eccenca UI Styling
Requirement Level: MUST Category: UI

The prototype should visually match with the other eccenca components. Therefore, UI elements
should rely on existing style guides.

User Story
In order to visually match existing eccenca components,
as a developer,
I want to utilize existing UI style guides.

NFR3 — Test Data
Requirement Level: SHOULD Category: Testing

The RMB needs to handle a variety of special conditions or edge cases. Therefore, test data should be
used to guarantee a stable processing of the prototype.

3 Requirements — Overview & Prioritization 26

User Story
In order to test the prototype under various conditions,
as a developer,
I want to provide test data for different scenarios.

NFR4 — Directory & Component Structure
Requirement Level: SHOULD Category: Conventional

eccenca has elaborated a set of guidelines for front-end developers. Most importantly, developers
should stick to a recommended directory and component structure for a React project. These con-
ventions provide help for other developers, and simplify the integration of novel components into
existing structures.

User Story
In order to conform to existing structuring guidelines,
as a developer,
I want to follow the company’s front-end conventions.

NFR5 — Linter Conformity
Requirement Level: SHOULD Category: Conventional

User Story
In order to conform to coding standards,
as a developer,
I want to keep the code conform to given linter rules.

NFR6 — eccenca Infrastructure Integration
Requirement Level: MUST Category: Backend

The prototype utilizes various components of eccenca’s ecosystem. For example, the triple store to
request and store data, various API components (e.g., to resolve a URI to a label), or Keycloak20 for
authentication and identity management. To align the integration of the prototype, these services
need to be used.

User Story
In order to connect to eccenca’s backend services,
as a developer,
I want to use existing authentication methods AND components to store and retrieve data.

3.4 Overview & Prioritization

Throughout this chapter, a total of 30 functional and 6 non-functional requirements have been defined,
which also set the general scope of this work. Figure 3.5 provides an overview of the requirements
listed throughout this chapter by their category. As can be observed, the categories Feature and

20 https://www.keycloak.org/

https://www.keycloak.org/

3 Requirements — Overview & Prioritization 27

UX mark the significant part of all requirements, since requirements categorized as Feature are
scaffolding the prototype, whereas the category UX describes a desired behavior that aims to enhance
the prototype’s utility and usability regarding user interactions.

0

5

10

15

20

25

30

Functional Non-Functional

30

25

20

15

10

5

0

Backend

Conventional

Testing

UI

UX

Feature

Figure 3.5: Overview for functional (n = 30) and non-functional (n = 6) requirements by their category.

Nevertheless, the other non-functional categories (i.e.,UI, Testing, Conventional, and Backend) describe
elements that are significant for the development process; most prominently, the integration into an
existing infrastructure (NFR6).

Overall, the listed requirements set a framework for a prototypical application state. The priority of
functional requirements, however, have more significance compared to non-functional requirements.
The requirement levels for most items are either MUST or SHOULD, as can be seen in Table 3.4.

Category Requirement Levels

MUST SHOULD MAY SHOULD NOT MUST NOT

Feature 9 2 1 1 1
UX 12 4 - - -

UI 2 - - - -
Testing - 1 - - -
Conventional - 2 - - -
Backend 1 - - - -

Functional 21 6 1 1 1
Non-Functional 3 3 - - -

Sum 24 9 1 1 1

Table 3.4: Requirements overview by their requirement level (see Bradner, 1997).

There is only one requirement that must not be specified, that is the ability to drop cards on adjacent
lanes (see FR5). Moreover, the subject of column and lane order and repositioning (as outlined in FR6)
has a level of SHOULD NOT, since it requires further research (as described in chapter 7).

4 State of the Art

As described in chapter 1, the main contribution of this work is to provide a novel approach allowing
to modify specific RDF values by moving cards over a Kanban board. Since there is no comparable
previous work, this chapter provides an overview of the visualization of RDF graphs (section 4.1), as
well as existing Kanban board solutions (section 4.2).

4.1 Graph Visualization

As mentioned in the introduction, graphs are usually visualized by a set of ellipses that are intercon-
nected by arrows, representing the graphs’ nodes and edges, respectively. Nodes, however, may also
be shaped as rectangles depending on their context. A notable application for editing and visualizing
RDF resources is Protégé.21 Since its initial release in 1999, it has become the leading ontological
engineering tool. It is an open-source project, and its plugin system allows other developers to
contribute to the project (Gaševic et al., 2009, p. 62).
Another more recent work in the field of visualizing linked data (especially ontologies) has been

conducted by Lohmann and colleagues (2016). The authors introduced a visual language for OWL
ontologies (VOWL) aiming to provide a comprehensive visualization that is comprehensible by “[. . .]

casual ontology users with only little training” (Lohmann et al., 2016, p. 1). VOWL is implemented
as a Protégé plugin as well as a web application.22 The web application is publicly available as an
open-source project23 and can be embedded by other applications. For example, VOWL is integrated
within eccenca’s front-end (i.e., the DataManager).

Furthermore, Lohmann et al. elaborated on existing graph visualization in their work,most of which
are available as Protégé plugins; for example, TGViz,24 NavigOWL,25 and SOVA.26 A comprehensive
review of knowledge graph visualizations is provided in section two in the article (Lohmann et al.,
2016, p. 2).
It should be again pointed out, that this work does not attempt to visualize an entire graph. This

approach would primarily lead to a clash of paradigms. It would map a graph to a relational model
since a Kanban board can be considered as a table structure. However, when a user defines the
structural components of the board (i.e., the resources which should be used for cards, columns,
and lanes within the board configuration, see FR1), they explicitly dissect the graph, and therefore,
bypassing the clash. In other words, preselecting the board components creates a table-compatible
subset graph.

21 Initial Release: 1999. GitHub: https://github.com/protegeproject/protege. Web-version: https://webprotege.
stanford.edu/.

22 VOWL home page: http://vowl.visualdataweb.org/.
23 More information: http://vowl.visualdataweb.org/webvowl.html
24 Protégé Wiki: https://protegewiki.stanford.edu/wiki/TGViz.
25 Protégé Wiki: https://protegewiki.stanford.edu/wiki/NavigOWL.
26 Protégé Wiki: https://protegewiki.stanford.edu/wiki/SOVA.

https://github.com/protegeproject/protege
https://webprotege.stanford.edu/
https://webprotege.stanford.edu/
http://vowl.visualdataweb.org/
http://vowl.visualdataweb.org/webvowl.html
https://protegewiki.stanford.edu/wiki/TGViz
https://protegewiki.stanford.edu/wiki/NavigOWL
https://protegewiki.stanford.edu/wiki/SOVA

4 State of the Art — Kanban Board Solutions 29

To illustrate the mapping and visualization process of the RMB. Figure 4.1 (A1) compares a ‘traditional’
graph visualization (using VOWL)27 with a mockup of the Resource Management Board (B). Both
images (A1) and (B), depict a small section of the FOAF graph, whereas (A2) reveals details about
a selected node from (A1); in this instance, the FOAF term knows got selected. On the other hand,
(B) depicts a small section from the first use case of this work (i.e., FOAF Term Status). As stated
before, the RMB only targets selected card classes and maps their inherent properties to the columns
and lanes of the board. Thus, in contrast to other graph visualizations, the RMB provides a selective
perspective on a graph.

To comprehend the mapping and visualization process of the RMB, compare the contents of image
(A2) and (B) of Figure 4.1. In the first use case, the prototype’s aimwas to target three specific properties
of the FOAF graph in order to generate a board. These three properties (i.e., cards, columns, and lanes)
were defined as board component resources, as they structurally define the board components. The
card classes were defined as one of owl:Class, owl:ObjectProperty, or owl:DatatypeProperty.
Therefore, the term knows appeared as a card on the board, as in image (B) and listed in (A2). The
type property was also used to separate the cards by lane. Finally, the cards got distributed over
columns by their inherent vs:term_status value, as depicted in (B) and listed in (A2).

(A1) (A2) (B)

Figure 4.1: Visualization approaches of VOWL (A) and the RMB (B). VOWL provides a visualization
for the entire graph, whereas the RMB targets a specific selection.

4.2 Kanban Board Solutions

The initial idea of this project was to develop an in-house Kanban board from scratch. However,
considering that the Kanban board acts only as a tool for reaching the actual project goal, we decided
to use the existing Kanban board solution react-trello as underlying basis. This decision was mainly
based on the assumption that developing a board from scratch would go beyond the scope of a
Master’s thesis. Compared to an in-house application, a third-party solution would allow to develop
a vertical prototype at a faster pace while focusing on the actual goal of the project. Furthermore,
an in-house board solution would bear the risk of stagnation once the basic requirements were
satisfied.

To explain why we chose react trello as basis, the current section reviews existing implementations
of Kanban board solutions. Our review was based on the following project-relevant criteria: First
and foremost, a permissive software license (such as MIT or ISC) is essential for a component that is
supposed to be integrated into a commercial software product. Moreover—having the technology

27 The VOWL FOAF visualization can be accessed under http://www.visualdataweb.de/webvowl/#foaf.

http://www.visualdataweb.de/webvowl/#foaf

4 State of the Art — Kanban Board Solutions 30

stack in mind—the eccenca’s user interface is created with React, meaning that the Kanban board
needed to be React-based. React can be used with both languages JavaScript and TypeScript. Although
both languages allow to develop an independent software component, JavaScript represents the
preferred option, since eccenca’s build workflows and front-end codebase is entirely written in and
adjusted towards JavaScript. Another crucial criterion was the injectability of data. As mentioned
previously, our project did not aim to create data from scratch. Instead, existing data needs to be
integrated into the board.

We only considered active projects, that is projects with the last commit date no longer than one
year ago. As an indicator of popularity and quality, we used the star and fork count. Table 4.1 provides
an overview of publicly available Kanban board solutions. Projects set in bold type are fulfilling most
of the just criteria.

Project, License, Author
GitHub Page

JS/TS
React Version

Injectable?
Source

Lanes? Stars/Forks

react-kanban, MIT, Lourenci, Leandro
https://github.com/lourenci/react-kanban

JavaScript
>16.8.5

Yes
JSON-like

No 61/19

React Kanban DND, MIT, Besen, Lucas
https://github.com/lucasbesen/react-kanban-dnd

TypeScript
>16.5.2

Yes
JSON-like

No 95/10

react-trello, MIT, Ramachandran, R.
https://github.com/rcdexta/react-trello

JavaScript
>15.4.2

Yes
JSON-like

No 781/192

Kanban Board App, ISC, Shellyl, N.
https://github.com/shellyln/kanban-board-app

TypeScript
>16.9.0

No
CouchDB

Yes 16/5

React Kanban, MIT, Englund, Markus
https://github.com/markusenglund/react-kanban

JavaScript
>16.2.0

No
MongoDB

No 1,400/140

Table 4.1: Comparison of React Kanban board solutions based on their development language, data
injectability, swimlane support, star, and fork count.

As illustrated in Table 4.1, react-kanban (first commit on March 19, 2019) and react-trello (first
commit on January 24, 2017) turned out to be the most promising projects to provide a foundation
for this work. Both React projects are under active development, and share the advantages of being
JavaScript-based, and offering an interface to inject data. On the other hand, both projects, by design,
do not support swimlanes. A central advantage of react-trello is, that it has higher popularity and
active contributor count compared to react-kanban. Moreover, at the time of developing, eccenca’s
React codebase is at version 15.x, making it an excellent bedrock, since its minimal supported version
is React 15.4.2. Furthermore, react-trello seems to be a sophisticated project with active contributions
from over 20 users, and active maintenance regarding its issue management on GitHub.

 https://github.com/lourenci/react-kanban
 https://github.com/lucasbesen/react-kanban-dnd
 https://github.com/rcdexta/react-trello
 https://github.com/shellyln/kanban-board-app
 https://github.com/markusenglund/react-kanban

5 Specifications

This chapter is structured in the following way: First, section 5.1 specifies the graph model for
the board configuration and provides screenshots of its representation in eccenca’s DataManager.
Hereafter, section 5.2 introduces the data model for the external component react-trello, followed by
the adjustments and specifications for the prototype’s model and interface; and lastly, section 5.3
provides an overview of the query strategy for sending and fetching data between the RMB and
eccenca’s SPARQL endpoint.

