{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"# Основы статистики\n",
"\n",
"#### конспект лекций\n",
"\n",
"Автор лекций: **святой Анатолий Карпов**\n",
"\n",
"Конспектировал: **отрок Михаил Курочкин**\n",
" - telegram: @mikhail_kurochkin\n",
" - instagram: [mikhail_k17](https://www.instagram.com/mikhail_k17/) *если хотите вообще от души поблагодарить - подписка/лайк :)*\n",
"\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Содержание\n",
"### Часть 1\n",
" - [Генеральная совокупность и выборка](#Генеральная-совокупность-и-выборка)\n",
" - [Типы переменных](#Типы-переменных)\n",
" - [Описательная статистика](#Описательная-статистика)\n",
" - [Меры центральной тенденции](#Меры-центральной-тенденции)\n",
" - [Мода](#Мода)\n",
" - [Медиана](#Медиана)\n",
" - [Среднее значение](#Среднее-значение)\n",
" - [Примеры](#1.Примеры)\n",
" - [Меры изменчивости](#Меры-изменчивости)\n",
" - [Размах](#Размах)\n",
" - [Дисперсия](#Дисперсия)\n",
" - [Квартили распределения](#Квартили-распределения)\n",
" - [Пример](#2.Пример)\n",
" - [Нормальное распределение](#Нормальное-распределение)\n",
" - [Z-преобразование](#Z-преобразование)\n",
" - [Правило 3х-сигм](#Правило-3х-сигм)\n",
" - [Примеры](#3.Примеры)\n",
" - [Центральная предельная теорема](#Центральная-предельная-теорема)\n",
" - [Примеры](#4.Примеры)\n",
" - [Доверительные интервалы для среднего](#Доверительные-интервалы-для-среднего)\n",
" - [Идея статистического вывода](#Идея-статистического-вывода)\n",
" - [Статистическая проверка гипотез](#Статистическая-проверка-гипотез)\n",
" - [p-уровень значимости](#p-уровень-значимости)\n",
" \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Часть 2\n",
" - [T-распределение](#T-распределение)\n",
" - [Подробно про нормальное и t-распредление](#Подробно-про-нормальное-и-t-распредление)\n",
" - [Примеры](#5.Примеры)\n",
" - [Сравнение двух средних; t-критерий Стьюдента](#Сравнение-двух-средних.-t-критерий-Стьюдента)\n",
" - [Примеры применения t-критерий Стьюдента](#Примеры-применения-t-критерий-Стьюдента)\n",
" - [Построение графиков](#6.-Примеры)\n",
" - [Проверка распределения на нормальность](#Проверка-распределения-на-нормальность)\n",
" - [QQ-plot](#QQ-plot)\n",
" - [Примеры](#7.Примеры)\n",
" - [Однофакторный дисперсионный анализ](#Однофакторный-дисперсионный-анализ)\n",
" - [Множественные сравнения в ANOVA](#Множественные-сравнения-в-ANOVA)\n",
" - [почему мы не можем применить t-критерий для более двух выборок](#почему-мы-не-можем-применить-t-критерий-для-более-двух-выборок)\n",
" - [Многофакторный ANOVA](#Многофакторный-ANOVA)\n",
" - [](#)\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Часть 3\n",
"\n",
" - [Корреляция](#Корреляция)\n",
" - [Ковариация](#Ковариация)\n",
" - [Примеры](#Примеры-3.1)\n",
" - [Регрессия с одной независимой переменной](#Регрессия-с-одной-независимой-переменной)\n",
" - [Гипотеза о значимости взаимосвязи и коэффициент детерминации](#Гипотеза-о-значимости-взаимосвязи-и-коэффициент-детерминации)\n",
" - [Условия применения линейной регрессии с одним предиктором](#Условия-применения-линейной-регрессии-с-одним-предиктором)\n",
" - [Задача предсказания значений зависимой переменной](#Задача-предсказания-значений-зависимой-переменной)\n",
" - [Регрессионный анализ с несколькими независимыми переменными](#Регрессионный-анализ-с-несколькими-независимыми-переменными)\n",
" - [Пример расчёта и визуализации множественной регрессии](#Пример-расчёта-и-визуализации-множественной-регрессии)\n",
" - [Выбор наилучшей модели](#Выбор-наилучшей-модели)\n",
" - [Классификация: логистическая регрессия и кластерный анализ](#Классификация:-логистическая-регрессия-и-кластерный-анализ)\n",
" - [](#)\n",
" - [](#)\n",
" - [](#)\n",
" \n",
" \n",
" \n",
"\n",
"[Полезные ссылки](#Полезные-ссылки)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Часть 1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Генеральная совокупность и выборка\n",
" - **Генеральная совокупность** (от лат. generis — общий, родовой) — совокупность всех объектов, относительно которых предполагается делать выводы при изучении конкретной задачи. Далее ГС.\n",
" - **Репрезентативная выборка** – это такая выборка, в которой все основные признаки генеральной совокупности, из которой извлечена данная выборка, представлены приблизительно в той же пропорции или с той же частотой, с которой данный признак выступает в этой генеральной совокупности.\n",
"\n",
"### Способы репрезентативной выборки:\n",
" - **Простая случайная выборка** (simple random sample)\n",
" - **Стратифицированная выборка** (stratified sample) – разделение ГС на страты (группы) а оттуда уже делается случайная выборка.\n",
" - **Групповая выборка** (cluster sample) – похожие группы выбираются из выборки и далее делается случайная выборка (например, районы одного города)\n",
" \n",
"| групповая выборка | Стратифицированная выборка |\n",
"|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n",
"| Выборка формируется только из несколько субпопуляций (кластеров) | Выборка формируется из всех субпопуляций (страт) |\n",
"| В пределах кластера элементы должны быть разнородны, тогда как поддерживается однородность или схожесть между разными кластерами | В пределах страты элементы должны быть однородны, а между стратами должна быть разнородность (различия) |\n",
"| Схема выборки нужна только для кластеров, попавших в выборку | Должна быть сформирована полная схема выборки для всех стратифицированных субпопуляций |\n",
"| Повышает эффективность выборки, уменьшая стоимость | Повышает точность |\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Типы переменных\n",
"\n",
" - **Количественные** – измеряемое (например, рост):\n",
" - **Непрерывные** – переменная принимает любое значение на опр. промежутке;\n",
" - **Дискретные** – только определенные значения (3.5 ребенка в семье не будет).\n",
" - **Номинативные** (= качественные) – разделение испытуемых на группы, цифры как маркеры (например: 1 -женщины, 2 – мужчины). Цифры как имена групп, не для расчетов. \n",
" - **Ранговые** – похоже на номинативные, только возможны сравнения (быстрее/медленнее и т.п.)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Описательная статистика\n",
"### Глоссарий:\n",
" - **Эмпирические данные** - данные полученные опытным путём.\n",
"\n",
" - **Описательная (дескриптивная) статистика** - обработка данных полученных эмпирическим путём и их систематизация, наглядное представление в форме графиков, таблиц, а также их количественное описание посредством основных статистических показателей.\n",
"\n",
" - **Распределение вероятностей** - это закон, описывающий область значений случайной величины и вероятность её появления (частоту) в данной области. То есть насколько часто X появляется в данном диапазоне значений.\n",
"\n",
" - **Гистограмма частот** - ступенчатая функция показывающая насколько часто вероятно появление величины в указанном диапазоне значений.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Меры центральной тенденции\n",
"тип описательной статистики\n",
"### Мода\n",
"Это значение признака, которое встречается максимально часто. В выборке может быть несколько или одна мода.\n",
"### Медиана\n",
"Это значение признака, которое делит упорядочное множество попалам. Если множество содержит чётное количество элементов, то берётся среднее из двух серединных элементов упорядочного множества.\n",
"### Среднее значение\n",
"Cумма всех значений измеренного признака делится на количество измеренных значений.\n",
"\n",
"#### Свойства среднего значения\n",
"$$M_{x + c} = \\frac{\\sum_{i=1}^{n}{(x_{i} + c)}}{n} = \\frac{\\sum_{i=1}^{n} x_{i}}{n} + \\frac{\\sum_{i=1}^{n} c}{n} = M_{x} + \\frac{nc}{n} = M_{x} + c$$\n",
"\n",
"$$M_{x * c} = \\frac{\\sum_{i=1}^{n}{(x_{i} * c)}}{n} = \\frac{c * \\sum_{i=1}^{n} x_{i}}{n} = c * M_{x}$$\n",
"\n",
"$$\\sum_{i=1}^{n} (x_{i} - M_{x}) = nM_{x} - nM_{x} = 0$$\n",
"\n",
"### 1.Примеры "
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"mode: ModeResult(mode=array([172]), count=array([4]))\n",
"median: 170.5\n",
"mean: 170.4\n"
]
}
],
"source": [
"'''Расчёт моды, медианы и среднего с помощью библиотек numpy и scipy'''\n",
"import numpy as np\n",
"from scipy import stats\n",
"sample = np.array([185, 175, 170, 169, 171, 175, 157, 172, 170, 172, 167, 173, 168, 167, 166,\n",
" 167, 169, 172, 177, 178, 165, 161, 179, 159, 164, 178, 172, 170, 173, 171])\n",
"# в numpy почему-то нет моды\n",
"print('mode:', stats.mode(sample))\n",
"print('median:', np.median(sample))\n",
"print('mean:', np.mean(sample))"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"mode: 0 172\n",
"dtype: int64\n",
"median: 170.5\n",
"mean: 170.4\n"
]
}
],
"source": [
"'''Расчёт моды, медианы и среднего с помощью библиотеки pandas'''\n",
"import pandas as pd\n",
"sample = pd.Series([185, 175, 170, 169, 171, 175, 157, 172, 170, 172, 167, 173, 168, 167, 166,\n",
" 167, 169, 172, 177, 178, 165, 161, 179, 159, 164, 178, 172, 170, 173, 171])\n",
"\n",
"print('mode:', sample.mode())\n",
"print('median:', sample.median())\n",
"print('mean:', sample.mean())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Меры изменчивости\n",
"### Размах\n",
"Это разность между максимальным и минимальным значениям выборки. Крайне чувствителен к взбросам.\n",
"### Дисперсия\n",
"\n",
"Это средний квадрат отклонений индивидуальных значений признака от их средней величины\n",
"\n",
"#### Для генеральной совокупности\n",
"$$D = \\frac{\\sum_{i=1}^{n} (x_{i} - M_{x})^2}{n}$$\n",
"Среднеквадратическое отклонение\n",
"$$ \\sigma = \\sqrt{D}$$\n",
"#### Для выборки\n",
"$$D = \\frac{\\sum_{i=1}^{n} (x_{i} - M_{x})^2}{n-1}$$\n",
"где 1 это количество степеней свободы\n",
"Важно отменить, что среднеквадратическое отклонение для выборки обозначают по другому, как **sd** - standart deviation\n",
"\n",
"#### Ликбез: Почему именно квадрат, а не модуль или куб?\n",
" Могу предположить, что линейное отклонение более чувствительно выбросам, квадратичное менее, кубическое — ещё менее чувствительно.\n",
" Попробовал посчитать для 3-х выборок: [1,2,3,4,5], [1,2,3,4,50] и [1,2,3,4,500]:\n",
"\n",
" - Линейное: 2.5, 452.5 и 49502.5\n",
" - Квадратичное: 1.58, 21.27 и 222.49\n",
" - Кубическое: 1.36, 7.68, и 36.71\n",
" \n",
"Модуль не берут потому, что модуль - не гладкая функция. В нуле у модуля имеется \"излом\" из-за которого у производной происходит разрыв.\n",
"А очень многие математические теоремы, которые наверняка потребуются дальше, работают только на гладких функциях.\n",
"\n",
"Вообще, с не гладкими функциями работать не любят. Там все становится сложнее. Поэтому берется квадрат.\n",
"[Source](#https://stepik.org/lesson/8076/step/5?discussion=49741&unit=1356)\n",
"\n",
"#### Свойства дисперсии\n",
"\n",
"$$ D_{x+c} = D_x $$\n",
"$$ D_{x*c} = D_x+c^2 $$\n",
"\n",
"### Квартили распределения\n",
"**Квартили** - это три точки(значения признака), которые делят **упорядочное** множество данных на 4 равные части.\n",
"\n",
"**Box plot** - такой вид диаграммы в удобной форме показывает медиану, нижний и верхний квартили, минимальное и максимальное значение выборки и выбросы.\n",
"\n",
"\n",
"\n",
"Квартили и inter quartile range используют, чтобы оценить наличие выбросов. Алгоритм расчета - посчитали квартили, посчитали разницу между ними, вычислили теоретический максимум и минимум, сравнили с имеющимся и выяснили есть ли у вас выбросы и сколько их. Если много, то нужно анализировать и решать брать ли их в выборку или нет. \n",
"\n",
"### 2.Пример\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Range: 28 is equal max - min: 28\n",
"Standard deviation: 6.00\n"
]
}
],
"source": [
"'''Расчитываем размах и стандартное отклонение с помощью numpy'''\n",
"import numpy as np\n",
"sample = np.array([185, 175, 170, 169, 171, 175, 157, 172, 170, 172, 167, 173, 168, 167, 166,\n",
" 167, 169, 172, 177, 178, 165, 161, 179, 159, 164, 178, 172, 170, 173, 171])\n",
"\n",
"# The name of the function comes from the acronym for ‘peak to peak’.\n",
"print(f'Range: {np.ptp(sample)} is equal max - min: {np.max(sample)- np.min(sample)}')\n",
"\n",
"# ddof - Delta Degrees of Freedom\n",
"print(f'Standard deviation: {np.std(sample, ddof=1):.2f}')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Диаграмма boxplot"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAANyElEQVR4nO3dX4idd53H8fdnJ9FepRvJeGH/bCo0ZXSQSMci0mpTBGVZKLigCSxUGDbYlSxbwQuZZWOFASnrhbQsJTAh9MKjdVvEXdgVhFmzA2qZYHdJrd3+2+JQMVPT1ZsmpvG7F3PSTuOZnplzZnIyv75fEHjO73nm5NuLvufJc55zTqoKSVJb/mTUA0iSNp9xl6QGGXdJapBxl6QGGXdJatCOUQ8AsGfPntq7d++ox5CkbeXUqVOvVNV4r31XRdz37t3L4uLiqMeQpG0lyUtr7fOyjCQ1yLhLUoOMuyQ1yLhLUoOMuyQ1qG/ckxxPcibJ6VVr+5P8JMmTSRaT3NZd35vkte76k0ke3srhpa3U6XSYnJxkbGyMyclJOp3OqEeS1m09t0KeAB4CHlm19gBwf1X9W5I/7z6+s7vv+arav4kzSldcp9NhZmaGubk5br/9dhYWFpiengbg0KFDI55O6q/vmXtVnQTOXr4M7OpuXwu8vMlzSSM1OzvL3NwcBw4cYOfOnRw4cIC5uTlmZ2dHPZq0LlnP57kn2Qv8a1VNdh9PAD8AwsoviI9V1Uvd454C/gf4HfD3VfWfazznYeAwwI033njrSy+teS++dMWNjY1x7tw5du7c+cbahQsXuOaaa7h48eIIJ5PelORUVU312jfoC6r3AvdV1Q3AfcBcd/1XwI1V9WHgS8C3kuzq9QRVdayqpqpqany857tnpZGZmJhgYWHhLWsLCwtMTEyMaCJpYwaN+z3A493t7wK3AVTV+ar6TXf7FPA8sG/YIaUrbWZmhunpaebn57lw4QLz8/NMT08zMzMz6tGkdRn0s2VeBj4B/AdwF/AsQJJx4GxVXUzyfuBm4IVNmFO6oi69aHrkyBGefvppJiYmmJ2d9cVUbRt9r7kn6bByJ8we4NfAUeAZ4Jus/HI4B/xNVZ1K8pfA14DXgYvA0ar6l35DTE1NlR8cJkkb83bX3PueuVfVWqcqt/Y49jHgsY2NJ0nabL5DVZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUF9457keJIzSU6vWtuf5CdJnkyymOS2Vfu+kuS5JM8k+dRWDS5JWtt6ztxPAJ++bO0B4P6q2g/8Q/cxST4AHAQ+2P2Zf0oytlnDSpLWp2/cq+okcPbyZWBXd/ta4OXu9t3At6vqfFW9CDwH3IYk6YraMeDP/R3wgyT/yMoviI91168DfrLquKXumiTpChr0BdV7gfuq6gbgPmCuu54ex1avJ0hyuHu9fnF5eXnAMSRJvQwa93uAx7vb3+XNSy9LwA2rjrueNy/ZvEVVHauqqaqaGh8fH3AMSVIvg8b9ZeAT3e27gGe7298HDiZ5d5KbgJuBJ4YbUZK0UX2vuSfpAHcCe5IsAUeBvwa+mWQHcA44DFBVTyV5FPg58Drwxaq6uEWzS5LW0DfuVXVojV23rnH8LDA7zFCSpOH4DlVJapBxl6QGDXqfu7QtJb3u1t18VT3vAJauGOOud5RBopvEWGvb8bKMJDXIuEtSg4y7JDXIuEtSg4y7JDXIuEtSg4y7JDXIuEtSg4y7JDXIuEtSg4y7JDXIuEtSg4y7JDXIuEtSg4y7JDXIuEtSg4y7JDXIuEtSg4y7JDXIuEtSg4y7JDXIuEtSg4y7JDWob9yTHE9yJsnpVWvfSfJk98//Jnmyu743yWur9j28hbNLktawYx3HnAAeAh65tFBVn7u0neQbwG9XHf98Ve3fpPkkSQPoG/eqOplkb699SQJ8Frhrk+eSJA1h2GvudwC/rqpnV63dlORnSX6U5I61fjDJ4SSLSRaXl5eHHEOStNqwcT8EdFY9/hVwY1V9GPgS8K0ku3r9YFUdq6qpqpoaHx8fcgxJ0moDxz3JDuAzwHcurVXV+ar6TXf7FPA8sG/YISVJGzPMmfsngV9U1dKlhSTjSca62+8HbgZeGG5ESdJGredWyA7wY+CWJEtJpru7DvLWSzIAHwf+O8l/Af8MfKGqzm7mwJKk/tZzt8yhNdY/32PtMeCx4ceSJA3Dd6hKUoOMuyQ1yLhLUoOMuyQ1yLhLUoOMuyQ1yLhLUoOMuyQ1aD2f5y5dtd7znvfw6quvbvnfs/Lp1ltn9+7dnD3rm7m1eYy7trVXX32Vqhr1GEPb6l8eeufxsowkNci4S1KDjLskNci4S1KDjLskNci4S1KDjLskNci4S1KDjLskNci4S1KDjLskNci4S1KDjLskNci4S1KDjLskNci4S1KD+n5ZR5LjwF8AZ6pqsrv2HeCW7iF/CvxfVe3v7vsKMA1cBP62qn6w+WNLK+roLvjqtaMeY2h1dNeoR1Bj1vNNTCeAh4BHLi1U1ecubSf5BvDb7vYHgIPAB4H3AT9Msq+qLm7izNIbcv/vmvkmpvrqqKdQS/pelqmqk0DPL3fMyneDfRbodJfuBr5dVeer6kXgOeC2TZpVkrROw15zvwP4dVU92318HfDLVfuXumt/JMnhJItJFpeXl4ccQ5K02rBxP8SbZ+0Avb7lt+e/mavqWFVNVdXU+Pj4kGNIklZbzzX3npLsAD4D3LpqeQm4YdXj64GXB/07JEmDGebM/ZPAL6pqadXa94GDSd6d5CbgZuCJYQaUJG1c37gn6QA/Bm5JspRkurvrIG+9JENVPQU8Cvwc+Hfgi94pI0lXXq6G28impqZqcXFx1GNoG0rSzq2QDfx36MpKcqqqpnrt8x2qktQg4y5JDTLuktQg4y5JDTLuktQg4y5JDTLuktQg4y5JDTLuktQg4y5JDTLuktQg4y5JDTLuktQg4y5JDTLuktSggb9mT7paJL2+und72b1796hHUGOMu7a1K/EFF36RhrYjL8tIUoOMuyQ1yLhLUoOMuyQ1yLhLUoOMuyQ1yLhLUoOMuyQ1yLhLUoP6xj3J8SRnkpy+bP1IkmeSPJXkge7a3iSvJXmy++fhrRpckrS29Xz8wAngIeCRSwtJDgB3Ax+qqvNJ3rvq+Oerav9mDilJ2pi+Z+5VdRI4e9nyvcDXq+p895gzWzCbJGlAg15z3wfckeSnSX6U5COr9t2U5Gfd9TvWeoIkh5MsJllcXl4ecAxJUi+Dxn0HsBv4KPBl4NGsfO7qr4Abq+rDwJeAbyXZ1esJqupYVU1V1dT4+PiAY0iSehk07kvA47XiCeAPwJ6qOl9VvwGoqlPA86yc5UuSrqBB4/494C6AJPuAdwGvJBlPMtZdfz9wM/DCJswpSdqAvnfLJOkAdwJ7kiwBR4HjwPHu7ZG/B+6pqkryceBrSV4HLgJfqKrLX4yVJG2xvnGvqkNr7PqrHsc+Bjw27FCSpOH4DlVJapBxl6QGGXdJapBxl6QGGXdJapBxl6QGGXdJapBxl6QGGXdJapBxl6QGGXdJapBxl6QGGXdJapBxl6QGGXdJapBxl6QGGXdJapBxl6QGGXdJapBxl6QGGXdJapBxl6QGGXdJapBxl6QGGXdJapBxl6QGGXdJalDfuCc5nuRMktOXrR9J8kySp5I8sGr9K0me6+771FYMLUl6ezvWccwJ4CHgkUsLSQ4AdwMfqqrzSd7bXf8AcBD4IPA+4IdJ9lXVxc0eXJK0tr5n7lV1Ejh72fK9wNer6nz3mDPd9buBb1fV+ap6EXgOuG0T55UkrcOg19z3AXck+WmSHyX5SHf9OuCXq45b6q79kSSHkywmWVxeXh5wDElSL4PGfQewG/go8GXg0SQB0uPY6vUEVXWsqqaqamp8fHzAMSRJvQwa9yXg8VrxBPAHYE93/YZVx10PvDzciJKkjRo07t8D7gJIsg94F/AK8H3gYJJ3J7kJuBl4YhPmlCRtQN+7ZZJ0gDuBPUmWgKPAceB49/bI3wP3VFUBTyV5FPg58DrwRe+UkaQrLytNHq2pqalaXFwc9RhST0m4Gv4/kS6X5FRVTfXa5ztUJalB63kTk9SMlZu6tv7nPNPXqBl3vaMYXb1TeFlGkhpk3CWpQcZdkhpk3CWpQcZdkhpk3CWpQcZdkhpk3CWpQcZdkhpk3KU1dDodJicnGRsbY3Jykk6nM+qRpHXz4wekHjqdDjMzM8zNzXH77bezsLDA9PQ0AIcOHRrxdFJ/fuSv1MPk5CQPPvggBw4ceGNtfn6eI0eOcPr06RFOJr3p7T7y17hLPYyNjXHu3Dl27tz5xtqFCxe45ppruHjR75/R1cHPc5c2aGJigoWFhbesLSwsMDExMaKJpI0x7lIPMzMzTE9PMz8/z4ULF5ifn2d6epqZmZlRjyatiy+oSj1cetH0yJEjPP3000xMTDA7O+uLqdo2vOYuSduU19wl6R3GuEtSg4y7JDXIuEtSg4y7JDXoqrhbJsky8NKo55DWsAd4ZdRDSD38WVWN99pxVcRdupolWVzrdjPpauVlGUlqkHGXpAYZd6m/Y6MeQNoor7lLUoM8c5ekBhl3SWqQcZfWkOR4kjNJ/F49bTvGXVrbCeDTox5CGoRxl9ZQVSeBs6OeQxqEcZekBhl3SWqQcZekBhl3SWqQcZfWkKQD/Bi4JclSkulRzyStlx8/IEkN8sxdkhpk3CWpQcZdkhpk3CWpQcZdkhpk3CWpQcZdkhr0/zSyfIjehMg6AAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"'''с помощью диаграммы boxplot мы можем узнать медиану, 2 и 3 квартиль'''\n",
"import matplotlib.pyplot as plt\n",
"\n",
"\n",
"plt.boxplot(sample, showfliers=1)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Нормальное распределение\n",
"**Коротко**\n",
" - Унимодально\n",
" - Симметрично\n",
" - Отклонения наблюдений от среднего подчиняются определённому вероятностному закону\n",
" \n",
"**Подробно**\n",
"\n",
"Нормальное распределение возникает в результате воздействия множества факторов, вклад каждого из которых очень мал.\n",
"\n",
"Для облегчения этого восприятия в 1873 году Фрэнсис Гальтон сделал устройство, которое в последствии назвали Доской Галтона (или квинкункс). Суть простая: сверху по середине подаются шарики, которые при прохождении нескольких уровней (например, 10-ти) на каждом уровне сталкиваются с препятствием, и при каждом столкновении отскакивают либо влево, либо вправо (с равной вероятностью).\n",
"\n",
"Как вы догадываетесь, результатом прохождения - это распределение, стремящееся к нормальному!\n",
"\n",
"Выглядит это так:\n",
"\n",
"\n",
"\n",
"Или в виде кода:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAVpElEQVR4nO3df5BlZX3n8fdnZyLrL1YMDcIMZNAaTIBKhjASN64WSlaQGIFo1mGNkEhq1AVL15hV4u7qpnaq4q9oua5YoxBgoyArsqAFCUhc2a2g2OAIA4oMgtrMLDNGE6kkNRH87h/3tF6bnu6+91yaJs/7VXXrnvucc773ubfP+fTp55x7O1WFJKkN/+yx7oAkafkY+pLUEENfkhpi6EtSQwx9SWrI6se6A4s58MADa926dY91NyTpceWWW275blVNzW1f8aG/bt06pqenH+tuSNLjSpJvzdfu8I4kNcTQl6SGGPqS1BBDX5IaYuhLUkMMfUlqiKEvSQ1ZNPSTXJhkd5LtQ22fTLKtu92XZFvXvi7JPwzN+8jQOscluT3JjiQfTJJH5RVJkvZpKR/Ougj4EHDJbENVvXJ2Osn7gL8dWv6eqtowT53zgc3AF4FrgJOBa0fusSRpbIuGflXdmGTdfPO6o/V/A7xooRpJDgH2r6qbuseXAKdh6GsFe+kVF/Ra/7MvP3tCPZEmp++Y/vOBB6rq7qG2I5J8JckXkjy/a1sDzAwtM9O1zSvJ5iTTSab37NnTs4uSpFl9Q/8M4NKhx7uAw6vqWODNwCeS7A/MN36/z//TWFVbq2pjVW2cmnrE9wVJksY09heuJVkN/CZw3GxbVe0F9nbTtyS5BziSwZH92qHV1wI7x31uSdJ4+hzp/xrw9ar68bBNkqkkq7rpZwLrgW9W1S7gwSTP7c4DnAlc1eO5JUljWMolm5cCNwHPTjKTZPbs1CZ+emgH4AXAbUm+CnwKeF1Vfa+b93rgY8AO4B48iStJy24pV++csY/235mn7Qrgin0sPw0cM2L/JEkT5CdyJakhhr4kNcTQl6SGGPqS1BBDX5IaYuhLUkPG/kSutBKdcuW7xl73mtPfOsGeSCuTR/qS1BBDX5IaYuhLUkMMfUlqiKEvSQ0x9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JD/O4daZn8xqfm/U+iS/aZV7x8Qj1RyzzSl6SGGPqS1JBFQz/JhUl2J9k+1PbOJPcn2dbdThmad16SHUnuSnLSUPtxSW7v5n0wSSb/ciRJC1nKkf5FwMnztL+/qjZ0t2sAkhwFbAKO7tb5cJJV3fLnA5uB9d1tvpqSpEfRoqFfVTcC31tivVOBy6pqb1XdC+wAjk9yCLB/Vd1UVQVcApw2Zp8lSWPqM6Z/bpLbuuGfA7q2NcB3hpaZ6drWdNNz2+eVZHOS6STTe/bs6dFFSdKwcUP/fOBZwAZgF/C+rn2+cfpaoH1eVbW1qjZW1capqakxuyhJmmus0K+qB6rq4ar6EfBR4Phu1gxw2NCia4GdXfvaedolSctorNDvxuhnnQ7MXtlzNbApyX5JjmBwwvbmqtoFPJjkud1VO2cCV/XotyRpDIt+IjfJpcAJwIFJZoB3ACck2cBgiOY+4LUAVXVHksuBO4GHgHOq6uGu1OsZXAn0RODa7iZJWkaLhn5VnTFP8wULLL8F2DJP+zRwzEi9kyRNlJ/IlaSGGPqS1BBDX5IaYuhLUkMMfUlqiKEvSQ0x9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQxYN/SQXJtmdZPtQ23uSfD3JbUmuTPK0rn1dkn9Isq27fWRoneOS3J5kR5IPJsmj8ookSfu0lCP9i4CT57RdDxxTVb8IfAM4b2jePVW1obu9bqj9fGAzsL67za0pSXqULRr6VXUj8L05bddV1UPdwy8CaxeqkeQQYP+quqmqCrgEOG2sHkuSxjaJMf3XANcOPT4iyVeSfCHJ87u2NcDM0DIzXdu8kmxOMp1kes+ePRPooiQJeoZ+krcDDwEf75p2AYdX1bHAm4FPJNkfmG/8vvZVt6q2VtXGqto4NTXVp4uSpCGrx10xyVnAS4ETuyEbqmovsLebviXJPcCRDI7sh4eA1gI7x31uSdJ4xjrST3Iy8FbgZVX190PtU0lWddPPZHDC9ptVtQt4MMlzu6t2zgSu6t17SdJIFj3ST3IpcAJwYJIZ4B0MrtbZD7i+u/Lyi92VOi8A/ijJQ8DDwOuqavYk8OsZXAn0RAbnAIbPA6hRL7nqjF7rX3vqpRPqidSGRUO/qubbKy/Yx7JXAFfsY940cMxIvZMkTZSfyJWkhox9IlfSY+v0Kz4/9rpXvvyFE+yJHk880pekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDTH0Jakhhr4kNcTQl6SGGPqS1JBFQz/JhUl2J9k+1Pb0JNcnubu7P2Bo3nlJdiS5K8lJQ+3HJbm9m/fBJJn8y5EkLWQpR/oXASfPaXsbcENVrQdu6B6T5ChgE3B0t86Hk6zq1jkf2Ays725za0qSHmWLhn5V3Qh8b07zqcDF3fTFwGlD7ZdV1d6quhfYARyf5BBg/6q6qaoKuGRoHUnSMhl3TP/gqtoF0N0f1LWvAb4ztNxM17amm57bPq8km5NMJ5nes2fPmF2UJM016RO5843T1wLt86qqrVW1sao2Tk1NTaxzktS6cUP/gW7Ihu5+d9c+Axw2tNxaYGfXvnaedknSMho39K8GzuqmzwKuGmrflGS/JEcwOGF7czcE9GCS53ZX7Zw5tI4kaZmsXmyBJJcCJwAHJpkB3gH8MXB5krOBbwO/BVBVdyS5HLgTeAg4p6oe7kq9nsGVQE8Eru1ukqRltGjoV9UZ+5h14j6W3wJsmad9GjhmpN5JkibKT+RKUkMMfUlqiKEvSQ0x9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDTH0Jakhhr4kNWTs0E/y7CTbhm4/SPKmJO9Mcv9Q+ylD65yXZEeSu5KcNJmXIElaqtXjrlhVdwEbAJKsAu4HrgR+F3h/Vb13ePkkRwGbgKOBQ4HPJTmyqh4etw+SpNFManjnROCeqvrWAsucClxWVXur6l5gB3D8hJ5fkrQEYx/pz7EJuHTo8blJzgSmgd+vqu8Da4AvDi0z07U9QpLNwGaAww8/fEJdlLQvr7ziG73W/+TLj5xQT/Ro632kn+QJwMuA/9k1nQ88i8HQzy7gfbOLzrN6zVezqrZW1caq2jg1NdW3i5KkziSO9F8C3FpVDwDM3gMk+Sjw2e7hDHDY0HprgZ0TeH4to//6yX7n3//jK/9iQj2RNI5JjOmfwdDQTpJDhuadDmzvpq8GNiXZL8kRwHrg5gk8vyRpiXod6Sd5EvCvgdcONb87yQYGQzf3zc6rqjuSXA7cCTwEnOOVO5K0vHqFflX9PfCzc9pevcDyW4AtfZ5TkjQ+P5ErSQ0x9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDTH0Jakhhr4kNcTQl6SG9Ar9JPcluT3JtiTTXdvTk1yf5O7u/oCh5c9LsiPJXUlO6tt5SdJoJnGk/8Kq2lBVG7vHbwNuqKr1wA3dY5IcBWwCjgZOBj6cZNUEnl+StESPxvDOqcDF3fTFwGlD7ZdV1d6quhfYARz/KDy/JGkf+oZ+AdcluSXJ5q7t4KraBdDdH9S1rwG+M7TuTNf2CEk2J5lOMr1nz56eXZQkzVrdc/3nVdXOJAcB1yf5+gLLZp62mm/BqtoKbAXYuHHjvMtIkkbX60i/qnZ297uBKxkM1zyQ5BCA7n53t/gMcNjQ6muBnX2eX5I0mrFDP8mTkzx1dhp4MbAduBo4q1vsLOCqbvpqYFOS/ZIcAawHbh73+SVJo+szvHMwcGWS2TqfqKo/T/Jl4PIkZwPfBn4LoKruSHI5cCfwEHBOVT3cq/eSpJGMHfpV9U3gl+Zp/2vgxH2sswXYMu5zSpL68RO5ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIb0/cI1SXqErZ/evfhCC9j8mwctvpDG4pG+JDXEI/1/4i68+MW91n/NWddNqCeSVgKP9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSFjh36Sw5J8PsnXktyR5I1d+zuT3J9kW3c7ZWid85LsSHJXkpMm8QIkSUvX52sYHgJ+v6puTfJU4JYk13fz3l9V7x1eOMlRwCbgaOBQ4HNJjqyqh3v0QZI0grGP9KtqV1Xd2k0/CHwNWLPAKqcCl1XV3qq6F9gBHD/u80uSRjeRMf0k64BjgS91TecmuS3JhUkO6NrWAN8ZWm2GffySSLI5yXSS6T179kyii5IkJhD6SZ4CXAG8qap+AJwPPAvYAOwC3je76Dyr13w1q2prVW2sqo1TU1N9uyhJ6vQK/SQ/wyDwP15Vnwaoqgeq6uGq+hHwUX4yhDMDHDa0+lpgZ5/nlySNps/VOwEuAL5WVX8y1H7I0GKnA9u76auBTUn2S3IEsB64edznlySNrs/VO88DXg3cnmRb1/aHwBlJNjAYurkPeC1AVd2R5HLgTgZX/pzjlTuStLzGDv2q+r/MP05/zQLrbAG2jPuckqR+/ESuJDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1Jakif6/QlaVn85cfH/w6uF73Kr3IZZuivQNdccMriCy3glLP3+VEJSY1zeEeSGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqI370zAV/5yG/0Wv/Y131mQj2RtJi7P/RAr/XXn3vwhHry2PBIX5Iasuyhn+TkJHcl2ZHkbcv9/JLUsmUN/SSrgP8OvAQ4CjgjyVHL2QdJatlyj+kfD+yoqm8CJLkMOBW4czk7sevDb++1/iH/bsuEeiLp8e7//ckdvdZ/xpuP/qnHu//bDb3qHfSGExecn6rq9QSjSPIK4OSq+r3u8auBX6mqc+cstxnY3D18NnDXEsofCHx3Ql2dZK2VXm8l923S9VZy3yZdbyX3baXXW8l9G6Xez1XVI/5t2HIf6Weetkf81qmqrcDWkQon01W1cdyOPVq1Vnq9ldy3SddbyX2bdL2V3LeVXm8l920S9Zb7RO4McNjQ47XAzmXugyQ1a7lD/8vA+iRHJHkCsAm4epn7IEnNWtbhnap6KMm5wF8Aq4ALq6rfWZCfGGk4aBlrrfR6K7lvk663kvs26XoruW8rvd5K7lvvest6IleS9NjyE7mS1BBDX5Ia8rgM/SQ/n+SmJHuTvGXOvKcl+VSSryf5WpJ/2adeN39Vkq8k+ey4tZIcluTzXZ/uSPLGCbzWXl9pkeRfJPlMkq92ffrdUWvMU/OEJNu6el+YQL3nJHm4+4xHnzqvSnJbd/urJL/Us95Evk5k3O1iCXWXvM0uodbI+9QCtf599zq3J7k0yT8fcf0Lk+xOsn2o7elJrk9yd3d/QM967+le621JrkzytD71hua9JUklObBPrSRv6La9O5K8e6l9+7GqetzdgIOA5wBbgLfMmXcx8Hvd9BOAp/Wp181/M/AJ4LPj1gIOAX65m34q8A3gqB71VgH3AM/sXudXl1JvTu0/BN7VTU8B3wOe0OPn8jQGn64+fLbvPX/Oq4C/BK4BXtGz1q8CB3TTLwG+1LNfvd77vtvFEuoueZtdQq2R96l91FkD3As8sXt8OfA7I9Z4AfDLwPahtncDb+um3za7Tfeo92JgdTf9rr71uvbDGFzA8i3gwB59eyHwOWC/7vHI+9jj8ki/qnZX1ZeBHw63J9mfwRt1QbfcP1bV34xbr6u5Fvh14GN9+lZVu6rq1m76QeBrDHaCcfv246+0qKp/BGa/0mIUBTw1SYCnMAj9h0asMezfAp+uqm/P9r1HLYA3AFcAfetQVX9VVd/vHn6RwWdExjWJ9362X2NtFwsZdZtdpNZY+9QCVgNPTLIaeBIjfk6nqm5ksJ0OO5XBLya6+9P61Kuq66pqdj8YaVvZR/8A3g/8B+b5MOqItV4P/HFV7e2WGXnfeFyG/gKeCewB/rT70/ZjSZ7cs+YHGPywftS3c7OSrAOOBb7Uo8wa4DtDj2cYPSw+BPwCgx3vduCNVdXndR4JHJDkfye5JcmZ4xZKsgY4HfhIj/7sy9nAtT3Wn8R7/wgT2i5gstvsxPapqrofeC/wbWAX8LdVdd0E+nhwVe3qnmMXg7+OJ+U19NtWSPIy4P6q+uoE+nMk8PwkX0ryhSTPGbXAP7XQX83gz6Hzq+pY4O8Y/Lk3liQvBXZX1S0T6h9JnsLg6PVNVfWDPqXmaRv1+tuTgG3AocAG4EPdkd24VgPHMTjKPAn4T0mOHLPWB4C3VtXDPfrzCEleyCD039qnzDxtva59ntR28ShssxPbp7qx9lOBIxhsc09O8tsT6ufEJXk7g798P96jxpOAtwP/eULdWg0cADwX+APg8u4v9SV73IR+knO6E4Tbkhy6j8VmgJmqmj1S+hSDDXbces8DXpbkPgZ/wr8oyZ+NWYskP8Ngx/54VX16geWW+lpH/kqL4drAOQyGY6qqdjAYb/35xWosUG8n8OdV9XdV9V3gRmDJJ0zn1NoIXNa9968APpzktHH7luTQJL/IYMjj1Kr661FqzTHRrxNZ6naxREvaZkew5H1qCX4NuLeq9lTVD4FPMzjX0tcDSQ4B6O57DwcmOQt4KfCq6gbPx/QsBr/kvtr9TNYCtyZ5xpj1ZvjJPnszg7/mlnRi+MdGPQmwkm7AO3nkidz/Azx7aP57+tQbmncCI5wUm1uLwdHhJcAHJvFaGfzG/yaDDWr2ZOLRI9Y8H3hnN30wcD9LPMm0j3q/ANzQ9e1JwHbgmAn8nC+i/4ncw4EdwK9OoD+93/tJbReL1B5pm12gztj71Jw6vwLc0W0bYTD+/oYx6qzjp09uvoefPpH77p71TmZwQcLUmK/zp+rNmXffKPvYPH17HfBH3fSRDIYZM1L/Jr2hLccNeAaD33g/AP6mm96/m7cBmAZuA/4X3RUb49YbWmZJO9C+agH/isEQwG0MhlS2Aaf0fK2nMLja4x7g7WO8j4cC1zEYz98O/PYEfjZ/0O0w2xkMVUzi530R/UP/Y8D3h9776Z71er33Q3XG2i6WWHtJ2+wS6oy8Ty1Q678AX++2j/9BdxXKCOtfyuB8wA+7feFs4GcZHGzc3d0/vWe9HQzCdPbn8ZE+9ebMv4+lX70zX9+eAPxZ9/7dCrxo1J+BX8MgSQ153IzpS5L6M/QlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQ/4/cPRPXTXnbIEAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"'''Иммитация доски Гальтона в коде'''\n",
"import seaborn as sns\n",
"data = dict()\n",
"# количество шариков\n",
"N = 10000\n",
"# количество уровней\n",
"level = 20\n",
"for _ in range(N):\n",
" index = 0\n",
" for _ in range(level):\n",
" index += np.random.choice([-1, 1])\n",
" data.setdefault(index, 0)\n",
" data[index] += 1\n",
"sns.barplot(x=list(data.keys()), y=list(data.values()));"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Z-преобразование\n",
"\n",
"Преобразование полученных данных в стандартную Z-шкалу (Z-scores) со средним значением = 0 и дисперсией = 1. Чтобы привести к такому виду из каждого наблюдения нужно отнять среднее значение и разделитьв на стандартное отклонение. \n",
"\n",
"$$ Z_{i}=\\frac{x_{i} - \\bar{X}}{sd} $$\n",
"\n",
"Иногда нам необходимо рассчитать z - значение только для отдельно взятого наблюдения, чтоб выяснить насколько далеко оно отклоняется от среднего значения в единицах стандартного отклонения.\n",
"\n",
"### Правило 3х-сигм\n",
"\n",
"\n",
"\n",
"\n",
"### 3.Примеры"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Только у 4.78% людей, IQ>125\n"
]
}
],
"source": [
"''' Считается, что значение IQ (уровень интеллекта) у людей имеет нормальное распределение\n",
"со средним значением равным 100 и стандартным отклонением равным 15 (M = 100, sd = 15).\n",
"Какой приблизительно процент людей обладает IQ > 125?\n",
"'''\n",
"\n",
"from scipy import stats\n",
"mean = 100\n",
"std = 15\n",
"IQ=125\n",
"# sf - Survival function = (1 - cdf) - Cumulative distribution function\n",
"print(f\"Только у {(stats.norm(mean, std).sf(IQ))*100:.2f}% людей, IQ>{IQ}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Центральная предельная теорема\n",
"\n",
"Гласит, что множество средних выборок из генеральной совокупности (ГС необязательно иметь нормальное распределние) будут иметь нормальное распределение. Причём средняя этого распределения будет близко к средней генеральной совокупности, а стандарное отклонение этого распределение будет називаться **стандарной ошибкой среднего** (se).\n",
"\n",
"Зная стандартное отклонение ГС и размер выборки мы можем рассчитать стандартную ошибку среднего.\n",
"\n",
"$$ se = \\frac{\\sigma}{\\sqrt{N}} $$\n",
"\n",
"где N - размер выборки. Если размер выборки достаточно большой (>30) и она является репрезативна, то вместо стандарного отклонения ГС мы можем взять стандарное отклонение выборки.\n",
"\n",
"$$ se = \\frac{sd}{\\sqrt{N}} $$\n",
"\n",
"Стандартная ошибка среднего - это среднеквадратическое отклонение распределения выборочных средних\n",
"### 4.Примеры\n",
"Проверим на практике все эти законы."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAD4CAYAAAAD6PrjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAQvklEQVR4nO3df6xfdX3H8efLgvJDDTAKVsAVTaMDosIqc9MZHRqZTMEluC5z6QwTk+HU/bSQZbAlTbpFiewHTvyxFPyBFRh0Y5tDNnQmjlp+TH5UApMKlQ6qziHOgMB7f3xPP17ae8vp7T393vvt85HcfM/5fM/5ft+fnN6+7uf8TFUhSRLAM8ZdgCRp/jAUJEmNoSBJagwFSVJjKEiSmv3GXcCeOPzww2vp0qXjLkOSFpSbbrrp21W1eLr3FnQoLF26lI0bN467DElaUJJ8c6b33H0kSWoMBUlSYyhIkhpDQZLUGAqSpMZQkCQ1hoIkqTEUJEmNoSBJahb0Fc3SfLZ01bW9l9285rQBK5H6c6QgSWoMBUlSYyhIkhpDQZLUGAqSpMazj7TP8ywh6cccKUiSGkNBktS4+0jaDbuzq0laiBwpSJIaQ0GS1BgKkqTGUJAkNYaCJKkxFCRJjaEgSWoMBUlSYyhIkhpDQZLUGAqSpMZ7H0nzQN97Knnrbg3NkYIkqTEUJEmNoSBJagwFSVJjKEiSGkNBktQMGgpJfifJHUluT/KZJAckOSzJdUnu7l4PnbL8uUnuSXJXkjcOWZskaWeDhUKSo4D3AMur6gRgEbACWAVcX1XLgOu7eZIc171/PHAqcHGSRUPVJ0na2dAXr+0HHJjkR8BBwAPAucBru/fXAjcA7wdOBy6vqkeBe5PcA5wMfGXgGjWB+l4MJumpBhspVNW3gA8A9wFbgf+tqn8Bjqyqrd0yW4EjulWOAu6f8hFburanSHJ2ko1JNm7btm2o8iVpnzTk7qNDGf31fyzwfODgJG/f1SrTtNVODVWXVNXyqlq+ePHiuSlWkgQMe6D59cC9VbWtqn4EXAX8HPBgkiUA3etD3fJbgGOmrH80o91NkqS9ZMhQuA94ZZKDkgQ4BdgErAdWdsusBK7pptcDK5I8K8mxwDJgw4D1SZJ2MNiB5qq6MckVwM3A48AtwCXAs4F1Sc5iFBxndsvfkWQdcGe3/DlV9cRQ9UmSdjbo2UdVdT5w/g7NjzIaNUy3/Gpg9ZA1SZJm5hXNkqTGUJAkNYaCJKkxFCRJjaEgSWoMBUlSM/QN8STNod250d/mNacNWIkmlSMFSVJjKEiSGkNBktQYCpKkxlCQJDWGgiSpMRQkSY2hIElqDAVJUuMVzVowdudqXkmz40hBktQYCpKkxlCQJDWGgiSpMRQkSY2hIElqDAVJUmMoSJIaQ0GS1BgKkqTGUJAkNYaCJKkxFCRJjaEgSWoMBUlSYyhIkhpDQZLUGAqSpGbQUEhySJIrknw9yaYkP5vksCTXJbm7ez10yvLnJrknyV1J3jhkbZKknQ09UrgI+OeqegnwMmATsAq4vqqWAdd38yQ5DlgBHA+cClycZNHA9UmSphgsFJI8F3gN8HGAqnqsqr4HnA6s7RZbC5zRTZ8OXF5Vj1bVvcA9wMlD1SdJ2lmvUEhywiw++4XANuBvk9yS5GNJDgaOrKqtAN3rEd3yRwH3T1l/S9e2Yy1nJ9mYZOO2bdtmUZYkaSZ9Rwp/k2RDkt9KckjPdfYDTgI+XFUnAj+g21U0g0zTVjs1VF1SVcuravnixYt7liJJ6qNXKFTVq4FfA44BNib5dJI3PM1qW4AtVXVjN38Fo5B4MMkSgO71oSnLHzNl/aOBB3r1QpI0J/bru2BV3Z3kj4CNwF8AJyYJcF5VXTXN8v+d5P4kL66qu4BTgDu7n5XAmu71mm6V9cCnk1wIPB9YBmyYfdekfdvSVdf2XnbzmtMGrEQLSa9QSPJS4B3AacB1wJur6uYkzwe+AuwUCp3fBj6V5JnAN7rPeAawLslZwH3AmQBVdUeSdYxC43HgnKp6YtY904KwO/9xSRpe35HCXwEfZTQq+OH2xqp6oBs9TKuqbgWWT/PWKTMsvxpY3bMmSdIc6xsKbwJ+uP0v9yTPAA6oqv+rqssGq06StFf1PfvoC8CBU+YP6tokSROkbygcUFWPbJ/ppg8apiRJ0rj0DYUfJDlp+0ySnwZ+uIvlJUkLUN9jCu8DPpdk+3UDS4BfGaQiSdLY9AqFqvpqkpcAL2Z05fHXq+pHg1YmSdrrel+8BrwCWNqtc2ISqurSQaqSJI1F34vXLgNeBNwKbL+grABDQZImSN+RwnLguKra6QZ10nS8UllamPqefXQ78LwhC5EkjV/fkcLhwJ1JNgCPbm+sqrcMUpUkaSz6hsIFQxYhSZof+p6S+sUkPwksq6ovJDkI8PnJkjRh+j6O852MHpLzka7pKODqgWqSJI1J3wPN5wCvAh6G0QN3+PGzlSVJE6JvKDxaVY9tn0myH9M8P1mStLD1DYUvJjkPOLB7NvPngL8frixJ0jj0DYVVwDbgNuBdwD8CMz5xTZK0MPU9++hJRo/j/Oiw5Ugah925An3zmtMGrETj1vfeR/cyzTGEqnrhnFckSRqb3bn30XYHAGcCh819OZKkcep1TKGqvjPl51tV9SHgF4YtTZK0t/XdfXTSlNlnMBo5PGeQiiRJY9N399EHp0w/DmwG3jbn1UiSxqrv2UevG7oQSdL49d199Lu7er+qLpybciRJ47Q7Zx+9Aljfzb8Z+BJw/xBFSZLGY3cesnNSVX0fIMkFwOeq6jeHKkyStPf1vc3FC4DHpsw/Biyd82okSWPVd6RwGbAhyd8xurL5rcClg1UlSRqLvmcfrU7yT8DPd03vqKpbhitLkjQOfXcfARwEPFxVFwFbkhw7UE2SpDHp+zjO84H3A+d2TfsDnxyqKEnSePQdKbwVeAvwA4CqegBvcyFJE6dvKDxWVUV3++wkBw9XkiRpXPqGwrokHwEOSfJO4Av0fOBOkkVJbknyD938YUmuS3J393rolGXPTXJPkruSvHF3OyNJ2jNPGwpJAnwWuAK4Engx8MdV9Zc9v+O9wKYp86uA66tqGXB9N0+S44AVwPHAqcDFSRb1/A5J0hx42lDodhtdXVXXVdUfVNXvV9V1fT48ydHAacDHpjSfDqztptcCZ0xpv7yqHq2qe4F7gJP7dUOSNBf67j76jySvmMXnfwj4Q+DJKW1HVtVWgO71iK79KJ56L6UtXdtTJDk7ycYkG7dt2zaLkiRJM+kbCq9jFAz/leRrSW5L8rVdrZDkl4CHquqmnt+Radqmey70JVW1vKqWL168uOdHS5L62OUVzUleUFX3Ab84i89+FfCWJG9i9Fzn5yb5JPBgkiVVtTXJEuChbvktwDFT1j8aeGAW3ytJmqWnGylcDVBV3wQurKpvTv3Z1YpVdW5VHV1VSxkdQP7Xqno7o9tvr+wWWwlc002vB1YkeVZ3tfQyYMNsOiVJmp2nu/fR1F06L5yj71zD6BTXs4D7gDMBquqOJOuAOxk98vOcqnpijr5TktTD04VCzTC9W6rqBuCGbvo7wCkzLLcaWD3b75Ek7ZmnC4WXJXmY0YjhwG6abr6q6rmDVidJ2qt2GQpV5cVjkrQP6fuQHUkCYOmqa3svu3nNaQNWoiHszvMUJEkTzpGCetudvxAlLUyOFCRJjaEgSWoMBUlSYyhIkhpDQZLUGAqSpMZQkCQ1hoIkqTEUJEmNoSBJagwFSVJjKEiSGkNBktQYCpKkxlCQJDWGgiSpMRQkSY2hIElqDAVJUmMoSJIaQ0GS1BgKkqRmv3EXoPFauuracZcgaR5xpCBJagwFSVJjKEiSGkNBktQYCpKkxlCQJDWGgiSpGew6hSTHAJcCzwOeBC6pqouSHAZ8FlgKbAbeVlX/061zLnAW8ATwnqr6/FD1SRre7lwHs3nNaQNWor6GHCk8DvxeVf0U8ErgnCTHAauA66tqGXB9N0/33grgeOBU4OIkiwasT5K0g8FCoaq2VtXN3fT3gU3AUcDpwNpusbXAGd306cDlVfVoVd0L3AOcPFR9kqSd7ZVjCkmWAicCNwJHVtVWGAUHcES32FHA/VNW29K17fhZZyfZmGTjtm3bBq1bkvY1g4dCkmcDVwLvq6qHd7XoNG21U0PVJVW1vKqWL168eK7KlCQxcCgk2Z9RIHyqqq7qmh9MsqR7fwnwUNe+BThmyupHAw8MWZ8k6akGC4UkAT4ObKqqC6e8tR5Y2U2vBK6Z0r4iybOSHAssAzYMVZ8kaWdD3jr7VcCvA7clubVrOw9YA6xLchZwH3AmQFXdkWQdcCejM5fOqaonBqxPkrSDwUKhqr7M9McJAE6ZYZ3VwOqhatpX+IwESbPlFc2SpMYnr0maF7z6eX5wpCBJagwFSVJjKEiSGkNBktQYCpKkxlCQJDWGgiSpMRQkSY2hIElqDAVJUmMoSJIa730kacHxPknDcaQgSWocKSwQPiNB0t7gSEGS1BgKkqTGUJAkNYaCJKkxFCRJjaEgSWoMBUlSYyhIkhpDQZLUGAqSpMbbXEiaaH1vEeON80YcKUiSGkcKY+RN7iTNN44UJEmNoSBJagwFSVLjMQVJwkd8bmcozDEPHktayNx9JElq5t1IIcmpwEXAIuBjVbVmzCX517+kfca8CoUki4C/Bt4AbAG+mmR9Vd053sok6ccm+fjDvAoF4GTgnqr6BkCSy4HTgUFCwRGApKEN9f/MUGEz30LhKOD+KfNbgJ+ZukCSs4Gzu9lHkty1l2rbHYcD3x53EQOa9P7B5Pdx0vsHE97H/Nke9e8nZ3pjvoVCpmmrp8xUXQJcsnfKmZ0kG6tq+bjrGMqk9w8mv4+T3j+Y/D4O1b/5dvbRFuCYKfNHAw+MqRZJ2ufMt1D4KrAsybFJngmsANaPuSZJ2mfMq91HVfV4kncDn2d0SuonquqOMZc1G/N699YcmPT+weT3cdL7B5Pfx0H6l6p6+qUkSfuE+bb7SJI0RoaCJKkxFPZQkk8keSjJ7VPaDktyXZK7u9dDx1njnpihfxck+VaSW7ufN42zxj2R5Jgk/5ZkU5I7kry3a5+kbThTHydiOyY5IMmGJP/Z9e9PuvaJ2Ia76N8g289jCnsoyWuAR4BLq+qEru3Pge9W1Zokq4BDq+r946xztmbo3wXAI1X1gXHWNheSLAGWVNXNSZ4D3AScAfwGk7MNZ+rj25iA7ZgkwMFV9UiS/YEvA+8FfpkJ2Ia76N+pDLD9HCnsoar6EvDdHZpPB9Z202sZ/QIuSDP0b2JU1daqurmb/j6widGV9ZO0DWfq40SokUe62f27n2JCtuEu+jcIQ2EYR1bVVhj9QgJHjLmeIbw7yde63UsLcli+oyRLgROBG5nQbbhDH2FCtmOSRUluBR4CrquqidqGM/QPBth+hoJm48PAi4CXA1uBD461mjmQ5NnAlcD7qurhcdczhGn6ODHbsaqeqKqXM7oLwslJThhzSXNqhv4Nsv0MhWE82O3H3b4/96Ex1zOnqurB7h/pk8BHGd3ddsHq9tNeCXyqqq7qmidqG07Xx0nbjgBV9T3gBkb72ydqG8JT+zfU9jMUhrEeWNlNrwSuGWMtc277L1rnrcDtMy0733UH8T4ObKqqC6e8NTHbcKY+Tsp2TLI4ySHd9IHA64GvMyHbcKb+DbX9PPtoDyX5DPBaRrfpfRA4H7gaWAe8ALgPOLOqFuTB2hn691pGQ9YCNgPv2r7vdqFJ8mrg34HbgCe75vMY7XOflG04Ux9/lQnYjkleyuhA8iJGf+iuq6o/TfITTMA23EX/LmOA7WcoSJIadx9JkhpDQZLUGAqSpMZQkCQ1hoIkqTEUJEmNoSBJav4fPe0n8or+2tEAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import math\n",
