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1 Fourier Transform

1 Fourier Transform

1.1 Objective

We plot a Rectangular Pulse Signal x(¢) in Matlab and explore its magnitude and
phase spectrum of its Fourier Transform.

1.2 Theory

MATLAB is a programming language and environment that is widely used for scien-
tific computing, numerical analysis, and data visualization. It is designed to support
matrix and vector operations, which are fundamental to many scientific and engineer-
ing applications.

The Fourier Transform of a signal x(t) is defined as

X(w) = /_ o:ox(t)ej‘Utdt (1)

The Fourier Transform of a rectangular pulse is given by

1 o1
X(w) = E/_m N @)

The magnitude and phase spectrum of the Fourier Transform of a rectangular
pulse is given by

1 /n
X(w)| === —w? 3
X(@) =~/ ®
7T
[X(w) = 5~ arctan(w) 4)
1.3 Matlab Code
close all;
/% parameters of a rectangular pulse signal
w = 10; 2 width
A=1; % amplitude
t = -10:0.01:10; / time wector
Xt = A * rectpuls(t, w); % rectangular pulse signal

/% plot the rectangular pulse signal in the first subplot
subplot(2, 2, 1)

plot(t, xt)

xlabel('Time"')

ylabel('Amplitude')

title('Rectangular pulse')

7 define a range of frequencies and compute the Fourier transform at each frequency



1 Fourier Transform

w = -8 % pi:0.01:8 * pi; 7/ range of frequencies
for i = 1l:length(w)

xw(i) = trapz(t, xt .* exp(-1i * w(i) .* t)); /J Fourier transform
end

7% plot the Fourier transform in the second subplot
subplot (2, 2, 2)

plot(w, xw)

title('Fourier transform of rect pulse: Sampling signal')
xlabel('Frequency')

ylabel('Amplitude')

/% plot the magnitude spectrum of the Fourier transform in the third subplot
subplot(2, 2, 3)

plot(w, abs(zw))

title('Magnitude spectrum')

xlabel('Frequency"')

ylabel('Amplitude')

/% plot the phase spectrum of the Fourier transform in the fourth subplot
subplot(2, 2, 4)

plot(w, angle(xw))

title('Phase spectrum')

xlabel ('Frequency')

ylabel('Amplitude')

1.4 Output

1 Rectangular pulse Fourligr transform of rect pulse: Sampling signal
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Figure 1: Fourier Transform



2  Uniform Distribution

2  Uniform Distribution

2.1 Objective

Generate uniform random numbers and plot their density function. Find the mean
and variance.

2.2 Theory

The uniform distribution is a continuous probability distribution where all outcomes
are equally likely. It is defined by two parameters, a and b, which are the minimum
and maximum values that the random variable can take. The probability density
function is given by:

flx) = for a<x<b )

2.3 Matlab Code

/% Define the parameters of the uniform distribution
a =1; / Lower bound
b = 6; / Upper bound

/% Gemerate 1000 random numbers from the uniform distribution
rng(1l); % Set the random seed for reproducibility
X=a+ (b - a) * rand([1, 1000]);

/% Compute the mean and variance of the generated numbers
mu = mean(X);
sigma2 = var(X);

/% Define the range of = wvalues to plot
x = linspace(a - 1, b + 1, 1000);

/% Compute the uniform distribution density function
f = ones(size(x)) ./ (b - a);

/% Plot the uniform distribution denstity function
plot(x, f, 'LineWidth', 2);
hold on;

/% Plot a wertical line at the mean value

ymin = 0;

ymax = max(f) * 1.5;

line([mu mu], [ymin ymax], 'Color', 'r', 'LineStyle', '--', 'LineWidth', 2);

% Set the plot limits and labels
xlim([a - 2, b + 2]);
ylim([ymin, ymax]);



3 Normal Distribution

xlabel('x');

ylabel('Probability density');

title('Uniform distribution');

legend(sprintf ('Mean = J.2f\nVariance = %.2f', mu, sigma2));

24 Output
Uniform distribution
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Figure 2: Uniform Distribution

3 Normal Distribution

3.1 Objective

Using the Gaussian random numbers we find the mean and variance.