5.1 Board Configuration

This section introduces the model for the board configuration, which allows users to control the
resources required to display a board within the prototype (e.g., board and card component resources).
The board configuration is part of the DataManager, which is eccenca’s front-end allowing users to
author and explore semantic content.

5.1.1 Config Definition

The graph-based board configuration is defined by different terms, primarily RDF(S),OWL, and SHACL.
However, this subsection only highlights key aspects in prefixed Turtle notation; the entire graph
can be found in the appendix of this work. Fundamentally, the RMB is defined as an owl:Ontology

and the board configuration as an owl:Class, as defined in Code 5.1.

1 rmb:
2 a owl:Ontology ;
3 rdfs:label "Resource Management Board" .
4 rmb:BoardConfig
5 a owl:Class ;
6 rdfs:label "Board Configuration" .

Code 5.1: Exemplary sample of the RMB and the board configuration as an OWL ontology and class.

As requested by the first functional requirement (FR1), the board configuration contains various
properties to describe a board. Code 5.2 illustrates the definition of the board component resources.

1 rmb:cardsClass
2 a owl:ObjectProperty ;
3 rdfs:label "Cards Class(es)" ;
4 rdfs:domain rmb:BoardConfig .
5
6 rmb:cardsColumnProperty
7 a owl:ObjectProperty ;
8 rdfs:label "Column Property" ;
9 rdfs:domain rmb:BoardConfig .
10
11 rmb:cardsLaneProperty
12 a owl:ObjectProperty ;
13 rdfs:label "Lane Property" ;
14 rdfs:domain rmb:BoardConfig .

Code 5.2: Exemplary sample of the definition for the board component resources.

5 Specifications — Board Configuration 32

SHACL is used to validate the graph by certain conditions. Moreover, eccenca’s DataManager relies
on these shapes to render their front-end UI. Code 5.3 illustrates the use of SHACL to specify the
cardsClass property further. For example, the property sh:nodeKind (line 4) has a value of sh:IRI.
This constraint means that nodes confirming to rmb:cardsClass must be of type IRI. Moreover, it
can be observed that sh:minCount (line 6) is defined, while sh:maxCount is not. This is on purpose
since cards are allowed to refer to multiple classes (or resources). In contrast, the shape specifications
for column and lane properties would contain both conditions, since a sh:minCount of 1 defines a
property as mandatory, whereas sh:maxCount defines a maximum number of allowed instances.

1 rmb:cardsClassSHACL
2 a sh:PropertyShape ;
3 sh:class owl:Class ;
4 sh:nodeKind sh:IRI ;
5 sh:path rmb:cardsClass ;
6 sh:minCount 1 .

Code 5.3: Sample SHACL specification for the property cardsClass.

5.1.2 Config Properties and Relations

The board configuration consists of ten properties, as requested by the first functional requirement
(FR1 on page 17). Table 5.1 provides a more specific overview of all properties as defined by the graph
for board configuration. Note that the last column, RMB Defaults, is referring to default values being
used by the RMB, as requested by FR2.

Board Config Object→ sh:nodeKind Object Description required/RMB Default

General Board Properties

rdfs:label → sh:Literal The name of the board required

dct:description → sh:Literal Descriptive text about the board’s intention ""

rmb:cardsGraph → sh:IRI Graph, which is used to get the cards from required

rmb:boardLimit → sh:Literal Integer to set the card display limit on a board 100

Board Component Resources

rmb:cardsClass → sh:IRI Card resources (multiple) required

rmb:cardsColumnProperty → sh:IRI Column resource (mutation property) required

rmb:cardsLaneProperty → sh:IRI Swimlane resource ""

Card Component Resources

rmb:cardsDescriptionProperty → sh:IRI The property to fill the card body dct:description

rmb:cardsAdditionalFieldProperty→ sh:IRI Resources referring to additional properties ""

rmb:cardsModifiedProperty→ sh:IRI Property used to save modified timestamps dct:modified

Table 5.1: Board Configuration Properties.

To illustrate the structure, relations, and cardinalities of the board configuration, the class diagram
in Figure 5.1 highlights the class for the board configuration along with its properties. To transfer
existing conventions from the traditional UML class diagram to the domain of RDF, the work by Tong
and colleagues (2015) is used as a reference. Tong et al. propose a model that allows a “Construction of
RDF(S) from UML Class Diagrams.” Although they neither included OWL nor SHACL in their model,
it is a helpful guide that is applicable in both directions. For example, they provided two tables that
map the main elements and datatypes of UML to RDF(S) and vice versa (Tong et al., 2015, pp. 241,
243).

5 Specifications — Board Configuration 33

Nevertheless, in the following, the most important key aspects for mapping the board configuration
to a UML class diagram are outlined. Furthermore, based on their publication, the corresponding
transformation rule and page will be used: First and foremost, RDF classes are mapped to regular
UML classes (Rule 2, p. 241). This rule applies to the board configuration since it is defined as an
owl:Class (see Code 5.1). RDF properties whose values are literals (i.e., specified by an xsd datatype)
become UML class attributes (Rule 4, p. 241), as exemplarily depicted by the rdfs:label within
classes. Lastly, properties whose values are resources, and their rdfs:domain refers to their parent
class become an UML aggregation (Table 1, p. 241 and Rule 6, p. 242).

Since Tong et al. did not incorporate OWL and SHACL, they concluded that cardinality could not be
expressed in their model (p. 244). However, both OWL and SHACL allow to define cardinalities. Specifi-
cally, OWL has a dedicated property (i.e., owl:minCardinality and owl:maxCardinality), whereas
SHACL uses the previous mentioned sh:minCount and sh:maxCount properties which may also be
used to describe cardinality. Figure 5.1 depicts the corresponding cardinalities between each relation.
For this prototypical configuration, rmb:cardsClass and rmb:cardsAdditionalFieldProperty

are the only elements that allow multiple instances (as outlined in FR1 and FR17 resp.).

1

1

1

rmb:BoardConfigShape (sh:NodeShape)

rdfs:label (sh:PropertyShape)

dct:description (sh:PropertyShape)
sh:targetClass

1

1

rmb:BoardConfig (owl:Class)

rmb:cardsGraph (owl:ObjectProperty)

rdfs:label Cards Graph

1
1 rdfs:domain

rmb:bordLimit (owl:DatatypeProperty)

rdfs:label Bord Limit

rmb:cardsClass (owl:ObjectProperty)

rdfs:label Cards Class

1

n
rdfs:domain

rmb:cardsColumnProperty (owl:ObjectProperty)

rdfs:label Column Property

rmb:cardsLaneProperty (owl:ObjectProperty)

rdfs:label Lane Property

1

rdfs:domain

rmb:cardsDescriptionProperty (owl:ObjectProperty)

rdfs:label Description Property

rmb:cardsAdditionalFieldProperty
(owl:DatatypeProperty, owl:ObjectProperty)

rdfs:label Additional Properties

rmb:cardsmodifiedProperty (owl:ObjectProperty)

rdfs:label Modified Property

n
rdfs:domain

1

1

rdfs:domain

1 1

Figure 5.1: The prototypical board configuration graph represented as a UML class diagram.

5.1.3 Config Instance & Usage

For demonstration purposes, Code 5.4 defines a particular instance of a board configuration with
the data requested by the first use case (for reference see the board and card component resources
on page 9). Note that neither developers nor users need to define a new board configuration in this
manner; instead, users define a board using eccenca’s DataManger which will generate a similar
specification:

1 rmb:foaf-term-status
2 a rmb:BoardConfig ;
3 rdfs:label "FOAF Term Status" ;
4 dct:description "Manages terms by their status in the FOAF namespace" ;
5 rmb:cardsGraph foaf: ;
6 rmb:cardsClass owl:Class, owl:DatatypeProperty, owl:ObjectProperty ;
7 rmb:cardsColumnProperty vs:term_status ;
8 rmb:cardsLaneProperty rdf:type ;
9 rmb:cardsDescriptionProperty rdfs:comment .

Code 5.4: A board configuration instance of the first use case (FOAF Term Status).

5 Specifications — Board Configuration 34

The DataManager relies on a graph that contains shape definitions to render its UI. In other words, a
(compatible) graph gets translated to a user interface. When importing the entire board configuration
graph (see appendix) into eccenca’s DataManager, the front-end will render the graph as described
in Figure 5.2. While Figure 5.2 (A) illustrates the interface when defining a new board configuration,
Figure 5.2 (B) shows the configuration for the first use case. After creating a new board configuration,
as in (B), this particular instance will be added to the board configuration graph. In other words,
exporting the board configuration graph of Figure 5.2 (B), would lead to a graph with similar data as
Code 5.4.

The properties listed in Figure 5.2 (A) correspond to all properties requested in the first functional
requirement (see FR1) or as specified in Table 5.1. Moreover, as image (A) shows, there are four
required fields: the board’s name, graph, card class(es), and column property. Thus, the UI requires
the user to add a resource. This UI functionality is derived from a resource sh:minCount property
set to value 1, making it mandatory to define a resource, as mentioned earlier.
Figure 5.2 (B) depicts the setup for the FOAF Term Status use case (see page 9 for the board and

card component resources). The class(es) field contains multiple resources since a sh:maxCount is
not defined for this property.

(A) (B)

Figure 5.2: Board configuration graph represented in eccenca’s DataManager. (A) is showing all
defined fields of the board configuration. (B) is showing an actual instance of a board
configuration (i.e., the first use case).

5 Specifications — Board Specifications 35

5.2 Board Specifications

The following subsection 5.2.1 describes the specifications, limitations, and workarounds for the
third-party component react-trello (Ramachandran, 2017). Then subsection 5.2.2 provides the design
specifications for the prototype.

5.2.1 react-trello

This subsection will highlight the most important aspects of react-trello to understand its general
usage. Since react-trello is one of the few JavaScript-based React projects that allows to inject data
(see Table 4.1), the following segment will introduce its data model. It is important to point out
that—regardless of how the intermediate data model is shaped—the resulting model needs to satisfy
the required target data model by react-trello in order to render a board.

Target Data Model

The data is stored in a JSON format, containing a column array, which itself contains a card array.
Code 5.5 provides an overview of the target data model that react-trello expects in order to render a
board flawlessly. The code depicted below describes a board that consists of two columns (i.e., testing
and stable) and three cards (i.e., depiction, knows, and personal mailbox). Note that react-trello uses
the misleading term lanes to describe the columns of the board (see line 2). Although I reported the
idiosyncratic terminology.28 It is unlikely that the term will be changed in the future since renaming
elements within the data model would introduce breaking changes29 for a variety of users. For the
sake of clarity, I will continue using the term column when referring to react-trello’s lanes.

1 {
2 "lanes": [{
3 "id": "testing",
4 "title": "testing",
5 "cards": [{
6 "id": "http://xmlns.com/foaf/spec/#term_depiction",
7 "title": "depiction",
8 "description": "A depiction of some thing)."
9 }]
10 }, {
11 "id": "stable",
12 "title": "stable",
13 "cards": [{
14 "id": "http://xmlns.com/foaf/spec/#term_knows",
15 "title": "knows",
16 "description": "A person known by this person (indicating some level of [...]).",
17 "modified": "2019-06-14T16:49:21+02:00"
18 }, {
19 "id": "http://xmlns.com/foaf/spec/#term_mbox",
20 "title": "personal mailbox",
21 "description": "A personal mailbox, ie. an Internet mailbox associated [...]"
22 }]
23 }]
24 }

Code 5.5: Target Data model of the react-trello component defining two columns and three cards.

react-trello’s data model—similar to its namesake product Trello—does not support swimlanes. This is
important to note since this feature is demanded by all use cases and as it is a functional requirement
28 https://github.com/rcdexta/react-trello/issues/126.
29 That means it will require users to make a corresponding change in their code as well.

https://github.com/rcdexta/react-trello/issues/126

5 Specifications — Board Specifications 36

(FR4). Nonetheless, the data model fulfills two structural requirements; (1) columns and cards have an
"id" key, which is convenient since a URI is an excellent id by definition, and (2) React, the JavaScript
library for creating the front-end, works more efficiently with arrays rather than objects, which
furthermore have drawbacks with regard to sorting their elements.

The specification to use the component within React is demonstrated below in Code 5.6. The object
data (line 4) is the only mandatory attribute and refers to a JSON structure similar to previously
introduced in Code 5.5.