"\n",
"# значения игральной кости\n",
"dice = [1, 2, 3, 4, 5, 6]\n",
"# количество бросков кости\n",
"count = 6\n",
"# размер генеральной совокупность\n",
"sp_size = 10000\n",
"# sp - Statistical population - генеральная совокупность\n",
"sp = pd.Series(dtype=np.int64, index=range(sp_size))\n",
"for i in range(sp_size):\n",
" value = 0\n",
" for _ in range(count):\n",
" value += np.random.choice(dice)\n",
" sp[i] = value\n",
"\n",
"sp.plot.hist(bins=28)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA54AAAJPCAYAAAAUmgvZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABBIElEQVR4nO3df5RkZ3kf+O/jkbxSJAiShTqzkux2vIrXCuMIe5bjs9hOO1ixLLFI9i4cscCOdskZb2ISsZmsGUh2A45zMk4Ci4/jODsGwjhwjLUHHGkRG0dH0LHJJtgSCIQyYBFnjJEnmvCblh2cQe/+0TXeZtQ9Xd1Vt27V7c/nnDpddae67vP0e+uZeuq+9Va11gIAAABd+Ya+AwAAAGDYNJ4AAAB0SuMJAABApzSeAAAAdErjCQAAQKc0ngAAAHRK4wkAAECnNJ5MXVVdWVW/UlVPVtXvVNV/33dMALNUVa+qqger6qtV9fa+4wGYtar6z6rqraPXgl+pqo9U1Q/3HRf9uajvABikn0vyh0mWktyY5L6q+mhr7dFeowKYnd9L8lNJfijJpT3HAtCHi5L8bpI/m+TTSW5JcndVHWitneozMPpRrbW+Y2BAquqyJF9I8pzW2m+Ntv2TJI+31o72GhzAjFXVTyW5trV2Z9+xAPStqj6W5A2ttXf3HQuzZ6ot0/anknztXNM58tEkf7qneAAA6FlVLWX9daIZcHuUxpNpuzzJl87b9qUkz+ghFgAAelZVFyd5Z5ITrbVP9B0P/dB4Mm1rSZ553rZnJvlKD7EAANCjqvqGJP8k6+t/vKrncOiRxpNp+60kF1XV9Ru2/ZmYVgEAsKdUVSV5a9YXnPxvW2v/qeeQ6JHGk6lqrT2Z5D1JfrKqLquq5ye5LevvdAHsCVV1UVVdkmRfkn1VdUlVWUke2Gt+Psl3JPlvWmt/0Hcw9EvjSRf+Uta/PuBMkl9K8hd9lQqwx/yNJH+Q5GiSl4+u/41eIwKYoar6liQ/lvWv1vv3VbU2urys38joi69TAQAAoFPOeAIAANApjScAAACd0ngCAADQKY0nAAAAndJ4AgAA0KmZfqfYVVdd1ZaXl8e675NPPpnLLrus24B6NvQc5bf4dpLjQw899NnW2rM7Dmnh7aQOJsM8zoaYUyKvRdJVTurg+HZaC8cxtGN1SPnIZT7NuhbOtPFcXl7Ogw8+ONZ9V1dXs7Ky0m1APRt6jvJbfDvJsap+p9tohmEndTAZ5nE2xJwSeS2SrnJSB8e301o4jqEdq0PKRy7zada10FRbAAAAOqXxBAAAoFMaTwAAADo10894wjQsH72vs8c+dezWzh4bmF/TqCtHDpzNnec9jpoCkDzy+JeeVh+nQY1dLM54AgAA0KmxG8+q2ldVH6mq945uX1lV91fVY6OfV3QXJgAAAItqJ2c870pycsPto0keaK1dn+SB0W0AAAD4OmM1nlV1bZJbk7xlw+bbkpwYXT+R5PapRgYAAMAgjHvG881JfiLJUxu2LbXWTifJ6OfV0w0NAACAIdh2VduqemGSM621h6pqZac7qKrDSQ4nydLSUlZXV8f6vbW1tbHvu6iGnmNX+R05cHbqj3nOTuId+vgleyNHAAC6N87XqTw/yYuq6pYklyR5ZlW9I8kTVbW/tXa6qvYnObPZL7fWjic5niQHDx5sKysrYwW2urqace+7qIaeY1f5dbEc9zmnXrYy9n2HPn7J3sgRAIDubTvVtrX22tbata215SR3JHl/a+3lSe5Ncmh0t0NJ7uksSgAAABbWJN/jeSzJTVX1WJKbRrcBAADg64wz1faPtNZWk6yOrn8uyQumHxIAAABDMskZTwAA9pCq2ldVH6mq945uX1lV91fVY6OfV/QdIzCfNJ4AAIzrriQnN9w+muSB1tr1SR4Y3QZ4Go0nAADbqqprk9ya5C0bNt+W5MTo+okkt884LGBBaDwBABjHm5P8RJKnNmxbaq2dTpLRz6t7iAtYADtaXAgAgL2nql6Y5Exr7aGqWtnlYxxOcjhJlpaWsrq6OrX4kmRtbW3qj9mnIeWzdGly5MDZqT9uH3+fIY3LrHPReAKMqar2JXkwyeOttRdW1ZVJfjnJcpJTSV7SWvtCfxECdOb5SV5UVbckuSTJM6vqHUmeqKr9rbXTVbU/yZmtHqC1djzJ8SQ5ePBgW1lZmWqAq6urmfZj9mlI+fzsO+/JGx+Zfttx6mUrU3/M7QxpXGadi6m2AOOzqAawJ7XWXttau7a1tpzkjiTvb629PMm9SQ6N7nYoyT09hQjMOY0nwBgsqgGwqWNJbqqqx5LcNLoN8DSm2gKM581ZX1TjGRu2fd2iGlVlUQ1g8Fprq0lWR9c/l+QFfcYDLAaN5x63fPS+zh777Tdf1tljwyxNuqjGJAtqDGkRg3PmMadpLHqx2eIZ85bnbszjeE1qiDkBzDuNJ8D2JlpUY5IFNYa0iME585jTnVN4E+7IgbNPWzyjj4Uvpm0ex2tSQ8wJYN75jCfANiyqAQAwGY0nwO5ZVAMAYAym2gLsgEU1AAB2zhlPAAAAOqXxBAAAoFMaTwAAADql8QQAAKBTGk8AAAA6pfEEAACgU75Ohc488viXcufR+/oOY0eWdxDvkQNnd5TfqWO37iYkAAA2sZPXbTvlddv0OeMJAABApzSeAAAAdMpUWwDoiGlgALDOGU8AAAA6pfEEAACgU6baLogup2sBALC3dfla88iBzh6aBeKMJwAAAJ3SeAIAANApjScAAACd0ngCAADQKY0nAAAAndp2Vduqui7JLyb5E0meSnK8tfYzVXVlkl9OspzkVJKXtNa+0F2oAMA5Xa1AeerYrZ08LgB72zhfp3I2yZHW2oer6hlJHqqq+5PcmeSB1tqxqjqa5GiS13QXKgB7ma+VAoDFte1U29ba6dbah0fXv5LkZJJrktyW5MTobieS3N5RjAAAACywcc54/pGqWk7y3CQfSrLUWjudrDenVXX19MMDAACYra1m2Rw5cDZ3TjADZy9/nGHsxrOqLk/y7iSvbq19uarG/b3DSQ4nydLSUlZXV8f6vbW1tbHvu6h2kuORA2e7DaYDS5cuZtzj2ml+i3g874XnIQAA3Rur8ayqi7PedL6ztfae0eYnqmr/6Gzn/iRnNvvd1trxJMeT5ODBg21lZWWswFZXVzPufRfVTnKc5J2Vvhw5cDZvfGRHJ9UXyk7zO/Wyle6C6cheeB4CMB4LTgKTGGdV20ry1iQnW2tv2vBP9yY5lOTY6Oc9nUQIA2EFSgAWnAUngV0b53s8n5/kFUn+XFU9PLrckvWG86aqeizJTaPbAAAMkAUngUlse8aztfbBJFt9oPMF0w0HYP6YXsZecv7sjEkX0tjIDI3hsOAksFPD/QAewPSYXgYwMusFJ8c1tAXxtsrnkce/1Mn+jhzo5GGTDGvByUlzmadjdNbPGY0nwDZG7+Sfezf/K1W1cXrZyuhuJ5KsRuMJDFgfC06Oa2gL4m2VjwUn+zVpLvO02OSsnzPjfMYTgJELTS9LYnoZMFhjLDiZWHAS2MIw3noAmIE+ppcNbepYsvuc5n2a1pCmkm00zbzm5Vge4vNqRs4tOPlIVT082va6rC8weXdVvTLJp5O8uJ/wgHmm8QQYQ1/Ty4Y2dSzZfU7zPr1sSFPJNppmXvMyxWyIz6tZsOAkMInh/Q8JMGW+zxgAmIauvtc9mf+VwzWeANszvQwAYAIaT4BtmF4GADAZq9oCAADQKWc8AQBgiqbxOb4jB87O/aJqsBPOeAIAANApjScAAACd0ngCAADQKY0nAAAAndJ4AgAA0Cmr2gIwVdut5milRgDYe5zxBAAAoFMaTwAAADplqi0suGl8SfVW3n7zZZ09NrD3dFmvTh27tbPHBlgEO62x4370ZVr11RlPAAAAOuWM5xR19S4DAADAInPGEwAAgE5pPAEAAOiUqbYAwMLbycdddvJRF4sWAUzHnmw8u1xVDwAAgK9nqi0AAACd0ngCAADQKY0nAAAAndqTn/EEWBSPPP6lTr7v14IpANb9gFlyxhMAAIBOOeMJsAd5lx8AmCWNJwAAc2vcN8p28v2swOyZagsAAECnJmo8q+rmqvpkVX2qqo5OKyiARaIWAnudOghsZ9eNZ1XtS/JzSX44yQ1JXlpVN0wrMIBFoBYCe506CIxjks94Pi/Jp1prv50kVfWuJLcl+TfTCKyrrxAAmLJOayHAAlAHgW1NMtX2miS/u+H2Z0bbAPYStRDY69RBYFvVWtvdL1a9OMkPtdb+wuj2K5I8r7X2l8+73+Ekh0c3vz3JJ8fcxVVJPrur4BbH0HOU3+LbSY7f0lp7dpfBzKNxauEEdTAZ5nE2xJwSeS2SrnJSB9PJa8JxDe1YHVI+cplPM62Fk0y1/UyS6zbcvjbJ751/p9ba8STHd/rgVfVga+3g7sObf0PPUX6Lby/kOAXb1sLd1sFkmGMwxJwSeS2SIebUs05fE45raOM6pHzkMp9mncskU21/M8n1VfWtVfWNSe5Icu90wgJYGGohsNepg8C2dn3Gs7V2tqpeleRXk+xL8rbW2qNTiwxgAaiFwF6nDgLjmGSqbVpr70vyvinFcr7OpmLMkaHnKL/FtxdynJhauGNDzCmR1yIZYk696rgOjmto4zqkfOQyn2aay64XFwIAAIBxTPIZTwAAANjWXDSeVfW2qjpTVR/fsO3Kqrq/qh4b/byizxgnsUV+r6+qx6vq4dHllj5jnERVXVdVH6iqk1X1aFXdNdo+pDHcKsdBjGNVXVJVv1FVHx3l94bR9sGM4bwbah0cYv0bas0bap1T34ZpSDVzSHVySPVxaDVxHmrhXEy1rarvT7KW5Bdba88Zbfu7ST7fWjtWVUeTXNFae02fce7WFvm9Pslaa+3v9xnbNFTV/iT7W2sfrqpnJHkoye1J7sxwxnCrHF+SAYxjVVWSy1pra1V1cZIPJrkryY9mIGM474ZaB4dY/4Za84Za59S3YRpSzRxSnRxSfRxaTZyHWjgXZzxba7+W5PPnbb4tyYnR9RNZH+iFtEV+g9FaO91a+/Do+leSnExyTYY1hlvlOAht3dro5sWjS8uAxnDeDbUODrH+DbXmDbXOqW/DNKSaOaQ6OaT6OLSaOA+1cC4azy0stdZOJ+sDn+TqnuPpwquq6mOjKRZzP+VgHFW1nOS5ST6UgY7heTkmAxnHqtpXVQ8nOZPk/tbaYMdwgQz57z+U581yBljzhlbn1Lc9Y2hjuujPu+UMpD4OpSb2XQvnufEcup9P8m1JbkxyOskbe41mCqrq8iTvTvLq1tqX+46nC5vkOJhxbK19rbV2Y5Jrkzyvqp7Tc0gM1yCeN0OteUOsc+obC2ihn3dDqo9Dqol918J5bjyfGM2tPjfH+kzP8UxVa+2J0eA/leQXkjyv75gmMZor/u4k72ytvWe0eVBjuFmOQxvHJGmtfTHJapKbM7AxXECD/PsP4Xkz1Jo39Dqnvg3eYMZ0kZ93Q6qPQ62JfdXCeW48701yaHT9UJJ7eoxl6s4N8MiPJPn4Vvedd6MPK781ycnW2ps2/NNgxnCrHIcyjlX17Kp61uj6pUl+MMknMqAxXFCD/Psv+vNmqDVvqHVOfdtTBjOmi/q8G1J9HFpNnIdaOC+r2v5SkpUkVyV5IsnfTPJPk9yd5JuTfDrJi1trC/nB6y3yW8n6KfqW5FSSHzs3v3rRVNX3Jvn1JI8keWq0+XVZnwc/lDHcKseXZgDjWFXfmfUPlO/L+htSd7fWfrKqvikDGcN5N9Q6OMT6N9SaN9Q6p74N05Bq5pDq5JDq49Bq4jzUwrloPAEAABiueZ5qCwAAwABoPAEAAOiUxhMAAIBOaTwBAADolMYTAACATmk8AQAA6JTGEwAAgE5pPAEAAOiUxhMAAIBOaTwBAADolMYTAACATmk8AQAA6JTGEwAAgE5pPAEAAOiUxhMAAIBOaTwBAADolMYTAACATmk8AQAA6JTGEwAAgE5pPAEAAOiUxhMAAIBOaTwBAADolMYTAACATmk8AQAA6JTGEwAAgE5pPJm6qnpHVZ2uqi9X1W9V1V/oOyaAPlTV9VX1H6vqHX3HAjBrVbU6qoFro8sn+46J/mg86cLfSbLcWntmkhcl+amq+u6eYwLow88l+c2+gwDo0ataa5ePLt/edzD0R+PJ1LXWHm2tffXczdHl23oMCWDmquqOJF9M8kDPoQBA7zSedKKq/mFV/X6STyQ5neR9PYcEMDNV9cwkP5nkSN+xAPTs71TVZ6vqX1bVSt/B0B+NJ51orf2lJM9I8n1J3pPkqxf+DYBB+VtJ3tpa+92+AwHo0WuS/Mkk1yQ5nuT/riqz4PYojSedaa19rbX2wSTXJvmLfccDMAtVdWOSH0zyf/QcCkCvWmsfaq19pbX21dbaiST/MsktfcdFPy7qOwD2hIviM57A3rGSZDnJp6sqSS5Psq+qbmitfVePcQH0rSWpvoOgH854MlVVdXVV3VFVl1fVvqr6oSQvTfL+vmMDmJHjWX+z7cbR5R8luS/JD/UXEsBsVdWzquqHquqSqrqoql6W5PuT/GrfsdEPZzyZtpb1abX/KOtvbPxOkle31u7pNSqAGWmt/X6S3z93u6rWkvzH1tp/6C8qgJm7OMlPJfkvk3wt6wtO3t5a812ee1S11vqOAQAAgAEz1RYAAIBOaTwBAADolMYTAACATmk8AQAA6JTGEwAAgE7N9OtUrrrqqra8vDzLXX6dJ598Mpdddllv+58mucynIeWS7Cyfhx566LOttWd3HNLCm1Yd7PNY6/s436u579V9971/dbAbfb8mnETfz4dZkutwdZnvlrWwtTazy3d/93e3Pn3gAx/odf/TJJf5NKRcWttZPkkebDOsJ4t6mVYd7PNY6/s436u579V9971/dXC+a2Ef+n4+zJJch6vLfLeqhabaAgAA0CmNJwAAY6mqfVX1kap67+j2lVV1f1U9Nvp5Rd8xAvNJ4wkAwLjuSnJyw+2jSR5orV2f5IHRbYCnmeniQuwty0fvG+t+Rw6czZ1j3jdJTh27dbchAQzGuDV2p9RYtlJV1ya5NcnfTvJXR5tvS7Iyun4iyWqS18w6Nia3WU3Z6Wu0ragrJM54AgAwnjcn+YkkT23YttRaO50ko59X9xAXsACc8QSAjkzzrOS0zjzAblTVC5Ocaa09VFUru3yMw0kOJ8nS0lJWV1enFt8sra2tLWzsF3LkwNmnbVu6dPPtO/Wz77xn4sfYzIFr/vjUHmuo47qVPvLVeAIAsJ3nJ3lRVd2S5JIkz6yqdyR5oqr2t9ZOV9X+JGe2eoDW2vEkx5Pk4MGDbWVlZQZhT9/q6moWNfYL2eyNrSMHzuaNj8xvu3DqZStTe6yhjutW+sjXVFsAAC6otfba1tq1rbXlJHckeX9r7eVJ7k1yaHS3Q0m6ObUFLLz5fQsDADY4N221iymnFr6AXTuW5O6qemWSTyd5cc/xAHNK4wkAwNhaa6tZX702rbXPJXlBn/EAi8FUWwAAADql8QQAAKBTYzeeVbWvqj5SVe8d3b6yqu6vqsdGP6/oLkwAAAAW1U7OeN6V5OSG20eTPNBauz7JA6PbAINTVZdU1W9U1Uer6tGqesNouzfgAADGMFbjWVXXJrk1yVs2bL4tyYnR9RNJbp9qZADz46tJ/lxr7c8kuTHJzVX1PfEGHADAWMY94/nmJD+R5KkN25Zaa6eTZPTz6umGBjAf2rq10c2LR5cWb8ABAIxl269TqaoXJjnTWnuoqlZ2uoOqOpzkcJIsLS1ldXV1pw8xNWtra73uf5oWIZcjB86Odb+lS8e/b5K5znsRxmUnhpbPJKpqX5KHkvwXSX6utfahqvq6N+CqyhtwAACbGOd7PJ+f5EVVdUuSS5I8s6rekeSJqto/erG1P8mZzX65tXY8yfEkOXjwYFtZWZlO5LuwurqaPvc/TYuQy7hf8H7kwNm88ZHxv1L21MtWdhlR9xZhXHZiaPlMorX2tSQ3VtWzkvxKVT1n3N/t4g24Pt8U6Gvf596g2umbVeMYN5+d5j7NOLvIezOb5df3m1B78XgHGJptX+231l6b5LVJMjrj+ddaay+vqr+X5FCSY6Of93QXJsB8aK19sapWk9ycHt+A6/NNgb72fe7NrJ2+WTWOcd/Q2mnu474BN44u8t7MZn+Lvt+E2ovHO8DQTPI9nseS3FRVjyW5aXQbYHCq6tmjM52pqkuT/GCSTyS5N+tvvCXegAMA2NKO3jptra0mWR1d/1ySF0w/JIC5sz/JidHnPL8hyd2ttfdW1b9KcndVvTLJp5O8uM8gAQDmVfdzdgAWXGvtY0meu8l2b8ABAIxhkqm2AAAAsC2NJwAAAJ0y1RYAABbE8hRXy4ZZcsYTAACATmk8AQAA6JSptgBMlWlgAMD5nPEEAACgU854wgaTnqk5cuBs7tziMU4du3WixwYAgEXljCcAAACd0ngCAADQKY0nAAAAnfIZTxaOFTMBAGCxOOMJAABApzSeAAAAdErjCQAAQKd8xnOP83lJAACga854Amyjqq6rqg9U1cmqerSq7hptv7Kq7q+qx0Y/r+g7VgCAeaTxBNje2SRHWmvfkeR7kvx4Vd2Q5GiSB1pr1yd5YHQbAIDzmGoLsI3W2ukkp0fXv1JVJ5Nck+S2JCuju51IsprkNT2ECAB7zjQ/MnbkwNncueHxTh27dWqPzTpnPAF2oKqWkzw3yYeSLI2a0nPN6dU9hgYAMLec8QQYU1VdnuTdSV7dWvtyVY37e4eTHE6SpaWlrK6uThzL2traVB6ni30fOXC20/0vXTr9fYz7t9zp332acXaR92Z+9p33bLrvzbbv1IFr/viufm+ej3cAxqPxBBhDVV2c9abzna2194w2P1FV+1trp6tqf5Izm/1ua+14kuNJcvDgwbaysjJxPKurq5nG43Sx7zs7Xi37yIGzeeMj0/3v69TLVsa6307/7tP8W3SR96z3Pe7f+XzzfLwDMB5TbQG2UeunNt+a5GRr7U0b/uneJIdG1w8lmfyUEMCcssI3MAmNJ8D2np/kFUn+XFU9PLrckuRYkpuq6rEkN41uAwyVFb6BXTPVFmAbrbUPJtnqA50vmGUsAH2xwjcwCY0nAHveuEvyn7/cPuxVF1rhu6qs8A08jcYTZmSa3zW1ke+ZAmCW5mmF7z70vdLxLFa3PmdWq2nPg/NzXdTjc1x9HMcaTwAAxjJvK3z3oe+Vjmc566LP1bRn7fxcd7sK96Lo4zjednEhK5gBAGCFb2AS47yFcW4Fsw9X1TOSPFRV9ye5M+srmB2rqqNZX8HMB8kBAIbp3Arfj1TVw6Ntr8v6it53V9Urk3w6yYv7CW9+dPXxGlhk2zaeVjADAMAK38AkdvQ9nhdawSyJFcwAAAB4mrE/LTyEFcz6XoVsmqaVyzysVDakFdP6yKXLY3pIzxkAAPozVuM5lBXM+l6FbJqmlcs8fB/dkFZM6yOXLlddG9JzBgCA/mz7CnmMFcyOxQpmnTv/Q+q+xBwAAFgU45yasYIZADCx3a70Oc6braeO3bqrxwZgNsZZ1dYKZgAAAOzaMD5YBwAAMCVdfRfrXp6dsaOvUwEAAICd0ngCAADQKY0nAAAAndJ4Aoyhqt5WVWeq6uMbtl1ZVfdX1WOjn1f0GSMAwLyyuBDAeN6e5B8k+cUN244meaC1dqyqjo5uv6aH2ADYhd0sIOO71GF3nPEEGENr7deSfP68zbclOTG6fiLJ7bOMCQBgUWg8AXZvqbV2OklGP6/uOR4AgLlkqi1Ax6rqcJLDSbK0tJTV1dWJH3NtbW0qj9PFvo8cONvp/pcu7X4f9j0/+x53/109H/p8rgEMicYTYPeeqKr9rbXTVbU/yZnN7tRaO57keJIcPHiwraysTLzj1dXVTONxuth31599OnLgbN74SD//fdl3P8bZ/6mXrXSy7z6fawBDYqotwO7dm+TQ6PqhJPf0GAsAwNzSeAKMoap+Kcm/SvLtVfWZqnplkmNJbqqqx5LcNLoNAMB5TLUFGENr7aVb/NMLZhoIAMAC0ngCADC3dvNdm8D8MdUWAACATmk8AQAA6JSptgBzbKspZkcOnJ3oa0tOHbt1178LALBTzngCAADQKWc8AfagSRbrmPRsKwCw9zjjCQAAQKec8Zwiy30DAABb6bJfmPf1GzSesOC6LGBvv/myzh4bAIC9w1RbAAAAOuWMJwCw8Lqa/WHmB8B0OOMJAABAp/bkGU+LAAEAAMyOM54AAAB0SuMJAABApzSeAAAAdGqiz3hW1c1JfibJviRvaa0dm0pUAAtELQT2OnUQ+reTdWyOHDibO8e8/6ljt+42pK+z6zOeVbUvyc8l+eEkNyR5aVXdMJWoABaEWgjsdeogMI5Jzng+L8mnWmu/nSRV9a4ktyX5N9MIrIuVZ3fS2QOMqdNaCLAA1EFgW5N8xvOaJL+74fZnRtsA9hK1ENjr1EFgW9Va290vVr04yQ+11v7C6PYrkjyvtfaXz7vf4SSHRze/Pckndx/uxK5K8tke9z9NcplPQ8ol2Vk+39Jae3aXwcyjcWphR3Wwz2Ot7+N8r+a+V/fd9/7VwW0s6GvCSfT9fJgluQ5Xl/luWgsnmWr7mSTXbbh9bZLfO/9OrbXjSY5PsJ+pqaoHW2sH+45jGuQyn4aUSzK8fDqybS3sog72OTZ9Hxd7Nfe9uu++99937gti4V4TTmIvHRNyHa4+8p1kqu1vJrm+qr61qr4xyR1J7p1OWAALQy0E9jp1ENjWrs94ttbOVtWrkvxq1pfOfltr7dGpRQawANRCYK9TB4FxTPQ9nq219yV535RimYWFn96xgVzm05BySYaXTyd6qoV9jk3fx8VezX2v7rvv/fed+0JYwNeEk9hLx4Rch2vm+e56cSEAAAAYxySf8QQAAIBtDbLxrKq3VdWZqvr4hm1XVtX9VfXY6OcVfca4E1vk8/qqeryqHh5dbukzxnFV1XVV9YGqOllVj1bVXaPtCzc+F8hl4camqi6pqt+oqo+OcnnDaPvCjcui2+L5/veq6hNV9bGq+pWqetYWv3uqqh4ZHXcPTmnfYx3PVXVzVX2yqj5VVUentO9f3rDfU1X18Ba/O2neE9WlKeS+1f47H/dJ69gkuV9g37Ma94nq3qTjzvybpCYumknr4KKZtPYtkklr3VS11gZ3SfL9Sb4rycc3bPu7SY6Orh9N8tN9xzlhPq9P8tf6jm0XuexP8l2j689I8ltJbljE8blALgs3NkkqyeWj6xcn+VCS71nEcVn0yxbP9z+f5KLR9Z/eahySnEpy1ZT3ve3xnPXFRP5tkj+Z5BuTfDTJDZPu+7x/f2OS/72jvHddl6aU+1b773zcJ6ljk+a+1b5nOO67rnvTGHeX+b/stiYu4mWSOriIl0lq36JdJql1074M8oxna+3Xknz+vM23JTkxun4iye2zjGkSW+SzkFprp1trHx5d/0qSk0muyQKOzwVyWTht3dro5sWjS8sCjsui2+z53lr75621s6Ob/zrr35E3k32P6XlJPtVa++3W2h8meVfWj52p7LuqKslLkvzSLmIbZ9+T1KVp5L7p/mcx7hPWsYly327fMxj3SerexOPO/BvS66/tDOn12TiG9BpuO/P0Gm+QjecWllprp5P1gy3J1T3HMw2vGk3BetsiTn2oquUkz836Oy8LPT7n5ZIs4NhU1b7RlLYzSe5vrS38uAzU/5Tk/9ni31qSf15VD1XV4Snuc7vj+Zokv7vh9mcy3f/Avy/JE621x7b496nlvYu6NNXcN6kl53Q+7ruoY1PLfYu8Ox/3Cepe18c8823h/o/fiSG9PhvHEF7DbWdeXuPtpcZzaH4+ybcluTHJ6axPR1oYVXV5kncneXVr7ct9xzOJTXJZyLFprX2ttXZj1s+qPK+qntNzSJynqv56krNJ3rnFXZ7fWvuuJD+c5Mer6vunsNtxjufaZNs0l0x/aS581msqee+yLk0t9632P4tx32Udm0ruF/i7dz7uE9S9ro955tdC/h8/riG9PhvHUF7DbWdeXuPtpcbziaranySjn2d6jmcirbUnRgfRU0l+IevTfhZCVV2c9Sf5O1tr7xltXsjx2SyXRR6bJGmtfTHJapKbs6DjMkRVdSjJC5O8rLW26Qvc1trvjX6eSfIrmcKxN+bx/Jkk1224fW2S35t030lSVRcl+dEkv3yBGCfOe4K6NJXct9j/TMZ9gjo2ce4XyHsm477hsb6YndW9zo555tui/x9/IUN6fTaOIb6G207fr/H2UuN5b5JDo+uHktzTYywTO3egjPxIko9vdd95MvrMzluTnGytvWnDPy3c+GyVyyKOTVU9u0YrZlbVpUl+MMknsoDjMkRVdXOS1yR5UWvt97e4z2VV9Yxz17O+MM3Ex96Yx/NvJrm+qr61qr4xyR1ZP3am4QeTfKK19pkt4ps47wnr0sS5X6CWdD7uE9axiXK/wN89mc24T1L3ujzmmWOL+H/8OIb0+mwcQ3oNt525eo3X5mC1pWlfsj4153SS/5T1dyVfmeSbkjyQ5LHRzyv7jnPCfP5JkkeSfGx04OzvO84xc/nerE9H+liSh0eXWxZxfC6Qy8KNTZLvTPKRUcwfz2gVyUUcl0W/bPF8/1TWP0927jj7R6P7/udJ3je6/iezvrLmR5M8muSvT2nfmx7PG/c9un1L1lcF/LfT2vdo+9uT/M/n3Xfaee+oLnWQ+1b773zcL7Dvzsd9q33PcNx3VPemPe4u83/JgF5/jZHrYF6fTZjv4MZ3p7Wuy0uNdgwAAACd2EtTbQEAAOiBxhMAAIBOaTwBAADolMYTAACATmk8AQAA6JTGEwAAgE5pPAEAAOiUxhMAAIBOaTwBAADolMYTAACATmk8AQAA6JTGEwAAgE5pPAEAAOiUxhMAAIBOaTwBAADolMYTAACATmk8AQAA6JTGEwAAgE5pPAEAAOiUxhMAAIBOaTwBAADolMYTAACATmk8AQAA6JTGEwAAgE5pPAEAAOiUxpNOVNUdVXWyqp6sqn9bVd/Xd0wAs1JVa+ddvlZVP9t3XACzVFXLVfW+qvpCVf37qvoHVXVR33HRD40nU1dVNyX56ST/Y5JnJPn+JL/da1AAM9Rau/zcJclSkj9I8n/1HBbArP3DJGeS7E9yY5I/m+Qv9RkQ/fGOA114Q5KfbK3969Htx/sMBqBn/13WX3j9et+BAMzYtyb5B621/5jk31fVP0vyp3uOiZ4448lUVdW+JAeTPLuqPlVVnxlNq7i079gAenIoyS+21lrfgQDM2M8kuaOq/lhVXZPkh5P8s55joicaT6ZtKcnFWX+H//uyPq3iuUn+Ro8xAfSiqr4561PLTvQdC0AP/kXWz3B+OclnkjyY5J/2GRD90XgybX8w+vmzrbXTrbXPJnlTklt6jAmgL/9Dkg+21v5d34EAzFJVfUOSX03yniSXJbkqyRVZXweEPUjjyVS11r6Q9Xe0TCkDWG88ne0E9qIrk1yX9c94frW19rkk/zhORuxZGk+68I+T/OWqurqqrkjy6iTv7TckgNmqqv86yTWxmi2wB41mvf27JH+xqi6qqmdl/TPvH+01MHqj8aQLfyvJbyb5rSQnk3wkyd/uNSKA2TuU5D2tta/0HQhAT340yc1J/kOSTyU5m+R/6TUielMW2QMAAKBLzngCAADQKY0nAAAAndJ4AgAA0CmNJ8CYqmpfVX2kqt47un1lVd1fVY+Nfl7Rd4wAXVIHgd3SeAKM766sr9R8ztEkD7TWrk/ywOg2wJCpg8CuzHRV26uuuqotLy+Pdd8nn3wyl112WbcBzciQckmGlY9cpuehhx76bGvt2b0F0LGqujbJiax/NdBfba29sKo+mWSltXa6qvYnWW2tffuFHmcndTDpf1y7Jr/FN/Qcd5KfOjheHUx2XgvnydCP+Y3kOlxd5rtVLbyok71tYXl5OQ8++OBY911dXc3Kykq3Ac3IkHJJhpWPXKanqn6nt53PxpuT/ESSZ2zYttRaO50koxddV2/3IDupg0n/49o1+S2+oee4k/zUwfHqYLLzWjhPhn7MbyTX4eoy361q4UwbT4BFVFUvTHKmtfZQVa3s4vcPJzmcJEtLS1ldXR37d9fW1nZ0/0Ujv8U39ByHnt+4Jq2Do8fYdS2cJ3vpmJDrcPWRr8YTYHvPT/KiqrolySVJnllV70jyRFXt3zDF7Mxmv9xaO57keJIcPHiw7eQdxqG/Ayu/xTf0HIee3w5MVAeTyWrhPNlLx4Rch6uPfC0uBLCN1tprW2vXttaWk9yR5P2ttZcnuTfJodHdDiW5p6cQATqlDgKTcsaTziwfva+Txz117NZOHhd24ViSu6vqlUk+neTFPcfDLnVVr95+895ZqII9Sx2kN9Os3UcOnM2dGx7P683p03gC7EBrbTXJ6uj655K8oM94AGZNHQR2w1RbAAAAOqXxBAAAoFOm2gLAAvI5egAWiTOeAAAAdErjCQAAQKc0ngAAAHRK4wkAAECnNJ4AAAB0SuMJAABAp3ydCgDwR3b6NS1HDpzNnWP+jq9qAdi7nPEEAACgUxpPAAAAOqXxBAAAoFMaTwAAADplcSEAAKAzO120jGFyxhMAAIBOaTwBAADolMYTAACATo3deFbVvqr6SFW9d3T7yqq6v6oeG/28orswAQAAWFQ7OeN5V5KTG24fTfJAa+36JA+MbgMAAMDXGavxrKprk9ya5C0bNt+W5MTo+okkt081MgAAAAZh3DOeb07yE0me2rBtqbV2OklGP6+ebmgAAAAMwbbf41lVL0xyprX2UFWt7HQHVXU4yeEkWVpayurq6li/t7a2NvZ9592QcknGz+fIgbOd7H+af8shjc2QcgEAYFi2bTyTPD/Ji6rqliSXJHlmVb0jyRNVtb+1drqq9ic5s9kvt9aOJzmeJAcPHmwrKytjBba6uppx7zvvhpRLMn4+d3b0ZcGnXrb9vsc1pLEZUi4AAAzLtlNtW2uvba1d21pbTnJHkve31l6e5N4kh0Z3O5Tkns6iBAAAYGGNc8ZzK8eS3F1Vr0zy6SQvnk5IAADAZpY7mlG2mSMHznY2g429Z0eNZ2ttNcnq6Prnkrxg+iEBAAAwJDv5Hk8AAADYMY0nAAAAndJ4AgAA0CmNJwAAAJ3SeAIAANApjScAAACd0ngCAADQKY0nAAAAndJ4AgAA0KmL+g4AAIbqkce/lDuP3td3GMCMLXvew9M44wmwjaq6rqo+UFUnq+rRqrprtP3Kqrq/qh4b/byi71gBuqIWApPQeAJs72ySI62170jyPUl+vKpuSHI0yQOtteuTPDC6DTBUaiGwaxpPgG201k631j48uv6VJCeTXJPktiQnRnc7keT2XgIEmAG1EJiExhNgB6pqOclzk3woyVJr7XSy/oIsydU9hgYwM2ohsFMWFwIYU1VdnuTdSV7dWvtyVY37e4eTHE6SpaWlrK6ujr3PtbW1Hd1/0cxLfkcOnO3kcZcu7e6x58VOcpyHsd6peTlG50kftbArjzz+pR3/ztKlyc++854L3ufIgd1GNF/2Qg075/xc5+H47FIftU3jCTCGqro46y+03tlae89o8xNVtb+1drqq9ic5s9nvttaOJzmeJAcPHmwrKytj73d1dTU7uf+imZf8ulp59siBs3njI8P+r3YnOZ562Uq3wXRgXo7RedFXLezKbp77e+F5fc5eznUR69VO9FHb9saRxJZ2s9z3kQNne/16gGkuUX5+LqeO3Tq1x2Y4av3t/LcmOdlae9OGf7o3yaEkx0Y/L/wWOBPx9QTQL7UQmITGE2B7z0/yiiSPVNXDo22vy/qLrLur6pVJPp3kxf2EBzATaiGwaxrPKdrq3fhpnCF0Jg7601r7YJKtPsT0glnGAtAXtRCYhFVtAQAA6JTGEwAAgE5pPAEAAOiUxhMAAIBObdt4VtV1VfWBqjpZVY9W1V2j7VdW1f1V9djo5xXdhwsAAMCiGeeM59kkR1pr35Hke5L8eFXdkORokgdaa9cneWB0GwAAAL7Oto1na+10a+3Do+tfSXIyyTVJbktyYnS3E0lu7yhGAAAAFtiOPuNZVctJnpvkQ0mWWmunk/XmNMnVU48OAACAhXfRuHesqsuTvDvJq1trX67a6vuDn/Z7h5McTpKlpaWsrq6O9Xtra2tj33deHDlwdtPtS5du/W/j6upvsZu4ppHPvDg/l0U75jZaxOcMAAB7w1iNZ1VdnPWm852ttfeMNj9RVftba6eran+SM5v9bmvteJLjSXLw4MG2srIyVmCrq6sZ977z4s6j9226/ciBs3njI2P3+Js69bKViX5/K1vFfCHTyGdenJ9LV3/nWVjE5wzAtCzv4v+zcbz95ss6eVxgvnVVU04du7WTx10E46xqW0nemuRka+1NG/7p3iSHRtcPJbln+uEBAACw6MY5bfX8JK9I8khVPTza9rokx5LcXVWvTPLpJC/uJEIAAAAW2raNZ2vtg0m2+kDnC6YbDgAAAEMzjA/q7QFdzTMHgFnxfxmw13VZB+f986M7+joVAAAA2ClnPGGDvfwuFAAAdEXjCcBU7eQNnCMHzu7qa50AgMViqi0AAACd0ngCAADQKY0nAAAAndqTn/G0nDsAAMDsOOMJAABApzSeAAAAdGpPTrWFPnQ1xdv3g7IbPnIAAMySM54AAAB0SuMJAABApzSeAAAAdErjCQAAQKc0ngAAAHRK4wkAAECnNJ4AAAB0SuMJAABApy7qOwAAtvbI41/KnUfv6zsMAGDOLe/g9cKRA2fHfn1x6tituw3p68xt4+nFFgAAwDDMbeMJAAA7OYsDzC+f8QQAAKBTznjCgjv3TvBO5uqPa1pz+gEA2NsmOuNZVTdX1Ser6lNVdXRaQQEsErUQ2OvUQWA7u248q2pfkp9L8sNJbkjy0qq6YVqBASwCtRDY69RBYByTnPF8XpJPtdZ+u7X2h0neleS26YQFsDDUQmCvUweBbU3SeF6T5Hc33P7MaBvAXqIWAnudOghsa5LFhWqTbe1pd6o6nOTw6OZaVX1yzMe/KslndxnbXPkrA8olGVY+crmw+ukd3f1bprnvBbJtLZygDiYDOkY3M6Tn4GaGnl8y/Bx/4Kd3lJ86+P+b5mvCuTL0Y34juQ7XTvLd4evBZItaOEnj+Zkk1224fW2S3zv/Tq2140mO7/TBq+rB1trB3Yc3P4aUSzKsfOTCFGxbC3dbB5Phj6v8Ft/Qcxx6flPS6WvCebOXjgm5Dlcf+U4y1fY3k1xfVd9aVd+Y5I4k904nLICFoRYCe506CGxr12c8W2tnq+pVSX41yb4kb2utPTq1yAAWgFoI7HXqIDCOSabaprX2viTvm1Is51v4qRgbDCmXZFj5yIWJqYUTkd/iG3qOQ89vKjqug/NmLx0Tch2umedbrT3ts98AAAAwNZN8xhMAAAC2NReNZ1W9rarOVNXHN2y7sqrur6rHRj+v6DPGcW2Ry+ur6vGqenh0uaXPGMdVVddV1Qeq6mRVPVpVd422L9zYXCCXRR2bS6rqN6rqo6N83jDavnBjw7oh1cGtDKk+bmZINXMzQ6uj51NXOd/Qa9ZGQ69f5xt6PdtonmrbXEy1rarvT7KW5Bdba88Zbfu7ST7fWjtWVUeTXNFae02fcY5ji1xen2Sttfb3+4xtp6pqf5L9rbUPV9UzkjyU5PYkd2bBxuYCubwkizk2leSy1tpaVV2c5INJ7kryo1mwsWHdkOrgVoZUHzczpJq5maHV0fOpq5xv6DVro6HXr/MNvZ5tNE+1bS7OeLbWfi3J58/bfFuSE6PrJ7J+MMy9LXJZSK210621D4+ufyXJySTXZAHH5gK5LKS2bm108+LRpWUBx4Z1Q6qDWxlSfdzMkGrmZoZWR8+nrnK+odesjYZev8439Hq20TzVtrloPLew1Fo7nawfHEmu7jmeSb2qqj42mraxcNMUqmo5yXOTfCgLPjbn5ZIs6NhU1b6qejjJmST3t9YWfmx4mr0yngv5HLyQIdXMzQyljp5PXWVMgzjetzL0+nW+odazjealts1z4zkkP5/k25LcmOR0kjf2Gs0OVdXlSd6d5NWttS/3Hc8kNsllYcemtfa11tqNSa5N8ryqek7PIcFuLOxzcCtDqpmbGVIdPZ+6yhgGc7xvZuj163xDrmcbzUttm+fG84nR/Otz87DP9BzPrrXWnhgN+FNJfiHJ8/qOaVyjueDvTvLO1tp7RpsXcmw2y2WRx+ac1toXk6wmuTkLOjZsafDjOYTn4EZDqpmbGWodPZ+6ylaGeLyfM/T6db69Us826ru2zXPjeW+SQ6Prh5Lc02MsEzk3qCM/kuTjW913now+jPzWJCdba2/a8E8LNzZb5bLAY/PsqnrW6PqlSX4wySeygGPDBQ1+PBf1ObiZIdXMzQytjp5PXWUcQznezzf0+nW+odezjeapts3Lqra/lGQlyVVJnkjyN5P80yR3J/nmJJ9O8uLW2tx/wHuLXFayfsq+JTmV5MfOzameZ1X1vUl+PckjSZ4abX5d1ufAL9TYXCCXl2Yxx+Y7s/5B8H1ZfwPp7tbaT1bVN2XBxoZ1Q6qDWxlSfdzMkGrmZoZWR8+nrnK+odesjYZev8439Hq20TzVtrloPAEAABiueZ5qCwAAwABoPAEAAOiUxhMAAIBOaTwBAADolMYTAACATmk8AQAA6JTGEwAAgE5pPAEAAOiUxhMAAIBOaTwBAADolMYTAACATmk8AQAA6JTGEwAAgE5pPAEAAOiUxhMAAIBOaTwBAADolMYTAACATmk8AQAA6JTGEwAAgE5pPAEAAOiUxhMAAIBOaTwBAADolMYTAACATmk8AQAA6JTGEwAAgE5pPJm6qvqOqnp/VX2pqj5VVT/Sd0wAAEB/NJ5MVVVdlOSeJO9NcmWSw0neUVV/qtfAAACA3lRrre8YGJCqek6Sf53kGW10cFXVP0/yodba/9ZrcAAAQC+c8WTaaottz5l1IAAAwHzQeDJtn0hyJsn/WlUXV9WfT/Jnk/yxfsMCAAD6YqotU1dV35nkZ7N+lvPBJP8hyVdba6/sNTAAAKAXGk86V1X/b5ITrbX/s+9YAACA2TPVlqmrqu+sqkuq6o9V1V9Lsj/J23sOCwAA6InGky68IsnprH/W8wVJbmqtfbXfkAAAgL6YagsAAECnnPEEAACgUxpPAAAAOqXxBAAAoFMaTwAAADql8QQAAKBTF81yZ1dddVVbXl6e5S578+STT+ayyy7rO4yZkOtw7STfhx566LOttWd3HBIAAAtopo3n8vJyHnzwwVnusjerq6tZWVnpO4yZkOtw7STfqvqdbqMBAGBRmWoLAABApzSeAAAAdErjCQAAQKfG/oxnVe1L8mCSx1trL6yqK5P8cpLlJKeSvKS19oUugmQxLR+9r5PHPXXs1k4eFwAA6MZOznjeleTkhttHkzzQWrs+yQOj2wAAAPB1xmo8q+raJLcmecuGzbclOTG6fiLJ7VONDAAAgEEY94znm5P8RJKnNmxbaq2dTpLRz6unGxoAAABDsO1nPKvqhUnOtNYeqqqVne6gqg4nOZwkS0tLWV1d3elDLKS1tbU9n+uRA2c72V+ff9e9NK7J3ssXAIBuVGvtwneo+jtJXpHkbJJLkjwzyXuS/FdJVlprp6tqf5LV1tq3X+ixDh482B588MGpBD7vVldXs7Ky0ncYM7FVrkNcXGgvjWuys3yr6qHW2sFuIwIAYBFtO9W2tfba1tq1rbXlJHckeX9r7eVJ7k1yaHS3Q0nu6SxKAAAAFtYk3+N5LMlNVfVYkptGtwEAAODrjP09nknSWltNsjq6/rkkL5h+SAAAAAzJJGc8AQAAYFsaTwAAADql8QQAAKBTGk8AAAA6pfEEAACgUxpPAAAAOqXxBAAAoFMaTwAAADp1Ud8BwE4tH72vs8c+dezWzh4bAAD2Kmc8AQAA6JQznnvcNM4eHjlwNnd2eBYSAABYbM54AgAA0CmNJwAAAJ3SeAIAANApjScAAACd0ngCAADQKY0nAAAAndJ4AgAA0CmNJwAAAJ3SeAIAANApjScAAACd0ngCAADQqYv6DgDmyfLR+y7470cOnM2d29xnK6eO3bqr3wMAgEXnjCcAAACd0ngCAADQKY0nAAAAndJ4AgAA0CmNJwAAAJ3SeAIAANApX6cyRRu/imOSr93YjK/iAAAAFpUzngAAAHRK4wkAAECnNJ4AAAB0atvPeFbVdUl+McmfSPJUkuOttZ+pqiuT/HKS5SSnkryktfaF7kLd25an+HlRAACAWRrnjOfZJEdaa9+R5HuS/HhV3ZDkaJIHWmvXJ3lgdBsAAAC+zraNZ2vtdGvtw6PrX0lyMsk1SW5LcmJ0txNJbu8oRgAAABbYjj7jWVXLSZ6b5ENJllprp5P15jTJ1VOPDgAAgIVXrbXx7lh1eZJ/keRvt9beU1VfbK09a8O/f6G1dsUmv3c4yeEkWVpa+u53vetdUwl8Hj3y+Jf+6PrSpckTf9BjMDMk1/EcuOaPTzeYGVhbW8vll18+1n1/4Ad+4KHW2sGOQwIAYAGN1XhW1cVJ3pvkV1trbxpt+2SSldba6aran2S1tfbtF3qcgwcPtgcffHAKYc+njQsAHTlwNm98ZNu1mwZBruM5dezWKUfTvdXV1aysrIx136rSeAIAsKltp9pWVSV5a5KT55rOkXuTHBpdP5TknumHBwAAwKIb59TN85O8IskjVfXwaNvrkhxLcndVvTLJp5O8uJMIAQAAWGjbNp6ttQ8mqS3++QXTDQcAAICh2dGqtgAAALBTGk8AAAA6pfEEAACgUxpPAAAAOqXxBAAAoFMaTwAAADql8QQAAKBTGk8AAAA6pfEEAACgUxpPAAAAOqXxBAAAoFMaTwAAADql8QQAAKBTGk8AAAA6pfEEAACgUxpPAAAAOqXxBAAAoFMaTwAAADql8QQAAKBTGk8AAAA6pfEEAACgUxf1HQDsFctH7+vkcU8du7WTxwUAgGlxxhMAAIBOaTwBAADolMYTAACATu3Jz3h29Vk7AAAAns4ZTwAAADql8QQAAKBTGk8AAAA6pfEEAACgUxpPAAAAOqXxBAAAoFMaTwAAADql8QQAAKBTF03yy1V1c5KfSbIvyVtaa8emElWS5aP3TeuhYNC6fK68/ebLOntsAAD2jl2f8ayqfUl+LskPJ7khyUur6oZpBQYAAMAwTDLV9nlJPtVa++3W2h8meVeS26YTFgAAAEMxSeN5TZLf3XD7M6NtAAAA8Ecm+YxnbbKtPe1OVYeTHB7dXKuqT06wz4XxV5Krkny27zhmQa7D9QM/vaN8v6XLWAAAWFyTNJ6fSXLdhtvXJvm98+/UWjue5PgE+1lIVfVga+1g33HMglyHa6/lCwBANyaZavubSa6vqm+tqm9MckeSe6cTFgAAAEOx6zOerbWzVfWqJL+a9a9TeVtr7dGpRQYAAMAgTPQ9nq219yV535RiGZq9NL1YrsO11/IFAKAD1drT1gMCAACAqZnkM54AAACwLY3nhKrqbVV1pqo+vmHb66vq8ap6eHS5pc8Yp6WqrquqD1TVyap6tKruGm2/sqrur6rHRj+v6DvWabhAvoMb36q6pKp+o6o+Osr1DaPtgxxbAABmy1TbCVXV9ydZS/KLrbXnjLa9Pslaa+3v9xnbtFXV/iT7W2sfrqpnJHkoye1J7kzy+dbasao6muSK1tpr+ot0Oi6Q70sysPGtqkpyWWttraouTvLBJHcl+dEMcGwBAJgtZzwn1Fr7tSSf7zuOWWitnW6tfXh0/StJTia5JsltSU6M7nYi683ZwrtAvoPT1q2Nbl48urQMdGwBAJgtjWd3XlVVHxtNxR3c9MSqWk7y3CQfSrLUWjudrDdrSa7uMbROnJdvMsDxrap9VfVwkjNJ7m+t7YmxBQCgexrPbvx8km9LcmOS00ne2Gs0U1ZVlyd5d5JXt9a+3Hc8Xdsk30GOb2vta621G5Ncm+R5VfWcnkMCAGAgNJ4daK09MXoR/1SSX0jyvL5jmpbR5//eneSdrbX3jDY/Mfo85LnPRZ7pK75p2yzfIY9vkrTWvphkNcnNGfDYAgAwOxrPDpx7oT7yI0k+vtV9F8loAZq3JjnZWnvThn+6N8mh0fVDSe6ZdWxd2CrfIY5vVT27qp41un5pkh9M8okMdGwBAJgtq9pOqKp+KclKkquSPJHkb45u35j1xVlOJfmxc5+TW2RV9b1Jfj3JI0meGm1+XdY/93h3km9O8ukkL26tLfyCSxfI96UZ2PhW1XdmffGgfVl/Q+ru1tpPVtU3ZYBjCwDAbGk8AQAA6JSptgAAAHRK4wkAAECnNJ4AAAB0SuMJAABApzSeAAAAdErjCQAAQKc0ngAAAHRK4wkAAECn/j/gW+kj6HKlAAAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# количество выборок\n",
"samples_count = 10\n",
"# размер выборки\n",
"sample_size = 200\n",
"samples = pd.DataFrame([\n",
" [np.random.choice(sp) for _ in range(sample_size)] for __ in range(samples_count)\n",
"]).T\n",
"\n",
"samples.hist(figsize=(16, 10), sharex=0)\n",
"plt.subplots_adjust(hspace = 0.6)\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"сравним среднию ГС и среднию средних выборок 20.9891 20.966\n",
"разница: 0.023099999999999454 , стандартная ошибка среднего: 0.16899704139422084\n"
]
}
],
"source": [
"means = samples.mean()\n",
"print('сравним среднию ГС и среднию средних выборок', sp.mean(), means.mean())\n",
"print('разница:', abs(means.mean() - sp.mean()), ', стандартная ошибка среднего:', means.std())"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"sample mean: 21.065\n",
"sample SE: 0.28699425694182085\n"
]
}
],
"source": [
"# возмем произвольную выборку \n",
"sample = samples[0]\n",
"print('sample mean:', sample.mean())\n",
"print('sample SE: ', sample.std()/math.sqrt(sample.size))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### PS Важное замечание о ЦПТ номер 2.\n",
"\n",
"Пожалую самый сложный момент - это как мы так взяли и заменили стандартное отклонение генеральной совокупности на выборочное. Ну и что с того, что у нас выборка объемом больше 30 наблюдений, что за магическое число такое? \n",
"\n",
"Все правильно, никакой магии не происходит. И совсем скоро мы в этом окончательно разберемся. Как только пройдем тему t - распределения во втором модуле. Вот тут я подробно расписал, как же нам нужно рассчитывать стандартную ошибку среднего, если мы не знаем стандартное отклонение в генеральной совокупности."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Доверительные интервалы для среднего\n",
"\n",
"Если мы имеем некоторую выборку и ГС, то мы **не можем точно** знать среднюю ГС, зная только среднее выборки. Однако **мы можем сказать, с некоторым процентом уверенности**, в каком интервале лежит средняя ГС. Понятно дело, что для нас лучше, чтобы этот интервал был как можно меньше, как это сделать?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Мы знаем, средняя средних выборок, стремится к средней ГС, также мы знаем, что стандартная ошибка среднего описывает стандартное отклонение распределения средних выборок. Если мы возьмём случайную выборку $X$ и найдём её среднее $\\bar{X}$, а также вычислим стандартную ошибку $se$, то мы можем вычислить доверительный интевал $[\\bar{X} - 1.96*se; \\bar{X} + 1.96*se]$ который описывает среднюю ГС с некотором интервале с 95% доверия.\n",
"\n",
"Загадочное число **1,96** это количество сигм $\\sigma$ в нормальном распределение, необходимые, чтобы охватить **95%** значений в этом распределнии.\n",
"\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Если мы рассчитали 95% доверительный интервал для среднего значения, это значит:\n",
"\n",
" - Среднее значение в генеральной совокупности точно принадлежит рассчитанному доверительному интервалу.\n",
" - Мы можем быть на 95% уверены, что среднее значение в генеральной совокупности принадлежит рассчитанному доверительному интервалу.\n",
" - Если многократно повторять эксперимент, для каждой выборки рассчитывать свой доверительный интервал, то в 95 % случаев истинное среднее будет находиться внутри доверительного интервала.\n",
" - Среднее значение в генеральной совокупности точно превышает нижнюю границу 95% доверительного интервала.\n",
" - Если многократно повторять эксперимент, то 95 % выборочных средних значений будут принадлежать рассчитанному нами доверительному интервалу. да-да, тут просто надо представить это в уме\n",
" \n",
" __Если из лекции усвоить разницу между средним ГС и средним выборки, а так же понять, что доверительный интервал строится для выборки, а не для ГС, то ответы в тесте легко определяются.__\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1.96 sigma\n"
]
}
],
"source": [
"'''Вычисление 1.96 c помощью scipy'''\n",
"from scipy import stats\n",
"\n",
"# 95%\n",
"p = 0.95\n",
"# так как у нас двухсторонний интервал, сделаем вычисление\n",
"alpha = (1-p)/2\n",
"# isf - Inverse survival function (inverse of sf) \n",
"print(f'{stats.norm().isf(alpha):.2f} sigma')"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[8.71; 11.29]\n"
]
}
],
"source": [
"'''Рассчитайте 99% доверительный интервал для следующего примера: \n",
"среднее = 10, стандартное отклонение = 5, размер выборки = 100\n",
"'''\n",
"from numpy import sqrt\n",
"from scipy import stats\n",
"\n",
"p = 0.99\n",
"mean = 10\n",
"std = 5\n",
"n = 100\n",
"\n",
"se = std/sqrt(n)\n",
"alpha = (1-p)/2\n",
"sigma = stats.norm().isf(alpha)\n",
"сonfidence_interval = mean - sigma*se, mean + sigma*se\n",
"print('[%.2f; %.2f]' % сonfidence_interval)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Идея статистического вывода\n",
"### Статистическая проверка гипотез\n",
"\n",
"\n",
"### p-уровень значимости\n",
"\n",
"p-уровень значимости - это вероятность получить такие или более выраженные различия при условии, что в генеральной совокупности никаких различий на самом деле нет.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"\n",
"\n",
"# Часть 2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## T-распределение\n",
"\n",