3.2 Theory

The normal distribution or the Gaussian distribution is a continuous probability dis-
tribution shaped like a bell curve. It is defined by two parameters, mean(y) and
variance(c?). The probability density function is given by:

flx) = e 5 ®)

V27o?




3 Normal Distribution

3.3 Matlab Code

data = randn(1000, 1); /% Generate random numbers
histogram(data, 20, 'Normalization', 'pdf');

hold on;
mu = mean(data);
sigma = std(data);

x = linspace(min(data), max(data), 100); / Define z wvalues for Gaussian curve
y = normpdf (x, mu, sigma); /7 Calculate y walues for Gaussian curve

% Overlay Gaussian curve
plot(x, y, 'LineWidth', 2);

/% Add title and labels

title('Histogram of Random Data with Gaussian Fit');
xlabel('Data Value');

ylabel('Probability Density');

hold off;

3.4 Output
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Figure 3: Gaussian Distribution



4 Quantization: Uniform

4 Quantization: Uniform

4.1 Obijective

Computing the Signal to quantization Noise ratio of Uniform Quantization. Plot
SNQR vs. Quantization levels.

4.2 Theory

The Signal to Quantization Noise Ratio (SQNR) is the ratio of the signal power to the
quantization noise power. It is defined as:

P,
SONR = = )
by
where D is the signal power and P; is the quantization noise power.
For uniform quantization, the signal power is given by:
1Y >
P = 3 Y (xi —xi1) (8)

i=1

4.3 Matlab Code

close all; clc;

/% Define the message signal

t = linspace(0, 1, 1000);

fm = 1; / message signal frequency
Am = 1; 7 message stignal amplitude
m = Am * sin(2 * pi * fm * t);

n_max = 4; 7 Define the mazimum number of quantization levels

7% Initialize vectors to store SUNR and number of quantization levels
squr = zeros(l, n_max);
levels = 1:n_max;

/% Compute the SQNR for each quantization level
for i = 1:n_max
L=2"1;
delta = (max(m) - min(m)) / (L - 1);
m_quantized = delta * round(m / delta);
noise = m - m_quantized;
power_m = sum(m .~ 2) / length(m);
power_noise = sum(noise .~ 2) / length(noise);
sqnr(i) = power_m / power_noise;
end

/% Plot the message signal and the quantized signal for n=4



4 Quantization: Uniform

subplot(2, 1, 1);

plot(t, m, 'b', 'LineWidth', 2);
hold on;

plot(t, m_quantized,
xlabel ('Time (s)');
ylabel('Amplitude');
title('Message signal and Quantized signal');

r', 'LineWidth', 2);

legend('Message signal', 'Quantized signal');

7% Plot the number of quantization levels vs. the SQNR
subplot(2, 1, 2);

plot(sqnr, levels, 'LineWidth', 2);
ylabel('Quantization levels');

xlabel('Signal to Quantisation Noise Ratio (dB)');
title('Number of quantization levels vs. SQNR');

44 Output
Message signal and Quantized signal
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Figure 4: SQNR vs Quantization



5 Quantization: Non-Uniform

5 Quantization: Non-Uniform

5.1 Objective

Computing SNR of Non-Uniform Quantization and Plot SNR vs. Quantization Levels

5.2 Matlab Code

7% Program to Compute SNR of Non-Uniform Quantization and Plot the SNR vs. Quantization Levels
close all; clc;

% Signal Parameters

N = 10000; % Number of samples in the signal
f=1; %4 Signal frequency

Fs = 1000; % Sampling frequency

t = (0:N - 1) / Fs; /. Time wvector

x = sin(2 * pi * £ * t); % Signal

/ Quantization Parameters

L = 2:20; % Number of quantization levels to try

b = log2(L); % Number of bits to represent each level

Delta = 2 ./ (L - 1); /% Step size of the quantization levels

SQNR = zeros(length(L), 1); % To store the Signal to Quantization Noise Ratio (SGENR) for each qu

7 Non-Untform Quantization
for i = 1:length(L)
q = zeros(size(x));
/s Compute quantization levels
V=1[ (L@ -1)/2:1:(QLE) - 1) / 2] * Delta(i);
7% Quantize the signal
for j = 1:N
[val, index] = min(abs(x(j) - V));
q(j) = V(index);
end