1 import Board from 'react-trello';
2 /* React Component Structure ... */
3 return(
4 <Board data={data} />
5)

Code 5.6: Minimal React code to render a board using react-trello.

Figure 5.3 shows the default visual representation of react-trello. The underlying data is taken from
previous Code 5.5 that is similar to the data from the first use case, yet limited regarding its board
features (see the mockup of use case 1 on page 10 for comparison).

Figure 5.3: Default react-trello board visualizing the data from Code 5.5.

Bypassing Limitations

Without any modifications, the default card element of react-trello (as shown above) is limited to
a predefined amount of elements it can possibly depict on its surface. However, react-trello allows
developers to use their own card component. This provides two fundamental benefits: (1) Developers
have no boundaries regarding card styling and positioning of elements, and (2) every value of a key
that is specified within the card object of the data model can be depicted on a card. For example, the
key modified at line 17 in previous Code 5.5 can be used as a visual element within a custom card
component (see line 8 in Code 5.7).
The following two code samples demonstrate the specification for a custom card component

(Code 5.7) and the necessary changes within the react-trello component (Code 5.8). Note that the

5 Specifications — Board Specifications 37

properties used in Code 5.7 (e.g., modified in lines 2 and 8) need to match exactly the key names
defined within the data model in Code 5.5

1 /* Custom Card Function at CustomCard/CustomCard.js */
2 export default ({title, description, modified, id}) => {
3 return (
4 <div>
5 <h1>{title}</h1>
6 <p>{description}</p>
7 <hr />
8 <p><small>{modified}</small></p>
9 <p>{id}<p>
10 </div>
11)
12 };

Code 5.7: Example of a custom card component.

In order to use the prior defined custom card components the main react-trello component requires
the attribute customCardLayout (line 6) and the child element <CustomCard \> (line 7) to be set.

1 /* Main React Component */
2 import Board from 'react-trello';
3 import CustomCard from './CustomCard/CustomCard';
4 /* ... */
5 return(
6 <Board data={data} customCardLayout>
7 <CustomCard />
8 </Board>
9);

Code 5.8: Usage of custom cards in react-trello.

At this stage, the former code samples describe the core building blocks in order to create and display
a board with an arbitrary amount of columns and cards. Although react-trello’s data model does
not support swimlanes, this limitation can be bypassed by loading multiple instances of the board
component, each containing a different data chunk, as depicted in lines 6 and 7 in Code 5.9. This
means that, conceptually, each react-trello board can be considered as a swimlane. To obfuscate the
semantic mapping from board to swimlane, the import statement might by renamed from Board to
Lane (see lines 2, 6, and 7).

1 /* Main React Component */
2 import Lane from 'react-trello';
3 /* ... */
4 return(
5 <div id="board-container">
6 <Lane data={data1} />
7 <Lane data={data2} />
8 </div>
9);

Code 5.9: Example of multiple swimlanes.

Additionally, the existing data model needs to be adjusted to include swimlanes. Code 5.10 specifies
a JSON template that acts as a superset of react-trellos’s data model. The benefit of this design is
that it is (a) able to manage swimlanes, and (b) when destructuring the object by swimlanes, the
resulting object satisfies the requested target data model by react-trello (lines 5 to 24 and 28 to 52).
The adjusted model below consists of two swimlanes (lines 2 and 26) and two columns (lines 7f., 19f.,

5 Specifications — Board Specifications 38

and 30f., 42f. resp). While the first lane contains one card (line 9ff.) which is located in the column
labeled [Column Title#1] (line 7f.), the second column within this lane has no card (line 21). The
second lane contains two cards, each of which are grouped in a different column (lines 32ff. and
44ff.)

1 {
2 "[SWIMLANE IRI#1]": { // swimlane identifier
3 "title": "[Swimlane Title#1]",
4 // start of the react-trello format
5 "lanes": [// "columns" within the current swimlane
6 {
7 "title": "[Column Title#1]",
8 "id": "[Column IRI#1]",
9 "cards": [
10 {
11 "title": "[Card Title#1]",
12 "id": "[Card IRI#1]",
13 "description": "...",
14 "modified": "[ISO 8601 Timestamp]"
15 }
16]
17 },
18 {
19 "title": "[Column Title#2]",
20 "id": "[Column IRI#2]",
21 "cards": []
22 }
23]
24 // end of the react-trello format
25 },
26 "[SWIMLANE IRI#2]": {
27 "title": "[Swimlane Title#2]",
28 "lanes": [
29 {
30 "title": "[Column Title#1]",
31 "id": "[Column IRI#1]",
32 "cards": [
33 {
34 "title": "[Card Title#2]",
35 "id": "[Card IRI#2]",
36 "description": "...",
37 "modified": "[ISO 8601 Timestamp]"
38 }
39]
40 },
41 {
42 "title": "[Column Title#2]",
43 "id": "[Column IRI#2]",
44 "cards": [
45 {
46 "title": "[Card Title#3]",
47 "id": "[Card IRI#3]",
48 "description": "...",
49 "modified": "[ISO 8601 Timestamp]"
50 }
51]
52 }
53]
54 }
55 }

Code 5.10: Template specification for multiple swimlanes within the data model.

5 Specifications — Board Specifications 39

5.2.2 RMB Specification

This subsection provides the specification for the UI components that are used by the Resource
Management Board. As outlined in the non-functional requirement NFR2, eccenca has elaborated
a style guide for its visual components based on Material Design Lite (MDL).30 The corresponding
specifications are publicly available31 and will be referenced throughout this section.

Cards

To conform to eccenca’s visual appearance and to allow an arbitrary amount of elements to be depicted
on a card’s surface, eccenca’s card component32 replaces react-trello’s default card component.

Figure 5.4 illustrates the design and positioning specification for the card component. Figure 5.4 (A)
showcases all defined card component resources that a user may specify within the board configu-
ration. However, the only mandatory elements on a card are its title and its resource identifier, as
depicted by Figure 5.4 (B). This means, if an optional element (e.g., the description) is not defined
within a resource, the card does not reserve a blank area. In other words, the card’s height matches
its content. Moreover, the card specification contains different sections. For this work the following
sections are relevant: Figure 5.4 (1) defines the <CardTitle>, (2) <CardContent> is used for the
descriptive text, (3) and (4) use the element <CardActions>, since by design it creates a horizontal
divider, and is set in a smaller font size.

(A) (B)

(1)

(2)

(3)

(4)

Figure 5.4: Card style and positioning specification.

SHACLINE Whenever a user clicks a card, a modalwindow33 appears and provides more information
about the clicked resource. More specifically, the board requires an event handler that listens to card
on-click events. This means, that the handler should receive the card’s resource identifier and the
corresponding card’s graph. These two information are provided to eccenca’s SHACLINE component,
which creates a SHACL-defined document-like view on the provided resource and allows the user to
manipulate data safely. The SHACLINE component should be embedded within the modal window.

30 MDL is a UI component library by Google. GitHub: https://github.com/google/material-design-lite.
31 eccenca UI Repository: https://github.com/eccenca/ecc-gui-elements.
32 Card specs. https://github.com/eccenca/ecc-gui-elements#card.
33 A modal window is “[. . .] a window overlaid on either the primary window or another dialog window. Windows under a
modal dialog are inert. That is, users cannot interact with content outside an active dialog window.” (W3C, 2015)

https://github.com/google/material-design-lite
https://github.com/eccenca/ecc-gui-elements
https://github.com/eccenca/ecc-gui-elements#card

5 Specifications — Board Specifications 40

Board Overview

Figure 5.5 specifies the structural layout of the ResourceManagement Board using the adjust swimlane
model and eccenca UI elements. Foremost, Figure 5.5 (1) uses the <SelectBox> element34 allowing
users to view all boards by their title. Moreover, the initial state of the application only displays the
<SelectBox> element waiting for the user to select a board. After a board got selected, the remaining
elements (2) to (6) appear below the selection box. Specifically, the elements (2) and (3) display the
board’s title and description. The placeholder (4) should provide information or warnings about the
state of the board (using the <InfoBox>35 element). Element (5) provides the label of the current
swimlane. If swimlanes are not defined, this element does not appear. Lastly, the swimlane container
(6) iterates over all swimlane objects defined in the data (at least once). It groups cards and columns
in the way as specified before.

(1)

(2)
(3)
(4)
(5)
(6)

Figure 5.5: Layout Specification for the RMB using react-trello and MDL cards.

34 SelectBox specs. https://github.com/eccenca/ecc-gui-elements#selectbox.
35 InfoBox specs. https://github.com/eccenca/ecc-gui-elements#alert-error-info-success-and-warning.

https://github.com/eccenca/ecc-gui-elements#selectbox
https://github.com/eccenca/ecc-gui-elements#alert-error-info-success-and-warning

5 Specifications — Query Strategy 41

5.3 Query Strategy

Figure 5.6 provides a high-level abstraction of the Resource Management Board. The process flow
can be divided into three different views (i.e., SPARQL, data processing, and user interface). While
the user interface has been outlined in the previous section, data processing will be introduced in the
next section. The current section focuses on the SPARQL query strategy. When users interact with the
RMB, the underlying SPARQL processes for requesting or updating data are composed automatically,
since users are not supposed to form a query by themselves. This section provides the specifications
for this SPARQL abstraction, specifically focusing on five central stages within the query process, as
denoted by the letters to within the SPARQL lane in Figure 5.6.

R
M

B
 P

ro
c

e
s

s
 F

lo
w

SPARQL

F
e

tc
h

 A
ll

D
e

fi
n

e
d

 B
o

a
rd

G
e

t
B

o
a

rd

P
ro

p
e

rt
ie

s
G

e
t

B
o

a
rd

’s
 D

a
ta

U
p

d
a

te
 C

o
lu

m
n

P

ro
p

e
rt

y S
to

re
 T

im
e

st
a

m
p

D
e

le
te

 C
o

lu
m

n

P
ro

p
e

rt
y

S
H

A
C

L

Processing

R
e

so
lv

e
 U

R
Is

 t
o

 L
a

b
e

ls
 &

S

to
re

 B
o

a
rd

 L
is

t

S
to

re
 P

ro
p

e
rt

ie
s

a
n

d
 V

a
lu

e
s,

A

ss
ig

n
 D

e
fa

u
lt

 V
a

lu
e

s,
L

o
g

 W
a

rn
in

g
s

C
re

a
te

 B
o

a
rd

 O
b

je
ct

S
to

re
:

C
a

rd
 U

R
I,

S

o
u

rc
e

 &
 T

a
rg

e
t

C
o

lu
m

n
C

re
a

te
 T

im
e

st
a

m
p

N
o

 P
ro

p
e

rt
y

C
o

l
R

e
g

u
la

r
C

o
l

S
to

re
 C

a
rd

 U
R

I
&

C

a
rd

 G
ra

p
h

UI

P
ro

vi
d

e
 I

n
it

ia
l

U
I

&
B

o
a

rd
 S

e
le

ct
io

n
 L

is
t

S
ta

rt
D

is
p

la
y

B
o

a
rd

 &

P
ro

vi
d

e
 I

n
fo

<
S

H
A

C
L

IN
E

>
V

is
u

a
l

F
e

e
d

b
a

ck

o
n

 C
a

rd

U
se

r
D

ro
p

s
C

a
rd

 T
o

 C
o

lu
m

n

U
se

r
C

lic
ks

 C
a

rd

U
se

r
S

e
le

ct
s

B
o

a
rd

Figure 5.6: Process flow of the RMB separated by three views (i.e., SPARQL, data processing, and UI).

5 Specifications — Query Strategy 42

All queries will use two interfaces developed by eccenca; Foremost, the SPARQL logic store (or spar-
qlChannel in the following), which requires an input string that contains the actual SPARQL query,
and returns a response object. The response object may be set to responseJson to receive a JSON
structure as the output format. The second interface is the TitleHelper logic store (or titleHelper in the
following) which—in its default configuration—requires a single resource (or an array of resources)
as an input argument, and returns a key-value object, whereas a key is an IRI and value is the
corresponding label.
The following three subsections represent the query stages (i.e., , , and) in order to receive

and send the required data for rendering the board.

5.3.1 — Fetch All Defined Boards

Initially, the prototype should send an asynchronous request to fetch all available boards (i.e., board
configurations). Code 5.11 illustrates this query, which essentially requesting resources that are of
the type rmb:BoardConfig (line 3), as earlier specified in the model for the board configuration. Line
4 requests the board’s description if defined.

