-5 5 randRange(LOWER_BOUND, UPPER_BOUND) randRange(LOWER_BOUND, UPPER_BOUND) complexNumber(REAL, IMAG)

Move the orange dot to `REP`.

graphInit({ range: [[LOWER_BOUND - 1, UPPER_BOUND + 1], [LOWER_BOUND - 1, UPPER_BOUND + 1]], tickStep: 1, labelStep: 1, scale: 30 }); // I18N: This is the abbreviated "Real" in regards to the complex plane label([6, 0.5], i18n._("Re"), "left"); // I18N: This is the abbreviated "Imaginary" in regards to the complex plane label([0.5, 5], i18n._("Im"), "right"); addMouseLayer(); graph.movablePoint = addMovablePoint({constraints: {}, snapX: 0.5, snapY: 0.5}); graph.movablePoint.onMove = function(x, y) { if (x < LOWER_BOUND || x > UPPER_BOUND || y < LOWER_BOUND || y > UPPER_BOUND) { return false; } };
graph.movablePoint.coord
return graph.movablePoint.coord.join() === [REAL, IMAG].join();
graph.movablePoint.setCoord(guess);

Complex numbers can be visualized as points on a plane. The coordinates on the real and imaginary axes correspond to the real and imaginary parts of the complex number.

`REP` has real part `REAL` and imaginary part `IMAG`.

style({stroke: ORANGE, strokeWidth: 2.0}); line([REAL, LOWER_BOUND - 1], [REAL, UPPER_BOUND + 1]); graph.movablePoint.visibleShape.toFront();

The vertical orange line represents all complex numbers with real part `REAL` (including `REP`).

style({stroke: BLUE, strokeWidth: 2.0}); line([LOWER_BOUND - 1, IMAG], [UPPER_BOUND + 1, IMAG]); graph.movablePoint.visibleShape.toFront();

The horizontal blue line represents all complex numbers with imaginary part `IMAG`, also including `REP`.

graph.movablePoint.moveTo(REAL, IMAG);

The only complex number with real part `REAL` and imaginary part `IMAG` is `REP`, so it lies on the intersection of the vertical orange line and the horizontal blue line.