"Распределение Стьюдента по сути представляет собой сумму нескольких нормально распределенных случайных величин. Чем больше величин, тем больше верятность, что их сумма будет иметь нормальное распределение. Таким образом, количество суммируемых величин определяет важнейший параметр формы данного распредения - число степеней свободы."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEICAYAAABbOlNNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABnRUlEQVR4nO2dd1hUx9rAf0PvIL0LCirYjb13TVHTjen9mnpvbnq7SW5iqik31+TLTe8xTY2JXRO7xhK7WEBQkA7S68J8f8yiCy6wKrCU+T3PPrvnzMw575w957wz77zzjpBSotFoNBpNDTbWFkCj0Wg0rQutGDQajUZTC60YNBqNRlMLrRg0Go1GUwutGDQajUZTC60YNBqNppUghLARQlj9vWx1ATQajaYjI4S4SgixXgiRAuQDQ60tU7tSDEIIKYSIsrIMEUY57Kwph0ajaf0IIWYBbwFPAmFSSncp5WYri4V+eWk0Go31eBm4Vkr5p7UFqYWUskU+QBJQChQZP5uN+58HfgK+BwqBv4C+JuWeABKMaQeBK0zSHIFvgGzUBZbAXCAd2AAEG/NFGNPsjNuDjdsvGbfHAikmx30dWAc4mcg+0fjbDcgANtZTzxPGY9fUc1g9+STwIHDMKP8bgI0xrSvwO5BjTPsG8DIpGwYsALKMeeYZ998KVJmcuwioBsZaeK2DgZ+Nx00EHqwj80Tj8UyPPdEkveY616RXAXca02xM/ssc4AfA29z/Y9z3NfB8Pf/Ptcb8psd+3yh3EVAGrG3gXpwB7AYKjPJMbeCefRJ1350CPjO5JzoBvxnPecr4O9Sk7DfG/fnAaiDEXF2M+zYCt5r8h2fdW0AUIE221wIVgL/Jvh+M1yXKuP05xnvcuL207nWuc46z7ivjPVHzf1YAlSbbo4zlLjNezzxgM9Cngee+1n8D9ABWAbnAYdRLknrkr3sNYoBNxv+x5n6ruY7PG+tq+r64t859U+taA48Z0yfWc32cgTeB48b/daNxXwS17/v9GJ85Y7nhwHZjme3AcON+f6AY+BL1nB8HnuHMe8DGuH0cyDTm86wjU4rJ9a0Avq5z7c+qCybPVn2fljYlTZNSuhk/w032zwB+BLyBb4FFQgh7Y1oCMArwBF4AvhZCBBnTHgDCgUjUxQP1sopA3ajz6pHjdeCkuQQhxOOoF+A0KWWZmSyPoh6O+hht/PYy1nNLA3mvAAYCA1DX4PYaMYBXUA9lDOqBfd4ony3qJXQcVc8QYL7JMbeYXGM3ILXOOc1ea+OA16/AHuMxJwD/EEJMMSlrAxw3OfaJOseuuZ88jekbTNIeBC4HxhjrdQp4r4FrYxbjffEikGayezLqWvYxnvf+BsoPRj1gjwJeqP8rqYFT3gBMQSnrbqgHFVRdPwM6o+7BUmrfby8DAaiH/yTwTwuqd64kALcACCF8jfKZRQgxFujTQLrZ+0pKmWryf78MfG9yf20QQgwAPgX+BvgA/wMWCyEcTQ4/zeQY95uc0xWlFL5FXadZwPtCiJ4W1v85IA7VwHAD6j5rh4A7TbZvBY7WU/9OqHs0r4HzzQUuQr3ovVGKpNok3QtwRynoucbjegNLgHdR1+ctYIkQwgdwMX48Ue+wMcDNwG0m8t4KjAO6oBqldd9pAtWwqfl/moTWMsawU0r5k5SyEnXhnDAOwEgpfzTenNVSyu9Rf+xgY7lpwEdSykIp5f+M+z40vtDfBKbXtfULIS5D1Xt1XSGEEHcCj6AudIGZ9ADgDqOMTcFrUspcKeUJ4B3Ug4GUMl5KuUpKWS6lzDKeb4yxzGDUi/VRKWWxlLJMSrnxHM5Z37UeBPhJKf8tpayQUh4DPgKuMynrhGqV1IcDUC2lrDKT9jfgaSllipSyHKXorj6PsZi/AX8CR0z2CePH1oLydwCfGq9vtZTypJTyUAP550kpk6WUucAczvxHOVLKn6WUJVLKQmNazX+ElPKAlLLCKBfALksreA58Cdxk/H0z8JW5TEIIgWoM/auBY53vfXUX8D8p5Z9Syiop5RdAOZYNoF4GJEkpP5NSGqSUf6F6rFdbUBbO/Of1vcd2AgFCiFAhRH9UT79uQ6mGp1EKLt/siVTD6Xbg78Z7pkpKudl4L5uTKce4fSlwVEr5lbGO36EU1jSTMk8a32FJqPdWzX96A/CWlPKYlLII1Xu9rs4z40zDz+R50VoUQ3LNDyllNap7FAwghLhZCLFbCJEnhMgDegG+xuwBqG6vOTJRf5CvyT4bVEv8MTP5/YBngRKgXz3HfB74L6rbazFCiANCiCLjZ5RJUrLJ7+OcqbO/EGK+EOKkEKIA1fWrqUcYqtVuOBcZzJ2zzrXuDATXXGfjtX4KdY1rCKT+6w2qFXWqnrTOwEKTY8ehuv6mx882Sb+27gGEEO6o/+7ZOkkrUC/Fo8br9W4DMoahWtqWUt9/5CKE+J8Q4rjxnOsBL2PLu0be31Amu/6ol1QNda9z3ZfoUGNarhBisxBiYD2yZQFHjPfUTShFYY5rUS+q3xuo5/neV52Bh+vUJwzjdbKg7JA6ZW9A3Wc1PGKS9led8k+hWtIl9VxHUOao21AK7GNzQgghwlHX6I0GZPVFNYwauneyUSadfwCvGfcFc8aaUcNxVI+s3GS7bpq5ssdR48IBRrkdUb2Uhp7JRcbrlyyEeN3YSGiU1qIYwmp+GDVzKJAqhOiMarXeD/hIKb1Q9ruaymVR+8Vvij+qm5dtsu9W4LCUcquZ/FXAxcDdwIfGl5Ap3VAmhYZeOqBsjbV3SNnTtPttkhRm8jucM62ZV4zH6SOl9ABu5Eydk4HwC/B6MnutjcdNlFJ6mXzcpZSXmJTtjzI11Uc3arfkTUkGLq5zfCcppalJz7cmDdUdr8ujwA9SyloPmlHBfY+6H8JQJoH6SEaZhSylvv/oYaA7MMT4H9WYEE8/eFLKywBXlCnhc5PjpJpeB6Du/bjVuN8PZWqpzyQK6mX3XyDe2LusS43p7fEGjgHnf18lA3Pq/K8uxpaxJWXX1SnrJqW8xyTPXJPrNMC0sJQyAXU//q+e6wiqUXU9yhyzpB45XgJeN/b86iMbNT7S0L3jK6V0QZlrfxZCOKPul8518oWjzIsZKOXQ2UwaZsqGAwZjOVAN2ELUeGB9XG68NsNR75EpDeQ9TWtRDBcJIa403pT/QF2sraiHSmLUiEKI21A9hhqWAncKIdyEEHcb990thHACHgKW1WkBPY3qjpkjV0p5UEq5AliD6nqb8gzwbyllaSN1yUIppC6N5AN4VAjRSQgRBvwd9XIDZacsAvKEECGoF2IN21D29VeFEK5CCCchxAgLzlVDfdd6G1AghHhcCOEshLAVQvQSQgwCEEIEo7r4Zh94kzosque8HwBzjMoeIYSfEGLGOcjtjmr5zTFzbjvUC/IhKaVZU4AJnwC3CSEmGCcThQghejSQ/z6jKcIb1UI1/Y9KUf+RN8reXSOPjRCip7F1ZoNykmjsvjkLo0kun4af05WolvTb9aTfhHL02NvI6c73vvoImC2EGCIUrkKIS800rMzxG9BNCHGTUONc9kKIQUKIGAvKIoQYihq3qu+ZRkqZhxoLerOe3lAUMAQ1NlIvxsbHp8BbQohg4/MxTNQeS6mhCjVu4IB6R3UTQlwvhLATQswEYoHfjMf8AfVcuBufjX+ilBmoZ+0hIUSkEMJ0jMdgbNQ9APxYj+m2LoUopWLRO7+1KIZfgJkoM8RNwJVSykop5UGUzW0LSkv2Rnkh1PAf4/6aATNQLbbjKJvpfXXO85uU0uzgUx3+CVwm1IBdDTnU31U/jZSyBPXy2mTswjVka/0FZWLYjWrNfGLc/wKqdZRv3L/A5PhVKPtkFGrwNwV17Sylvmtdc9x+qBZINupl62ksl4TqnS2vMYuhWjC/GtNXoDxl6ntB/QdYDKwUQhSilNGQc5DbA3hXSmnOVPUYygzyc2MHkVJuQymYt1HXdx1nt+hM+Rb18j1m/Lxk3P8Oyr6bjarLcpMytsAXxuOno+7b2Y3JZsIgIUSKUBOebkAp3PrqUy2lvF3W7/veibNNb+aOc173lZRyB8pMMw91T8WjeuaNYmyhT0aNY6WirtVrKEXaIEI5IXyEsvmfNR5Y5zyvSynNmpFQZplnjGNujfEIsA/lWZRrlNX0HZpnfC6+BP4mpcyXUuagxlIeRr1DHgMuk1LWWDL+jjJfJ6KcNb5FKSCM31+hzJSJqB7LA8a0D1D3xo0mz+NTwEwhxA0mMn1nvI/2oxptpvdpvQgprbtQjxDieZR73Y1NcCwJREsp4y9YsGbGGrJeyLUWQiRJKSPM7F8tpZzYBOK1OoQQSSjXxrMcFTQaayKE+Bz4XEq5ts7+G1HuyJ9fyPH1BDeNpaTVs7+hgS+NRtM85HJm8NqUYprgva4Vg8YipJTD6tk/q6Vl0Wg6OlJKs/NipJQLm+L4VjclaTQajaZ10VoGnzUajUbTSmiVpiRfX18ZERFhbTE0Go2mzbBz585sKaVfUxyrVSqGiIgIduzYYW0xNBqNps0ghKg7w/q80aYkjUaj0dRCKwaNRqPR1EIrBo1Go9HUolWOMWg0Gk1dKisrSUlJoazM3DIpHQcnJydCQ0Oxt7dvPPN5YpFiEEJMRcW6sQU+llK+Wk++Qai4MTOllD+dS1mNRqNpiJSUFNzd3YmIiMDC6NHtDiklOTk5pKSkEBkZ2WznadSUJFR8+fdQIaljgVlCiNh68r2GCqZ2TmU1Go2mMcrKyvDx8emwSgFACIGPj0+z95osGWMYjIr1fkyqFanmo+KN1+UB1OpLmedRVqPRaBqlIyuFGlriGliiGEKovYpVCmdWGALAuGbAFahQsOdU1uQYdwshdgghdmRl6bhsmlZEejpUG5f2TUyEV16BjIyGy2g0bRhLFIM59VQ3wNI7wONmFoywpKzaKeWHUsqBUsqBfn5NMnlPo7lwjh6F7t3hA2Ob5/hxeOopOFLfQnWajsTzzz/P3LlzOXToEP369aN///4kJDS+cuyPP/5Iz549sbGxaZWTeS1RDCnUXt6wZilIUwYC843x668G3hdCXG5hWY2m9RIVBffeC5Mnq+2xY1VvYZRx6e6ff4bcc1oCXNMOWbRoETNmzGDXrl107dr4yrG9evViwYIFjB49utG81sASxbAdiDYuL+eAWm1psWkGKWWklDLCuJDLT8C9UspFlpTVaFodlZUwe7YyGwmhTEdRUWfS/f3Vd2Eh3HYb/Otf1pFTYxXmzJlD9+7dmThxIocPH6akpIR33nmHjz/+mHHjxll0jJiYGLp3797Mkp4/jbqrGtcXvR/lbWQLfCqlPCCEmG1Mrzuu0GjZphFdo2kmDh2C77+HceOgIZdAd3dYtAiGnMsKpZqm4IVfD3AwtcEVPc+Z2GAPnpvWs8E8O3fuZP78+ezatQuDwcCAAQO46KKLmD17Nm5ubjzyyCMAjBo1isLCwrPKz507l4kTW/+ChxbNY5BSLkUtam26z6xCkFLe2lhZjaZV07s3xMeDjw8Ax/KO8e2hb6msVssCO9o6clPMTYR5hMH48apMZaVSKL17W0tqTQuwYcMGrrjiClxcXACYPn16vfnaMnrms0ZTQ1wc/PUX3HAD+PggpeTbQ9/y9s63sRE2uDu4A5Bfns8v8b/w+ODHuSLqCuU++MADqpexfz+EmHW80zQhjbXsmxNL3EU7RI9Bo+kQ/Oc/8OOPcNll5DlKntjwBJtSNzEyZCQvjngRX2dfANKL03l649M8t/k51iWv46WRL+H+2GNw6aUQHGzlSmiak9GjR3PrrbfyxBNPYDAY+PXXX/nb3/52Vr623mPQQfQ0mhreew82bKDaw50nNjzB9vTtPDPkGd6f8P5ppQAQ6BrIR5M/4pGBj7A+ZT3PbX4OGRkJ06apwWpNu2XAgAHMnDmTfv36cdVVVzGqxjvtHFm4cCGhoaFs2bKFSy+9lClTpjSxpBdGq1zzeeDAgbI1+vZq2ilSqjECBwcAvjjwBXN3zOXZoc9ybfdrGyz66f5PeXvn2zw37Dmu7nY1fPYZrFoF337bEpJ3KOLi4oiJibG2GK0Cc9dCCLFTSjmwKY6vewwazaJF0KMHJCRwIPsA7/z1DpM6T+Kabtc0WvTWnrcyPHg4r217jYS8BMjPVzOli4qaX26NppnQikGj8fWFQYMoCvLh0fWP4uvsy3PDnrNokNFG2DBn5Bxc7F14ZN0jlN17N6xZA25uLSC4RtM8aMWg0YwaBd9/z/8d+IiTRSd5bdRreDp6Wlzc19mXl0e+THxePJ8e/FyNM+Tlwb59zSayRtOcaMWg6bhIqcYCCgvJKsni+8Pfc1mXyxgQMOCcDzUiZAQTwifw1cGvyC/PVyE07r23GYTWaJofrRg0HZeaOQvffcen+z/FUG3gb33Odj20lHv63kNRZRFfx30NL72k3F81mjaInseg6bgMGABbt5IV6c+PK6/hsi6XEe4Rft6H6+7dnYnhE/n64NfceNXyczJHaTStCd1j0HRchIAhQ/gk6fuGewv7foL/DoS3e6vPvMFwyHyUl9l9Z1NUWcSXB7+ElBR44gkoaNqYPprWw/mG3X722Wfp06cP/fr1Y/LkyaSmtq6g01oxaDomH3wATz1FZlE6Px7+keldp6vYR6ZUGWDlM/DzHeDgAhEj1cfGDubPgj9eObOAj5Hu3t2Z1HkS38R9Q1HSEZg7FzZtasGKaazBuYbdfvTRR9m7dy+7d+/msssu49///ncLSGk52pSk6Zjs3w+HD/PVoW+oklXc1eeu2umlefDDzZC4DgbdBVNeBjs1AY7KUljyMKx7FdJ2w1WfgOMZ99TZfWez6vgqvnI7xD0nT0JAQItVS9P8zJkzhy+//JKwsDD8/PyIiYnh/fffx9bWlvXr1/PHH380egwPD4/Tv4uLi1vdkqVaMWg6JvPmUVFewqKFUxgfPp4w9zq9haWPwPHNMON96H9D7TR7Z5jxHgT3h2WPwapn4bK3Tyd369SNYUHDWBC/kLv7/A1bUB5Qrezhb9MsewLSm9gdOLA3XPxqg1maMuz2008/zZdffomnp6dFyqQl0aYkTcejvByA31PXk1eex1XRV9VOP7IC9v0Iox89WynUIAQMvguG3gs7PoWkjbWSr+p2FenF6WxO3awW/bnrLvPH0bQpTMNue3h4NBh2e/fu3Wd9TCOrzpkzh+TkZG644QbmzZvXUlWwCN1j0HQs8vKgc2d45x1+CtlEsGsww4KHnUkvK4DfHgL/WBj5UOPHG/c0HPoNFj8I92xSvQlgfNh4vJ28+fnoz4zy9ARb2+apT0elkZZ9c9LUYbevv/56Lr30Ul544YUmk/FCsajHIISYKoQ4LISIF0I8YSZ9hhBirxBitxBihxBipElakhBiX01aUwqv0Zwz5eVw662kdw3gz7Q/uSL6CmyEyWOw+nkoTIPp886MKTSEgwtMexdyE2DtmZeVva0907tOZ13yOrKffxRefrnp66JpcUaPHs3ChQspLS2lsLCQX3/91Wy+xnoMR48ePZ138eLF9OjRo0Xkt5RGFYMQwhZ4D7gYiAVmCSFi62RbA/SVUvYDbgc+rpM+TkrZr6ki/2k0501AAPznP3zvdhQbYcPlUZefSTu+BXZ8AkPugdCLLD9mlzHQ/ybY/F9I23N695XRV2KQBhbFL1I70tKapAoa69FUYbefeOIJevXqRZ8+fVi5ciX/aWWTIS0xJQ0G4qWUxwCEEPOBGcDBmgxSStNQkq5A64vlrdGcOgXp6VR2j2JR/CJGhYwi0DXwTPq6V8EtEMY/fe7HnvwSxP0K69+AmV8DEOkZyUUBF7Hg6AJuX5yBzUsvQUYGmHikaNoeTz/9NE8/fR73iAk///xzE0nTPFhiSgoBkk22U4z7aiGEuEIIcQhYguo11CCBlUKInUKIu+s7iRDibqMZakdWVpZl0ms058J330FsLDvWfUN2aXbtQee0vXBsLQydDQ6u535sZy8YdAfE/QY5ZyY4XRV9FcmFyRwY0hlefVV7JmnaBJYoBnN38lk9AinlQillD+By4EWTpBFSygEoU9R9QojR5k4ipfxQSjlQSjnQz8/PArE0mnPkyivhs8+YL3fh5+zHqFATM8CWeeDgBhfddv7HH3w32NrD1vdP75rUeRLuDu5853gQ/v53cHe/gApoNC2DJYohBTB18g4F6p2/LaVcD3QVQvgat1ON35nAQpRpSqNpeQIDKbr+ajae3MiUiCnY2RgtqfkpsP9nGHCzavmfL+6B0Oda2PUNFOcA4GTnxITwCfyR/AcVpUXw22+Qk3PhddFomhFLFMN2IFoIESmEcACuAxabZhBCRAmjD5cQYgDgAOQIIVyFEO7G/a7AZGB/U1ZAo7GIJUvg119Zm/wHFdUVTIkwWWP3zw/UBLQhsy/8PMPuB0OpGsQ2MiViCkWVRexdN1+tC93K7csaTaODz1JKgxDifmAFYAt8KqU8IISYbUz/ALgKuFkIUQmUAjOllFIIEQAsNOoMO+BbKeXyZqqLRlM/b78N+fmseG0o/i7+9PHro/aXFcDOL6Dn5dCp84Wfxz8GoifDtg9h+INg78SQoCF4OHjws0s8A1etgtFmrakaTavBogluUsqlwNI6+z4w+f0a8JqZcseAvhcoo0Zz4SxbRvHxeDZtuYGZ3Weembuw6ysoL1At/aZi+APwxTTY9wMMuBl7G3smhE9g1fFVlM98AUdbC+ZHaDRWRIfE0HQM7O35XcRTWV1Z24y06xsIGQgh575qW71EjALf7urYRmrMSVsT1sI770Ari42jOT/ON+z2jz/+SM+ePbGxsWHHjtrzfl955RWioqLo3r07K1asaC7RG0QrBk3758kn4ZNPWJm0kgCXgDNmpPR9kHkA+l7XtOcTAvrOhOStkJsIwOCgwXg6erI8dQ3MmQNLza/noGmbnGvY7V69erFgwQJG1zErHjx4kPnz53PgwAGWL1/OvffeS1VVVXOJXS9aMWjaN1LC+vVU7NrBptRNTI6YfMaMtGc+2NhDzyub/ry9rwUE7P0B4LQ56Y/U9ZQf3AtvvNH059S0CHPmzKF79+5MnDiRw4cPU1JSwjvvvMPHH3/MuHHjLDpGTEwM3bt3P2v/L7/8wnXXXYejoyORkZFERUWxbdu2pq5Co+ggepr2jRCwaRMrjiyicsvGM2akKoOKoBo9GVx9mv68XmFqUZ+982HMYyAEUzpPYcHRBWwqjWM8QU1/zg7Ea9te41DuoSY9Zg/vHjw++PEG8zRl2G1znDx5kqFDh57eDg0N5eTJk+dZo/NHKwZNh2BVyu8EugbSx9doRkpcC0UZyuTTXPS9Dn65D1K2Q9hgBgUNwsvRi1XHVzH+nd/AxwcuMLSCpmUxDbsNNBh2+3yQ8uxoQtZYxEcrBk37paoKBgyg8p6/scVtC1dEX3HmIdvzPTh5QrepzXf+mOlqpbc98yFsMPY29owOHc26lHVUnwzBxmBovnO3cxpr2TcnTR1225TQ0FCSk89EIEpJSSE4OPj8BL0A9BiDpv1SUACxsRyxO0VZVRljQseo/eVFag2FnleAnWPznd/JA3pcCgcWgKECgNGho8kvz2fXu4/Bu+8237k1zUJThd2uj+nTpzN//nzKy8tJTEzk6NGjDB7c8sEitGLQtF86dYLvvmNBz2pc7FwYFDhI7Y/7FSpLoO+s5peh7ywoPQVHVwIwIngEdjZ2rEtZp9Kt4HGiOX+aKuz2woULCQ0NZcuWLVx66aVMmaLGvnr27Mm1115LbGwsU6dO5b333sPWCos8CXM2LWszcOBAWde3V6M5Z/LzkR4eTPppEr19e/P2OOO6zF9fDdmH4e97mz/aaZUB3uwOkaPhms8AuGvlXWSWZPLLmnDYswfWr29eGdoJcXFxxMTEWFuMVoG5ayGE2NlUa97oHoOmfZKcDN7epH7wOhklGYwONfqLl+VD4jpl/7dQKVQYqllxIJ1fdp/kl90nWXUwA0NVtWVy2Nopc9LRlVBZBsCY0DEcyz9GblQIjBqlXGo1mlaEHnzWtE/s7eGZZ1gfUoY4Jc6E2D66CqoqIGaaRYepMFRz7zc7WR2XWWv/tL7BvDOzH7Y2FiiXmGnw1xdKIXWbwpjQMby2/TWWTgrlxtgbz7VmGk2zo3sMmvZJYCC88AKLbQ7R27c3vs6+an/cr+DqD6GND+hVVlXzwHd/sTouk2cvi+X3h8fw+8NjeGRyN37dk8qjP+6hqtqC1n7kaHBwV+cGwjzC6OLZhbUpa1VvIbXeKPYajVXQikHT/jAYYPt2sooy2J+znzFhRm+kyjKIXw09LgGbhm99Q1U1//h+NysOZPDctFjuGBlJFz83uvi5cf/4aB6e1I0Fu07y5IK9VDemHOwcodtkOLwMqtVg85iwMexM30nFHbfC4MHanKRpVWjFoGl/bNsGgweT8NlcgDNuqsfWQkUR9GjcjPTJxkSW7E3j6UtiuG1E5FnpD0yI5sEJ0fywI4Vvtp1oXKaYaVCSDSe2AjA2dCwGaWDPpJ7w4ovaO0nTqtCKQdP+iI2Fb75hYXg+ga6BdOvUTe0/9Cs4eijTTgMUlFXyf+sSGNfdj7tGd6k330MToxkU0Yl5vx+lrLKRF3vUJLB1VPMngD5+ffB09GRhaB7cdhvY6eE+TetBKwZN+8PLi8qZ17C2aA+jQkapmapVBji0VMVGsmt4PYRPNiSSV1LJw5PPDnJmihCCRyZ3J6OgnK+2HG9YJkc36DpOjTNIiZ2NHSOCR7ApdRPVuTmwdu05VlKjaT4sUgxCiKlCiMNCiHghxBNm0mcIIfYKIXYLIXYIIUZaWlajaVJOnYKvvmJf/AZKDCWMCBmh9p/YAqW5jXojnSqu4JONiVzcK5BeIZ6Nnm5IFx9GRfvyf+sSKCpvJMRFj8sgPxnS9gAwImQEuWW5nHrmYZgyBYqLLaqipm1iaEMhUBpVDEIIW+A94GIgFpglhIitk20N0FdK2Q+4Hfj4HMpqNE3HqlVw880c2fordsKOIYFD1P5DvylTTlTDIQk+WJdAcYWBf07qZvEpH57cndziCj7dmNhwxu6XgLA5bU4aHjwcgDWXRKuFe5ycLD6nxjokJSURExPDXXfdRc+ePZk8eTKlpaXs3r2boUOH0qdPH6644gpOnToFwNixY3nqqacYM2YM//nPfxg7diwPPfQQo0ePJiYmhu3bt3PllVcSHR3NM888Y+XancGSHsNgIF5KeUxKWQHMB2aYZpBSFskzU6hdAWlpWY2mSbn6atixg4WeKfT174ubg5vy+Dm8DLqMVSadesgsKOOLLUlc0S+E6AB3i0/ZL8yLSbEBfLT+GHklFfVndPWB8GFwWC177uvsSw/vHiyzi4fhw8EKoQ/aNGPHwuefq9+VlWr766/VdkmJ2v7+e7Wdn6+2FyxQ29nZarsm1lF6usWnPXr0KPfddx8HDhzAy8uLn3/+mZtvvpnXXnuNvXv30rt3b1544YXT+fPy8li3bh0PP/wwAA4ODqxfv57Zs2czY8YM3nvvPfbv38/nn39OTk7OeV6MpsUSxRACJJtspxj31UIIcYUQ4hCwBNVrsLissfzdRjPUjqysLEtk12jOxsaG7NjOHMw/xIhgoxkp+wjkHVcuow3w2eYkKqskf58Yfc6nfXhyNwrLDXy9tZGxhujJkLEP8lWM/eHBw9mduZviPTvgvffO+byalicyMpJ+/foBcNFFF5GQkEBeXh5jxijvt1tuuYX1JmFOZs6sHdq9JlR379696dmzJ0FBQTg6OtKlS5dakVWtiSWKwdzUzrOcrqWUC6WUPYDLgRfPpayx/IdSyoFSyoF+fn4WiKXR1CEhAZ59lr92GU01IcpUwxHjurnRU+opqOYt/LwzhbHd/Ojs43rOp+4R6MGQSG9+2pliNqb+aboZZTAJqmeQBlJ/+gTuv/+cWq4dnrVr4dZb1W97e7V9o3EmuYuL2q55KXt6qu0rjav1+fqq7WnGMafAQItP6+h4JiKvra0teXl5DeZ3da19P9WUt7GxqXUsGxubVjMOYYliSAHCTLZDgXqnakop1wNdhRC+51pWo7kgduyAV15hV/JWvJ28ifE2Bhk7uhL8Y9WqavWw4Wg2mYXlXDOw/jyNce3AMJJyStiedKr+TH49wDP8tGLo798fZztnfhnlDZmZ5/SC0rQOPD096dSp0+nFeb766qvTvYe2iiWKYTsQLYSIFEI4ANcBi00zCCGihHH1CiHEAMAByLGkrEbTZMycSXVONkuJY1jwMLW2c1m+8kiKbtiM9MOOZHxcHRjfw/+8T39x70DcHO34cUcD5gAhlEnr2FowlGNva8+QwCGsLtyJ9PU973NrrMsXX3zBo48+Sp8+fdi9ezf/+te/rC3SBdHorBoppUEIcT+wArAFPpVSHhBCzDamfwBcBdwshKgESoGZxsFos2WbqS4aDYcMqeSW5Z4ZX0j4A6oNZ0w4ZsgtrmB1XAY3D4vAwe78p/a4ONhxae8gft2byvPTe+LqWM/jFT0Ftn8MSRshagLDQ4azNmUtGct/JPC3dTBvXvOHA9ecFxEREezfv//0ds0azwBbt249K//aOvNTTLfHjh3L2LFj681rTSx6CqSUS6WU3aSUXaWUc4z7PjAqBaSUr0kpe0op+0kph0kpNzZUVqNpcv76C669lr1/LgJgWPAwtf/oSnDyajBo3qJdJ6msklx7AWakGq4dFEpJRRVL9qXVnyliJNg5nTYnjQxW036SdqyEH36AtAbKajQtgJ75rGkfpKTA1q1sKthLjHeMiqZaXa1evlET1LoIZpBS8sOOZPqEetI90HIX1foYEN6JLn6u/LQjpf5MDi4qLMeRFSAlYR5hhLmH8e0gO8jIACus8avRmKIVg6Z9MH06JfFxbKw8fKa3kLYLirMa9EY6kFrAofTCCxp0NkUIwTUXhbEtKZfE7AZmMkdPhlOJkBMPKLfVrTl/USl1ML2GaI0rTrY0LXENtGLQtBt2ZO7EUG04oxiOrAREg7OdF/x1Egc7G6b3abpW+pUDQrARsPCvBnoNNWMeRlfaYUHDKDWUcvzrd2H8eBU6XFMLJycncnJyOrRykFKSk5ODUzPPktchHTVtn9Wr4eGHOfzMJBxtHenv31/tP7oSQgepGcdmkFKyfH8ao6P98HSxbzJxAjycGBzpzbL96fyzvkB8XuHgFwNHV8Dw+xkUNAgbYcORzDiiysuV66o2KdUiNDSUlJQUOvoEWCcnJ0JDQ5v1HFoxaNo+trYQEMCa6sMM8B+Ao60jFGdD6i4Y91S9xfak5JOaX9ZoFNXz4eJeQTy3+ADxmUVE+dcThiN6Ivz5PygvwsPRg14+vfjGt5RLHtnU5PK0B+zt7YmMPHttDE3To01JmrbPuHFkLvqaA2VJZ8xICX8AUg0818Oy/WnY2QgmxgQ0uUhTeqqJasv3N+BhFDVRrT+dpJz4hgYPZX/2fgorCvWKbhqrohWDpm1TUQGVlfyZ9icAQ4OGqv3xq8HFB4L6my2mzEjpDI/ybVIzUg2Bnk4MCPdi2f4GQlyEDwN7FyUrSvZqWc2JeS9BSAiUlja5XBqNJWjFoGnbLFkCnTqRsGkx3k7edPfurtxUE9ZA1/H1ru0cl1bI8ZwSpvZsvhAUU3sFciC1gBM5JeYz2Dkqt1WjYujn1w9nO2f+csqBqVOhoKDZZNNoGkIrBk3bJiICeeutLLU7ypDAISoMRvpe5abagDfS8gPp2AiY3LPpzUg1XNwryHiuRsxJpxIhJwF7W3sGBgzkh6AM+PRTCGg+2TSahtCKQdO26d+fhBf/QVplDkODTcxIoHoM9bB8fxqDIrzxdXOsN8+FEubtQs9gj4bNSTVjIPFrAGVOSipIIq0oTa1Gp9FYAa0YNG2XoiI4fpwtaVsANRcAUC/ZoL7gZj4gXkJWEUcyiri4V/NHMr24VyC7TuSRll/PeIF3F/DuelqZ1QyeZ738NPj7Q2Fhs8uo0dRFKwZN22XJEoiI4OT6X+ns0ZkgtyAVTTX5z4bNSMYW/FSjqac5qTnHigZ7DRMhaQNUlhHlFYWvsy9/dKmCl16CKj0TWtPyaMWgabsMG0bVf97mF5fEM95Ix9aBrGpQMaw8mEHfMC8CPZt/jeUofze6+rmyKi6jgUwTobIETmxBCMHQoKEscE+i+rFHwcur2WXUaOqiFYOm7RIezp6ZoymSZSZmpNXg6KFmPJshs7CMPcl5TIo5/3UXzpWJsQH8eSyXgrJK8xkiRoCtYy231dyyXOLTD8DOnS0mp0ZTg1YMmrZJdjasXMn2xPXYCBsGBg5Uk8Li1ygXUFvzcxP+OJQJwIRmmNRWHxNjAjBUS9YfqSeUg4MrdB5+WjEMCRoCQPGc52DQID0IrWlxtGLQtE2WLYMpU0jesZpY71g8HT0h6zAUpED0pHqLrY7LJMTLmR5NEGLbUgaEd6KTiz1r4jLrzxQ1AbIOQX4Kga6BRHhEsHCgIyxYAM0cME2jqYtFikEIMVUIcVgIES+EeMJM+g1CiL3Gz2YhRF+TtCQhxD4hxG4hxI6mFF7TgbnySsqW/MJStxQzbqrmw2CUVVax4WgWE2L8ES24QpqtjWBcd3/+OJyJoarafKaaMRETt9Xl9glUTrsUnJ1bSFKNRtGoYhBC2ALvARcDscAsIURsnWyJwBgpZR/gReDDOunjjKu7DWwCmTUacHVlWx8vKkXVmYHnhDXg2x28zK+tsDkhm7LK6hY1I9UwISaAvJJK/jqRZz6DXw/wCFF1QMVNKjWUErfHuKqbRtOCWNJjGAzESymPSSkrgPnADNMMUsrNUsoaQ+hWoHljwmo6NidPwrvvsmf/KhxtHenn3w8qSiBpU4PeSKvjMnF1sGVoF++Wk9XI6G6+2NsK1tTnnSSEMiclrIUqA4MCVRjuks/+BzNnQgcPNa1pWSxRDCFAssl2inFffdwBLDPZlsBKIcROIcTd9RUSQtwthNghhNjR0eOtaxph/Xr4+985Gr+F/v79VZjt45ugqrzeaKpSSn6Py2RUtB+OdrYtLDC4O9kzJNKH1Q25rXadAOX5cHIHHg4e9PTpyTdDHSAuDnx9W05YTYfHEsVgzhhrNiawEGIcSjE8brJ7hJRyAMoUdZ8QYrS5slLKD6WUA6WUA/38/CwQS9NhmTWL3EN/8Ydbukk01TVg56S8e8xwILWA9IIyJrSgm2pdJsT4k5BVTFJ9S352GQvCttY4w4aqeIq6hKoehUbTQliiGFIAU6NtKJBaN5MQog/wMTBDSplTs19KmWr8zgQWokxTGs0FscU+FYyTwQA18BwxEuzND9SujstACBjXw3qKoWbdh3p7Dc5eav6FidtqlaziyIqv4dVXW0hKjcYyxbAdiBZCRAohHIDrgMWmGYQQ4cAC4CYp5RGT/a5CCPea38BkYH9TCa/pgCQmwn33cWTHMjwcPOjh3QNOJUHO0QbHF9bEZdI/zKtZg+Y1Rpi3C90C3Bp3W03dBcXZ9PPvh6OtI/krF8Pzz+v5DJoWo1HFIKU0APcDK4A44Acp5QEhxGwhxGxjtn8BPsD7ddxSA4CNQog9wDZgiZRyeZPXQtNxiItDfvEF+9J2MSRoCLY2Z0wv9SmGjIIy9p3Mt4o3Ul0mxASwPSmX/NJ6ZkFHTQAkJPyBo60jA/wH8NFwG6UUOnVqUVk1HReL5jFIKZdKKbtJKbtKKecY930gpfzA+PtOKWUno0vqabdUoydTX+OnZ01Zjea8ueQSThzfzXbPfIYEqhnCJPwOnuHgE2W2yJnZztYzI9UwoYc/hmrJhqP1OFgE9Vcrz5m4re6rOE429YxLaDTNgJ75rGlzbMnaAUKoENWGChU4L2pCvQO0aw6p2c7dA1putnN99DfOgv69PnOSjQ10GafGGaqrT4+hHPvyHbi7Xqc+jaZJ0YpB03Y4fBgmTiR5w68EuwYT5h4GyVuhorDeMBhllVVsPJrd4rOd68N0FnRVtVnnPlWX4ixI30MP7x54OXqRvW8rrF2rl/vUtAhaMWjaDllZyKwsthXFMSx4mHrRH10FNvYqcJ4ZthzLobSyivFW9Eaqy/gYf06VVLLrRD2DyTUhPY6uxkbYMCRoCG+NqkYePgweHi0nqKbDohWDpu0wciT7Vn/FIe/K2m6qnYeBo3kz0e9xmTjb2zK0i08LCtowo7v5YWcjWHOoHnOSmx8E94f4VYCaz5BRlkVifmILSqnpyGjFoGkbSAlSsjVtKwCDgwZDfgpkHoQo82YkKSW/H8pkZLQvTvYtP9u5Pjyc7Bkc6V3/OAOoOqVsh5Lc00ow652XYGL9LrkaTVOhFYOmbbB/P4SHk71yETHeMXg7eSszEkD0ZLNFDqUXcjKvlAmtyIxUw/ge/hzOKCQ5t8R8hujJIKsh4XdC3UMJcw8jvui4irRaUk8ZjaaJ0IpB0zaQEsOQwWywPV7bjOQZBn7dzRb53WiqaU3jCzXUzIL+vT5zUsgAcPautarbfwcUU/nLAnBxaSkxNR0UrRg0bYM+fdj6n4dI8bZRisFQAcfWqklt9XgbrY7LoHeIJ/4erW+hmwhfV7r4udYfHsPGFrqOr+W2WlxZzIHsA1BV1bLCajocWjFoWj9VVVBQwJbULTjYODAgYACc2AIVRfW6qWYWlrE7OY9Jsdaf7Vwfk2IC2Hosh8L61oKucVtN282QoCEIBBXPPQvduqkxF42mmdCKQdP62bULvL0p/20R/f3742TnpDx2GnBT/T0uEynPmGxaIxNjA6iskqyrby3oGrfV+NV4OnoS6xPLVt8iuOIKKC9vOUE1HQ6tGDStH19fSh75O6t9cs8s43m0YTfV1XEZhHg5ExNk/dnO9TEgvBPerg6sPliPOanGbfXoGbfVz6LzKHr5eb0OtKZZ0YpB0/qJiGDNXWPJ8bRTYTDyTkBWXL3eSCUVBjYczWZSbECrmO1cH7Y2gvE9/Pn9UCaV9a0FHT0ZTu6A4hyGBw/HIA1sT9sGaWktK6ymQ6EVg6Z1U1kJu3axJWUTnRw7EeMdA0dWqLRuF5stsvFoNuWG6lY9vlDDpNgACsoMbE/KNZ+h21Tlthq/in7+/XC2c8bt4aegTx+orkeZaDQXiFYMmtbNtm0wYAA2i39jaPBQbIQNHFkO3l3B13w01VUHM3B3smNwZMuv7XyujIr2xdHOhlX1mZOC+oFbABxZjoOtA4MCB/FjXwEvvwwGQ4vKquk4aMWgad3ExJD6wRv80bWaEcEjoLwIEterlrQZqqrVbOdx3f2xt239t7eLgx0jo3xZdTADac7TyMZGmZPi14ChguHBw1kWXkTydVPBwaHlBdZ0CFr/k6Pp2Hh7s3yENwWutmp84dhaqKqA7uYVw64Tp8gprmgTZqQaJsYGkHKqlMMZheYzdL8YygvgxBaGB6s1rXfErYI//2xBKTUdCYsUgxBiqhDisBAiXgjxhJn0G4QQe42fzUKIvpaW1WjqpawM5s9nz6E/iO4Ujb+LPxxZBo6eED7MbJFVBzOwtxWM6e7XwsKePzULCK06UI85qctYsHWEI8uJ8Igg2DWYgH+/DVOm6MlummahUcUghLAF3gMuBmKBWUKI2DrZEoExUso+wIvAh+dQVqMxz6ZNMGsWcstmhgcNV4OtR1aqRXls7c/KLqVk1cEMhnbxwcPp7PTWir+7E/3CvFhZ3ziDg6uar3F4GQIYFjyM90faYPhlYYvKqek4WNJjGAzEG5fprADmAzNMM0gpN0spa4LLbwVCLS2r0dTL2LHs+vV/bOnuxPCQ4ZC2C4oz6x1fOJJRxLHsYqb0DGxhQS+cqb0C2Xcyn5RT9QTI6zYFTiVCTjwjQkawJ6iafTFeYNt6osZq2g+WKIYQINlkO8W4rz7uAJada1khxN1CiB1CiB1ZWfXMBNV0LGxtWel/CunizAD/AXB4OQibesNgLN2XhhAwuWfbGV+o4eJeSpkt359uPkONMjy8jMGBg7ERNhza8DN8+20LSajpSFiiGMzNEDIbqEUIMQ6lGB4/17JSyg+llAOllAP9/NqOfVjTTJw6Bc8/T/yuVQwMGKjCYBxZDmFDwMW8G+ry/ekMivDG373tzQru7ONKbJAHy+pTDF5hENALjqzA09GT3r698fz6Z7jjDh0eQ9PkWKIYUoAwk+1QILVuJiFEH+BjYIaUMudcymo0Z7FzJ/Lf/6Ys+ZjyRspPgfS9yqRihoSsIg5nFJ5uebdFLukdyM7jp0jPLzOfodtUFTywJJfhwcN5a6yg4NAecHRsWUE17R5LFMN2IFoIESmEcACuAxabZhBChAMLgJuklEfOpaxGY5aJE/nlz0/Y18WFUSGj4NAStb/HNLPZa0wwU9uwYpjaKwiAFQfq6TX0uBRkFRxZzsiQkWR42bKpOqEFJdR0FBpVDFJKA3A/sAKIA36QUh4QQswWQsw2ZvsX4AO8L4TYLYTY0VDZZqiHph3ye+EuAjxCiPSMhLhfwa9HvbOdl+5Lo3+4F0Gezi0sZdMR5e9GtwA3lu6rJw5ScH/wCIW43+jp05NOjp1I/eUreP75FpVT0/6xaB6DlHKplLKblLKrlHKOcd8HUsoPjL/vlFJ2klL2M34GNlRWo2mQ5GSqrptJ1rY/GBU6ClGSC8c3Q4/LzGY/kVPCgdQCLjG2uNsyU3sFsT0pl6xCM+MGQqheQ8IabA1lylNr0ybke+/p5T41TYqe+axpfSQmUvXHGsqqypQZ6cgyZUKJMa8Ylu1XLey2bEaq4ZLegVRLWHmwHnNSzGVgKIP41YwKGcUHk9zYv2+VXu5T06RoxaBpfYwezX9+fYwTYe4MChwEcb+ptZ2D+pnNvmx/Or1DPAnzbvsvx+4B7nTxdWXZvnoUQ/hwtRZ03G+MCB5BuaMtG9I3t6yQmnaPVgyaVsmG1I0MDBqES3U1JPyuTChm1lY4kVPC7uQ8Lund9s1IAEIILukdxOaEbPPmJFs7FTvpyAq87Fzo49eH6m++hpkzW15YTbtFKwZN62L/fir69cZl1wFlRopfDVXl9Y4vLN5zEoBpfduHYgCY0S+YaglL9tbj2d3jMijPh6QNjAoZRUF6EpWJCVBU1LKCatotWjFoWhfFxZxyqCLb045RoaPg0G/KdGImaJ6UkkW7Uxkc4U1op7ZvRqohOsCd2CAPFu2uRzF0HQf2rnDoN0aFjuK7Cd4s/+45cHNrWUE17RatGDStiyFD+Pcr43CMiKKzS5AKmtf9EmVCqcPBtALiM4uY0T/YCoI2LzP6BbM7OY/jOcVnJ9o7q0CCh5bQw6sbPs6+bEjZAObWc9BozgOtGDStB4OBstJCtqVtY2TISDj2hzKZxJif1PbL7lTsbES7cFOty/R+wQih6miW2BlQlIFNirpWPl/9jOzWTa/qpmkStGLQtB5Wr8YuIIiIY6eUGWn/AnDyhK7jz8paXS1ZvDuVsd396OTa/lYyC/J0ZnCEN4t2nzS/slu3qWDnDPsXMCp0FEmeVeT27w75+S0vrKbdoRWDpvUQGMjuCT3ICOvEYJ8+KgxGzDSwO/vF/2diLukFZUzv11Cg37bN5f1DOJZVzIHUgrMTHd2g22Q4uIgRAUPY2q8Tnz06Fnx8WlxOTftDKwZNq6G6bx8em+XBwMhROCSug4pC6HWV2by/7D6Ji4Mtk2LaXohtS7m4VyD2toJFu06az9DrKijOwi1tN0MCh/BH8h/I3NyWFVLTLtGKQdM6yMvjyO7VZJVmMS5snDIjufhCxOizspZVVrF0XxpTegbi7NB+F6rxcnFgbHd/Fu9JxVBVfXaG6Mng4Ab7FzA2bCxDf9kF/v6Qk3N2Xo3mHNCKQdM6+PFHegyYQmSGgdH+F6m1F2JnmPVGWnEgnYIyA1dfFGrmQO2LqwaEkllYzvqjZhavsndWHltxixkbPJK/urmy897pLS+kpt2hFYOmdTBxIh/e3QffPkPxPL4FKkug15Vms36/PZkwb2eGdWn/9vQJMf74ujkwf1uy+Qy9roTSUwRmxOHQdwDvTHXR4wyaC0YrBk2rINnXjv8Or2Zc+HhlRnIPMjup7XhOMZsTcpg5MAwbG3MLBLYv7G1tuOqiUNYcyiSz0MwCPl3HK8+t/T8zNmwsB9P2kPfHUj2nQXNBaMWgsT7HjnHoh3nYGSRj/QfC0VUQeznYnD1+8OOOFGwEXH1R2NnHaadcOzCMqmrJgr/MDELbOarFiw4tYXzQCC7dfAqv8ZfC/v0tL6im3WCRYhBCTBVCHBZCxAshnjCT3kMIsUUIUS6EeKROWpIQYp/pAj4aTS0+/ZTxd79BT6fOhJ3YoWIjmfFGMlRV8+POZMZ29yfQs+2t63y+dPVzY3CEN99vTzY/p6H3VVBeQLfMBA4Pj+Ljf02FLl1aXlBNu6FRxSCEsAXeAy4GYoFZQojYOtlygQeBufUcZlzdBXw0mhry/3kvdzzZhcExU2DPd+ATDaFn3yrrjmSRUVDOzEEdp7dQw8xBYSRmF7Mt0Yw7auQYcA9G7PmO/r2m8EF0FqWO2higOX8suXsGA/FSymNSygpgPjDDNIOUMlNKuR2obAYZNe2cdad2sDPamXGe3eH4Jug3y2yI7fnbk/F1c2R8D38rSGldLukdhLujHd9vNzMIbWMLfWdC/GrG+fXHMb+YxDefBj2nQXOeWKIYQgDTuzHFuM9SJLBSCLFTCHF3fZmEEHcLIXYIIXZkZZlxzdO0T5Yto/Q/bxLiFECv4zsBAX2uOytben4Zvx/K5KoBIdjbdrzWsLODLdP7BbNkXxp5JRVnZ+h7PcgqBqYdoecpR2KfeBvWrGl5QTXtAkueMHOuH+fi8jBCSjkAZYq6Twhx9owlQEr5oZRyoJRyoJ+f3zkcXtOWqfhxPsO/38qEiEmIvfOhy1jwPLvd8dXWJKql5IYhnVteyFbCTcM6U26o5jtzrqt+3SBkIHZ75hMyZjrXv9KLssvNr2Gh0TSGJYohBTA16oYC9YR8PBspZarxOxNYiDJNaTQArHjqKmb9qwuTnYMg7zj0u/6sPGWVVXz75wkmxgQQ7tN+1l04V3oEejCsiw9fbUkyPxO63yzIPMAkr27sC4JNaXrJT835YYli2A5ECyEihRAOwHXAYksOLoRwFUK41/wGJgPaj05zmpXHV+EcEEqfhK3g4G52pbbFu1M5VVLJbSMiWl7AVsZtIyJIzS9j5cGMsxN7Xgm2DgxK3kPnchfsHn8SdmhHQM2506hikFIagPuBFUAc8IOU8oAQYrYQYjaAECJQCJEC/BN4RgiRIoTwAAKAjUKIPcA2YImUcnlzVUbTtih/4Vn6/edHJoWORcT9Aj0vB4faPQIpJZ9uSqRHoHuHmOncGBNiAgjzduazTYlnJ7p4Q/dLsN//M8M7j2bQwp1Ubt/a8kJq2jxnB6Ixg5RyKbC0zr4PTH6no0xMdSkA+l6IgJr2S3rcNgKzyrjIYA8VRWbNSFuP5XIovZDXruqNMOOp1NGwtRHcMiyCl5bEsf9kPr1CPGtn6HcDHFzEGHd/Rv23B3On9GScdUTVtGE6nnuHptUw9+5uvP3QRfSJWwZ+PcyGwPhsUyKdXOyZ0Y7XXThXrh0UhouDLZ+a6zVETQDPMAYfXY+Tmxcrj69seQE1bR6tGDRWoaisgM0nNzPJrz82J/+CgbefNXfheE4xq+MymDU4HCf79hte+1zxcLLn6otC+W1PGhkFdeIn2djCRbdgn7ieyV79mPrQ/zC8P886gmraLFoxaKxC5dBB3Df/BJNPZYK9C/SZeVae/1ubgJ2tDbcOj2h5AVs5d47sQpWUfLT+2NmJ/W8GGzvGV5RhU1lJQs6RlhdQ06bRikHT8hgMbI92IjfCn75xq1RcJGevWllO5pXy818pXDcoDH+PjhMXyVLCfVyY0TeYb/48QU5Ree1E9wDocRlD41bzzJP9+d8oi4YSNZrTaMWgaXGyKk7x6DRwuHgwNpUlMOiOs/J8uC4BKeFvY7paQcK2wb3julJmqDI/1jDoDuzL8pjq3oV1yesoOJXW8gJq2ixaMWhanA3rPqe6uoppx/dB8AAI7l8rPbOwjO+2J3PVgFBCvJytJGXrJ8rfnUt6BfHF5uPkl9QJUxYxCny7MS3tGG/PPULJjEusI6SmTaIVg6ZlSUvj8ksf45H1ksiso2Z7Cx9vSMRQVc09Y3VvoTHuGxdFUbmBL7Yk1U4QAgbeTs+UPewZFsbyftocp7EcrRg0LUpCRRov3RSMV89O4OytZuuakFtcwddbjzO9bzARvq5WkrLtEBvswcQYfz7dlEhRuaF2Yt9ZCAc3HMZE8OZFRZwsMrPQj0ZjBq0YNC3K4ux1LJjgy8jiAzD4rrNmOs/7PZ6yyiruHx9lJQnbHg9OiCavpJIP63ooOXvBgJu57NgOHCuq2f7Le1aRT9P20IpB02JUn8ol/7vPGFvlgY+NAwy6q1b6iZwSvtqaxLUDw4jyd7eSlG2PPqFeXNoniI/WHyOz7ryGofcQYjDw8k95XHz7a8jiYusIqWlTaMWgaTGOffMuz7+5j5m7j0DfWeBWO7z63JWHsbURPDSpm5UkbLs8Ork7lVXVvLPmaO0Er3DoeQWyv+CBB8M4WBhvHQE1bQqtGDQtxiexxdz/RBT9O5XDsPtqpe1NyWPxnlTuHNmFAD1v4ZyJ8HXlxqGd+X57MvGZRbUThz/AMJci/urtxYJEiwIjazo4WjFoWoRTZadYcXINIWE2OHW/BHyjT6dJKXl12SG8XR342xi9iP358sD4KJztbXl9+aHaCcH98Og8iiszSvF69yNKctKtI6CmzaAVg6ZF2PN/z3Ljb6lcnZ0Nwx+olfb7oUw2J+TwwPgo3J3srSRh28fHzZG/je7CyoMZbD2WUztx+INcnZDBA/OT2fXjO1aRT9N20IpB0+xIKSld/itXb8ojOmwIhA89nVZaUcVziw8Q5e/WoZftbCruHNWF0E7OPLNoPxUGk1XeoiYS3a8X97wSzX9DzMyU1mhM0IpB0+zsyNjBY9d7sPdeLxj3VK0oqvP+OErKqVJeurwXDnb6drxQnB1seWF6T+Izi/h4o4n7qhCIcc8w0qGYA7kHOZhz0HpCalo9Fj2JQoipQojDQoh4IcQTZtJ7CCG2CCHKhRCPnEtZTfvnx0Pzca+WTAy5CCJGnt4fn1nIh+uPceWAEIbq1dmajAkxAUyODeDdNUdJzi05k9BtCtMcu/DCZyc58vZT1hNQ0+ppVDEIIWyB94CLgVhglhAitk62XOBBYO55lNW0Y06VnWLm7P/x0i+pOI195vR+KSXPLNqPi4MdT10SY0UJ2yfPTe+JQPDCrwfO7BQCj8nPMfB4CRlx2yiu1HMaNOaxpMcwGIiXUh6TUlYA84EZphmklJlSyu1A5bmW1bRvftvzNanedvT0CYHOZ1Zo+3FnCluP5fLY1O74ujlaUcL2SYiXM/+YGM3quEyW7jOJrBo1gdynBzFvug9Lji6ymnya1o0liiEESDbZTjHuswSLywoh7hZC7BBC7MjKyrLw8JrWTGV1JV8e/ZqFN/sR8Pwnp/cn55bw718PMiTSm1mDwq0oYfvm9pGR9An15OmF+87MiBaCvmOfJ6a8gu+3v0e1rG74IJoOiSWKwdwK7NLC41tcVkr5oZRyoJRyoJ+fn7ksmjbG6n3zkVn53OLeHcIGA1BdLXnkxz0AzL2mLzY25m4RTVNgb2vDW9f2paSiiicW7ENK9eiJruN5+dcy3n5sJxvjl1pZSk1rxBLFkAKEmWyHAqkWHv9CymraMFJKDn72EisePswo31tP7/90UyJ/Jubyr2mxhHm71H8ATZMQ5e/O41N78PuhTOZvN3behSDi6n+ydog73256zboCalolliiG7UC0ECJSCOEAXAdYOq/+Qspq2jA7D/7AsnA4OKsPNhMuB+BweiGvrzjMpNgArrko1LoCdiBuHR7BiCgfXvztIEnZasDZ7pa/U3XjCDaJPOISVlpZQk1ro1HFIKU0APcDK4A44Acp5QEhxGwhxGwAIUSgECIF+CfwjBAiRQjhUV/Z5qqMppUgJV9sf5PyTvZEfbAC7OwoLKvknm924uFkzytX9kYIbUJqKWxsBG9c3Rd7Wxvu/eYvyiqrALhqwlsMPVzMjyuftbKEmtaGRfMYpJRLpZTdpJRdpZRzjPs+kFJ+YPydLqUMlVJ6SCm9jL8L6iurad8k7focdmfw95xInN0DkVLy2E97OZ5TwnvX99deSFYg2MuZd2b2Iy69gGcW7UdKiUdmBR+9kojzhhNkxC2ytoiaVoSeaqppWsoL+WL7XP7+UwbTlxYA8NGGYyzbn84TU3swRE9ksxrjevjzwPhoftqZwnfbkiEmhuwv3+fn0Z34asNzUFnW+EE0HQKtGDRNysmVT7DIUbDg/Vtx+OhTNidk89ryw1zcK5A7R0VaW7wOz98nRDO6mx/PLz7A7uQ8fG+6h3HhQ/je3kD2H/+2tniaVoJWDJqmI3kbHx1fihA23DzheeLd/Zn91U4ifFx4/eo+elyhFWBrI/jPzH4EeDpy5xfbSc4t4aFTw7hpSTafHf4O0vdbW0RNK0ArBk3TYKgg5df72Fliz4J3C7E/kMotn27Hwc6Wz28brMNptyI6uTrw2a2DqayS3PLZNjw37WHmjip+dnYhe/F9UF1lbRE1VkYrBk3TsOFNPqzOJvhUNSF58NDKE+QWV/DprQP1fIVWSJS/Gx/dPJCU3FLu7HYlBdu3UmZvyydlSbD1fWuLp7EyWjFoLpwTf5K8+S0Wu7sRPuMObn/yOzYW2zPv+v70CfWytnSaehgc6c3ca/uyIb2MN5blcVnny1jg6kHm2pcgfZ+1xdNYEa0YNBdGWT4suJP3/QIJzZUc3N+fjQk5vHZVHybEBFhbOk0jTO8bzAvTe7Jr2yEevPYzLtuYx4fePvDTHVBR0vgBNO0SO2sLoGnDSAm//ZN9pZks8/BjxZxkNgTNZdonn3LNwLDGy2taBbcMj6DSUMWaDX0o9ndluXMC16UcI2rFUzDtHWuLp7ECusegOX/2fIfc/xOvRsRiJz2YM+J2PO65i+sG64ipbY07R3el4N33+d7uOgROvN6lD3LnZ3BQR7DpiOgeg+b8SN0Nv/2T38L7sbcim7Ksqxjy1G1M1us2t1n+NqYr9hXl7P0skDVTjrE2OJZxi+4Fv+7qo+kw6B6D5twpyoT511Pk7M2/MDB4lxM/lblxw0WWLtOhaa3cHr+Od75bTI8jTjxq50i5nSN8NwtKT1lbNE0LohWD5twwVMD3N1FdnMMV9sMw2Bbw5DEf+n7zP2tLpmkKbrsNNmxg9LRnKbfN4WqnCci8E2owWs9v6DBoxaCxHClhyT8heSt3y+tI99jJ8MAJRP2yDNatAzttmWzzODnByJHcP2Qafb2HkOS+k4eZCQlrYOUzjZfXtAu0YtBYjGH1i7DrK94xzGBvWCJe9q7MGfhPEAKCg60tnqYJEe+/z8fvHcfZ3paNoZl8YpgCW9+nasPb1hZN0wJoxaCxiJxVb2G36U2+NYxnW++elNok8k7eaHx7DobDh60tnqapsbXFydmNJ2Lvp9T2EL/3HM4vVcOxXfM8uRs+srZ0mmZGKwZNg0gp2bZoHj6bXmAVQ5CXP8mRyh8ZGzqWAcOvhcmTISrK2mJqmpq//Q0WLuTy/jcyKHAQx+T3FFz2bzbIfniueZQdSz+3toSaZsQixSCEmCqEOCyEiBdCPGEmXQgh3jWm7xVCDDBJSxJC7BNC7BZC7GhK4TXNS2peKZ/Me4mLdj3DPod+xNz3LSuy5uFg48AzQ59B9O8PX34JtrbWFlXT1Bgj4dpkZPKqYSqGagObCj4hfPaPHLHrQd8//8mH//cmmYV6DYf2SKOKQQhhC7wHXAzEArOEELF1sl0MRBs/dwP/Vyd9nJSyn5Ry4IWLrGluqqolX289zidvP82dOXNJ9x1K7MNL+enE1+zK3MULXe8h4NV5UFRkbVE1zc0dd+B/90M81u8hNqVuYlX2YqL/uZxsr97ckf4i7775b37amYKU0tqSapoQS3oMg4F4KeUxKWUFMB+YUSfPDOBLqdgKeAkhgppYVk0L8NeJU1w+byMnfn2FZ8UnlEROIeSeX9iUtZNP9n/C1d2uZtK+cnj9dUhLs7a4mubmrbdg7Vqu7jmLiyMu5r+7/suugqME3beU8rARvMR77F4wl6s/2ML+k/nWllbTRFiiGEKAZJPtFOM+S/NIYKUQYqcQ4u76TiKEuFsIsUMIsSMrK8sCsTRNycm8Uv75w26ueX8Dt+T9l6fsv0P2vAKXG78hrSyXpzY+RfdO3Xl80ONw552QkADR0dYWW9PcdO8O0dEIIXhu8NOEu4fz+PrHya4qxeWWn5HRU3jJ/jOmZ37AjHnreXLBPjILtHmprWOJYjC37FbdfmNDeUZIKQegzE33CSFGmzuJlPJDKeVAKeVAPz8/C8TSNAW5xRW8+NtBxr2xlnV741kVMI+rq1fA8AcRV31Kmazi4XUPY6g28OaIV3FKSlEFQ0OtK7imZXn8cVwvuZy5o16noKKAx9Y/RqWNLeK6b2HgHdwif2GJ///4bcdRRr/xB68vP0R+aaW1pdacJ5YohhTANFRmKJBqaR4pZc13JrAQZZrSWJnsonJeXXaI0a//wWebErk7poKt/q/SpXAnTP8vTH6RKiRPbniS/dn7mTNiDp3/9wP06QOJidYWX9PSxMZC//509+jKc8OeY3v6dp7f8jzSxhYufROmvkaPgk3sDJ7L9dFVvL82gVGv/c5bq45wqrjC2tJrzhFLpqpuB6KFEJHASeA64Po6eRYD9wsh5gNDgHwpZZoQwhWwkVIWGn9PBvSK41YkObeETzYmMn/7CcoN1VzaO4hnQ3cTsOFpsHeBmxZCpOrUvbnzTVafWM1jgx5jQucJcFssuLhAZKSVa6FpcW655fTPaV2nkVKUwvu73yfYLZj7+t0HQ2eDdxccFtzJvwrv4bbLXuOlxG68u+YoH284xo1DO3Pr8AiCvZytWAmNpTSqGKSUBiHE/cAKwBb4VEp5QAgx25j+AbAUuASIB0qA24zFA4CFxkXg7YBvpZTLm7wWmgaRUvJnYi6fbUpk1cEMbITgiv4h3Dvcn8ht/4bfv4WIUXDlR+ChfAa+Pvg1Xx38ihtjbuSmbrNUOIygIPjHP6xbGY11OXAA5s5l9v/+R2pRKh/s+YAg1yCujL4Suk2G2Rvhp9sJW30P/xt4O0fue4L3NqXy8YZjfLIxkam9Arl9RCQDwr0wvhc0rRDRGt3MBg4cKHfs0FMeLpRTxRUs2HWS77adID6zCC8Xe24YEs5NQyMIzNoIi/8Ohakw6hEY+wTYqPkIPxz+gRe3vsiE8Am8OeZNbP/5sPJA+vZbPWeho7NwIdx9N6xdS2VMN+5fcz9b07by0oiXmNZ1mspTVQlrXoDN/4VOETB9HileF/HlluN8t+0EhWUGYoI8uH5wGDP6h+DhZG/VKrUXhBA7m2pKgFYM7YwKQzXrjmSxaNdJVsVlUGGopl+YF7MGhzG9bwjOlXmw6l+w+2vw7Q6Xvw+hZ+6lb+O+5ZVtrzAmdAxvjX0LB1sHeOMNSE2Ft3WcHA1QUAAeHgCUVJbw4O8Psi19Gy8Mf4Eroq84ky9pI/xyP5xKhIF3wIR/UWzjxkJjY+VAagFO9jZMjg3kigEhjIryxc5WB2M4X7Ri0NTCUFXN1mO5LNmXxvL9aZwqqcTH1YFpfYOZOSiMmCAPqDLAjk/hj5egvAhGPAhjngB7p9PH+eLAF8zdMZcJ4RN4Y/Qb2NvYnZ4Bi5Rnfms0AB9/DMOHU9otkn/88Q82p27mX8P+xTXdrjmTp6IYfn8Jtv4fuHjDhOeg/41gY8u+lHzmbz/Bb3vTyC+txNfNgYt7BXFpnyAGRXhja6Pvt3NBKwYNJRUGNhzNZvXBDNYcyiS3uAIXB1smxARwRf9gRkX7YW9ro17oR1aorn3mQYgcA1NfhYAzk9cN1Qbe3PEmX8d9zaTOk3ht9GvYZ+bAFVfAvHlw0UVWrKmmVZKXBz16qHvk//6P8qpyHvrjITac3MBdve/i/v73YyNMWv+pu2HZ45C8FYL6wsTnocs4EIJyQxVrD6te7h+HMymrrMbXzZFJsf5MjAlgRJQvTvbahNkYWjF0QKSUxGcWse5IFuuOZPFnYi4VhmrcnewY192fS3oHMba735kHSEpIXKdaaynbla130osQM61Wy7+wopDH1j/GxpMbuTHmRh4Z+Ai2NrZw8CBccw188w3062eVOmtaOceOQefOp8edKqsqmfPnHH4++jMTwycyZ+QcXOxdzuSXEvb/DKueg4IU6DwSxj8DnYedzlJcbuCPw5ks25fOuiNZFJUbcLK3YVgXH0Z382NMNz8ifV31wLUZtGLoAEgpSc4tZWtiDlsSctickE1GQTkAXf1cGdPNn4mx/gyK8FY9gxqqq+DQEtj8rlIIHiEw+lHVfbetPcgXfyqeR9Y9wvGC4zw19CllAjAYziy4U1WlB5s1jVNQAK+8As8/j3Rw4KuDXzF3x1x6ePfgjTFv0NmjzjrghnLY+TmsnwvFmdB5BAx/EKIng82Ze7nCUM2fiTmsPpjBuiNZJOWUABDi5czQLj4M7+rDkC7ehHZyQaMVQ7uk3FDFwdQCdp3IY+fxU2xPyiWzUCkCXzcHhnbxYUSUL6O7+RFizhe8NA/2fg9//g9yE1QPYdj90P+mWuMIoJTOd4e+462db+Fq78rro19nSNAQKC2FadNgwgR48snmr7SmfbBgAVx3HaxZA6NGAbA+ZT1PbniSyupKnhz8JJdHXX52K7+iBHZ+BlveVz0Ivx4w+C7oMxMc3c86zYmcEtYdzWJLQjZbj+WSa5w4F+zpxMAIby7q3In+4V70CPTAwa7jDWJrxdDGqTBUE59ZxP7UfPal5LP3ZD5xqQVUVFUD6kYfFOnNoAhvBkd6E+3vZr7rLCUk/wm7voJ9P4OhFEIuUgohZjrYnj1NJb04nRe3vsj6lPWMDBnJiyNexNfZVyUaDHDHHUox3Hxzc14CTXvj+HFlVoLTjgrpxek8tfEptqdvZ1LnSTw15Kkz95opVZWwfwFsmQfpe8HBDXpfo3q5IReZdXqorpYczihke1Iu2xJz2Z6Ue7pH7WhnQ89gD/qEetErxJPeIZ508XOt3bNuh2jF0EaQUpJRUM7hjEIOpxdwOL2IuLQCjmYWUlmlrrubox09gz3oG+bFgHAv+oV1ItDTqaGDQtZhZavd+z3kHVczlntfAwNvh+B+ZotVVlfy9cGv+b89/0e1rOahix7i+h7XK4Vz/Lha6zcgQHsfaS6M9evhqafgp58gMJCq6io+O/AZ7+1+DydbJx7o/wAzu89U41h1kRJO7lTec/t/BkMZeHdVPYheV4Fv/QtCSSlJzS9j94k8/jpxin0p+exPzaekogoABzsbugW4ERPoQfdAd/UJcMfP3bHdjFdoxdDKKK2o4nhuMUnZxSRkFZOYXUx8ZhEJmUUUlhtO5/NzdyQmyIPYIA9igtzpFeJJpI8rNo255VVXQeouOLwUDi6GnKMgbJSHUZ+ZEHOZ2a43qAdmXco63tn5Dgn5CYwNHcvjgx8n1N0YBK+iQkXQjI2FJUua6pJoOipLlsDzz8OqVeDldXp3Un4SL//5MlvSthDjHcM/BvyDYcHD6n8pl+XDwV9g7w+QtEHt849VzhPdL4bAvrXGI8xRVS05llXEgdQC4tIKOJimvrOLzsRucneyI9rfjSh/NyJ93eji50qkryvh3i5tzhNKK4YWpqpakl5QxslTpaScKiE5t5TkUyWcyC3hRE4J6XXCDPu7OxJlvNmi/N3oFqBaJ51cHSw/af5J9UDEr4GENVCSA8IWIkaqhyNmGrgH1ltcSsmW1C3M2z2Pfdn7CHMP47FBjzE2bKzKUF195sFasgS6dlXuhxrNhVJzbxkMMH8+XH892NggpWTl8ZW8ueNN0orTGOA/gPv738+gwEENHy8/BeJ+g7hf4cRmkNXg6g9RE6HreIgc1eCzUJecItWLP5JeSHxWEfGZRcRnFpNdVH46jxAQ5OFEuI8LYZ1cCPd2IczbhdBOzoR0csbf3anVzbPQiqEJKTdUkVVYTkZBOZkFZaTll5Fh/E7LLyU1T20bqmtfpwAPR8I6udDZx5UIHxc6+7rSxdeVCF9X3BwtiU1ogpSQk6DGC5K3QtImNYAM4OKjHoDoyeohcPFuuD5V5Sw9tpRvD33LodxDBLkGMbvvbKZ1nYa9jdErKT0dLr9cDTDPqLvmkkbTRMyfD7NmwYoVam1wIxVVFSw4uoCP9n5EZmkmvX17c33M9UzpPAV720bCYxRlqYbS0ZWq0VSWp/b7dlPeTeFDIWwwdIo8Z5NoQVklSdmqx5+UXcLxnGKScopJPlVKVmF5rbz2toIADyeCPZ0J9nIi0NOZQA9HAj2dCPBQHz93xxYd19CKoQGklJRUVJFbXEFOcQW5xeVkF1WQU1RBTlE52UVqO7OwjKzCck6VnB0z3sHWhgBPR+Of7kyQpxOhnVwI6eSsWgxezuffzZRSjQuk74e03XDyL2UmKs1V6U6eED5MRTiNGAUBvRrtMkspOXzqML8m/Mpvx34jtyyXKK8oboy5kWldp6mwFjXnFkKZjy6+GO6/X01Q0miaAynh99+VMwPA5s3Quze4K7NnmaGMRfGL+CbuG5IKkvBz9mNa12lM6zKNqE71jyecproK0vaonnXiBtWwKi9QaS6+EDIAgvtDUD8I7AWeYec9flZWWUXKqRJSTpWe/qTll5KWV0ZqfikZBWWnxw1N8XZ1wN/dET93R3zdHPF1c8DHzREfVwd83RzxdnXA29UBHzcHnO1tL2i8QysGM0gpGfX6H2QWllNhqDabx9neFl939YfU/Fl+bk4Eejri7+6Ev4cjQZ7OdHKxv/ABqepq5YKXfRSyj0DWIcg8pGYf19y8whb8Y9TNG3KRau34dm9UEdTU98ipI/yR/Acrj6/k6Kmj2NnYMSZ0DLN6zGJw4ODadZg/Xy3TuHEjODjoQWZNy1JSAmFhqufw3Xe1kqplNZtTNzP/0Hw2ntxIlawixjuGyRGTGRc2ji6eXSx7HqurIDNO9bpP/qU+2YeV6QlUo8u/J/j3UK6xft3BJwrcgy165ho8dbUkt6SC9PwyMgvLyCgoJ6NANT6zCsvJLKxplJZTVmn+/eRoZ0OEjysrHjK7llmjaMVQD88vPoCjvQ3eLg50cjmjiX1cHfFxc8D1XE08DSGlGiDLT4H8ZMhLhlNJxk8i5B5TXhU1OHdSN2NAT9ULCOytBtMcLJ+ck1Oaw/aM7WxL28bm1M2cLDqJQNDXry+XdbmMKRFT8HLyOlMgKQm8vVXAsxUrlGL44gsItNweq9E0GX/+qe7FmBhlzpw3Dx58EPz9T2fJKc1hedJylhxbwr7sfQCEu4czPHg4g4MGMyhgUO17vDHKiyDjAGTsU730zIOqkVZmsj61vQt4d1Fzf2o+XuHgGap6GU4eTVF7QDXoiiuqyCkqJ6dYWTJyi5Xl4lRxBQh48uKY8zq2VgzNSXU1lJ6CkmwoylQzM4uyoDANijLUd0Gq+lQU1S5r72K8qTqDT1fwjVbudn49wNX3nFropYZSEvISOJhzkD1Ze9iXvY/EfLVymqu9K4MCBzEubByjQ0fX9g2v6QkkJ0NEBMydCw89dOHXRaNpSr79Vi3+c/CgWjv85ElwdlYNGSMZxRmsS1nH2uS17MjYQamhFIGgi2cX+vj1obdfb3r69KSrV1ccbR0tP7eU6tnOOqTG8rLj1XdNw85Q25kEB3fwDAH3IOMnUH1c/cDNXw2Eu/qCk9cF9zwuBK0YGqOqEsoL1Yu7rED9Li9QrYSyfDVLuCxPKYDSU1CSq2z8Nd/STFfPxl7dDG4B4BGsQk14BINXGHiGq29Xv3N6+VfLanJKczhZdJLjBcdJKkgiKT+J+Lx4ThSeoNooh7eTN318+9DXvy+DAwcT6xOLnY2x92PqXTRlCvTsqXoGAP/9rxpkDgs7++QajbXJzDzTW/jb39Tch6wsdT+npICPj1IWqHk4B7IP8Gfan+zJ2sPe7L3kl6tWv62wpbNHZ7p6dSXCI4JIz0jCPcIJcQvBx8nn3MzCUqoGYF4y5J9Q34VpUHBSNQYL01V6teHsssJWOYc4e5/5du4Ezl7q41Tz8VS9EEf3Mx8Hd7MTUs+FFlcMQoipwH9QK7h9LKV8tU66MKZfglrB7VYp5V+WlDXHeSuGN3uol3tVeeN57V2Nf1inMx8XH6X5XXzU4JWb/5kWgXMni23/pYZS8srzTn9yy3LJKc0hpyyHrJIsMkoyyCzJJK0ojYrqMz7VdsKOUPdQunh2obt3d7p16kYP7x6EuIWomzspSbWsRoxQBW64QXXJ16xR2489BsHBepU1Tdtj927Yu/fMjPtx46CsDLZsUds//qhWEBw5EjDGEitM5lDuIQ6fOsyR3CMkFiSSUphClaw6fVhHW0eCXIMIcAnA38UfPxc/fJx88HH2wdvJGy9HL7wcvfB09MTZztnCsYxq1YAsylRKojgLirOVS3lJtrGBeerMd1keVJY0flw7J2W6euD8GsUtqhiEELbAEWASkIJaA3qWlPKgSZ5LgAdQimEI8B8p5RBLyprjfBVDxfInqBI2VDu4UeXgQrWDq/HbhSoHVwwOblTZOWNwcMYgBAZpwFBtoLKqEoNU3xXVFae/y6vKqahS3+WGckqrSikzlFFqKD39Ka4sPv0prCiksKKw1o1pikuVLZ1lJxwDQ/B3DSC61JWueXY4jhpLuHs4oftOYPfXbmV3BWWDXbpUfQBuvVVNHDp5Um1/8IEKYPbYY+d8rTSaVs2yZWoexDTjqnCdO8Po0fDVV2p7yBCYOhVeeEFtv/IKDBxI5fixJBclU7R8MYnecMSrkrTiNAwnkkiyySdZ5mKoqkRIkHXmIdgJO9wd3HF3cMfV3vX0x9nO+fTHyc4JJ1snnOyccLB1wNHWEQdbBxxsHLC3tT/9bW9jj52NnfoIO+xkNXYVZdhWlmBXUYRtZQk25cXYVpRgU1GstiuKsLN1xH7i8+d1yZpSMVjSdxkMxEspjxlPPh+YAZi+3GcAX0qlZbYKIbyEEEFAhAVlm4ybd/3KS/MSmHNzMDt6uBKTVMorH6bw3G0h7Il2oU98Cf/+9CRP3RXKwUhnBhwu5rnPU3lsdiiHOzsz5GART3+Zyj8eCOdYiBMj9xby+Ddp3PdQZ04EOjJ5Vwn//PYkjz43gMJgH8ZvyeaWz/by1rxrqQzqwsiVR5k47y8W/jIHp+Bwen77O91e/IATCTvpFBSJ+1vvI558UnloODvDv/8Nzz0HlZUqounKT2HOHOVGamNz5lMzbvDII3DPPWcqPHt2c1xGjcb6XHxx7e1du1QPooYBAyAyUv2WEl56CR54APtJk+jiEQnXP0yfJ59U+6uq1PP1wgvIZ5+lIC8dT+9gUp55gMN3zqAo+yRTx81m0/2XsXl6HwyZ6fzjts/56Zb+rBwbhHPmKV59ciPvXRfGj4Pc8M0s5qM3knhzZiB/DPAgLKOc994+zuvXB7GxjzuRqWW8899kXr4piD9j3eiWXMbr/5fMc7cEs7O7K7FJpbz8YQrP3R7CnigX+saX8MKnJ3nq7lAyeoSytsUucv1YohhCgGST7RRUr6CxPCEWlgVACHE3cDdAeHi4BWKdzTV9b8a2549c2e8yxvXqQiffDOy3/sxNg6/iqpgoPP2Scf7rB+4ffhPl3bvi6Z+I+77veGbCPRi6RuIRfATvI1/z7qWPYRPZFdfwfbilfMpP176CQ+cu2EZthZwP+PaqN5Rnj+8GyPmclya+ruyhNhshP4Tr+90Gnp4wKRAqPOnsGwUOrjBpEri5nTFJXX89DB16Zlziscfg0UfPbN97r/rU0KvXeV0XjabN411nYuf//d+Z30JAYaFSAKAUxbp1yqxaw0cfwYABCCHwdPGG558ndMIEQjuPBN9iuG0n46dcyfihYyA/H64o585pN3Dn2LGQkwPrHuKlq+7gpTFjqEo9idz+EC9Nv43SoQMwnEjCY+uLPD7pBmZfFItITMJzy3+5b9S13NAnGodjx3HZ8im3D7uKK2IicPZPwmHrfG4YdAUXR4fg7p6ITa/FXNN/OuXRkc1+KS3BElPSNcAUKeWdxu2bgMFSygdM8iwBXpFSbjRurwEeA7o0VtYcrS0khkaj0bR2WtqUlAKYurWEAqkW5nGwoKxGo9FoWhGWON1uB6KFEJFCCAfgOmBxnTyLgZuFYiiQL6VMs7CsRqPRaFoRjfYYpJQGIcT9wAqUy+mnUsoDQojZxvQPgKUoj6R4lLvqbQ2VbZaaaDQajaZJaJ8T3DQajaaD0ZRjDO17rTuNRqPRnDNaMWg0Go2mFloxaDQajaYWWjFoNBqNphatcvBZCJEFHLe2HOeIL5BtbSFaGF3njoGuc9ugs5TSrykO1CoVQ1tECLGjqTwC2gq6zh0DXeeOhzYlaTQajaYWWjFoNBqNphZaMTQdH1pbACug69wx0HXuYOgxBo1Go9HUQvcYNBqNRlMLrRg0Go1GUwutGJoBIcQjQggphPC1tizNjRDiDSHEISHEXiHEQiGEl7Vlag6EEFOFEIeFEPFCiCesLU9zI4QIE0L8IYSIE0IcEEL83doytRRCCFshxC4hxG/WlsVaaMXQxAghwoBJwAlry9JCrAJ6SSn7AEeAJ60sT5MjhLAF3gMuBmKBWUKIWOtK1ewYgIellDHAUOC+DlDnGv4OxFlbCGuiFUPT8zZqWdMOMaovpVwppTQYN7eiVulrbwwG4qWUx6SUFcB8YIaVZWpWpJRpUsq/jL8LUS/KEOtK1fwIIUKBS4GPrS2LNdGKoQkRQkwHTkop91hbFitxO7DM2kI0AyFAssl2Ch3gJVmDECIC6A/8aWVRWoJ3UA27aivLYVUsWfNZY4IQYjUQaCbpaeApYHLLStT8NFRnKeUvxjxPo8wP37SkbC2EMLOvQ/QIhRBuwM/AP6SUBdaWpzkRQlwGZEopdwohxlpZHKuiFcM5IqWcaG6/EKI3EAnsEUKAMqn8JYQYLKVMb0ERm5z66lyDEOIW4DJggmyfE2NSgDCT7VAg1UqytBhCCHuUUvhGSrnA2vK0ACOA6UKISwAnwEMI8bWU8kYry9Xi6AluzYQQIgkYKKVsaxEazwkhxFTgLWCMlDLL2vI0B0IIO9TA+gTgJLAduL49r18uVOvmCyBXSvkPK4vT4hh7DI9IKS+zsihWQY8xaC6UeYA7sEoIsVsI8YG1BWpqjIPr9wMrUIOwP7RnpWBkBHATMN74v+42tqQ1HQDdY9BoNBpNLXSPQaPRaDS10IpBo9FoNLXQikGj0Wg0tdCKQaPRaDS10IpBo9FoNLXQikGj0Wg0tdCKQaPRaDS1+H8Ujt/4QgljJwAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"'''График снизу показывает, как меняется форма распределения при увеличение количества степеней свободы.\n",