1 SELECT DISTINCT ?board ?descr
2 WHERE {
3 ?board a <https://vocab.eccenca.com/rmb/BoardConfig> .
4 OPTIONAL { ?board <http://purl.org/dc/terms/description> ?descr . }
5 }

Code 5.11: Requesting all boards that are of type rmb:BoardConfig.

Code 5.12 illustrates the response object that contains the board configuration of the first use case,
as earlier defined in Code 5.4. The titleHelper would reveal the title as also defined in former board
configuration (i.e., FOAF Term Status). Nevertheless, the list of board titles should be used in the
<SelectBox> element, which was shown previously in Figure 5.5 (1).

1 [{
2 "board": {"type":"uri", "value":"https://vocab.eccenca.com/rmb/foaf-term-status"},
3 "descr": {"type":"literal","value":"Manages terms by their status in the FOAF namespace"}
4 },{
5 // other configurations
6 }]

Code 5.12: Exemplary response object of the request in Code 5.11.

5.3.2 — Get Board Properties

Selecting a board from the <SelectBox> immediately triggers another query requesting all properties
within the selected board configuration. That is, the properties and their values as requested in the
first functional requirement FR1 or similar in Table 5.1. This query, however, requires the IRI of the
board the user selected. Code 5.13 illustrates the request for all properties and values of a specific
board, using the placeholder variable boardIRI in line 3.

1 SELECT DISTINCT ?p ?o
2 WHERE {
3 <boardIRI> ?p ?o .
4 }

Code 5.13: Requesting all defined properties of a specific board (i.e., the variable boardIRI).

https://vocab.eccenca.com/rmb/BoardConfig
http://purl.org/dc/terms/description

5 Specifications — Query Strategy 43

Consider the scenario that the current board configuration contains the information of the first use
case, as illustrated in Code 5.4 or Figure 5.2 (B), and the former request replaces the placeholder
boardIRI with rmb:foaf-term-status (Code 5.13 line 3). As a result, the sparqlChannel would
return a response object similar as depicted by Code 5.14.

This output provides two important information: (1) the developer knows what specific properties
have been defined within the selected board configuration (i.e., lines containing "p"), and (2) what
their corresponding object value is (i.e., lines containing "o"). In any case, the response object
should match the board configuration regarding their contents, as can be seen in Code 5.14 and
Figure 5.2 (B).

1 [{
2 "p": {"type": "uri", "value": "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"},
3 "o": {"type": "uri", "value": "https://vocab.eccenca.com/rmb/BoardConfig"}
4 },{
5 "p": {"type": "uri", "value": "http://www.w3.org/2000/01/rdf-schema#label"},
6 "o": {"type": "literal","value": "FOAF Term Status"}
7 },{
8 "p": {"type": "uri", "value": "http://purl.org/dc/terms/description"},
9 "o": {"type": "literal","value": "Manages terms by their status in the FOAF namespace"}
10 },{
11 "p": {"type": "uri", "value": "https://vocab.eccenca.com/rmb/cardsGraph"},
12 "o": {"type": "uri", "value": "http://xmlns.com/foaf/0.1/"}
13 },{
14 "p": {"type": "uri", "value": "https://vocab.eccenca.com/rmb/cardsClass"},
15 "o": {"type": "uri", "value": "http://www.w3.org/2002/07/owl#Class"}
16 },{
17 "p": {"type": "uri", "value": "https://vocab.eccenca.com/rmb/cardsClass"},
18 "o": {"type": "uri", "value": "http://www.w3.org/2002/07/owl#DatatypeProperty"}
19 },{
20 "p": {"type": "uri", "value": "https://vocab.eccenca.com/rmb/cardsClass"},
21 "o": {"type": "uri", "value": "http://www.w3.org/2002/07/owl#ObjectProperty"}
22 },{
23 "p": {"type": "uri", "value": "https://vocab.eccenca.com/rmb/cardsColumnProperty"},
24 "o": {"type": "uri", "value": "http://www.w3.org/2003/06/sw-vocab-status/ns#term_status"}
25 },{
26 "p": {"type": "uri", "value": "https://vocab.eccenca.com/rmb/cardsLaneProperty"},
27 "o": {"type": "uri", "value": "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"}
28 },{
29 "p": {"type": "uri", "value": "https://vocab.eccenca.com/rmb/cardsDescriptionProperty"},
30 "o": {"type": "uri", "value": "http://www.w3.org/2000/01/rdf-schema#comment"}
31 }]

Code 5.14: Exemplary response object of the request in Code 5.13. The response matches the board
configuration in the DataManger. In this instance, the response object matches the config
of Figure 5.2 (B).

At this stage, developers can check the existence of all properties and may add default values for
missing properties, as specified in Table 5.1. For example, Code 5.14 does not contain a boardLimit
property. However, as outlined in FR2 (Default Values), it is beneficial to set a limit implicitly, since
this will avoid loading too many cards on the board which would likely causes the browser to stall.
A default limit of 100 can be considered as a reasonable maximum amount of cards. If this is not
high enough, users may set an explicit board limit in the board configuration to override the default
value. Lastly, the modified property was not part of the response object. However, since the modified
property is used to store a timestamp in the event of dropping a card to a column, it is always
justifiable to use an implicit modified property in case the response object lacks its definition. The
property dct:modified is a suitable candidate for this task.

5 Specifications — Query Strategy 44

At this stage, it should also be checked if the board contains all the required elements in order
to render the board. As indicated in FR1 and Table 5.1, the response object should contain at least a
name, the underlying card’s graph, the card classes, and the column property. If anything is missing,
the user should receive a warning provided in the <InfoBox> element, as shown in Figure 5.5 (4).

5.3.3 — Get Board’s Data

The last stage is requesting the actual cards that are displayed within the board, along with their
requested properties. Code 5.15 provides a generic template specification to request this data. In
the stage of data processing, the placeholder variables (depicted in red) need to be replaced with
the corresponding resources of the former response object (i.e., Code 5.14). However, in the case of
absent resources, the entire placeholder line within the where clause and the specific placeholder
within the projection variables (lines 1 and 2) should be removed in order to form clean query.

The keyword SAMPLE (lines 1 and 2) is an aggregate function that returns an arbitrary value from
a multiset passed to it. For example, if there are multiple column values (e.g., stable and unstable), an
arbitrary single selection gets returned.36 Although this event is likely an indication for broken or
invalid data, it should be guaranteed that the response only contains atomic values.37

At first glance, using the keyword OPTIONAL for the cardsColumnProperty (line 7) may seem like
an error; however, the optional clause is used on purpose, since only the board configuration requires
the definition of that property. For a resource, on the other hand, it is not a necessity to contain
the requested property. An example of this scenario is provided in the second use in this work (see
page 12). In this example, the column property (i.e., vs:term_status) was defined. However, the
UNESCO terms did not contain this property, as the purpose of this scenario was to assign it from
scratch. Therefore, the no property column was listed as a functional requirement in FR8. Note that
this also applies to the cardsLaneProperty (line 8), as resources will fallback in the Everything Else
swimlane (see FR10).

1 SELECT DISTINCT ?card (SAMPLE(?columns) AS ?column){laneSample}
2 (SAMPLE(?descriptions) AS ?description)(SAMPLE(?modifieds) AS ?modified){additionalValues}
3 FROM <cardGraph>
4 WHERE {
5 ?card a ?class.
6 FILTER (?class IN (<cardsClass>)) .
7 OPTIONAL { ?card <cardsColumnProperty> ?columns. }
8 OPTIONAL { ?card <cardsLaneProperty> ?lanes. }
9 OPTIONAL { ?card <cardsDescriptionProperty> ?descriptions. }
10 OPTIONAL { ?card <cardsModifiedProperty> ?modifieds. }
11 {additionalPropertiesPlaceholder}
12 }
13 GROUP BY ?card
14 LIMIT boardLimit

Code 5.15: Template specification for requesting the content of the board depending on the selected
board and card component resources. Variables that need to be replaced or removed are
depicted in red color.

For illustration purposes, Code 5.16 demonstrates the final query after the replacement process of the
former SPARQL template. As stated, the resources used in Code 5.16 stem from the prior response

36 Thus, the variable names are mapped from plural to a singular form.
37 This operation is similar to the process of achieving a first normal form (1NF) in the field of database normalization. In
other words, a table only consists of atomic columns, which means all cells have a single value.

5 Specifications — Query Strategy 45

object of stage (see Code 5.14). Moreover, the placeholders for additional properties were removed,
since they were not defined in the response object.

1 SELECT DISTINCT ?card (SAMPLE(?columns) AS ?column)(SAMPLE(?lanes) AS ?lane)
2 (SAMPLE(?descriptions) AS ?description)(SAMPLE(?modifieds) AS ?modified)
3 FROM <http://xmlns.com/foaf/0.1/>
4 WHERE
5 {
6 ?card a ?class.
7 FILTER (?class IN (
8 <http://www.w3.org/2002/07/owl#Class>,
9 <http://www.w3.org/2002/07/owl#DatatypeProperty>,
10 <http://www.w3.org/2002/07/owl#ObjectProperty>
11)) .
12 OPTIONAL { ?card <http://www.w3.org/2003/06/sw-vocab-status/ns#term_status> ?columns. }
13 OPTIONAL { ?card <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?lanes. }
14 OPTIONAL { ?card <http://www.w3.org/2000/01/rdf-schema#comment> ?descriptions. }
15 OPTIONAL { ?card <http://purl.org/dc/terms/modified> ?modifieds. }
16 }
17 GROUP BY ?card
18 LIMIT 100

Code 5.16: SPARQL sample to retrieve the board’s data of the first use case.

Code 5.16 returns a response object that contains all 75 FOAF terms.38 Code 5.17 shows an excerpt
of four resources, which are—regarding their content—similar to the mockup provided on page 10.
Ultimately, this array of resources represents the cards of the Resource Management Board.

The subsection 6.2.1 (Data Transformation) will highlight important aspects when converting the
final response object (i.e., Code 5.17) into the prior defined target data model (i.e., Code 5.10) in order
to satisfy the required format of react-trello.

1 [{
2 "card": {"type":"uri", "value":"http://xmlns.com/foaf/0.1/Document"},
3 "column": {"type":"literal","value":"stable"},
4 "lane": {"type":"uri", "value":"http://www.w3.org/2002/07/owl#Class"},
5 "description":{"type":"literal","value":"A document."},
6 "modified": {"type":"literal","value":"2019-09-06T09:24:37+02:00",
7 "datatype": "http://www.w3.org/2001/XMLSchema#dateTime"}
8 },{
9 "card": {"type":"uri", "value":"http://xmlns.com/foaf/0.1/mbox"},
10 "column": {"type":"literal","value":"stable"},
11 "lane": {"type":"uri", "value":"http://www.w3.org/2002/07/owl#ObjectPropert"},
12 "description":{"type":"literal","value":"A personal mailbox, ie. an Internet mailbox..."}
13 },{
14 "card": {"type":"uri", "value":"http://xmlns.com/foaf/0.1/depiction"},
15 "column": {"type":"literal","value":"testing"},
16 "lane": {"type":"uri", "value":"http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"},
17 "description":{"type":"literal","value":"A depiction of some thing."}
18 },{
19 "card": {"type":"uri", "value":"http://xmlns.com/foaf/0.1/knows"},
20 "column": {"type":"literal","value":"stable"},
21 "lane": {"type":"uri", "value":"http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"},
22 "description":{"type":"literal","value":"A person known by this person (indicating..."}
23 }]

Code 5.17: Sample response object of the request in Code 5.16. The object contains four resources
(i.e., cards) similar to the mockup of the first use case (see page 10).

38 To replicate this scenario, you may visit http://bit.ly/foaf-term-status, which is linking to the LOV SPARQL
endpoint containing the query provided in Code 5.16. The output can be toggled between a raw response (i.e., similar to
Code 5.17), and a table view.

http://bit.ly/foaf-term-status

5 Specifications — Query Strategy 46

Update & Delete Column Properties

The following two subsections will provide the query specifications for column updates. Specifically,
an event listener should trigger the process of a column update, whenever a card gets dropped to
column. An informal algorithm that handles column updates would be:

(1) When dropping a card, check if the source column AND the target column is equal; then do nothing.