/4 Compute the SQNR

noise = x - Qq;

signal_power = sum(x .~ 2) / N;

noise_power = sum(noise .~ 2) / N;

SQNR(i) = 10 * loglO(signal_power / noise_power);
end

/ Plot the SNR ws. Quantization Levels

figure;

plot(b, SQNR, 'b-o', 'LineWidth', 2);

xlabel ('Number of Bits');

ylabel('Signal to Quantization Noise Ratio (dB)');
grid on;
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6 BPSK Modulation

5.3 Output
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Figure 5: SQNR vs Quantization (non-uniform)

6 BPSK Modulation

6.1 Objective

To study passband digital communication technique BPSK and Calculate the BER of
BPSK modulated signal.

6.2 Theory

Binary Phase Shift Keying (BPSK) is a digital modulation technique in which the
information is transmitted by changing the phase of a carrier wave. The phase of the
carrier wave is shifted from 0 to 180 degrees for a binary 1 and from 0 to 360 degrees
for a binary 0.

BPSK is widely used in various applications such as satellite communication, wire-
less communication, and digital audio broadcasting due to its simplicity and robust-
ness to noise.

The BER for BPSK can be calculated as follows:

1 Ey
BER = Eerfc <ﬁ0> )

where E; is the energy per bit and Nj is the noise power spectral density.

11



6 BPSK Modulation

6.3 MATLAB Code

/ BPSK Bit Error Rate Calculation
clc;

7 Define the parameters

N =10 =~ 6; % number of bits to transmit

Eb_NO_dB = 0:2:10; % Eb/NO values in dB

ip = rand(1, N) > 0.5; % generating 0,1 with equal probability

s =2 % ip - 1; 7 BPSK modulation

n =1/ sqrt(2) * (randn(l, N) + 1i * randn(l, N)); / white gaussian noise, O0dB wartance

for ii = 1:length(Eb_NO_dB)
/% Channel model - AWGN
y = sqrt(10 = (Eb_NO_dB(ii) / 10)) * s + n;
% Demodulation
y_cap = real(y) > 0;
/4 Counting the errors
error(ii) = size(find(ip - y_cap), 2);
end

simulatedBER = error / N; / simulated BER
theoryBER = 0.5 * erfc(sqrt(10 .~ (Eb_NO_dB / 10))); /% theoretical BER

% plot

close all

figure

semilogy(Eb_NO_dB, theoryBER, 'bs-', 'LineWidth', 2);
hold on

semilogy(Eb_NO_dB, simulatedBER, 'mx-', 'LineWidth', 2);
axis([0 10 10 ~ -5 0.5])

grid on

legend('theory', 'simulation');

x1label('Eb/NO, dB')

ylabel('Bit Error Rate')

title('Bit error probability curve for BPSK modulation')

12



6 BPSK Modulation

6.4 Output

Bit error probability curve for BPSK modulation

Bit Error Rate
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e theory
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6 8

Eb/NO, dB

Figure 6: BPSK
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7 BPSK in presence of Noise

7 BPSK in presence of Noise

7.1 Objective

To study the effect of noise on Binary PSK modulation.

7.2 Theory

The effect of noise on BPSK modulation can be studied by adding noise to the modu-
lated signal. The noise can be added in the form of AWGN or Rayleigh fading.

In the presence of noise, the receiver may make errors in decoding the signal. To
measure the system’s performance, the signal-to-noise ratio (SNR) is used, and the
bit error rate (BER) is calculated to determine the probability of error in the received
data. The trade-off between the SNR and BER determines the system’s reliability in
noisy environments

7.3 MATLAB Code

/ BPSK Modulation with AWGN
clear;
clc;

= input ('Enter the Bit stream:');
length(b);

= 0:.01:n;

=1:1:(n + 1) * 100;

W o B T
I

for i = 1:n

if (b(i) == 0)
b_p(i) = -1;
else
b_p(i)
end

1;

for j =1i:.1:1 + 1
bw(x(i * 100: (1 + 1) * 100)) = b_p(i);
end

end

bw = bw (100:end);

sint = sin(2 * pi * t);

st = bw .* sint;

subplot(3, 1, 1)

plot(t, bw)

grid on;

title('Input Binary Data');