"А также показывает приближение t-распредееления к нормальному по мере увеличения степеней свободы.'''\n",
"from scipy.stats import t, norm\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"\n",
"x = np.linspace(-5, 5, 100)\n",
"y1, y2, y3 = t.pdf(x, df=1), t.pdf(x, df=3), t.pdf(x, df=10)\n",
"y4 = norm.pdf(x)\n",
"\n",
"plt.title('графики t-распредления с разными степенями свободы')\n",
"plt.plot(x, y1)\n",
"plt.plot(x, y2)\n",
"plt.plot(x, y3)\n",
"plt.plot(x, y4, 'r:')\n",
"plt.legend(('df=1', 'df=3', 'df=10', 'norm'))\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"График плотности распределения Стьюдента, как и нормального распределения, является симметричным и имеет вид колокола, но с более «тяжёлыми» хвостами."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Подробно про нормальное и t-распредление\n",
"\n",
"В видео лекциях говорилось, что мы используем t-распределение в ситуации небольшого объема выборки. Необходимо более подробно пояснить, зачем это нужно.\n",
"\n",
"Вернемся к предельной центральной теореме, мы уже узнали, что если некий признак в генеральной совокупности распределен **нормально** со средним $\\mu$ и стандартным отклонением $\\sigma$, и мы будем многократно извлекать выборки одинакового размера n, и для каждой выборки рассчитывать, как далеко выборочное среднее $\\bar{X}$ ˉ\n",
" отклонилось от среднего в генеральной совокупности в единицах стандартной ошибки среднего:\n",
" \n",
"\n",
"$$\\large z = \\frac{\\bar{X} - \\mu}{\\frac{\\sigma}{\\sqrt{n}}}$$\n",
"\n",
"то эта величина z будет иметь стандартное нормальное распределение со средним равным нулю и стандартным отклонением равным единице.\n",
"\n",
"Обратите внимание, что для расчета стандартной ошибки мы используем именно стандартное отклонение в генеральной совокупности - $\\sigma$. Ранее мы уже обсуждали, что на практике $\\sigma$ нам практически никогда не известна, и для расчета стандартной ошибки мы используем выборочное стандартное отклонение.\n",
"\n",
"Так вот, строго говоря в таком случае распределение отклонения выборочного среднего и среднего в генеральной совокупности, деленного на стандартную ошибку, теперь будет описываться именно при помощи t - распределения.\n",
"\n",
"$$\\large t = \\frac{\\bar{X} - \\mu}{\\frac{sd}{\\sqrt{n}}}$$\n",
"\n",
"\n",
"таким образом, в случае неизвестной $\\sigma$ мы **всегда будем иметь дело с t-распределением**. На этом этапе вы должны с негодованием спросить меня, почему же мы применяли z-критерий в первом модуле курса, для проверки гипотез, используя выборочное стандартное отклонение?\n",
"\n",
"Мы уже знаем, что при довольно большом объеме выборки (обычно в учебниках приводится правило, n > 30) t-распределение совсем близко подбирается к нормальному распределению:\n",
"\n",
"Поэтому иногда, для простоты расчетов говорится, что если n > 30, то мы будем использовать свойства нормального распределения для наших целей. Строго говоря, это конечно неправильный подход, который часто критикуют. В до компьютерную эпоху этому было некоторое объяснение, чтобы не рассчитывать для каждого n больше 30 соответствующее критическое значение t - распределения, статистики как бы округляли результат и использовали нормальное распределение для этих целей. Сегодня, конечно, с этим больше никаких проблем нет, и все статистические программы, разумеется, без труда рассчитают все необходимые показатели для t - распределения с любым числом степеней свободы. Действительно при выборках очень большого объема t - распределение практически не будет отличаться от нормального, однако, хоть и очень малые но различия все равно будут.\n",
"\n",
"Поэтому, правильнее будет сказать, что мы используем t - распределение не потому что у нас маленькие выборки, а потому что мы не знаем стандартное отклонение в генеральной совокупности. Поэтому в дальнейшем мы всегда будем использовать t - распределение для проверки гипотез, если нам неизвестно стандартное отклонение в генеральной совокупности, необходимое для расчета стандартной ошибки, даже если объем выборки больше 30.\n",
"\n",
"### 5.Примеры"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"p = 0.065\n"
]
}
],
"source": [
"'''На выборке в 15 наблюдений при помощи одновыборочного t-теста\n",
"проверяется нулевая гипотеза: μ=10 \n",
"и рассчитанное t-значение равняется -2 (t = -2), то p-уровень значимости (двусторонний) равен:\n",
"'''\n",
"from scipy import stats\n",
"\n",
"t = -2\n",
"n = 15\n",
"df = n - 1\n",
"\n",
"p = 2 * stats.t.sf(abs(t), df)\n",
"print(f'p = {p:.3f}')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Сравнение двух средних. t-критерий Стьюдента\n",
"\n",
"t-критерий Стьюдента — общее название для статистических тестов, в которых статистика критерия имеет распределение Стьюдента. Наиболее часто t-критерии применяются для проверки равенства средних значений в двух выборках. Нулевая гипотеза предполагает, что средние равны (отрицание этого предположения называют гипотезой сдвига). Для применения данного критерия необходимо, чтобы исходные данные имели нормальное распределение. \n",
"\n",
"$$ t = \\frac{\\bar{X_1} - \\bar{X_2}}{se}$$\n",
"\n",
"$$ se = \\sqrt{\\frac{sd_1^2}{n_1} + \\frac{sd_2^2}{n_2}} $$\n",
"\n",
"Откуда берётся такая формула $se$?:\n",
"\n",
"$$ (se_1)^2 = (\\frac{sd_1}{\\sqrt{n_1}})^2 = \\frac{sd_1^2}{n_1} $$\n",
" \n",
"То есть:\n",
"\n",
"$$ se = \\sqrt{\\frac{sd_1^2}{n_1} + \\frac{sd_2^2}{n_2}} = \\sqrt{se_1^2 + se_2^2} $$\n",
"\n",
"причем ответ на вопрос, почему верно это равенство, кроется в свойстве дисперсии: дисперсия суммы независимых случайных величин равна сумме их дисперсий. а отклонение - это корень из дисперсии. отсюда ваша последняя формула"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Примеры применения t-критерий Стьюдента\n",
"**Пример 1.** Первая выборка — это пациенты, которых лечили препаратом А. Вторая выборка — пациенты, которых лечили препаратом Б. Значения в выборках — это некоторая характеристика эффективности лечения (уровень метаболита в крови, температура через три дня после начала лечения, срок выздоровления, число койко-дней, и т.д.) Требуется выяснить, имеется ли значимое различие эффективности препаратов А и Б, или различия являются чисто случайными и объясняются «естественной» дисперсией выбранной характеристики.\n",
"\n",
"**Пример 2.** Первая выборка — это значения некоторой характеристики состояния пациентов, записанные до лечения. Вторая выборка — это значения той же характеристики состояния тех же пациентов, записанные после лечения. Объёмы обеих выборок обязаны совпадать; более того, порядок элементов (в данном случае пациентов) в выборках также обязан совпадать. Такие выборки называются связными. Требуется выяснить, имеется ли значимое отличие в состоянии пациентов до и после лечения, или различия чисто случайны.\n",
"\n",
"**Пример 3.** Первая выборка — это поля, обработанные агротехническим методом А. Вторая выборка — поля, обработанные агротехническим методом Б. Значения в выборках — это урожайность. Требуется выяснить, является ли один из методов эффективнее другого, или различия урожайности обусловлены случайными факторами.\n",
"\n",
"**Пример 4.** Первая выборка — это дни, когда в супермаркете проходила промо-акция типа А (красные ценники со скидкой). Вторая выборка — дни промо-акции типа Б (каждая пятая пачка бесплатно). Значения в выборках — это показатель эффективности промо-акции (объём продаж, либо выручка в рублях). Требуется выяснить, какой из типов промо-акции более эффективен.\n",
"\n",
"### 6. Примеры"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"\n",
"\n",
"#строим графики, boxplot из изначальных данных array1, array2, доверительные интервалы из датафрейма df\n",
"fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(14, 9))\n",
"\n",
"# график boxplot\n",
"bplot1 = ax1.boxplot([array1, array2],\n",
" vert=True, # создаем вертикальные боксы\n",
" patch_artist=True, # для красоты заполним цветом боксы квантилей\n",
" labels=['Выборка1', 'Выборка2']) # используется для задания значений выборок в случае с boxplot\n",
"\n",
"# график доверительных интервалов\n",
"bplot2 = ax2.errorbar(x=df.index, y=df['Mx'], yerr=df['interval'],\\\n",
" color=\"black\", capsize=3, marker=\"s\", markersize=4, mfc=\"red\", mec=\"black\", fmt ='o')\n",
"\n",
"# раскрасим boxplot \n",
"colors = ['pink', 'lightgreen']\n",
"for patch, color in zip(bplot1['boxes'], colors):\n",
" patch.set_facecolor(color)\n",
" \n",
"# добавим общие для каждого из графиков данные\n",
"for ax in [ax1, ax2]:\n",
" ax.yaxis.grid(True)\n",
" ax.set_title('Температура плавления ДНК двух типов')\n",
" ax.set_xlabel('Сравнение двух выборок')\n",
" ax.set_ylabel('Температура F')\n",
" \n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Задача \n",
"\n",
"Рассчитайте доверительный интервал основываясь на знании t - распределения для среднего значения температуры плавления ДНК у первого вида:\n",
"\n",
"$$ \\bar{X}=89,9\\quad sd=11,3\\quad n=20 $$"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[84.61; 95.19]\n"
]
}
],
"source": [
"from scipy import stats\n",
"from math import sqrt\n",
"\n",
"mean = 89.9\n",
"sd = 11.3\n",
"n = 20\n",
"# степень свободы\n",
"df = n - 1\n",
"# 95% доверительный интервал\n",
"p = 0.95\n",
"alpha = 1-p\n",
"# стандартная ошибка\n",
"se = sd/sqrt(n)\n",
"\n",
"# ppf - Percent point function\n",
"# делим на два, так как по умолчанию функция считает для одного конца, а нам надо для двух\n",
"t_value = stats.t(df).ppf(1-(alpha/2))\n",
"\n",
"# доверительный интервал \n",
"сonfidence_interval = (mean-t_value*se, mean+t_value*se)\n",
"print('[%.2f; %.2f]' % сonfidence_interval)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Первые премии Оскар за лучшую мужскую и женскую роль были вручены в 1929. Данные гистограммы демонстрируют распределение возраста победителей с 1929 по 2014 год (100 мужчин, 100 женщин). Используя t - критерий проверьте, можно ли считать наблюдаемые различия в возрасте между лучшими актрисами и актерами статистически достоверными.\n",
"\n",
"Средний возраст мужчин равен 45, sd = 9.\n",
"\n",
"Средний возраст женщин равен 34, sd = 10.\n",
"\n",
""
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"p=5.328933875539173e-13\n",
"Мы можем отклонить нулевую гипотезу\n"
]
}
],
"source": [
"from scipy.stats import t\n",
"from numpy import sqrt\n",
"\n",
"mean_m, mean_f = 45, 34\n",
"sd_m, sd_f = 9, 10\n",
"N = 100\n",
"\n",
"se = sqrt((sd_m ** 2)/N + (sd_f ** 2)/N)\n",
"t_value = (mean_m - mean_f)/se\n",
"\n",
"p = t.sf(t_value, N-2)\n",
"print(f'p={p}')\n",
"if p >= 0.05:\n",
" print('Мы НЕ можем отклонить нулевую гипотезу')\n",
"else:\n",
" print('Мы можем отклонить нулевую гипотезу')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Проверка распределения на нормальность\n",
"\n",
"### QQ-plot\n",
"\n",
"Эту тему пока сам не понял, так что инфы мало((\n",
"\n",
"### 7.Примеры\n"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtMAAAGeCAYAAABW2o0eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABrR0lEQVR4nO3dd3xUVfrH8c+T0HtHOohYQEAUEEUsJKgoiroWFOwuCvZ1XQu/VXctq7vu2kWxK7GgWGhSEqRLVZAmCkhHqvQSSM7vjzshE1JIQmbulO/79cprZu6cO/MNgfDk5LnnmHMOEREREREpugS/A4iIiIiIRCsV0yIiIiIixaRiWkRERESkmFRMi4iIiIgUk4ppEREREZFiUjEtIiIiIlJMKqZFRGKYmd1kZs7MzvU7i4hILFIxLSJSRGZWxcz+bmY/mNlOM9tjZovM7N9mVqeA88qa2T1mNs3MtpnZPjNbamYDzaxZEd7/3ECBHPyxy8zmmNm9ZpZYMp8pmNkpZvaEmTUtqdcUEYklpfwOICISTczseGAM0AT4EngHOAB0Au4DbjazHs65GYedVxf4FmgHjAOeAHYBbYGbgBvMrJdzbngR4nwCjAIMqB94nReBVkDfYnx6eTkFeByYAKwoodcUEYkZKqZFRArJzCoAw4EGwCXOuZFBTw8ys9eBVGCYmbV2zm0MnGfA53iF9O3OuUGHve4LwETgUzNr75xbXMhIPzjnBge9zkBgMXCbmf3dObeheJ+piIgUlto8REQK71bgeOCFwwppAJxzs4FHgTrAg0FP9QC6AEMOL6QD5y0HbgcqAP8sbjjn3A7ge7yZ6mMLGmtmtczsNTNbbWbpgdvXzKxm0JgngPcCD78Lail5v7gZRURijWamRUQK78rA7VsFjHkfr9XiT2QX1IU571tgDdDDzMo65/YXNVxgBvy4wMPNBYyrCkwLjH0X+AFv1rwf0NXMOjrnduK1sdTDaxl5Bm/WG2BZUbOJiMQqFdMiIoV3MrDTObc0vwHOuT1mtgQ42cwqOed2Bc4Dr2jN7zxnZnPxZrFbAAsKkaeCmdXCm4muB9yN14M93Tn3awHn/S3wHnc6517POhh4/1cDz//dOfeTmX2PV0yPc85NKEQmEZG4ojYPEZHCqwJsL8S4rDGVg84LPl7Y847kH8AmYCMwD7gFGAZcdoTzLg+cd3jLyZt4M9qXF/L9RUTinmamRUQKbwfZhXFBqgCZZLda7AjcVgW2HuE8gMJeODgI78JGB+wGfnHOFfT6WZoBs51zB4MPOucOBmbVTy3k+4uIxD3NTIuIFN4CoIqZHZffgMCKHycAK51zB4LOgyMXqe2AfXi904Xxq3Mu1TmX5pybXshCWkRESpCKaRGRwhsauL2tgDE3AGWAwUHHjniemV0INAQ+d86lH03IQlgOnGBmOX47GXh8fOD5LC7EWUREopqKaRGRwnsb+AW4P1D85mBmpwL/AtYDrwU9NRyYDFxjZrfkcV5TvH7lXcCzJR87l6+B2uQu7v8cOP5V0LFdgdsaoY8lIhJ91DMtIlJIgZU6LgVGAyPNbCjezoAHgY7A9cAfwKXBG6YEVuq4KnDeO2Z2Nd7OhbuBNsDNgaG9nHOLwvCp/Bu4Cngt8APAj3gtJrcCSwLPZ5mF1/89wMyqBzL/dvgOjyIi8UrFtIhIETjnlphZW+Be4ArgIqBi4OmFwFnOuW15nLfBzDoBdwC9gCfJvuBwI3Cqc25tiONnZdluZp3xVgO5FK+Y3wC8ATweWGM6a+yqwGz6Q8BAoDTwAaBiWkQEMOfUDicicjQCvcaf4y1J94Bz7n9FOPdV4E7gZefcvaFJKCIioaKZaRGRoxRYUu4avF7j/5rZXufcwEKefjfeBYv3BM57OGRBRUSkxGlmWkRERESkmLSah4iIiIhIMamYFhEREREpJhXTIiIiIiLFpGJaRERERKSYVEyLiIiIiBSTimkRERERkWJSMS0iIiIiUkwqpkVEREREiknFtIiIiIhIMamYFhEREREpJhXTIiIiIiLFpGJaYp6ZTTCz2/zOcSRm9oSZDfY7h4iIiBSeimk5ama2wsw2mFnFoGO3mdkEH2MVmpm1NLNhZrbdzHaa2Xgz61TIc28ys/lmtsfMfjez182sagHj3zezdDPbZWZbzWycmZ1YjMwrzCy5qOeJiIhIyVIxLSWlFHDv0b6IecL299LMmgNTgflAM6A+8DUwzsw6HuHcB4DngAeBqkAnoCkw1sxKF3Dqv51zlYCGwEbg/aP6JERERMQ3KqalpPwH+KuZVcvrSTM708xmBWZ/Z5nZmUHPTTCzp81sKrAHONbMnJn1N7NfA7PFT5pZczP73sx2mNkQMysTOL+6mY0ws01m9kfgfsNC5n4C+N45N8A5t9U5t9M59zIwGK9QzpOZVQH+AdztnBvtnDvgnFsBXI1XlF93pDd2zu0BPgZOzuc9LjWzhWa2LfBndFLg+EdAY2B4YIb7b4X8XEVERKSEqZiWkjIbmAD89fAnzKwGMBJ4GagJ/A8YaWY1g4ZdD/QFKgMrA8cuBE7Dm/H9GzAI6A00witArw2MSwDeA5rgFZl7gVcLmbsb8Hkex4cAXcysXD7nnQmUA74MPuic2wV8C5x/pDc2s0p4n8+PeTx3PPAJcB9QGxiFVzyXcc5dD6wCLnHOVXLO/ftI7yUiIiKhoWJaStJjwN1mVvuw4xcDvzrnPnLOHXTOfQL8DFwSNOZ959zCwPMHAseec87tcM4tBBYAY51zy51z2/EK1nYAzrktzrmhzrk9zrmdwNPAOYXMXAtYn8fx9UAiUKOA8zY75w7mc+7hfwbB/mpm24ClQCXgpjzGXAOMdM6NC/x5PA+UxyviRUREJEKomJYS45xbAIwAHj7sqfpkzzZnWQk0CHq8Oo+X3BB0f28ejysBmFkFM3vTzFaa2Q5gElDNzBILEXszUC+P4/UAB2w2sy6BdopdZrYw6LxaZlYqn3M3FfCezzvnqjnnjnHOXeqcW5bHmBx/Zs65TLw/owZ5jBURERGfqJiWkvY48GdyFn3r8FowgjUG1gY9dkfxng8AJwCnO+eqAGcHjlshzk0Frsrj+NXAdOdcunNucqCdopJzrlXg+e+B/cAVwScFVjTpDkwsxucRLMefmZkZXntL1p/Z0fx5iYiISAlRMS0lyjm3FPgMuCfo8CjgeDO7zsxKmdk1QEu8WeySUBlvpnpboD/78SKc+w/gzMAFkDXMrLKZ3Q3cXNDrBFpN/gG8YmYXmllpM2uK13+9GUgp5ueSZQhwsZklBVYGeQCveJ8WeH4DcOxRvoeIiIgcJRXTEgr/BA6tOe2c2wL0wCsIt+BdTNjDObe5hN7vRbx+4s3AdGB0YU90zv0KnAW0BVYA24Angcudc+OOcO6/gUfx+pl3Ar8BFYBk59zuIn4Oh7/2EqAP8Are53UJ3gWH6YEh/wL+L7DSR66LPkVERCQ8zDn9tlgkS2BJvenA4865d4p47i14s9WdnXOrQpFPREREIkteF0+JxC3n3Boz6w70NLNKgaXuCnvuu2Z2AG/FDRXTIiIicUAz0yIiIiIixRSynmkza2Rm35nZ4sAubvcGjj9hZmvNbG7g46JQZRARERERCaWQzUybWT2gnnPuBzOrDMwBLsNbcmyXc+75kLyxiIiIiEiYhKxn2jm3nsDOcs65nWa2mGJuOFGrVi3XtGnTEkwnIhIec+bM2eycK2hHzJij79kiEs2K+n07LBcgBtbfbQfMADoDd5nZDcBs4AHn3B95nNMX6AvQuHFjZs+eHY6oIiIlyswO3/0z5jVt2lTfs0UkahX1+3bI15k2s0rAUOA+59wOYCDQHDgFb+b6v3md55wb5Jxr75xrX7t2XE3qiIiIiEiUCGkxHdi5bSiQ4pz7EsA5t8E5l+GcywTeAjqGMoOIiIiISKiEcjUPA94BFjvn/hd0vF7QsMuBBaHKICIiIiISSqHsme4MXA/MN7O5gWOPAtea2SmAw9u++fYQZhARERERCZlQruYxBbA8nhoVqvcUEREREQmnkF+AKCIiIiISq1RMi4iIiIgUk4ppEREREZFiUjEtIiIiIlJMKqZFRAqQkgJNm0JCgnebkuJ3IhERiSRh2U5cRCQapaRA376wZ4/3eOVK7zFA797+5RIRkcihmWkRkXwMGJBdSGfZs8c7LiIiAiqmRUTytWpV0Y6LiEj8UZuHiEg+Gjf2WjvyOi4ixdP04ZGFHrvi2YtDmESkZGhmWkQkH08/DRUq5DxWoYJ3XEREBFRMi4jkq3dvGDQImjQBM+920CBdfCgiItnU5iEiUoDevVU8i4hI/jQzLSIiIiJSTCqmRUSOJD0dXngBDh70O4mIiEQYFdMiIgU5eBCuuw7+8hdIS/M7jYiIRBgV0yIi+cnMhFtugaFD4X//gwsu8DuRiIhEGBXTIiJ5cQ7694ePPoInn4T77/c7kYiIRCAV0yIih3MO/vpXePNNeOihqN8/3MwuNLMlZrbUzB7O4/kTzex7M9tvZn8tyrkiIvFOxbSIyOEef9xr67jrLvjXv7xFpqOUmSUCrwHdgZbAtWbW8rBhW4F7gOeLca6ISFxTMS0iEuy557y2jptvhpdeiupCOqAjsNQ5t9w5lw58CvQMHuCc2+icmwUcKOq5IiLxTpu2iEjcSUnxOjdWrYLGjb3twXv3Bl59FR5+GHr1grfegoSYmG9oAKwOerwGOL2kzzWzvkBfgMaNGxc9pUScpg+PLPTYFc9eHMIkIpFNxbSIxJWUFOjbF/bs8R6vXOk9Pnbie5zx1t1w6aXw4YeQmOhv0JKT19S6K+lznXODgEEA7du3L+zri+SSmJnBWSvmcuGSqXCWgx49/I4kUiAV0yISVwYMyC6ks/TY8xkd37oNunWDzz6D0qX9CRcaa4BGQY8bAuvCcK5I4TnHqet+5tJFE+nx82Rq7dnuHb/ue5g3D5o18zefSAFUTItIXFm1KufjSxjGYPowlc6c/fXXUK6cL7lCaBbQwsyaAWuBXsB1YThX5IhabFpJz8UT6bloIo22b2BfqTKkHnc637Q8h19rNmLCkL9Bnz4wcSKUUskikUl/M0UkrjRu7LV2ACQzjs+5ih9pR/9GI1hQoYK/4ULAOXfQzO4CxgCJwLvOuYVmdkfg+TfM7BhgNlAFyDSz+4CWzrkdeZ3ryyciMaP+jo1cumgSPRdN4KRNKzhoCUxtegovnHUdY1ucwa6yQf8OBw70diB95hl47DH/QosUQMW0iMSsvC40fPppr0f61D2T+Yae/MyJXFF+NM/9q4rfcUPGOTcKGHXYsTeC7v+O18JRqHNFiiUjA666imlffQXAD/VP4LHk2xl14llsrlg973OuvRZGjoR//hPOPx86dQpjYJHCUTEtIjEpvwsNBw2CLx6axVlPXMwq15hbG47luWdreKt5iEjofPEFfPUVb7fvyQenXcLqascU7rzXXoMpU7x2jx9/hMqVQ5tTpIhUTItITMrrQsM9e+CjB39i9L4LoGktTpyUyuyGdf0JKBJPMjPhqaegZUue7norzoqw7GTVqjB4MJxzDtx7L7z7buhyihRDTCyiKiJyuMMvNAQ4niV8sL4bVKgAaWnQMM/OBhEpaV9/DQsWwIABRSuks5x1FjzyCLz3njfDLRJBVEyLSEw6fN+QpvxGGkkkJjhITdVSWyLh4pw3K92iBVxzTfFf5/HHoUMHr19rzZqSyydylFRMi0hMevppbwIaoAFrSCOJCuxhxlOpcOKJ/oYTiScjR3q9zo8+enSbIZUu7V0MkZ4ON93ktY6IRAAV0yISk3r39i42PLXhRlJJprZtZsY/xnDxI238jiYSP5yDJ5+Epk0pkat8W7SAF1/02rReeOHoX0+kBKiYFpGY1bv7VubU6MaJ5VdReeJIuj/Wwe9IIvFl3DiYOdPrdy6pnUVvvRUuv9x7zblzS+Y1RY6CimkRiU07dkD37vDzz97FT126+J1IJL5kzUo3bAg33lhyr2sGb70FtWp5G7ocvmyPSJipmBaR2LNnD/ToAXPmwJAh3mYPIhJeEyd660M/9BCULVuyr12zJnzwASxeDH/7W8m+tkgRqZgWkdiyf7/3K+ApU7y1aXv29DuRSHx68kk45hivLSMUunWD++/3NnUZpU06xT8qpkUkdhw44C29NXYsvP029OrldyKR+DRtGowfDw8+COXLh+59nnkGWreGm2+GjRtD9z4iBVAxLSIx4eOPMhhW7Qb45hseq/4KKWVv8TuSSPx68kmvp/n220P7PuXKwccfw/bt8PDDoX0vkXyomBaRqJfyUSYHbu7LpXs+5SGe5ck/7qJvX29JWhEJs1mzYPRoeOABqFgx9O938snQpw98/jns3Rv69xM5jIppEYlaKSnQtIljyw33cWPGuzzJ//FvHgK8axAHDPA5oEg8euopqF4d7rwzfO957bWwa5d6p8UXKqZFJCqlpEDfPztuX/Uo9/AK/+N+HuOfOcasWuVTOJF4NW8eDBsG990HlSuH733PPRfq1oVPPw3fe4oEqJgWkag0YADct/cZHuFZ3uB2HuC/gOUY07ixP9lE4tZTT0GVKnDPPeF938REuOoqGDECdu4M73tL3FMxLSJR6fKVL/I0/8dH9KE/r3N4IV2hAjz9tD/ZROLSokUwdCjcfTdUqxb+9+/VC/bt82bGRcJIxbSIRJWUFHik5iBe4H6GcgU38x7usG9lTZrAoEHQu7dPIUXi0dNPez/F3nefP+9/xhnQqBF88ok/7y9xS8W0iES8lBRo2tTbRXh0n8E8vfUORtGda/mEDEodGlehgrdPy4oVKqRFwuqXX7x+5f79vSXx/JCQ4M1OjxkDW7f6k0HikoppEYk4wcVzQoK36tXKlXA5X/IeNzGRc/gTQzlAmUPnaDZaxEfPPONtGf7AA/7m6NULDh6EL7/0N4fElVJHHlI8ZtYI+BA4BsgEBjnnXjKzGsBnQFNgBXC1c+6PUOUQkeiSkgJ9+3pL2wE4591eyLd8Si9m0YFLGcY+sndVM/Nmo0Uk/Bpt+937ldDdd3sravik6cMjwTnGV6/Puqdepc/SevmOXfHsxWFMJrEulDPTB4EHnHMnAZ2AO82sJfAwkOacawGkBR6LSJxLSfF+O9ynT3YhneUcJvAlV7CAk+nOt+wi55JbWrVDxD/9pn8OpUp5W4f7zYzhJ53NGavmU3uX5ukkPEJWTDvn1jvnfgjc3wksBhoAPYEPAsM+AC4LVQYRiXzBRfSWLbmf78T3jKAHyzmW8xnLdqrleF6rdoj4p+renVw5Pw1uuQXq1/c7DgDDTzqbRJdJ9yVT/I4icSIsPdNm1hRoB8wA6jrn1oNXcAN1wpFBRCJLSgpUqpR/EQ1wCj/yLd35nWNIJpUteBc2WWAVPPVJi/jrnN/mUCbzINx0k99RDllaqzGLazfl0sWT/I4icSLkxbSZVQKGAvc553YU4by+ZjbbzGZv2rQpdAFFJOxSUuDmm2H37vzHnMQixnI+O6hCEmn8jtf/WLMmfPSR10utVTtE/JW8dCabKlSD9u39jpLD8JPOpv3axTTYvtHvKBIHQlpMm1lpvEI6xTmXdWntBjOrF3i+HpDn33Tn3CDnXHvnXPvatWuHMqaIhNmAAXDgQP7PN2cpqSRzkFIkkcYqmtCkiXeN0+bNKqBFIkGpjIOcs3wO3zVv7y27E0GGn3Q2ABf/PNnnJBIPQva338wMeAdY7Jz7X9BTw4AbA/dvBL4JVQYRiTwpKd4yd/lpxCrSSKIM6XQvlcoTg1toFlokAp22djFV9+8m7biOfkfJZXW1Y5hb73guUauHhEEof5TsDFwPdDWzuYGPi4BngW5m9ivQLfBYROJA1rJ3+TmG9aSRRDW2cXXVsTz4fisV0CIRKmnpTPYnlmJKk1P8jpKn4SedTesNy2i2da3fUSTGhXI1jynOOXPOtXHOnRL4GOWc2+KcS3LOtQjcapsikTgxYEDuZe+y1GQz4+hGo1LrqTr1W8ZvO1WFtEgES1o2ixmNWrO7bAW/o+RpxIlnkYnRQ7PTEmKR1eQkIjFt1aq8j1dhO2mJF3BS6aWUGzMMzjwzvMFEpEiabl1L861rIrLFI8uGyrWY1aiVt6pH1u5PIiGgYlpEwiIlJXtJu2AV2UVa2YtomzCfxK+GQteu4Q8nIkWStGwWAGnNO/icpGDDTjqbFltWc+KmFX5HkRimYlpEQi5rKbzMzJzHy7GX4daTU9Onw8cfw8Xa4lckGnRdNpMltRqzptoxfkcp0LcndOagJehCRAkpFdMiEnL33pt7KbzSpPM5V3GeG0/CB+/DlVf6kk1Eiqby/t10XL2Q8c0jt8Ujy9YKVZna9BSvmFarh4SIimkRCan+/XPvcJjIQVLoTQ9G0o+BcP31/oQTkSLr8tuPlM7MIDWC+6WDDT/pbBpv30Db9b/4HUVilIppEQmJrO3CBw7MedzI5B1u5Sq+4C/8l2+b3OFPQBEplqSlM/ijXGV+rH+C31EKZWyLTuxPLKVWDwkZFdMiUuL694c+ffLaLtzxGndyIx/yGP/gtTJ/4emn/UgoIsWRkJnBeYFdDzMTEv2OUyg7ylViwrHt6fHzZBIyM/yOIzFIxbSIlKiUlNyz0R7Hf3iQfrzBc/yNp+3vvPuudjUUiSanrPuFGnt3kBYF/dLBhp90Nsfs2kqHNYv8jiIxSMW0iJSoe+/N+/jj/IO/8l9e5U4e4Vk+/MhUSItEmeRlMziQkMjkZu38jlIkac07sqd0WbV6SEiomBaREpPXxYYAf+U/PME/eI+buIeXuaOfCmmRaNR16SxmNWzFjnKV/I5SJHvLlCP1uNPpvmQqpTIO+h1HYoyKaREpEcnJebd39ON1/sPf+JRruI23uaNfAq+/Hv58InJ0Gm7fwImbV0b8Ri35GX7S2dTcu4MzV87zO4rEGBXTInLU+veHtLTcx2/kfV7nToZxCdfzEbf3S1QhLRKlui6dCRDRW4gXZGKz09hRtiKXLJ7sdxSJMaX8DiAi0S2/Cw6vYgjvcCtj6UYvG8L7H5VWa4dIFEtaNotlNRqwokYDv6MUS3qp0ow+/gwuXDIN9u2DcuX8jiQxQjPTIlIsWetI9+mT+7keDCeF3kzjTK7gK976qJwKaZEoViF9L51W/cT4KG3xyDL8pLOpkr4HRo/2O4rEEM1Mi0iRJSfn3dYBkEQqX3AlczmFixnJDf0qqpAWiXJdVvxI2YyDYW/xaPrwyBJ9vWlN2rKlfBVqfvYZXHZZib62xC/NTItIkeTXHw3QmSl8Q0+WcAIXMIaOSVXUIy0SA7ouncWOshWZ3aCl31GOSkZCIhOat4fUVMjM9DuOxAgV0yJSJG++mffx05jNKC5iDQ3pxjjSK9YgNTW82USk5JnLpOvyWUxsdioHE6P/F9pTm7SFzZthwQK/o0iMUDEtIoXWv3/ekzknM58xXMAWapJEGhupm2/RLSLRpc36X6m9e1vUruJxuO8bt/HujB/vbxCJGSqmRaRQ8lu1owW/MI5u7KMcSaSxlob066dtwkViRddls8iwBCYce5rfUUrE+iq1oUWL/PvVRIpIxbSIFModd+Q+1oQVpJFEApkkkcamSscyeDDqkxaJIUnLZjGnwYlsK1/F7yglp2tXmDgRDmo3RDl6KqZF5Ij694ddu3Ieq89a0kiiErvoxjj+PvhEdu7UjLRILDlmx2ZO3rCM8c1jo8XjkK5dYedOmDPH7yQSA1RMi0iB+vfP3d5Rm42kkkwdNnIho1lbs62KaJEY1HX5LABSY6Rf+pDzzvNu1TctJUDFtIjkK68+6Wr8wVjOpwkruZiRzOR0XnrJn3xSOGZ2oZktMbOlZvZwHs+bmb0ceP4nMzs16Ln7zWyhmS0ws0/MTNvGxZGuS2eyqmpdltZs5HeUklW7NrRpo2JaSoSKaRHJ17335nxciZ18S3dOYjGX8xWTOVsXG0Y4M0sEXgO6Ay2Ba83s8MWCuwMtAh99gYGBcxsA9wDtnXMnA4lArzBFF5+VO7CPs1bO81bxMPM7Tsnr2hWmTPG2Fhc5CiqmRSRP/fvDli3Zj8uzhxH0oD2zuZohjOUCKlbUxYZRoCOw1Dm33DmXDnwK9DxsTE/gQ+eZDlQzs3qB50oB5c2sFFABWBeu4OKvM1f+RLmD6aTFWr90lq5dvUJ6+nS/k0iUi/7V10WkxB3e3lGG/XzJFXRhMr1JYVigFtNa0lGhAbA66PEa4PRCjGngnJttZs8Dq4C9wFjn3Ni83sTM+uLNatO4ceMSii5+Slo2k11lyjOz0clHHFvS236HWtOHR1J5/17mWgKvDniTF7rsznfsimcvDmMyiUaamRaRXILbO0pxgE/pxYWM4c+8xadcC6D2juiR1+/nXWHGmFl1vFnrZkB9oKKZ9cnrTZxzg5xz7Z1z7WvXrn1UgSUCOEfXpbOY3LQd6aVK+50mJHaWrcj8Y47jzJU/+R1FopyKaRE5JDnZa43Mau9IIIP3uYnL+Zp7eIl3uRWAmjXV3hFF1gDBV481JHerRn5jkoHfnHObnHMHgC+BM0OYVSLF3LnU27WF8c07+J0kpKY2acsp65dQIX2v31EkiqmYFhEAWrU6fEMwxxvcQW8+5hGe4RXuOfSMVu+IKrOAFmbWzMzK4F1AOOywMcOAGwKrenQCtjvn1uO1d3QyswpmZkASsDic4cUnI0aQifFd8/Z+JwmpaU3aUjozg46rF/odRaKYimkRISUFFi0KPuJ4kfv4M2/zFAN4lkcOPaP2jujinDsI3AWMwSuEhzjnFprZHWaWta/lKGA5sBR4C+gfOHcG8AXwAzAf7/+MQeH9DMQXI0Ywr97xbK5Y3e8kITWnwYnsTyzFGavU6iHFpwsQRSTXEnhP8X/cy8u8wH38nScPHVd7R3Ryzo3CK5iDj70RdN8Bd+Zz7uPA4yENKJFl40aYOZO0Lnm2x8eUfaXL8WP9Ezlz5Ty/o0gU08y0iORYAu8RnmEAzzCIP/MX/kfwtWlq7xCJAxMnAjClaTufg4THtCZtabVhOVX37vQ7ikQpFdMica5Bg+z79/ASzzCAwfSmHwMJLqSTktTeIRIXJk6EihVZULe530nCYlqTNiTg6LR6vt9RJEqpmBaJYw0awLrAug638jYvcR9fcjk38T6ZJALe6h79+kFqqo9BRSR8Jk6EM8/kYGJ8dILOq3c8u0uX4wwtkSfFFB//UkQkl+Tk7EL6Wj5mEH35lgu5lk/ICHxrqFkTNm/2MaSIhNfmzbBgAfTqBXHS9XAgsTSzGrais/qmpZg0My0Sh1JSspfBu4yv+JAbmMg5XMGXpFP20Dj1SIvEmSlTvNtzzvE3R5hNa9KGFltWU3vXVr+jSBRSMS0Sh2680bu9gNF8xjXMogOXMox9lD80Rj3SInFo4kQoVw46xPZmLYeb1qQtgJbIk2JRMS0SR1JSvB7ojAw4m4l8xeUspBUXMYpdVD40rn599UiLxKWJE6FTJyhb9shjY8iiOs3YXraithaXYlExLRInkpOhT2DZ2NOZzgh68BvNOJ+xbCN7YwYzWLvWp5Ai4p9t22Du3Lhr8QDITEhkeuPWWm9aikXFtEgcqF49u0e6LXP5lu5spA7JpLKZ2jnGfvSRDwFFxH9TpoBzcVlMA0xt0pbG2zfQcNvvfkeRKKNiWiSG9e/vzTRv2+Y9PpHFjKMbO6lMEmmsp36O8eqTFoljkyZBmTJem0ccyuqbVquHFJWKaZEYVb06DByY/fhYlpFGEhkkkkwqK2maY7yZ+qRF4trEidCxI5Qvf+SxMWhpzUZsqliNM1ep1UOKRsW0SIzJusgwazYaoCGrSSOJsuwnmVR+5fhc56m9QySO7dwJc+bA2Wf7ncQ/Zkxr3NabmXbO7zQSRVRMi8SQlJTsiwyz1OV30kiiOn9wPmNZyMk5nk9MhMGD1d4hEtemTfOW+YnTfuks05q0oc7uP2i+ZY3fUSSKaAdEkRhy0005H9dgC+PoRgPWcj5j+YHTcjzfsiUsXBi+fCISoSZO9H6yPvNMv5P4amqgb7rzyrksq9XI5zQSLTQzLRIjUlLg4MHsx1XYzhguoAW/cinDmEbnHOP79VMhLSIBkyZB+/ZQqZLfSXy1ptoxrK5alzO1eYsUgWamRWJE8Kx0BXYzkotpyzwu42vGk3Toufr1tY60iATZswdmzoT77/c7SUSY1rgNF/z6PQmZGWQmJPodR6JAyGamzexdM9toZguCjj1hZmvNbG7g46JQvb9IPKlePXtWuiz7+JrLOIPvuY6PGcXFh8b166dCWkQOM306HDgQ9/3SWaY1aUO1fbs4aeNvfkeRKBHKmen3gVeBDw87/oJz7vkQvq9IXKlePXvljtKk8zlX0Y1UbuR9vuCqQ+N0cbqI5GniREhIgM6djzw2DnzfuA3grTe98JjjfE4j0SBkM9POuUnA1lC9voh4W4RnFdIJZDCYPlzCCPrxOh9y46Fxgwf7k09EosCkSXDKKVC1qt9JIsLGyjVZWqOh1puWQvPjAsS7zOynQBtI9fwGmVlfM5ttZrM3bdoUznwiUaFVq+wtwo1M3uFWruZz/sp/eIN+h8aVKaNl70QkH/v3e20eavHIYWrTtnRcvZDSGQf8jiJRINzF9ECgOXAKsB74b34DnXODnHPtnXPta9euHaZ4ItGhQQNYtCjrkeMV7uYmPuBxnuC//DXH2HffDXs8EYkWM2fCvn0qpg8zrXFbKh7YR5v1v/odRaJAWItp59wG51yGcy4TeAvoGM73F4kFycmwbl3WI8dzPMSdvM6/eZB/8liOsUlJmpUWkQJMnOjddunib44IM6PxyWRinLlSrR5yZGEtps2sXtDDy4EF+Y0Vkdz6989u7QB4jH/yN/7Da/TnIZ4D7NBzSUmQmhr+jCISRSZOhNatoUYNv5NElG3lq7Co7rFab1oKJZRL430CfA+cYGZrzOxW4N9mNt/MfgLOA7SopUgh9e8PAwdmP36A5/kHT/A+N3I3rxBcSLdsqUJaRI7gwAFvG3G1eORpWuM2nLp2Mezd63cUiXAhWxrPOXdtHoffCdX7icSylJSchfQdDOR5HmQIV3Ebb+OCfi4uX147G4pIIcyZ423YomI6T9OatKHvrK9g6lSvv04kH9pOXCQK9OmTff8GPmAg/RlOD/owmIygn4mrVfP+bxQROaKsfumzz/Y3R4Sa1bAVBxISYfx4v6NIhFMxLRLhGjTIvn8ln/Mut5BKElfxOQcoc+i5+vXhjz98CCgi0WniRDjpJKhTx+8kEWl32QrMq3e8imk5IhXTIhEseOWOixnBx1zH95xBT75hP+UOjStfXtuEi0gRHDwIU6ZoVvoIZjZq5bXD7N7tdxSJYCqmRSJUSkr2yh1dSeMLrmQebbmYkeyh4qFxpUurtUNEimjePNi5U/3SRzCzYSvvB48ZM/yOIhFMxbRIhLoxsBv4mUxlGJfyKy24gDHsIHvL34QESE/3KaCIRK+sfmkV0wX6ocFJYObN4ovkQ8W0SARq1QoyMuBU5jCKi1hDQ7oxjq3UzDEuI8OngCIS3SZOhOOO8y62kHztKFfJW4d78mS/o0gEUzEtEmH69/e2Cm/FAsZyPn9QnWRS2cAxOcYlJfkUUESiW2amVxxqVrpwunSB77/32j1E8qBiWiSCZK0n3YJfSCWZfZQjiTTW0CjHuGrVtCmLiBTT/Pne0j+6+LBwunTxLkD88Ue/k0iEKtKmLWaWAFRyzu0IUR6RuFWhgrfRVhNWkEYSiWRwHt+xnOa5xmoJPBEptkmTvFvNTBdOly7e7eTJ0KGDv1kkIh1xZtrMPjazKmZWEVgELDGzB0MfTSR+mHmFdD3WkUYSldhFN8bxMyflGtuvnw8BRSR2TJwITZp4H3Jk9evDsceqb1ryVZg2j5aBmejLgFFAY+D6UIYSiSeJid5tLTaRSjJ12Eh3vmUep+QaW60avP56WOOJSCxxzpuZ1qx00XTp4q3o4ZzfSSQCFaaYLm1mpfGK6W+ccwcA/W0SKQFm3rVA1fiDsZxPM36jByOYQadcY0uXVnuHiBylxYth0yYV00V11lmweTMsWeJ3EolAhSmm3wRWABWBSWbWBFDPtMhRMvNuK7GTUVxEKxZyOV8xibz/k9N60iJy1LLWl9bFh0UT3DctcpgjFtPOuZedcw2ccxc5z0rgvDBkE4lZWa0d5djLMC6lA7O4hs8Yw4V5jtdvFkWkREya5PUAN899YbMU4PjjoU4dFdOSp8JcgFjXzN4xs28Dj1sCN4Y8mUiMatDAa+0ow36+5ArOYSI38CFfc3musdWqqZAWkRLinDczfc452b8ak8Ix81o9VExLHgqzNN77wHvAgMDjX4DPgHdClEkkZiUnw7p1kMhBPuFaujOa23iLT7gu19ikJK0lLSIlaOlSWL+eR7fW4OOHR/qdJvp06QJffglr1kDDhn6nkQhSmJ7pWs65IUAmgHPuIKBNjEWKKDkZ0tIggQze5yau4Cvu5UXe4bZcY1u2VCEtIiUs0C89o9HJPgeJUll901Om+JtDIk5hiundZlaTwAoeZtYJ2B7SVCIxxswrpMExkH70IYVHeZqXuTfX2KQkWLgw7BFFJNZNnMimCtVYVkOzqsXSti1UqqRWD8mlMG0efwGGAc3NbCpQG7gypKlEYkh2a6Ljf/yFvrzF0zzKv3g019h+/bSOtIiEyKRJzGzUSv3SxVWqFJxxhoppyaUwq3n8AJwDnAncDrRyzv0U6mAisSD4/6wn+Tv38yIvcQ//x1O5xtavr0JaREJkxQpYtUotHkerSxdYsECL/ksOR5yZNrMbDjt0qpnhnPswRJlEYkJwIf0w/+L/eJq3uI37eBHIPTO0dm3YoolIvJk0CYCZKqaPTpcu3qooU6dCjx5+p5EIUZg2jw5B98sBScAPgIppkXyUKZN9/25e5l88SgrXcQdvkFchreXvRCSkJk+GatVYUruJ30mi2+mne9vRTp6sYloOOWIx7Zy7O/ixmVUFPgpZIpEol5wMBw5492/hHV7mXr7iMm7ifTJJzDVehbSIhNzkyXDWWTgrzLoDkq/y5aF9e63oITkU51/VHqBFSQcRiRXeqh3Qi094iz8zmgvoxaccpHSOcfXrq5AWkTDYuBGWLMle2k2OTpcuMGsW7N3rdxKJEIXZAXG4mQ0LfIwAlgDfhD6aSPTJ6pPuydd8xPVMpgtX8CXplM0xLilJPdIiEiZZq0+omC4ZZ53l/fpx5ky/k0iEKMzM9PPAfwMf/wLOds49HNJUIlGmf//sQvp8xvAZ1zCb9vRgBHupkGNstWrakEXCy8wuNLMlZrbUzHJ9/zbPy4HnfzKzU4Oeq2ZmX5jZz2a22MzOCG96OWqTJ3vtCaed5neS2NC5s3erJfIkoDA90xPDEUQkWvXvDwMHeve7MImvuJzFnER3vmUXlXOMrV9fM9ISXmaWCLwGdAPWALPMbJhzblHQsO547XstgNOBgYFbgJeA0c65K82sDBz206FEvsmToVOnnFdGS/HVqAEnn6xiWg7Jd2bazHaa2Y48Pnaa2Y5whhSJZFmFdAdmMpKLWUkTzmcs26ieY1zp0iqkxRcdgaXOueXOuXTgU6DnYWN6Ah86z3SgmpnVM7MqwNnAOwDOuXTn3LYwZpejtWMHzJ2rFo+S1qULTJsGBw/6nUQiQL7FtHOusnOuSh4flZ1zVcIZUiRSZbV2tGEeY7iAjdQhmVQ2USfX2PT0MIcT8TQAVgc9XhM4VpgxxwKbgPfM7Ecze9vMKoYyrJSwadMgM1PFdEnr0gV27YKftIedFGE1DzOrY2aNsz5CGUokGmQV0ifwM+Poxi4qkUQa63LVKd424SI+yWvv6MPXkclvTCngVGCgc64dsBvI85oZM+trZrPNbPamTZuOJq+UpMmTs7fBlpKT9cOJWj2Ewq3mcamZ/Qr8BkwEVgDfhjiXSMRq1Sq7kG7GctJIIpMEkkhjJU1zjW/ZUtuEi6/WAI2CHjcE1hVyzBpgjXNuRuD4F3jFdS7OuUHOufbOufa1a9cukeBSAiZPhlNPhYr6hUKJatgQmjRRMS1A4WamnwQ6Ab8455rh7YA4NaSpRCKUGSwKXLbVkNWkkUQ59tGNcfzK8bnG9+sHCxeGOaRITrOAFmbWLHABYS9g2GFjhgE3BFb16ARsd86td879Dqw2sxMC45KARUh02LcPZsxQi0eodOniFdPaMCDuFaaYPuCc2wIkmFmCc+474JTQxhKJPBb0i/A6bCCVZGqwlQsYwwJa5xo/eLBmpMV/zrmDwF3AGGAxMMQ5t9DM7jCzOwLDRgHLgaXAW0D/oJe4G0gxs5/wvvc/E67scpRmzfIu1lAxHRpdungb4vz6q99JxGdHXBoP2GZmlYBJeN9QNwK6fFXiSqtW2fdrsIVxdKMha7iAMcyhfa7xSUnQu3cYA4oUwDk3Cq9gDj72RtB9B9yZz7lzIY+/5BL5sloQzjrL3xyxKrhv+vjcv5mU+FHQ0nhXmlk5vCWT9gD3A6OBZcAl4YknEhmyWjsqs4PRXMjx/EJPvmEquf+Tql9fm7KISASYPNmbCahZ0+8ksenEE6FWLZgyxe8k4rOC2jx6A6vwFu+/AG/y4gPn3MuBtg+RuJDV3lGB3YzkYk5hLlfxOWkk5xrbsqXWkhaRCJCRAVOnqsUjlMy8WX9dhBj3Clpn+nLgOCANuAfvIpSBZnZ2uMKJ+C0x0bstyz6+5jLOZBq9SWFEHr+cGTxYFxuKSISYNw927oSz9V92SHXpAsuWwfr1ficRHxV4AaJzbkdgNro70BqYC7xiZqsLOk8kFrRq5e11UIoDDOFqupHKrbzD51ydY1z58t7F3OqRFpGIkTVbqpnp0MrqR9fsdFwr1KYtZlYduAK4BqgBDA1lKJFIsGgRJJDBR1zPpQynP6/xATflGFO+POzZ408+EZF8TZ4MTZt66yFL6LRrBxUqqJiOc/mu5mFmlYHLgGvxFukfBjwFfBe48lskZlWoAEYmb3MbvfiMB/k3A3OsFuZRIS0iEcc5mDQJLrzQ7ySxr3Rpb3dJFdNxraCZ6d+AC/EuQGzknOvrnBuvQlpinRns3et4mXu4mfd5gsd5ngdzjUtK8iGciMiR/PILbNqkfulw6dIFfvoJtm/3O4n4pKB1phs75zTvJnHFW7nD8SwPcxev8TwP8A8ezzWufHktfyciEUr90uHVpYv324Bp06B7d7/TiA8KWs1DhbTElawl8P6Pp3iIfzOQO3iQ/wCWa6zaO0QkYk2aBHXqaCORcDn9dChVSq0ecaxQFyCKxLKUlOxC+n7+x5M8xgfcwJ28Rl6F9ODB4c0nIlIkkyd7q0xY7u9fEgIVK8Kpp6qYjmOF2U5cJGalpECfPt7923mD//EAQ7iKW3kHl8fPmhUragk8EYlga9bAihVw331+J4kZTR8eecQxj7oG3Pj9cMru2wflyoUhlUSSglbzGA7ke7Ghc+7SkCQSCZMyZeDAAe9+Hz7idfozgovpw2Ay8vmn8eabYQwoIlJU6pf2xaxGreg76yuYNUt/9nGooDaP54H/4q3qsRd4K/CxC1hwpBc2s3fNbKOZLQg6VsPMxpnZr4Hb6kcXX6R4zLIL6SsYyvvcxHecx5V8wQHK5HnO4MGalRaRCDdpElSuDG3b+p0krsxq2NK7M2WKv0HEF/nOTDvnJgKY2ZPOueD1dYab2aRCvPb7wKvAh0HHHgbSnHPPmtnDgccPFTm1yFEIbiPszig+4Vqm04mefMN+cv96rmVLbRMuIpHp8BaEMV+MYn2t47lpwGifEsWnbeWr8EvNxhw/eTI88ojfcSTMCnMBYm0zOzbrgZk1A2of6STn3CRg62GHewIfBO5/gLcpjEhYBF9oCHAe4/mSK5hPay5iFLuplOuc0qVVSItIdKi2dwcnbF7FzEat/I4Sl2Y2auXNTB886HcUCbPCFNP3AxPMbIKZTQC+A+4r5vvVdc6tBwjc1slvoJn1NbPZZjZ706ZNxXw7EU/whYYAZzCNYVzKUo7jAsawg6q5zmnZEtLTwxhSROQotF+zGAhqOZCwmt64NezcCT/+6HcUCbMjrubhnBttZi2AEwOHfnbO7Q9tLHDODQIGAbRv3167LspRCS6k2/ED39Kd9dQjmVS2UCvXeO3zKSLRpuPqBexPLMVP9bS+tB9mNGrt3ZkwATp08DWLhNcRZ6bNrALwIHCXc24e0NjMehTz/TaYWb3A69YDNhbzdUQKLbi1oyULGcv5bKMaSaSxgWNyjVchLSLRqOOahcytdwL7S+V9EbWE1qZK1eHEE71iWuJKYdo83gPSgTMCj9cATxXz/YYBNwbu3wh8U8zXESmU4EL6OH4llWTSKUMSaaymcY6x/fqpkBaR6FQhfS+tNixjlvql/XXuud7yhOqbjiuFKaabO+f+DRwAcM7tJa9t4Q5jZp8A3wMnmNkaM7sVeBboZma/At0Cj0VColXQ/ymNWUkaSZTiIMmksozjcoxt2RJefz3MAUVESki7dUsonZnBrIYqpn113nle3/QPP/idRMKoMDsgpptZeQIbuJhZc+CIPdPOuWvzeSqp8PFEim/RIu/2GNaTRhKV2UlXxrOYnBfnJCVBaqoPAUVESkjH1QvJsATmNDjJ7yjx7ZxzvNsJE6BjR1+jSPgUZmb6cWA00MjMUoA04G8hTSVylLLaO2qxiVSSOYbf6c63zKVdjnH9+qmQFpHo12HNQhbVacaushX8jhLf6taFk06C777zO4mEUYHFtJklANWBK4CbgE+A9s65CSFPJlJMWe0dVdnGGC7gWJbTgxHMoFOOcdWqqbVDRKJf6YwDtFu3RC0ekeK887z1prO22ZWYV2Ax7ZzLxFvFY4tzbqRzboRzbnOYsokUy6JFUJFdjOIiTmYBV/AlEzk3x5jy5eGPP/zJJyJSklr/vpTyB/drs5ZIce65sGuX+qbjSGHaPMaZ2V/NrJGZ1cj6CHkykSJKTvbaO8qxl2FcSkdm0otPGU33XGP37PEhoIhICHRY423TqpnpCBHcNy1xoTAXIN4SuL0z6JgDjs1jrIgvKlSAvXuhNOkM5U+cywSu5yO+4opcYwcP9iGgiEiIdFi9kGU1GrKlYjW/owhAnTreElHffQcPPeR3GgmDwuyA2CwcQUSKq0wZrzUtkYN8zHVcxLf8mUF8TO9cY5OSoHfuwyIiUclcJh3WLGLUCZ39jiLBzjsP3n/f+8+pdGm/00iIFWoHRDP7PzMbFHjc4ih2QBQpUdWre9+rjEze42auZCj38QJv8+c8x2vlDhGJJSdsWknV/bu1WUukOfdc2L0b5szxO4mEQVF2QDwz8PhodkAUKTH9+8O2bQCO1+nP9QxmAE/xEvflOb5fvzCGExEJg6x+6ZmNTvY5ieRw9tnerZbIiwsh2wFRJNQGDgRw/JcHuIM3+RcP8wyP5jm2Xz8tgycisafj6oWsq1yLNVXq+B1FgtWp463TqosQ40LIdkAUCaX+/b3bf/A4f+EFXuZuHuUZ8vo5z7nwZhMRCQvn6LBmITMatc7eqUoix3nnwbvvqm86DmgHRIlKAwfC33iOx3iSd7iF+3gRFdIiEleWL+eYXVu1vnSkOvdcbx3W2bP9TiIhVpjVPMaZ2Q9AJ7xq5V5t3CJ+MoM7eZXneJiPuZa+DMId9nNhQgJkZPgUUEQkHAL9uDPULx2Zstab/u47OOMMf7NISOU7M21mp2Z9AE2A9cA6oHHgmEjYmcHNvMur3M3X9ORGPiCTxFzjVEiLSMxLS2NDpRosrdnI7ySSl1q1oHVr9U3HgYJmpv8buC0HtAfm4c1MtwFmAGeFNppItpQU6NMHruFT3uY2xnA+1/AZB8ndh9aypQ8BRUTCKTMT0tKY0qSt+qUj2bnnwjvvQHq6tymCxKR8Z6adc+c5584DVgKnOufaO+dOA9oBS8MVUCSrkL6EYXzE9UzhLC7nK9Ipm+f4hQvDHFBEJNzmz4dNm5ja9BS/k0hB1DcdFwqzmseJzrn5WQ+ccwvM7JTQRRLJ1qABrFsH3RjL51zFD5xKD0awlwp5jtdW4SISFwI7UE1t0tbnIFKg4PWmzzyz4LEStQqzmsfPZva2mZ1rZueY2VvA4lAHEzHzCumzmMzXXMbPnEh3vmUnVfIcP3iwtgoXkTiRlgYnnsiGyrX8TiIFqVUL2rRR33SMK0wxfROwELgXuA9YBNwcukgi2S2AHZjJSC5mFY3pxjj+oEae4/v1UyEtInEiPR0mToTkZL+TSGGcey5Mnep93SQmFdjmYWaJwAjnXDLwQngiSTyrXj1ri3BozU+M5kI2U4sk0thE3jt8JSVpd0MRiSPTp3t9uMnJ8L3fYSRY04dH5jp2wepKvLl3L1fe8iKzG2avCb7i2YvDGU1CqMCZaedcBrDHzKqGKY/EMbPsQvoEfmYc3dhDBZJIYx0N8jxn8OBDrYMiIvEhNdVbTD9rHWOJaDManUwmRqdV8488WKJSYdo89gHzzewdM3s56yPUwSS+BK/s1JTfSMX79WUSaaygWZ7nqLVDROJSWhp06ADVqvmdRAphW/kq/FynqYrpGFaY1TxGBj5EQiIxaM+VBqwhjSQqsIdzmcAvnJDnOf36qbVDROLQjh0wYwY8/LDfSaQIpjdqzbXzxlDm4AHSS+XeH0GiW2GK6c+A4wAHLHPO7QttJIknFSp4ew8A1GEDqSRTi80kkcZ82uQa37Kl1pEWkTg2caK3xasuPowq0xu35pY5w2i7fgmztP17zMm3mDazUsAzwC14G7ckAA3N7D1ggHPuQHgiSqxq1Qr27vXuV2crYzmfxqziAsYwmw65xmvpOxGJB3ldxJbl8dS36FWqLG1HbCN9tH5pHC2C+6ZVTMeegnqm/wPUAJo5505zzrUDmgPVgOfDkE1iWEoKLFrk3a/MDkZzISfyMz35hil0yTXeORXSIiKdV8xjVsOWahWIMtvLV2ZxnWZ0Wq2+6VhUUDHdA/izc25n1gHn3A6gH3BRqINJ7EpO9rYHB6jAbkbQg3b8yFV8TirdcoxNSvIKaRGReFd711aO37KKKdpCPCpNb9ya09b+TJmD+sV+rCmomHbO5S5jAsvlqbyRYilTxrsQHaAM+/mKy+nMVPowmOFcmmNsUpKWvRMRydJ55TwApqqYjkrTG7em3MF0Tlm/xO8oUsIKKqYXmdkNhx80sz7Az6GLJLGqTBk4EPiBvBQHGMLVnM84buNthnBNjrHVqqmQFhEJdtaKuWwtX4VFdfJeLlQim9abjl0FreZxJ/Clmd0CzMGbje4AlAcuD0M2iSENGmQX0glk8CE30JNh3MmrvH/Y7vSlS8Mff/gQUkQkUjlH5xVzmda4Dc4Ks0WERJod5SqxqO6xdFo1n5c7X+t3HClB+RbTzrm1wOlm1hVoBRjwrXMuLVzhJDYEbxFuZDKIvlzLp/yN53idO3ONT08Pbz4RkUh37Na11Nu1RS0eUW56o5O5/sdRlD2o/+hiyRF/vHXOjXfOveKce1mFtBRVq1bZhTQ4XuQ+buVd/snf+Q9/yzVeFxuKlDwzu9DMlpjZUjPLtduHeV4OPP+TmZ162POJZvajmY0IX2oJ1nnlXABdfBjlpjduQ9mMA5yyTn3TsUS/K5KQylr+DhzP8Cj38Ar/5S88zj9yjVUhLVLyzCwReA3oDrQErjWzlocN6w60CHz0BQYe9vy9wOIQR5UCnLViLqur1mV1tWP8jiJHYWajVuqbjkEqpiVkKlTIvj+Ap3mEZxnIHfyV5/G6hjz166uQFgmhjsBS59xy51w68CnQ87AxPYEPnWc6UM3M6gGYWUPgYuDtcIaWbImZGZyxaj5TmrT1O4ocpR3lKrGw7rGcseonv6NICVIxLSHRoEH27ob38QJP8Xc+5Hru5DWCC+lq1WDtWl8iisSLBsDqoMdrAscKO+ZF4G9AZkFvYmZ9zWy2mc3etGnTUQWWnE7+fSlV9u9Wv3SMmN64Ne3WLYF9+/yOIiVExbSUuDJlYN067/6fGcQL/IUv+BO38C4u6K+cVu0QCQvL49jhvwvKc4yZ9QA2OufmHOlNnHODnHPtnXPta9euXZycko+s9aWnaWY6Jnwf6Jtm+nS/o0gJUTEtJcosewm83gzmDe5gJBdxHR+TEbR4TLVqWrVDJEzWAI2CHjcE1hVyTGfgUjNbgdce0tXMBocuquTlrBVzWVSnGVsrVPU7ipSA2Q1bkmEJMGGC31GkhKiYlhKRkuIV0lku50ve5yYmcC5X8gUHKJNjvGakRcJmFtDCzJqZWRmgFzDssDHDgBsCq3p0ArY759Y75x5xzjV0zjUNnDfeOdcnrOnjXLkD+zht7SKmNDnF7yhSQrL6pvnuO7+jSAlRMS1HLSUF+gT999qdUXxKL2bSkUsZxj7K5xjfr1+YA4rEMefcQeAuYAzeihxDnHMLzewOM7sjMGwUsBxYCrwF9PclrOTSfs1iymYcVL90jJnWuA18/z3s3Ol3FCkBBe2AKFIo11+fff9cvmMof2I+rbmIUeymUo6x9evD66+HOaBInHPOjcIrmIOPvRF030EeOyjlHD8BmBCCeFKAs1bOJT2hFDMbtvI7ipSg75p34I6ZX8K4cXDFFX7HkaOkmWk5KtWrZy9r14nvGc4lLOdYLmAM26mWY2z58lq5Q0SkKDqvmMuPDU5kb5lyfkeREjSnwUnexUMjtA9SLFAxLcVWoUL27oan8CPf0p311COZVLZQK8fYli1hz57wZxQRiVbV9u6g1YblWl86Bh1MLAUXXACjRkFmgatOShRQm4cUS5ky2at2nMQixnI+26lKEmn8Tr0cY/v1U2uHiEhRnbHyJxJw6peOUfftbsiLGzZw6c0v8VO94wscu+LZi8OUSopDM9NSJFmrdmQV0s1ZSirJHKQUSaSxmsY5xquQFhEpnrNWzmVnmfLMO0KhJdFpYrNTybAEkpbO8juKHCUV01Joh6/a0YhVpJFEGdJJJpVlHJdjvHMqpEVEiqvzinlMb9yajIREv6NICPxRoSo/1D+Rrstm+h1FjpKKaSm0227Lvn8M60kjiaps53zGsoicV5onJYU5nIhIDGm47XeablvPVK0vHdPGH9eB1huWUXfnZr+jyFFQMS2FkpIC+/Z592uymXF0ox7r6c63/MipOcbWrw+pqT6EFBGJEVlbiE9Rv3RMS2veAYDzls32OYkcDV+KaTNbYWbzzWyumelvUIQLbu+oyjbGcAHNWcYlDGc6Z+QYm5Sk5e9ERI5W55Xz2FCpBktrNjryYIlav9RqwpoqdUhapr7paObnzPR5zrlTnHPtfcwgBUhJgYSE7EK6IrsYycW0Zj5/YigTOC/H+MGDNSMtInK0zGVy5sp5TG3S1rviW2KXGeObd6DzyrmUPZjudxopJrV5SJ6yZqOzNmQpx16+oSedmM61fMK3XJRjvHPQu7cPQUVEYsyJm1ZQa8929UvHifHNO1DhwH46rZrvdxQpJr+KaQeMNbM5ZtbXpwxSgBtvzL5fmnS+4ErO4ztu5AO+5E85xvbrF+ZwIiIxrPOKuQDezLTEvO+btGFP6bJa1SOK+VVMd3bOnQp0B+40s7MPH2Bmfc1stpnN3rRpU/gTxqn+/b3fKmZkeI8TOUgKvbmYUfRjICn0yTE+MVHL34mIlKTOK+exrEZDfq9S68iDJertL1WGqU1O8dabzvp1sEQVX4pp59y6wO1G4CugYx5jBjnn2jvn2teuXTvcEeNS//4wcGD2YyOTd7mFq/iC+/kfg7g91zkffBDGgCIisS49ndNXL2BKU81Kx5O05h1ouGMjx29e6XcUKYawF9NmVtHMKmfdB84HFoQ7h+QWXEiD4zXu5AY+4u/8kxe5P9f4wYPVJy0iUqK+/54KB/arXzrOfNfcW4tBq3pEJz9mpusCU8xsHjATGOmcG+1DDgnSKseeK47/8CD9eINneYin+L8cY5OSdMGhiEhIfPMN+xNL8X2TNn4nkTDaULkW8+s2p6u2Fo9KpcL9hs655YB+fxVBkpNh0aLsx0/wBH/lv7zCXTzCv4DspZnUziUiEiLOwdChTGnajp1lK/qdRsJsfPMO3PX9EKrt3cG28lX8jiNFoKXx4lyDBpCWlv34Qf7N4/yTd7mZe3mJ4EJaq3aIiITQ7NmwahWjjz/T7yTig/HNO5DoMjln+Ry/o0gRqZiOYw0awLp12Y/78xr/5iE+5Rr+zFu4oL8e/fpp1Q4RkZAaOhRKlWJsi05+JxEf/FSvBZsqVFPfdBRSMR2n+vfPWUjfyPu8xl18w6Vcz0dkknjoORXSIiIhFmjx4Lzz2F6+st9pxAfOEviueXvOWT6HUhkH/Y4jRaBiOk4Fr9xxNZ/xDrcylm5cw2ccpPSh55KSVEiLiITc/PmwdCn86U9HHisxK615R6ru381paxf7HUWKQMV0nElO9jZlydKD4QymD1PpzGV8zX7KHXouKQlSU30IKSISb4YO9b45X3aZ30nER1OankJ6Qim6qtUjqqiYjhMpKd736eCLDZNI5Quu5Efa0YMR7KVC9nMqpEVEwueLL6BLF6hb1+8k4qPdZSswvXFrkpZqa/FoomI6xqWkQKlS0CfnLuB0Zgrf0JMlnMCFjGYn2cvwDB6sQlpEJGx+/tlbn1QtHoK3gctxW9fQ+I/1fkeRQlIxHcNSUrwiOiMj5/HTmM0oLmI1jejGOP6gxqHn+vXTZiwiImE1dKh3e8UV/uaQiJDWvCOAWj2iiIrpGDZgQO5jJzOfMVzAFmqSTCobyf6VYv36uthQRCTshg6FTp2gYUO/k0gEWFW9HktrNFQxHUVUTMewlStzPm7BL6SSzF7Kk0Qaa8n+xl2/PqxdG+aAIiLxbvly+PFHtXhIDmnHdaTTqvlU3L/H7yhSCCqmY1SrVjkfN2EFaSRhOJJJ5TeOPfRcv34qpEVEfPHll96timkJMr55B8pkHuSsFXP9jiKFoGI6BqWkeNeyZKnPWsbTlYrsJplUlnAiAC1bevsEqLVDRMQnX3wB7dpBs2Z+J5EIMqfBSWwvW5GkZVrVIxqomI5Bt92Wfb82G0klmVps5kJGM582gLdix8KFPgUUERFYswZmzIArr/Q7iUSYg4mlmHjsaZy3fDbmMv2OI0egYjqG9O/vrSW9b5/3uDpbGcv5NGElPRjBLLwrhAcP1oodIiK+U4uHFGB88w7U3r2N1r8v9TuKHEEpvwNIyWjVKmdrRyV28i3dOYnFXMJwJnM24LV2qJAWEQmvpg+PzHXss4/folqtxlzw3lJABZPkNLHZqWRYAklLtapHpNPMdAzo3z9nIV2ePYygB6cxh6sZwjjOByAxUa0dIiKRoNbuP+iweiGjj+/sdxSJUH9UqMoP9U+kq/qmI56K6RjwxhvZ98uwn6+4nC5Mpg+DGUbPQ8998IEP4UREJJcLfvmeBBzfnnCm31Ekgo0/rgOtNyzTklsRTsV0lOvf31uRA6AUB/iMa7iAsdzG23xGr0PjkpLU3iEiEikuXDKN5dXr83Ptpn5HkQiW1ryDd2fUKH+DSIFUTEexlBQYONC7n0AGH3Ajl/ENd/My73HLoXEtW0Jqqk8hRUQkh2p7d3DGqp8YfcKZ3lXjIvn4pVYT1lSpAyNG+B1FCqBiOkqlpMCNN3r3jUze5Hau4xMe5l+8yt2HxvXrpz5pEZFI0u3XGZRymXyrfmk5EjPSjuvgzYjt2uV3GsmHiukoddttkJEB4HiB+7mNd3iS/+M5Hj40RhuyiIhEngt/mcaaKnWYf8xxfkeRKPDNSefCnj0wZIjfUSQfKqajTEoKlC2bvZb00wzgXl7mf9zPY/zz0Lh+/XwKKCIi+aq8fzdnrfiR0cefoRYPKZQfGpwIJ5wA77zjdxTJh4rpKJGSApUqQZ8+kJ7uHXuEZ3iUf/EmfXmA/wLeN+aKFTUjLSISibounUnZjIOMOuEsv6NItDCDW2+FadPg55/9TiN5UDEdwVJSoFYt799Rnz6we3f2c/fyIs8wgI/oQz8GklVIA7z5ZviziojIkXX/ZRq/V6rBjw1O8DuKRJMbbvA2i3j3Xb+TSB5UTEeo/v29AnrLltzP3cZbvMj9DOUKbuY9XNCXsV8/LYEnIhKJyqfv45zlPzDm+DNwpv9+pQjq1oUePbwNIw4c8DuNHEb/miNMVjtH1pJ3h7uOFN7kdkbRnWv5hIygHeGTktTeISISqc5dPpvyB/dr10MpnltvhY0bteZ0BFIxHUFSUuDmm3O2cwS7jK/4gBuZyDn8iaEcoMyh55KStJa0iEgk6/7LNLaUr8LMRq38jiLRqHt3OOYYXYgYgVRMR5B7783/tzcXMJrPuIZZdOBShrGP8oee69dPhbSISCQrezCdrstmMeb4M8hISPQ7jkSjUqW8DSZGjYL16/1OI0FUTEeI/v3z7o8GOIcJfMXlLKQV3fmWXVQGoGZNGDxYrR0iIpGuy28/Uil9L6OPP9PvKBLNbrnF22Tiww/9TiJBVExHgP798++RPp3pjKAHyzmW8xnLzoRq9OvnbciyebMuNhQRiQbdf5nK9rIV+b5JG7+jSDQ7/ng46yxvVQ/n/E4jASqmfZaSAm+8kfdzbZnLt3Tnd47hoxtS2eRqk5GhmWgRkaiSnk7yrzNIbXE6BxJL+51Got2tt8Ivv8DUqX4nkQAV0z679968f7g8kcWMoxs7qcyCF9N49oN64Q8nIiJHb/x4qu7fzbdaxUNKwlVXect+6ULEiKFi2idZG7Lk1Sd9LMtII4mDlGLu82lcdm+T8AcUEZGSMXAgW8pXYXKzdn4nkVhQsSL06gVDhsCOHX6nEVRM+yIlBfr2zbuQbsQq0kiiDOm8ffU4Ln2gRfgDiohIyVi6FIYPZ3C7i9hfqsyRx4sUxq23wp49XkEtvlMx7YMBA7x/A4ery++kkkx1/uCtK8fw989ODn84EREpOa+8AqVKMbjdRX4nkVhy+unQsqVaPSKEimkfrFyZ+1gNtjCObjRgLb2qfMsjn58W/mAiEpPM7EIzW2JmS83s4TyeNzN7OfD8T2Z2auB4IzP7zswWm9lCM7s3/Omj2Pbt3qoLvXqxqVINv9NILDHzlsmbPh0WLfI7TdxTMR1m/fvnPlaF7YzhAlrwK1eXHUaf17UOqYiUDDNLBF4DugMtgWvNrOVhw7oDLQIffYGsxToPAg84504COgF35nGu5Ofdd2HXLu9Kc5GSdv313kYu777rd5K4V8rvAPEkr2XwKrCbkVxMG37ixspfcd3AJK0dLSIlqSOw1Dm3HMDMPgV6AsHTWT2BD51zDphuZtXMrJ5zbj2wHsA5t9PMFgMNDjs3bjV9eGS+zyVkZjBx0HOsa9iKaz7/PYypJBbl93dt4LEd6TDwbc6wsw4tu7ji2YvDGU3QzHTYpKR4u4AGL4NXln18Q0/O4Huu42M+2XGxCmkRKWkNgNVBj9cEjhVpjJk1BdoBM/J6EzPra2azzWz2pk2bjjZz1Ov26wwabd/Au+17+h1FYtiQNt2otWc7XZfO8jtKXFMxHWJZS+D16ePtAJqlNOl8wZUkk8bNvMfsJlf6F1JEYpnlcezw1e0LHGNmlYChwH3OuTzX4nLODXLOtXfOta9du3axw8aKW2Z/w+qqdRnX4nS/o0gMm9TsVH6vVIOr54/zO0pcUzEdQvktgZfIQQbThx6M5A4GMthu4Omn/ckoIjFvDdAo6HFDYF1hx5hZabxCOsU592UIc8aMk39fyulrFvL+qT3ITEj0O47EsIyERIaenMS5y+dQd+dmv+PELRXTIZTXEnhGJm9zG1fzOQ/wPIPsDu64A7V3iEiozAJamFkzMysD9AKGHTZmGHBDYFWPTsB259x6MzPgHWCxc+5/4Y0dvW6e/Q27ypRnSNvz/Y4icWBIm24kukz+tGC831HilorpEFq16vAjjle5i5v4gMf4By8lPsBHH8Hrr/uRTkTigXPuIHAXMAZYDAxxzi00szvM7I7AsFHAcmAp8BaQte5QZ+B6oKuZzQ18aMHkAtTetZVLFk/m89bJ7Cxb0e84EgdWVq/P9EYnc/VP43JemCVho9U8Qqhx4+A1pR3/5m/0ZyDP8Tf+W/7vfPCWZqRFJPScc6PwCubgY28E3XfAnXmcN4W8+6klH31+HEWpzAzeP+0Sv6NIHBnSphv/G/kCp69eAPTwO07c0cx0CD39NFSo4N1/jH/yIM/zKnfynxrPMugtUyEtIhJDyh5Mp8+Po0g7riMrq9f3O47EkVEndGZHmQq6ENEnmpkOkZSU7J7pB+15/uGe4POKN1F94Mtsvl4TPSIisabnwgnU3LtDy+FJ2O0rXY7hLc/migXfeTtvVq3qd6S4opnpEha8FN7KldCP1/m3e5AvEq/mwMC36X29/shFRGKOc9wy+xsW127K941b+51G4tCQ1t0of3A/fPqp31Hiji+VnZldaGZLzGypmT3sR4ZQOHwpvBv4gNe5k2FcwrUZg3n071oiSUQkFp25ch4nbl7pzUqbfvso4Tev3vH8XKuJthf3QdiLaTNLBF4DugMtgWvNrGW4c4RC8FJ4V/I573IL40jmaoZwkNJ5rO4hIiKx4JbZ37C5QlWGtTzH7ygSr8z4tO0FMHMmTJjgd5q44sfMdEdgqXNuuXMuHfgUiPoGs5SU7JU7LmYEH3Md0ziTy/ia/ZQDvNU9REQktjTdupbkZbNIOeUi9pcq43cciWOftL0AGjWCBx+EzEy/48QNP4rpBsDqoMdrAsdyMLO+ZjbbzGZv2rQpbOGKI6u9AyCJVL7gSuZyCj0YwR68dUYrVEC7HIqIxKCb5gxnf2IpBrfTEtzir/2ly8JTT8Hs2TBkiN9x4oYfxXRezWS5Vhl3zg1yzrV3zrWvXbt2GGIVX1Z7x5lM5Rt68istuJDR7MC7mrZmTRg0SGtKi4jEmir7dnHV/FSGn3QOmypV9zuOiFdstG0Ljz4K+/f7nSYu+LE03hqgUdDjhsA6H3Ictazl71auhNOYzSguYg0NSSaVrdQEYPBgFdEiIrHq6p/GUvHAPt5rf6nfUUQAaDpgNF1O+BMfDXmMf150N+92yL+TdsWzF4cxWezyY2Z6FtDCzJqZWRmgFzDMhxxHJau1Y+VKaMUCxnABW6lBEmlspC4ATZqokBYRiVWJmRncNGcE0xudzMK6zf2OI3LI5GanMqlpO+6e9ilV9u3yO07MC3sx7Zw7CNwFjAEWA0OccwvDneNoZbV2tOAXUklmH+VIIo21NATUIy0iEuvO/+V7Gu7YqE1aJCI9e+7NVN23i37Tv/A7SszzZZ1p59wo59zxzrnmzrmoLDlXrYImrCCNJBLIJIk0fuNYwJuRVo+0iEhsu2X2MFZVrUvqcR39jiKSy6K6x/LVyedxy+xvqL9jo99xYpq24yum9vXXkUYSldhFN8axhBMBr5BesUKFtIhITJs1iw5rF/H+aZeSmaANuSQy/bdLHwAemDzY5ySxTcV0cWzaxDiXTB02ciGj+Ym2gFo7RETiQmYm/OUvbCtXiSFtuvmdRiRf66rU4b32l3L5gu9ouWG533FilorpIkhJgTaN/uDHOudTZv0K3u45gg1NTsdMrR0iInHjzTdhyhSe6nobu8pW8DuNSIFe73QV28tV4uEJ7/kdJWbFfTGdkgJNm0JCgnebkpL3c7VqwT0372TQmu60ZBGXua/4v3Hn8PTT3iSFWjtEROLAmjXw0EOQnMwXJyf5nUbkiHaUq8QrZ/bi7BU/0uW3H/yOE5PiupgOXt7OOe+2b1/v+OHP7dmyh6EHLqE9s7mGzxjLBezZ463qISIiccA56NcPMjK82WnLaw8ykcgzuN1FrKpal0cmvEdCZobfcWJOXBfTWcvbBcsqkIOfK8N+hvInzmYS1/MR33DZofGrVoUvr4iI+GjIEBgxAp58Eo491u80IoWWXqo0/zn7Blpu/I3LFk3wO07MietiOr9CeNWq7OcSOcgnXEt3RvNn3uJTrs0xtnHjEIcUERH/bdkCd98NHTrAvff6nUakyEac1IW59VrwwKTBlD2gbcZLUlwX0/kVwo0bex8JZPABN3IFX3EPL/Eut+YYp9U7RETixF/+An/8AW+/DYlaCk+ij7MEnj33Zhrs3MRNPwz3O05Mieti+umnvYI4WFaB/PRTjrcS+9Gbj3mEZ3iFeyhdGmrWRKt3iIjEkzFj4MMPvQsP27TxO41IsU1v3IbU5h248/vPqbZ3h99xYkZcF9O9e3sFcZMmhxXI1zl6z76fWzLe4pUqA3jOHqFJE3jvPdi8Wat3iIjEjV274Pbb4YQT4P/+z+80IkftuXNuomL6Xu6e9pnfUWJGKb8D+K137zyK4v/7O7z0Etx7L3e/8CR364JtEZH49Pe/e8s6TZ4M5cr5nUbkqP1auwlDWidz/Q8jYflyXUxbAuJ6ZjpP//qX1+dx223wwgta+khEJF7NmOFNrPTvD2ed5XcakRLzwlm9OZiYqPV9S4iK6WAvvwyPPgrXXQdvvKFCWkQkXqWne5MqDRp4kywiMWRj5Zq81eFy+PRT+PJLv+NEvbhv8zjknXe85Y4uvxw++EBXa4uIxLPnnoMFC2D4cKhSxe80IiXu9TOu5l63Evr0gUmToH37Asc3fXhkkV5/xbMXH028qKKZaYBPPoE//xkuvNC7X0o/Y4iIxK3Fi+Gpp6BXL+jRw+80IiGxv1QZ+PprqFsXLr0U1qzxO1LUisliOiUFmjaFhATvNiWlgMFffw3XXw9nnw1Dh0LZsuEJKSIikScz02vvqFTJ65cWiWV16ni/fdm1Cy65xLuVIou5KdiUFOjbN3sr8JUrvceQx6odY8bANdd4v9oYPjz3otMiIhJXHrugP/+cNo2/XHw/X/5vlt9xREIqq3XjnAv/yrtf/IPx7ZK5/fJHyUxQq2tRxNzM9IAB2YV0lj178rhgdeJEuOwyaNkSvv0WKlcOV0QREYlEq1bxt0kfMqlpO75s1dXvNCJhM/HY03giuS/dls7goYkf+B0n6sTczPSqVYU4PmOG1wfXrBmMHQvVq4clm4iIRKgNG+CiizDnePTCu7Sak8Sdj07tQfMta7h95pcsr9GAz9pe4HekqBFzM9ONGx/h+Lx53oWGdepAairUrh22bCIiEoHWrYNzz4XffuO2Pz3Gmqp1/U4k4osnk/7Md8eexlNjX+fMFXP9jhM1Yq6Yfvrp3K3PFSp4x1m8GLp181o60tKgfn1fMoqISIRYvRrOOcdbyWD0aL5v0sbvRCK+yUhI5O5LH2J5jQYM/PpfNN+y2u9IUSHmiunevWHQIGjSxPstXZMm3uPenZZBcrK3xEdqqrfMh4iIxK8VK7xCetMmGDcOunTxO5GI73aVrcCtVz5OemJp3vnin1Tbu8PvSBEv5opp8ArqFSu8FY5WrIDeZ6+GpCTYt88rpI8/3u+IIiLip6VLvSVRt23zflPZqZPfiUQixpqqdbn9igHU27mZN796hjIHD/gdKaLFZDGdw4YN3oz0H394FxuefLLfiURExE8//+zNSO/dC999B6ed5ncikYjzQ4OT+OtF93H66gU8M+ZVcM7vSBEr5lbzyGHLFq+QXrPGK6T1DVNEJL4tWOD9vwAwYQK0auVrHJFINrzlORy7dS33T/2YZTUbMrDTVX5HikixW0xv3+6t2vHrrzByJHTu7HciERHx07x5XiFdujSMHw8nnuh3IpGI91Lna2n2x1oemvgB1ffs4PmzbyC9VGm/Y0WU2Cymd+/21pGeOxe++srrlxYRkfg1Z463mlOlSl4hfdxxficSiQ5m/K37fewoW4m+s76iy4ofueeSB/m1dhO/k0WM2OyZNoOqVeHjj72iWkRE4tf06d6kStWqMGmSCmmRIkovVZrHzu/HzVc+Tq3d2xjxwX3cNHsY5jL9jhYRYrOYrlABhg+Hq9TbIyIS10aN8maka9XyCmktiypSbN8170D3W15hStNTeCJtEO9//gS1d231O5bvYrOYBm0FKyISzxYvhosv9j4aN4aJE6FRI79TiUS9zRWrc+ufHmPA+f3puHohY969i/N/+d7vWL6KzZ5pERGJT5s3wxNPwBtveP3Rzz/P8eubk/7KXGCuv9lEYoUZKe0uYnrj1rw4/HkGffU0n7Q5nyeT/syeMuX9Thd2sTszLSIi8WP/fnj+ea8f+o034I47vNWcHnhAKw+IhMiymo244vrnea3TVVzz0zhGvn8Pp6xb4nessFMxLSIi0cs5+PJLb73oBx/0lkH96Sd49VWoXdvvdCIx70Biaf5zzo30uu5flM44yBeDH+TeKR97K6vFCbV5iIhIRGj68MgijW+9/lf+b/zbnL5mIUtqNeapq//J5Ganwoe/Ab+FJqSI5Glmo5O56OZX+Oe4gdw/9WOoPwKuvRZuu83bNC+Gr2VTMS0iIlGl6da13P39Z/xpwXg2V6jKoxfcyWdtzicjIdHvaCJxbUe5Stx3yYMMbncRXyQuhA8/hDffhLZtvaK6d2+oXt3vmCVOxbSIiES0hMwM2q1bQrelM0j+dQbHbV3D/sRSDDz9Sl4742p2la3gd0QRCTK7YSt49m/w0kvwySfwzjtw993w17/ClVd6hfU558TMbLWKaRERiTgV9++hy4ofSV46k/OWzaLm3h2kJ5RiRqOT+ejUixnT4gx+r1LL75giUpBq1aBfP+/jxx+9onrwYEhJ8S4WvvVWuPFGmr70Q6FfcsWzF4cubzGpmBYRkYhQb8cmkpbOpNvSGXRa9RNlMw6yrVwlxjfvQFrzjkw69lR2lq3od0wRKY527bwLg//zHxg6FN5+Gx55BAYMYEyNhsw/pgXzjzmO+XWPY1HdZuwrXc7vxIWmYlpERPx3+eV8//XXACyvXp8PTr2E1BanM6fBSeqFFokl5ctDnz7exy+/wCefsO7D4ZyzfA5XLkgDIMMS+LVmIxYcc1xUFNgqpkVEYpyZXQi8BCQCbzvnnj3seQs8fxGwB7jJOfdDYc4tMd268cy26qQedzrLazYMyVuISPgUfnWe9nBVe3COY3ZuofWGpbRe/yutNyzNVWAvrdmQtC/qsrFidTZVrM7GSjXYdOi+d7u/dNlDrxyulhAV0yIiMczMEoHXgG7AGmCWmQ1zzi0KGtYdaBH4OB0YCJxeyHNLRv/+DFpVtKXxRCSGmPF7lVr8XqUW41p08o4FCuw2v//Kyb8vpeXG5Ryzayutf19KzT3bSXSZuV5mR5kKbKpUg00Vq0G7XXDNNSGPrmJaRCS2dQSWOueWA5jZp0BPILgg7gl86JxzwHQzq2Zm9YCmhThXRCQ0ggrsscefkeOphMwMau7ZQe3df1Bn11Zq7/4j+2PXH9TZvRUOHAhLzKgopufMmbPZzFaG4KVrAZtD8LqhEk15lTU0oikrRFfeUGVtEoLXLIoGwOqgx2vwZp+PNKZBIc8FwMz6An0DD3eZWaTtKRxNfxcLS59T9IjFz8v3z+mIWzNdf733UXhZn1ORvm9HRTHtnAvJnrBmNts51z4Urx0K0ZRXWUMjmrJCdOWNpqxFlNdCrq6QYwpzrnfQuUHAoKJFC59Y/Prqc4oesfh56XPKFhXFtIiIFNsaoFHQ44bAukKOKVOIc0VE4lqC3wFERCSkZgEtzKyZmZUBegHDDhszDLjBPJ2A7c659YU8V0QkrsX7zHTE/koyH9GUV1lDI5qyQnTljaasheacO2hmdwFj8Ja3e9c5t9DM7gg8/wYwCm9ZvKV4S+PdXNC5PnwaJSEWv776nKJHLH5e+pwCzLt4W0REREREikptHiIiIiIixaRiWkRERESkmOK+mDazJ83sJzOba2Zjzay+35nyY2b/MbOfA3m/MrNqfmcqiJldZWYLzSzTzCJy+Rwzu9DMlpjZUjN72O88+TGzd81so5kt8DvLkZhZIzP7zswWB77+9/qdKT9mVs7MZprZvEDWf/idSUpWtPwbLyozW2Fm8wP/d832O09x5PV9zcxqmNk4M/s1cFvdz4zFkc/n9YSZrQ18veaa2UV+Ziyq/L6vR/PXq4DPqchfq7jvmTazKs65HYH79wAtnXN3+BwrT2Z2PjA+cFHQcwDOuYd8jpUvMzsJyATeBP7qnIuob/iBrZJ/IWirZODakGyVfJTM7GxgF94udSf7nacggZ3z6jnnfjCzysAc4LII/XM1oKJzbpeZlQamAPc656b7HE1KQDT9Gy8qM1sBtHfORe1GIHl9XzOzfwNbnXPPBn74qR7J/8/lJZ/P6wlgl3PueT+zFVd+39eBm4jSr1cBn9PVFPFrFfcz01mFdEBF8tmQIBI458Y65w4GHk7HW/M1YjnnFjvnIm0XtGCHtll2zqUDWVslRxzn3CRgq985CsM5t94590Pg/k5gMd5OehHHeXYFHpYOfETs9wApsqj5Nx6P8vm+1hP4IHD/A7ziJqpE0/frwirg+3rUfr1K8v+quC+mAczsaTNbDfQGHvM7TyHdAnzrd4gol98WylJCzKwp0A6Y4XOUfJlZopnNBTYC45xzEZtViiyW/407YKyZzTFvK/dYUTewxjmB2zo+5ylJdwXaNN+NpnaIwx32fT0mvl55/F9VpK9VXBTTZpZqZgvy+OgJ4Jwb4JxrBKQAd0Vy1sCYAcBBvLy+KkzeCFborZKl6MysEjAUuO+w3wBFFOdchnPuFLzf9HQ0s4huo5EiieV/452dc6cC3YE7A60FErkGAs2BU4D1wH99TVNM0fJ9vSjy+JyK/LWKi01bnHPJhRz6MTASeDyEcQp0pKxmdiPQA0hyEdDwXoQ/20hUmG2WpRgC/cdDgRTn3Jd+5ykM59w2M5sAXAhE/IWeUigx+2/cObcucLvRzL7Ca2mZ5G+qErHBzOo559YHelo3+h2oJDjnNmTdN7O3gBE+ximWfL6vR/XXK6/PqThfq7iYmS6ImbUIengp8LNfWY7EzC4EHgIudc7t8TtPDNBWySEQuKjvHWCxc+5/fucpiJnVtsCqOGZWHkgmgr8HSJHF5L9xM6sYuGAKM6sInE/s/AA4DLgxcP9G4Bsfs5SYQKGZ5XKi7OtVwPf1qP165fc5FedrpdU8zIYCJ+CtOrESuMM5t9bfVHkzs6VAWWBL4ND0SF15BMDMLgdeAWoD24C5zrkLfA11mMCSNy+SvVXy0/4mypuZfQKcC9QCNgCPO+fe8TVUPszsLGAyMB/v3xXAo865Uf6lypuZtcG7aCYRb3JhiHPun/6mkpIULf/Gi8LMjgW+CjwsBXwcjZ9XXt/XgK+BIUBjYBVwlXMuqi7my+fzOhevbcABK4Dbs3qNo0F+39fxeoyj8utVwOd0LUX8WsV9MS0iIiIiUlxx3+YhIiIiIlJcKqZFRERERIpJxbSIiIiISDGpmBYRERERKSYV0yIiIiIixaRiWorEzGqa2dzAx+9mtjZwf5uZLQpzlsvMrGXQ43+aWZE3kTGzpmbm25qfZvboYY+nBW59zSUiIiJHpmJaisQ5t8U5d0pg++U3gBcC908he53GEmNmBe3SeRlwqJh2zj3mnEst6QxhkKOYds6d6VcQERERKRoV01KSEs3sLTNbaGZjAzvKYWbNzWy0mc0xs8lmdmLgeBMzSzOznwK3jQPH3zez/5nZd8BzeZ1vZmfi7Vj5n8DMePPAeVcGXqODmU0zs3lmNtPMKgdmeieb2Q+BjwKLVvO8amaLzGykmY0Kev0VZlYrcL99YBtqzKxj4H1/DNyeEDh+k5l9Gfg8fjWzfweOPwuUD3wOKYFju/LIkmhm/zGzWYE/r9sDx+uZ2aTA+QvMrMtRfg1FRESkCAqa9RMpqhbAtc65P5vZEOBPwGBgEN7Okr+a2enA60BX4FXgQ+fcB2Z2C/Ay3mwzwPFAsnMuw8zSDj/fOdfVzIYBI5xzXwB4O4NCYNvgz4BrnHOzzKwKsBfYCHRzzu0zbxv5T4D2BXw+l+PtjtkaqAssAt49wp/Bz8DZzrmDgZaTZwJ/DuDN3rcD9gNLzOwV59zDZnZXYHa/ILcC251zHcysLDDVzMYCVwBjnHNPm1kiUOEIryMiIiIlSMW0lKTfnHNzA/fnAE3NrBJwJvB5VrGLtyU6wBl4xSDAR8C/g17r80AhXdD5+TkBWO+cmwXgnNsBYGYVgVfN7BQgA69gL8jZwCfOuQxgnZmNP8J4gKrAB4Fi3QGlg55Lc85tD2RZBDQBVhfiNQHOB9pkzYwH3qcFMAt418xKA18H/fmLiIhIGKiYlpK0P+h+BlAer5VoWyFmXsErPrPsDtwW5fwsdthrZbkf2AC0DbzuviJmCnaQ7DapckHHnwS+c85dbmZNgQlBzx3+51OUf38G3O2cG5PrCbOzgYuBj8zsP865D4vwuiIiInIU1DMtIRWYFf7NzK6CQ33IbQNPTwN6Be73BqYU8fydQOU83vZnoL6ZdQicUzlwIWNVvBnrTOB6IPEI8ScBvQL9yvWA84KeWwGcFrj/p6DjVYG1gfs3HeH1sxwIzCwXZAzQL2ucmR1vZhXNrAmw0Tn3FvAOcGoh31NERERKgIppCYfewK1mNg9YCPQMHL8HuNnMfsIrbu8t4vmfAg8GLvZrnjXYOZcOXAO8EjhnHN7s8evAjWY2Ha/FYzcF+wr4FZgPDAQmBj33D+AlM5uMN8uc5d/Av8xsKkcu1rMMAn7KugAxH2/j9Wz/YN5yeW/izWyfC8w1sx/xivqXCvmeIiIiUgLMufx+iy0iwczsfYIueBQRERHRzLSIiIiISDFpZlpEREREpJg0My0iIiIiUkwqpkVEREREiknFtIiIiIhIMamYFhEREREpJhXTIiIiIiLF9P/gbI9ttYQzIgAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import numpy as np \n",
"import scipy.stats as stats\n",
"import matplotlib.pyplot as plt\n",
"\n",
"plt.rcParams['figure.figsize'] = [12, 6]\n",
"\n",
"mu, sigma = 10, 4\n",
"n = 1000 # с ростом числа точек в распределении qq-plot стремится к прямой\n",
"sequence = np.random.normal(mu, sigma, n)\n",
"\n",
"\n",
"fig, (ax1, ax2) = plt.subplots(1, 2)\n",
"fig.suptitle('QQ Plot', fontsize=18)\n",
"\n",
"# Q-Q Plot graph\n",
"stats.probplot(sequence, dist=\"norm\", plot=ax1)\n",
"ax1.set_title(\"Normal Q-Q Plot\")\n",
"\n",
"# normal distribution histogram + distribution\n",
"count, bins, _ = ax2.hist(sequence, 25, density=True)\n",
"p_x = 1/(sigma * np.sqrt(2 * np.pi)) * np.exp( - (bins - mu)**2 / (2 * sigma**2) )\n",
"ax2.plot(bins, p_x, color='r')\n",
" \n",
"\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Однофакторный дисперсионный анализ\n",
"\n",
"Рассмотренный ранее **t-критерий Стьюдента** (равно как и его непараметрические аналоги) предназначен для сравнения исключительно **двух совокупностей**. В таком случае мы можем применять однофакторный дисперсионный анализ. Та переменная, которая будет разделять наших испытуемых или наблюдения на группы (номинативная переменная с нескольким градациями) называется **независимой переменной**. А та количественная переменная, по степени выраженности которой мы сравниваем группы, называется **зависимая переменная**. \n",
"\n",
"\n",
"$$ SS_{total} = \\sum_{j=1}^{p}{\\sum_{i=1}^{n_j}{(x_{ij} - \\bar{x})^2}} = SS_{between} + SS_{within} $$\n",
"$$ SS_{between} = \\sum_{j=1}^{p}{n_j{(\\bar{x}_j - \\bar{x})^2}} $$\n",
"$$ SS_{within} = \\sum_{j=1}^{p}{\\sum_{i=1}^{n_j}{(x_{ij} - \\bar{x}_j)^2}} $$\n"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Нулевая гипотеза: a=b=c\n",
"Альтернативная гипотеза: !(a=b=c)\n",
"Результат:\n",
"отклоняем нулевую гипотезу\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAArkAAAFlCAYAAADvSvB9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAQQElEQVR4nO3dXYzld13H8c9XdglLW0qgOD6ATIwGCTGVMDESUM8ANuh6aQwk4kNM5q5iYmLGC0MaQ1wSQySNMTaINj7QGNJ6wcZaonsgEIvOAiUtxQtxGxQVKloYaKToz4tOEZvdztmZc+Y/+53XK9l02vPfs5/s5Nd95+x/ztQYIwAA0Mm3TD0AAACWTeQCANCOyAUAoB2RCwBAOyIXAIB2RC4AAO2cWsWT3nTTTWN9fX0VT82KfeUrX8l111039Qw4cZw9mI7zd+26ePHio2OMF13usZVE7vr6enZ2dlbx1KzYfD7PbDabegacOM4eTMf5u3ZV1SNXesztCgAAtCNyAQBoR+QCANCOyAUAoB2RCwBAOyIXAIB2RC4AAO2IXAAA2hG5AAC0s2/kVtXLquoT3/TjS1X1y0ewDQAADmTfb+s7xvj7JD+QJFX1rCT/nOSe1c4CAICDu9rbFV6f5B/GGFf8PsEAADC1fV/JfZo3JXnv5R6oqq0kW0mytraW+Xx+uGVMYnd31+cOJuDswcFsbm5OPSFJcuHChakn8DQ1xljswqpnJ/lckleMMf7tma7d2NgYOzs7S5jHUZvP55nNZlPPgBPH2YPprG+fz6VzZ6eewQFU1cUxxsblHrua2xV+PMnH9gtcAACY2tVE7ptzhVsVAADgOFkocqvquUl+LMndq50DAACHt9AXno0xvprkhSveAgAAS+E7ngEA0I7IBQCgHZELAEA7IhcAgHZELgAA7YhcAADaEbkAALQjcgEAaEfkAgDQjsgFAKAdkQsAQDsiFwCAdkQuAADtiFwAANoRuQAAtCNyAQBoR+QCANCOyAUAoB2RCwBAO6emHgAAnEw333ZfHnv8ialnJEnWt89P+uvfeOZ0HnjbLZNu6EbkAgCTeOzxJ3Lp3NmpZ2Q+n2c2m026YerI7sjtCgAAtCNyAQBoR+QCANCOyAUAoB2RCwBAOyIXAIB2RC4AAO2IXAAA2hG5AAC0I3IBAGhH5AIA0I7IBQCgHZELAEA7IhcAgHZELgAA7YhcAADaEbkAALQjcgEAaEfkAgDQzkKRW1XPr6r3VdWnq+rhqnr1qocBAMBBnVrwuncluXeM8VNV9ewkz13hJgAAOJR9I7eqnpfkR5L8fJKMMb6W5GurnQUAAAe3yO0K353kC0n+oKo+XlXvrqrrVrwLAAAOrMYYz3xB1UaS+5O8Zozx0ap6V5IvjTF+/WnXbSXZSpK1tbVX3XXXXSuazCrt7u7m+uuvn3oGnDjOHifRrY/cOvWEY+X2l94+9YRrzubm5sUxxsblHlskcr8tyf1jjPW9f//hJNtjjLNX+jkbGxtjZ2fn4IuZzHw+z2w2m3oGnDjOHifR+vb5XDp3xZw4Msfh/B2X34trTVVdMXL3vV1hjPGvST5bVS/b+0+vT/KpJe4DAIClWvTdFW5N8id776zwmSS/sLpJAABwOAtF7hjjE0ku+1IwAAAcN77jGQAA7YhcAADaEbkAALQjcgEAaEfkAgDQjsgFAKAdkQsAQDsiFwCAdkQuAADtiFwAANoRuQAAtCNyAQBoR+QCANCOyAUAoB2RCwBAOyIXAIB2RC4AAO2IXAAA2hG5AAC0I3IBAGjn1NQDAICTa337/NQTnnTvtDtuPHN60l+/I5ELAEzi0rmzU09I8mRoH5ctLI/bFQAAaEfkAgDQjsgFAKAdkQsAQDsiFwCAdkQuAADtiFwAANoRuQAAtCNyAQBoR+QCANCOyAUAoB2RCwBAOyIXAIB2RC4AAO2IXAAA2hG5AAC0I3IBAGhH5AIA0I7IBQCgnVOLXFRVl5J8Ocl/J/n6GGNjlaMAAOAwForcPZtjjEdXtgQAAJbE7QoAALSz6Cu5I8l9VTWS/N4Y446nX1BVW0m2kmRtbS3z+XxpIzk6u7u7PndwAJubm1NPSJJcuHBh6glwpJZ19uodh/v5zt7xU2OM/S+q+o4xxueq6luTfCDJrWOMD13p+o2NjbGzs7PEmRyV+Xye2Ww29Qw4cda3z+fSubNTz4ATyZ99166qunilrxVb6HaFMcbn9v75+ST3JPnB5c0DAIDl2jdyq+q6qrrhqY+T3JLkwVUPAwCAg1rknty1JPdU1VPX/+kY496VrgIAgEPYN3LHGJ9JcvMRbAEAgKXwFmIAALQjcgEAaEfkAgDQjsgFAKAdkQsAQDsiFwCAdkQuAADtiFwAANoRuQAAtCNyAQBoR+QCANCOyAUAoB2RCwBAOyIXAIB2RC4AAO2IXAAA2hG5AAC0I3IBAGhH5AIA0M6pqQcATO3m2+7LY48/MfWMrG+fn3pCbjxzOg+87ZapZwAcmsgFTrzHHn8il86dnXTDfD7PbDabdENyPEIbYBncrgAAQDsiFwCAdkQuAADtiFwAANoRuQAAtCNyAQBoR+QCANCOyAUAoB2RCwBAOyIXAIB2RC4AAO2IXAAA2hG5AAC0I3IBAGhH5AIA0I7IBQCgHZELAEA7IhcAgHZELgAA7SwcuVX1rKr6eFW9f5WDAADgsK7mldy3Jnl4VUMAAGBZForcqnpxkrNJ3r3aOQAAcHiLvpL720l+Ncn/rG4KAAAsx6n9Lqiqn0zy+THGxaqaPcN1W0m2kmRtbS3z+XxJEzlKu7u7PnecODe8fDvff+f21DOSO6cekNzw8mQ+v27qGXCk/NnXU40xnvmCqt9M8pYkX0/ynCTPS3L3GONnrvRzNjY2xs7OzjJ3ckTm83lms9nUM+BIrW+fz6VzZyfdcFzO3nH4vYCjdlzOH1evqi6OMTYu99i+tyuMMX5tjPHiMcZ6kjcl+etnClwAAJia98kFAKCdfe/J/WZjjHmS+UqWAADAknglFwCAdkQuAADtiFwAANoRuQAAtCNyAQBoR+QCANCOyAUAoB2RCwBAOyIXAIB2RC4AAO2IXAAA2hG5AAC0I3IBAGhH5AIA0I7IBQCgHZELAEA7IhcAgHZELgAA7YhcAADaOTX1AIDjYH37/NQTknun33DjmdNTTwBYCpELnHiXzp2dekLWt88fix0AXbhdAQCAdkQuAADtiFwAANoRuQAAtCNyAQBoR+QCANCOyAUAoB2RCwBAOyIXAIB2RC4AAO2IXAAA2hG5AAC0I3IBAGhH5AIA0I7IBQCgHZELAEA7IhcAgHZELgAA7YhcAADaEbkAALSzb+RW1XOq6m+r6oGqeqiqbjuKYQAAcFCnFrjmv5K8boyxW1Wnk3y4qv5ijHH/ircBAMCB7Bu5Y4yRZHfvX0/v/RirHAUAAIexyCu5qapnJbmY5HuS/M4Y46OXuWYryVaSrK2tZT6fL3Emi9jc3Jx6wjdcuHBh6glwpJZx/uodh9/h7MHV293d1S0N1ZMv1C54cdXzk9yT5NYxxoNXum5jY2Ps7Owcfh1Hbn37fC6dOzv1DDhx5vN5ZrPZ1DPgRHL+rl1VdXGMsXG5x67q3RXGGP+ZZJ7kjYefBQAAq7HIuyu8aO8V3FTVmSRvSPLpFe8CAIADW+Se3G9PcufefbnfkuTPxhjvX+0sAAA4uEXeXeGTSV55BFsAAGApfMczAADaEbkAALQjcgEAaEfkAgDQjsgFAKAdkQsAQDsiFwCAdkQuAADtiFwAANoRuQAAtCNyAQBoR+QCANCOyAUAoB2RCwBAOyIXAIB2RC4AAO2IXAAA2hG5AAC0I3IBAGjn1NQD+D8333ZfHnv8ialnZH37/NQTcuOZ03ngbbdMPQMAuEaJ3GPkscefyKVzZyfdMJ/PM5vNJt2QHI/QBgCuXW5XAACgHZELAEA7IhcAgHZELgAA7YhcAADaEbkAALQjcgEAaEfkAgDQjsgFAKAdkQsAQDsiFwCAdkQuAADtiFwAANoRuQAAtCNyAQBoR+QCANCOyAUAoB2RCwBAOyIXAIB29o3cqnpJVV2oqoer6qGqeutRDAMAgIM6tcA1X0/yK2OMj1XVDUkuVtUHxhifWvE2AAA4kH1fyR1j/MsY42N7H385ycNJvnPVwwAA4KCu6p7cqlpP8sokH13JGgAAWIIaYyx2YdX1ST6Y5O1jjLsv8/hWkq0kWVtbe9Vdd921zJ0nwq2P3Dr1hGPl9pfePvUEODK7u7u5/vrrp54BJ5Lzd+3a3Ny8OMbYuNxjC0VuVZ1O8v4kfznGeOd+129sbIydnZ2rHnrSrW+fz6VzZyfdMJ/PM5vNJt2QHI/fCzhKx+XswUnk/F27quqKkbvIuytUkt9P8vAigQsAAFNb5J7c1yR5S5LXVdUn9n78xIp3AQDAge37FmJjjA8nqSPYAgAAS+E7ngEA0I7IBQCgHZELAEA7IhcAgHZELgAA7YhcAADaEbkAALQjcgEAaEfkAgDQjsgFAKAdkQsAQDsiFwCAdkQuAADtiFwAANoRuQAAtCNyAQBoR+QCANCOyAUAoB2RCwBAO6emHsD/t759fuoJyb3Tb7jxzOmpJwAA1zCRe4xcOnd26glZ3z5/LHYAAByG2xUAAGhH5AIA0I7IBQCgHZELAEA7IhcAgHZELgAA7YhcAADaEbkAALQjcgEAaEfkAgDQjsgFAKAdkQsAQDsiFwCAdkQuAADtiFwAANoRuQAAtCNyAQBoR+QCANCOyAUAoB2RCwBAO/tGblW9p6o+X1UPHsUgAAA4rEVeyf3DJG9c8Q4AAFiafSN3jPGhJF88gi0AALAUp5b1RFW1lWQrSdbW1jKfz5f11Cxoc3NzKc9T7zj8c1y4cOHwTwInyO7urv9vwkScv56WFrljjDuS3JEkGxsbYzabLeupWdAY49DPMZ/P43MHR8/Zg+k4fz15dwUAANoRuQAAtLPIW4i9N8nfJHlZVf1TVf3i6mcBAMDB7XtP7hjjzUcxBAAAlsXtCgAAtCNyAQBoR+QCANCOyAUAoB2RCwBAOyIXAIB2RC4AAO2IXAAA2hG5AAC0U2OM5T9p1ReSPLL0J+Yo3JTk0alHwAnk7MF0nL9r10vHGC+63AMriVyuXVW1M8bYmHoHnDTOHkzH+evJ7QoAALQjcgEAaEfk8nR3TD0ATihnD6bj/DXknlwAANrxSi4AAO2IXIAJVdV6VT049Q6AbkQuAADtiFy+oar+vKouVtVDVbU19R44QU5V1Z1V9cmqel9VPXfqQXASVNXP7p27B6rqj6bew3L5wjO+oapeMMb4YlWdSfJ3SX50jPHvU++CzqpqPck/JnntGOMjVfWeJJ8aY/zWtMugt6p6RZK7k7xmjPHoU38GTr2L5fFKLt/sl6rqgST3J3lJku+deA+cFJ8dY3xk7+M/TvLaKcfACfG6JO8bYzyaJAK3n1NTD+B4qKpZkjckefUY46tVNU/ynCk3wQny9L9S81dssHoVZ601r+TylBuT/Mde4H5fkh+aehCcIN9VVa/e+/jNST485Rg4If4qyU9X1QuTJ2/Zm3gPSyZyecq9efKLXz6Z5Dfy5C0LwNF4OMnP7Z2/FyT53Yn3QHtjjIeSvD3JB/du1XvnxJNYMl94BgBAO17JBQCgHZELAEA7IhcAgHZELgAA7YhcAADaEbkAALQjcgEAaEfkAgDQzv8Chd0EAxhMVzkAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"from scipy import stats\n",
"import pandas as pd\n",
"\n",
"# Выборки которые надо сравнить\n",
"data = pd.DataFrame({\n",
" 'a': [3, 1, 2],\n",
" 'b': [5, 3, 4],\n",
" 'c': [7, 6, 5]\n",
" })\n",
"data.boxplot()\n",
"print('Нулевая гипотеза:', '='.join(data))\n",
"print('Альтернативная гипотеза:', f'!({\"=\".join(data)})')\n",
"# общая средняя\n",
"grand_mean = data.values.flatten().mean()\n",
"# отклонение групповых средний от общей средней\n",
"ssb = sum(data[group].size * (group_mean - grand_mean)**2 for group, group_mean in data.mean().items())\n",
"# отклонения значений в внутри группы от средней группы\n",
"ssw = sum(sum((x - group_mean)**2 for x in data[group]) for group, group_mean in data.mean().items())\n",
"\n",
"groups = data.shape[1]\n",
"dfb = groups - 1\n",
"dfw = data.size - groups\n",
"# межгрупповой средний квадрат \n",
"mssb = ssb/dfb\n",
"# внутригрупповой средний квадрат\n",
"mssw = ssw/dfw\n",
"\n",
"f_value = mssb/mssw\n",
"\n",
"p = stats.f.sf(f_value, dfb, dfw)\n",
"print('Результат:')\n",
"if p < 0.05:\n",
" print('отклоняем нулевую гипотезу')\n",
"else:\n",
" print('НЕ отклоняем нулевую гипотезу')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Множественные сравнения в ANOVA\n",
"\n",
"В отличие от t-критерия, позволяет сравнивать средние значения трёх и более групп. Разработан Р. Фишером для анализа результатов экспериментальных исследований. В литературе также встречается обозначение **ANOVA** (от англ. **AN**alysis **O**f **VA**riance) - дисперсионный анализ\n",
"\n",
"## почему мы не можем применить t-критерий для более двух выборок\n",
"**применяя его попарно к каждой выбрке**\n",
"\n",
"Чтобы выяснить это, сделаем эксперемент."
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"from numpy import random\n",
"import matplotlib.pyplot as plt\n",
"from scipy.stats import t\n",
"\n",
"\n",
"def pair_t(samples, alpha):\n",
" '''Парный t-критерий, если все выборки равны, возвращает True'''\n",
" n_samples = samples.shape[0]\n",
" # https://ru.wikipedia.org/wiki/Сочетание \n",
" n_combinations = n_samples*(n_samples - 1)//2\n",
" result = np.zeros(n_combinations, dtype=bool)\n",
" k = 0\n",
" for i in range(n_samples):\n",
" for j in range(i+1, n_samples):\n",
" N = samples[i].size\n",
" std_err = np.sqrt((samples[i].std()**2)/N + (samples[j].std()**2)/N)\n",
" t_value = (samples[i].mean() + samples[j].mean())/std_err\n",
" p = t.sf(t_value, N-2)\n",
" result[k] = p >= alpha\n",
" k += 1\n",
" return np.all(result)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"def pair_t_test(repeat, n_samples, sample_size, ax, alpha=0.05):\n",
" '''\n",
" функция показывает, сколько у нас будет ложных результатов, при парном сравнение множества выборок\n",
" с помощью t-критерия\n",
" \n",
" repeat, n_samples, sample_size = количество повторов, количество выборок в каждом повторе, размер выборки\n",
" \n",
" ax - для рисования\n",
" alpha = (1 - (p-уровень значимости))\n",
" '''\n",
" result = np.zeros(repeat, dtype=bool)\n",
" for i in range(repeat):\n",
" samples = random.randn(n_samples, sample_size)\n",
" result[i] = pair_t(samples, alpha)\n",
" \n",
" unique, counts = np.unique(result, return_counts=True)\n",
" percentage = counts/result.size\n",