(2) If the source column AND target column are unequal, then check

(2A) if the target column equals a column value other than no property ; then do update the

resource’s column property to the target column value (i.e., stage). If (2A) is not the case,

check

(2B) if the target column equals the column value of no property ; then do delete the resource’s

column property entirely (i.e., stage).

Set a Timestamp

Regardless of updating or deleting a property, both stages have in common that they store a timestamp
in their process, as can be seen in Figure 5.6. Therefore, Code 5.18 specifies a timestamp template
that is applicable in both stages. There are two steps involved for updating the value of the modified
property: (1) deleting all existing values and (2) inserting the new value. Moreover, the depicted
DELETE/WHERE approach (line 1 and 2) guarantees to delete a set of variables.39 This essentially means
that if there are multiple timestamps values, the query will delete all of them.40 Similar to the prior
templates, placeholder variables are depicted in red color. In order to update a value the query needs
to know (in descending order): the resource’s graph (i.e., cardsGraph), its resource identifier (i.e.,
cardId), and the property that needs to be adjusted (i.e., cardsModifiedProperty). The timestamp
is provided in ISO 8601.41

1 WITH <cardsGraph>
2 DELETE { <cardId> <cardsModifiedProperty> ?o . }
3 WHERE { <cardId> <cardsModifiedProperty> ?o } ;
4 INSERT DATA {
5 GRAPH <cardsGraph> {
6 <cardId>
7 <cardsModifiedProperty>
8 "ISO8601Timestamp"^^<http://www.w3.org/2001/XMLSchema#dateTime> .
9 }
10 }

Code 5.18: SPARQL template to update the modified property of a resource.

39 See SPARQL specification: https://www.w3.org/TR/sparql11-update/#deleteInsert.
40 Although this should not occur though, due to sampling the projection variables beforehand (see Code 5.15).
41 The ISO 8601 is a standardized time format, which has the following pattern: 2019-12-20T08:30:00+01:00. That is ex-
pressing the date of December 20, 2019, at a time of 8:30:00, and a one hour time offsets from UTC.

https://www.w3.org/TR/sparql11-update/#deleteInsert

5 Specifications — Query Strategy 47

5.3.4 — Update Column Property

The query for updating a timestamp has a similar pattern as the query for updating a column property.
This means that all instances of cardsModifiedPropertywill be replaced by cardsColumnProperty.
However, in the stage of data processing, the resource for newColumnValue (line 8) should be type-
checked, since it may either be an IRI or a literal. Hence, it is either surrounded by angle brackets
(<>) or double quotes (""), respectively.

1 WITH <cardsGraph>
2 DELETE { <cardId> <cardsColumnProperty> ?o . }
3 WHERE { <cardId> <cardsColumnProperty> ?o } ;
4 INSERT DATA {
5 GRAPH <cardsGraph> {
6 <cardId>
7 <cardsColumnProperty>
8 <"newColumnValue"> .
9 }
10 }

Code 5.19: SPARQL template to update the column property of a resource.

5.3.5 — Delete Column Property

If a user drags a card to the no property column, the corresponding column property of that resource
gets deleted using Code 5.20.

1 WITH <cardsGraph>
2 DELETE { <cardId> <cardsColumnProperty> ?o . }
3 WHERE { <cardId> <cardsColumnProperty> ?o } ;

Code 5.20: SPARQL template to delete the column property of a resource.

6 Implementation

This chapter highlights aspects of the developmental process of the RMB (section 6.2), and after that,
screenshots will demonstrate the final prototype showcasing the four use cases (section 6.3).

6.1 Technology Stack

The current project was encapsulated within eccenca’s existing ecosystem. Due to the user-centric
nature of this work, most technologies involved during the development of the prototype were
all based around front-end frameworks and their corresponding build workflow. However, as the
prototype relied on the solutions provided by eccenca’s Corporate Memory, some interfaces were
back-end based, such as the triplestore database, and authorization functionality.

As indicated in the specification section of the previous chapter, the prototype has been developed
using React.42 That is a JavaScript library for building user interfaces, having its strengths in perfor-
mance, and its appealing approach to use JavaScript render the HTML DOM. Specifically, React refers
to this method as Javascript XML (JSX). Code 6.1 illustrates the basic concept of React.

1 /* React Component */
2 render() {
3 const myIRI = 'http://example.com/ns/rmb/thesis#react-example';
4 const myJSX = <p>Hi, I am JSX! My IRI is: {myIRI}</p>
5 return (
6 <div>
7 {myJSX}
8 </div>
9);
10 }

Code 6.1: Basic React example.

The React coding guidelines, as well as the React community in general, encourage developers to use a
modern JavaScript syntax. Therefore, the usage of JavaScript represented a fundamental requirement
during the development process. The CSS was composed using the preprocessor language SCSS, and
the entire front-end project was streamlined using Gulp, which is a build system and task runner43

when compiling the code.
To establish (a) the underlying board configuration graph and (b) the query strategy, technologies

around the Semantic Web Stack44 were used. Both procedures were specified in the previous chapter.
More detailed information around web technologies and the semantic web stack can be found here:

• https://developer.mozilla.org/en-US/docs/Web

• https://jena.apache.org/tutorials/index.html

42 GitHub Repository: https://github.com/facebook/react.
43 This involves tasks around minification, concatenation, cache busting, or linting.
44 More information: https://en.wikipedia.org/wiki/Semantic_Web_Stack.

https://developer.mozilla.org/en-US/docs/Web
https://jena.apache.org/tutorials/index.html
https://github.com/facebook/react
https://en.wikipedia.org/wiki/Semantic_Web_Stack

6 Implementation — Development Process 49

6.2 Development Process

The agile development process of the current project was held in an iterative and incremental manner.
The development of the prototype was split into small and manageable pieces, undergoing multiple
iteration cycles. In irregular meetings, novel features or enhancements were discussed and specified.
In the step-wise development process, novel features were first tested and implemented before the
next iteration cycle. The cycles were repeated until a satisfying prototypical application state was
reached for this work.

Besides learning the involved technologies, one of the most time-consuming tasks of the current
project was the data transformation process. That is the conversion from the response object of the
board’s data (Code 5.17) to the target data model (Code 5.10). The next subsection gives an outline of
the main obstacles in this regard and illustrates the algorithm used to transform the data from the
response object to the target data model.

6.2.1 Towards the Target Data Model

Comparing the column and lane resources in Code 5.17 (e.g., lines 3 and 4) reveals that both differ in
their type: while columns are of type literal, lanes are of type uri. This implies that both require
different processing steps. The target data model, for example, requires one title for each swimlane.
This means that a single title will be used to label every individual segment of the swimlane container,
as specified in Figure 5.5. However, given that swimlanes are resources—in this particular case—their
label needs to be first resolved using eccenca’s titleHelper. Moreover, if a certain resource does not
contain a swimlane property while other resources do, even more processing steps are required.

To summarize this ‘mixed-type issue,’ Table 6.1 provides a lookup table for all possible combinations.
The corresponding function45 contains the transformation algorithm, and also refers to the notation
depicted in the table. Ultimately, this function is responsible for converting the response object of
stage into the target data model. The 3×3matrix only differentiates between column and lane types,
since these are the only board component resources that can vary in their type.46 In the table, the type
null expresses the scenario that a resource does not contain the requested swimlane and/or column
property. The boxes around the entries illustrate how the algorithm branches the processing.

Column Type
Literal Uri Null (×)

La
ne

Ty
pe Literal LL LU L×
Uri UL UU U×
Null (×) ×L ×U ××

Table 6.1: Lookup table for the mixed type processing algorithm. The boxes around the matrix entries
illustrate explicit (black) and implicit cases (gray) and corresponding processing steps for a
single resource, based on the response object provided in Code 5.17.

45 That is the function within the file getInitialBoardState.js located at src/util/ attached digitally to this work.
46 Cards are always resources (that means they are always of type uri); therefore, they are not considered in this matrix.

6 Implementation — Development Process 50

To provide an example of how to read the lookup table, reconsider the lane and column types of
Code 5.17 (i.e., uri and literal, resp.). The corresponding matrix entry in Table 6.1 explicitly yields
to UL. However, if a resource does not contain the requested column or swimlane property, both
entries at the horizontal and vertical margin of the table need to be considered implicitly. For the
first use case this means, that if a FOAF term has no term_status property, it would be allocated
in the no property column, meaning that it would be processed using the steps of U×. Similarly, if
a FOAF term has no type property defined, it would be allocated in the Everything Else swimlane,
meaning that it would be processed by the ×L condition. Furthermore, and regardless of the explicit
case, if a resource lacks the requested column and lane property, the processing steps of ×× would be
applied. That would, for example, be the case if a card is located in the no property column within
the Everything Else swimlane.

In conclusion, the algorithm determines the correct processing step by selecting the explicit matrix
entry and selecting the corresponding horizontal and vertical margin entries. Lastly, the case ××
should always be checked and, if applicable, executed. To give one final example for this case: If a
single resource contains the properties corresponding to the explicit entry LU, then the following
implicit cases are also possible in this particular board: L×, ×U, and ××.
Due to the complex structure of the branching process, various response objects have been used

to test the reliability of the transformation process.47

47 See the files ll.js, lu.js, ul.js, and uu.js located at src/util/demos/.

6 Implementation — Development Process 51

6.2.2 Project and Component Structure

This subsection provides an overview and brief description of the project structure. For the sake of
clarity, some utility files were not included in this list. However, all files are accessible in eccenca’s
repository or on the attached microSD card.

src

components Grouping all React components

Lane

CustomCard

CustomCard.jsx Custom card specs. (see Figure 5.4), text trimmings, apply MDL styles

Lane.jsx Represents the lane container (see Figure 5.5), imports CustomCard

SPARQLView

SPARQLView.jsx Provides a UI component to review/edit the Board’s query (see FR12/13)

ShaclineModal

ShaclineModal.jsx Provides a modal dialog (i.e., eccenca’s SHACLINE) on card click (see FR20)

util

demos

*.js Test queries for mixed type cases (ll/lu/ul/uu.js, see Table 6.1, NFR3)

sparql-mappings

baseSPARQLStr.js Template to query the board’s data, similar to Code 5.15

generateBoardSPARQL.js Replace former template placeholders with the requested resources (Code 5.16)

generateLookaheadBoardSPARQL.js Minified version of the former query; yet, with an implicit limit of +1

getAllBoards.js Requesting all defined board configurations, similar to Code 5.11

getBoardObjects.js Fetch all defined properties within the selected board, similar to Code 5.13

JSONtemplate.js JSON template for the target data model

boardDefaults.js Define text elements (e.g.Everything Else lane or no property column)

deleteProperty.js Function that gets triggered if the target column is the no property column

deletePropertyStr.js Template to delete a property, similar to Code 5.20

getBoardBody.js Creates a meta object containing the board’s data and other information

getInitialBoardState.js Transforms the former object to the target data model, see subsection 6.2.1

handleColumnUpdates.js Checks source and target columns, and triggers the update/deleteProperty.js

promises.js Wraps eccenca’s sparql and titleHelperChannel in JavaScript’s promise API

updateProperty.js Function that gets triggered if the target column is a regular column

updatePropertyStr.js Template to update a property, similar to Code 5.19

updateTimestampStr.js Template to create a modified property for a resource, similar to Code 5.18

ResourceManagementBoard.jsx Main React Container

6 Implementation — Workflow 52

6.3 Workflow

A user or resource manager needs to follow two steps in order to visualize and modify RDF resources
within the prototype. First, they need to create or edit a board configuration along with the desired
board and card component resources within eccenca’s DataManager. Then, they can select the board
in the prototype, and start to explore or edit resources. Editing resources can either be performed by
relocating cards on the board (which would update the resources column property), or by clicking on
a card (which would open eccenca’s SHACLINE modal window). Since the board configuration was
already introduced within section 5.1 (specification), including its visual representation (Figure 5.2),
the following section will showcase the final stage of the prototype, as illustrated by a series of
screenshots showing different UI components and use cases.

To begin with, Figure 6.1 shows the initial application state, waiting for the user to select a board
configuration (i.e., one of the four use cases in the select box). This state corresponds to the process
flow of Figure 5.6 after fetching all board configurations ().

Figure 6.1: Initial board state of the RMB.