14



7 BPSK in presence of Noise

axis([0 n -2 +2])
subplot(3, 1, 2)

plot(t, sint)

grid on;

title('Carrier Signal');
axis([0 n -2 +2])
subplot(3, 1, 3)

plot(t, st)

grid on;

title('PSK Modulated Signal');
axis([0 n -2 +2])

7.4 Input

Enter the Bit stream:
[T O1 10 1]

7.5 Output

5 Input Binary Data
or 4
_2 1 1 1 1 1

0 1 2 3 4 5 6
5 Carrier Signal
° /\/\/\/\/\/\/
_2 1 1 1 1 1

0 1 2 3 4 5 6
) PSK Modulated Signal
° W/\/
_2 1 1 1 1 1

0 1 2 3 4 5 6

Figure 7: BPSK in presence of Noise

15



8 Pulse Code Modulation (PCM)

8 Pulse Code Modulation (PCM)

8.1 Objective
To implement Pulse Code Modulation (PCM) and plot the output.

8.2 Theory

Pulse Code Modulation (PCM) is a technique used to digitize analog signals. The
process involves three main steps: sampling, quantization, and encoding.

1. In the first step, the analog signal is sampled at regular intervals'. The resulting
sequence of samples represents the signal in a discrete-time domain.

2. In the second step, the samples are quantized into a finite number of levels. This
reduces the number of possible amplitude values that each sample can take
on, resulting in a loss of information compared to the original analog signal.
However, quantization allows for the signal to be represented using a fixed
number of bits, which is necessary for digital storage and transmission.

3. In the third step, the quantized samples are encoded into binary code words.
Each code word represents a quantization level and is assigned a unique binary
code based on the number of bits used to represent it. This is typically done
using a lookup table that maps each quantization level to a binary code.

To demodulate the signal, the process is reversed.

8.3 Matlab Code

/% Define parameters

fs = 100; 7 Sampling frequency

f = 10; % Signal frequency

A =1; ) Signal amplitude

bits = 8; / Number of bits per sample

/4 Generate sinusoidal signal
t =0:1/ fs:1 -1/ fs; J Time wvector
A x sin(2 * pi * £ * t); / Original signal

X

% Sample the signal

Ts =1/ fs; J Sampling interval

n = 0:Ts:1 - Ts; / Sample times

xs = A * sin(2 * pi * £ * n); / Sampled signal

7 Encode signal
L =2 ~ bits; /7 Number of quantization levels

The Nyquist-Shannon sampling theorem states that a signal can be perfectly reconstructed from
its samples if the sampling rate is at least twice the maximum frequency of the signal.

16



8 Pulse Code Modulation (PCM)

partition = linspace(-A, A, L + 1); / Quantization levels
codebook = linspace(-A + A /L, A - A/ L, L); / Codebook
index = zeros(1l, length(xs)); / Preallocate index vector

for i = 1:length(xs)
[~, ind] = min(abs(xs(i) - partition)); /7 Find closest quantization level
index(i) = ind - 1; 7 Subtract 1 to get O-based index

end

code = dec2bin(index, bits); /7 Convert to binary
/% Decode signal

index_hat = bin2dec(code); /7 Convert binary to decimal
xq_hat = codebook(index_hat + 1); / Reconstructed quantized signal

t_hat = 0:1 / £s:1 - 1 / fs; J Time vector for reconstructed signal
x_hat = interpl(n, xq_hat, t_hat, 'linear'); / Reconstructed signal

% Demodulate signal
demod = zeros(l, length(code) * bits); / Preallocate demodulated signal

for i = 1:length(code)
demod((i - 1) * bits + 1:i * bits) = str2double(code(i, :)); 7 Convert to serial binary stream
end

demod = reshape(demod, bits, length(demod) / bits)'; / Reshape into matriz
demod = bin2dec(num2str(demod)); /7 Convert binary to decimal
demod = demod - A; J Convert to original range

/% Plot stgnals
subplot(5, 1, 1)

plot(t, x)
title('Original Signal')
xlabel('Time (s)')
ylabel('Amplitude')

subplot(5, 1, 2)
stem(n, xs)
title('Sampled Signal')
xlabel('Time (s)')
ylabel('Amplitude')

subplot(5, 1, 3)
stairs(l:length(code), index)
title('Encoded Signal')
xlabel('Sample')
ylabel('Quantization Index')

subplot(5, 1, 4)
plot(t_hat, x_hat)
title('Demodulated Signal')
xlabel('Time (s)')