" ax.pie(percentage, normalize=False, labels=unique, autopct='%.0f%%')"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABFgAAAEECAYAAAAcd4COAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABj3ElEQVR4nO3dd3hb5fnG8e9jO3G2khAgCUvsFSDsvWcxFCirFFoKLWWUUlpaKgq0hzJqWmhpS9mzYZQ9RX/svVeAEDaYkUAIGUqcxI4tvb8/XgUUYyeOLenVuD/XpSu2dXTOLUU6Ouc57zDnHCIiIiIiIiIi0nM1oQOIiIiIiIiIiJQ7FVhERERERERERHpJBRYRERERERERkV5SgUVEREREREREpJdUYBERERERERER6SUVWEREpKSZWZ/QGUTKkT47IiIixaUCi4iIlBQzi5vZODP70MxmAP8InUmkHJjZUmZ2kZm9Z2bTgDtDZxIREakmKrCIiPSCmTWZ2Twza865tZjZU6GzlSMzGwY8DbwBjHHODXPOHRc4lkjJy7ZWeRRoATZ1zi3lnGsIHGshZhaZ2XWhc4iIiBSKCiwiIr23t3Nu0IIbcEzoQGXsl8Ddzrm/OOfmhg4jUkYOBSY5537tnJsZOoyIiEg1UoFFRKTAsq1cTjGziWY2w8yuNrN+OfcfZWbvm9l0M7vbzEbn3OfMbLWc388ys2tyfh9tZreZ2VQz+8jMTsi5b6GrxWZWl11f3MwOzmlxk862umk2s+YunkPMzP6T3c7HZnaamdVk7/txboudTjJeZ2anZX/ewcw+y7nvoGymn2b/tBmwVLZ7UGevx1Zm9qKZpbL/bpVz32ML1mNmq5rZp2a2dxfPJzKztg4tj5yZxbP3X2Nml5jZg2Y228weN7OVOvt/MbMVs62YOr0yn33OmQ7bSpvZj7P312Rfz4/N7Mvs6xzL3hfPbiv3sW1mFmXvH2Zm92b/X2Zkf16+w2vyZzN7Ifua3WVmwzusu67D/1WU8/vi3puv5fxea2aTc/9/O3kt1s2+ptPNbIqZ/T7n/+NWM7sp+3q/YmYb5DwuYWYfZO+baGb75dz34+zr2Wxms8zsETNbLue1/6xDhqcWvPbZ3480s7eyr9/9Xf0/Z3//+r3d8fUzs82yv5+Vs/xeZjbezGaa2TNmtv4iXhtnZnOyz+MDMzsw574mM9ulk8fk/n9tBqTN7M3s9h4zs7Vzll07+7eZ2WW+m3Pf4t7vvf7cmdkewO+BBfue1zouk13u6/2J+c/Gf83sRvtmf+PM7ATz+4ivzOyv1vW+6OTs8ruY2Za28Gdofs7vK2aXX9x7YYm3m/M8FryHp5nZzfbtz+FdOY8fZmoJKSJSllRgEREpjkOB3YFVgTWABQWHnYA/AwcBo4CPgf92Z4XZg/t7gNeA5YCdgRPNbPfFPdY5d1NOi5sngeNzfu/Mv4AYsAqwPfAj4Iju5FxE/j7AmcDnOX8eAOwEHECH1yN7QpIE/gksBfwNSJrZUh3WOxK4HzjVOXfPIiLkvgZDO7n/0Gy+EcB44Pou1nMmMG0R2wGY3KGV07M59/04e9sR//oOAi7s8PihOY+9KefvNcDVwErAisC8Th77I+BIYDTQjn/9Fqub782+ZrZp9ucGYOYi1jcYeAj4v2yW1YCHcxbZB7gFGA7cANxp3wzS+gGwLf49eAZwnZmNynnss9nXZhmgFfhVN5/jvviT/u8BS+M/Czd257Gd+AswKWfdGwFXAUfj36+XAnebWf0i1rFB9nn8Cbh4Cbc/ANgVOBH/XO4D7jGzvtnX8R7gAfxr9AvgejNbM+fxnb7f8/W5c879H3AO33zuNui4TCcuxP+f/8g5l8n5+37AJsBG+PfNkR0faL674Qlk35POuWdzPkPXA3/J+Ux+0s33whJvN+sEYF/8vnM0MAP4d4eHrpLznv4h8GFnL4iIiJQ2FVhERIrjQufcp8656cDZwCHZvx8KXOWce8U51wqcAmxp2ZYUi7EpsLRz7k/OufnOuQ+By4Hv5zO4mdUCBwOnOOdmO+eagPPxJwG9cTTwPPBuh7939Xo0AO8558Y559qdczcCbwO5V8uH4k8ir3fO/aeX+ZLOuSeyOU7N5lghd4Fsi4QtgWt7sZ1Dgb855z50zjXjn/P3LadlSVecc9Occ7c55+Y652bj31vbd1hsnHNugnNuDnA6cFD2/7Q7uRb33rwSWND66KfZ37uyF/CFc+5851xL9r30fM79LzvnbnXOteFP4vsBW2Sf5y3OucnOuYxz7ibgPXyLjY5qsrfFFbwWOBr4s3PuLedcO74AMDa35UJ3mNle2e0+lPPno4BLnXPPO+fSzrlr8cWfLbqxyjq6/xxy3eWcezD7Gp4H9Ae2ym5zENCY3Vc8AtzLN/sh6Pr9XuzPHeBbC+GLjvtnn0+uc51z051znwAXdHgeC5yKL3ClurnJ7rwXerrdo/GFp8+yr28EHNDhM34tvtAKvijam32KiIgEogKLiEhxfJrz88f4q5hk//14wR3ZE+xp+BYpi7MSMDrb5H+mmc3EX4FdNmeZg3Lu+6qH2UcAfXNzZn/uTsZOZVsznIw/4c/VStevx0KvVRc5/gQ0AzsvaL7fC1//n2VzTOeb/7cFzsU/h44ngEui4/P6GH+CvWzni3/DzAaY2aXmuxfNAp4AhnYooHR87/XB/58u8FXOe+SgrnJ18d68F9jBfDeaUcDLi4i7Ar4lSldyX+8M8Fk2A2b2I/umq81MYEyH57BF9u8zgZWBa3KfR4fPSG6BYyXgHzn3TQesw3N8Jef+33SSuwbf0ufkDn9fCTipw7ZX4NvvoVyvmO+m92/8eznXndn1fGpmfzEz63B/x89OBv+aLvjsfNqhFUjHz05X7/eCfe7MbNucbjpv5ty1Eb61yAh8q66OutqfLljvivj38l+7m4XuvRd6ut2VgDty1v0WkGbhz/g44FAz2zy7nSlLkF1EREqECiwiIsWR2/JhRWBy9ufJ+INvAMxsIL4Z/iQW71PgI+fc0JzbYOfcnjnL3LzgPhY+IV0SX+ELCLlXclfsZsau/DabreOJ2yd0/Xos9Fp1keNmYJvsz8f3Ih/k/J+Z2SB815XJOffvhH9Nb+7ldjo+rxXxXXm6c4J1ErAmsLlzbgiw3YLIOct0fO+1sXCxbUTOeyT3uXTnvdkO3AHcysJFjc58iu8i15Xc17sGWB6YnG1BcDn+/3OpbM4JLPwcn8v+vR9wXYcsk3M/I8BzHTId3eEz1N8590zOMhvlPPa8TnL/GHjHOfdch79/CpzdYd0Dsi1AurJRtgvLhsBFC8YGydo3m2Er4DB8l8NcHT87hn9NF3x2VuhQ/Oj42enq/Z7Pz51b6BfnnszpprNuzl0pYBeyrUE6aXHV1f50gbPwXYBmLyJLR915L/R0u58C3+mw7n7OudzXcBr+fX0pcMUS5BYRkRKiAouISHH83MyWz45n8Hu+GUfjBuAIMxubHZvhHOD5bDecxXkBmGVmvzOz/uYHGR2TMyZGXjjn0vgTqLPNbHD2hPfX+BPZnhiMH7/l7E7uu5GuX4/7gDXM7AfmB+w9GFgH34pigaeyV+mPBP5gZp1d/e6uPc1sGzPrix+b4nnnXO4V7Aj4rXPOdfro7rsR+JWZrZw9sV0wTkV7Nx47GD/uyszse+uPnSxzmJmtY2YD8C0Nbs3+ny5Od9+bl+GvyHc1Rs0C9wIjzexEM6vPvpc2z7l/YzP7XrbbxIn4FhnPAQPxJ+ZTAczsCHwLls44fMuApbvx/AAuAU4xs3Wz645ZzuCy3XQqvvtUR5cDx5jZ5uYNNLOGbOutxUnjW40N7eS+2fjCVsdjuJuBBjPb2fyYKyfhX8Nn8F3x5gAnm1kfM9sB38Und0ydrt7v+fzcTQHi3Wjl8oFz7nPn3GXALL7dcui35geCXQE/81juuESrAZvjCxVLojvvhZ5u9xL8/nOl7LqXNrN9Olnu7/jxb/5vCbOLiEiJUIFFRKQ4bsCPUfBh9nYWgHPuYXwXk9vwg72uyrfHUHnSzD4zPxvKCcCBZvbr7Eny3sBY4CN8q4Qr8INC5tsv8CdoHwJPZZ/PVTn3b9pJxgW/79dhXUOAfzrnZnTcSHZsiD/QyevhnJuGH8fjJPzV3pOBvZxz3+r65Jx7F2gEruikK0V33YAvWEwHNsaPSZLrVefcYz1cd66r8N0DnsD/P7bgX+/uuAA/zsZX+GJEZydm4/AtOr7At/A4oZNlvqWb702yY8cc4hYzNXD2qv6u+PfsF/hxVHbMWeQu/Fg/M/Dj+3zPOdfmnJuIH/PnWfwJ+nrA0x1Wv2W2a00KP0hpt1ovOefuwHfz+q/5LlYTgO9057E57nXOvdfJul/Cj8NyYfY5vc83Y2x05bXs83gMOMc593rOfTdmP08TgDvp8H+dzfBD/IDUX+Ff572zY67MB76bfW5fARfhB459O2cVnb7f8/y5uyX77zQze2Uxr8UCPwV+YwsPyHsXvjvaePwAvLlj/ywLnNbJuC2L1M33Qk+3+w/gbuABM5uN/6xu3nGh7Hg9P+5mAVREREqQ9f7Cm4iILIqZNQE/dc49tLhlu7m+HwNx51yUj/XJt5mfivcz59xpobP0hpk9BlznnCvpLgfmpxpezTl3WOgs1aic3u9m5oDVnXPvV8N2RUSkvCx2hgIRESk5k4HMYpcSEREREZGiUYFFRKTMOOceCJ1BREREREQWpi5CslhmFsePC9Cnm4MuiojknfZFIlIKtC8SkVKlLrfhaZDbIsvOnHClmX1sZrPN7FUzW9IB9URE8sbMVjezFjPr6axAIiI9ZmZxM7vPzGaY2RdmdmF2NikRkYIys+PN7CUza82OR9Xx/gFmdpGZfWVmKTN7IkBMKSP68iq+OuBTYHvgE2BP4GYzW6+b07KKiOTbv4EXQ4cQkap1EfAlMAo/NfWDwHHAPwNmEpHqMBk/s+Pu+Fn5OroMf/62Nn6WtbFFSyZlSS1Yisw5N8c5FznnmpxzGefcvfhmpht3tryZrWZmj2crpl+Z2U059/3DzD41s1lm9rKZbZtzX2Rmt5jZddmWMm+Y2RpmdoqZfZl93G45yz9mZn82sxey27rLzIZ3kSmWbYXzuZlNMrOzzKx2cXlFpPSY2feBmcDDi1lO+yIRKZSVgZudcy3OuS/wU1Cv29mC2heJSD455253zt2Jn4Z+Ieanh/8u8DPn3FTnXNo593JX6zKzH5vZh9l9zEdmdmj276ua2SNmNi27H7jezIbmPK7JzH5rZq+b2Zzs/mRZM/tfdl0Pmdmw7LJxM3Nm9jMzm5zd75y0iExbmNkzZjbTzF4zsx0Wl1d6RwWWwMxsWWAN4M0uFjkTeAAYBiwP/CvnvhfxVdThwA3ALWbWL+f+vYFx2ce+CtyP/z9fDvgTcGmHbf0IOBIYDbTT9ZWja7P3rwZsCOwG/LQbeUWkhJjZEPy+oMsv5hzaF4lIofwD+L75pvjLAd/BF1k6o32RiBTL5sDHwBnZwsgbZrZ/Zwua2UD8PuI7zrnBwFbA+AV3A3/G70vWBlYAog6r2B/YFX9euDfwP+D3wAj8fuqEDsvvCKyO398kzGyXTjItByTxLXSGA78BbjOzpReTV3pBBZaAzKwPcD1wrXPu7S4WawNWAkZnr+w8teAO59x1zrlpzrl259z5QD2wZs5jn3TO3Z8dgO0WYGmg0TnXBvwXiOdWT4FxzrkJzrk5wOnAQQuuwORkXhZ/4HNitjXOl8Dfge8vLq+IlJwzgSudc592Y1nti0SkUB7Ht1iZBXwGvATc2cWy2heJSLEsD4wBUvjiyPHAtWa2dhfLZ4AxZtbfOfe5c+5NAOfc+865B51zrc65qcDf8MNF5PqXc26Kc24S8CTwvHPuVedcK3AHvnib64zsPucN4GrgkE7yHAbc55y7L9tz4kH8/nXPReWV3lGBJRAzq8FfRZmP/7B25WR81fMFM3vTzI7MWcdJZvZWttnpTCCGr3IuMCXn53nAV865dM7vAINylsk9yfoY6NNhfeAPEvoAn2ebms3EX/FZZnF5RaR0mNlYYBf8iUB3aF8kInmXPR66H7gdGIj/rA8Dzu3iIdoXiUixzMMXSc9yzs13zj0OPIpvNbKQbCH2YOAY/P4gaWZrAZjZMmb232wXwlnAdXx7X9Jx/9Tx90ELL/6t/dPoTvKvBBy4YN+U3T9tA4xaVF7pHQ1yG4CZGXAlsCywZ/bKSaeyfZGPyj5uG+Ah86NXjwJ+B+wMvOmcy5jZDPyXeE+tkPPzivgdylcd/v4p0AqM6Gxqwq7yOufe70UuEcm/HYA48InfJTEIqDWzdZxzG3VcWPsiESmQ4fjP9oXZK7WtZnY1vkn7yR0X1r5IRIro9SVZ2Dl3P3C/mfXH78MuB7bFdw9ywPrOuWlmti9wYS+zrQAs6AGxIn6w3o4+xbfEO2oJ80ovqAVLGBfj+9/t7Zybt6gFzexAM1s+++sM/IczDQzG9/edCtSZ2R+AIb3MdZiZrWNmA/B9kW/NubIDgHPuc3xf4vPNbIiZ1ZgfuGn7xeQVkdJyGbAqfryCscAl+H66u3e2sPZFIlIIzrmv8IP9H2tmddkuOocDr3W2vPZFIpJP2f1OP6AWf6Gpn30zTfwT+FlfT8kutzX+AtX9naxnWTP7bnZsk1agmW8+64Ozv880Py7Kb/MQ/XTz41atCxwBdDaA9nXA3ma2u5kteG47mNnyi8krvaACS5GZ2UrA0fgTmi/MrDl762rU5k2B582sGbgb+KVz7iP8B/t/wLv4ZmEtLNxUrCfGAdcAXwD9+PZgSgv8COgLTMQfLNyKv3K0qLwiUkKcc3Odc18suOG/WFuyfYM7o32RiBTK94A98MWR9/GFkl91saz2RSKST6fhu+Ak8GOWzMv+jWwvg33wY5ak8C08ftTF2Jk1+EkDJuOnc94eP908wBnARtl1JPFdInvrcfz+8mHgPOfcAx0XyI6xtw9+sNyp+H3ib7NZF5VXesGcc6EzSAkws8eA65xzV4TOIiLVS/siESkF2heJSCkyszi+1V+fzrolSnhqwSIiIiIiIiIi0ksqsIiIiIiIiIiI9JK6CImIiIiIiIiI9JJasIiIiIiIiIiI9JIKLCIiIiIiIiIivaQCi4iIiIiIiIhIL6nAIiIiIiIiIiLSSyqwiIiIiIiIiIj0kgosIiIiIiIiIiK9pAKLiIiIiIiIiEgvqcAiIiIiIiIiItJLKrCIiIiIiIiIiPSSCiwiIiIiIiIiIr2kAouIiIiIiIiISC/VhQ4gIiIiIlIOzCwNvJHzp32dc01dLNvsnBtUlGAiIlISVGAREREREemeec65saFDiIhIaVIXIRERERGRHjCzQWb2sJm9YmZvmNk+nSwzysyeMLPxZjbBzLbN/n03M3s2+9hbzEytXUREypw550JnEBEREREpeR26CH0EHAgMcM7NMrMRwHPA6s45t6CLkJmdBPRzzp1tZrXAAKAeuB34jnNujpn9Dqh3zv2p+M9KRETyRV2ERERERES6Z6EuQmbWBzjHzLYDMsBywLLAFzmPeRG4Krvsnc658Wa2PbAO8LSZAfQFni3OUxARkUJRgUVEREREpGcOBZYGNnbOtZlZE9AvdwHn3BPZAkwDMM7M/grMAB50zh1S7MAiIlI4GoNFRERERKRnYsCX2eLKjsBKHRcws5Wyy1wOXAlshO9KtLWZrZZdZoCZrVHE3CIiUgBqwSIiIiIi0jPXA/eY2UvAeODtTpbZAfitmbUBzcCPnHNTzezHwI1mVp9d7jTg3YInFhGRgtEgtyIiIiIiIiIivaQuQiIiIiIiIiIivaQCi4iIiIiIiIhIL6nAIiIiIiIiIiLSSxrktpxFsaWAFfEj1i/4dwVgKNA351bf4ff5wHT8FIHTO/l5MvAe8BFRKl205yMi5SeKGX7/sxwwChiZ/XfBzyOA/vj9UD1QC1j2Nh9IATOzt9yfPwPez94+I0ppwDARWaR4IjkAWANYE39MNDR7i2VvuT/3AVqBlg63ednbDPx+aFL23ybgw6bGhpbiPBsRKVfxRHIwsBawMn4a96Xxx0O5t4H4c/FafKOHDNAOpIFZwFed3L7EHxe9o31R6dIgt+Ugio0GNs7eNgJWw5/QDCzwlucDHwJvAa/n3D7QyY5IFYpiI4D1OtzWBQYVeMstwEf4g4p3gZeAZ4lSHxd4uyJSguKJ5BBgc2AdfDFlQVFlOXzxtlAcvuDyAX7GoOeB55oaGz4q4DZFpETFE8n+wKb4Y6G1s7e1gOULvOkM8DH+HO3t7L9vAK80NTa0FXjbshgqsJSaKFYLbABsk71thT9gKCXTgEeBh4GHiVLvBc4jIoUQxZYDdgZ2AnbEF3ZLyefAczm3F4hSuqIjUmHiieRwYLuc21j8Vd9S8SXZYkv23xeaGhtmh40kIvkWTySH4s/PtsXvizbGt4YrFfPw+6Ens7dnmxob5oSNVH1UYCkFUaw/sDuwH7AXMDxsoCX2CQuKLb7g8kXgPCLSE1FsCH5ftKCosnrYQEtsHvAYcN9rmVXu3uBPr34SOI+I9EA8kewL7AbsAWyPvzpcyJYp+dYOPAHcCdzZ1Njwadg4ItIT8USyFtga2AfYBRhDeY1h2g68AjwA3NXU2PBS4DxVQQWWUKLYMGBvYF/8Cc2AoHny6wVgHHAjUWpa6DAisghRLIbfDx0A7IofJ6XsnTT/mBdvy2zXF7gduK2pseHN0JlEpGvZE5mdgO/jLzgNC5sor17GF1vu0L5IpLTFE8k6fDHlIPy52oiwifLqM/y+6GbgqabGBhUCCkAFlmKKYvX4D+vh+CsylT7IcBvwP+A/wL1EqdbAeUQEIIr1BfYEDgMagH5hA+WXc8xZq/Wa2lb65j6vV4DLgRuaGhtmBYomIjniiWQNvqn9wcD+wDJhExXFe8D1wOVNjQ2TQ4cRES+eSG4M/Ay/L1oqcJxi+Ay4CbisqbHh3dBhKokKLMUQxVYAjgV+ih9FuhrNwFdLryVKPRs6jEhVimIj8fuiY6jgE5lPMyOe33b+Pzfv4u45+H3R5U2NDdoXiQSQHcfgZ8DPKb2xnYqlHbgDuKipseGxwFlEqlI8keyHbzV3HH6w2mrkgEeAi/DdiDSDbC+pwFJIUWxH4BfAdymtwdhCexb4M75Vi96AIoUWxTYFfgkciJ+qvaJd0P69py5oP2Cbbiz6JvBv4Kqmxga1sBMpsHgiuTJwInAkhZ99rJy8iT+5GafBcUUKL55Iroq/4HQE5Tf2ZSF9hm/te1lTY4PG1OwhFVjyLYrV4T+sv8QPyiZdex1oBG4mSqlaKpJPUczwzVx/DWwZOE3ROEdm09aLpn3F0CVpLTgZ+Av+gGJegaKJVK14Irk1fl+0L+U1QGSxzQauAP7c1NgwNXQYkUoTTyTXBSL88VE5DZxdbG3ANcBZTY0NmjBgCanAki/+ZOYg4CxgtcBpys0H+JOba4hS80OHESl7UWwP4Bxgw9BRim2WGzBh/dYrxvTw4VOA8/FN9jWtoUgvxRPJ7fEtVqumyJsnzcDfgfM0ZpRI78UTyTWBP+LHe1KRt/vm44u+Z2vMqO5TgSUfotjOwLn4udCl5yYBfwKuIEplQocRKTtRbEv8ycz2oaOEckv7do//tv2Y3j7/acBfgQvUdUhkycUTyTXwF072CZ2lzE3Dt/S9sKmxoSV0GJFyk+0K9AfgUDRcQ2+0AJfiW9dNCR2m1KnA0htRbEN8YWXX0FEqzGvAiUSpx0IHESkLUWxdfIuV74aOEtqered8MNHFV83T6t4HftnU2HBfntYnUtHiieRw/FXiY4E+geNUkknAmcCVTY0N7aHDiJS6eCI5BH/R9udU/qytxTQXfyHvL02NDep10AUVWHrCz8RxPnAI6r9XSLfhCy2fhQ4iUpKiWH/8ycxJ6ACC+a724zVax61UgFXfC5zY1NjwQQHWLVL24olkX+B44DRgWOA4lewN4CdNjQ0vhg4iUqriieTBwN+A0aGzVLB3gOOaGhseCR2kFKnAsqSi2E+A84ChgZNUi2b8CeQ/NBCuSA7fNfFSIF+tNcre0+l1Hz+07dRCdY9qxe/7z2lqbJhboG2IlJ14IrktcCWweugsVSIN/AM4XfsikW/EE8nV8TMDqmdB8dwAnKQZhxamAkt3RbGV8YP87BQ6SpUaDxxBlBofOIdIWFFsKXwLusNDRyk1R83/9fgHM5uMLfBmPgR+2NTY8EyBtyNS0uKJ5EB8U/HjUWveED4EjtIVZKl22RZ0vwcSQH3gONUoBZyKnyBAhQVUYOmeKPYz/AnNoNBRqlwrcDJR6p+hg4gEEcUOAC4ClmQK4qqQccxcvXXcoDS1xegqlcaPefMnjYcg1SieSG4F/Ae1oCsFVwK/aWpsmBk6iEixxRPJtYHrqcJZE0vQQ8Dhmm1IBZZF82OtXAE0hI4iC7kbOJIoNS10EJGiiGID8E3Cfxo6Sql6L7PcM7vO/+tWRd7s88BhTY0N7xd5uyJBxBPJOvyMHL9HM3KUksnAIU2NDU+EDiJSLPFE8jh8193+obPI16bjW9bdHjpISCqwdCWKbY0fZHXZ0FGkU58BhxKldDAhlS2KrQPcAqwTOkop+1PbD5+9Kv2dLQNseg5+ANwrAmxbpGjiiWQc+C+weeAo0rl24OSmxoa/hw4iUkjxRHIovuXW9wJHka5dBPy6qbGhNXSQEFRg6UwUOwq4EOgbOoosUho4CzhTA+BKRYpih+IHsh0YOkopc4629VqvmNfMgCEBY4zDX7WpyoMJqWzxRHI7/EWnEaGzyGLdhJ9paE7oICL5Fk8kNwFuBlYOnUUW61XgwGqcgVEFllxRrA++Gf6xoaPIEnkM+B5RakboICJ5EcXqgAuAnwdOUhamutgrm7ZevFHoHMCzwH5NjQ1TQgcRyZd4IvlT/NXIPqGzSLe9CXyvqbHh3dBBRPIlnkgegB/7SV2Cysc0/HHRk6GDFFNN6AAlI4otjR+cR8WV8rMD8BRRbMXQQUR6LYoNwo8zpOJKN92T3rI5dIasLYEX4onkBqGDiPRWPJGsjSeSFwCXo+JKuVkXeDGeSO4TOohIPsQTyVPwLVdUXCkvSwEPxRPJw0IHKSa1YAGIYhsCdwI6QS9vnwPfIUq9FjqISI/4gbWTQCm0xigb27X+/bNP3LLLh86RYw5+8Ns7QwcR6Yl4IhnDj7eyR+gs0isO+G1TY8P5oYOI9EQ8kewDXAIcGTqL9Nqfmhob/hg6RDGowBLFdgHuAgaEjiJ5MQvYnyj1UOggIkskiq0F/A+IB05SVua5vu+u3XrNGqFzdEInNlKW4onkKvhC71qhs0jenNnU2PCH0CFElkR2MNvbgJ0CR5H8uQE4stLHq6vuLkJRbA/gHlRcqSRDgPuIYlXVFE3KXBTbBngaFVeW2BOZ9T4PnaELBpwXTyRPCx1EpLviieRqwOOouFJpTo8nkhfEE0kLHUSkO+KJ5DLAU6i4Uml+APxfPJGs6HPv6i2wRLG98d2C+gVOIvnXB/gPUex3oYOILFYU2xl4EBgeOko5ujq9x9KhMyzGmfFE8szQIUQWJ1tceQwope52kj+/BK6MJ5K1oYOILEq2uPIofiwhqTw7APdVcpGlOrsIRbH98NPYadC2yvcbopSa6EtpimLb4bsFVeyXTCGlnU1ZtfW6ZcDK4arsuU2NDYnQIUQ6k1NcWS5wFCm8W4BDmxob2kIHEekop7iyTugsUnCPA3s2NTbMDR0k36qvBUsUOwg/CrWKK9XhPKLYT0KHEPmWKLYlfpwDFVd6aIJb+d0yKa4A/C6eSP69Nysws7SZjc+5xRexbKnMrCQlLp5Iro6KK9XkQODOeCLZN3QQCaNUv0tUXKk621OhLVmqq8ASxQ7BD65TFzqKFNVlRLEDQ4cQ+VoU2wTfcmVQ6CjlbFx613Lr4nliPJE8rxePn+ecG5tza8pXMKlOKq5UrT2B/8QTyeo6D5AFSu67RMWVqlWRRZbq2bFGsZ2AawH1Pa0+NcB1RLHdQwcRIYptADwAxEJHKWfOMfee9Jbrhc7RAyfFE8lf5GNFZjbIzB42s1fM7A0z26eTZUaZ2RPZq5QTzGzb7N93M7Nns4+9xcxU7Ksy8URyOfwJzejQWSSIg4F/hA4h4YX+LoknkgOB/0PFlWq1PXBLJY0PVR0Flii2Jn6aL3ULql59gduJYluHDiJVLIotjz+IGBY6SrmbxIgJrfQttxYsC1wQTyS/dQDbDf1zmnTfAbQA+znnNgJ2BM43+1aXqR8A9zvnxgIbAOPNbARwGrBL9rEvAb/u6ZOR8pO9Wng3arlS7Y6PJ5Knhg4hRVcy3yXZVlQ3Ahv26hlJudsTuCB0iHyp/AJLFFsKuBcYGjiJhDcASBLF1g8dRKpQFBsA3AWMDB2lEtya3q41dIZeqAFuiCeSmy3h43Kbde+Hnwr6HDN7HXgIf7K8bIfHvAgcYWYRsJ5zbjawBf5K4dNmNh44HFipx89Gykp2qt7/ABuFziIl4ax4InlI6BBSVKX0XfI3YO8ePxOpJMfHE8kTQofIh8ousEQx32oBVgsdRUpGDLg7W3gTKY4oZvguijqhyQPnyFzXvstaoXP00gDgnngiuUov1nEosDSwcfaq4hRgoVY9zrkngO2AScA4M/sR/mD6wZwD7HWccxoMvHqcBewfOkRILpNm8tUn8OWtZ3z9t1kv38Oky49m8hXHMePRqwBo+Wwik686ns+v/RVtMyYDkGlpZspNp1Nhs3BeHU8k1cK3egX5Loknkj/HTx8ussDf44nkXqFD9FZlF1jgMvzOQCTXSsBNRLGK6esnJe+PwAGhQ1SK2fSf+BVDlw6dIw+WwQ/u1tPxeGLAl865NjPbkU6uHJrZStllLgeuxBf5ngO2NrPVsssMMLM1ephBykg8kTwM+H3oHKHNfulu+iy1wte/t3z8OvPee47RR1zI6J9exJDNvgfArBfvYOl9T2Hodj9i9qv3ATDzmf8S2/Igvt2DoqzV42cWUku26lT075J4IvkdNAaQfFsNcGM8kRwbOkhvVG6BJYqdgm+qJtKZnYFzQ4eQKuCnhv9D6BiV5MHMJtNCZ8ijNYGre/jY64FNzOwl/BXItztZZgd8X/lX8a0W/uGcmwr8GLgx2yT8OaDcWwTJYsQTyS2BK0LnCK191lfM+/BFBm2w29d/m/3qfQzZ4kCszg/VVztwKABWU4drn49rb8Vq6mib8Tnp2dPot2I5jq+9WCPwJzaaabP6FPW7JJ5IrgHchCYekc4NAu6OJ5Jl29vAKqyJoxfFdsHP0lFRlxekIL5HlLojdAipUFFsHXy/5Yqafi60htazP3jTrbxq6Bx5dlJTY8PfQoeQypSdAvV1vj2uQtWZesc5DNnyINz8ucx64Q6WOeCPTL76FwxYbQvmffQyVteXYTseSf2oNZg/5UOm3f9vrE9fRjScxIxHr2TotofRZ3hFjw3856bGhqpv5SSFEU8k++ELMRuEziIl7z5gr6bGhrIrVlReC5YoNgI/eJuKK9IdVxHFVg4dQipQFOsH/BcVV/KqzdV+XIHFFYBz44nk5qFDSMW6HBVXmPv+C9QMHEr9yA5D82XSZFqbGfnD8xm2wxFMvetcnHP0XXYVRv3ofEYe8mfaU19QO2g4AFPvOpev7jmP9JwZAZ5Fwf0unkjuEjqEVKy/o+KKdM+ewG9Ch+iJyiuw+KbWo0KHkLIxFPgvUUxTeEu+/RWoyHbkIb2YWbMpdIYCqcPPLDQkdBCpLPFE8qfAd0PnKAWtkyYy773n+eziI5l6919o+fh1vrrnPGoHj2DAGltiZtSPXhMzIzNv1tePc86ReuYmYlsfwsynb2DoNj9g4Lo7MuvlewI+m4KpAcZlWz2J5E08kdwXOCZ0DikrZ8cTyY1Dh1hSlVVgiWLHAmU/8rAU3Wb4QUhF8iOK7QEcHzpGJbomvUdPB4QtB6sAF4UOIZUjO0vV30PnKBXDtv8xy//8WpY/9iqW/u7J9FtpfUbs/RsGrL4FLR+/DkDb9Em4dDs1/b+pdc6Z8DD9V92E2n6DcG2tYDVg5n+uTCOB/2Sn9BbptXgiOQqNASVLrg9wfTyRLKvW4JVTYIliq+CvGIv0xMlEsTGhQ0gFiGLD8CPsS545R+rhzIaV/jk9NJ5IVvUUupIf8USyBt9lelDoLKVu0Pq70j7zCyZfeRxf3f0Xlmr41dezBGXaWmie8DCDN2wAYMim+zL1jnOY+fi1DN5wz5CxC2134KTQIaRiXA2U7aClEtSawPmhQyyJyhjkNooZ8Biakll65zlga6JUJnQQKWNR7HrgB6FjVKL3M6Of2WX+eVuFzlEEk4G1mxobZi12SZEuxBPJU4BzQueQstYCjGlqbPggdBApX/FE8of4Yq9ITzlgu6bGhqdCB+mOSmnB8gtUXJHe2wI4NnQIKWNRbFdUXCmYG9M7VUtz9dHA2aFDSPmKJ5IbAGeEziFlrx/wz9AhpHzFE8lhwHmhc0jZM+DicplGvvwLLFFsaeDM0DGkYpxDFBsdOoSUIT9Qsg5EC8Q52m5Ob79O6BxFdFw8kdw0dAgpWxfi+66L9Nae2cFJRXriHEADJks+jAF+FTpEd5R/gQX+BGjWBcmXIfgDU5EldSKwVugQlWoaQybMZmAlD3DbUQ1waTyRrA0dRMpLPJE8ENgmdA6pKBeU2yCTEl48kdwM+FnoHFJR/hhPJFcIHWJxyrvA4gclPSp0DKk4+xHF9g0dQsqIb/X0h9AxKtk96S1nh84QwIbACaFDSPmIJ5L1wLmhc0jFWQk4NXQIKR/ZiwMXU+7nmlJqBgL/CB1iccr9TX8+oKt7Ugh/z3b5EOmO89BMHQV1TXr3VUJnCCSKJ5KaeUG661fAyqFDSEX6TTyRXD10CCkbxwAbhQ4hFWm/eCL5ndAhFqV8CyxRbE9gt9AxpGLFgSNDh5AyEMW2AQ4JHaOSzXN93/vYjVw+dI5AhgAnhw4hpS+eSC4L/D50DqlYfSmDK8cSXrY72emhc0hFOyeeSJbsxAflWWCJYnWU2XzYUpZOJYr1DR1CSp4G2S6wJzPrTQqdIbDj44nkyNAhpOSdBQwOHUIq2nfiieQWoUNIyfs5sGzoEFLRxgLfCx2iK+VZYIGj0WCSUngroDF+ZFGi2LbADqFjVLqr03ssHTpDYANQywRZhHgiOQa1upTiOC10ACld8URyEGp1KcURlWorlvIrsPhxMU4JHUOqxilEsX6hQ0jJ0sC2BZZ29uWzmXWqaXrmrvysHEbOl2BOphyP6aQcNcQTyQ1Dh5CS9QtgROgQUhXGAAeFDtGZcvwyPghYLnQIqRrL4VtMiSwsim0J7BI6RqV708XfASvJKxRFVo8KetKJeCK5PPD90DmkqqgVi3xLPJEcAvwmdA6pKlE8kSy5ekbJBeqGk0IHkKpzClFsQOgQUnJ0slsE49K7qgXZN36cPZkWyfVLQLPeSTHtF08k1w0dQkrOCcDw0CGkqqxFCU40UV4Flii2I6BmiVJsywI/CR1CSkgU2wTYI3SMSuccc+9JbzkmdI4SUoef+lIE+PqK8c9C55CqY8CpoUNI6Ygnkn2A40LnkKr0y9ABOiqvAgv8OnQAqVo6gJVcvwgdoBpMYsSEFur753u97bOm8sWNpzDp8mOYfMVxzHrpLgDS82Yz5b+nMemyo5jy39NItzQD0PLZRCZfdTyfX/sr2mZMBiDT0syUm07HOZfveItzVDyR1OxmssDP8FN5ixTbQfFEctXQIaRk7AeMKuYGZ714J5OvOI7JVx7H1Lv/gmufXy7f45Jfm8YTyU1Ch8hVPgWWKLYW0BA6hlStMdkxN6TaRbGhwIGhY1SD29Lbzi/IimtqGbbjT1juqEsY+cPzmP1KkvlffcKs526hX3wDlvvZ5fSLb8Cs524BYNaLd7D0vqcwdLsfMfvV+wCY+cx/iW15EFb84WGWQe8/4esrxiV35U6qRi1q3SvfKGrrlfbZXzHr5XsYefjfGf2TiyCTYc5bT5TL97jkX0m1niqfAgv8Ct8kUSQUTdksAD8E8t6qQhbmHO769l3WLMS66wYNp37kagDU1A+gz1IrkJ49jbnvP8/AMTsDMHDMzsx97zkArKYO1z4f196K1dTRNuNz0rOn0W/F9QoRrzuOD7VhKSkHAhqTR0L6UTyRrA0dQsKKJ5LrANsXfcOZtP9uzqRx7a3UDhpeTt/jkl/fjyeSw0KHWKA8CixRbDD+pEYkpIOJYmqKLeouVgTN9J/4JcOWLvR22lNTmD/lQ+pHr0l6zkzqBvnx+eoGDSczZyYAsS0OZNr/Xcisl+5i8EZ7MfOJ/zB028MKHW1RtognkhuFDCAl4YjQAaTqLQfsGjqEBFf01gN1g0cwZLP9mHTxEXx24Q+x+gH0X3mjcvoel/zqTwl9J5ZHgQX2QVeMJbwBwA9Ch5CAfDcxDbpaBA9mNv6q0NvIzJ/H1DvOYfjOR1FT3/VEYX2XXYVRPzqfkYf8mfbUF9RmD96m3nUuX91zHuk5MwodtTPHhtiolIZ4IrkssGPoHCKU0EmNFF88kRxEgIvg6ZZm5r73PMsdcyXL//w/uLZWmt98tMvlS/R7XPLrmHgiWRK9XcqlwHJw6AAiWeomVN3UeqVIrmrfY7lCrt+l25l6xzkMXGcHBqy5FQC1A4fS3jwdgPbm6dQMHLrwY5wj9cxNxLY+hJlP38DQbX7AwHV3ZNbL9xQyalf2z47BIdXpYPwYGCKh7VNKTfOl6L5HgIG2W5rGUxdbltoBMay2jgFrbEnrpLfK7Xtc8mt1YOvQIaAcCix+QMndQscQydqIKKam+dUoivUDDggdoxq0udpPJrhVVivU+p1zTPvfP+iz1AoM2Wy/r/8+YLXNmTPhYQDmTHiYAattvtDj5kx4mP6rbkJtv0G4tlawGjDzPxffMGDnEBuWknBI6AAiWfWodW81C3IRvG7I0syf/A6Zthacc7R8/Bp9llqh3L7HJf9KolFG6RdYYF9AU1JKKdGBbXXaHRgUOkQ1eCmzZlMh1986aSJz3nyUlk9eZ/LVv2Dy1b9g3gcvMmSLA2hpepVJlx1FS9OrDNnim8l6Mm0tNE94mMEb+snshmy6L1PvOIeZj1/L4A33LGTcRdFsQlUonkiuDGwROodIDnUTqkLxRHI4gcbgqR+9JgPW3JrPrzmRz6/6OTjH4A32KMfvccmvA+KJZPD6hpX83N9R7H/AHqFjiOR4lyhVkNlNpIRFsf+gwbaL4uj5vxp/f2bTsaFzlIFpwMimxob20EGkeOKJ5O+Bs0PnEOkg3tTY8HHoEFI88UTyx8DVoXOIdLBDU2PD4yEDBK/wLFIUWwrYJXQMkQ7WIIqtFTqEFFEUqwP2Dh2jGjhH6qHMRhpIuHuWAnYKHUKKTt0xpBTtHjqAFN2+oQOIdGKf0AFKu8DiB06qCx1CpKPpbrAOJKrLNsDQ0CGqwQdu9JtparXf7z6NC1RF4onk6sC6oXOIdEKtzatIPJHsj6boltKkAsti7BU6gAiAc8z73A1/8bL2hie2b/3bZxu1Xvq90JmkqLQvKpL/pjXz7BJqCB1AikonNFKqdo4nkiqOV4+dgQGhQ4h0YpV4IrlOyACluyOMYrXA9qFjSPVqc7WfvupW+/CG9p0H/i+z2ZhW+m6ac/ey8URycFNjw+xgAaWYNPpZEThH283p7XV1fsmMjieSqzU1NrwfOogUhbpNS6kagh98+anQQaQodggdQGQRdgAmhtp46RZYYEMgFjqEVA/naJvGkAn/l9501nXpXVd82624MrBCF4v3wY99cFfxEkoQfiyotUPHqAbTGDJhFoM2DJ2jDG0PqMBS4bIzI6iJl5SyPVCBpVpsGzqAyCJsC1wUauOlXGDRQYQUXNrZFxNd/P0b0zvW3ZXeet059F+Sk7ttUIGlGmwVOkC1uDe9hVqE9cz2wJWhQ0hhNfX7wdh2VzPnXbf8m/9Lb8bdma3iH7uRy4XOJZJjd+C00CGksOKJ5EBgo9A5RBYhaAGwlAssqoxK3jlHZhYD3nwks+H0/7TvNvJVt/qawMgerm7zfGaTkqUCS5Fck9595dAZytR2oQNIUWxdZ5nl1rFPllun5hNO4lbaXc2kd93yTSq4SInYOJ5IDm9qbJgeOogU1JaU9jmkyHLxRHKVpsaGD0NsvJQ/HFuEDiCVIeNs+vtu9Fu3pre3W9LbrTWDIevladUbxxPJuqbGhvY8rU9KkwosRTDP9XmvyY1aPXSOMrVSPJFcqamx4ePQQaSgtu74BxVcpMQYMBZ4JHAOKSxdBJdysC2gAsvXotiqwNKhY0h5cg43l/p3nsqMmTIuvdvwpzPrruuo+daBaR4MAMYA47uzsJmlgTdy/rSvc66pi2WbnXODehtQeimK1QGbLnY56bWnMutPBlRg6bntgHGhQ0hBLfZ7TAUXKQEboAJLpVOrSSkH2wHXhthwaRZY1HpFlpBzzPrELTPxzszW7Te277z6FwxfC1irCJvenG4WWIB5zrmxhYsiBbAh0D90iGpwdXr3EaEzlLmxqMBSuaLYcsDyS/owFVwkgA1CB5CC2yR0AJFuCHaBtFQLLOuHDiClr9X1+eD5zFqfXZ/eJfZwZsN126kLUZjbHLi0Jw80s0H4QXKH4WclOs05d1eHZUYBN+GnP6wDjnXOPWlmuwFnAPXAB8ARzrnmHj8L6YoGcSuCtLOpz2TWXSd0jjKnma4q25r5WIkKLlIEKrBUsHgiuQKgFtZSDtaIJ5I1TY0NmWJvuFQLLKuFDiClxznmTWHYhHvSW867Pr3zyk1u1KrAqoFjjVmCZfub2fjszx8BBwL7OedmmdkI4Dkzu9s553Ie8wPgfufc2WZWCwzILnsasItzbo6Z/Q74NfCnXj8b6WiN0AGqwUQXfwdM3UJ7RwWqylaQ4yIVXKQA1oknkn2aGhvaQgeRgihG63CRfKgHVsZfiC4qFVikpLW52s9ec6t+eH37zv3/l9lsTAv1pTYexpJcVVyoi5CZ9QHOMbPtgAywHLAs8EXOY14Ersoue6dzbryZbY8/mXrazAD6As/26llIV1RgKYJx6V36hs5QAVaMJ5IDmxob5oQOIgVRlOOiRRVc7spsvdInbtkl7qYkVacv/iT8jcUtKGVJrSWlnKyNCixfC90qQQJxjrbpDH7z/vSmqXHpXZd/y620Kj3od15EQ+KJ5KimxobPe/DYQ/GDOW/snGszsyagX+4CzrknsgWYBmCcmf0VmAE86Jw7pJfZZfE06GqBOce8u9Nb5Wtmr2pm+ILvK6GDSEEEOS5SwUV6aANUYKlUKrBIOVkbuLfYGy29AksUGwUMDB1DiiftbMpbbqX3bkrvWHdHeut1mhkwNvf+zy4+kpq+/aGmBqupZdThFzDjsauZ9+HL9F1mZUbsdRIAzRMeIdMymyGb7FPsp7Aa0JMCSwz4Mltc2RFYqeMCZrYSMMk5d7mZDcSPCXI28G8zW805976ZDQCWd86924vnIB1FsVpgldAxKt1klnqjhfrNQueoEGujAkulKomWvSq4SDfpJLxyqYuQlJMg79fSK7CUyEGEFI5zZGYz4M1HMmOnj2vfddmX3Rprgi27qMcse8g51A6IAZBpnUPrpLcYfeSFTL3nr8yf2kTd0FHMmfAQyxwYZBiSlYEne/C464F7zOwl/ExEb3eyzA7Ab82sDWgGfuScm2pmPwZuNLP67HKnASqw5FccP/iwFNBt6W3nh85QQXRSU7lKsmWvCi7ShZGhA0jBqMAi5STIcZEKLFIUGceMD93ot25Jb+9uTm+/9gyG9KJLgOHS7TjncO3zsZpaZr1wO4M3/i5WG+Qt3a1WDs65QR1+/wrYclHLOueupZM53J1zjxBw+rEqoe5BBeYc7rr2XfMyO4oAMCp0ACmAMmrZq4KLZC3yopmUp3giWYf+b6W8BBmoXQUWKZi5rv6dpzNjvvhPetfhT2fGrJOhZqserciML2/+AwCDxn6HwWP3YMCaW/H5NSfQb6UNsPqBzP/8XYZuHWxIEl2pqUw6WS2wZvpP/JJh64bOUUFGhA4gBVGSrVe6QwWXqqWT8Mo0Aj/el0i5CDJDZSkWWLRTLlPOMftTt/TEOzNbt93YvvNqn7PUmizZLDudGnnoX6gbvBTpOTOZctNp9FlqeWKbH0Bs8wMAmPa/fzJ028OY/dr9tHz0Kn2WiTN0q+/3drNLYngxNyZFMyx0gEr3UGajr0JnqDCa6royrRw6QL6o4FI1dOGpMqmIL+WmfzyRHNDU2DC3mBstxQLL4NABpPtaXd2HL2TW+vT69C5DHs5stG4bdZvnext1g5cCoHbgUAassSWtk9+l3wpjAJg/xc+8VTdsOaY/dBkjDz2XqXedS9v0SfQZXrRWYSqwVCYVWArs6vY9RofOUGF08FuZhoQOUCgquFSsZUIHkILQd4yUoxHAJ8XcYCkWWAYtfhEJxTlavmTohHvTW865Lr3zyh+50atQwJlWMvNbwGWoqR9AZn4LLR+9SiynK9DMJ69j+O7HQ6YdXMb/0Wpw7a2FitQZFVgqkwosBdTmaj993a2qcW7ySy1YKlP/0AGKRQWXitE3nkgOb2psmB46iOSVCixSjlRgQQWWktPuaj57za364Q3tO/dPZjYf00L9JsXadnruTKbefpb/JZNh4Drb03+VjQGY++6z9B25+tctXOpHr8XkK39On2Xi9F2mqLPrqsBSmVRgKaCX3RofASuEzlFhhsYTybqmxob20EEkr/qFDhCKCi5lbVlABZbKogKLlKOiv29LscBSFiPlVzLnaJ/B4AkPpDdJjUvvsvybbuVVgSAHMX2GjmT0kRd2et+ANbZkwBrfTMIzbKefMIyfFCtaLhVYKpMKLAV0Tfvu6g5aGEsBU0KHkLyqmhYsi6OCS1kZGjqA5N1SoQOI9EDR37elWGBRC5YA0s6+fNut+O5N6R3rbk9vs04zA8aGzlRGBoQOIAUxNHSASuUcqQczG/diqnZZhL6hA0jeVW0LlsVRwaWkleI5hvROfegAIj1Q9PdtKe78VGApAufINNP/rUczY6eOa9915ItuzTXBNChZz9SGDiAF0Sd0gEr1gRv1Zprank3bLotTit/r0jtqwdJNKriUFO2LKo+Od6UcFf19W4o7PxVYCiTjmPmhGzXxtvR27ub0DmtOI7Zu6EyVIp5I1jQ1NmRC5xApBzeldwodoZLpALjyqMDSQyq4BFWK5xjSO/p+kXKkAgtQEzpApTKwVeyLtX5bdzO/rbsZNPhY3tSYA1KhY0h+WegAler3ddeve0rdDdr/FMAsBgCTQ8eQ/FIXoTzpWHBxjpTD0qFzVaI59MvAF6FjSH7puKhATqy79ckTau/Qhe8CmEt9pthD05VigWUOoMEPC8CMmOFCx6hEjiil1iuVRwfdBaJ9UeEMZY7et5VHBZYC0b6ocAYzT8dFlUffLwVyS/v2q/2y9vZhZipi5dsgWoq+zVJsLdIcOoDIEtIXTmWaHzqASA9of1R55oYOINIDbaEDSN61hw5QqSax9Khm+k8MnaNCFf19W7UFln8818qYi5pZ96JmLniuFYDosRaW+9tsxl7SzNhLmrnvPf/d8PQn7ax/cTObXt7M+9N9QX5mi2P36+bgnK58iL5wKpQKLFKO9L6tPNNCBxDpAR0bVR4VzQro3vQWX4XOUKGK/r4txS5Cswu9gQlfprn8lTZeOGogfWthj+vm0rC6fyl+tUVffrPVwrM5nf/sfG47qD9NMx0Xvzif83fvx5mPt/L7beoxU0suYU7oAFIQ80IHEOkBjW1TefR/KuVIxd7Ko31RAV2a3muVQ+oeDR2jEhX9fVuVLVjempphi+VrGdDHqKsxtl+pjjve7rrQ3qcW5rXD3DZHn1r4YHqGSbMzbB8vxfqUBKBR3CrT1NABRJbQbKKUTmoqj1qwSDn6MnQAyTu1sCigJjdqhbmu/u3QOSpQ0d+3VVlgGbNMDU98nGba3Axz2xz3vd/Op9kxSi98YT7rX9zMkXfNY8Y83/3nlG3q+dk9LVzw/HyO36wvpz7Swpk71i9qE1JdVGCpTMUdclyk93TwW5l01VjKTQYdG1UifccU2P2ZTfS5yT8VWChCgWXtpWv53dZ92XXcXPa4bi4bLFtDXY1x7CZ9+eCEQYw/ZiCjBhknPeBHHR47spbnfjqQRw8fyIczMoweXIMDDr51LofdPo8pzRoovcppZ1iZVGCRcqOD38qkFixSbqYQpTQGS+XRd0yBXdq+94qhM1SgordIL8UCS1Gu1Pxko768cvQgnjhiIMP7G6svVcOyg2qorTFqzDhq4768MGnhyRicc5z1RCunb1fPGY+3csYO9Ry2fh/++bxaZFc5FVgqkwosUm508FuZ1IJFys2k0AGkIPQdU2BvuxVXaXF9Pgido4K0EKWKPkPxIgssZraUmY3P3r4ws0k5v/ctUKaPC7TehXw5x7c6+SSV4fa32jlkTB8+n/1NS5Q73mpjzDILvzzXvtZGw+p1DOtvzG2DGvO3uRpTu9qpwFKZVGCRcqOD38qkFixSbj4LHUAKQt8xRfBIZsNPQ2eoIEG+Pxc5SqtzbhowFsDMIqDZOXfegvvNrM45l+8mgB/leX2d2v/meUyb6wet/fee/RjW3/jhHS2M/yKNAfGhNVy6V7+vl5/b5rj2tTYeOGwAAL/eoi/73zyPvrVw4/79ixFZStfnoQNIQahwJuVmcugAUhAqsEi5UQuWCtTU2NAaTySnA8NDZ6lkl7bvNXrP2hdCx6gUQc7RlngaHDO7Bt9cdUPgFTObTU7hxcwmAHs555rM7DDgBKAv8DxwnHMu3fmav1aUAsuTRwz81t/G7dd1oWRAH+PRw795zLYr1fHGsYMKkk3Kjk7EK5OuwEm5eSd0ACmAKDWTKDYLGBI6ikg3qcBSud4BtgwdopK95lZbY76r/bivpVcKnaUCBJmVqadjsKwB7OKcO6mrBcxsbeBgYGvn3FggDRzajXV/BLge5hIJ4ZPQAaQAolQKtQiQ8vJW6ABSMPq/lXKiAkvl0r6oCJ7KrFeUBgdVoKwKLLd0oyXKzsDGwItmNj77+yqLXXOUmguo75mUi2bg/dAhpGAmhA4gsgSCHEhIUUwMHUBkCagFaOVSgaUILm3fa5nQGSpEkPfrEncRypqT83M7CxdqFgxcYsC1zrlTerD+twFNUyXl4HWilFpcVa43gd1ChxDphilEqZmhQ0jB6KRGyskboQNIwaiQXwTPu3XWaXc1n9VZZvnQWcpckO/OfEzT3ARsBGBmGwErZ//+MHCAmS2TvW+4mXW3L5kOJKRcvBo6gBSUWrBIudD3ZmV7M3QAkW76iCg1NXQIKRh91xTJ85m1NV1z77QTqJdBPgostwHDs92AjgXeBXDOTQROAx4ws9eBB4FR3VynKt9SLsaHDiAFpZMaKRe6qljZXgkdQKSbng8dQArqI6A1dIhqcGl6r2GhM5S5D4hSbSE23O0uQs65qIu/z6OLJvTOuZuAm3qQ6+kePEYkBLVgqWwT8YNuW+ggIovxcugAUkBR6gui2Od0/0KVSCgqsFSwpsaGTDyRHA9sHjpLpXsis/56aWdTas0tGzpLmQp2jpaPFiz5F6XeBr4MHUNkMdpRF5LKFqVmo5YBUh6eCB1ACk5FNCkHKrBUvidDB6gOZq+61d8JnaKMBTsuKs0Ci/dU6AAii/EWUUrNJCvfo6EDiCzGFKLUu6FDSMGpwCKlrg217K0GKrAUyeXtDUNCZyhjwd6npVxg0YdXSp2u0lSHx0IHEFkMXZCoDmqlJKXuNaJUS+gQUnBP4btPS4E9mNl4vYyzaaFzlKHpBBxHsZQLLDqQkFL3v9ABpCgeQwcSUtp0QaI6PAnMCh1CZBF04akKNDU2BD15rSYZamonuPjE0DnK0FNEqWDH7qVcYHkNHUhI6WrDz4wllc5PN6kvNyllKrBUAz8bgr53pJSpwFI9dCG8SK5s37N/6AxlKOj7s3QLLFEqDTwTOoZIF57ODoAq1UHjsEipSuEvSEh1SIYOINKFNHB/6BBSNCqwFEkys/kGzpEKnaPMqMCyCA+FDiDShftCB5CieiR0AJEu/C97QUKqw/9Ql0UpTU8SpTQDaPV4AD+bphRYO3V93nEraNbS7psMvBQyQKkXWG5BBxJSmlRgqS4PAPNChxDpxF2hA0gRRakvgFdCxxDpxK2hA0jxNDU2zECtWIrmqvQefUJnKCN3hBx/BUq9wBKlPgGeCx1DpIOPiVIa3KuaRKk5qOmzlJ42NNh2NVI3ISk1GeD20CGk6O4MHaBa3JXeen3naC7U+j9NZdjx2jms/e9m1r2omX881wrA9HmOXcfNYfV/NbPruDnMmOfrFk9/0s76Fzez6eXNvD89A8DMFsfu183BueBtI24LHaC0Cyzef0MHEOlAJzTVKegO++/PtrLuRc2MuaiZQ26bS0u7K9cvPsmfB4lS6pddfVRgkVLzNFHq89AhpOjuQD0NiqKVvv0+cqNeL9T662rg/N368dbPB/HcTwby7xfbmDg1TeNTrey8ch3v/WIQO69cR+NTvvBy/rPzue2g/pyzUz8ufnE+AGc+3srvt6nHzAoVszumUgItq8qhwHILvjIuUiqCV0YliLuAlhAbnjQrwz9fmM9LRw1kwnGDSGfgvxPayvGLT/LrptABJIgXAY11IaVE3YOqUFNjw2fA06FzVItr07sW7ABu1OAaNhpVC8DgemPtpWuYNMtx1zvtHL6B7510+AZ9uPMdP+xOn1qY1w5z2xx9auGD6Rkmzc6wfbyuUBG7685SGJeu9AssviKuKSilVHyCBjytTn7WqGBXjtsz/susPeOY2wajB9eU4xef5E8rap5dnXzf8utCxxDJcujCUzVTob9IbknvsL5zhR8PsGlmhlc/T7P58rVMac4warAvF4waXMOXc3ybh1O2qedn97RwwfPzOX6zvpz6SAtn7lhf6GjdURL7otIvsHjqJiSlYhxRSi2qqtcNITa63JAafrNlX1b8+2xGnd9MrB/stmpdOX7xSf7cRZSaFTqEBHMJapovpeE5otSk0CEkmJuA+aFDVIO59Bv4mVu6YN2EAJrnO/a/eS4X7NGPIfVdN5gZO7KW5346kEcPH8iHMzKMHlyDAw6+dS6H3T6PKc1BTpW+oEQugpdLgeU2IHhzHxHgmtABJKh7gSnF3uiMeb6Z5ke/HMTkXw9izny47vWuj2dK9ItP8uui0AEkoCj1HvBw6BgiqAVDVWtqbJiKuogVzXXpXQo2NXZb2hdXDl2vD99b27eOXnZQDZ/P9seMn8/OsMzAhUsHzjnOeqKV07er54zHWzljh3oOW78P/3w+SM3tCqJUW4gNd1QeBZYoNRU1hZbwHiVKvR86hAQUpeYDlxZ7sw992M7KQ2tYemANfWqN761dxzOfpsvti0/yZyJR6vHQISS4i0MHkKo3B7g2dAgJTgX/IrkhvdMY5/LfYsg5x0/ubmHtEbX8estvWjx/d406rn3N1yyufa2NfdZcuKv5ta+10bB6HcP6G3PboMb8bW7xyxxpAhyfd6U8Cize+aEDSNXTF4iAb5pf1K+OFWPGc5PSzG1zOOd4+KM0a4+oLacvPskvnVgL+IG31TVDQrqOKDUzdAgJq6mx4WngtdA5qsFsBsamMCzvr/XTn6YZ93obj3zUzthLmhl7STP3vddGYpu+PPhhO6v/q5kHP2wnsc03xZe5bY5rX2vjuE37AvDrLfqy/83zOOXhFo7dtE++Iy7OPUSpz4q90a5YWU3ZGcWeAbYMHUOq0ufAikSpgjXNkzISxW4Evl/MTf7x0RZuerOduhrYcFQtV+zdj+b5joNunccnKceKMeOWAwcwvL/vMzu3zdFww1weOGwAfWqNJz9u57j7WuhbCzfu3581lqotZnzJnznAaI2/IgBEsT8CUegYUrXWJUpNDB1CwosnkkfjL0BJgZ1Yd+uTJ9bdvm3oHCVmN6LUg6FDLFBuBZb9UT8/CeMMolQUOoSUiCi2FZqaUMK4jCh1dOgQUiKi2GjgY0BThEmxPUSU2jV0CCkN8URyIDAZGBI6S6Ubxqzpr9QfM8RM+/2sd4G1sjPslYRy6iIEcAfwYegQUnVmA/8MHUJKSJR6BngldAypOg74V+gQUkKi1GTg7tAxpCr9NXQAKR1NjQ1zgKtC56gGMxgyfBpDCjqbUJm5sJSKK1BuBRY/Pe7fQ8eQqvMPotT00CGk5GhcKCm224hSE0KHkJJzQegAUnVeIUo9EDqElJy/APNCh6gGt6a3aw6doURMBi4PHaKj8iqweFcDM0KHkKqRAv4WOoSUpP8COtmVYsmgsTakM1HqSeC+0DGkqvw5dAApPU2NDZ+jcViK4qr276ztHJnQOUrAn4lSLaFDdFR+BZYoNQe4MHQMqRoXEKVU0JNv8y3qTg8dQ6rGzUSpN0OHkJKVAB1sS1G8C9weOoSUrEZgbugQle5Lhi2dYuAboXME9ikl2HoFyrHA4p0HTA0dQireDNQlTRYlSt0JvBA6hlS8DHBG6BBSwqLUG8C40DGkKpyavcAg8i1NjQ1fogvhRXFXeuuZoTMEdjZRqjV0iM6UZ4HFT095ZugYUvH+RpRKhQ4hJe/U0AGk4t1IlHo7dAgpeacDJddUWirKo0QpzeYpi/MX/AQRUkCXpxtWd46SGty1iJoo4UGVy7PA4l0CvB86hFSs6cA/QoeQMhClHgIeDR1DKtZ8NPaKdEeU+hRdOZbCSQMnhA4hpa+psWEaGny74D5zS49upv/E0DkCOYMo1RY6RFfKt8DiX9TfhI4hFes0opSq79Jdv0PjH0hh/JUopYsJ0l3nADNDh5CKdLFmMZMl0IhvZSAFlExvXo1DZjwDXBs6xKKUb4EFIErdBdwfOoZUnGfQKOiyJKLUi8DFoWNIxfkIODt0CCkjflB2zfAi+fYV8IfQIaR8NDU2zEUtngru0vReq4TOUGRp4FiiVEl3jSrvAov3S6BkmwhJ2WkDflbqH1wpSb8HJocOIRXlF0SpeaFDSNn5J744J5Ivp2tGRVlSTY0N9wB3hc5RyT5yo1ec6+rfCZ2jiP5JlHo9dIjFKf8CS5R6B/hb6BhSMf6iqVClR/zg278MHUMqxl1EqWToEFKGolQL8FOo2sEPJb/GA5eFDiFl6wRgTugQleyBzMZfhM5QJJOAP4YO0R3lX2Dx/ghU+1zg0nvvAWeFDiFlzM+ucG/oGFL21LRaeidKPYJOiiU/fqFpmaWnmhobPgH+FDpHJbuk/bsrhM5QJCeWy/iYlVFg8XNgHwqU5FzYUjaOyV75E+mNn6OrNdI7pxGlPgkdQsreb4GKfx/FL5jNehc3M/aSZja5rHmh+857phU7YxZfzfX1gac/aWf9i5vZ9PJm3p/u/zazxbH7dXNwTg1+OvEPotRToUNI2fs7viWUFMDbbsVVWlyfD0LnKLB7y2mK+MoosABEqTeAU0PHkLJ1bfaKn0jv+BNjzXAmPfUwmt5S8sFf6TuSKugq9OjhAxh/zCBe+tmgr//2aSrDgx+2s2LMvv7b+c/O57aD+nPOTv24+MX5AJz5eCu/36YeM/vWeqvcy8DJoUNI+WtqbGjDXwjXRcwCeSwz9tPQGQroS+AnoUMsicopsHh/Ax4NHULKznuoOb7kU5S6BA3sJktuBnC4BtmWvIlSD1Ol49T96v4W/rJLP3LLJn1qYV47zG1z9KmFD6ZnmDQ7w/bxumA5S9Rs4PtEqfmhg0hlaGpsmIgKdgVzSfveo0JnKKAjiVJfhg6xJCqrwOIPSg8HZgZOIuVjLrB/doBSkXz6CX5ALpHu+glRSu8ZybffU8HN881gt3Fz2fiyZi572dcD7n6njeUG17DByNqFlj1lm3p+dk8LFzw/n+M368upj7Rw5o71IWKXuqOJUu+HDiGVpamx4V+ABm8vgPFutTXbXO3HoXMUwIXlOOB/ZRVYAKLUp/gxEES649hs9zKR/IpS04BDgPbQUaQsXEiUuiN0CKlAvhXCD4CKnPL76SMH8srRg/jfoQP494vzeeLjds5+spU/dVI4GTuylud+OpBHDx/IhzMyjB5cgwMOvnUuh90+jynNGssVuIoodWPoEFKxDgc+Cx2iEj2VGdMUOkOevcJiutyb2VJmNj57+8LMJuX83rdIOb+dq2IH9Ypil+OnKRTpymVEqaNDh5DiMbOl8GNcAIwE0sDU7O+bOefy3xw6ip0MnJv39UoleQXYKjtgu0hhRLFDgBtCxyik6LEWas341wvzGdDH/+2zWY7Rg40XjhrIyEH+uqJzjt2vm8tNBwzg+P/N4/Tt6mma6Xjy43bO3rlfwGcQ3ERgU6LU3NBBpHLFE8mtgccA9c3Lo81t4sSb6s9aJ3SOPJkFbESU6vbgvWYWAc3OufNy/lbnnCv6hc7Ka8HyjeMADVoqXXkZjbtSdZxz05xzY51zY4FLgL8v+N05N9/MCvFl/1fgzgKsVyrDZGAfFVek4HyrhD+GjpFPc+Y7Zre6r39+4IM0my5Xy5e/HUzTif62/BDjlaO/Ka4AXPtaGw2r1zGsvzG3DWrM3+a2hXomJaEFOFjFFSm0psaGp9ExeN4979ZZp93VVEI34zRwyJIUV3KZ2TVm9jczexQ418wiM/tNzv0TzCye/fkwM3sh2+LlUjOr7Wq9S6JyCyxRqg04AHgndBQpOTOAA3RCI1CEHbEfG+pQ4KUCPQUpX3OB7xKl1FxaiiNK/QkYFzpGvkyZ49jm6jlscEkzm10xh4bV69hjtUXXyee2Oa59rY3jNvWtx3+9RV/2v3kepzzcwrGb9ilG7FLk8OOuTAgdRKpDU2PDxfjpmyWPXsisVQljJ51IlLqvl+tYA9jFOXdSVwuY2drAwcDW2Quvafzxeq9VdtOsKDWDKLYX8BywVOg4UhLa8VXRptBBpKQs2BGns00Mv6XDjrjNzC7C74j/s9i1R6m5OfuieL5CS1nLAIcSpV4OHUSqzk+BlYDtQgfprVWG1fDaMYMWuUzTiYMX+n1AH+PRwwd+/fu2K9XxxrGLXkcV+B1RavHfZSL59RtgFWCf0EEqxWXpvYZtVTsxdIze+CdR6sI8rOcW51x6McvsDGwMvGhmAP3xU0L3WuW2YFnAj4K+H6Cp5sThZ+m4P3QQKTlLuiMen/19lW5vIUpNAfZEs5yJlyBK3Rk6hFQhP+jtfsB7oaNISTiPKPXX0CGk+jQ1NvgLDX4cMsmDxzPrj0k7mxI6Rw/dC/wqT+uak/NzOwvXPBYMtGXAtTlDBazpnIvysfHKL7AARKkngaNCx5DgErpCI10ozo44Sr2FCr4CV+iERoKKUtOBBmBa6CgS1DXAyaFDSPVqamyYA+yNZhbKC0dNzatu9XIcHmM8vodBIaZyawI2AjCzjYCVs39/GDjAzJbJ3jfczFbKxwaro8ACZE+s/xA6hgRzPlHqL6FDSFloopA74ij1GHAkvkWVVJ9bgGNDhxAhSr2HCr7V7B7gqOw4YSLBNDU2TAb2IE/dM6rd5e17Dl78UiXlXaCBKNVcoPXfBgzPtj4/Nrs9nHMTgdOAB8zsdeBBYFQ+Nli50zR3JYqdBpwZOoYU1cVEqeNCh5DSsmA6N2AMcK9z7tbs3/sDdwHLAC8C2wDfcc41mdnBwCn44nQb8HPn3HM9ChDFjgCuoJoK3XIr/gpN0acMFOmSHx/qFr5prSeV7ylgN6LUvNBBRBaIJ5Lr4meAXSZ0lnJWQyb9fv0PZ9aYK4fxR98FdiRKTQ4dJJ+qr8ACEMVOBs4NHUOK4hrgSF2hkZIUxX4IXA3kZVo4KWm346dAVXFFSk8U2wlfWK760V6rwBvAdkSpmaGDiHSkIkt+3NP390+uV9O0begci1GRxRWo1iunvqtIvgbRkdJ1NX5QWxVXpDRFqXHAD/FTw0nlugP4voorUrKi1CPArmgQ7ko3HthVxRUpVU2NDW8CO6HuQr1yZfue/UNnWIyKLa5AtbZgWSCKHQdciB+8UirLWUSp00OHEOmWKHYgcANQFzqK5N0d+JYrbaGDiCxWFNsAeABdPa5EjwP7EKVSoYOILI5asvROH9rnv1v/o3lmxEJn6URFF1egWluwLBClLgJ+hgabrCRp4GgVV6SsRKlbgAMA9YevLBcCB6q4ImUjSr0GbIdm9Kg0dwF7qLgi5SLbkmVrsgOSypJpo67vu275CaFzdOJZYNtKLq5AtRdYAKLUFcDB6MSmEswDvkeUuix0EJElFqXuwp/YVPSXTpXIACcSpX5BlFL3LykvUeodYFvgg9BRJC8uAfYnSrWEDiKyJJoaG94HtsS3vpIldHV6j1JrFX0TsBNRquK7f1V3F6FcUWwTfIV/dOgo0iNfAXsTpXo2o4tIqYhiywF3k50qWsrOHOAHRKm7QwcR6ZUoNgo/OPMWoaNIj2SA3xKl/hY6iEhvxBPJvsBlwOGhs5STeua3vF3/43azkhi8/Gzg9GoZF1MFllxRbDRwJ7Bp4CSyZD4A9iRKqRmhVIYoNgAYB3wvdBRZIp8DexGlXgkdRCQvolgf4DzghNBRZImo0CsVJ55IngqcicbO7LZH+v762VVqvtgyYIT5wFFEqf8EzFB06iKUy/cH2xa4InQU6bb/AhupuCIVJUrNxY/Jck7oKNJtzwCbqbgiFSVKtRGlfgkcCMwKHUe65S1gaxVXpNI0NTacjR/WYXboLOXiP+ndQm5+Mn7WsqoqroBasHQtiv0EP0Bhv9BRpFNzgROIUleGDiJSUFFsb/yU40uFjiKdcsD5wCmahlkqWhRbHbgVWD90FOnSxcBJRCmNKygVK55Irg7cDIwNHKXkDaBlzpv1R9aYUexpm+8FjiBKfVXk7ZYEFVgWJYptCFwLrBc6iizkDfy0p2+FDiJSFH5cluuB7UNHkYVMBY4kSt0bOohIUUSx/sC/gSNCR5GFaF8kVSWeSNbjuy8eHzpLqXuy7wnPr1Dz1eZF2lwrcDJR6p9F2l5JUhehRYlSrwKb4Pv76cpkabgY3wxfxRWpHlFqErATkMD3Z5Xw/g9YTyc0UlWi1Dyi1JHAkWj2xVKhfZFUnabGhtamxoZfAHsCU0LnKWXXp3cp1jns28Dm1V5cAbVg6T7fmuVqYIPQUarUF8DPiVK3hw4iElQU2wA/AK5a1oUxE1/ouqxaRsMX6ZTvMnQJvvgrxdcC/A74l/ZFUs3iieTSwL/w47NIB4OZk3q9/qj+ZvQt0CYy+AvgvyNKzSnQNsqKCixLwo+m/3vgVKBP4DTVoh0/Fs4fiVIaYE8EIIrVAb8E/ggMDpymmlwP/Joo9WXoICIlI4odjh+HSONEFc8LwE+JUm+EDiJSKuKJ5K7ARcBqobOUmufqf/7SSJuxSQFW/TJwDFHqpQKsu2ypwNIT/grylcDGoaNUuCfxrVZ0ACHSGT+1/PnA90NHqXDvAscSpR4JHUSkJEWxEcBfgB+jKVQL6VPgFOAGtVoR+bbs2CwJ/OekPnCckvGrulue+mXdHdvkcZUpfIODi4lSmTyutyKowNJTUczwJzVnAasETlNpPgd+S5S6PnQQkbIQxXbEDzy5dugoFWYe0AicS5RqDR1GpORFsc2AfwLFGlCxWjTj90V/0wxBIosXTyRXwx8XBZ2nuFQMY9b0V+qPGWJGXR5WdwN+trIv8rCuiqQCS2/5bkNHA6cDywROU+7m43eGkboDiSwhvy86Fn/lZlTgNOVuPnAZcA5R6vPQYUTKir8A9UPgbGD5wGnKXQa4CjiNKKWBPEWWUDyR3B34E7BZ6CyhvVR/zCsjbNZGvVjF/cAfiFIv5CtTpVKBJV+i2CDg18Bv0JgIS6oVuAJoJEp9FjqMSFmLYv3wRd/foULLkmoHrgHOJEp9EjiLSHnzRd/D8PuiNQOnKUcP4a8Svx46iEi5iyeSewFnAL0pMJS1U+quf+LouuR2PXjoI/jCytP5zlSpVGDJtyi2NL7f309RoWVx5uLHsjk3Ow2tiOSLCi1LIoNv8hoRpT4IHUakokSxGmBf/LFRIQZZrCRp4E7gH0SpJwNnEako8UTS8PuiM6jCmRiXZfqXz9UfP8KMmm4+5EngdKLU44XMVYlUYCmUKDYY30T258A6gdOUmqn46dQuIkpNCx1GpKL5QssR+O5DVXdAsRhf4Yu8FxOlPg4dRqTiRbGd8YWWnUNHKTHT8C15/02U+jR0GJFKli20fAc4LvtvdwsOZW98/VGvD7U56y9ikfnAbfh9kVqs9JAKLMUQxXbCF1r2AWoDpwnFAY8D1wI3aZA2kQCi2NbAMcABQL/AaUJ6ET/9+00avFYkgCi2KXAS/riomvdFb+AHBb5ex0UixRdPJOP446IjgaXDpim8M+quefzwuge27+SuT4BLgSuIUl8WOVbFUYGlmKLYCvgP8Y+B0WHDFM07wDhgnMY0ECkRUWw4fj/0M6pnbISZwO3AJUSpFwNnERFY0Np3X+AQYFfIywwXpa4FSAIXEqUeC5xFRPh6eucDgaOAbanQ6eaXt6mTn+z7y1FmGNAGPIgvrNyr6ZbzRwWWEPwI+1vjP8j7A8uFDZR304CbgP8QpZ4PHUZEFiGKbYjfFx0IrBY4Tb7NAu7F74/+jyg1P3AeEelKFBuBb113CJV3gjMP+B9wK/5EZnbgPCLShXgiuRz+mOhg/JTzlbQvan+u/uc3jbQZjwO3EaWmhw5UiVRgCc0XWzYF9sreNgwbqEfa8U3uH8aPev8MUaotbCQRWWJRbAzwXWBv/JSG5dgv+SP8FZk7gEdUVBEpQ1FsefzJzXfx+6Jy7EY0Gbgve3uAKDUncB4RWULxRHIU/phoH2B7YGDYRD0yE39+dheQbGpsmBE2TuVTgaXURLHlgO3wFdPN8AWXUjywmIj/sD4MPEaUmhU4j4jkUxQbBmwJbJO9bUpp7ovexY/v5G+a6l2kskSxvvipVbfBt/7dmtIcK+FD4GXgJXxBZXzYOCKST/FEsg6/L9oO38puG2B40FCd+xw/A9CTwBPAhKbGBnX/KSIVWEpdFOsDbMA3BZfN8c34izVY7ix8MWXB7U1gPFHqiyJtX0RKgT/J2Rh/cjMGP3bLmsCwIiVoxRdT3sLviyYAT2tfJFKFotgafFNw2Qh/XDSoSFt3wHvAK/iCyivAK0SpmUXavoiUgOxsROsCW2X/XTt7W75IETJAE/A2/thoAvBUU2PD+0XavnRBBZZyFMVq8eO2rNjFbRjQF+iT/XfBz7nagdn4AsoM4MvsbQrwGf6D+qauBovIIkWxpfmm2LIa/sryUvirOrn/9l3EWprx07d/2cm/H+ILKh8QpdKFeRIiUvai2Ej8PmhVYAX8cdKC2zL446C6nNuC33O7Qs7im2Ohjrcv8VeGJ2gMFRHpSjyRHASslb2tCozAHxuN6HCrX8Rq5gJfdXL7EngfX1R5p6mxoaUwz0J6QwWWauKvQPcFMkSpuaHjiEgViWL1+JZ3hj+haQfaiFLtQXOJSHXzY+HVAaYxm0SkWLJdjmpzbmn8sVG6qbFBF5TKmAosIiIiIiIiIiK9VI4zRIiIiIiIiIiIlBQVWEREREREREREeqkudAARERERqS5mthTwcPbXkfjxB6Zmf9/MOafxUEREpOxoDBYRERERCcbMIqDZOXdezt/qnHMaBFtERMqKWrCIiIiISHBmdg0wHdgQeMXMZpNTeDGzCcBezrkmMzsMOAE/O+LzwHHOOc28ISIiQWkMFhEREREpFWsAuzjnTupqATNbGzgY2No5NxbfvejQ4sQTERHpmlqwiIiIiEipuKUbLVF2BjYGXjQzgP7Al4UOJiIisjgqsIiIiIhIqZiT83M7C7e27pf914BrnXOnFC2ViIhIN6iLkIiIiIiUoiZgIwAz2whYOfv3h4EDzGyZ7H3DzWylIAlFRERyqMAiIiIiIqXoNmC4mY0HjgXeBXDOTQROAx4ws9eBB4FRoUKKiIgsoGmaRURERERERER6SS1YRERERERERER6SQUWEREREREREZFeUoFFRERERERERKSXVGAREREREREREeklFVhERERERERERHpJBRYRERERERERkV5SgUVEREREREREpJdUYBERERERERER6SUVWEREREREREREekkFFhERERERERGRXlKBRURERERERESkl1RgERERERERERHpJRVYRERERERERER6SQUWEREREREREZFeUoFFRERERERERKSXVGAREREREREREeml/wdTazv9wdesYQAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, axs = plt.subplots(ncols=4, figsize=(20, 4))\n",
"n_samples = [2, 4, 8, 16]\n",
"fig.suptitle('Процент ошибок при попарном сравнение выборок t-критерием')\n",
"\n",
"for n, ax in zip(n_samples, axs):\n",
" pair_t_test(1000, n, 100, ax)\n",
" ax.set_title(f'{n} samples')\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Как мы и ожидаем, степень ошибки равна **5%**, при сравнение **двух выборок** из одной ГС с помощью t-критерия с p-уровнем значимости **95%**. Если мы возмём **4** выборки, и сравним их попарно, то ошибка возрастёт в **4** раза до **20%**. При **8** выборок, наша ошибка возрасла почти в **9** раз до **46%**. **16** выборок дают увеличение ошибки до **80%** ( в 16 раз), что совершенно неприемлемо."