6 Implementation — Workflow 53

Figure 6.2 shows the SPARQL View component, which expands above the board selection box. To
reveal this information, the user needs to toggle the SPARQL View at the top right corner. In this
instance, the component contains the auto-composed query to request the data for the first use case
(FOAF Terms Status). The query corresponds to stage of Figure 5.6 and likewise to Code 5.16.

Figure 6.2: SPARQL View component with the auto composed query for the first use case.

Figure 6.3 shows the board for the first use case (FOAF Term Status). Since there was no explicit limit
set, the implicit limit (100) is above the number of resources being depicted as cards. Therefore, the
infobox provides the corresponding information.

Figure 6.3: RMB of use case 1. Only the first swimlane is depicted.

6 Implementation — Workflow 54

Figure 6.4 shows the board for the second use case. Since the terms from the UNESKOS graph do
not contain the defined column property vs:term_status, the cards are allocated in the fallback
column no property. As outlined in this use case (see section 3.1.1), users may then start to create
term statuses from scratch and assign cards correspondingly (as depicted).

Since there was no explicit limit defined, the implicit limit avoids loading over 4.000 cards on the
board. However, if a user wants to increase the limit, they can either set a higher explicit limit in the
board configuration or use the SPARQL View to increase the LIMIT and redraw the board.

Figure 6.4: RMB of use case 2.

6 Implementation — Workflow 55

Figure 6.4 shows the board for the third use case. This use case focused on the use of additional
properties, as outlined subsection 3.1.2. Additional properties allow to display an arbitrary amount
of properties defined in the card’s resource. Additional properties are displayed as key-value pairs, as
specified in Figure 5.4 (A3).
The card RND Spending was moved from the column published to the column needs approval,

which was triggering the real-time events to recolor the card and set the modified timestamp to
just now, as requested in FR26/27. Both events are only temporarily, meaning that after refreshing
the board, the card will have its default background color and a relative timestamp (e.g., Modified: a

minute ago).

Figure 6.5: RMB of use case 3, demonstrating additional properties and real-time events.

6 Implementation — Workflow 56

Figure 6.4 shows the board for the last use case, using a subset of the DOAP vocabulary to specify
columns and lanes, as outlined in section 3.1.2.

Figure 6.6: RMB of use case 4.

6 Implementation — Workflow 57

Figure 6.7 demonstrates the implementation of the SHACLINE modal dialog. The card Exit Value

from Figure 6.6 has been clicked, and the editing mode enabled. The dialog allows to change various
properties of the clicked resources. As depicted, the additional property Assignee gets changed.
After saving the changes (bottom left button), the user can close the dialog or close & redraw the
board (bottom right buttons) to see the changes after the board will automatically refresh. This
implementation refers to FR20/21.

Figure 6.7: Implementation of the SHACLINE modal window. The card Exit Value got clicked and its
Assignee value gets modified.

7 Evaluation

This chapter evaluates the prototype with regard to the functional and non-function requirements.
Building upon this, limitations and future directions will be discussed.

7.1 Strengths of the Current Prototype

The aim of this project was to create a prototypical application that allows users to (1) visualize a
certain section of a knowledge graph within a Kanban board, and to (2) modify a specific property by
dragging a resource into another column.

I have successfully developed a prototype that reaches both goals and can be used within eccenca’s
infrastructure. The board configuration graph provides an interface to specify what resources should
be displayed and what resources should be modified when relocating cards.
Overall, the Resource Management Board is a novel approach in the field of visualizing and

modifying RDF resources. No previous work has so far combined the paradigm and functionality of
an intuitive Kanban board environment with RDF visualization. This makes the project an innovative
contribution to the field of semantic data exploration.

7.2 Limitations of the Current Prototype & Future Work

Despite the strengths of the developed prototype, the current application state has limitations. Coming
back to the functional requirements provided in Table 3.2, the final prototype is to date mainly limited
with regard to the following three requirements that have not been (or only partially) implemented:

• FR7 — Disallow Column/Lane Repositioning
• FR11 — Create New Columns
• FR13 — SPARQL Editor

FR7 Although alphabetical sorting might be an appropriate sorting strategy for swimlanes (as
requested in FR7), it is not immediately suitable for columns. In a Kanban board, column labels
typically carry a semantic meaning about progress (or progress order). Humans are intuitively
capable of sorting such labels. For example, the sequence |Done | ToDo |Doing | does not make direct
sense to us, whereas | ToDo |Doing |Done | does.
Nevertheless, there are some use cases in which alphabetical sorting would be possible, namely

when column labels do not contain any inherent sequencing information. This would, for example,
be the case in the first mockup from the introduction (see Figure 1.2), with the column labels White

and Red. The order of columns would be solely up the user’s preference in this case. To give another
example: if column labels would express blood types,48 alphabetic sorting would be principally
possible as different blood types do not carry any meaning of progress.
Similar to statistical datatypes, two different types of column semantics can be differentiated,

namely categorical and ordinal columns. Categorical column labels are more likely to be reordered
48 The work of Bursa et al. (2017) extends FOAF by a Blood Ontology, see https://www.researchgate.net/publication/
319633737_BloodHealthFOAF_Extending_FOAF_with_Blood_Ontology.

https://www.researchgate.net/publication/319633737_BloodHealthFOAF_Extending_FOAF_with_Blood_Ontology
https://www.researchgate.net/publication/319633737_BloodHealthFOAF_Extending_FOAF_with_Blood_Ontology

7 Evaluation — Limitations of the Current Prototype & Future Work 59

as compared to columns with ordinal labels, as different users have different preferences. Therefore,
in order to obtain a meaningful progress flow, users should be allowed to rearrange columns, which
was performed in Figure 6.6 to maintain a meaningful flow. A central limitation of the prototype is
that even though users can change the column order, it would not be persistent after refreshing the
board, meaning that it would change back to the initial (alphabetical) order.
An important future direction would be an application that allows users to store their preferred

column position, regardless of any column semantics. To address this current limitation, the Ordered
List Ontology (OLO) could be used, as it provides an index property,49 that uses a positive integer
to store a position. The new column position could be retrieved by react-trello using the provided
method handleLaneDragEnd.50 The board configuration itself might be a suitable place to store
this sequencing information, compared to cards, which would create unnecessary noise in card
resources.

FR11 The current application state is furthermore limited in that it only allows to create new
columns if the column value is of type literal. If column values are of type uri, the Add Column

button will not be displayed (see Figure 6.3 and Figure 6.4 for corresponding examples with literal-
typed columns, and Figure 6.5 and Figure 6.6 for examples with uri-types columns). While it is
relatively effortless to resolve the label of a resource, it is challenging to do the opposite: A user enters
a new column value as a string, and the corresponding resource needs to be found. This approach
is prone to errors in many ways, as there is virtually an unlimited amount of possible character
combinations a user might enter, and moreover, a single label may refer to multiple resources (e.g.,
rdfs:Class and owl:Class share the same label (i.e., Class), despite being different resources). An
alternative solution would be to provide text suggestions to the user based on predefined column
values.

FR13 If users want to review the SPARQL query, they can toggle the corresponding UI element to
reveal the SPARQL View (see Figure 6.2 and FR12). This component reflects the auto-composed query
of stage in Figure 5.6, which is responsible for retrieving the elements that are displayed on the
board. The possibility to make changes in this field (FR13) is in the current implementation restricted
to the SPARQL LIMIT value. The current implementation works by a regular expression check for a
change of the limit’s value within the SPARQL View. If a user changes this value and clicks the Draw
from Query button, the board will refresh while respecting the new board limit. Future work should
extend this feature by regex-checking for other board and card component resources.

Exit Value, Exit Column, & Dwell Time

Another limitation of the current prototypical state is that it does not allow cards to disappear from
the board. As an example, consider the use case of issue tracking (see Figure 6.6): When ordering the
columns sequentially, the last column in this board has the label fixed. Since cards cannot progress
beyond this last column, it would eventually clutter up with cards.
One possible approach to address this issue would be to define an exit value within the board

configuration, whereby the property of the exit value needs to match the config’s column property.

49 http://purl.org/ontology/olo/core#index
50 See https://github.com/rcdexta/react-trello/blob/master/README.md#callbacks-and-handlers.

http://purl.org/ontology/olo/core#index
https://github.com/rcdexta/react-trello/blob/master/README.md#callbacks-and-handlers

7 Evaluation — Limitations of the Current Prototype & Future Work 60

The exit value, in this case, would be fixed (or rather the resource dbug:fixed), matching the config’s
column property (i.e., dbug:status). Conceptually, this board configuration would designate the
‘fixed column’ to the exit column.

Furthermore, the board configuration needs to define a dwell time property,51. This property
accepts an integer value, which expresses the number of days a card is allowed to dwell in a column
before it is supposed to disappear. That means that the exit value, dwell time, and a card’s modified
property indicate whether a resource should be depicted on the board or not.

Information on Breaking Changes

The following two breaking changes need to be considered for the future development of the current
prototype.

React 15.x As of 2019, eccenca’s front-end codebase is below React version 16. This means that
react-trello version 2.0.7 is the last supported version working with React 15.x. This is due to
react-trello’s dependency of styled-components, which is a library to write and manage CSS in
JavaScript. Nevertheless, react-trello 2.0.7 requires styled-components 3.4.10 which, in turn, have a
react peer dependency of: "react": ">= 0.14.0 < 17.0.0-0",52 (which is within the boundaries
of React 15.x). This will change with react-trello version 2.0.8 since it requires version 4.0.3 of
styled-components with a react peer dependency of: "react": ">= 16.3.0",53 which will break
the board.

Custom Cards Update From react-trello version 2.1 to 2.2, there have been breaking changes
regarding the definition of custom cards. The react-trello creator has released upgrade instruc-
tions containing the affected code lines and necessary changes, respectively: https://github.com/
rcdexta/react-trello/blob/master/UPGRADE.md. Note that this breaking change could not be
addressed in the project, as the prior breaking change has restricted development by forcing it to
remain on version 2.0.7.

51 Especially, a owl:DatatypeProperty, similar to the board limit definition.
52 Line 153 at https://github.com/styled-components/styled-components/blob/v3.4.10/package.json#L153
53 Line 135 at https://github.com/styled-components/styled-components/blob/v4.0.3/package.json#L135

https://github.com/rcdexta/react-trello/blob/master/UPGRADE.md
https://github.com/rcdexta/react-trello/blob/master/UPGRADE.md
https://github.com/styled-components/styled-components/blob/v3.4.10/package.json#L153
https://github.com/styled-components/styled-components/blob/v4.0.3/package.json#L135

Appendix

Board Configuration

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix dct: <http://purl.org/dc/terms/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rmb: <https://vocab.eccenca.com/rmb/> .
@prefix dcat: <http://www.w3.org/ns/dcat#> .
@prefix sh: <http://www.w3.org/ns/shacl#> .
@prefix shui: <https://vocab.eccenca.com/shui/> .
@prefix dbug: <http://ontologi.es/doap-bugs#> .

<http://www.w3.org/ns/shacl#IRI> a <http://www.w3.org/ns/shacl#NodeKind> .
<http://www.w3.org/ns/shacl#Literal> a <http://www.w3.org/ns/shacl#NodeKind> .
rdfs:comment a owl:DatatypeProperty .
skos:Concept a owl:Class .

RMB Class Definition

rmb:
a owl:Ontology ;
rdfs:comment "This includes shapes, classes, properties and configurations for the RMB." ;
rdfs:label "RMB Configuration" ;
rdfs:seeAlso
<https://confluence.brox.de/display/ECCPRODMGMT/Resource+Management+Board>,
<https://gitlab.eccenca.com/elds-ui/ecc-component-resourcemanagementboard> ;

dct:creator
<https://ns.eccenca.com/steven.kalinke> ,
<https://ns.eccenca.com/stramp> .

<https://vocab.eccenca.com/rmb/BoardConfig>
a owl:Class ;
rdfs:label "Board Configuration" .

General Board Properties

rmb:cardsGraph
a owl:ObjectProperty ;
rdfs:comment "single relation pointing to the named graph where the cards are loaded from" ;
rdfs:label "cards graph" ;
rdfs:domain rmb:BoardConfig .

rmb:boardLimit
a owl:DatatypeProperty ;
rdfs:comment "single integer value used to set the limit of shown cards on a board" ;
rdfs:label "board limit" ;
rdfs:domain rmb:BoardConfig .