17



8 Pulse Code Modulation (PCM)

ylabel('Amplitude')

subplot(5, 1, 5)

plot(n, xs, 'b-', n, xq_hat, 'r--')

title('Encoded and Reconstructed Signal')

xlabel('Time (s)')

ylabel('Amplitude')

legend('Original Signal', 'Reconstructed Signal', 'Location', 'south')

7 Adjust spacing between subplots
set(gcf, 'Units', 'normalized', 'Position', [0.2 0.2 0.5 0.6])
set(gcf, 'DefaultAxeslLooselnset', [0.1, 0.1, 0.1, 0.1])

7 Save figure
saveas(gcf, 'pcm_no_quantization.pdf')

8.4 Output

1 Original Signal
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Figure 8: PCM
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9 Amplitude Shift Keying

9 Amplitude Shift Keying

9.1 Objective

To understand the working of Amplitude Shift Keying (ASK) modulation and demod-
ulation.

9.2 Theory

Amplitude-shift keying is a form of amplitude modulation that represents digital
data as variations in the amplitude of a carrier wave.

Any modulated signal has a high frequency carrier. The binary signal when ASK
modulated, gives a zero value for Low input while it gives the carrier output for High
input.

9.3 MATLAB Code

clc; close all;

F1 = 25;

F2 = 5;

A = 3;

t = 0:0.001:1;

x =A* sin(2 * pi * F1 x t) + A / 2;

u=(A/ 2) * square(2 * pi * F2 * t, 50) + A / 2;

vV =x .k u;

subplot(3, 1, 1);
plot(t, x);
title('carrier signal');
grid on;

subplot(3, 1, 2);
plot(t, w);
title('square signal');
grid on;

subplot(3, 1, 3);
plot(t, v);
title('ASK signal');
grid on;
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10 Frequency Shift Keying

9.4 Output

carrier signal
T T

L L I I
0 0.2 0.4 0.6 0.8 1

3 square signal
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Figure 9: ASK Modulation

10 Frequency Shift Keying

10.1 Objective

To understand the working of Frequency Shift Keying (FSK) modulation and demod-
ulation.

10.2  Theory

Frequency-shift keying (FSK) is a frequency modulation scheme in which digital in-
formation is transmitted through discrete frequency changes of a carrier wave.

Logic 0 is represented by a wave at a specific frequency, and logic 1 is represented
by a wave at a different frequency. The distance between logic 0 and logic 1 is known
as the deviation or shift point.

10.3 MATLAB Code

fcl = input('Enter the freq of 1st sine wave carrier:');

fc2 = input('Enter the freq of 2nd sine wave carrier:');

fp = input('Enter the freq of periodic Binary Pulse(Message):');

amp = input('Enter the amplitude (both carrier and binary pulse message):');
amp = amp / 2;

t = 0:0.001:1;

cl = amp * sin(2 * pi * fcl * t);

20



10 Frequency Shift Keying

c2 = amp * sin(2 * pi * fc2 * t);
subplot (4, 1, 1);

plot(t, cl1);

xlabel('Time');
ylabel('Amplitude');
title('Carrier wave 1');

subplot(4, 1, 2);
plot(t, c2);
xlabel('Time');
ylabel('Amplitude');
title('Carrier wave 2');

m = amp * square(2 * pi * fp * t) + amp;
subplot(4, 1, 3);

plot(t, m);

xlabel('Time');

ylabel('Amplitude');

title('Binary message pulse');

for i = 0:1000

if m(i + 1) ==

mm(i + 1) = c2(i + 1);
else

mn(i + 1) = c1(i + 1);
end

end

subplot(4, 1, 4);
plot(t, mm);
xlabel('Time');
ylabel('Amplitude');
title('Modulated wave');

10.4 Input

>> FSK

Enter the freq of 1st sine wave carrier:

25

Enter the freq of 2nd sine wave carrier:

50

Enter the freq of periodic Binary Pulse (Message):

25

Enter the amplitude (both carrier and binary pulse message):
5
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10 Frequency Shift Keying

10.5 Output

Binary message pulse

Figure 10: FSK Modulation
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