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABGQAAAEECAYAAABuuOI4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABcPUlEQVR4nO3dd5hcVf3H8fd30xs3hZZQkgChEyJdiiBVBBQRqYKAYOWHBVBQlIOiFLEjiIj0bgGkSO+99x4CBAIpkJteduf8/jh3yWSzZbbMnDszn9fzzJPsTvvM7Nwz935Puea9R0REREREREREKqchdgARERERERERkXqjgoyIiIiIiIiISIWpICMiIiIiIiIiUmEqyIiIiIiIiIiIVJgKMiIiIiIiIiIiFaaCjIhULTPrEzuDSDXStiMiIiISnwoyIlI1zGyMmV1qZhPN7GPgj7EziVQDMxthZueY2etmNgO4LnYmkXpnZlub2TZm1sfMjjKzgbEziYhIZakgI1ImZjbJzOab2ZyiywIzeyB2tmpkZsOAB4HngQ2998O899+JHEsk97LRMHcDC4DNvfcjvPd7RI61FDNzZnZZ7BwiFTYDOBf4ENjWez8vch4REamw3rEDiNS4vbz3dzT/YGaHAUfGi1PVvgfc4L0/M3YQkSpzMPCe9/6HsYOIyBLe+1eB8bFziIhIPBohIxJRNormRDN7ycw+NrMLzax/0fVHmdkbZvaRmd1gZqOKrvNmtlbRz6ea2UVFP48ys3+Z2TQze8vMjim6bqneaDPrnT3eGDPbv2hET1M2qmeOmc1p4zUkZnZJ9jxvm9lJZtaQXXdY8YigVjJeZmYnZf/fwcwmF123X5apuYC1BTAim67U2vuxtZk9bmZp9u/WRdfd0/w4Zrammb1rZnu18XqcmS1uMbLJm9mY7PqLzOyvZna7mc02s3vNbHRrfxczWz0bJdVqz3/2mgstnqspK9xhZg3Z+/m2mU3N3ucku25M9lzF911sZi67fpiZ3Zj9XT7O/r9qi/fkNDN7LHvPrjez4S0eu3fR7S9rfuzs544+m88W/dzLzN4v/vu28l5skL2nH5nZh2b2k6K/xz/N7Ors/X7KzDYuut8JZvZmdt1LZvalousOy97POWY2y8zuMrNVit77yS0yPND83mc/H2FmL2fv361t/Z2znz/5bLd8/8xsi+znU4tuv6eZPWNmM83sITNr86Asu+/c7HW8aWZfKbpukpnt3Mp9iv9eWwBNZvZi9nz3mNl6RbddL/vdzOw2Xyi6rqPPe7e3OzP7HPAToLntebblbbLbfdKeWNg2rjKzK21Je+PN7BgLbcR0M/uNtd0W/Si7/c5m9mlbehtaVPTz6tntO/osdPp5i15H82d4hpldY8tuh9cX3X+YdTDS0sy2zT5TM7P3/LA2btfm38dKa3u+YWG7nmJmxxY9bkfbbEnfTWbWP/u8nZH9/Gz2N5lvS7ebzW1Fm21vCZn7mdkfsuvez/7fL7uuuJ2ebaHN3LDF4zZv69+xsA2NKHqtN1ho194ws6Nae63Zz+dYi3al6LqvmNmTLX53rJldl/2/u9tp8/f8VDP7VdF1F9nS7dZaZuaLfl7PzB600L4u9f3Vyms408L2MdvMHmnrPcx+90n7ZR1/l7Vsi4s/By3z39zi73WPhe19xaLbXNPiMdrcx8muP8pC29D8HbSJmZ1tS+8/NLfftxQ9b/O212Bmz1s7348iUttUkBGJ72BgN2BNYG2guUCxI3AasB8wEngbuKqUB8x2Fv4LPAusAuwEfN/Mduvovt77q733g733g4H7gaOLfm7Nn4EEWAPYHjgUOLyUnO3k7wP8EphS9OuBwI7AvrR4PywcwNwE/AkYAfwOuKl5p7jocVcGbgV+6r3/bzsRit+Doa1cf3CWb3ngGeDyNh7nl4Qh6e15v/m5sud7uOi6w7LLZwnv72Dg7Bb3H1p036uLft8AXAiMBlYH5rdy30OBI4BRQCPh/etQiZ/Nvma2efb/PYCZ7TzeEOAO4H9ZlrWAO4tu8kXgWmA4cAVwnS1ZlPZNYDvCZ/AU4DIzG1l034ez92ZFYCHwgxJf496EIsE+wAqEbeHKUu7bijOB94oeexPgH8A3CZ/X84Abmg8A27Bx9jp+QZji0BkDgV2A7xNey83Af82sb/Y+/he4jfAe/R9wuZmtU3T/Vj/vPbXdee//B/yaJdvdxi1v04qzCX/zQ733haLffwnYDNiE8Lk5ouUdLUx/PIbsM+m9f7hoG7ocOLNom3ynxM9Cp583cwywN6HtHAV8DPylxV3XKPpMHwJMbO0NyZ5jdeAWQru8AjCB8DdrUxt/n8PouO35LDAO2BU4wZYuDLa6zZb63ZQdMF8DvOa9/zGA9755G9idpdvNX7fystpqe9vK/FNgK8L7tTGhiHlS0f3eL/o+eBZwLR/YzA4AjgN28943P/eVwGTC33Zf4NdmtlMr9x2Xva623ACMtaJCKvBV4NKin7uznR6dvb5tgWObiyUlOBl4GRjeyvdXSxcQvouGAncR2utSdPRd5inheMbMdqD10UhvAl/LbrM8YT+sWJv7OBaK4y773XLAF4AZ3vuW+00bZz+39jf+GjCso/wiUrtUkBGJ72zv/bve+4+AXwEHZr8/GPiH9/4p7/1C4ETg05aN1OjA5sAK3vtfeO8Xee8nAucDB/RkcDPrBewPnOi9n+29nwT8lnDQ0B3fBB4FXmvx+7bejz2A1733l3rvG733VwKvAMW98UMJB52Xe+8v6Wa+m7z392U5fprlWK34BhZGPHwauLgbz3Mw8Dvv/UTv/RzCaz6guCexLd77Gd77f3nv53nvZxM+W9u3uNml3vsXvPdzgZ8B+2V/01JydfTZvIAl0/OOzH5uy57AB97733rvF2SfpUeLrn/Se/9P7/1iwsFEf8LBE977a73373vvC977q4HXCQdTLTVkl44KZM2+CZzmvX/Ze99IKBhMsKJe51KY2Z7Z895R9OujgPO8949675u89xcTikVblfCQvSn9NRS73nt/e/YengUMALbOnnMwcHrWVtwF3MiSdgja/rxXersDwmgkwoH1l7PXU+wM7/1H3vt3gD+0eB3NfkooiKUlPmUpn4WuPu83CYWQydn764B9W2zjFxOKIxAO/NprUw4G7vDeX+m9X5y1A8+0c/uhtP73KaXtOcV7P9d7/zzhgLn4Nbe1zZby3WSE9mIw8K12sreqg7a3rcwHA7/w3k/13k8jFAta+x5rAHqx7Db4uSzz7t77yVmO1QgFjh9n7dozwN/beNzTCMWUVmWfjasJRRjMbANgDGFbbdad7bRZb6CJ0rcNI7wfHR5PeO9f9WGNHMt+9VQpT1DCd9k7hIJz2yHNjFAY/3krV1/Ckr/JoRQVuUrYxzmSUMB93AdveO/fLuV1ZY/fn/Dd2+bfXkRqnwoyIvG9W/T/twk9aWT/fvLFnu0UzyD0KnZkNDDKwpD1mWY2k9DDu1LRbfYrum56F7MvD/Qtzpn9v5SMrcpGS/yIsJNSbCFtvx9LvVdt5PgFMAfYqXi4cRd98jfLcnzEkr9bszMIr6HlAWNntHxdbxN2mFdq/eZLmNlAMzsvG2I9C7gPGNqi4NLys9eH8DdtNr3oM7JfW7na+GzeCOyQDfseCSw13L6F1Qi9lG0pfr8LLOlxxswOtSVTf2YCG7Z4DVtlv58JjAUuKn4dLbaR4oLIaOCPRdd9RDiQKH6NTxVdf1wruRsIB1o/avH70YRe6OLnXo1lP0PFnrIwbfAvhM9ysetsyfSUM7ODj2Itt50C4T1t3nbe9UuPMmm57bT1eS/bdmdm2xUN+X+x6KpNCKNRlif0WLfUVnva/LirEz7Lvyk1C6V9Frr6vKOB/xQ99suEA+LibfxS4GAz2zJ7ng/bydrRttRSW3+fUtqe9l5zW9tsKd9NXwLWAzYgjPLprPba3pK+b1t5PaOyrLMJI1n+3OJx/w5MYulCwSjgo6yIUPy4S30/Zn/Xdem4eH8xcFC2fR8CXJMVX5Z5bV3YTv+Uvb4XCcX24vfpuKK/Vcsiyk8I2+G8VtrQZZjZOcBc4CDCQuPFWv2+KeG77GhCe5pm923NfoTvqLtauW4a8JqZbUd4X4sLkx3t43R2e2vpe4TRaa924zFEpMqpICMSX/HIitWB97P/v0/YeQXAzAYRhhu/R8feBd7y3g8tugzx3n++6DbXNF/H0gewnTGdsNNb3FO8eokZ23J8lq3lDuQ7tP1+LPVetZHjGkJvJYQduO745G9mZoMJw/LfL7p+R8J7ek03n6fl61qdMLWovQOyZscC6wBbeu+XAz7THLnoNi0/e4tZuji3fNFnpPi1lPLZbAT+A/yTpYsgrXmXMGWvLcXvdwOwKvB+NkLhfMLfc0SW8wWWfo2PZL/vD1zWIsv7xdsI8EiLTN9ssQ0N8N4/VHSbTYrue1YruQ8DXvXeP9Li9+8Cv2rx2AOznuu2bOLD8PdPAedkB/jN9s4ybE3oQW85NbHltmOE97R521mtxcF4y22nrc97T253fqkfvL/fL5mSskHRVSmwM9lok1ZGdLXVnjY7ldCjPZvSlfJZ6OrzvksYVVH82P2998Xv4QzC5/o8woF/R1nb25ZaauvvU0rb095rbnWbpbTvpomENvQC4JxOvBbouO0t6fu2ldfzfraNDQBOAP7V4nEPJIyk+FXRaMn3geFZJ0Px47b8fjwTOMF739RGZgCydmQRYYrmQSw9XWmp19aF7fSY7PUNB7Y1s+LRTmcVtXObtMj0JmEK13mttKGtvYbvEKZQ/obw/VCsre+bdr/LvPc3eu/X8N4n2X1bap4C/eN2ov2dUGR7Ixsh1ayjfZzObm/FhhO2uVKnbolIjVJBRiS+75rZqtk875+wZB2QK4DDzWyChbUlfg08mg2Z7chjwCwz+7GZDbCwqOqGtmRNjx6R7UBeQ9gJHZIdIP+QcODbFUMIc7N/1cp1V9L2+3EzsLaZHWRhgeL9gfVZejj3A1lP7RHAz82std71Un3ewsKZfQk7eo+26FF0wPHee9/qvUt3JfADMxub7WA3r7PRWMJ9hxDm2s/MPlsnt3Kbr5rZ+mY2kNBT/s+ODgoypX42/0bo8W9rjZ1mNwIrm9n3LSyuOSTrNW62qZntY2G6xPcJIz4eAQYRDuSnAZjZ4YQRMq3xhJEHpfa4/xU40cLUgOaFHb/SwX1a+ilhqkdL5wPfMrMtLRhkZnu0OHBrSxOhx3ZoK9fNJhw0t/xuvwbYw8x2srBmzLGE9/AhwtTAucCPLKzxsQNhKkPxmkBtfd57crv7EBhTwiiaN733U7z3fwNmsezIpOMtLAK6GqH3uXhdpbWALQmFjc4o5bPQ1ef9K6H9HJ099gpm9sVWbvd7wrog/+sg6+XAzhYWRe9tZiPMbEI7t2/r71NK2/OzbPTCBoR2u/g1t7XNlvLd9Ew2wuMUYN3sc1UqR/ttb1uZrwROyt7/5QlTW5b5Hsset8CynRj3e+9fIKzTcl5223cJ29hpFhYoHg98naXbwx2zh72R0lxCWD+l0XvfcmHn7mynzZoIbWVJ7aSZbUVYA6m1dq7lbTfMtm8D+hG+n0pRyndZew4BHvLeP9fObW4jjP75ffEvS9jH+TthBNGmWVu+lpU+rfX7wAXe+w868VpEpAapICMS3xWEnYGJ2eVUAO/9nYRh1/8iLG67JsuuAXO/mU22sDr/McBXzOyH2U7EXoQFCt8i9PL8nbAwXU/7P8IB3UTggez1/KPo+s1bydj885daPNZywJ+89x+3fBIf1rb4Oa28Hz4soLgn4UBzBmGKyJ7e+2WmYnnvXwNOB/5utszUjlJdQdgp/AjYlLD+QLGnvff3dPGxi/2D0At6H+HvuIDwfpfiD4Te3OmEA6HWDuQuJYwY+YAwguSYVm6zjBI/m/iw/sSB3vuZHTzebMIaAHtlWV4nrBHS7HpC7/PHhJ3rfXxYH+Mlwnz+hwkH9BsBD7Z4+E9bmOqTEhZlLWl0lPf+P4SpD1dZGCb/Au0vutmaG733r7fy2E8Q1pE5O3tNb7BkjZC2PJu9jnuAX7c4uLgy255eAK6jxd86y3AIoQd4OuF93suHNTwWERai3D277hzCQrmvFD1Eq5/3Ht7urs3+nWFmJa0tQVi/4ThbegHi6wnT454hLGRavHbRSsBJftl1Z9pV4mehq8/7R8KCrbeZ2WzCtrplyxv5sN7QYSWMongH+Dzhb/JRlqfDRZJb+fuU0vbcS/js3kkYRXFb0XVtbbMlfzf5MB3ncOAPWZGkFB21vW1lPhV4AngOeJ5wcH5q0f1GWXaWJULHyTKLNmdOA0aa2deynw8krPXyPmFEyMne+9uLbj+SZac0tudSQtG55egY6N52enbWvkwirC/T3ppfwCeL758PfM97P6uE7KcRPg8zCAsct7bOUmv+QMffZe0ZxrJToJfiwxpkR7QY9daszX0c7/21hA6kKwgF8esII19K0YvWR1aKSJ2x7nfgikhXmdkk4Ejv/R0d3bbExzsMGOO9dz3xeLIsC6c2nuy9P6mj2+aZmd0DXOa972gKRFQWTn26lvf+q7Gz1KNq+rxbOB3vOO/9G/XwvLFYWLz7LaBPa6P18rjNdpS5WpjZAGAqYQrj60W/v4gq2U5FRGRpHZ6pQ0SqyvuE4dQiIiJSW74NPN7ayDsREalOKsiI1JAWQ8ZFRESkBmQjao2wZouIiNQITVmSDtXKUF8RqW5qi0QkD9QWiUhe5XHaqLRPi/pWmIUziFxgZm+b2Wwze9rMOrtQpIhIjzGzcWa2wMy6enYsEZEuM7MxZnazmX1sZh+Y2dnZGZpERMrKzI42syfMbGG2HlPL6wea2TlmNt3MUjO7L0JMqWH6squ83sC7wPZA89kQrjGzjUo8nbGISE/7C/B47BAiUrfOISxWO5JwSvfbge8QTiMtIlJO7xPOqrYb4YxeLf2NcPy2HuEsZhMqlkzqgkbIVJj3fq733nnvJ2Wn2buRMOx109Zub2Zrmdm9WUV2upldXXTdH83sXTObZWZPmtl2Rdc5M7vWzC7LRuI8b2Zrm9mJZjY1u9+uRbe/x8xOM7PHsue63sxaPXWfmSXZKJ8pZvaemZ1qZr06yisi+WNmBwAzCaeBbe92aotEpFzGAtd47xd47z8gnNp4g9ZuqLZIRHqS9/7f3vvrCKdkX4qZrQN8AfiG936a977Je/9kW49lZoeZ2cSsjXnLzA7Ofr+mmd1lZjOyduByMxtadL9JZna8mT1nZnOz9mQlM7sle6w7zGxYdtsxZubN7Btm9n7W7hzbTqatzOwhM5tpZs+a2Q4d5ZXKUkEmMjNbCVgbeLGNm/wSuA0YBqwK/LnouscJVdrhwBXAtWbWv+j6vYBLs/s+DdxK+JuvAvwCOK/Fcx0KHAGMAhppu2fq4uz6tYBPAbsCR5aQV0RyxMyWI7QFbX6RF1FbJCLl8kfgAAtTA1YBdicUZVqjtkhEKmVL4G3glKyQ8ryZfbm1G5rZIEIbsbv3fgiwNfBM89XAaYS2ZD1gNcC1eIgvA7sQjgv3Am4BfgIsT2injmlx+88C4wjtzQlmtnMrmVYBbiKMABoOHAf8y8xW6CCvVJAKMhGZWR/gcuBi7/0rbdxsMTAaGJX1HD3QfIX3/jLv/QzvfaP3/rdAP2Cdovve772/NVtw7lpgBeB07/1i4CpgTHF1FrjUe/+C934u8DNgv+YenqLMKxF2lL6fjfaZCvweOKCjvCKSO78ELvDev1vCbdUWiUi53EsYETMLmAw8AVzXxm3VFolIpawKbAikhGLK0cDFZrZeG7cvABua2QDv/RTv/YsA3vs3vPe3e+8Xeu+nAb8jLF9R7M/e+w+99+8B9wOPeu+f9t4vBP5DKPYWOyVrc54HLgQObCXPV4Gbvfc3ZzMzbie0r59vL69UlgoykZhZA6GXZhFh427LjwhV1cfM7EUzO6LoMY41s5ezYbAzgYRQRW32YdH/5wPTvfdNRT8DDC66TfFB2dtAnxaPB2Gnog8wJRv6NpPQo7RiR3lFJD/MbAKwM+HAoRRqi0Skx2X7Q7cC/wYGEbb1YcAZbdxFbZGIVMp8QlH1VO/9Iu/9vcDdhFEpS8kKt/sD3yK0BzeZ2boAZraimV2VTWmcBVzGsm1Jy/ap5c+Dl775Mu3TqFbyjwa+0tw2Ze3TtsDI9vJKZWlR3wjMzIALgJWAz2c9M63K5lIfld1vW+AOC6t7jwR+DOwEvOi9L5jZx4Qv/a5arej/qxMaoOktfv8usBBYvrVTPbaV13v/RjdyiUjP2wEYA7wTmiQGA73MbH3v/SYtb6y2SETKZDhh2z476wleaGYXEobY/6jljdUWiUgFPdeZG3vvbwVuNbMBhDbsfGA7wnQlD4z33s8ws72Bs7uZbTWgeYbF6oTFiVt6lzDS76hO5pUK0giZOM4lzB/cy3s/v70bmtlXzGzV7MePCRtzEzCEMF95GtDbzH4OLNfNXF81s/XNbCBhLvU/i3qOAPDeTyHMhf6tmS1nZg0WFqravoO8IpIvfwPWJKy3MAH4K2Ge8W6t3VhtkYiUg/d+OuHkBt82s97ZlKGvAc+2dnu1RSLSk7J2pz/Qi9Ax1d/Mmgct3Ec4K+6J2e22IXRo3drK46xkZl/I1mZZCMxhybY+JPt5poV1XY7vgeg/s7Du1gbA4UBrC4ZfBuxlZruZWfNr28HMVu0gr1SQCjIVZmajgW8SDoA+MLM52aWtVa03Bx41sznADcD3vPdvERqCW4DXCMPUFrD00LWuuBS4CPgA6M+yi0c1OxToC7xE2Ln4J6Fnqr28IpIj3vt53vsPmi+EL+IF2dzm1qgtEpFy2Qf4HKGY8gahsPKDNm6rtkhEetJJhClBJxDWXJmf/Y5sFsMXCWuupIQRJIe2sfZnA+EkCe8TTo+9PfCd7LpTgE2yx7iJMEWzu+4ltJd3Amd5729reYNsjcAvEhYHnkZoE4/PsraXVyrIvPexM0gOmNk9wGXe+7/HziIi9UttkYjkgdoiEckjMxtDGFXYp7VpklJ9NEJGRERERERERKTCVJAREREREREREakwTVkSEREREREREakwjZAREREREREREakwFWRERERERERERCpMBRkRERERERERkQpTQUZEREREREREpMJUkBERERERERERqTAVZEREREREREREKkwFGRERERERERGRClNBRkRERERERESkwlSQERERERERERGpMBVkREREREREREQqTAUZEREREREREZEKU0FGRERERERERKTCVJAREREREREREakwFWRERERERERERCpMBRkRERERERERkQpTQUZEREREREREpMJUkBERERERERERqTAVZEREREREREREKkwFGRERERERERGRClNBRkRERERERESkwlSQERERERERERGpMBVkREREREREREQqTAUZEREREREREZEK6x07gHSDS0YAY4DR2b9jgFHAQKAf0L+Vf3sDs4GZwMfZv8X//wh4C3gDeBuXFirwSkSkWrmkF6ENWhlYqY3LCEIHQAHw2aX4/43ADOB9YEp2Wfr/Ll1QsdckItXJJSsCa2SXMcBwYEh2Wa7o/80XgLnAnOzf4v/PIbRLEwn7RG8Q2iJfmRcjIlXLJcOBsdllDOH4bAgwuMVlUPbvAGA+4RhtTot/my/vAq8Br6NjtJpi3ut7JfdcsiqwWXYZT9jRGE3YgMtpEWFH5EXg+ezyHC59o8zPKyJ55JIVgE2BTwEbAhsA6xIKvuX2DvBcdnkWeBKXvlmB5xWRvHHJUGBrYCNgfWA9Qls0pJ179YR5LF2geQV4FHhJB0cidcgl/YGtCPtG67GkLRpe5mduPkZrLtC8DjwDPIVLF5f5uaWHqSCTN6G3+VPAttlla2Bk1EzLmgLcnV3uwqUTI+cRkXJwyVhgd2BHYHNg9biBljEDeJxwQHQn8BAubYobSUR6XBgR/Blg++wynnxNu58FPAY8CNwDPIxLF0ZNJCI9zyXLAdsQ2qPPEDrL+0bNtLQFwBPAQ8C9wH24dE7cSNIRFWTywCWDgT2AfQgHP+Xu4elpk1hSoLkDl06JG0dEusQl/QgHO7tnl3XiBuq0j4D/ATcC/8OlH0fOIyJd4ZIBwOeAnQht0gaARc3UOQuAh4HbgWs1slikSoWO8h0Jx2mfIRSDe0XN1DmLCR1XdwI34NInIueRVqggE0uYW/gF4MvAzoT1XWqBB+4HLiPshMyMG0dE2hV6nvcDPk/Y6RgYN1CPaST0EN0I/BeXvhI5j4i0xyW9gV2Ag4AvUn2dU+15CrgKuBqXvhM7jIi0wyVGmKVwALAvsGLcQD3qdUJbdCUufTl2GAlUkKkklwwEDgb2J/T41PqiyguBm4BLgZtx6aLIeUQEmnc2dgKOBPamMmvAxPYYcB5wFS6dFzuMiNDcFm1DKMJ8BVg+bqCy88AjwNXANRpRLJIjLtmMUITZD1gtcppKeBa4klCcUaE4IhVkKiGsw3A0cAQwNG6YaD4CrgX+ruFyIpG4ZBXgcEJbNDZymlhSwgi+83Dp87HDiNSlcDako4Gvkb+1qSqlQJjS9DtcelvsMCJ1KSwbcRTwbWBc5DSxeMKI4r8QCsVai6/CVJApJ5fsDBxDmHeYp8XnYrsLOA2X3hE7iEhdcMnnCAc/n6O65j6X2yOEUTNX49L5scOI1DyXjAOOAw6ldqZq94TngN8Seqp1hhSRcnPJSMIx2reo387y1kwCfg9cgEvnRs5SN1SQ6Wnh9GeHAf9HOBWjtO0J4Azg3zpdpEgZhEKMA7aMnCTvpgKnA+fi0gWxw4jUHJdsCfyYsDaMOqja9h7wZ+CvuDSNHUak5rhkA0JR+CDydXakvPkIOBf4My79MHaYWqeCTE9xSQNwCPBL6mPeYU96DfgNcInWmRHpAS7ZFTgF2Cp2lCrzHnAqoWdIvdQi3eWSPQiFmO1iR6kys4G/E0YTT4sdRqTquWQb4CeEM0hW0xnbYltAWAv0TJ0trnxUkOkJLtmd0Ls6PnaUKjeZ0Fhehkv1wRTpLJfsQhgRs3XkJNXuLeAXwKWaSy3SBS7ZAvgdYcFe6bqUUCT+kzqsRLrAJWsDZxJG50nXLQb+BPwCl86KHabWqCDTHWE17jOBz8aOUmMeB76PSx+KHUSkKrhkY8IX5WdiR6kxrwI/w6XXxg4iUhVcsjqhg+oA1Avdk94Ajsel18UOIlIVXDKC0EH1LWr/rLaVNJXQeX6hlpvoOSrIdEXY4TiTcFo07XCUz+XAsZq7KNIGlyxHmCb5XbRYbzndAXwHl74eO4hILrmkH3A8YUd9QOQ0tewuQoeVzhAn0pqwhMRRwK+B4ZHT1LInge/h0gdjB6kFKsh0hkuMcOBzGjA4cpp6kQInAeeoEitSxCVfAf4IjIwdpU4sJLT9p2nqgEgRl+xGWIi2Xk8ZW2lNwAXAibj0o9hhRHIjTJU8B9g0dpQ6chVh9N7k2EGqmQoypQpzEC8Ato0dpU49ARyMS1+LHUQkqnCqxnOAvSMnqVcvAofj0sdjBxGJyiWDCVMlD48dpU5NAb6OS2+JHUQkKpf0Bn5OGKGn0cKVN5swcu8fsYNUKxVkOhJGxRxNOD2zhuHGNRc4Rhu81C2XfA34AzA0bpC610Q4M5zDpQtjhxGpOJdsDlwBrBU7inA+8ENcOid2EJGKc8mahCUOtowdRbgBOAqXTo0dpNqoINMel6wCXAjsEjuKLOVq4Ju4NI0dRKQiXDIAOBf4WuwospTngX10KkipG2F9hh8RzkLWJ3IaWWIicIBG7kldccnhhFF6WkYiP6YBh+HSm2MHqSYqyLTFJbsCV6IFofJqEnAQLn04dhCRsnLJOOCfwPjYUaRVKXAoLr0hdhCRsgqdVJeiM0vm1WLgp8BZuFQ791K7XDIM+Buwb+wo0ioP/I6wztXi2GGqgQoyrXHJDwlnUdI8xHxrBE4Bfq0Ff6UmuWQfwii95WJHkXZ5whkdfq62SGqSS/YmrKOnTqr8+x9wIC6dGTuISI9zybaEDvNVY0eRDj0G7I9LJ8UOkncqyBQLp208D00LqDY3A/vh0rmxg4j0iLBA3RnAD2NHkU65lTByT2c+kdrhkp8CvwQsdhQp2cvAHrj0rdhBRHqMSw4G/gH0jR1FSjYV2AuXPhY7SJ6pINMsnLnk38BWsaNIlzwJ7IlLP4gdRKRbXLIi8C90RrdqNYmwrszTsYOIdEsoDJ8LHBk7inTJVOALuPTR2EFEus0lPyOsXSXVZx7hTLnXxQ6SVyrIALhkM+A6YJXISaR7JgGfx6Uvxw4i0iUuGQ3cDoyLHUW6ZQFhysB1sYOIdIlLhgDXArvFjiLdMp+wxtU/YwcR6RKX9CHMXjg8dhTplgLhbHB/jB0kj1SQCfOirwT6R04iPeNjYG9cel/sICKd4pL1CMUYFYZrQyPhTAOXxw4i0ilh8d6bgI1jR5Ee4QmLa54RO4hIp7gkIYwY3il2FOkxfwJ+oPX2llbfBRmXfBm4CugdO4r0qIWEA6GrYgcRKUkYpfc/YETsKNKjCsC3cenfYgcRKYlLNiKsy6YFM2vP+cB3cGlj7CAiHQojhm8CNogdRXrcdYT19ubHDpIX9VuQccl+wOWoGFOrPPA9XPrn2EFE2uWSHYAbgCGRk0j5HItLfxc7hEi7XLIVYWFqndWtdl0BHKLeack1l4wB7keF4Vr2ILCbTsgSNMQOEIVLDiR8KakYU7sM+CMu+XrsICJtcskXgFtQMabW/RaXnBw7hEibXLIxYWSMijG17SDgfFyiM2ZJPoUpk3eiYkyt2wa4PjvDcd2rv4KMS74KXAr0ih1Fys6Av2WjoUTyJaxf9S+0flW9cLjkrNghRJbhknWA24BhsaNIRRxBWMdBJF/CWSbvANaIHUUqYifg2uyMfnWtvgoyLvkacDEqxtSTBuAyXLJH7CAin3DJ1oTFxOv+S6jOHJudulMkH8LUgDuAFSMnkco6GpecGTuEyCdcMoxwYoN1Y0eRitqLcJxWXzWJFupnDZkwNeA/1FsRSpotAHbHpffEDiJ1ziXrEubODo8dRaI5FJdeGjuE1DmXjCSs07Bm7CgSzSm41MUOIXXOJUMIheEtYkeRaP4BHIlL66QwsbT6KE6EudFXUC+vV1rTH/gvLtkydhCpY+EA6H+oGFPvLsAln40dQuqYS0YQDoBUjKlvJ+OS42OHkDrmkoGEsympGFPfjgD+EDtELLU/QsYlKwOPAavFjiK58DGwFS59LXYQqTOhB+g+YELkJJIPM4FtcOlLsYNInXFJf+BedAAkgQf2waXXxQ4idSYsLv0v4Euxo0hunIBLz4gdotJqe8RI2Om4DhVjZIlhwHXZwbFIZbikD2GnY0LkJJIfQ4FbslFTIpX0N1SMkSUMuCSbTitSSSejYows7Ve4ZOfYISqttgsycCGgKSrS0nqEBaR02keplL8Cu8QOIbmzOnAjLhkUO4jUCZf8ADgkdgzJnSHAf9RZJRXjkn2An8eOIbnTC7gSl6weO0gl1W5BxiUnAwfEjiG59QXAxQ4hdcAlRxDmxoq0ZhNC54FIeblkR+A3sWNIbq1LGCmjziopL5esRzjrrT5r0prlgX/hkn6xg1RKbRZkXPJFwjA4kfb8DJfsFjuE1DCXbAScHTuG5N5XcMm3YoeQGhamxl1J6H0UacvewE9jh5AaFkaE/hMYHDuK5Npm1NH+c+0VZFwyCrgAVV2lY0aYurRq7CBSg1wyGLgWGBA7ilSF3+OS8bFDSA1ySRgCDivGjiJV4RRcsnvsEFKzzgPWjx1CqsKRuOTrsUNUQm0VZMIwy0uAEbGjSNVYHrgq22EV6Ul/BNaJHUKqRn/galyiAp70tFOA7WOHkKrRAFyhzirpcS45Ejg4dgypKn/BJZvGDlFutVWQgWOBnWKHkKqzDfCD2CGkhrjky2jdGOm8ddEaH9KTXLI5cGLsGFJ1hgLnxw4hNcQlqwC/jR1Dqk4/wtpWNb2eTO0UZMICUafGjiFV6xRcskbsEFIDwk7H32LHkKr1HVyya+wQUgNc0hv4O7W0ryeV9LlsRINITzgXWC52CKlK61Pja8PWxpd0mG5yEaGKJtIVA9FBtPSMvwDDY4eQqmXAhbhkWOwgUvWOB7QukXTHb+vt9LNSBi7ZH9grdgypaj/CJZvFDlEutVGQgeOALWKHkKq3Ey45PHYIqWJhIcQvxo4hVW8U8IvYIaSKuWQc8PPYMaTqLUfoZBDpGpcMB/4UO4ZUvV7ABdnIz5pT/QWZULl3sWNIzTgLl6wUO4RUoTC/VTsd0lO+jUs2jB1CqlA4wcHfCAtFi3TXntm6aCJd8Xt0hjfpGeOB78cOUQ7VX5CB09BOh/QcVfKlq44F1oodQmpGL8KZukQ66+vADrFDSE35Ey7R+h/SOS7ZDTg0dgypKa4Wp1FWd0HGJVsAB8aOITVnP1yyR+wQUkXCl8NPY8eQmrOjeqalU8IIT52pS3raKDQFTjojjBr+a+wYUnMGUYMd59VdkIHfERZAFOlpp2XDvkVK8TvCwtAiPe0sXKJRoFKqkwinLBbpad/NziIoUopvAWNih5Ca9EVcsnXsED2pegsyLtkX2CZ2DKlZGwH7xw4hVcAlOwMaxSDlMgb4UewQUgVcshpwVOwYUrP6Az+LHUKqgEsGASfGjiE17ZexA/Sk6izIuKQvcEbsGFLzXHZKdZH2aHqAlNuPs4Ntkfb8DOgXO4TUtCNwyRqxQ0ju/R+gE2RIOe2IS3aIHaKnVGdBBo4B9IUg5bYOcEjsEJJjLvk8MCF2DKl5A4Efxw4hORYOkg+PHUNqXh/glNghJMdckgDHx44hdaFmRslUX0HGJQPRMDipnJ/jkj6xQ0huqS2SSjkClywfO4Tk1s+B3rFDSF04CJdsEDuE5NYPCWcsFSm3bbMzeVW96ivIwNfQhi6VM5ZwClGRpblkO2Db2DGkbgwgDAMXWZpL1gG+GjuG1I0G4BexQ0gOuWQE8P3YMaSu1MQomeoqyISz3nw/dgypOydlp+8TKfaT2AGk7hydLZYoUuxkQOudSSXtg0s+FTuE5M7xwHKxQ0hd2RyX7BU7RHdVV0EG9gDWjh1C6s4qwH6xQ0iOhB3Rz8WOIXVnOBqxJ8VcMgadEVDi0Ig9WSIsKfGt2DGkLlX9GnvVVpD5YewAUre+GTuA5IrWjpFYfohLtFaINDuS6tuXk9qwf7aAqwiEwrA+DxLDNtW+rlX1fIm7ZGPgs7FjSN2q+o1dekg4m8mXY8eQujUajYgQICvM6cxKEstA4NDYISQ31HEpMX0jdoDuqJ6CjEbHSHz6shEIO6DV1HZK7fl+7ACSC3sCo2KHkLqm/SIBl4wHtowdQ+raIbikf+wQXVUdBxUuWRE4IHYMqXuH4JIBsUNIdDqbicS2GS7RempS1T2CUhM2yM44KPVNhTmJbRjwldghuqo6CjKwL9A3dgipe0NRYbC+uWRrYM3YMUSAg2MHkIhcsjqwW+wYIuhgvL6FM/+po0ryoGo7KaqlIKMz3EheaMejvh0SO4BI5sDYASSqr1M9+3BS2/bFJSNih5BoDkCnupZ82BaXrBc7RFfk/8vcJSsDGg4pebGlFvetUy7pi4rDkh/jcMnmsUNIBC5pAI6IHUMk0w8ViOvZkbEDiBQ5KnaArsh/QSZMV6qGnFI/9okdQKLYExgeO4RIEU1bqk/bAKvGDiFS5AuxA0gELlkVLeYr+VKVx2jVUOhQj7TkzZdiB5AoNF1J8mb/bLSE1Jcvxg4g0sL2uGRI7BBScV8ELHYIkSKjq3EmQ7535FwyktATJJInn8Ilo2OHkAoKi9Z9PnYMkRZWBnaMHUIqTgUZyZu+wK6xQ0jFqS2SPNojdoDOyndBRtOVJGcW+t5v3de00b2HLzp+59hZpKI+i870Jvm0d+wAUkFhwcK1YscQacWesQNIBblkOWCH2DFEWlF1Hai9YwfowN6xA0h9857FM1juhZuatpx9SdOuo9/0q4wFxgLzgAsix5PK0ellJa9UHK4vVbejKXXj87ikAZcWYgeRitgJ6BM7hEgrtsElQ3HpzNhBSpXfgoxL+gFbx44h9afgbforfrVXr2rasde/m7Zdfw4DP9XKzXYYc8JN/SedvseCigeUGD4XO4BIG9bBJavi0smxg0hFaFqI5NWKwBbAI7GDSEWoo0ryqjfhu/Ka2EFKld+CDGwF9I8dQurDfN/3tQcKG025uGnXEQ8WNljf09DR2kUDgG2BOyoQT2JyyepoioDk287ARbFDSJm5pD+wXewYIu3YExVk6oUKMpJnn0cFmR7x2dgBpHZ5z4IPGPb8DU3bLLi0aZc1J/sV1gbW7uTDfBoVZOrB9rEDiBTznnnTSV55oLDh7P80bTv80cJ627yqgkw92I7QGSCSV7sCJ8UOIWXmkjWBMbFjiLRjd1xiuNTHDlKKPBdk1AskParJ2wfP+zVev7xpp/43Nn16g/n027ybD/npHgkmeaeCjETVsgDzUGGDdRvpvUnRTTSatD5sGTuASAc2xiX9cOnC2EGkrDaLHUCkAysSRre/HjtIKfJZkHFJA9Ddg2Wpc97j59L/5bsKn5p2ceOuKz3p11mXcJrYnqKd4/rwmdgBpL6UUIBpadyYE25aYdLpe0yrWEiJobX1zETypC/hc6ppS7Wtve8jkbzYHBVkumUDYEjsEFJ9vGfOu36FF/5d2K7xisad1pnKsPXL+HTDx5xw09qTTt/jtVJubGZNwPNFv9rbez+pjdvO8d4P7oGM0h0uGQaMix1DalsXCjCt2Rq4vhz5JDcmxA4gUgIt7Fv7VJCRarA5cEXsEKXIa0Fmq9gBpHos9r0mP+3Xmnhp4y6Dbi1svuEi+lTy8/NpoKSCDDDfez+hjFmk560XO4DUnh4qwLS0DSrI1C6XJMDY2DFEWvIev5jeb7/rV5jyeGGdhXcWNhl9fuxQUm4arSe55j2F2Qwcs1zsICXKa0FGG7q0yXuaUga9eFvTZh9f3LTrqi/6sWsCq0aKswVwcVfuaGaDCQdQw4A+wEne++tb3GYkcDWwHGF7/bb3/n4z2xU4BegHvAkc7r2f0+VXIW0p5wgrqRNlKsC0tGmpN9Rovao0AbDYIaS+eU9hEb0nve1XmvJYYd3GuwsTkkcL660xh4FjWLLI6/B4CaXswpknR8SOIdLMexbOpf+bb/pRMx4trOfvK4wf9lRh3Brz6L8TJ9xkk07fI/cL++a1IKNTzMpSvCed6Ee+dG3T9v7qph3W/ZjlxsfOlOnMAfsAM3sm+/9bwFeAL3nvZ5nZ8sAjZnaD97644TgIuNV7/ysz6wUMzG57ErCz936umf0Y+CHwi26/GmlJI2Sk0ypUgGmpM1PrNFqv+kyIHUDqi/c0LaTPxLf8ylMfKazfeE9h4+FPFNYZO5cBawBrtHPX9caccFOfSafvsbhSWaWi1Gku0XhP+jFD3nqlsFr6YGHDXvcXNlrpRT9mbBO92joeGw1MqmDELslrQWbN2AEkvoW+91uPFtZ755KmXYbeXfjUBk30yuNZjdbtxG2XOggysz7Ar83sM0ABWAVYCfig6D6PA//Ibnud9/4ZM9ueUAh60MwgLKL3cLdehbRFI2SkQ5EKMC2tOuaEmwZMOn2P+Z29o0brVQUdBEnZeM/i+fR9a6If9eHDhfX9PYUJw58sjFtzAf3G0fl11PoQOjOe6+iGGq1XlbR+jFREk2+YMpWhk58rrDH3/sJG/R8obLjKJD9yNTrXQbEhKsh0gUt6A6vHjiGV5z2LZ7DcCzc3bTnr4qZdx7zpVxlL/ufMrzzmhJuSSafvkXbhvgcDKwCbeu8Xm9kkWpy+1nt/X1aw2QO41Mx+A3wM3O69P7Cb2aVjGiEjy8hJAaYlI3RmvFDCbTVar/pMiB1AaoP3LJpH/zff8KOmP1TYwN/TtPHyT/txay6iz9rA2j30NBtQQkEGjdarRhvHDiC1xXsKi+n99mS/wpQnCuMW3VfYeMjDhfVHzyAZCYzs5sNvBNxYyg1jFojzV5AJQ4vymEvKoOBt+qt+1Vevatqx17+atlt/DgOX6QWcfO4RNPQdAA0NWEMvRn7tD3x8z4XMn/gkfVccy/J7HgvAnBfuorBgNstt9sVKv4w1gae6cL8EmJoVYz5L+OwvxcxGA+957883s0GEnolfAX8xs7W892+Y2UBgVe99qYsLSylcMggVh4XcFmBaM47SCjIarVd9NHJYOs17FsxhwJuv+VVnPFjYoOGepgnLP+fXWLOR3uXubOjSd6dG61UF7RdJl4WCcL83J/qR0x8trO/vDeu9jJ3LgHJ1wrc3vbKlaAXiPBY+tNNR4+b7vq89UNhoysVNu454sLDB+p6GbTq6z0oH/ppeAxMACgvnsvC9lxl1xNlM++9vWDRtEr2HjmTuC3ew4leidMyuQdcKMpcD/zWzJ4BngFdauc0OwPFmthiYAxzqvZ9mZocBV5pZv+x2J1H62Z6kNOuiRTTrUlsFGF9oYsrFP6D3kBGsuO/JeSsMQ9fXX9NovTxzyUBAUzWkXd4zbxYD33zVr/bxA00bNdxb2HilF8LaChtEiLNaibfTaL3q090RC1InvGfWTAa/9UphtZnZei8rvujHjK1AQbhYl0/6UskCsQoyUnbes+BDhr1wQ9PW8y5t2mXNd/2K3RwWa/imRrz3+MZFWEMvZj32b4Zs+gWsV5SPdEkV3ZZD27z30wmnzW7ztt77i2nlLE7e+7uAzTudVDqjM1V1qWLeM28Gy736QGHDWaEAs+E6i1sZATP7iRvoM2I1/KJ5eSwMQxjZ0hUarZdvK8cOIPniPbNnMuitlwujP76/sFHvewsbr/yyX32sp2Gj2NkypRZkNFqvmrikgVC8F1lKk7cPpzH0neb1Xh4sbDhqoh+5GljsKW6ltkUQsUCsgoyURZO3D17wY1+/vGmnfv9t2nrD+fTbrMsPZsbUa34OwOAJuzNkwucYuM7WTLnoGPqP3hjrN4hFU15j6DbROmlXjPXEUlY6dWeNaqMA0+6iqY2zpjN/4uMs9+n9mf34deSwMAwwqov302i9fFNBpo55T/oRQya+WBgz6/7C+D53L1xn1P2X/2WMb1o8nsL7DFxnLEO3G5O3EXudOQgqptF6+bYi0Ct2CInHe3xY72X5KQ8tXGPx9y98crN5vm/fRt9rpYHrbL3S0O0OztqiG/LSFnVmhEy0AnEeCzJdbcQlIu/xc+n/8t2FCVMvatxt5Sf92uuA9chO5MoHn0nvISNomjuTD68+iT4jViXZcl+SLfcFYMYtf2Lodl9l9rO3suCtp+mz4hiGbn1ATzx1qXTgXpuGxQ4gPaMrBZiWPr7zbwzd4Qj8onkANPQbmLfCMJRYkNFovaqjgkydKHg+nkHy1vOFsbPuK4zvd19h/KiJfuTqYJ+0V76XZ6UDf01D3wH4pkY+uPxH9B89Pm8j9rraUaXRevmm6Up1xHsWzaffxIl+5LTHCuv6+wrjhz5eWGfsXAaMAcZ4PAO/uoDB+W6LkjEn3NR/0ul7LOjCfStWIM5jQUbzpKuE98yZ7Fd48d+FbRdf0bjT2h8yfH3KcJrg3kNGANBr0FAGrv1pFr7/Gv1X2xCARR++GW4zbBU+uuNvrHzwGUy7/gwWf/QefYZ3dfR+p42o1BNJRakgU6V6ogBTbN4bj9EwaCj9Vl6LBe8sOXFIzgrD0PUpS5JvKsjUoIK36dNIJj1XWHPuvYXx/e4vbLTa237lVejgu8fMsL4DAPCFRig0hf/na8ReV6e1aLRevqktqlHeMztl0MRX/WrpQ00bNNxXGL/CC37sGovpvS5hTcVlVElbBLA8MLkL96tYgTiPBZlBsQNI2xb7XpOf9mtNvLRxl0G3FjbfcBF9tizn8xUWLQBfoKHfQAqLFrDgradJinqgZ95/GcN3OxoKjeAL4ZfWgG9cWM5YLWmETG1SQaZK9HQBpqWF773E/NcfZfKbT+CbFuEXzmf6f89i+b2OA3JTGAb1XtYqHQRVuSZvH05l2DtPF9aae29h/MAHmjZa7T1WGEk4UOi0sMD492n8eApDNtmD/qtvlLcRe33HnHDTcpNO32NWezfSaL2qo++YGtDkbep0kneeL4ydc39ho34PFDYa9aYftXpX1nupgrYIul6QqViBWAUZaZf3NM1i0Eu3NW360UVNu63yoh+7Ft1YsbqzmubNZNq/Tw0/FAoMWn97BqyxKQDzXnuYviuP+2QETb9R6/L+Bd+lz4pj6LtiRddj1QiZ2qSCTE6VuwDT0rDtD2PY9ocBsOCd55j12H8+KcZAbgrDAP3GnHBTr0mn79FU6SeWslopdgApXaNvmPIBw995qjBuwb1NGw98oLDh6A8ZvhI9+He0hl6MOvzPFBbMYep/fsWiaZPyOGJvBaDdgoxUHRWHq0hY76XXO+/75ac85cctuK9p/OCHC+uv/iHDV6SH1r+skraopMJ3zAKxCjKyDO9JJ/qRL13btL2/ummHdT9muWir9vcZujKjjji71esGrv1pBq69ZDsZtuPXGcbXKxWtmEbI1CYVZHKi0gWYzshRYbhZH0AFmdqyXOwA0rrFvtfk9/2IyU/6tRfc07TxkAcLG46eQTKSCo0kaOg/mP6rbcT8iU/Rd4UxQK5G7A2s5JNJRehvmlPes3g+fd+a5Fee+mhhvabm9V7mMHA0rUy16Wk5b4tyX1tQQUYAWOh7v/VoYb13LmnaZejdhU9t0ESvViuC0ip9QdWmobED1Ks8F2D6rz6e/quP/+TnHBWGm/UFurJ4neSXxQ5Q77Ke5ncn+xXee6KwzqJ7ChOGPFRYf+xMhqxKBUcNAzTNS7GGXjT0H0xh8UIWvP0My2W90ZCrEXt5PMYQqXreM2cWAye+6lf7+KHCBg33NY1f4Xm/xhqL6b02sHalcqgt6jl5DKiCTAV4z+IZLPfCLU1bzLqkadfRr/tVxwJjY+eqUjoFYG0aEjtAvchzAaYK9YkdQHqcjx2gnniPX0TvSe/6Fac8Vlh38T2FCcnDhfXGzmbQ6sDqsfM1zfmI6Tf9Phzg+AID192OgWttAeRuxJ7aIpFuKnibNp3k7ecLY+c8UNiw3wOFjUa+7lcZDTa+43uXVxW1RXmsdywljwFVkCmTgrfpr/pVX72qacde/2rabv05DNQBT89QQaY2LY4doFapAFNWOggSKZH3NC2kz6S3/UofPFJYr+mewoTkscK6a8xlQG47qfquOJZRh/+p1etyNmIvj8cY0j0arVdGi32vd973I97P1nsZ9Ehh/dWnMGIlun7WsrJSW9Rz8hiwX8c3ka7xvdexyeud3PsSTu59SSPwUexEtcDDQpgZO4b0vIqPqawjjcOZPfoLDQ/zhYaHIaxMLz0gZRDwXuwY0rM0QqZ8Fvalcdg4e2/YuF7vcUivOyAU47V/1E1z6e/hg9gxRKqC9yzoRWHwajZt7dVsGl9seKj5KrVF3TSPfk3wYewY7cpjQWYuMLjDW0mnNRhDtV9XFnNjB5CyUEGmTMxYztQWlcUw5hRiZ5Dq9MdHFnL+U4vxwFGb9OH7W/Vj/3/O49Xp4SM1c4FnaH/jmW8N5sF3Gvn2TQvo1xuu/PJA1hrewMwFnv3/OY//HTwQs+roSDdjoOG1DlwZDGG+2iLpkjpti/obvn/sHLVocBUsq5fHgsxsVJCR6tIYO4CURUUKMq3teAD8+dFFnP34Ino3wB7jenPmLv1rZsdDykpT7WpP2auXL0xt4vynFvPYUYPo2ws+d9k89hjXm6v3XVKrOPbWBST9Qxvz24cX8a/9BjBppufcxxfx293688t7F/KTbfupHZJm2jeqPWXfuNUWSRnkvi1qiB2gFbMr8SR/fGQhG54zhw3OmcMfHgnHXe6eBazyu9lM+OscJvx1Dje/HvZrH3ynkfHnzmHz8+fwxkdLqrO7XTYX79XLK/nf0KVLyl6QKd7xePZbg7jxtUZen9HE3W81cv2ri3nuW4N48TuDOW7rvsCSHY9f79ifcx9fBKAdD2lJ7ZF02svTCmy1ai8G9jF6Nxjbj+7Nf15Z8lHy3nPNS4s5cMPQj9enF8xvhHmLPX16wZsfFXhvdoHtx+Sxn08iUXFYOk1tkZRB7tuiPH5ay16Qaav6CvCDrfpy3NZLL2Oj6qt0QFOWalPZxzgW73gAn+x4PPF+Eyds249+vcPvVxwUaufa8ZAOeGB+7BDS48q+M7nhig389K4mZswrMKCPcfMbjWw2ckmf3f3vNLHSIGPciLCG/Ynb9uMb/13AgD5w6ZcGcNxtC/jlZ7UEoCxlXuwA0uPKvl+ktkjKIPdtUR734su+uGNbB0Ft0UGQdECr1tWmso+QaWvH47UZBe5/u5Gf3rWA/r2Ns3bpz+ar9NKOh3RkBi7VCJkyMrMRwJ3ZjysDTcC07OctvPeLyvC0M8rwmEtZb4Ve/Hibvuxy6TwG9zU2XqmB3g1LOpyufH4xB2645AReE1buxSNHhpNi3vd2I6OGNOCB/f85jz4Nxm937cdKg/M4CFsqSPtGZaS2KFBbJCXIfVuUx4pC2UfItHUQNGKgcfZji7jk2cVsNqoXv921P8MGmA6CpCO539ClS8o+0qCtHY/GAny8AB75+iAef7/Afv+cx8RjBmvHQzoyJXaAWue9nwFMADAzB8zx3p/VfL2Z9fbe93RRbFrHN+m+r2/Sl69vEqZH/uTOBay6XGhLGguef7/SyJPfGLTMfbz3nHrfQq7edyBH3zKfU3box6SZnj89uohf7aT1KevYXFyqs+eVUaS2aHoPP16r1BZJD8v9cVpdFmTaOgj69mZ9+dln+mEGP7trIcfetoB/fHGADoKkI7nf0KtdpJ6gipwjr7Udj5enG/us1xszY4tVetFgMH2eZ4VBoZdIOx7SBrVFEZjZRYRTk34KeMrMZlN0cGRmLwB7eu8nmdlXgWOAvsCjwHe8900dPEVFCjJT5xZYcVAD76QF/v1yIw9/Pez33DGxiXWXb/jkoKjYxc8uZo9xvRk2wJi3GBosXOblfsa+lJmKwxFUoC2qSEFGbZH0oEYq9LntjjwWZNJKPElrB0HFRZWjNu3LnlcsPeVMB0HSBh0ElVmknqD3evjxWtXajkeDwV1vNbLDmN68NqOJRU2w/MAlQ3a14yFtUFsUz9rAzt77pqyNWoaZrQfsD2zjvV9sZucABwOXdPDYU3s0aRu+fM18ZswLU7P/8vkwQhjgqheWniLQbN5iz8XPLua2r4azn/xwq758+Zr59O0FV355QCUiS36pLYqnnG1RRTqq1BZJD/oQl+b+DDztFmQi9Uq/U4bHXEZrB0FTZhcYOSQUZf7z8mI2XHHpCqwOgqQN2vGIoAI9QZPLFr5IazseR3yqD0dcv4ANz5lD315w8d4DPllAXDse0g61RfFcW0KbshOwKfB4tj0PoLRiS0XaovsPX3YaAMBFe7fergzsY9z9tSX32W50b57/9uCyZJOqo7YoHrVFaotkiapoi9otyETqlZ7Yw4/XqtYOgg75zwKe+aAJA8YMbeC8PZeMetFBkLSjKjb2GlXOnqBoOx59exmX7aMdD+k0TROIp/hse41AcY9O886EARd770/s5GO/251gIhGoLYqnfG2RS2fikjmAdjqkWlRFW9TpKUsV6JV+q7OZuqK1g6BLv9R2YUUHQdIOFWTiKWdPUEXaIpEepLYoHyYBewKY2SbA2Oz3dwLXm9nvvfdTzWw4MMR7/3a7j+bS6bhkPqHtEqkGaovyYRI92RYF7wHrlCOsSBlURVvU1ZVom3ulj23rBi16pScQpjsdXMJjV2SEjEgPKuULTMqjMz1BE7LLOt571+Eju3QaMKungopUgEZS5MO/gOFm9gzwbeA1AO/9S8BJwG1m9hxwOzCyxMesyHRukR5SkRGm0qFytEXqrJJqUhVtUVcX9S1fr3ToCZoBjOhiNpFKmoZL348dQoDy9AS9SRgNKJJ3Hng2doh60lZh13s/H9i1jeuuBq7uwtM9j3qlpXqoLaqgCrdFzwKf68L9RGKoiraoqyNkytcrHbzcxVwilfZM7ADyiXL0BL1ehpwi5fAmLp0dO4SUzVOxA4iUaCHwUuwQUjZqi6SaPB07QCl64rTXk+j5XumXgW17IJtIuVXFhl5LKtwT9DSwXxfuJ1Jpaotqm/6+Ui1ewKU6/2jtUlsk1eIjXFoVy0p0dYRMsXL0Sr/YA7lEKuGZ2AGkrB6OHUCkRNpJrm3qlZZqobaotr0BaDSmVIOqaYtKHiFT4V5pHQRJtaiajV265HHCguS9YgcR6YDaolrm0qm45D1gldhRRDqgtqiWudTjkmfRTAbJv6ppi3pihEw5PAXMiR1CpAPzyEaESY1y6TzgudgxREpQNTse0mUaJSPVQJ/T2qfvG6kGVfM5zWdBxqWNwEOxY4h04DlcWogdQsrukdgBRDowBZd+GDuElJ0OdCXvCqgTox6oLZJqUDWf03wWZIL7YgcQ6cCjsQNIRaggI3n3eOwAUhFPxg4g0oGXs5GlUtueiB1ApAOzqaJZDCrIiHTdLbEDSEVoTSvJu//FDiAVcR+gs9dInt0aO4BUgEtfAN6LHUOkHXdU0yyGPBdkHgMWxA4h0oZ5wD2xQ0gFuPR1YHrsGCLtuDl2AKkAl6bAA7FjiLTjxtgBpGL0vSN5dlPsAJ2R34KMSxcSijIieXRX9hmV+qDRUJJXL+LSt2OHkIrRAa/k1SxUMKwnVXXAK3XFU2UFw/wWZIK7YgcQaUNVbejSbf+OHUCkDWqL6osKMpJXt+FSTamrH3cA6piUPHoal06JHaIz8l6QuTZ2AJE26CCovtwKzI0dQqQV6qWsJy59DXg9dgyRVqgtqicunYvW+5R8qrqOi3wXZFz6EvBC7BgiLbysKQJ1xqXz0bQlyZ8UeDB2CKk4HfhK3nj0HVmP1BZJHlXd5zLfBZngqtgBRFrQ6Jj6pGlLkje349LG2CGk4qqu909q3hO49MPYIaTiqu7AV2reVODx2CE6SwUZkc77V+wAEsWNaL605Mt/YgeQKO4jjI4SyYsbYgeQCFz6BvBS7BgiRW7CpT52iM7Kf0HGpW9ShZUuqVmv4tKHY4eQCFw6m7CInUgezEIFmfoUFk69PHYMkYwHLo0dQqK5IHYAkSIXxw7QFfkvyAQaJSN5UZUbuvQYLTQueXF1traR1KfzYgcQydyldfXq2sVo9LDkwxu49N7YIbqiWgoyVxMq8CIxFYBLYoeQqK4BPoodQgS4MHYAicilzwGPxI4hAvwjdgCJyKUz0Bp7kg8XxQ7QVdVRkHHpe8DtsWNI3bs5+yxKvQojEv4eO4bUvRc1dVLQKBmJ7yN0MC5qiyS+JlSQqYjfxg4gde+c2AEkF/5CaPhFYjk3dgDJhauBmbFDSF37By5dEDuERBamibwaO4bUteurudO8egoyLr0NeC52DKlbbwG3xg4hOeDSd4DrY8eQujUbTZ0UaB6xp8VUJZYCKg7LEufHDiB17S+xA3RH9RRkAo2SkVj+iksLsUNIbvwpdgCpW5dlZ/wSAU0VkHj+h0snxg4huaHFfSWWl3HpXbFDdEe1FWSuBKp2OJJUrRmoF0iKheG5z8aOIXWnETgrdgjJEZe+CNwTO4bUJXWSyhIunQ5cHjuG1KXfxQ7QXdVVkHHpYtQzLZV3lnqkpRV/jh1A6s5F6pGWVvwidgCpO3dXe4+0lMWvCR0HIpXyJlW8mG+z6irIBOcR5tCLVMI0dOAtrbsMmBw7hNSNRcCpsUNIDrn0buC+2DGkrvwsdgDJIZe+CVwRO4bUlVNwadUXAauvIOPSFC0cJZXzG1w6N3YIySGXLkQ901I5F+DSt2OHkNw6JXYAqRu34tIHY4eQ3DoVnYlSKuNlamSaXPUVZILTgDR2CKl5H1Llq3ZL2V0IvB47hNS8BcCvYoeQHAvTR+6OHUPqwkmxA0iOufR1wgK/IuV2cq2ccKU6CzJh4ajTY8eQmncmLp0XO4TkWBgmqaHbUm5/w6Va0F468uPYAaTmXY9Ln4gdQnLvZEJHgki5PAP8M3aInlKdBZngD8C7sUNIzfoAnVlJSnMN8GjsEFKz5hNGhYq0z6WPU0M7qJI7HnVASClcOhk4O3YMqWk/x6U+doieUr0FGZcuAE6MHUNq1o9w6fzYIaQKhC+EH8SOITXrLFz6QewQUjV+CiyOHUJq0lW49PnYIaRqnAZ8FDuE1KSHcel/Y4foSdVbkAFw6eXA/bFjSM25A5deGjuEVBGXPgxcFTuG1JxX0dox0hkufQ04I3YMqTkfo44H6QyXfgT8MHYMqTmLgW/GDtHTqrsgE/wfWs1bes4C4NuxQ0hV+hEwO3YIqRke+EZ2Ni+Rzvgl4ewTIj3lOFz6YewQUmVcejFwe+wYUlPOqMWRetVfkHHps2itD+k5v8Slb8QOIVXIpe8Cx8aOITXjAlx6X+wQUoVcugg4EqiJs09IdHfi0n/EDiFV65uATpAhPeEVwmnVa071F2SCEwAdREt3vQD8JnYIqWIuPR/4X+wYUvU+AI6PHUKqmEsfAs6JHUOq3nzgG7FDSBVz6VtoMWjpPg8cWaujhmujIOPSucBXgcbYUaRqeeCbuFSLIUp3HQnMjB1Cqtr3cOnM2CGk6p0IvBM7hFS1n+PSibFDSNX7I/B47BBS1c7FpQ/GDlEutVGQAXDpo2jxQ+m6v2Y9iiLd49L3gO/FjiFV60Zcek3sEFIDXDoH+FbsGFK1ngR+HzuE1ACXNhE6q9RxLl3xLmE2TM2qnYJMcCrwSOwQUnVeAI6LHUJqiEsvAW6IHUOqzlRq8OwBEpFLbwEuiR1Dqs4C4OvZgbRI97n0OdRxLp3XPIOhpk+aUVsFGZc2AocAc2JHkaoxG/gyLtWCY9LTvgHMiB1CqkYTcAAufT92EKk53wVejB1Cqsp3s5NmiPSkXwC3xQ4hVeW0rGOhptVWQQbIzpDzg9gxpGocgUtfix1CalA4RejX0JlOpDQ/waV3xw4hNShMXfoSkMaOIlXhbzqrkpSFSwvAQcDbsaNIVbiVOlkQuvYKMgAu/TtwdewYknt/wKX/jB1CaphLbwJ+EjuG5N5/cOmZsUNIDXPp64QRxD52FMm1x4D/ix1CaphLZwD7EKbFibRlEnBQVsSrebVZkAkOAx6NHUJy6yHgR7FDSB1w6RnAZbFjSG69Rvi+Eikvl/6XsNaeSGumEaZwL4odRGqcS58CvhM7huTWfGAfXPpR7CCVUrsFGZcuAL5AqLCJFJsG7KdTXEsFHUXoeRQpNo9wADQrdhCpGw64OXYIyZ0mYH9cOjl2EKkTLr0QOC92DMmlb+PSp2OHqKTaLcgAuHQqsCeaNy1LLAS+kp2aWKQyQoF4b0ALtkqxo3DpC7FDSB0Jw78PBt6MHUVy5UStYSURHIPOjitLOxeXXhw7RKXVdkEGwKUvAvsBjbGjSHQF4Ku49N7YQaQOuXQKoSijedMC8GNcekXsEFKHXDoT2AuYHjmJ5MPfcelvYoeQOhSmx32RMHVX5Fbge7FDxFD7BRkAl94GHB07hkR3jBbxlahc+jjhzEtNsaNIVL/VIr4SlUtfBnYBZkZOInH9C/hW7BBSx8Jshp3QEhP17mHCujF1uZxEfRRkAFx6HnBG7BgSzS9w6V9ihxDBpdeg02HXs0uA42OHEMGlzwC7A3MiJ5E47gQOxqXqIJC4wtpFO6Np3fXqeWAPXDovdpBYzPs6OwOiS04Hfhw7hlTUb3HpcbFDiCzFJYcAF1FPhXG5FjhQB0CSKy7ZHrgFGBA7ilTMg8DncKmKcZIfLlkPuA9YPnYUqZjXgO1x6Qexg8RUfwcCLj0B+EXsGFIx56oYI7nk0kuBw9FImXpxPXCQijGSO2FdtX0Ane64PjwC7K5ijOROmEq5KzoZS714A/hsvRdjoB4LMgAuPRn4aewYUnZ/Ab4bO4RIm1x6CXAEKsrUuhuB/XCpFpeXfHLp/4AD0AkQat1jwG64dHbsICKtCqc73h2YGzuKlNVEQjFG09SoxylLxVxyLHBW7BjS4zzwE1x6euwgIiVxyWHABdRrkby2/R34tooxUhVc8iXgCqB/7CjS424H9sWls2IHEemQS7YidGaMiB1FetyzhDVj3osdJC/quyAD4JKjgT8BFjuK9IjFwNez6SAi1cMlBwEXAn1jR5Ee8zNcemrsECKd4pJtgP8Cw2JHkR5zAfAtFYalqrhkHcKpkEfHjiI95hZgf43SW5oKMgAuORQ4Hx0IVbs5wJez05yLVB+XfAb4DzA8dhTplsXAkdmUNJHqExbX/B+weuwo0i0eOAmX/jp2EJEucclI4GZgQuQk0n1/BY7WWnrLUkGmmUu2JhwIrRg7inTJh8DncelTsYOIdItL1gZuAtaKHUW6ZBahMHxH7CAi3eKSlYHrgC0jJ5GuWQgcjkuvjB1EpFtcMpgwlXKv2FGkSzzwY1z6m9hB8krrFTRz6UPAFsBzsaNIp70MfFrFGKkJLn2NcAB0e+wo0mnvAdupGCM1IZz5YgdAB/TV5yNgFxVjpCaEM4Ltjdb9rEYLCCc1UDGmHRoh05JLBgJ/Aw6OHUVKciHwf7hUq7FLbXFJL+AM4NjYUaQktwOH6vSNUpNc8hPgF0Cv2FGkQy8QFu99NXYQkR7nkq8RzqI6KHYU6dBk4Cu49JHYQfJOBZm2uOS7wO/QujJ5NZuwQN0VsYOIlJVLDiTMu10udhRp1WLgJOA3uFRfqFK7XPJp4DJgjdhRpE1/IkwNWBA7iEjZhKndVwCbxo4ibboW+CYu/Th2kGqggkx7XLIlcAmwduwospQngQNw6Ruxg4hUhEtWJ4wG2zF2FFnKG8BBuPTx2EFEKsIlQ4A/A1+LHUWW8iFhvZhbYgcRqQiX9AF+CRyPluDIkzmEmQsXxQ5STVSQ6YhLBhCG6f4QbfB58AdC78+i2EFEKsolBhxNmMY0IHIaCSMFvqNTN0pdcsl+hJF7OjV2fDcBR+DSqbGDiFScSz5L6DxfNXYU4VHgYFz6Zuwg1UYFmVKF0TIXAuvFjlKnJhOmKN0UO4hIVGGo7sXAVrGj1KlZwHdx6WWxg4hE5ZJVgUsJC/9K5S0AjselZ8cOIhKVS4YT1v/8cuwodaoJOA04BZc2xg5TjVSQ6QyX9ANOBn6EFrarlMWEtXx+qYV7RTJhwd8fAQ6tc1UpnnDw+WMt3CuScUkD8H+Etmho1Cz15U7CtICXYwcRyQ2XHAScCawSO0odeRo4OjtbsXSRCjJd4ZJNgX8A42NHqXF3EHY4XokdRCSXXLIB8Btg99hRatxThB2Oh2MHEckllywPnAociTqsyulN4Dhcel3sICK55JJBwImEM1T2j5ymlk0Ffgr8A5cWYoepdirIdFXoof4aoVdotbhhas5k4Ie49NrYQUSqgkt2JhRmJkROUmumE3Y4/q4dDpESuGQ8Ya23z0ZOUmvmAL8Cfo9LF8YOI5J7LhkDnIWmMfW0RYSzuf0Sl86KHaZWqCDTXWEa03eBnwAjIqepdvNZspFrepJIZ4SpA4cQeqm1uF33NBEWLP2ZTtko0gUu2YdwMDQ2dpQq5wkLlp6IS6fEDiNSdVyyA6FIvHHcIDXhRkKH+euxg9QaFWR6ikuWI5x67QfAoMhpqs184DzgDK3NINJN4cxwPwBOAIZETlNtmoDLgV/j0ldjhxGpaqHD6hhCezQycppq9D/gZFz6WOwgIlUtdFgdTlh7b+3IaarRI4S26LbYQWqVCjI9zSUrAScBRwADI6fJuzmEVdF/o0KMSA8Lazp8C/gOOhjqyCJCL/RpuHRi7DAiNcUlfYGvEtZ0WD9ymrwrAP8mFIWfjh1GpKaEwswXCB3oW0dOUw3uILRFd8cOUutUkCkXlwwFDiMcDI2LmiV/PiBMTToXl86MnEWktrmkD7Af8D1g88hp8uZjwtSkP2s6gEiZucQIC5Afj06V3dJcQlH4D7j0tdhhRGqeS7YhtEVfACxymjxZDFxLWK/qidhh6oUKMuUWdkB2IawzsyfQEDdQNAXCaRovAa7VonQiEbhka0JhZh+gd+Q0MT0JXAhcpPWqRCJwyWbAcYQFN+u5LXobOAc4X+tViUTgknUIo/e+CgyInCamaYRZC+fg0vdjh6k3KshUkktGE6YQHA6sFDlNpbxEKMJchkvfix1GRACXrEY4Pe2B1M8IvkmE9WEuw6WvRM4iIgAuWRE4gLAg+WaR01TKVEIP9JXAQ7hUO+IisblkCLAvoS3agfoYNZMC1xHaojtxaWPcOPVLBZkYwhzGzwBfIfRUrxw3UI+bRti4L8GlT8YOIyLtcMkmhAOifam9M6J8RDjwuQx4UAc+IjnmknWB/Qlt0YaR0/S0lLA2zFWEA5+myHlEpC2h02o/wnHaFtRWcWY+8F9CW3SzZizkgwoysYXizFbAHoQpTePjBuqSxcCjhMWf7gAeVZVVpAq5ZDzwxeyyCdW3E+KBZ4G7CVMkb8eli+JGEpFOC9MIvgzsCmwJ9I8bqEveAu4Frgdu0YGPSBUKxZnmtmgbYLm4gbrkA+A+Qlt0Ay6dEzmPtKCCTN6EDf+zhIrsFsDGQN+omVr3AksKMPdq4xapMS4ZDnyacCaCTxPao0FRM7XuJeAuQhHmXlw6I3IeEelJ4SxNWwDbEUYXb00+D4peJRz03Avch0vfjZxHRHqSS3oBEwjt0GcIbdKImJHaMInQFoWLS1+PG0c6ooJM3oUdkQksKdBsQVjzoVKLA6fAi9nlpezfZ3Hp1Ao9v4jkQdgR2ZglRZrxhClOlSrSzAVeKbq8RJiG9GGFnl9E8mBJW/SZ7N+1CPtFlVqbbyHwJvB6dnmMcNCjtkiknoQTt6zPkrZoXHZZlcqMMG4kFF+a26LHCW3ROxV4bulBKshUI5f0BlYBVi+6rFb0/xFAn+zSt+j/xRqBWdnlY8Iicx9ml/dpLr5oIV4RaY9LVgDGEIozxZeVCWcs6F/0b3+WPaNKIzAnu8wApmeXacBrLCnATNYaMCLSprAo51pFl3HAKGBwK5eBLHvA1ATMA2Zml48J61C9xZIDnteBd3FpoayvRUSql0sGAGuypEAzjnDc1tz+DCn6/yCWbYsKhLVeUpa0R81t0RssaYsmaYmI2qCCTD1xyZLCjEvnxQ0jInUpFJSbCzPztMaLiFRc6NkeRGiLFgLzdWAjIhW3bFu0AJcujhtKKk0FGRERERERERGRCqvUOiQiIiIiIiIiIpJRQUZEREREREREpMJUkBERERERERERqTAVZEREREREREREKkwFGRERERERERGRClNBRkRERERERESkwlSQERERERERERGpMBVkREREREREREQqTAUZEREREREREZEKU0FGRERERERERKTCVJAREREREREREakwFWRERERERERERCpMBRkRERERERERkQpTQUZEREREREREpMJUkBERERERERERqTAVZEREREREREREKkwFGRERERERERGRClNBRkRERERERESkwlSQERERERERERGpMBVkREREREREREQqTAUZEREREREREZEKU0FGRERERERERKTCVJAREREREREREakwFWRERERERERERCpMBRkRERERERERkQpTQUZEREREREREpMJUkBERERERERERqbD/B5cYogkQ8dB0AAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, axs = plt.subplots(ncols=4, figsize=(20, 4))\n",
"n_samples = [2, 4, 8, 16]\n",
"fig.suptitle('Процент ошибок при попарном сравнение выборок t-критерием с корректировкой уровня значимости')\n",
"\n",
"for n, ax in zip(n_samples, axs):\n",
" alpha = 0.05/((n*(n-1))/2)\n",
" pair_t_test(1000, n, 100, ax, alpha)\n",
" ax.set_title(f'{n} samples')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Однако в данном случае эта будет арх-консервативная корректировавка, которая имеет меньше вероятность найти реальные значения. По сути мы **уменьшаем шанс получить ошибку I рода, но увеличиваем шанс на ошибку II рода**.\n",
"\n",
"### Ошибки первого и второго рода\n",
"\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Многофакторный ANOVA\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Часть 3"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Корреляция\n",
"\n",
"### Ковариация \n",
"\n",
"(ко - совместная, вариация - изменчивость). Мера **линейной** зависимости двух случайных величин.\n",
"\n",
"Если ковариация положительна, то с ростом значений одной случайной величины, значения второй имеют тенденцию возрастать, а если знак отрицательный — то убывать.\n",
"\n",
"$$ cov(X, Y) = \\frac{\\sum{(x_i - \\bar{x})(y_i - \\bar{x})}}{N - 1} $$\n",
"где N - количество случайных величин, а единица - количество степеней свободы.\n",
"\n",
"Однако только по **абсолютному** значению ковариации **нельзя судить** о том, **насколько сильно величины взаимосвязаны**, так как масштаб ковариации зависит от их дисперсий. Значение ковариации можно нормировать, поделив её на произведение среднеквадратических отклонений (квадратных корней из дисперсий) случайных величин. Полученная величина называется коэффициентом корреляции Пирсона, который всегда находится в интервале от −1 до 1:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"$$ r(x, y) = \\frac{cov(x, y)}{\\sigma_x\\sigma_y}$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Подробнее про формулу корреляции\n",
"\n",
"Давайте остановимся на формуле коэффициента корреляции, которую мы получили:\n",
"$$ r(x, y) = \\frac{cov(x, y)}{\\sigma_x\\sigma_y}$$\n",
"запишем формулу чуть подробнее и выполним возможные преобразования:\n",
"\n",
"$$ r(x, y) = \\frac{\\sum{(x_i - \\bar{x})(y_i - \\bar{y})}}{(N - 1)\\sqrt{\\sum{\\frac{(x_i - \\bar{x})^2}{N-1}}}\\sqrt{\\sum{\\frac{(y_i - \\bar{y})^2}{N-1}}}} $$\n",
"\n",
"теперь вынесем 1/ (N - 1) из под корней \n",
"\n",
"$$ r(x, y) = \\frac{\\sum{(x_i - \\bar{x})(y_i - \\bar{y})}}{(N - 1)\\frac{1}{(N-1)}\\sqrt{\\sum{(x_i - \\bar{x})^2}}\\sqrt{\\sum{(y_i - \\bar{y})^2}}} $$\n",
"\n",
"и сократим (N - 1)\n",
"\n",
"$$ r(x, y) = \\frac{\\sum{(x_i - \\bar{x})(y_i - \\bar{y})}}{\\sqrt{\\sum{(x_i - \\bar{x})^2}}\\sqrt{\\sum{(y_i - \\bar{y})^2}}} $$\n",
"\n",
"таким образом, мы сократили N - 1 в знаменателе и получили финальную формулу для коэффициента корреляции, которую вы часто сможете встретить в учебниках:\n",
"\n",
"$$ r(x, y) = \\frac{\\sum{(x_i - \\bar{x})(y_i - \\bar{y})}}{\\sqrt{\\sum{(x_i - \\bar{x})^2}\\sum{(y_i - \\bar{y})^2}}} $$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Примеры 3.1"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"'''Демонстрация работы ковариации и корреляции'''\n",
"import numpy as np\n",
"import random as r\n",
"\n",
"def cov(x, y):\n",
" assert x.size == y.size\n",