Board Component Resources

rmb:cardsClass
a owl:ObjectProperty ;
rdfs:comment
"possible multiple relations pointing to the classes defining the cards on the board" ;

rdfs:label "cards class" ;
rdfs:domain rmb:BoardConfig .

Appendix — Appendix B

rmb:cardsColumnsProperty
a owl:ObjectProperty ;
rdfs:comment "single relation pointing to the property which is used to arrange the cards in columns" ;
rdfs:label "column property" ;
rdfs:domain rmb:BoardConfig .

rmb:cardsLaneProperty
a owl:ObjectProperty ;
rdfs:comment "single relation pointing to the property which is used to arrange the cards in lanes" ;
rdfs:label "lane property" ;
rdfs:domain rmb:BoardConfig .

Card Component Resources

rmb:cardsDescriptionProperty
a owl:ObjectProperty ;
rdfs:comment "single relation pointing to the property which is used for the body of the cards" ;
rdfs:label "description property" ;
rdfs:domain rmb:BoardConfig .

rmb:cardsModifiedProperty
a owl:ObjectProperty ;
rdfs:comment
"single relation pointing to the property which is used to save the xsd:dateTime modified timestamp" ;

rdfs:label "modified property" ;
rdfs:domain rmb:BoardConfig .

rmb:cardsAdditionalFieldProperty
a owl:DatatypeProperty, owl:ObjectProperty ;
rdfs:comment
"multiple relation pointing to the properties which are used to show additional fields on cards" ;

rdfs:label "additional field property" ;
rdfs:domain rmb:BoardConfig .

SHACL SHAPES

rmb:boardConfigSHACL
a <http://www.w3.org/ns/shacl#NodeShape> ;
sh:name "Board Configuration" ;
sh:property rmb:labelSHACL,

rmb:descriptionSHACL,
rmb:cardsGraphSHACL,
rmb:boardLimitSHACL,
rmb:cardsClassesSHACL,
rmb:cardsColumnPropertySHACL,
rmb:cardsLanePropertySHACL,
rmb:cardsDescriptionPropertySHACL,
rmb:cardsAdditionalFieldPropertySHACL,
rmb:cardsModifiedPropertySHACL ;

sh:targetClass rmb:BoardConfig ;
shui:tabName "Board Configuration" ;
rdfs:label "Board Configuration" .

rmb:labelSHACL
a sh:PropertyShape ;
sh:name "Name" ;
sh:description "the name of the board" ;
sh:maxCount 1 ;
sh:nodeKind sh:Literal ;
sh:order 1 ;
sh:path rdfs:label ;
shui:showAlways true ;
sh:minCount 1 ;
rdfs:label "Name" .

Appendix — Appendix C

rmb:descriptionSHACL
a sh:PropertyShape ;
sh:name "Description" ;
sh:description "descriptive text on the intention of the board" ;
sh:maxCount 1 ;
sh:nodeKind sh:Literal ;
sh:order 2 ;
sh:path dct:description ;
shui:showAlways true ;
sh:minCount 0 ;
rdfs:label "Description" .

rmb:cardsGraphSHACL
a sh:PropertyShape ;
sh:name "Graph" ;
sh:class owl:Ontology ;
sh:description "The Knowledge Graph which is used to get the cards from." ;
sh:maxCount 1 ;
sh:nodeKind sh:IRI ;
sh:order 3 ;
sh:path rmb:cardsGraph ;
shui:denyNewResources true ;
sh:minCount 1 ;
rdfs:label "Graph" .

rmb:boardLimitSHACL
a sh:PropertyShape ;
sh:name "board limit" ;
sh:description "single integer value used to set the limit of shown cards on a board" ;
sh:maxCount 1 ;
sh:nodeKind sh:Literal ;
sh:path rmb:boardLimit ;
sh:datatype xsd:integer ;
rdfs:label "board limit" .

rmb:cardsClassesSHACL
a sh:PropertyShape ;
sh:name "Class(es)" ;
sh:class owl:Class ;
sh:description "which cards should be shown in the board" ;
sh:nodeKind sh:IRI ;
sh:order 4 ;
sh:path rmb:cardsClass ;
sh:minCount 1 ;
rdfs:label "Classes" .

rmb:cardsColumnPropertySHACL
a sh:PropertyShape ;
sh:name "Column Property" ;
sh:description "property used to arrange the cards in columns" ;
sh:maxCount 1 ;
sh:nodeKind sh:IRI ;
sh:order 5 ;
sh:path rmb:cardsColumnsProperty ;
sh:minCount 1 ;
shui:uiQuery rmb:843c129c-6d65-4f23-886f-1a1a049c12b9 ;
rdfs:label "Column Property" .

rmb:cardsLanePropertySHACL
a sh:PropertyShape ;
sh:name "Lane Property" ;
sh:description "the property used to arrange the cards in lanes" ;
sh:maxCount 1 ;
sh:nodeKind sh:IRI ;
sh:order 6 ;
sh:path rmb:cardsLaneProperty ;
shui:showAlways true ;
shui:uiQuery rmb:843c129c-6d65-4f23-886f-1a1a049c12b9 ;
rdfs:label "Lane Property" .

Appendix — Appendix D

rmb:cardsDescriptionPropertySHACL
a sh:PropertyShape ;
sh:name "Description Property" ;
sh:class owl:DatatypeProperty ;
sh:description "the property which is used to fill the card body (defaults to dct:description)" ;
sh:maxCount 1 ;
sh:nodeKind sh:IRI ;
sh:path rmb:cardsDescriptionProperty ;
rdfs:label "Description Property" .

rmb:cardsAdditionalFieldPropertySHACL
a sh:PropertyShape ;
sh:name "Additional Properties" ;
sh:description "Relation pointing to the properties which are used to show additional fields on the cards" ;
sh:nodeKind sh:IRI ;
sh:path rmb:cardsAdditionalFieldProperty ;
shui:showAlways false ;
shui:uiQuery rmb:843c129c-6d65-4f23-886f-1a1a049c12b9 ;
rdfs:label "Additional Properties" .

rmb:cardsModifiedPropertySHACL
a sh:PropertyShape ;
sh:name "Modified Property" ;
sh:class owl:DatatypeProperty ;
sh:description "the property which is used to save modified timestamps (defaults to dct:modified)" ;
sh:nodeKind sh:IRI ;
sh:path rmb:cardsModifiedProperty ;
rdfs:label "Modified Property" .

Code 7.1: Board Configuration.

Bibliography

Ambler, S. W. (2014). User Stories: An Agile Introduction. url: http://www.agilemodeling.com/
artifacts/userStory.htm#InitialInformal, visited on 09/03/2019 (cit. on p. 7).

Anderson, D. (01/2016). Scrumsplaining #2: There Is No Sense Of Urgency With Kanban. url: https:
//djaa.com/scrumsplaining-2-there-is-no-sense-of-urgency-with-kanban/, visited on
09/07/2019 (cit. on p. 6).

Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., & Hellmann, S. (2009). “DBpedia
- A crystallization point for the Web of Data”. In: Journal of Web Semantics 7.3. The Web of Data,
pp. 154–165. issn: 1570-8268. doi: https://doi.org/10.1016/j.websem.2009.07.002. url:
http://www.sciencedirect.com/science/article/pii/S1570826809000225 (cit. on p. 4).

Bradner, S. (03/1997). Key words for use in RFCs to Indicate Requirement Levels (BCP 14). RFC 2119.
Harvard University, pp. 1–3. url: https://www.ietf.org/rfc/rfc2119.txt (cit. on pp. 7 sq.,
27).

Brickley, D. & Guha, R. V. (03/1999). Resource Description Framework (RDF). W3C Recommendation.
W3C. url: https://www.w3.org/TR/rdf-schema/ (cit. on p. 4).

Burris, E. (n.d.). Capturing Requirements with Use Cases. url: http://sce2.umkc.edu/BIT/
burrise/pl/usecasemodeling/, visited on 09/03/2019 (cit. on p. 8).

DCMI Usage Board (2002). DCMI Metadata Terms. Tech. rep. Dublin Core. url: https://www.
dublincore.org/specifications/dublin-core/dcmi-terms/ (cit. on p. 4).

Erickson, J.,Maali, F., & Archer, P. (01/2014). Data Catalog Vocabulary (DCAT). W3C Recommendation.
W3C. url: https://www.w3.org/TR/vocab-dcat/ (cit. on p. 13).

Fensel, D. (2005). Spinning the Semantic Web: Bringing the World Wide Web to Its Full Potential.
Mit Press. MIT Press. isbn: 9780262562126. url: https://books.google.de/books?id=
zQ34EoZO2IYC (cit. on p. 3).

Gargouri, F. (2010). Ontology Theory, Management and Design: Advanced Tools and Models: Ad-

vanced Tools and Models. IGI Global research collection. Information Science Reference. isbn:
9781615208609. url: https://books.google.de/books?id=8BDcycIkLdwC (cit. on p. 9).

Metadata and Semantics Research (2015). Communications in Computer and Information Science.
Springer International Publishing. isbn: 9783319241296. url: https://books.google.de/
books?id=foGBCgAAQBAJ (cit. on p. 11).

Gaševic, D., Selic, B., Bézivin, J., Djuric, D., & Devedžic, V. (2009). Model Driven Engineering and

Ontology Development. Springer Berlin Heidelberg. isbn: 9783642002823. url: https://books.
google.de/books?id=s-9yu7ubSykC (cit. on p. 28).

http://www.agilemodeling.com/artifacts/userStory.htm#InitialInformal
http://www.agilemodeling.com/artifacts/userStory.htm#InitialInformal
https://djaa.com/scrumsplaining-2-there-is-no-sense-of-urgency-with-kanban/
https://djaa.com/scrumsplaining-2-there-is-no-sense-of-urgency-with-kanban/
https://doi.org/https://doi.org/10.1016/j.websem.2009.07.002
http://www.sciencedirect.com/science/article/pii/S1570826809000225
https://www.ietf.org/rfc/rfc2119.txt
https://www.w3.org/TR/rdf-schema/
http://sce2.umkc.edu/BIT/burrise/pl/usecasemodeling/
http://sce2.umkc.edu/BIT/burrise/pl/usecasemodeling/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.w3.org/TR/vocab-dcat/
https://books.google.de/books?id=zQ34EoZO2IYC
https://books.google.de/books?id=zQ34EoZO2IYC
https://books.google.de/books?id=8BDcycIkLdwC
https://books.google.de/books?id=foGBCgAAQBAJ
https://books.google.de/books?id=foGBCgAAQBAJ
https://books.google.de/books?id=s-9yu7ubSykC
https://books.google.de/books?id=s-9yu7ubSykC

Bibliography — Bibliography F

ISO/IEC/IEEE (12/2010). “ISO/IEC/IEEE International Standard - Systems and software engineering –
Vocabulary”. In: ISO/IEC/IEEE 24765:2010(E). Accessible at: https://www.smaele.nl/documents/
iso/ISO-24765-2010.pdf, pp. 1–418. doi: 10.1109/IEEESTD.2010.5733835. url: https:
//ieeexplore.ieee.org/document/5733835, visited on 09/03/2019 (cit. on p. 7).

Jacobson, I., Spence, I., & Bittner, K. (12/2011). Use-Case 2.0: The Guide to Succeeding with Use Cases.
Tech. rep. url: https://www.ivarjacobson.com/sites/default/files/field_iji_file/
article/use-case_2_0_jan11.pdf (cit. on p. 7).

Jailall, R. (04/2018). It doesn’t work: Story points, planning poker, software prediction. url: https:
/ / medium . com / @imprisonevery1 / it - doesnt - work - story - points - planning - poker -

software-prediction-2bfaefaf59ea, visited on 09/03/2019 (cit. on p. 7).

Kerievsky, J. (09/2012). Stop Using Story Points. url: https://www.industriallogic.com/blog/
stop-using-story-points/, visited on 09/04/2019 (cit. on p. 7).

Khosrow-Pour,M. (2006). Dictionary of Information Science and Technology. Dictionary of Information
Science and Technology Bd. 1. Idea Group Reference. isbn: 9781599043869. url: https://books.
google.de/books?id=KVQB9Mhx6d8C (cit. on p. 3).

Knublauch, H. & Kontokostas, D. (07/2015). Shapes Constraint Language (SHACL). W3C Recommen-
dation. W3C. url: https://www.w3.org/TR/shacl/ (cit. on p. 4).

Krimmer, D. (09/2017). Why We Kicked Estimation Meetings (And Maybe You Should Too). url:
https://www.dkrimmer.de/2017/09/04/why-we-kicked-our-estimation-meetings/,
visited on 09/04/2019 (cit. on p. 7).

Lohmann, S., Negru, S., Haag, F., & Ertl, T. (2016). “Visualizing Ontologies with VOWL”. In: Semantic

Web 7.4, pp. 399–419. doi: 10.3233/SW-150200. url: http://www.semantic-web-journal.
net/content/visualizing-ontologies-vowl-0, visited on 09/30/2019 (cit. on p. 28).

McGuinness, D. L. & Harmelen, F. van (07/2004). OWL Web Ontology Language (OWL). W3C
Recommendation. W3C. url: https://www.w3.org/TR/owl2-overview/ (cit. on p. 4).

Miller, E. & Schloss, B. (10/1997). Resource Description Framework (RDF). W3C Recommendation.
W3C. url: https://www.w3.org/TR/rdf11-concepts/ (cit. on p. 3).

Miller, L. & Brickley, D. (01/2014). FOAF Vocabulary Specification (0.99). Namespace. url: http:
//xmlns.com/foaf/spec/ (cit. on pp. 4, 8 sq.).

Pastor-Sanchez, J.-A. (2015). UNESKOS Vocabulary. Namespace. url: http://skos.um.es/TR/
uneskos/ (cit. on p. 11).

Powers, S. (2003). Practical RDF: Solving Problems with the Resource Description Framework. O’Reilly
Media. isbn: 9780596550516. url: https://books.google.de/books?id=VfcX9wJEH3YC
(cit. on p. 3).

https://www.smaele.nl/documents/iso/ISO-24765-2010.pdf
https://www.smaele.nl/documents/iso/ISO-24765-2010.pdf
https://doi.org/10.1109/IEEESTD.2010.5733835
https://ieeexplore.ieee.org/document/5733835
https://ieeexplore.ieee.org/document/5733835
https://www.ivarjacobson.com/sites/default/files/field_iji_file/article/use-case_2_0_jan11.pdf
https://www.ivarjacobson.com/sites/default/files/field_iji_file/article/use-case_2_0_jan11.pdf
https://medium.com/@imprisonevery1/it-doesnt-work-story-points-planning-poker-software-prediction-2bfaefaf59ea
https://medium.com/@imprisonevery1/it-doesnt-work-story-points-planning-poker-software-prediction-2bfaefaf59ea
https://medium.com/@imprisonevery1/it-doesnt-work-story-points-planning-poker-software-prediction-2bfaefaf59ea
https://www.industriallogic.com/blog/stop-using-story-points/
https://www.industriallogic.com/blog/stop-using-story-points/
https://books.google.de/books?id=KVQB9Mhx6d8C
https://books.google.de/books?id=KVQB9Mhx6d8C
https://www.w3.org/TR/shacl/
https://www.dkrimmer.de/2017/09/04/why-we-kicked-our-estimation-meetings/
https://doi.org/10.3233/SW-150200
http://www.semantic-web-journal.net/content/visualizing-ontologies-vowl-0
http://www.semantic-web-journal.net/content/visualizing-ontologies-vowl-0
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/rdf11-concepts/
http://xmlns.com/foaf/spec/
http://xmlns.com/foaf/spec/
http://skos.um.es/TR/uneskos/
http://skos.um.es/TR/uneskos/
https://books.google.de/books?id=VfcX9wJEH3YC

Bibliography — Bibliography G

Ramachandran, R. (2017). “react-trello”. In: GitHub. Initial Commit: https://github.com/rcdexta/
react-trello/tree/ab72f5fc9b7f253ee8b22aace169c33a0efe5bc1. GitHub Repository. url:
https://github.com/rcdexta/react-trello (cit. on p. 35).

Shaposhnik, R., Martella, C., & Logothetis, D. (2015). Practical Graph Analytics with Apache Giraph.
Apress. isbn: 9781484212516. url: https://books.google.de/books?id=FWb%5C_CgAAQBAJ
(cit. on p. 4).

Stanley, M., Moussa, M., Paolini, B., Lyday, R., Burdette, J., & Laurienti, P. (2013). “Defining nodes in
complex brain networks”. In: Frontiers in Computational Neuroscience 7, p. 169. issn: 1662-5188.
doi: 10.3389/fncom.2013.00169. url: https://www.frontiersin.org/article/10.3389/
fncom.2013.00169, visited on 09/15/2019 (cit. on p. 3).

Stoica, M., Ghilic-Micu, B., Mircea, M., & USCATU, C. (12/2016). “Analyzing Agile Development
– from Waterfall Style to Scrumban”. In: Informatica Economica 20, pp. 5–14. doi: 10.12948/
issn14531305/20.4.2016.01. url: http://www.revistaie.ase.ro/content/80/01%20-
%20Stoica,%20Ghilic,%20Mircea,%20Uscatu.pdf, visited on 09/30/2019 (cit. on p. 6).

Tong, Q., Zhang, F., & Cheng, J. (2015). “Construction of RDF(S) from UML class diagrams”. In:
Journal of Computing and Information Technology 22, p. 237. doi: 10.2498/cit.1002459. url:
https://www.semanticscholar.org/paper/Construction-of-RDF(S)-from-UML-Class-

Diagrams-Tong-Zhang/fd18ef8838a8ca8ee57c6a806ad00479d615f717 (cit. on pp. 32 sq.).

UNESCO (1977). UNESCO Thesaurus. Thesaurus. UNESCO. url: http://vocabularies.unesco.
org/browser/thesaurus/en/ (cit. on p. 11).

W3C (2015). WAI-ARIA Authoring Practices 1.1. W3C Working Group Note 14 August 2019. W3C.
url: https://www.w3.org/TR/wai-aria-practices/#dialog_modal (cit. on p. 39).

W3C (n.d.). Ontologies / Vocabularies. url: https://www.w3.org/standards/semanticweb/
ontology.html, visited on 09/04/2019 (cit. on p. 3).

Wilder-James, E. (03/2004). DOAP: Description Of A Project. url: http://usefulinc.com/ns/
doap%5C#, visited on 10/02/2019 (cit. on p. 14).

❧ Colophon
This thesis is set in LATEX2𝜀 (Leslie Lamport, 1984) and was written using the web service
Overleaf. Chapter, section, and figure titles are set in Helvetica (Max Miedinger, 1960).
The body text is set in Linux Libertine (Philipp H. Poll, 2003). The typeface used for
code sections is Bera Mono (Walter Schmidt, 2004). Figures and graphics were designed
with Illustrator (Adobe, 1987) andMathcha.io (Bui Duc Nha & PhanThi Minh Nhat, 2019). Flow
charts were sketched using the web service draw.io. JavaScript and React was written
withinWebStorm (JetBrains, 2010) and VS Code (Microsoft, 2015).

https://github.com/rcdexta/react-trello/tree/ab72f5fc9b7f253ee8b22aace169c33a0efe5bc1
https://github.com/rcdexta/react-trello/tree/ab72f5fc9b7f253ee8b22aace169c33a0efe5bc1
https://github.com/rcdexta/react-trello
https://books.google.de/books?id=FWb%5C_CgAAQBAJ
https://doi.org/10.3389/fncom.2013.00169
https://www.frontiersin.org/article/10.3389/fncom.2013.00169
https://www.frontiersin.org/article/10.3389/fncom.2013.00169
https://doi.org/10.12948/issn14531305/20.4.2016.01
https://doi.org/10.12948/issn14531305/20.4.2016.01
http://www.revistaie.ase.ro/content/80/01%20-%20Stoica,%20Ghilic,%20Mircea,%20Uscatu.pdf
http://www.revistaie.ase.ro/content/80/01%20-%20Stoica,%20Ghilic,%20Mircea,%20Uscatu.pdf
https://doi.org/10.2498/cit.1002459
https://www.semanticscholar.org/paper/Construction-of-RDF(S)-from-UML-Class-Diagrams-Tong-Zhang/fd18ef8838a8ca8ee57c6a806ad00479d615f717
https://www.semanticscholar.org/paper/Construction-of-RDF(S)-from-UML-Class-Diagrams-Tong-Zhang/fd18ef8838a8ca8ee57c6a806ad00479d615f717
http://vocabularies.unesco.org/browser/thesaurus/en/
http://vocabularies.unesco.org/browser/thesaurus/en/
https://www.w3.org/TR/wai-aria-practices/#dialog_modal
https://www.w3.org/standards/semanticweb/ontology.html
https://www.w3.org/standards/semanticweb/ontology.html
http://usefulinc.com/ns/doap%5C#
http://usefulinc.com/ns/doap%5C#

Acknowledgements

Foremost, I would like to thank my supervisors: Dr. Michael Martin and Dr. Sebastian Tramp. Michael,
thank you for introducing me to eccenca GmbH and thus giving me the opportunity to apply my
theoretical knowledge gained throughout my studies in practical field. A very special thank goes to
Seebi for great support, discussions about the prototype, and overall for introducing me into the field
of semantic web, and giving me to opportunity to learn about modern front-end development and
workflows in a great enterprise housing even more sincere people! I’m also grateful for your great
patience with me during the last year. Thanks to Jan Kaßel for helpful comments. Maleen Thiele!
A special thanks for your outstanding support in various aspects, for you great language support,
and for your great patience with me during the last months. Last but not least I want to thank my
parents for their endless and unconditional support throughout my studies—it’s over now.

Statement of Authorship

From the examination regulations:54

Ich versichere, dass ich die vorliegende Arbeit selbstständig und nur unter Verwendung
der angegebenenQuellen und Hilfsmittel angefertigt habe, insbesondere sind wörtliche
oder sinngemäße Zitate als solche gekennzeichnet. Mir ist bekannt, dass Zuwiderhandlung
auch nachträglich zur Aberkennung des Abschlusses führen kann. Ich versichere, dass das
elektronische Exemplar mit den gedruckten Exemplaren übereinstimmt.55

Leipzig, December 20, 2019
Place, Date Signature of Steven Kalinke

Digital Version

The digital version of this work is supplied on the SD card below. The CRC-64 checksum of this file
must match my following handwritten one:

CRC-64

The zip file contains the PDF version of this work. In contrast to the print version, the digital version
indicates all clickable references in blue color (e.g., literature references). It is otherwise identical to
the printed version.

54 http://studium.fmi.uni-leipzig.de/fileadmin/Studienbuero/documents/Formulare/

HinweiseAbschlussarbeit.pdf
55 Im Gegensatz zur Printversion zeigt die Digitalversion alle klickbaren Referenzen in blauer Schrift an (z. B. Literaturver-
weise). Ansonsten ist sie identisch mit der gedruckten Version.

http://studium.fmi.uni-leipzig.de/fileadmin/Studienbuero/documents/Formulare/HinweiseAbschlussarbeit.pdf
http://studium.fmi.uni-leipzig.de/fileadmin/Studienbuero/documents/Formulare/HinweiseAbschlussarbeit.pdf

	Contents
	List of Figures
	List of Tables
	List of Code
	List of Prefixes & Abbreviations
	Introduction
	Motivation & Objective
	Structure of This Work

	Background
	Semantic Web
	Kanban
	Board Anatomy
	General Board Usage

	Requirements
	Use Cases
	Ontology Management
	Use Case 1: Update a FOAF Term Status
	Use Case 2: Create an UNESCO Term Status

	General Purpose Scenarios
	Use Case 3: Dataset Management
	Use Case 4: Issue Tracking

	Functional Requirements
	Non-Functional Requirements
	Overview & Prioritization

	State of the Art
	Graph Visualization
	Kanban Board Solutions

	Specifications
	Board Configuration
	Config Definition
	Config Properties and Relations
	Config Instance & Usage

	Board Specifications
	react-trello
	Target Data Model
	Bypassing Limitations

	RMB Specification
	Cards
	Board Overview

	Query Strategy
	A — Fetch All Defined Boards
	B — Get Board Properties
	C — Get Board’s Data
	D — Update Column Property
	E — Delete Column Property

	Implementation
	Technology Stack
	Development Process
	Towards the Target Data Model
	Project and Component Structure

	Workflow

	Evaluation
	Strengths of the Current Prototype
	Limitations of the Current Prototype & Future Work

	Appendix
	Bibliography