" return ((x - x.mean()) * (y - y.mean())).sum()/(x.size - 1)\n",
"\n",
"def cor(x, y):\n",
" return cov(x, y)/(np.std(x, ddof=1)*np.std(y, ddof=1))\n",
"\n",
"# функция имитирущая случаные факторы\n",
"# р - настолько существенным будет случайный фактор\n",
"def randomize(arr, p):\n",
" alpha = np.max(arr) - np.min(arr)\n",
" res = np.zeros(arr.shape)\n",
" for i, v in enumerate(arr):\n",
" sign = 1 if r.choice([True, False]) else -1\n",
" res[i] = v + sign*alpha*r.random()*p\n",
" return res"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"x = np.array(range(30))\n",
"y = randomize(x, 0.1)\n",
"y1 = randomize(x, 0.5)\n",
"y2 = randomize(x, 1)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA6EAAADSCAYAAAC7BcbYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAvyElEQVR4nO3dfbxcdX3g8c+XGDRVbEAChkAIq0hrtUI3i3bTtQhS8KEF3WqhPsBWl+6uVuyySFC7YqtLKmpt60NNlYqPSCsGVmyRBakPbZFAKKBIQYqQkJIIIlDRCnz3j3OGTC5z78y9c+bMOTOf9+t1X/fOOfPwnZPMd37Pv8hMJEmSJEmqwy7jDkCSJEmSND2shEqSJEmSamMlVJIkSZJUGyuhkiRJkqTaWAmVJEmSJNXGSqgkSZIkqTZWQiVJkiRJtbESKkmSJEmqjZVQSZIkSVJtrISOQUTcGhEPRMT9EbElIl7fde7yiHhtj8e8IyI+1nX7lyLi7yLinoi4PSJOLI//dER8PCK2R8R3I+KtEbFLee7EiPha+fcuEXFuRHym6/wfl891b0RcFRH/qev1fioizouIu8u4/607nhmx9nud/xgRV0bED8rf/3HG+z8zIr5Rnr8gIvYoz62KiIyIkyLijojYGhGndD12l4hYGxHfiYi7ynj3mBFbRsS/lu/hJxHxjq7HfrC8bvdHxI8i4vIZr/uYruf5ZEScMeN5n1r+vbL89/1k1/nfLv897i9fP3tdO2nSRMR+EXF++dm6KyLeXx4/MSK+HhF/Wn7Wvx0RR3Q97qcj4qPl53xLmQMXdZ1/avm5u7/8eaiTOwf8zL6tfO77y8/rrV3njo2IGyPivvJ8RsSqWd7frRHx/PLvQ8vnPLS8/diIeF+Zr+4o/35see6wiNgcEW+OiO+Vz/OKruf9WET8WURcUsbxtxGxf9f5nynP3V3G+vIZcZ1R5rhHck7nekTx/XFN1/t7OCIO63rdd8y8zjOetzu3fXBG/ntyRHwpiu+mTp595LpL06I7N5S3X9spV5S3Zy03RMRTunLQnTM+k498RiPiSRHxrYj47+Xt3SPiC2W+/X75975dj/3ZMu/e25U3T5wl/llfpzz2XyPi5jIHXRgR+8x4b2+IiFvK/HZW7FwWHSb3H1bmrE7uf7grB8+af6KrbNr1XJu7ct9hEbG569zLy/fR+V6ZtZyohbESOj6/mplPAH4T+JOIeOKgD4yIlcBfA38KLAMOBq4pT/8p8NPAvwN+GXg18F96PM37y/u9OjMfLo9dWT7XHsCngb+MiMeV514NHAQcUMb9rgHD3el1oqgUXgT8CfAk4L3ARRHxpK7HvBr4LWAf4MHyvt2eBxwI/AqwtivJvwE4tnzf+wDfBz7QeVAnAQI/X76HT3U9568AL+k693oW7g+Au7pe9/HAB4ETyud+1hDPLbVGWXD4AvBdYBWwAji36y7PBm4B9gTeBpwfOxqOzqH4/D8VOITiM9rdQLcLQGY+ofxcfXUecf0McDrwvPKxvzrjLn8GnJmZuwFLB3zOnwU+D7wyM79RHn4L8ByKvPos4FDgrV0PezLFe18BnACsj4iDus6/giKf7EmR4z9VvtbjgUso8vRewPHAByPi57oeuwtwbvn+uo8DvLuM9Ynl+TsGeY893vOBwAtmHH4j8BCwvHzuzy7kuaUps1O5AdgGvBB4IkUOeW1EPLP7ARHxBIqy4Kcz80Pl4V2AvwD2B1YCD1CUwzreBtwA7FF+Pv++X2C9XiciDgfOBF4OLKfI8efOeOhLgNXALwDHUJTrOobN/Vu6cv9tXefeSAX5JyIWU/ybbO06XGU5UVgJbYLHAPcC/zaPx7wC+H+Z+ZnM/Elm3pWZ15QFvt8ATs/M+zLzVuA9wKu6H1y2bD0P+M+Z+ZPO8cz8ZPlcD2bme4DHUlQ8AaL8WcSAZnmdFwE3ZeYnytf5DPBtdi4EfiIzr8/MfwV+D3h5dysY8PbM/NfMvI4i2R5fHv9t4C2ZuTkzfwycAfx67OgN2bX83etaz/v9zfKefx74RYok2rEL8DDFv7U0TQ6laBA6tfzM/igzu1uitwHvK/PYZ4EbgRdFxN4UlZs3lo/bBvwRcFzXYx/H/PJmtyh/z/WZfExExBznu+0PfAl4a2Ze2nX8FcDvZ+a2zNwOvJ0Z+Rj4vcz8cWb+LUUDXXeP5kWZ+ZUyn70F+MWI2A94MXBrZv5FmUevBj4H/HrXY3dl9uvTyXWDvr/ZnElRUJv53Ltg+UIaSK9yQ1mG+05mJsVn6k52bix6LLAB+HZmvqPrcXdl5ucy84eZeR/wToqG+UdejuKzP+jns+frUOS2szPz6jI/nU6Rn1Z13ecPM/PuzLwNeB87ymowXO7vl9uqyD+/DVwB/NOM5x66nKgd/JIYnw0RcS9FweX/ZOaPus79STmUYGtEnN3VG9mxH/CdHs+5J8WH87tdx75L0cre8QsULTl7UvSWPiIiTomIG8rhEfdQ9GDuWZ4+h6KndHtE/AD4X33e32yvs8+M+HrFePuMc4u74uh1vjMEZH/g8+W1u4eite8hYO/yfKeV7fs94r0Y+ARwU/nvMrP3dVB/SFFx7q7c3we8Bvh4RPwQuHqBzy21zX7AdzPzwVnObykLWR2dz/P+FJ/7rV2f5w9T9Pp1PBnY3uf1v9f1+Ecqd5l5A0WP5Fcj4n6KQla3E4G1FL0I3+vzGlCMQNkMHDnj+Mx8152vAL5fNrbNdv6RXJeZ9wN3s+P6PLvz3sr39wqKa9KxB71zHRQt+L8G/Kh87D6z3G9WEfFs4GfYucENil7WHwL3zbzu0hTa0PUZna1c8ahyAzwyRPcHwM3A14D7uk6/Dvgpiorfkq7H/FREfDiK6T/3Al8BlnY15L+Zokz2wzKm5/SJv+frMCO3lfnpLuYuy3XnmWFy/1y5bej8ExG7AW+i+DfpVlU5USUroeNzbGY+kWK4xMkR8Ytd596QmUuBZwD/nqJA1O124Ck9nvN7FEls/65jK4EtXbd/ADyfolX97E5iimL+52kUH9jdy9f/AWVLeWb+kGJY3fUUw2jf3ef99Xwdipa8/Wfcd2aM+8049xN2LgjOPN9pHbwdeEFmLu36eVxmdp77acDWMlnupByS/FmKQu1+FEN75+twisryeT3Ofb58H8+jqKBL0+B2YGXXaISZVszobex8nm8Hfgzs2fVZfmJmdg8rPQT4xz6v/8jjefTn8rzyNZ5BMYy/2yUUOexV7NwANpuzgCOAQyPi17qOz8x33fkKYPdyaO1s5x/JdeWQuD3YcX3+dkaue0Jm/veuxz6NnVvxH5GZV1IU+t5SXpuFDMd9F7A2Mx+a8dzbKYZG//Us112aJsd25aBe5YpZyw2ZeVtm/jRFxe6XKRqzO/4OeC5F58A7u46fQjGC7dllGfO55fFOWe47FHnzw2VM/9An/tleZ6fcVuaxJzF3Wa47zwyT++fKbVXkn1OB8zJzpw6TisqJ6mIldPw6X+DLepz7V4oP48x/p08Bzy8nTT8mignjB5eFgfOAd0bEblEsYvE/gU92PfY7mbk1M9dTDAPu9GjuRjEGfzvFMLT/TTEXASgmilO0+vzXOXo1us32Ol8EnhYRv1nG/hvA0ykquB2vjIinR8RPAb8P/NWMgs7vla19P0cx37Uz5v/Pyve+fxnzsog4pvx7T4qejQ29gi0LyR8BfjczfzDA++vlDIphh70WHfpD4MLMvGKBzy210Tco5tSsi4jHR8TjImJN1/m9gDdExOKIeBnws8AXM3MrxSiR90TEE8sFIZ4SEb8MUM6hPxH4zBCxfQg4q5y2MNMpwB2Z+ZcDPtdXy4a611DMzVxaHv8M8NYyF+0J/G92zscAb4+IXcuGwBcD3a/5wigWEdqVYtjrFZl5O0W+fFpEvKq8dosj4j9EsehIlHlvNcU8rkeJYhGjlRTD3BbicCAz8wszT5TD8U4D/scCn1uaJmfQo9wQEft2zZHclWII6ANdd/mHsiz2O8DxXR0Zu5X3u6d8/NtmPO9zKBrdTh8wvtle59PAf4mIg6NYbO3/UOSnW7see2oUCyXtB5zMzvMzF5r7n04xt3RDr2AryD+7UZQr3znzREXlRHWxEjo+/7ccBnYtcD7FXKCOd0WxQtctFMMw/qL7geX4+hdSFJTupliworPYze9QVF5voRi+8Wng7FlieC3wv6JYCONiigLLP1G0kP+InYdSnAWcnzsW3JiPR14nM++iKGidQjF0403AizOzu6fzE8DHgH+hmPc1s7Xpbymuy6XAuzPzS+XxPwYuBL4UEfdRtPA9uzx3LsWcirWzxPgmimGDn5vjfdwaxUpqmymGGv/PMnl2bMrMy2c+qCx0v4hiGIw0NcrGo1+lWGDiNoohq7/RdZcrKBYZ+x7Fl/6vlzkCigXKdgW+RTH06q8oFsAA2EgxFPTDUa6QCPwn4P1RLNw2p4j4TYqhq+/rce4pFPlp3oWYcl7nBnZU7t5RxnotcB3FUPzueVX/QvHe7qBoXPxvmfntrvOfpihE3k0xKuYV5evcR7FIxnHlY/+FoqHrscDR5Wu8oqywznx/u5fxzdWg+IauXPfV8nHdC5gsp8iZvXwYWDezF0FSTz3LDcAzgU1lWebvKBrwPzHzTmW+/B2KEWePo8hpSyhy6j8Af9O5bxSL7fw5cHJm3jufIGe+ThZz33+PYi76VorRecfNeNgFwFUUZdSLgI92nZt37i97W79E0Ys7Ww9nv/zzHzq5rcxvT6ZYhLOzgvATgT/JzF7DfQcpJ2oeonenjTQeUSx3/cnM/EiPc6uAfwYWD9gbO1JRLPt9a2Z+bMyhSK0TxbYAr83MX1rAY2/NzFU9jn8EeMcsvZuNEsW2AJ/MzH1nOf8xYHNmvrXX+brNds0laaYotnU6MDNv7nHuRBaY+0ehLHee2IbvjUnjap3Swt1C0QMhqV5bZzl+N8W0AlXva/3vIkmtcxU7D3VWTayESguUmR8fdwzSNMrMX5zl+GxDRDWkzHzluGOQpKpl5injjmFaORxXkiRJklQbFyaSJEmSJNXGSqgkSZIkqTa1zgndc889c9WqVXW+pKQWuOqqq76Xmb32ym0lc52kXsx1kqbBILmu1kroqlWr2LhxY50vKakFImKi9hQ010nqxVwnaRoMkuv6DseNiMdFxDci4h8j4psR8fby+B4RcUlE3FT+3r2KoCVJkiRJk2uQOaE/Bg7PzGcBBwNHR8RzgLXApZl5IHBpeVuSWi0iFkXEpoj4QnnbBjdJkqQK9R2Om8UeLveXNxeXPwkcAxxWHj8HuBw4rfIIJdViw6YtnHXxjdxxzwPss3QJpx51EMcesmLcYY3DycANwBPL250Gt3URsba8ba6TGspcJknVGGU+HWh13LJn4BpgG3BJZl4B7J2ZWwHK33vN8tiTImJjRGzcvn17JUFLqtaGTVs4/fzr2HLPAySw5Z4HOP3869iwacu4Q6tVROwLvAj4SNfhYyga2ih/H1tzWJIGZC6TpGqMOp8OVAnNzIcy82BgX+DQiHjGoC+Qmeszc3Vmrl62bGIWhJMmylkX38gDP3lop2MP/OQhzrr4xjFFNDbvA94EPNx1bKAGN0njZy6TpGqMOp/Oa5/QzLyHYtjt0cCdEbEcoPy9rZKIJNXujnsemNfxSRQRLwa2ZeZVC3y8oz6kMTOXSVI1Rp1PB1kdd1lELC3/XgI8H/g2cCFwQnm3E4ALKolIUu32WbpkXscn1Brg1yLiVuBc4PCI+CQDNrg56kMaP3OZJFVj1Pl0kJ7Q5cCXI+Ja4EqKOaFfANYBR0bETcCR5W1JLXTqUQexZPGinY4tWbyIU486aEwR1S8zT8/MfTNzFXAccFlmvhIb3KTWMJdJUjVGnU8HWR33WuCQHsfvAo6oJApJY9VZ6cwVJXtaB5wXEa8BbgNeNuZ4JM3CXCZJ1Rh1Pu1bCZU0Gfots33sISssqJUy83KK+e82uEktYy6TpGqMMp9aCZWmQGeZ7c4qZ51ltgELa5IkSarVvFbHldROblsgSZKkprASKk0Bty2QJElSU1gJlaaA2xZIkiSpKayESlOgimW2N2zawpp1l3HA2otYs+4yNmzaUnWYkiRJmgIuTCRNgWGX2XZhI0mSJFXFSqg0JYZZZnuuhY2shEqSpEnSb1s7Dc9KqKS+Bl3YyKQtSZLazNFf9XBOqKS+BlnYqJO0t9zzAMmOpO3cUUmS1BZua1cPK6GS+hpkYSOTtiRJaju3tauHlVBJfR17yArOfOkzWbF0CQGsWLqEM1/6zJ2GpZi0JUlS27mtXT2cEyppIP0WNtpn6RK29KhwmrQltYlz26XpdupRB+00JxTmv62d+rMnVFIlqtiLVJLGybntkgYZ/eXe6cOzJ1RSJYbdi1SSxs3tqCTB3KO/XD23GlZCJVVmmL1IJWncnNsuqR8bq6rRdzhuROwXEV+OiBsi4psRcXJ5/IyI2BIR15Q/Lxx9uJIkSaMxTQuSRMSiiNgUEV8ob+8REZdExE3l793HHaPURDZWVWOQOaEPAqdk5s8CzwFeFxFPL8/9UWYeXP58cWRRSpIkjdiUzW0/Gbih6/Za4NLMPBC4tLwtaYZB9053zujc+lZCM3NrZl5d/n0fRcKyr1mSJO2k7QWvQRYkmQQRsS/wIuAjXYePAc4p/z4HOLbmsKRW6NdYVdcCZ23Pt/OaExoRq4BDgCuANcDrI+LVwEaK3tLv93jMScBJACtXrhw2XkmzcFsBSeM0KYt1TMnc9vcBbwJ26zq2d2ZuhaIDIiL26vVAy3Wadv0WYqxjzugk5NuBt2iJiCcAnwPemJn3Ah8CngIcDGwF3tPrcZm5PjNXZ+bqZcuWDR+xpEdxWwFJ4zZXwUvNEREvBrZl5lULebzlOqmo6H197eH887oX8fW1h+9U8atjzugk5NuBKqERsZiiAvqpzDwfIDPvzMyHMvNh4M+BQ0cXpqS5TEIyktRuLtbRGmuAX4uIW4FzgcMj4pPAnRGxHKD8vW18IUrtVccCZ5OQbwdZHTeAjwI3ZOZ7u44v77rbS4Drqw9P0iAmIRlJardpWlm2zTLz9MzcNzNXAccBl2XmK4ELgRPKu50AXDCmEKVWq2qBs7nmfE5Cvh2kJ3QN8CqKlrLu7VjeFRHXRcS1wPOA3x1loJJmNwnJSFK7TdnKspNoHXBkRNwEHFneljRPVSxw1m+a1STk274LE2Xm14DoccotWaSGOPWog3aaoA7tS0aS2q3fYh1qnsy8HLi8/Psu4IhxxiNNimEXOOu3uNEk5Nt5rY4rqZkmIRlJar8pWVlWkkZqkGlWbc+3VkKlCdH2ZDRuEfE44CvAYyly419l5tsiYg/gs8Aq4Fbg5b22o5LUn1tJSVJ/+yxdwpYeFdFJmmY18BYtkjThfgwcnpnPoth66uiIeA6wFrg0Mw8ELi1vS5ont5KSpMFMwpzPfuwJlSQgMxO4v7y5uPxJ4BjgsPL4ORTzp06rOTxNgUnvJaxjA3dJGkTT8+00TLOyEipJpYhYBFwFPBX4QGZeERF7Z+ZWgMzcGhF7jTVITaROL2GnktbpJQQmptDhVlKSmqAt+XbSp1k5HFdqgbn2ilJ1MvOhzDwY2Bc4NCKeMehjI+KkiNgYERu3b98+shg1mebqJZwUk7SVlDlZaq9pyLdtYCVUajjnUdUvM++hGHZ7NHBnRCwHKH9vm+Ux6zNzdWauXrZsWV2hakJMQy/hpMxxMidL7TYN+bYNrIRKDWeLXT0iYllELC3/XgI8H/g2cCFwQnm3E4ALxhKgJtok9RLOpooN3JvAnDyZ7N2eHtOQb9vAOaFSw9liV5vlwDnlvNBdgPMy8wsR8ffAeRHxGuA24GXjDFKT6dSjDtppjhK0s5ewn0mY42ROnjxtmSOoakxLvm06K6HSAMa5ito07BXVBJl5LXBIj+N3AUfUH5GmyTSshDgpzMmTx5Wbp4v5thmshEp9VNFCOkwl1hY7aTpMQi/hNDAnTx57t6eP+Xb8rIRKfQzbQjpsJdYWO0lqDnPy5LF3W5Oo6XuhWgmV+hi2hXSQSmy/RGGLnSQ1hzm5eRxxJO3QhnnOro4r9THsKmr9KrEu9y9J0sIN+z06KSs3Sx1tWMXbnlCpj2FbSPsN83FBBEmSFq6K79EqerebPvxR06MN85z79oRGxH4R8eWIuCEivhkRJ5fH94iISyLipvL37qMPV6rfIC2kc+0v1m+D9jYkCkmSmqoJ36OOalKTtGEv1EF6Qh8ETsnMqyNiN+CqiLgEOBG4NDPXRcRaYC1w2uhClcZnrhbSfuPu+y1i4YIIkiQt3CDfo6PupXRUk5qkDfOc+1ZCM3MrsLX8+76IuAFYARwDHFbe7RzgcqyEagoN8sUzVyW2DYlCkqSm6vc9WsciLU3ojZU62rCK97zmhEbEKorN3K8A9i4rqGTm1ojYq/rwpOYb9ounDYlCkqSm6vc9WkcvpaOa1DRNX8V74EpoRDwB+Bzwxsy8NyIGfdxJwEkAK1euXEiMUqNV8cXT9EQhSVKTzfU9WkcvpaOapPkZaIuWiFhMUQH9VGaeXx6+MyKWl+eXA9t6PTYz12fm6sxcvWzZsipilhql38JDkiRpfOpYpMVtXqT56dsTGkWX50eBGzLzvV2nLgROANaVvy8YSYRSwzmcVpKk5qqrl9JRTdLgBhmOuwZ4FXBdRFxTHnszReXzvIh4DXAb8LKRRCi1gF88kiQ1k43FUvMMsjru14DZJoAeUW04kiRJUrVsLC6MeqsaaVDzWh1XkiRJqpuVp+HVsVWNNKiBFiaSJEmSxqFTedpyzwMkOypPGzZtGXdorTLXVjVS3ayESpIkqbGsPFWjjq1qpEE5HFdj5fAaSZI0FytP1ahiX3OpKvaEamwcXiNJkvqpY5/PaeC+5s2yYdMW1qy7jAPWXsSadZdNXfnXSqjGxuE1kqbFtBc2pGFYearGsYes4MyXPpMVS5cQwIqlSzjzpc90BNoY2BHjcFyNUV3Da/oN+XVIsKRRatOKlObDyRcR+wEfB54MPAysz8w/jog9gM8Cq4BbgZdn5vfHFWc39/msjlvVNMNcHTHT8u9jJVRjU9XchLkKTf0Kf20qHEoanVFWvtpS2DAfTo0HgVMy8+qI2A24KiIuAU4ELs3MdRGxFlgLnDbGOHdi5Ukdk9BY5jxnh+NqjKoYXtNvOEO/Ib8OCZY06mFRbSlsmA+nQ2Zuzcyry7/vA24AVgDHAOeUdzsHOHYsAUpzmJRhrM5zthKqMRp0bsJcc6n6FZr6Ff7aUjiUNDqjrny1pbBhPpw+EbEKOAS4Atg7M7dCUVEF9hpjaFJPk9JY5jxnh+NqzPoNr+k3PKxfoanfkF+XK5c06srXqUcdtFMeg2YWNgbJh5MwDE6FiHgC8DngjZl5b0QM+riTgJMAVq5cOboApR4mpbHMec72hKrh+rV49eth6NfSZEuUpFH3VLZlRcp++XBShsEJImIxRQX0U5l5fnn4zohYXp5fDmzr9djMXJ+ZqzNz9bJly+oJWEAzVtkedwxtGVkyiGMPWcHX1x7OP697EV9fe3jjvhNGzUqoGq1fi1e/QlO/wl9bCocavYjYLyK+HBE3RMQ3I+Lk8vgeEXFJRNxU/t593LGqWnU0RtVR2Bi2cNgvH07KMLhpF0WX50eBGzLzvV2nLgROKP8+Abig7tg0uyY0AjUhBjsPJofDcdVo/YaHDTKcod+QX1fcU6mVK0Zq+CGikzAsqqqVbefKh5MyDE6sAV4FXBcR15TH3gysA86LiNcAtwEvG0946qUJq2wPGsMoh+1PQr5WwUqoGm2QuVRWIlWFciGOzqIc90VE94qRh5V3Owe4HCuhjVFH5avzOk0u9NRRQHUO/WTIzK8Bs00APaLOWDS4JjQCDRJDHVs9We6bDA7HVaM5XFbjsJAVIyPipIjYGBEbt2/fXlus066OIaJNGILWTx0FVIfBSePThLmQg8TgsH0Nqm8lNCLOjohtEXF917EzImJLRFxT/rxwtGFqmk37xG3Va+aKkYM+zsU6xqOOylcbClV1FFBtFJTGpwmNQIPE0IQeW7XDIMNxPwa8H/j4jON/lJnvrjwiSRqTuVaMzMytc60YqfGoY4hoGwpVdW0D4zA4aTyaMBdykBiaMGy/6dMnVOhbCc3Mr5RD0yRpYg2wYuQ6XDGyceqofDWhUNVPEwqokkarCY1A/WIY977IdcxJVTWGWZjo9RHxamAjxYqS368oJkkaB1eMbKE6Kl/jLlQNqgkFVEmzm4YeunE3iDVhFWENZqGV0A8BfwBk+fs9wG/1umNEnAScBLBy5coFvpwkjZYrRrbXqCtf4y5USWq/aeqhG2eDWBumT6iwoEpoZt7Z+Tsi/hz4whz3XQ+sB1i9enUu5PXUXtPQ6idp8tnLKGkY9tANbpiyYxumT6iwoC1aysU5Ol4CXD/bfTW92rCtgSRJ0qjZQzeYYcuOTVhFWIMZZIuWzwB/DxwUEZvLeVHviojrIuJa4HnA7444TrVQG7Y1kCRJGrUm7PPZBsOWHd1Kqj0GWR33+B6HPzqCWDRhbPWTJElqzwJn41ZF2dHpE+2woOG40iBs9ZMkSbKHblCWHafHMFu0SHOy1U+SJKlgD11/lh2nh5VQjYzbGkiSJGlQlh2nh5VQjZStfpIkSRqUZcfp4JxQSZIkSVJtrIRKkiRJkmrjcFzNacOmLY7Ll9R65jJJkprDSqhmtWHTlp1WKNtyzwOcfv51wI6J4xbsJDXdILlMkiTVx+G4mtVZF9+40xLZAA/85CHOuvhGYEfBbss9D5DsKNht2LRlDNFKUm/9cpkkSaqXlVDN6o57HpjzuAU7SW3QL5dJkqR6ORxXs9pn6RK29Cik7bN0CWDBTlI79MtlVXBqQn281pJUjXHmU3tCNatTjzqIJYsX7XRsyeJFnHrUQcDsBbgqC3aSNKx+uWxYTk2oTxXXesOmLaxZdxkHrL2INesu899J0lQa93eXlVDN6thDVnDmS5/JiqVLCGDF0iWc+dJnPtJCMuqCnSRVoV8uG5ZTE+oz7LUed6FLkppi3N9dDsfVnI49ZMWsBbXOcYdFSWq6uXLZsJyaUJ9hr/VchS6/uyRNk3F/d1kJ1VBGWbCTpDaoY86pCsNe63EXuiSpKcb93eVw3AnmvBdJGj2nJlRrru+uYa+1axlo0ln206DG/d3VtxIaEWdHxLaIuL7r2B4RcUlE3FT+3n20YWq+nPciSfUY9ZzTadLvu2vYaz3uQpc0Spb9NB/j/u6KzJz7DhHPBe4HPp6ZzyiPvQu4OzPXRcRaYPfMPK3fi61evTo3btxYQdjqZ826y3p2sa9YuoSvrz18DBFJs4uIqzJz9bjjqIq5TlqYOr67xrklgblOo2TZT00xSK7rOyc0M78SEatmHD4GOKz8+xzgcqBvJVT1cd6LJE2Wadgfs47vLtcy0KSy7Kc2WejCRHtn5laAzNwaEXtVGJMqMO7JxpKk6nSG2XVWdu0MswMmqkLld5eaqg2NQG35/LThWmr0Rr4wUUScFBEbI2Lj9u3bR/1yKjnvRZImx7j3c6uL313jFRFHR8SNEXFzOd1KtGeuZRs+P225lhq9hVZC74yI5QDl722z3TEz12fm6sxcvWzZsgW+nOZrkMnGrqAm7eAibGqyaRlmN+6FMqZZRCwCPgC8AHg6cHxEPH28UTVDWxqB2vD5acu11OgtdDjuhcAJwLry9wWVRaTKzDXvZVqGdknz8DHg/cDHu46tBS7tWoRtLc5/1xi0ZZhdFZyzOTaHAjdn5i0AEXEuxRog3xprVA3Qpkagpn9+2nQtNVqDbNHyGeDvgYMiYnNEvIai8nlkRNwEHFneVovYEiXtLDO/Atw94/AxFIuvUf4+ts6YpI42DLNT660Abu+6vbk8NvXcX7Y6Xkt19K2EZubxmbk8Mxdn5r6Z+dHMvCszj8jMA8vfMwtuajhboqSB7LQIGzDrImzOf9cotWGYnVovehx71D5+05jrbASqjtdSHQsdjquWm6ahXVIdMnM9sB6KvfPGHM5EcSXFQtOH2an1NgP7dd3eF7hj5p2mMdd1PnfmoeF5LdVhJXSMxlmwOvWog3aaEwq2REk93BkRy8utqOZchK2p2l6Bc/66VJsrgQMj4gBgC3Ac8JvjDak5bASqjtdSUMMWLept3EtUO7RLGkhnETZo4SJs484zVXD+ulSPzHwQeD1wMXADcF5mfnO8UUmaVPaELtCwvQtzFazqqgjaEiXtUC7CdhiwZ0RsBt5GsejaeeWCbLcBLxtfhPPXhDwzLOevS/XJzC8CXxx3HJImn5XQBahieJgFK6lZMvP4WU4dUWsgFZqEPOP8dUmSJo/DcRegiuFhgyxRvWHTFtasu4wD1l7EmnWXtWoInaTxm4Sl8F1JUZKkyWMldAGq6F3oV7CahLlcksZrEipwzl+XJGnyOBx3AaoYHtZviepB5nK1fdVLSaM1KUvhO39dkqTJYiV0Aara3mSuglW/3la3LZA0CCtwkiSpaRyOuwB1DA/rN5fLbQskSZIktZE9oQs06t6Ffr2tk7DqpSRJkqTpYyW0ofrN5XLbAknSfLiOgCSpKayENthcva1VzUuVJE0+1xGQms+GIk0T54S2lNsWSJIG5ToCUrO5NZ+mjT2hLeaql5KkQbiOgNRsg2zNJ00SK6GSNMUc/jUdXEdAajYbijRthhqOGxG3RsR1EXFNRGysKihJ0ug5/Gt6nHrUQSxZvGinY64jIDVHv635pElTxZzQ52XmwZm5uoLnkiTVxHmC08N1BKRms6FI08bhuCPiEDdJTefwr+niOgJSc/Xbmk+aNMNWQhP4UkQk8OHMXF9BTK3nUviS6jBsY5fzBCWpOWwo0jQZdjjumsz8BeAFwOsi4rkz7xARJ0XExojYuH379iFfbjAbNm1hzbrLOGDtRaxZd1nt85sc4iZp1KqYz+nwL0mSNA5D9YRm5h3l720R8XngUOArM+6zHlgPsHr16hzm9QbRhF5Ih7hJGrUqlvMfZPhXHVMLnL4gSdJ0WXAlNCIeD+ySmfeVf/8K8PuVRbZATdhnySFukkatqsauuYZ/1dGo14SGQ0mSVK9hhuPuDXwtIv4R+AZwUWb+TTVhLVwTeiEd4iZp1OpYzr+OqQVOX5AkafosuBKambdk5rPKn5/LzHdWGdhCNWGfJZfClzRqdTR21dGo14SGQ0mSVK9WbtEy1/yhU486aKehXTCeXkhXOJM0SnUs51/H1AKnL0iSNH1aVwntN3/IfZYkTYtRN3bV0ajXlIZDSZILxak+rauEDrLwkL2QkjS8Ohr1bDiUpGZwoTjVqXWVUOcPSVJ96mjUs+FQksavCTtMaHoMszruWDRh4SFJkiRpktjRozq1rie0rvlDjomX1BERRwN/DCwCPpKZ68YcUquYT6XpZg5oBxeKU51a1xNax/YnnTHxW+55gGTHmPgNm7ZU9hqS2iEiFgEfAF4APB04PiKePt6o2sN8Kk03c0B7uM+96tS6nlAY/fwhx8RL6nIocHNm3gIQEecCxwDfGmtULWE+laabOaA9XChOdWplJXTUHBMvqcsK4Pau25uBZ1fxxNMwRM18Kk03c0C7uFCc6tK64bh1cPEjSV2ix7F81J0iToqIjRGxcfv27X2fdFqGqJlPpeaIiLMi4tsRcW1EfD4ilnadOz0ibo6IGyPiqKpe0xwgqRcroT04Jl5Sl83Afl239wXumHmnzFyfmaszc/WyZcv6PulcQ9QmiflUapRLgGdk5s8D/wScDlDOcz8O+DngaOCD5Xz4oZkDJPViJbSHOhY/ktQaVwIHRsQBEbErRUHtwmGfdFqGqJlPpebIzC9l5oPlzX+gaFSDYp77uZn548z8Z+BmivnwQzMHSOrFOaGzcEy8JIDMfDAiXg9cTLFFy9mZ+c1hn3ealsI3n0qN9FvAZ8u/V1BUSjs2l8cqYQ6QNJM9oZLUR2Z+MTOflplPycx3VvGcDlGTNAoR8f8i4voeP8d03ectwIPApzqHejzVo+a+l4+d1/x3SeplantCp2FVSknN5VL4kkYhM58/1/mIOAF4MXBEZnYqmgPNfS+ffz2wHmD16tU9K6qS1M9UVkI7q1J2FgXprEoJWACUVBuHqEmqU0QcDZwG/HJm/rDr1IXApyPivcA+wIHAN8YQoqQpMdRw3Ig4ulzK++aIWFtVUKM2LatSSmq3DZu2sGbdZRyw9iLWrLts4rZvkVS79wO7AZdExDUR8WcA5Tz384BvAX8DvC4zH5r9aSRpOAvuCS2X7v4AcCTFMI4rI+LCzPzWsEGNeqjstKxKKam92jJiw6kNUntk5lPnOPdOoJI57/NlHpGmzzA9oYcCN2fmLZn5b8C5FEt8D6WODdzdOFlS07VhxEYd+VrSZDOPSNNpmEroCuD2rts9l/Oe7ypqdRS8XJVSUtO1YcRGGyrKkprNPCJNp2EqoQMt552Z6zNzdWauXrZsWd8nraPg5cbJkpquDSM22lBRltRs5hFpOg2zOu7Ay3nPR10buLsqpaQmO/Wog3aaEwrNG7FRV76WNLnMI9J0GqYn9ErgwIg4ICJ2BY6jWOJ7KA6VlaR2jNgwX0salnlEmk4L7gnNzAcj4vXAxcAi4Oxyie+huIG7JBWaPmLDfC1pWOYRaToNMxyXzPwi8MWKYnlE0wtekqSC+VrSsMwj0vQZZjiuJEmSJEnzYiVUkiRJklQbK6GSJEmSpNpE5qO29hzdi0VsB747j4fsCXxvROFUxRir0YYYoR1xtjHG/TOz/0bCLWGuGxtjrE4b4mxjjOa69v2bNVEbYoR2xGmM1Zh3rqu1EjpfEbExM1ePO465GGM12hAjtCNOY2yfNlwPY6xGG2KEdsRpjO3ThuthjNVpQ5zGWI2FxOhwXEmSJElSbayESpIkSZJq0/RK6PpxBzAAY6xGG2KEdsRpjO3ThuthjNVoQ4zQjjiNsX3acD2MsTptiNMYqzHvGBs9J1SSJEmSNFma3hMqSZIkSZogjayERsTREXFjRNwcEWvHHc9sIuLWiLguIq6JiI3jjgcgIs6OiG0RcX3XsT0i4pKIuKn8vXsDYzwjIraU1/KaiHjhmGPcLyK+HBE3RMQ3I+Lk8nhjruUcMTbmWkbE4yLiGxHxj2WMby+PN+Y6jpO5buHMdZXFaK6rJkZzXR9tyHfmukpjbMzns4zHXFdNjJXlusYNx42IRcA/AUcCm4ErgeMz81tjDayHiLgVWJ2Zjdm7JyKeC9wPfDwzn1Eeexdwd2auKxP/7pl5WsNiPAO4PzPfPa64ukXEcmB5Zl4dEbsBVwHHAifSkGs5R4wvpyHXMiICeHxm3h8Ri4GvAScDL6Uh13FczHXDMddVw1xXDXPd3NqS78x1lcZ4Bg35fIK5ripV5rom9oQeCtycmbdk5r8B5wLHjDmm1sjMrwB3zzh8DHBO+fc5FP+hx2aWGBslM7dm5tXl3/cBNwAraNC1nCPGxsjC/eXNxeVP0qDrOEbmuiGY66phrquGua4v890CmeuqYa6rRpW5romV0BXA7V23N9Owf4AuCXwpIq6KiJPGHcwc9s7MrVD8Bwf2GnM8s3l9RFxbDutozJCliFgFHAJcQUOv5YwYoUHXMiIWRcQ1wDbgksxs7HWsmbmuem35f9WYz2c3c91wzHVzaku+M9dVqzGfz27muuFUleuaWAmNHseaNWZ4hzWZ+QvAC4DXlcMRtDAfAp4CHAxsBd4z1mhKEfEE4HPAGzPz3nHH00uPGBt1LTPzocw8GNgXODQinjHOeBrEXDedGvX57DDXDc9cN6e25DtzXXUa9fnsMNcNr6pc18RK6GZgv67b+wJ3jCmWOWXmHeXvbcDnKYabNNGd5TjzznjzbWOO51Ey887yP/XDwJ/TgGtZjnX/HPCpzDy/PNyoa9krxiZeS4DMvAe4HDiahl3HMTHXVa/x/6+a+Pk011XLXNdTK/Kdua46Tfx8muuqNWyua2Il9ErgwIg4ICJ2BY4DLhxzTI8SEY8vJw0TEY8HfgW4fu5Hjc2FwAnl3ycAF4wxlp46/3FLL2HM17KceP1R4IbMfG/XqcZcy9libNK1jIhlEbG0/HsJ8Hzg2zToOo6Rua56jf9/1aTPJ5jrqmKu66vx+c5cV60mfT7BXFeVKnNd41bHBYhi6eH3AYuAszPzneON6NEi4t9RtJIBPAb4dBPijIjPAIcBewJ3Am8DNgDnASuB24CXZebYJpDPEuNhFMMMErgV+O3O2PJxiIhfAr4KXAc8XB5+M8XY/EZcyzliPJ6GXMuI+HmKCeqLKBq9zsvM34+IJ9GQ6zhO5rqFM9dVw1xXDXNdf03Pd+a6hTPXjTzGicx1jayESpIkSZImUxOH40qSJEmSJpSVUEmSJElSbayESpIkSZJqYyVUkiRJklQbK6GSJEmSpNpYCZUkSZIk1cZKqCRJkiSpNlZCJUmSJEm1+f/GJW2mO7t2bAAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(16, 3))\n",
"ax1.scatter(x, y)\n",
"ax2.scatter(x, y1)\n",
"ax3.scatter(x, y2)\n",
"ax1.set_title('высокая корреляция')\n",
"ax2.set_title('средняя корреляция')\n",
"ax3.set_title('низкая корреляция')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"cov1: 75.61\n",
"cov2: 77.81\n",
"cov3: 86.23\n",
"\n",
"cor1: 0.98\n",
"cor2: 0.75\n",
"cor3: 0.51\n",
"\n"
]
}
],
"source": [
"print(f'''\n",
"cov1: {cov(x, y):.2f}\n",
"cov2: {cov(x, y1):.2f}\n",
"cov3: {cov(x, y2):.2f}\n",
"\n",
"cor1: {cor(x, y):.2f}\n",
"cor2: {cor(x, y1):.2f}\n",
"cor3: {cor(x, y2):.2f}\n",
"''')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Регрессия с одной независимой переменной\n",
"\n",
"В этой и следующих главах мы научимся работать с **одномерным регрессионным анализом**, который позволяет проверять гипотезы о взаимосвязи одной количественной зависимой переменной и нескольких независимых.\n",
"\n",
"Сначала мы познакомимся с самым простым вариантом - простой **линейной регрессией**, при помощи которой можно исследовать взаимосвязь двух переменных. Затем перейдем к множественной регрессии с несколькими независимыми переменными.\n",
"\n",
"Линейная регрессия (англ. Linear regression) — используемая в статистике регрессионная модель зависимости одной (объясняемой, зависимой) переменной $y$ от другой или нескольких других переменных (факторов, регрессоров, независимых переменных) $x$ с **линейной функцией зависимости**.\n",
"\n",
"В общем виде функция линейной регрессии выглядит как:\n",
"\n",
"$$ y = b_0 + b_1x $$\n",
"$b_0$ - intercept значение пересечения линии с осью Y \n",
"\n",
"$b_1$ - slope задаёт наклон линии регрессии\n",
"\n",
"строят регрессионную прямую методом наименьших квадратов (МНК)\n",
"\n",
"МНК - это способ нахождения оптимальных параметров линейной регресссии ($b_0$, $b_1$), таких, что сумма квадратов ошибок (остатков) была минимальная.\n",
"\n",
"Расчёт параметров идёт по таким формулам:\n",
"\n",
"$$ b_1 = \\frac{sd_y}{sd_x}r_{xy} $$\n",
"$$ b_0 = \\bar{Y} - b_1\\bar{X} $$"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAr8AAAFlCAYAAADiVIA6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAuD0lEQVR4nO3de5TV1YHg++8WCi0VLR+gPFR8Et9Bwfh+oRYiQoGYx6S9To8rZjKxY+yEKHanNUknmjDJxKyeddf1zvRaybrdM5McoEBBSgSNr/gAMUJUFI0PCgIoFKApoaja949dZQEWUFCP3znn9/2s5YLzs6izzeGkvrVr//YOMUYkSZKkPNgv6wFIkiRJvcX4lSRJUm4Yv5IkScoN41eSJEm5YfxKkiQpN4xfSZIk5Ubf3nyyI488Mg4bNqw3n1KSJEk5tHjx4g9ijAN2vt6r8Tts2DAWLVrUm08pSZKkHAohvNvRdZc9SJIkKTeMX0mSJOWG8StJkqTcMH4lSZKUG8avJEmScsP4lSRJUm4Yv5IkScoN41eSJEm50en4DSH0CSEsCSE83Pr48BDC/BDCm62/HtZzw5QkSZK6bm9mfm8HXtvu8V3AghjjycCC1seSJEkCapfUc9H9Czn+rjlcdP9CapfUZz0k0cn4DSEMBa4D/sd2lycAv279/a+Bmm4dmSRJUomqXVLP1BlLqW9oJAL1DY1MnbHUAC4CnZ35/SXwPaBlu2tHxRhXA7T+OrCjPxhCuDWEsCiEsGjdunVdGaskSVJJmFa3nMam5h2uNTY1M61ueUYjUps9xm8IYRywNsa4eF+eIMb4YIxxZIxx5IABA/blU0iSJJWUVQ2Ne3VdvadvJz7mImB8CGEscABwSAjh/wPWhBAGxRhXhxAGAWt7cqCSJEmlYnBVJfUdhO7gqsoMRqPt7XHmN8Y4NcY4NMY4DPgysDDG+DfAbODm1g+7GZjVY6OUJEkqIVOqh1NZ0WeHa5UVfZhSPTyjEalNZ2Z+d+V+4LchhFuA94Abu2dIkiRJpa1mxBAgrf1d1dDI4KpKplQP//S6shNijL32ZCNHjoyLFi3qteeTJElSPoUQFscYR+583RPeJEmSlBvGryRJknLD+JUkSVJuGL+SJEnKDeNXkiRJuWH8SpIkKTeMX0mSJOWG8StJkqTcMH4lSZKUG8avJEmScsP4lSRJUm4Yv5IkScoN41eSJEm5YfxKkiQpN4xfSZIk5YbxK0mSpNwwfiVJkpQbxq8kSZJyw/iVJElSbhi/kiRJyg3jV5IkSblh/EqSJCk3jF9JkiTlhvErSZKk3DB+JUmSlBvGryRJknLD+JUkSVJuGL+SJEnKDeNXkiRJuWH8SpIkKTeMX0mSJOVG36wHIEmSpOzULqlnWt1yVjU0MriqkinVw6kZMSTrYfUY41eSJCmnapfUM3XGUhqbmgGob2hk6oylAGUbwC57kCRJyqlpdcs/Dd82jU3NTKtbntGIep7xK0mSlFOrGhr36no5MH4lSZJyanBV5V5dLwfGryRJUk5NqR5OZUWfHa5VVvRhSvXwjEbU87zhTZIkKafabmpztwdJkiTlQs2IIWUduztz2YMkSZJyw/iVJElSbhi/kiRJyg3X/EqSJCB/x9wqn4xfSZKUy2NulU8ue5AkSbk85lb5ZPxKkqRcHnOrfDJ+JUlSLo+5VT4Zv5IkKZfH3CqfvOFNkiTl8phb5ZPxK0mSgPwdc6t8ctmDJEmScsP4lSRJUm4Yv5IkScoN41eSJEm5YfxKkiQpN4xfSZIk5YbxK0mSpNwwfiVJkpQbHnIhSZJ6TO2Sek+NU1ExfiVJUo+oXVLP1BlLaWxqBqC+oZGpM5YCGMDKzB6XPYQQDgghvBBC+GMI4U8hhB+0Xj88hDA/hPBm66+H9fxwJUlSqZhWt/zT8G3T2NTMtLrlGY1I6tya3y3AlTHGs4HPA2NCCOcDdwELYownAwtaH0uSJAGwqqFxr65LvWGPyx5ijBH4qPVhRes/EZgAXN56/dfAE8Cd3T5CSVKvc52musPgqkrqOwjdwVWVGYxGSjq120MIoU8I4WVgLTA/xvg8cFSMcTVA668Dd/Fnbw0hLAohLFq3bl03DVuS1FPa1mnWNzQSaV+nWbukPuuhqcRMqR5OZUWfHa5VVvRhSvXwjEYkdTJ+Y4zNMcbPA0OB80IIZ3T2CWKMD8YYR8YYRw4YMGAfhylJ6i2u01R3qRkxhPsmncmQqkoCMKSqkvsmnelPEZSpvdrtIcbYEEJ4AhgDrAkhDIoxrg4hDCLNCkuSSpzrNNWdakYMMXbz6vXX4e23YezYrEeyg87s9jAghFDV+vtK4CrgdWA2cHPrh90MzOqhMUqSetGu1mO6TlPSbsUIy5bBvfey6aTPwamnsu6LX+XinzxWVMumOjPzOwj4dQihDymWfxtjfDiE8AfgtyGEW4D3gBt7cJySpF4ypXr4Dnuzgus0Je1CjPDHP0KhkP5ZvpwYAq8fcwYPX/V16k65gDWbthTV/s6d2e3hFWBEB9c/BEb3xKAkSdlp++Lkbg+SOhQjLF7cHrxvvQX77QdXXAHf/jbj3z+Spc07/qSo7b6BYvj/EU94kyR9hus0Je2gpQWefz7F7vTp8O670LcvjB4Nd90FEyZA68YGy+6a0+GnKJb7BoxfSZIkfVZzMzz7bHvw1tdDRQVccw3cey+MHw+HH/6ZP1bs+zsbv5IkSUq2bYOnnkrBO2MG/OUvsP/+MGYM3H8/XH89HHrobj9Fsd83YPxKkiTlWVMTPPFECt6ZM2HdOqishOuug8mT01Zl/ft3+tMV+30Dxq8kSVLebN0KCxak4K2thfXr4aCD0szu5Mlppvegg/b50xfzfQPGryRJUh588gnMn5+Cd9Ys2LgRDjkkrd2dPDmt5a0sjnW5Pcn4lSRJKleNjTBvXgrehx6CzZuhqgomTkzBe9VVaU1vjhi/kiRJ5eTjj2Hu3BS8c+akx0ccAV/6UgreK66Afv2yHmVmjF9JkqRSt2lTCt1CAR55JM34DhwIN92Ugveyy9K+vDJ+JUmSSlJDQ1rKUChAXR1s2QKDBsEtt6Tgvfhi6NMn61EWHeNXkiSpVKxfn25WKxTSzWtNTTB0KHzjGyl4L7ggHTWsXTJ+JUmSitnatWk7sunTYeHCdBDFsGFw++0peEeNMnj3gvErSZJUbFavTgdOFArw+99DSwuceCJ897speM85B0LIepQlyfiVJEkqBitXpiOFCwV4+mmIEYYPh7vvTsF71lkGbzcwfiVJkrLy7rtpOUOhAH/4Q7p2xhlwzz0peE87zeDtZsavJElSb3rrrfbgffHFdG3ECPjxj+GGG9Jsr3qM8StJktTTli9vD94lS9K1UaPgpz9NwXviidmOL0eMX0mSpJ7w6qspdn/3O1i2LF274AL4+c9h0qS0Y4N6nfErSZLUHWKEV15JwVsowOuvp/W6F10EDzyQgnfo0KxHmXvGryRJ0r6KEV56qT14V6xIe+5edhn83d/BxInp1DUVDeNXkiRpb8QIL7zQHrzvvJOOEb7ySpgyBWpqYODArEepXTB+JUmS9qSlJW1FViikG9fefx8qKuDqq+H734cJE+CII7IepTrB+JUkSepIc3M6bKIteFevhv33h+rqtC3Z9ddDVVXWo9ReMn4lSZLabNuWjhMuFNJpa2vXwgEHwNix6dCJ666DQw7JepTqAuNXkiTl29atsHBhCt7aWvjwQzjwQBg3LgXvtdfCwQdnPUp1E+NXkiTlz5YtMH9+Ct5Zs6ChAfr3T8F7441pacOBB2Y9SvUA41eSJOVDYyPU1aXgfegh2LQJDj003aw2eXK6ee2AA7IepXqY8StJksrXxx/DI4+k4H344fT48MNT7E6eDKNHQ79+WY9Svcj4lSRJ5WXzZpgzJwXv3LlpxnfAAPjqV1PwXn552qZMuWT8SpKk0rdxY1rKUCjAvHlpTe/RR8Pf/m0K3ksugb5mj4xfSZJUqtavh9mzU/DOn592bRgyBL7+9RS8F16YTl6TtmP8SpKk0vHBB2k7skIBFixI+/IeeyzcdlsK3i98AfbbL+tRqogZv5IkqbitWQMzZ6bgfeKJdPLaCSfAHXekbclGjoQQsh6lSoTxK0mSis+qVemEtUIBnnwSYoRTToG77kozvGefbfBqnxi/kiSpOLz3XnvwPvNMunb66fBP/5SC9/TTDV51mfErSZKy8/bbMH16+uf559O1s8+GH/0IbrgBTj012/Gp7Bi/kiSpd735ZprdLRTgpZfStXPPhfvuS8F78snZjk9lzfiVJEk977XX2oP3lVfStfPPh2nTUvAef3y241NuGL+SJKn7xQjLlrUH76uvpvW6F10Ev/wlTJoExxyT9SiVQ8avJEnqHjHCyy+3B+8bb6Q9dy+9FL7xjRS8gwdnPUrlnPErSZL2XYzw4ospdqdPTzew9ekDV1wBf//3UFMDRx2V9SilTxm/kiRp77S0wHPPtQfve+9B375w1VVw990wYQIceWTWo5Q6ZPxKkqQ9a25Oe++2Be+qVdCvH1xzDfzwhzB+PBx2WNajlPbI+JUkSR3bti2drlYopMMn1qyBAw6AMWPSoRPjxsGhh2Y9SmmvGL+SJKldUxM8/ngK3pkz4YMP4MAD4brrUvCOHQsHH5z1KKV9ZvxKkpR3W7bAggUpeGtrYcOGFLjXX5+Cd8yYFMBSGTB+JanE1S6pZ1rdclY1NDK4qpIp1cOpGTEk62Gp2H3yCTz6aAre2bNh40Y45JB0s9oNN0B1dVriIJUZ41eSSljtknqmzlhKY1MzAPUNjUydsRTAAC4iRfMNyl//CvPmpeB96CH46KN0k9qkSWmGd/Ro2H//3h+X1IuMX0kqYdPqln8avm0am5qZVrfc+C0SmX+D8tFHMHduCt45c1IAH3kkfOUrKXivuAIqKnp+HFKRMH4lqYStamjcq+vqfZl8g7JpEzz8cAreRx5JSxyOOgpuvjkF76WXpn15pRzyb76kslA0P1buZYOrKqnvIHQHV1VmMBp1pNe+QdmwIS1lKBSgrg62bk1HCX/tayl4L7oonbwm5ZzxK6nkZf5j5QxNqR6+w387QGVFH6ZUD89wVNpej36D8uGHMGtWCt7HHkvblB1zDHzzmyl4zz8f9tuv688jlRHjV1LJy/O617b/vjzOepeKbv8GZe3atB1ZoQALF6aT144/Hr797RS8o0ZBCN0ydqkcGb+SSl7e173WjBhi7BaxbvkGZfXqdMJaoZBOXGtpgZNOgu99L21Lds45Bq/UScavpJLnulcVu336BuX999uD95lnIEY49VT4h39IM7xnnmnwSvvA+JVU8lz3qrLxzjswfXoK3ueeS9fOOgt+8IM0w3vaaZkOTyoHxq+kkue6V5W0FSvag3fRonTtnHPgJz9JwXvKKR3+sbzucCJ1lfErqSy47lUl5fXX24P35ZfTtfPOg5/9LAXvCSfs9o/neYcTqauMX0mSelqM8Kc/peD93e/S7wEuvBB+8Yt0vPBxx3X60+V5hxOpq/YYvyGEY4DfAEcDLcCDMcYHQgiHA/8HGAa8A3wxxrih54YqSVIJiRH++Mc0u1sowPLl6Qa1Sy6BX/0qBe+QfQvVvO9wInVFZ2Z+twHfiTG+FELoDywOIcwH/iOwIMZ4fwjhLuAu4M6eG6okSTsqunWvMcLixe3B+9Zb6ZCJyy+H22+HiRPh6KO7/DTucCLtuz3Gb4xxNbC69febQwivAUOACcDlrR/2a+AJjF+p7BRdXEitimbda0sLvPBCe/C++y707QujR8Odd0JNDQwY0K1P6Q4n0r7bqzW/IYRhwAjgeeCo1jAmxrg6hDCw+4cnKUtFExdSBzJd99rcDM8+m9bwTp8OK1dCRQVccw3cey+MHw+HH95jT+8OJ9K+63T8hhAOBqYD344xbgqd3Fg7hHArcCvAscceuy9jlJSRvN9U46x3cev1da/btsFTT6XZ3Rkz4C9/gf33hzFj4L77YNw4qKrqmefugDucSPumU/EbQqgghe+/xRhntF5eE0IY1DrrOwhY29GfjTE+CDwIMHLkyNgNY5bUS/J8U42z3sWvV9a9NjXBE0+k4J05E9atg8pKGDs2nbJ23XXQv3/3PZ+kHrffnj4gpCne/wm8FmP8xXb/ajZwc+vvbwZmdf/wJGVpVxGRh5tqdjfrreIwpXo4lRV9drjWLetet26FRx6BW25JN6ddcw3827/BlVembcrWrUsx/OUvG75SCerMzO9FwE3A0hDCy63X7gbuB34bQrgFeA+4sUdGKCkzeb6pJs+z3qWiW9e9fvIJzJ+fonbWLNi4MYXt+PFphre6Os34Sip5ndnt4WlgVwt8R3fvcCQVkzzfVONWUqWhS+teGxth3rwUvA89BJs3pzW7Eyem4L3qqrSmV1JZ8YQ3SbuV15tq8jzrXdY+/hjmzk3BO2dOenzEEfClL6XgveIK6Ncv61FK6kHGryR1IM+z3mVn06YUuoVCWsvb2AgDB8JNN6XgveyytC+vpFzw3S5Ju5DXWe+y0NCQljIUClBXB1u2wKBB6Sa2yZPh4ouhT589fhpJ5cf4lSSVh/Xr081qhUK6ea2pCY45Bv7Lf4EbboALLkhHDUvKNeNXklS61q2D2toUvAsXpoMohg2Db387zfCOGgWdPJRJUj4Yv5Kk0vKXv6QDJwqFdABFSwucdBJMmZKCd8QIg1fSLhm/kqTiV1+fjhQuFNIRwzHC5z4H//APKXjPPNPgldQpxq8kqTi9+y5Mn56C9w9/SNfOPBPuvTcF72mnZTo8SaXJ+JUkFY+33moP3hdfTNdGjIAf/zjdtDbcfZYldY3xK0nK1htvpNgtFGDJknRt1Cj46U9T8J54Yrbjk1RWjF9JUu979dX24F26NF274AL4+c9h0qS0Y4Mk9QDjV5LU82JMkdsWvK+9lm5Qu/hieOCBFLxDh2Y9Skk5YPxKknpGjPDSS+3Bu2JFOmTi0kvhtttg4sR06pok9SLjV5LUfWKEF15oD9533knHCF95ZdqHt6YGBg7MepSScsz4lSR1TUtL2oqsUEg7Nbz/PlRUwFVXwfe/DxMmwBFHZD1KSQKMX0nSvmhuhqefbg/e1auhXz+oroZ//me4/no47LCsRylJn2H8SpI6Z9s2+P3vU/DOmAFr18IBB8DYsenQieuug0MOyXqUkrRbxq8kadeammDhwhS8M2fChx/CgQfCuHEpeK+9Fg4+OOtRSlKnGb+SpB1t2QKPPZaCd9Ys2LAB+vdPSxkmT05LGw48MOtRStI+MX4lSdDYCHV1af3u7NmwaRMceiiMHw833ghXX52WOEhSiTN+JSmvPv4YHnkkzfA+/HB6fPjhaXZ38mQYPTrdxCZJZcT4laQ82bwZ5s6F3/0u/drYCAMGwN/8TQreyy5L25RJUpkyfiWp3G3cCA89lGZ46+rgk0/g6KPhP/2nFLwXXwx9/XIgKR/8fztJKkfr16e1u4UCzJ8PW7fCkCHw9a+n4L3ggnTymiTljPErSeXigw+gtjYF74IFaV/e446Dv/u7FLznnQf77Zf1KCUpU8avJJWyNWvS/ruFAjzxRDp57cQT4TvfScF77rkQQtajlKSiYfxKUqlZtSqdsFYowJNPQoxwyilw551pW7KzzzZ4JWkXjF9JKgXvvdcevM88k66dfjr80z+lGd7TTzd4JakTjF9JKlZ//nM6dKJQgOefT9fOPht+9CO44QY49dRsxydJJcj4ldTrapfUM61uOasaGhlcVcmU6uHUjBiS9bCKw5tvptidPh0WL07Xzj0X7rsvBe/JJ2c7PkkqccavpF5Vu6SeqTOW0tjUDEB9QyNTZywFyG8Av/ZaCt5CAV55JV07/3yYNi0F7/HHZzs+SSojxq+kXjWtbvmn4dumsamZaXXL8xO/McKyZe3B++qrab3uRRfBL38JkybBMcdkPUpJKkvGr6Retaqhca+ul40Y4eWX24P3jTdS8F56KfzLv8DEiTB4cNajlKSyZ/xK6lWDqyqp7yB0B1dVZjCaHhYjLFrUHrxvv51OVbviCrjjjhS8Rx2V9SglKVeMX0m9akr18B3W/AJUVvRhSvXwDEfVjVpa4Lnn2ndpeO896NsXrroK7r4bJkyAI4/MepSSlFvGr6Re1baut6x2e2huTnvvtu3SsGoV9OsH11wDP/whjB8Phx2W9SglSRi/kjJQM2JIaccuwLZt6XS1QiEdPrFmDey/P1x7bTp0Ytw4OPTQrEcpSdqJ8StJndXUBI8/noJ35kz44AM48EAYOzYF79ix0L9/1qOUtA/cfzw/jF9J2p2tW+Gxx1Lw1tbChg1w8MFw/fUpeMeMSQHcSX6BlYqP+4/ni/ErSTv75BN49NEUvLNnw8aNcMgh6Wa1yZPTWt4DDtjrT+sXWKk4uf94vhi/kgTw17/CvHkpeB96CD76KN2kNmlSOmXtqqvSmt4u8AusVJxKaf9xf3rUdcavpPz66COYOzcF75w5KYCPPBK+8pU0w3vFFVBR0W1PV0pfYKU8KZX9x/3pUffYL+sBSFKv2rQJ/v3f04zugAHwpS+lXRtuvhkWLIDVq+HBB9PShm4MX9j1F9Ji+wIr5c2U6uFUVvTZ4Vox7j++u58eqfOc+ZVU/jZsSEsZCgWoq0s3sQ0eDF/7WprhveiidPJaDyv7Az6kElUq+4/706PuYfxKKk8ffgizZqXgfeyxtE3ZscfCbbelNbznnw/79e4Pv0rlC6yUR6Ww/3ipLM8odsavpPKxdm3ajqxQgIUL08lrJ5wAd9yRZnhHjoQQMh1iKXyBlVSc/OlR9zB+JZW21avTCWuFQlq729ICJ58Md96Zgvfzn888eCV1r7zueOBPj7pHiDH22pONHDkyLlq0qNeeT1KZev/99uB95hmIEU47LcXuDTfAmWcavFKZ2nnHA0izn/dNOtMI1A5CCItjjCN3vu7Mr6TS8M47MH16Ct7nnkvXzjoLfvCDFLynnZbp8CT1DvfLVlcZv5KK14oV7cHb9lOjc86Bn/wkBe8pp2Q7Pkm9zh0P1FXGr6Tisnx5it1CAV5+OV077zz42c9S8J5wQqbDk5QtdzxQVxm/krIVI7z6anvwLluWrl94IfziF+kwiuOOy3aMkoqGOx6oq4xfSb0vRnjllfbgff31dIPaJZfAr36VgneIa/ckfZY7HqirjF9JvSNGWLy4PXjfeisdMnH55fCtb8HEiXD00VmPUlIJcL9sdYXxK6nntLTACy+0B++776ZjhEePTvvw1tTAgAFZj1K9JK97s0oqLsavpO7V0gLPPptid/p0WLkSKirgmmvgnntg/Hg44oisR6letvPerPUNjUydsRTAAJbUq4xfSV3X3AxPPZWCd8aMdOra/vvDmDFw330wbhxUVWU9SmXIvVklFQvjV9K+aWqC3/8+Be/MmbB2LVRWwtix6aS1666D/v2zHqWKhHuzSioWxq+kztu6FRYsSME7axZ8+CEcdFCa2Z08Ga69Nj2WduLerJKKhfErafc++QTmz28P3o0b04zu+PEpeKur04yvtBvuzSqpWOwxfkMI/wqMA9bGGM9ovXY48H+AYcA7wBdjjBt6bpiSelVjI8ybl4L3oYdg8+a0ZremJgXv1VenNb1SJ7k3q6RiEWKMu/+AEC4FPgJ+s138/gxYH2O8P4RwF3BYjPHOPT3ZyJEj46JFi7ph2JK63ccfw9y5KXjnzEmPjziiPXivvBL69ct6lJIkdUoIYXGMceTO1/c48xtjfDKEMGynyxOAy1t//2vgCWCP8SupyGzalEK3UIBHHkkzvgMHwk03peC97DLo6+ooSVL52NevakfFGFcDxBhXhxAG7uoDQwi3ArcCHHvssfv4dJK6TUMDzJ6dgvfRR2HLFhg0CG65JQXvxRengygkSSpDPT6lE2N8EHgQ0rKHnn4+SR348MN0s1qhAI89lrYpGzoUvvGNFLwXXJCOGpYkqczta/yuCSEMap31HQSs7c5BSeoGa9dCbW0K3oUL00EUw4bB7ben4B01yuCVJOXOvsbvbOBm4P7WX2d124gk7bvVq9OBE4VCOoCipQVOOgmmTEnBe845EELWo5QkKTOd2ersf5FubjsyhLASuIcUvb8NIdwCvAfc2JODlLQbK1emI4ULBeLTTxNiZMXhQ3nq8v/Acbf+X1z5xasMXkmSWnVmt4ev7OJfje7msUjqrHffhenT0wzvH/4AwMaTPsdvLvkqs06+kBVHpptLK5c1c98pq9xLVZKkVu5hVKZql9S7mXy5eeut9uB98cV0bcQI+PGP4YYbGDuz/jPHxzY2NTOtbrmvvSRJrYzfMlS7pH6HY0TrGxqZOmMpgBFUat54I8VuoQBLlqRro0bBT38KN9wAJ5746YeualjR4adYtVMQS5KUZ8ZvGZpWt/zT8G3jDGAJefXV9uBdmr5p4YIL4Oc/h0mT0o4NHRhcVfmZmd+265IkKTF+y9CuZvqcASxSMabIbQve115LN6hdfDE88EAK3qFD9/hpplQP32HGH6Cyog9Tqof35OglSSopxm8ZcgawBMSYljG0Be+bb6Y9dy+7DG67DSZOTKeu7YW2WX3XekuStGvGbxlyBrBIxZhuVGsL3j//OR0jfMUV8N3vQk0NDNzlSeGdUjNiiLErSdJuGL9lyBnAItLSkrYia9ul4f33oaICrroK/vEfYcIEOOKIrEcpSVJuGL9lyhnADDU3w9NPp9idMQNWrYJ+/aC6Gv75n+H66+Gww7IepSRJuWT8St1h27Z0nHBb8K5dCwccANdem44VHjcODjkk61FKkpR7xq+0r5qaYOHCFLwzZ8KHH8KBB6bQnTw5he/BB2c9SkmStB3jV9obW7bAY4+l4J01CzZsgP7901KGyZPT0oYDD8x6lJIkaReMX2lPGhuhri7dtDZ7NmzaBIcemm5WmzwZrr46LXGQJElFz/iVOvLxx/DII2mG9+GH0+PDD09HCt94I4wenW5ikyRJJcX4ldps3gxz5qTgnTs3zfgOGABf/Wqa4b388rRNmSRJKlnGr/Jt40Z46KEUvPPmpTW9Rx8Nf/u3KXgvuQT6+jaRJKlc+FVd+bN+fVq7WyjAo4+mXRuGDIH//J/TsoYLL0wnr0mSpLJj/CofPvgAamtT8C5YkPblPe44+Na30gzveefBfvtlPUpJktTDjF+VrzVr0v67hQI88UQ6ee3EE+E730nBe+65EELWo5QkSb3I+FV5WbUqnbBWKMCTT0KMcMopcNddKXjPPtvglSQpx4xflb733kt78BYK8Oyz6drpp8P3v5+2JTv9dINXkiQBxq9K1dtvtwfvCy+ka2efDT/6Ubpp7dRTsx2fJEkqSsavSsebb6bYLRTgpZfStXPPhfvuS8F78snZjk9SWahdUs+0uuWsamhkcFUlU6qHUzNiSNbDktRNjF8Vt9deaw/eV15J177wBZg2LQXv8cdnOz5JZaV2ST1TZyylsakZgPqGRqbOWApgAEtlwvhVcYkRli1rD95XX03rdS+8EP7bf4NJk+DYY7MepaQyNa1u+afh26axqZlpdcuNX6lMGL/KXozw8svtwfvGGyl4L70U/uVfYOJEGDw461FKyoFVDY17dV1S6TF+lY0YYdGi9uB9++10qtrll8Mdd6TgPeqorEcpKWcGV1VS30HoDq6qzGA0knqC8ave09ICzz/fHrzvvQd9+8Lo0Wkf3poaGDAg61FKyrEp1cN3WPMLUFnRhynVwzMclaTuZPyqZzU3wzPPpG3Jpk+H+nro1w+uuQZ++EMYPx4OOyzrUUoS0H5Tm7s9SOXL+FWndXr7n23b4Kmn4He/S6etrVkD++8P114LP/0pjBsHhx7a+/8BktQJNSOGGLtSGTN+1Sl73P6nqQkefzwtZ5g5Ez74ACor4brr0rHCY8dC//5Z/idIkiQZv+qcjrb/2fbJJzz9wG+o2e9NqK2FDRvg4IPTzO7kyTBmDBx0UDYDliRJ6oDxq05p2+Zn/21bueTPS7h2+dNcveIFDtnyMRxyCEyYkA6duOaaNOMrSZJUhIxf7dlf/8pXVi7iCy89zui3XuDgrY00HHAw8065gBfOuZL/+v/8fVrTK0mSVOSMX3Xso49g7ty0hnfOHH7y17+y/sBDmH3qpcw75UKePe5sKg7Yn/smnWn4SpKkkmH8qt3GjfDwwyl4582DTz5JB03cfDNMnsxT/U/kvy94y+1/JElSyTJ+827DBpg9OwXvo4/C1q3pKOGvfS3dtHbRRenkNWACMGHUcdmOV5IkqQuM3yLQ6f1zu8sHH8CsWSl4H3ss7ct7zDHwzW+m4D3/fNhvv557fkmSpIwYvxnb4/653WXNmrQdWaGQ9uNtbobjj4c77kjBO2oUhNB9zydJklSEjN+MdbR/bmNTM9Pqlnc9fletSgdOFArw5JPQ0gInnwx33pmC9/OfN3glSVKuGL8Za9s/t7PX9+j999ORwoUCPPMMxAinnQb/+I8peM84w+CVJEm5ZfxmbHBVJfUdhO7gqr04KOKdd2D69BS8zz2Xrp11FvzgB+ngidNO657Bqlv1+lpvSZJk/GZtSvXwHdb8AlRW9GFK9fDd/8EVK9qDd9GidO2cc+AnP0nBe8opPTjq7pPXAOy1td6SJGkHxm/G2kKnUwG4fHmK3UIBXn45XTvvPPjZz1LwnnBC7w28G+Q5AHt0rbckSdol47cI1IwY0nHwxAivvtoevMuWpesXXgi/+AVMmgTHle6+u3kOwG5f6y1JkjrF+C02McIrr7QH7+uvpxvULrkEfvWrFLxDyiMM8xyA3bLWW5Ik7TXjtxjECIsXt6/hXbEiHTJx+eXwrW/BxIlw9NFZj7Lb5TkA93mttyRJ6hLjNystLfDCC+0zvO++m44RHj0avvc9qKmBAQOyHmWPynMA7tVab0mS1G2M397U0gLPPptid/p0WLkSKirg6qvhnntg/Hg44oisR9lr8h6Au1zrLUmSeozx29Oam+Gpp1LwzpgBq1fD/vtDdXXaluz666GqKutRZsYAlCRJvcn47QnbtsETT6TgnTkT1q6FykoYOzadsnbdddC/f9ajlCRJyh3jt7ts3QoLF6bgra2FDz+Egw6CceNS8F57bXosSZKkzBi/XbFlC8yfn4J31ixoaEgzuuPHp+Ctrk4zvpIkSSoKxu/eamyEefPSDWuzZ8PmzWnN7oQJKXivvjqt6ZUkSVLRMX474+OPYe7cNMM7Z056fPjh8MUvpuC98kro1y/rUUqSJGkPjN9d2bwZHn44Be8jj6QZ34ED4aabUvBedhn09X8+SZKkUmK9ba+hAR56KAVvXV1a0ztoENxySwreiy9OB1FIkiSpJBm/69enm9UKhXTzWlMTDB0K3/hGCt4LLkhHDUuSJKnk5TN+161L25EVCml7sm3bYNgwuP32FLyjRhm8kiRJZSg/8fuXv6QDJwqFdABFSwucdBJ897speM85B0LIepQqUrVL6nN7DLMkSeWkS/EbQhgDPAD0Af5HjPH+bhlVd3r8cbj33nTEcIzwuc/B3Xen4D3rLINXe1S7pJ6pM5bS2NQMQH1DI1NnLAUwgCVJKjH7HL8hhD7AfweuBlYCL4YQZscYX+2uwXWL5ua0rveee1Lwnn561iNSiZlWt/zT8G3T2NTMtLrlxq8kSSWmKzO/5wErYoxvA4QQ/jcwASiu+B09GpYuzXoUKmGrGhr36rokSSpeXbmrawjw/naPV7ZeKy4ua1AXDa7q+IjqXV2XJEnFqyvx21FVxs98UAi3hhAWhRAWrVu3rgtPJ2VjSvVwKit23N+5sqIPU6qHZzQiSZK0r7qy7GElcMx2j4cCq3b+oBjjg8CDACNHjvxMHPck79BXd2j7O+PfJUmSSl9X4vdF4OQQwvFAPfBl4D90y6i6gXfoqzvVjBji3xtJksrAPi97iDFuA24D6oDXgN/GGP/UXQPrqt3doS9JkqR86tI+vzHGucDcbhpLt/IOfUmSJO2sbM/w9Q59SZIk7axs49c79CVJkrSzLi17KGbeoS9JkqSdlW38gnfoS5IkaUdlu+xBkiRJ2pnxK0mSpNwwfiVJkpQbxq8kSZJyw/iVJElSbhi/kiRJyg3jV5IkSblh/EqSJCk3jF9JkiTlRlmf8NYTapfUe2SyJElSiTJ+90LtknqmzlhKY1MzAPUNjUydsRTAAJYkSSoBxu9emFa3/NPwbdPY1My0uuXGbxFxdl6SJO2K8bsXVjU07tV19T5n5yVJ0u54w9teGFxVuVfX1ft2NzsvSZJk/O6FKdXDqazos8O1yoo+TKkentGItDNn5yVJ0u4Yv3uhZsQQ7pt0JkOqKgnAkKpK7pt0pj9OLyLOzkuSpN1xze9eqhkxxNgtYlOqh++w5hecnZckSe2MX5WVtm9M3O1BkiR1xPhV2XF2XpIk7YprfiVJkpQbxq8kSZJyw/iVJElSbhi/kiRJyg3jV5IkSblh/EqSJCk3jF9JkiTlhvErSZKk3DB+JUmSlBvGryRJknIjxBh778lCWAe822tP2O5I4IMMnled52tU/HyNip+vUfHzNSp+vkbFr7Ov0XExxgE7X+zV+M1KCGFRjHFk1uPQrvkaFT9fo+Lna1T8fI2Kn69R8evqa+SyB0mSJOWG8StJkqTcyEv8Ppj1ALRHvkbFz9eo+PkaFT9fo+Lna1T8uvQa5WLNryRJkgT5mfmVJEmSyj9+QwhjQgjLQwgrQgh3ZT0efVYI4Z0QwtIQwsshhEVZj0cQQvjXEMLaEMKy7a4dHkKYH0J4s/XXw7IcY97t4jW6N4RQ3/peejmEMDbLMeZdCOGYEMLjIYTXQgh/CiHc3nrd91KR2M1r5HupCIQQDgghvBBC+GPr6/OD1utdeg+V9bKHEEIf4A3gamAl8CLwlRjjq5kOTDsIIbwDjIwxuq9ikQghXAp8BPwmxnhG67WfAetjjPe3fiN5WIzxzizHmWe7eI3uBT6KMf7XLMemJIQwCBgUY3wphNAfWAzUAP8R30tFYTev0RfxvZS5EEIADooxfhRCqACeBm4HJtGF91C5z/yeB6yIMb4dY9wK/G9gQsZjkopejPFJYP1OlycAv279/a9JXyCUkV28RioiMcbVMcaXWn+/GXgNGILvpaKxm9dIRSAmH7U+rGj9J9LF91C5x+8Q4P3tHq/Ev9TFKAKPhhAWhxBuzXow2qWjYoyrIX3BAAZmPB517LYQwiutyyL8cXqRCCEMA0YAz+N7qSjt9BqB76WiEELoE0J4GVgLzI8xdvk9VO7xGzq4Vr7rPErXRTHGc4BrgW+2/jhX0t77v4ETgc8Dq4GfZzoaARBCOBiYDnw7xrgp6/Hoszp4jXwvFYkYY3OM8fPAUOC8EMIZXf2c5R6/K4Fjtns8FFiV0Vi0CzHGVa2/rgVmkparqPisaV0f17ZObm3G49FOYoxrWr9QtAD/L76XMte6TnE68G8xxhmtl30vFZGOXiPfS8UnxtgAPAGMoYvvoXKP3xeBk0MIx4cQ+gFfBmZnPCZtJ4RwUOtNBoQQDgKuAZbt/k8pI7OBm1t/fzMwK8OxqANtXwxaTcT3UqZab9b5n8BrMcZfbPevfC8ViV29Rr6XikMIYUAIoar195XAVcDrdPE9VNa7PQC0bk/yS6AP8K8xxh9nOyJtL4RwAmm2F6Av8O++RtkLIfwv4HLgSGANcA9QC/wWOBZ4D7gxxugNVxnZxWt0OenHtBF4B/h627o49b4QwsXAU8BSoKX18t2kNaW+l4rAbl6jr+B7KXMhhLNIN7T1IU3Y/jbG+MMQwhF04T1U9vErSZIktSn3ZQ+SJEnSp4xfSZIk5YbxK0mSpNwwfiVJkpQbxq8kSZJyw/iVJElSbhi/kiRJyg3jV5IkSbnx/wMAOkErVs9LgwAAAABJRU5ErkJggg==\n",
"text/plain": [
"